xref: /openbmc/linux/mm/kasan/common.c (revision dd1fc3c5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  */
11 
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/linkage.h>
17 #include <linux/memblock.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/printk.h>
22 #include <linux/sched.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/slab.h>
25 #include <linux/stacktrace.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/bug.h>
29 
30 #include "kasan.h"
31 #include "../slab.h"
32 
33 depot_stack_handle_t kasan_save_stack(gfp_t flags)
34 {
35 	unsigned long entries[KASAN_STACK_DEPTH];
36 	unsigned int nr_entries;
37 
38 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
39 	nr_entries = filter_irq_stacks(entries, nr_entries);
40 	return stack_depot_save(entries, nr_entries, flags);
41 }
42 
43 void kasan_set_track(struct kasan_track *track, gfp_t flags)
44 {
45 	track->pid = current->pid;
46 	track->stack = kasan_save_stack(flags);
47 }
48 
49 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
50 void kasan_enable_current(void)
51 {
52 	current->kasan_depth++;
53 }
54 
55 void kasan_disable_current(void)
56 {
57 	current->kasan_depth--;
58 }
59 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
60 
61 void __kasan_unpoison_range(const void *address, size_t size)
62 {
63 	kasan_unpoison(address, size, false);
64 }
65 
66 #ifdef CONFIG_KASAN_STACK
67 /* Unpoison the entire stack for a task. */
68 void kasan_unpoison_task_stack(struct task_struct *task)
69 {
70 	void *base = task_stack_page(task);
71 
72 	kasan_unpoison(base, THREAD_SIZE, false);
73 }
74 
75 /* Unpoison the stack for the current task beyond a watermark sp value. */
76 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
77 {
78 	/*
79 	 * Calculate the task stack base address.  Avoid using 'current'
80 	 * because this function is called by early resume code which hasn't
81 	 * yet set up the percpu register (%gs).
82 	 */
83 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
84 
85 	kasan_unpoison(base, watermark - base, false);
86 }
87 #endif /* CONFIG_KASAN_STACK */
88 
89 /*
90  * Only allow cache merging when stack collection is disabled and no metadata
91  * is present.
92  */
93 slab_flags_t __kasan_never_merge(void)
94 {
95 	if (kasan_stack_collection_enabled())
96 		return SLAB_KASAN;
97 	return 0;
98 }
99 
100 void __kasan_alloc_pages(struct page *page, unsigned int order, bool init)
101 {
102 	u8 tag;
103 	unsigned long i;
104 
105 	if (unlikely(PageHighMem(page)))
106 		return;
107 
108 	tag = kasan_random_tag();
109 	for (i = 0; i < (1 << order); i++)
110 		page_kasan_tag_set(page + i, tag);
111 	kasan_unpoison(page_address(page), PAGE_SIZE << order, init);
112 }
113 
114 void __kasan_free_pages(struct page *page, unsigned int order, bool init)
115 {
116 	if (likely(!PageHighMem(page)))
117 		kasan_poison(page_address(page), PAGE_SIZE << order,
118 			     KASAN_FREE_PAGE, init);
119 }
120 
121 /*
122  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
123  * For larger allocations larger redzones are used.
124  */
125 static inline unsigned int optimal_redzone(unsigned int object_size)
126 {
127 	return
128 		object_size <= 64        - 16   ? 16 :
129 		object_size <= 128       - 32   ? 32 :
130 		object_size <= 512       - 64   ? 64 :
131 		object_size <= 4096      - 128  ? 128 :
132 		object_size <= (1 << 14) - 256  ? 256 :
133 		object_size <= (1 << 15) - 512  ? 512 :
134 		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
135 }
136 
137 void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
138 			  slab_flags_t *flags)
139 {
140 	unsigned int ok_size;
141 	unsigned int optimal_size;
142 
143 	/*
144 	 * SLAB_KASAN is used to mark caches as ones that are sanitized by
145 	 * KASAN. Currently this flag is used in two places:
146 	 * 1. In slab_ksize() when calculating the size of the accessible
147 	 *    memory within the object.
148 	 * 2. In slab_common.c to prevent merging of sanitized caches.
149 	 */
150 	*flags |= SLAB_KASAN;
151 
152 	if (!kasan_stack_collection_enabled())
153 		return;
154 
155 	ok_size = *size;
156 
157 	/* Add alloc meta into redzone. */
158 	cache->kasan_info.alloc_meta_offset = *size;
159 	*size += sizeof(struct kasan_alloc_meta);
160 
161 	/*
162 	 * If alloc meta doesn't fit, don't add it.
163 	 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
164 	 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
165 	 * larger sizes.
166 	 */
167 	if (*size > KMALLOC_MAX_SIZE) {
168 		cache->kasan_info.alloc_meta_offset = 0;
169 		*size = ok_size;
170 		/* Continue, since free meta might still fit. */
171 	}
172 
173 	/* Only the generic mode uses free meta or flexible redzones. */
174 	if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) {
175 		cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
176 		return;
177 	}
178 
179 	/*
180 	 * Add free meta into redzone when it's not possible to store
181 	 * it in the object. This is the case when:
182 	 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
183 	 *    be touched after it was freed, or
184 	 * 2. Object has a constructor, which means it's expected to
185 	 *    retain its content until the next allocation, or
186 	 * 3. Object is too small.
187 	 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
188 	 */
189 	if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
190 	    cache->object_size < sizeof(struct kasan_free_meta)) {
191 		ok_size = *size;
192 
193 		cache->kasan_info.free_meta_offset = *size;
194 		*size += sizeof(struct kasan_free_meta);
195 
196 		/* If free meta doesn't fit, don't add it. */
197 		if (*size > KMALLOC_MAX_SIZE) {
198 			cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
199 			*size = ok_size;
200 		}
201 	}
202 
203 	/* Calculate size with optimal redzone. */
204 	optimal_size = cache->object_size + optimal_redzone(cache->object_size);
205 	/* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
206 	if (optimal_size > KMALLOC_MAX_SIZE)
207 		optimal_size = KMALLOC_MAX_SIZE;
208 	/* Use optimal size if the size with added metas is not large enough. */
209 	if (*size < optimal_size)
210 		*size = optimal_size;
211 }
212 
213 void __kasan_cache_create_kmalloc(struct kmem_cache *cache)
214 {
215 	cache->kasan_info.is_kmalloc = true;
216 }
217 
218 size_t __kasan_metadata_size(struct kmem_cache *cache)
219 {
220 	if (!kasan_stack_collection_enabled())
221 		return 0;
222 	return (cache->kasan_info.alloc_meta_offset ?
223 		sizeof(struct kasan_alloc_meta) : 0) +
224 		(cache->kasan_info.free_meta_offset ?
225 		sizeof(struct kasan_free_meta) : 0);
226 }
227 
228 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
229 					      const void *object)
230 {
231 	if (!cache->kasan_info.alloc_meta_offset)
232 		return NULL;
233 	return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset;
234 }
235 
236 #ifdef CONFIG_KASAN_GENERIC
237 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
238 					    const void *object)
239 {
240 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
241 	if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
242 		return NULL;
243 	return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset;
244 }
245 #endif
246 
247 void __kasan_poison_slab(struct page *page)
248 {
249 	unsigned long i;
250 
251 	for (i = 0; i < compound_nr(page); i++)
252 		page_kasan_tag_reset(page + i);
253 	kasan_poison(page_address(page), page_size(page),
254 		     KASAN_KMALLOC_REDZONE, false);
255 }
256 
257 void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
258 {
259 	kasan_unpoison(object, cache->object_size, false);
260 }
261 
262 void __kasan_poison_object_data(struct kmem_cache *cache, void *object)
263 {
264 	kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
265 			KASAN_KMALLOC_REDZONE, false);
266 }
267 
268 /*
269  * This function assigns a tag to an object considering the following:
270  * 1. A cache might have a constructor, which might save a pointer to a slab
271  *    object somewhere (e.g. in the object itself). We preassign a tag for
272  *    each object in caches with constructors during slab creation and reuse
273  *    the same tag each time a particular object is allocated.
274  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
275  *    accessed after being freed. We preassign tags for objects in these
276  *    caches as well.
277  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
278  *    is stored as an array of indexes instead of a linked list. Assign tags
279  *    based on objects indexes, so that objects that are next to each other
280  *    get different tags.
281  */
282 static inline u8 assign_tag(struct kmem_cache *cache,
283 					const void *object, bool init)
284 {
285 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
286 		return 0xff;
287 
288 	/*
289 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
290 	 * set, assign a tag when the object is being allocated (init == false).
291 	 */
292 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
293 		return init ? KASAN_TAG_KERNEL : kasan_random_tag();
294 
295 	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
296 #ifdef CONFIG_SLAB
297 	/* For SLAB assign tags based on the object index in the freelist. */
298 	return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
299 #else
300 	/*
301 	 * For SLUB assign a random tag during slab creation, otherwise reuse
302 	 * the already assigned tag.
303 	 */
304 	return init ? kasan_random_tag() : get_tag(object);
305 #endif
306 }
307 
308 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
309 						const void *object)
310 {
311 	struct kasan_alloc_meta *alloc_meta;
312 
313 	if (kasan_stack_collection_enabled()) {
314 		alloc_meta = kasan_get_alloc_meta(cache, object);
315 		if (alloc_meta)
316 			__memset(alloc_meta, 0, sizeof(*alloc_meta));
317 	}
318 
319 	/* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
320 	object = set_tag(object, assign_tag(cache, object, true));
321 
322 	return (void *)object;
323 }
324 
325 static inline bool ____kasan_slab_free(struct kmem_cache *cache, void *object,
326 				unsigned long ip, bool quarantine, bool init)
327 {
328 	u8 tag;
329 	void *tagged_object;
330 
331 	tag = get_tag(object);
332 	tagged_object = object;
333 	object = kasan_reset_tag(object);
334 
335 	if (is_kfence_address(object))
336 		return false;
337 
338 	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
339 	    object)) {
340 		kasan_report_invalid_free(tagged_object, ip);
341 		return true;
342 	}
343 
344 	/* RCU slabs could be legally used after free within the RCU period */
345 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
346 		return false;
347 
348 	if (!kasan_byte_accessible(tagged_object)) {
349 		kasan_report_invalid_free(tagged_object, ip);
350 		return true;
351 	}
352 
353 	kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
354 			KASAN_KMALLOC_FREE, init);
355 
356 	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine))
357 		return false;
358 
359 	if (kasan_stack_collection_enabled())
360 		kasan_set_free_info(cache, object, tag);
361 
362 	return kasan_quarantine_put(cache, object);
363 }
364 
365 bool __kasan_slab_free(struct kmem_cache *cache, void *object,
366 				unsigned long ip, bool init)
367 {
368 	return ____kasan_slab_free(cache, object, ip, true, init);
369 }
370 
371 static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip)
372 {
373 	if (ptr != page_address(virt_to_head_page(ptr))) {
374 		kasan_report_invalid_free(ptr, ip);
375 		return true;
376 	}
377 
378 	if (!kasan_byte_accessible(ptr)) {
379 		kasan_report_invalid_free(ptr, ip);
380 		return true;
381 	}
382 
383 	/*
384 	 * The object will be poisoned by kasan_free_pages() or
385 	 * kasan_slab_free_mempool().
386 	 */
387 
388 	return false;
389 }
390 
391 void __kasan_kfree_large(void *ptr, unsigned long ip)
392 {
393 	____kasan_kfree_large(ptr, ip);
394 }
395 
396 void __kasan_slab_free_mempool(void *ptr, unsigned long ip)
397 {
398 	struct page *page;
399 
400 	page = virt_to_head_page(ptr);
401 
402 	/*
403 	 * Even though this function is only called for kmem_cache_alloc and
404 	 * kmalloc backed mempool allocations, those allocations can still be
405 	 * !PageSlab() when the size provided to kmalloc is larger than
406 	 * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc.
407 	 */
408 	if (unlikely(!PageSlab(page))) {
409 		if (____kasan_kfree_large(ptr, ip))
410 			return;
411 		kasan_poison(ptr, page_size(page), KASAN_FREE_PAGE, false);
412 	} else {
413 		____kasan_slab_free(page->slab_cache, ptr, ip, false, false);
414 	}
415 }
416 
417 static void set_alloc_info(struct kmem_cache *cache, void *object,
418 				gfp_t flags, bool is_kmalloc)
419 {
420 	struct kasan_alloc_meta *alloc_meta;
421 
422 	/* Don't save alloc info for kmalloc caches in kasan_slab_alloc(). */
423 	if (cache->kasan_info.is_kmalloc && !is_kmalloc)
424 		return;
425 
426 	alloc_meta = kasan_get_alloc_meta(cache, object);
427 	if (alloc_meta)
428 		kasan_set_track(&alloc_meta->alloc_track, flags);
429 }
430 
431 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
432 					void *object, gfp_t flags, bool init)
433 {
434 	u8 tag;
435 	void *tagged_object;
436 
437 	if (gfpflags_allow_blocking(flags))
438 		kasan_quarantine_reduce();
439 
440 	if (unlikely(object == NULL))
441 		return NULL;
442 
443 	if (is_kfence_address(object))
444 		return (void *)object;
445 
446 	/*
447 	 * Generate and assign random tag for tag-based modes.
448 	 * Tag is ignored in set_tag() for the generic mode.
449 	 */
450 	tag = assign_tag(cache, object, false);
451 	tagged_object = set_tag(object, tag);
452 
453 	/*
454 	 * Unpoison the whole object.
455 	 * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning.
456 	 */
457 	kasan_unpoison(tagged_object, cache->object_size, init);
458 
459 	/* Save alloc info (if possible) for non-kmalloc() allocations. */
460 	if (kasan_stack_collection_enabled())
461 		set_alloc_info(cache, (void *)object, flags, false);
462 
463 	return tagged_object;
464 }
465 
466 static inline void *____kasan_kmalloc(struct kmem_cache *cache,
467 				const void *object, size_t size, gfp_t flags)
468 {
469 	unsigned long redzone_start;
470 	unsigned long redzone_end;
471 
472 	if (gfpflags_allow_blocking(flags))
473 		kasan_quarantine_reduce();
474 
475 	if (unlikely(object == NULL))
476 		return NULL;
477 
478 	if (is_kfence_address(kasan_reset_tag(object)))
479 		return (void *)object;
480 
481 	/*
482 	 * The object has already been unpoisoned by kasan_slab_alloc() for
483 	 * kmalloc() or by kasan_krealloc() for krealloc().
484 	 */
485 
486 	/*
487 	 * The redzone has byte-level precision for the generic mode.
488 	 * Partially poison the last object granule to cover the unaligned
489 	 * part of the redzone.
490 	 */
491 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
492 		kasan_poison_last_granule((void *)object, size);
493 
494 	/* Poison the aligned part of the redzone. */
495 	redzone_start = round_up((unsigned long)(object + size),
496 				KASAN_GRANULE_SIZE);
497 	redzone_end = round_up((unsigned long)(object + cache->object_size),
498 				KASAN_GRANULE_SIZE);
499 	kasan_poison((void *)redzone_start, redzone_end - redzone_start,
500 			   KASAN_KMALLOC_REDZONE, false);
501 
502 	/*
503 	 * Save alloc info (if possible) for kmalloc() allocations.
504 	 * This also rewrites the alloc info when called from kasan_krealloc().
505 	 */
506 	if (kasan_stack_collection_enabled())
507 		set_alloc_info(cache, (void *)object, flags, true);
508 
509 	/* Keep the tag that was set by kasan_slab_alloc(). */
510 	return (void *)object;
511 }
512 
513 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
514 					size_t size, gfp_t flags)
515 {
516 	return ____kasan_kmalloc(cache, object, size, flags);
517 }
518 EXPORT_SYMBOL(__kasan_kmalloc);
519 
520 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
521 						gfp_t flags)
522 {
523 	unsigned long redzone_start;
524 	unsigned long redzone_end;
525 
526 	if (gfpflags_allow_blocking(flags))
527 		kasan_quarantine_reduce();
528 
529 	if (unlikely(ptr == NULL))
530 		return NULL;
531 
532 	/*
533 	 * The object has already been unpoisoned by kasan_alloc_pages() for
534 	 * alloc_pages() or by kasan_krealloc() for krealloc().
535 	 */
536 
537 	/*
538 	 * The redzone has byte-level precision for the generic mode.
539 	 * Partially poison the last object granule to cover the unaligned
540 	 * part of the redzone.
541 	 */
542 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
543 		kasan_poison_last_granule(ptr, size);
544 
545 	/* Poison the aligned part of the redzone. */
546 	redzone_start = round_up((unsigned long)(ptr + size),
547 				KASAN_GRANULE_SIZE);
548 	redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
549 	kasan_poison((void *)redzone_start, redzone_end - redzone_start,
550 		     KASAN_PAGE_REDZONE, false);
551 
552 	return (void *)ptr;
553 }
554 
555 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
556 {
557 	struct page *page;
558 
559 	if (unlikely(object == ZERO_SIZE_PTR))
560 		return (void *)object;
561 
562 	/*
563 	 * Unpoison the object's data.
564 	 * Part of it might already have been unpoisoned, but it's unknown
565 	 * how big that part is.
566 	 */
567 	kasan_unpoison(object, size, false);
568 
569 	page = virt_to_head_page(object);
570 
571 	/* Piggy-back on kmalloc() instrumentation to poison the redzone. */
572 	if (unlikely(!PageSlab(page)))
573 		return __kasan_kmalloc_large(object, size, flags);
574 	else
575 		return ____kasan_kmalloc(page->slab_cache, object, size, flags);
576 }
577 
578 bool __kasan_check_byte(const void *address, unsigned long ip)
579 {
580 	if (!kasan_byte_accessible(address)) {
581 		kasan_report((unsigned long)address, 1, false, ip);
582 		return false;
583 	}
584 	return true;
585 }
586