1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common generic and tag-based KASAN code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License version 2 as 13 * published by the Free Software Foundation. 14 * 15 */ 16 17 #include <linux/export.h> 18 #include <linux/interrupt.h> 19 #include <linux/init.h> 20 #include <linux/kasan.h> 21 #include <linux/kernel.h> 22 #include <linux/kmemleak.h> 23 #include <linux/linkage.h> 24 #include <linux/memblock.h> 25 #include <linux/memory.h> 26 #include <linux/mm.h> 27 #include <linux/module.h> 28 #include <linux/printk.h> 29 #include <linux/sched.h> 30 #include <linux/sched/task_stack.h> 31 #include <linux/slab.h> 32 #include <linux/stacktrace.h> 33 #include <linux/string.h> 34 #include <linux/types.h> 35 #include <linux/vmalloc.h> 36 #include <linux/bug.h> 37 38 #include "kasan.h" 39 #include "../slab.h" 40 41 static inline int in_irqentry_text(unsigned long ptr) 42 { 43 return (ptr >= (unsigned long)&__irqentry_text_start && 44 ptr < (unsigned long)&__irqentry_text_end) || 45 (ptr >= (unsigned long)&__softirqentry_text_start && 46 ptr < (unsigned long)&__softirqentry_text_end); 47 } 48 49 static inline void filter_irq_stacks(struct stack_trace *trace) 50 { 51 int i; 52 53 if (!trace->nr_entries) 54 return; 55 for (i = 0; i < trace->nr_entries; i++) 56 if (in_irqentry_text(trace->entries[i])) { 57 /* Include the irqentry function into the stack. */ 58 trace->nr_entries = i + 1; 59 break; 60 } 61 } 62 63 static inline depot_stack_handle_t save_stack(gfp_t flags) 64 { 65 unsigned long entries[KASAN_STACK_DEPTH]; 66 struct stack_trace trace = { 67 .nr_entries = 0, 68 .entries = entries, 69 .max_entries = KASAN_STACK_DEPTH, 70 .skip = 0 71 }; 72 73 save_stack_trace(&trace); 74 filter_irq_stacks(&trace); 75 if (trace.nr_entries != 0 && 76 trace.entries[trace.nr_entries-1] == ULONG_MAX) 77 trace.nr_entries--; 78 79 return depot_save_stack(&trace, flags); 80 } 81 82 static inline void set_track(struct kasan_track *track, gfp_t flags) 83 { 84 track->pid = current->pid; 85 track->stack = save_stack(flags); 86 } 87 88 void kasan_enable_current(void) 89 { 90 current->kasan_depth++; 91 } 92 93 void kasan_disable_current(void) 94 { 95 current->kasan_depth--; 96 } 97 98 void kasan_check_read(const volatile void *p, unsigned int size) 99 { 100 check_memory_region((unsigned long)p, size, false, _RET_IP_); 101 } 102 EXPORT_SYMBOL(kasan_check_read); 103 104 void kasan_check_write(const volatile void *p, unsigned int size) 105 { 106 check_memory_region((unsigned long)p, size, true, _RET_IP_); 107 } 108 EXPORT_SYMBOL(kasan_check_write); 109 110 #undef memset 111 void *memset(void *addr, int c, size_t len) 112 { 113 check_memory_region((unsigned long)addr, len, true, _RET_IP_); 114 115 return __memset(addr, c, len); 116 } 117 118 #undef memmove 119 void *memmove(void *dest, const void *src, size_t len) 120 { 121 check_memory_region((unsigned long)src, len, false, _RET_IP_); 122 check_memory_region((unsigned long)dest, len, true, _RET_IP_); 123 124 return __memmove(dest, src, len); 125 } 126 127 #undef memcpy 128 void *memcpy(void *dest, const void *src, size_t len) 129 { 130 check_memory_region((unsigned long)src, len, false, _RET_IP_); 131 check_memory_region((unsigned long)dest, len, true, _RET_IP_); 132 133 return __memcpy(dest, src, len); 134 } 135 136 /* 137 * Poisons the shadow memory for 'size' bytes starting from 'addr'. 138 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE. 139 */ 140 void kasan_poison_shadow(const void *address, size_t size, u8 value) 141 { 142 void *shadow_start, *shadow_end; 143 144 /* 145 * Perform shadow offset calculation based on untagged address, as 146 * some of the callers (e.g. kasan_poison_object_data) pass tagged 147 * addresses to this function. 148 */ 149 address = reset_tag(address); 150 151 shadow_start = kasan_mem_to_shadow(address); 152 shadow_end = kasan_mem_to_shadow(address + size); 153 154 __memset(shadow_start, value, shadow_end - shadow_start); 155 } 156 157 void kasan_unpoison_shadow(const void *address, size_t size) 158 { 159 u8 tag = get_tag(address); 160 161 /* 162 * Perform shadow offset calculation based on untagged address, as 163 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged 164 * addresses to this function. 165 */ 166 address = reset_tag(address); 167 168 kasan_poison_shadow(address, size, tag); 169 170 if (size & KASAN_SHADOW_MASK) { 171 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size); 172 173 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 174 *shadow = tag; 175 else 176 *shadow = size & KASAN_SHADOW_MASK; 177 } 178 } 179 180 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp) 181 { 182 void *base = task_stack_page(task); 183 size_t size = sp - base; 184 185 kasan_unpoison_shadow(base, size); 186 } 187 188 /* Unpoison the entire stack for a task. */ 189 void kasan_unpoison_task_stack(struct task_struct *task) 190 { 191 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE); 192 } 193 194 /* Unpoison the stack for the current task beyond a watermark sp value. */ 195 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) 196 { 197 /* 198 * Calculate the task stack base address. Avoid using 'current' 199 * because this function is called by early resume code which hasn't 200 * yet set up the percpu register (%gs). 201 */ 202 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); 203 204 kasan_unpoison_shadow(base, watermark - base); 205 } 206 207 /* 208 * Clear all poison for the region between the current SP and a provided 209 * watermark value, as is sometimes required prior to hand-crafted asm function 210 * returns in the middle of functions. 211 */ 212 void kasan_unpoison_stack_above_sp_to(const void *watermark) 213 { 214 const void *sp = __builtin_frame_address(0); 215 size_t size = watermark - sp; 216 217 if (WARN_ON(sp > watermark)) 218 return; 219 kasan_unpoison_shadow(sp, size); 220 } 221 222 void kasan_alloc_pages(struct page *page, unsigned int order) 223 { 224 u8 tag; 225 unsigned long i; 226 227 if (unlikely(PageHighMem(page))) 228 return; 229 230 tag = random_tag(); 231 for (i = 0; i < (1 << order); i++) 232 page_kasan_tag_set(page + i, tag); 233 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order); 234 } 235 236 void kasan_free_pages(struct page *page, unsigned int order) 237 { 238 if (likely(!PageHighMem(page))) 239 kasan_poison_shadow(page_address(page), 240 PAGE_SIZE << order, 241 KASAN_FREE_PAGE); 242 } 243 244 /* 245 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. 246 * For larger allocations larger redzones are used. 247 */ 248 static inline unsigned int optimal_redzone(unsigned int object_size) 249 { 250 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 251 return 0; 252 253 return 254 object_size <= 64 - 16 ? 16 : 255 object_size <= 128 - 32 ? 32 : 256 object_size <= 512 - 64 ? 64 : 257 object_size <= 4096 - 128 ? 128 : 258 object_size <= (1 << 14) - 256 ? 256 : 259 object_size <= (1 << 15) - 512 ? 512 : 260 object_size <= (1 << 16) - 1024 ? 1024 : 2048; 261 } 262 263 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, 264 slab_flags_t *flags) 265 { 266 unsigned int orig_size = *size; 267 unsigned int redzone_size; 268 int redzone_adjust; 269 270 /* Add alloc meta. */ 271 cache->kasan_info.alloc_meta_offset = *size; 272 *size += sizeof(struct kasan_alloc_meta); 273 274 /* Add free meta. */ 275 if (IS_ENABLED(CONFIG_KASAN_GENERIC) && 276 (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor || 277 cache->object_size < sizeof(struct kasan_free_meta))) { 278 cache->kasan_info.free_meta_offset = *size; 279 *size += sizeof(struct kasan_free_meta); 280 } 281 282 redzone_size = optimal_redzone(cache->object_size); 283 redzone_adjust = redzone_size - (*size - cache->object_size); 284 if (redzone_adjust > 0) 285 *size += redzone_adjust; 286 287 *size = min_t(unsigned int, KMALLOC_MAX_SIZE, 288 max(*size, cache->object_size + redzone_size)); 289 290 /* 291 * If the metadata doesn't fit, don't enable KASAN at all. 292 */ 293 if (*size <= cache->kasan_info.alloc_meta_offset || 294 *size <= cache->kasan_info.free_meta_offset) { 295 cache->kasan_info.alloc_meta_offset = 0; 296 cache->kasan_info.free_meta_offset = 0; 297 *size = orig_size; 298 return; 299 } 300 301 cache->align = round_up(cache->align, KASAN_SHADOW_SCALE_SIZE); 302 303 *flags |= SLAB_KASAN; 304 } 305 306 size_t kasan_metadata_size(struct kmem_cache *cache) 307 { 308 return (cache->kasan_info.alloc_meta_offset ? 309 sizeof(struct kasan_alloc_meta) : 0) + 310 (cache->kasan_info.free_meta_offset ? 311 sizeof(struct kasan_free_meta) : 0); 312 } 313 314 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache, 315 const void *object) 316 { 317 BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32); 318 return (void *)object + cache->kasan_info.alloc_meta_offset; 319 } 320 321 struct kasan_free_meta *get_free_info(struct kmem_cache *cache, 322 const void *object) 323 { 324 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); 325 return (void *)object + cache->kasan_info.free_meta_offset; 326 } 327 328 void kasan_poison_slab(struct page *page) 329 { 330 unsigned long i; 331 332 for (i = 0; i < (1 << compound_order(page)); i++) 333 page_kasan_tag_reset(page + i); 334 kasan_poison_shadow(page_address(page), 335 PAGE_SIZE << compound_order(page), 336 KASAN_KMALLOC_REDZONE); 337 } 338 339 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) 340 { 341 kasan_unpoison_shadow(object, cache->object_size); 342 } 343 344 void kasan_poison_object_data(struct kmem_cache *cache, void *object) 345 { 346 kasan_poison_shadow(object, 347 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE), 348 KASAN_KMALLOC_REDZONE); 349 } 350 351 /* 352 * Since it's desirable to only call object contructors once during slab 353 * allocation, we preassign tags to all such objects. Also preassign tags for 354 * SLAB_TYPESAFE_BY_RCU slabs to avoid use-after-free reports. 355 * For SLAB allocator we can't preassign tags randomly since the freelist is 356 * stored as an array of indexes instead of a linked list. Assign tags based 357 * on objects indexes, so that objects that are next to each other get 358 * different tags. 359 * After a tag is assigned, the object always gets allocated with the same tag. 360 * The reason is that we can't change tags for objects with constructors on 361 * reallocation (even for non-SLAB_TYPESAFE_BY_RCU), because the constructor 362 * code can save the pointer to the object somewhere (e.g. in the object 363 * itself). Then if we retag it, the old saved pointer will become invalid. 364 */ 365 static u8 assign_tag(struct kmem_cache *cache, const void *object, bool new) 366 { 367 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) 368 return new ? KASAN_TAG_KERNEL : random_tag(); 369 370 #ifdef CONFIG_SLAB 371 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object); 372 #else 373 return new ? random_tag() : get_tag(object); 374 #endif 375 } 376 377 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache, 378 const void *object) 379 { 380 struct kasan_alloc_meta *alloc_info; 381 382 if (!(cache->flags & SLAB_KASAN)) 383 return (void *)object; 384 385 alloc_info = get_alloc_info(cache, object); 386 __memset(alloc_info, 0, sizeof(*alloc_info)); 387 388 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 389 object = set_tag(object, assign_tag(cache, object, true)); 390 391 return (void *)object; 392 } 393 394 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object, 395 gfp_t flags) 396 { 397 return kasan_kmalloc(cache, object, cache->object_size, flags); 398 } 399 400 static inline bool shadow_invalid(u8 tag, s8 shadow_byte) 401 { 402 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 403 return shadow_byte < 0 || 404 shadow_byte >= KASAN_SHADOW_SCALE_SIZE; 405 else 406 return tag != (u8)shadow_byte; 407 } 408 409 static bool __kasan_slab_free(struct kmem_cache *cache, void *object, 410 unsigned long ip, bool quarantine) 411 { 412 s8 shadow_byte; 413 u8 tag; 414 void *tagged_object; 415 unsigned long rounded_up_size; 416 417 tag = get_tag(object); 418 tagged_object = object; 419 object = reset_tag(object); 420 421 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != 422 object)) { 423 kasan_report_invalid_free(tagged_object, ip); 424 return true; 425 } 426 427 /* RCU slabs could be legally used after free within the RCU period */ 428 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) 429 return false; 430 431 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object)); 432 if (shadow_invalid(tag, shadow_byte)) { 433 kasan_report_invalid_free(tagged_object, ip); 434 return true; 435 } 436 437 rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE); 438 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE); 439 440 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) || 441 unlikely(!(cache->flags & SLAB_KASAN))) 442 return false; 443 444 set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT); 445 quarantine_put(get_free_info(cache, object), cache); 446 447 return IS_ENABLED(CONFIG_KASAN_GENERIC); 448 } 449 450 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) 451 { 452 return __kasan_slab_free(cache, object, ip, true); 453 } 454 455 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object, 456 size_t size, gfp_t flags) 457 { 458 unsigned long redzone_start; 459 unsigned long redzone_end; 460 u8 tag; 461 462 if (gfpflags_allow_blocking(flags)) 463 quarantine_reduce(); 464 465 if (unlikely(object == NULL)) 466 return NULL; 467 468 redzone_start = round_up((unsigned long)(object + size), 469 KASAN_SHADOW_SCALE_SIZE); 470 redzone_end = round_up((unsigned long)object + cache->object_size, 471 KASAN_SHADOW_SCALE_SIZE); 472 473 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 474 tag = assign_tag(cache, object, false); 475 476 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */ 477 kasan_unpoison_shadow(set_tag(object, tag), size); 478 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, 479 KASAN_KMALLOC_REDZONE); 480 481 if (cache->flags & SLAB_KASAN) 482 set_track(&get_alloc_info(cache, object)->alloc_track, flags); 483 484 return set_tag(object, tag); 485 } 486 EXPORT_SYMBOL(kasan_kmalloc); 487 488 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, 489 gfp_t flags) 490 { 491 struct page *page; 492 unsigned long redzone_start; 493 unsigned long redzone_end; 494 495 if (gfpflags_allow_blocking(flags)) 496 quarantine_reduce(); 497 498 if (unlikely(ptr == NULL)) 499 return NULL; 500 501 page = virt_to_page(ptr); 502 redzone_start = round_up((unsigned long)(ptr + size), 503 KASAN_SHADOW_SCALE_SIZE); 504 redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page)); 505 506 kasan_unpoison_shadow(ptr, size); 507 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, 508 KASAN_PAGE_REDZONE); 509 510 return (void *)ptr; 511 } 512 513 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags) 514 { 515 struct page *page; 516 517 if (unlikely(object == ZERO_SIZE_PTR)) 518 return (void *)object; 519 520 page = virt_to_head_page(object); 521 522 if (unlikely(!PageSlab(page))) 523 return kasan_kmalloc_large(object, size, flags); 524 else 525 return kasan_kmalloc(page->slab_cache, object, size, flags); 526 } 527 528 void kasan_poison_kfree(void *ptr, unsigned long ip) 529 { 530 struct page *page; 531 532 page = virt_to_head_page(ptr); 533 534 if (unlikely(!PageSlab(page))) { 535 if (ptr != page_address(page)) { 536 kasan_report_invalid_free(ptr, ip); 537 return; 538 } 539 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page), 540 KASAN_FREE_PAGE); 541 } else { 542 __kasan_slab_free(page->slab_cache, ptr, ip, false); 543 } 544 } 545 546 void kasan_kfree_large(void *ptr, unsigned long ip) 547 { 548 if (ptr != page_address(virt_to_head_page(ptr))) 549 kasan_report_invalid_free(ptr, ip); 550 /* The object will be poisoned by page_alloc. */ 551 } 552 553 int kasan_module_alloc(void *addr, size_t size) 554 { 555 void *ret; 556 size_t scaled_size; 557 size_t shadow_size; 558 unsigned long shadow_start; 559 560 shadow_start = (unsigned long)kasan_mem_to_shadow(addr); 561 scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT; 562 shadow_size = round_up(scaled_size, PAGE_SIZE); 563 564 if (WARN_ON(!PAGE_ALIGNED(shadow_start))) 565 return -EINVAL; 566 567 ret = __vmalloc_node_range(shadow_size, 1, shadow_start, 568 shadow_start + shadow_size, 569 GFP_KERNEL, 570 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE, 571 __builtin_return_address(0)); 572 573 if (ret) { 574 __memset(ret, KASAN_SHADOW_INIT, shadow_size); 575 find_vm_area(addr)->flags |= VM_KASAN; 576 kmemleak_ignore(ret); 577 return 0; 578 } 579 580 return -ENOMEM; 581 } 582 583 void kasan_free_shadow(const struct vm_struct *vm) 584 { 585 if (vm->flags & VM_KASAN) 586 vfree(kasan_mem_to_shadow(vm->addr)); 587 } 588 589 #ifdef CONFIG_MEMORY_HOTPLUG 590 static bool shadow_mapped(unsigned long addr) 591 { 592 pgd_t *pgd = pgd_offset_k(addr); 593 p4d_t *p4d; 594 pud_t *pud; 595 pmd_t *pmd; 596 pte_t *pte; 597 598 if (pgd_none(*pgd)) 599 return false; 600 p4d = p4d_offset(pgd, addr); 601 if (p4d_none(*p4d)) 602 return false; 603 pud = pud_offset(p4d, addr); 604 if (pud_none(*pud)) 605 return false; 606 607 /* 608 * We can't use pud_large() or pud_huge(), the first one is 609 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse 610 * pud_bad(), if pud is bad then it's bad because it's huge. 611 */ 612 if (pud_bad(*pud)) 613 return true; 614 pmd = pmd_offset(pud, addr); 615 if (pmd_none(*pmd)) 616 return false; 617 618 if (pmd_bad(*pmd)) 619 return true; 620 pte = pte_offset_kernel(pmd, addr); 621 return !pte_none(*pte); 622 } 623 624 static int __meminit kasan_mem_notifier(struct notifier_block *nb, 625 unsigned long action, void *data) 626 { 627 struct memory_notify *mem_data = data; 628 unsigned long nr_shadow_pages, start_kaddr, shadow_start; 629 unsigned long shadow_end, shadow_size; 630 631 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT; 632 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn); 633 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr); 634 shadow_size = nr_shadow_pages << PAGE_SHIFT; 635 shadow_end = shadow_start + shadow_size; 636 637 if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) || 638 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT))) 639 return NOTIFY_BAD; 640 641 switch (action) { 642 case MEM_GOING_ONLINE: { 643 void *ret; 644 645 /* 646 * If shadow is mapped already than it must have been mapped 647 * during the boot. This could happen if we onlining previously 648 * offlined memory. 649 */ 650 if (shadow_mapped(shadow_start)) 651 return NOTIFY_OK; 652 653 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start, 654 shadow_end, GFP_KERNEL, 655 PAGE_KERNEL, VM_NO_GUARD, 656 pfn_to_nid(mem_data->start_pfn), 657 __builtin_return_address(0)); 658 if (!ret) 659 return NOTIFY_BAD; 660 661 kmemleak_ignore(ret); 662 return NOTIFY_OK; 663 } 664 case MEM_CANCEL_ONLINE: 665 case MEM_OFFLINE: { 666 struct vm_struct *vm; 667 668 /* 669 * shadow_start was either mapped during boot by kasan_init() 670 * or during memory online by __vmalloc_node_range(). 671 * In the latter case we can use vfree() to free shadow. 672 * Non-NULL result of the find_vm_area() will tell us if 673 * that was the second case. 674 * 675 * Currently it's not possible to free shadow mapped 676 * during boot by kasan_init(). It's because the code 677 * to do that hasn't been written yet. So we'll just 678 * leak the memory. 679 */ 680 vm = find_vm_area((void *)shadow_start); 681 if (vm) 682 vfree((void *)shadow_start); 683 } 684 } 685 686 return NOTIFY_OK; 687 } 688 689 static int __init kasan_memhotplug_init(void) 690 { 691 hotplug_memory_notifier(kasan_mem_notifier, 0); 692 693 return 0; 694 } 695 696 core_initcall(kasan_memhotplug_init); 697 #endif 698