1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common generic and tag-based KASAN code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License version 2 as 13 * published by the Free Software Foundation. 14 * 15 */ 16 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/kasan.h> 20 #include <linux/kernel.h> 21 #include <linux/kmemleak.h> 22 #include <linux/linkage.h> 23 #include <linux/memblock.h> 24 #include <linux/memory.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/printk.h> 28 #include <linux/sched.h> 29 #include <linux/sched/task_stack.h> 30 #include <linux/slab.h> 31 #include <linux/stacktrace.h> 32 #include <linux/string.h> 33 #include <linux/types.h> 34 #include <linux/vmalloc.h> 35 #include <linux/bug.h> 36 37 #include <asm/cacheflush.h> 38 #include <asm/tlbflush.h> 39 40 #include "kasan.h" 41 #include "../slab.h" 42 43 depot_stack_handle_t kasan_save_stack(gfp_t flags) 44 { 45 unsigned long entries[KASAN_STACK_DEPTH]; 46 unsigned int nr_entries; 47 48 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); 49 nr_entries = filter_irq_stacks(entries, nr_entries); 50 return stack_depot_save(entries, nr_entries, flags); 51 } 52 53 void kasan_set_track(struct kasan_track *track, gfp_t flags) 54 { 55 track->pid = current->pid; 56 track->stack = kasan_save_stack(flags); 57 } 58 59 void kasan_enable_current(void) 60 { 61 current->kasan_depth++; 62 } 63 64 void kasan_disable_current(void) 65 { 66 current->kasan_depth--; 67 } 68 69 bool __kasan_check_read(const volatile void *p, unsigned int size) 70 { 71 return check_memory_region((unsigned long)p, size, false, _RET_IP_); 72 } 73 EXPORT_SYMBOL(__kasan_check_read); 74 75 bool __kasan_check_write(const volatile void *p, unsigned int size) 76 { 77 return check_memory_region((unsigned long)p, size, true, _RET_IP_); 78 } 79 EXPORT_SYMBOL(__kasan_check_write); 80 81 #undef memset 82 void *memset(void *addr, int c, size_t len) 83 { 84 if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_)) 85 return NULL; 86 87 return __memset(addr, c, len); 88 } 89 90 #ifdef __HAVE_ARCH_MEMMOVE 91 #undef memmove 92 void *memmove(void *dest, const void *src, size_t len) 93 { 94 if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) || 95 !check_memory_region((unsigned long)dest, len, true, _RET_IP_)) 96 return NULL; 97 98 return __memmove(dest, src, len); 99 } 100 #endif 101 102 #undef memcpy 103 void *memcpy(void *dest, const void *src, size_t len) 104 { 105 if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) || 106 !check_memory_region((unsigned long)dest, len, true, _RET_IP_)) 107 return NULL; 108 109 return __memcpy(dest, src, len); 110 } 111 112 /* 113 * Poisons the shadow memory for 'size' bytes starting from 'addr'. 114 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE. 115 */ 116 void kasan_poison_shadow(const void *address, size_t size, u8 value) 117 { 118 void *shadow_start, *shadow_end; 119 120 /* 121 * Perform shadow offset calculation based on untagged address, as 122 * some of the callers (e.g. kasan_poison_object_data) pass tagged 123 * addresses to this function. 124 */ 125 address = reset_tag(address); 126 127 shadow_start = kasan_mem_to_shadow(address); 128 shadow_end = kasan_mem_to_shadow(address + size); 129 130 __memset(shadow_start, value, shadow_end - shadow_start); 131 } 132 133 void kasan_unpoison_shadow(const void *address, size_t size) 134 { 135 u8 tag = get_tag(address); 136 137 /* 138 * Perform shadow offset calculation based on untagged address, as 139 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged 140 * addresses to this function. 141 */ 142 address = reset_tag(address); 143 144 kasan_poison_shadow(address, size, tag); 145 146 if (size & KASAN_SHADOW_MASK) { 147 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size); 148 149 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 150 *shadow = tag; 151 else 152 *shadow = size & KASAN_SHADOW_MASK; 153 } 154 } 155 156 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp) 157 { 158 void *base = task_stack_page(task); 159 size_t size = sp - base; 160 161 kasan_unpoison_shadow(base, size); 162 } 163 164 /* Unpoison the entire stack for a task. */ 165 void kasan_unpoison_task_stack(struct task_struct *task) 166 { 167 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE); 168 } 169 170 /* Unpoison the stack for the current task beyond a watermark sp value. */ 171 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) 172 { 173 /* 174 * Calculate the task stack base address. Avoid using 'current' 175 * because this function is called by early resume code which hasn't 176 * yet set up the percpu register (%gs). 177 */ 178 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); 179 180 kasan_unpoison_shadow(base, watermark - base); 181 } 182 183 void kasan_alloc_pages(struct page *page, unsigned int order) 184 { 185 u8 tag; 186 unsigned long i; 187 188 if (unlikely(PageHighMem(page))) 189 return; 190 191 tag = random_tag(); 192 for (i = 0; i < (1 << order); i++) 193 page_kasan_tag_set(page + i, tag); 194 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order); 195 } 196 197 void kasan_free_pages(struct page *page, unsigned int order) 198 { 199 if (likely(!PageHighMem(page))) 200 kasan_poison_shadow(page_address(page), 201 PAGE_SIZE << order, 202 KASAN_FREE_PAGE); 203 } 204 205 /* 206 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. 207 * For larger allocations larger redzones are used. 208 */ 209 static inline unsigned int optimal_redzone(unsigned int object_size) 210 { 211 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 212 return 0; 213 214 return 215 object_size <= 64 - 16 ? 16 : 216 object_size <= 128 - 32 ? 32 : 217 object_size <= 512 - 64 ? 64 : 218 object_size <= 4096 - 128 ? 128 : 219 object_size <= (1 << 14) - 256 ? 256 : 220 object_size <= (1 << 15) - 512 ? 512 : 221 object_size <= (1 << 16) - 1024 ? 1024 : 2048; 222 } 223 224 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, 225 slab_flags_t *flags) 226 { 227 unsigned int orig_size = *size; 228 unsigned int redzone_size; 229 int redzone_adjust; 230 231 /* Add alloc meta. */ 232 cache->kasan_info.alloc_meta_offset = *size; 233 *size += sizeof(struct kasan_alloc_meta); 234 235 /* Add free meta. */ 236 if (IS_ENABLED(CONFIG_KASAN_GENERIC) && 237 (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor || 238 cache->object_size < sizeof(struct kasan_free_meta))) { 239 cache->kasan_info.free_meta_offset = *size; 240 *size += sizeof(struct kasan_free_meta); 241 } 242 243 redzone_size = optimal_redzone(cache->object_size); 244 redzone_adjust = redzone_size - (*size - cache->object_size); 245 if (redzone_adjust > 0) 246 *size += redzone_adjust; 247 248 *size = min_t(unsigned int, KMALLOC_MAX_SIZE, 249 max(*size, cache->object_size + redzone_size)); 250 251 /* 252 * If the metadata doesn't fit, don't enable KASAN at all. 253 */ 254 if (*size <= cache->kasan_info.alloc_meta_offset || 255 *size <= cache->kasan_info.free_meta_offset) { 256 cache->kasan_info.alloc_meta_offset = 0; 257 cache->kasan_info.free_meta_offset = 0; 258 *size = orig_size; 259 return; 260 } 261 262 *flags |= SLAB_KASAN; 263 } 264 265 size_t kasan_metadata_size(struct kmem_cache *cache) 266 { 267 return (cache->kasan_info.alloc_meta_offset ? 268 sizeof(struct kasan_alloc_meta) : 0) + 269 (cache->kasan_info.free_meta_offset ? 270 sizeof(struct kasan_free_meta) : 0); 271 } 272 273 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache, 274 const void *object) 275 { 276 return (void *)object + cache->kasan_info.alloc_meta_offset; 277 } 278 279 struct kasan_free_meta *get_free_info(struct kmem_cache *cache, 280 const void *object) 281 { 282 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); 283 return (void *)object + cache->kasan_info.free_meta_offset; 284 } 285 286 void kasan_poison_slab(struct page *page) 287 { 288 unsigned long i; 289 290 for (i = 0; i < compound_nr(page); i++) 291 page_kasan_tag_reset(page + i); 292 kasan_poison_shadow(page_address(page), page_size(page), 293 KASAN_KMALLOC_REDZONE); 294 } 295 296 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) 297 { 298 kasan_unpoison_shadow(object, cache->object_size); 299 } 300 301 void kasan_poison_object_data(struct kmem_cache *cache, void *object) 302 { 303 kasan_poison_shadow(object, 304 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE), 305 KASAN_KMALLOC_REDZONE); 306 } 307 308 /* 309 * This function assigns a tag to an object considering the following: 310 * 1. A cache might have a constructor, which might save a pointer to a slab 311 * object somewhere (e.g. in the object itself). We preassign a tag for 312 * each object in caches with constructors during slab creation and reuse 313 * the same tag each time a particular object is allocated. 314 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be 315 * accessed after being freed. We preassign tags for objects in these 316 * caches as well. 317 * 3. For SLAB allocator we can't preassign tags randomly since the freelist 318 * is stored as an array of indexes instead of a linked list. Assign tags 319 * based on objects indexes, so that objects that are next to each other 320 * get different tags. 321 */ 322 static u8 assign_tag(struct kmem_cache *cache, const void *object, 323 bool init, bool keep_tag) 324 { 325 /* 326 * 1. When an object is kmalloc()'ed, two hooks are called: 327 * kasan_slab_alloc() and kasan_kmalloc(). We assign the 328 * tag only in the first one. 329 * 2. We reuse the same tag for krealloc'ed objects. 330 */ 331 if (keep_tag) 332 return get_tag(object); 333 334 /* 335 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU 336 * set, assign a tag when the object is being allocated (init == false). 337 */ 338 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) 339 return init ? KASAN_TAG_KERNEL : random_tag(); 340 341 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ 342 #ifdef CONFIG_SLAB 343 /* For SLAB assign tags based on the object index in the freelist. */ 344 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object); 345 #else 346 /* 347 * For SLUB assign a random tag during slab creation, otherwise reuse 348 * the already assigned tag. 349 */ 350 return init ? random_tag() : get_tag(object); 351 #endif 352 } 353 354 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache, 355 const void *object) 356 { 357 struct kasan_alloc_meta *alloc_info; 358 359 if (!(cache->flags & SLAB_KASAN)) 360 return (void *)object; 361 362 alloc_info = get_alloc_info(cache, object); 363 __memset(alloc_info, 0, sizeof(*alloc_info)); 364 365 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 366 object = set_tag(object, 367 assign_tag(cache, object, true, false)); 368 369 return (void *)object; 370 } 371 372 static inline bool shadow_invalid(u8 tag, s8 shadow_byte) 373 { 374 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 375 return shadow_byte < 0 || 376 shadow_byte >= KASAN_SHADOW_SCALE_SIZE; 377 378 /* else CONFIG_KASAN_SW_TAGS: */ 379 if ((u8)shadow_byte == KASAN_TAG_INVALID) 380 return true; 381 if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte)) 382 return true; 383 384 return false; 385 } 386 387 static bool __kasan_slab_free(struct kmem_cache *cache, void *object, 388 unsigned long ip, bool quarantine) 389 { 390 s8 shadow_byte; 391 u8 tag; 392 void *tagged_object; 393 unsigned long rounded_up_size; 394 395 tag = get_tag(object); 396 tagged_object = object; 397 object = reset_tag(object); 398 399 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != 400 object)) { 401 kasan_report_invalid_free(tagged_object, ip); 402 return true; 403 } 404 405 /* RCU slabs could be legally used after free within the RCU period */ 406 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) 407 return false; 408 409 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object)); 410 if (shadow_invalid(tag, shadow_byte)) { 411 kasan_report_invalid_free(tagged_object, ip); 412 return true; 413 } 414 415 rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE); 416 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE); 417 418 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) || 419 unlikely(!(cache->flags & SLAB_KASAN))) 420 return false; 421 422 kasan_set_free_info(cache, object, tag); 423 424 quarantine_put(get_free_info(cache, object), cache); 425 426 return IS_ENABLED(CONFIG_KASAN_GENERIC); 427 } 428 429 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) 430 { 431 return __kasan_slab_free(cache, object, ip, true); 432 } 433 434 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object, 435 size_t size, gfp_t flags, bool keep_tag) 436 { 437 unsigned long redzone_start; 438 unsigned long redzone_end; 439 u8 tag = 0xff; 440 441 if (gfpflags_allow_blocking(flags)) 442 quarantine_reduce(); 443 444 if (unlikely(object == NULL)) 445 return NULL; 446 447 redzone_start = round_up((unsigned long)(object + size), 448 KASAN_SHADOW_SCALE_SIZE); 449 redzone_end = round_up((unsigned long)object + cache->object_size, 450 KASAN_SHADOW_SCALE_SIZE); 451 452 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 453 tag = assign_tag(cache, object, false, keep_tag); 454 455 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */ 456 kasan_unpoison_shadow(set_tag(object, tag), size); 457 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, 458 KASAN_KMALLOC_REDZONE); 459 460 if (cache->flags & SLAB_KASAN) 461 kasan_set_track(&get_alloc_info(cache, object)->alloc_track, flags); 462 463 return set_tag(object, tag); 464 } 465 466 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object, 467 gfp_t flags) 468 { 469 return __kasan_kmalloc(cache, object, cache->object_size, flags, false); 470 } 471 472 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object, 473 size_t size, gfp_t flags) 474 { 475 return __kasan_kmalloc(cache, object, size, flags, true); 476 } 477 EXPORT_SYMBOL(kasan_kmalloc); 478 479 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, 480 gfp_t flags) 481 { 482 struct page *page; 483 unsigned long redzone_start; 484 unsigned long redzone_end; 485 486 if (gfpflags_allow_blocking(flags)) 487 quarantine_reduce(); 488 489 if (unlikely(ptr == NULL)) 490 return NULL; 491 492 page = virt_to_page(ptr); 493 redzone_start = round_up((unsigned long)(ptr + size), 494 KASAN_SHADOW_SCALE_SIZE); 495 redzone_end = (unsigned long)ptr + page_size(page); 496 497 kasan_unpoison_shadow(ptr, size); 498 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, 499 KASAN_PAGE_REDZONE); 500 501 return (void *)ptr; 502 } 503 504 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags) 505 { 506 struct page *page; 507 508 if (unlikely(object == ZERO_SIZE_PTR)) 509 return (void *)object; 510 511 page = virt_to_head_page(object); 512 513 if (unlikely(!PageSlab(page))) 514 return kasan_kmalloc_large(object, size, flags); 515 else 516 return __kasan_kmalloc(page->slab_cache, object, size, 517 flags, true); 518 } 519 520 void kasan_poison_kfree(void *ptr, unsigned long ip) 521 { 522 struct page *page; 523 524 page = virt_to_head_page(ptr); 525 526 if (unlikely(!PageSlab(page))) { 527 if (ptr != page_address(page)) { 528 kasan_report_invalid_free(ptr, ip); 529 return; 530 } 531 kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE); 532 } else { 533 __kasan_slab_free(page->slab_cache, ptr, ip, false); 534 } 535 } 536 537 void kasan_kfree_large(void *ptr, unsigned long ip) 538 { 539 if (ptr != page_address(virt_to_head_page(ptr))) 540 kasan_report_invalid_free(ptr, ip); 541 /* The object will be poisoned by page_alloc. */ 542 } 543 544 #ifndef CONFIG_KASAN_VMALLOC 545 int kasan_module_alloc(void *addr, size_t size) 546 { 547 void *ret; 548 size_t scaled_size; 549 size_t shadow_size; 550 unsigned long shadow_start; 551 552 shadow_start = (unsigned long)kasan_mem_to_shadow(addr); 553 scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT; 554 shadow_size = round_up(scaled_size, PAGE_SIZE); 555 556 if (WARN_ON(!PAGE_ALIGNED(shadow_start))) 557 return -EINVAL; 558 559 ret = __vmalloc_node_range(shadow_size, 1, shadow_start, 560 shadow_start + shadow_size, 561 GFP_KERNEL, 562 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE, 563 __builtin_return_address(0)); 564 565 if (ret) { 566 __memset(ret, KASAN_SHADOW_INIT, shadow_size); 567 find_vm_area(addr)->flags |= VM_KASAN; 568 kmemleak_ignore(ret); 569 return 0; 570 } 571 572 return -ENOMEM; 573 } 574 575 void kasan_free_shadow(const struct vm_struct *vm) 576 { 577 if (vm->flags & VM_KASAN) 578 vfree(kasan_mem_to_shadow(vm->addr)); 579 } 580 #endif 581 582 #ifdef CONFIG_MEMORY_HOTPLUG 583 static bool shadow_mapped(unsigned long addr) 584 { 585 pgd_t *pgd = pgd_offset_k(addr); 586 p4d_t *p4d; 587 pud_t *pud; 588 pmd_t *pmd; 589 pte_t *pte; 590 591 if (pgd_none(*pgd)) 592 return false; 593 p4d = p4d_offset(pgd, addr); 594 if (p4d_none(*p4d)) 595 return false; 596 pud = pud_offset(p4d, addr); 597 if (pud_none(*pud)) 598 return false; 599 600 /* 601 * We can't use pud_large() or pud_huge(), the first one is 602 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse 603 * pud_bad(), if pud is bad then it's bad because it's huge. 604 */ 605 if (pud_bad(*pud)) 606 return true; 607 pmd = pmd_offset(pud, addr); 608 if (pmd_none(*pmd)) 609 return false; 610 611 if (pmd_bad(*pmd)) 612 return true; 613 pte = pte_offset_kernel(pmd, addr); 614 return !pte_none(*pte); 615 } 616 617 static int __meminit kasan_mem_notifier(struct notifier_block *nb, 618 unsigned long action, void *data) 619 { 620 struct memory_notify *mem_data = data; 621 unsigned long nr_shadow_pages, start_kaddr, shadow_start; 622 unsigned long shadow_end, shadow_size; 623 624 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT; 625 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn); 626 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr); 627 shadow_size = nr_shadow_pages << PAGE_SHIFT; 628 shadow_end = shadow_start + shadow_size; 629 630 if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) || 631 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT))) 632 return NOTIFY_BAD; 633 634 switch (action) { 635 case MEM_GOING_ONLINE: { 636 void *ret; 637 638 /* 639 * If shadow is mapped already than it must have been mapped 640 * during the boot. This could happen if we onlining previously 641 * offlined memory. 642 */ 643 if (shadow_mapped(shadow_start)) 644 return NOTIFY_OK; 645 646 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start, 647 shadow_end, GFP_KERNEL, 648 PAGE_KERNEL, VM_NO_GUARD, 649 pfn_to_nid(mem_data->start_pfn), 650 __builtin_return_address(0)); 651 if (!ret) 652 return NOTIFY_BAD; 653 654 kmemleak_ignore(ret); 655 return NOTIFY_OK; 656 } 657 case MEM_CANCEL_ONLINE: 658 case MEM_OFFLINE: { 659 struct vm_struct *vm; 660 661 /* 662 * shadow_start was either mapped during boot by kasan_init() 663 * or during memory online by __vmalloc_node_range(). 664 * In the latter case we can use vfree() to free shadow. 665 * Non-NULL result of the find_vm_area() will tell us if 666 * that was the second case. 667 * 668 * Currently it's not possible to free shadow mapped 669 * during boot by kasan_init(). It's because the code 670 * to do that hasn't been written yet. So we'll just 671 * leak the memory. 672 */ 673 vm = find_vm_area((void *)shadow_start); 674 if (vm) 675 vfree((void *)shadow_start); 676 } 677 } 678 679 return NOTIFY_OK; 680 } 681 682 static int __init kasan_memhotplug_init(void) 683 { 684 hotplug_memory_notifier(kasan_mem_notifier, 0); 685 686 return 0; 687 } 688 689 core_initcall(kasan_memhotplug_init); 690 #endif 691 692 #ifdef CONFIG_KASAN_VMALLOC 693 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr, 694 void *unused) 695 { 696 unsigned long page; 697 pte_t pte; 698 699 if (likely(!pte_none(*ptep))) 700 return 0; 701 702 page = __get_free_page(GFP_KERNEL); 703 if (!page) 704 return -ENOMEM; 705 706 memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE); 707 pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL); 708 709 spin_lock(&init_mm.page_table_lock); 710 if (likely(pte_none(*ptep))) { 711 set_pte_at(&init_mm, addr, ptep, pte); 712 page = 0; 713 } 714 spin_unlock(&init_mm.page_table_lock); 715 if (page) 716 free_page(page); 717 return 0; 718 } 719 720 int kasan_populate_vmalloc(unsigned long addr, unsigned long size) 721 { 722 unsigned long shadow_start, shadow_end; 723 int ret; 724 725 if (!is_vmalloc_or_module_addr((void *)addr)) 726 return 0; 727 728 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr); 729 shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE); 730 shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size); 731 shadow_end = ALIGN(shadow_end, PAGE_SIZE); 732 733 ret = apply_to_page_range(&init_mm, shadow_start, 734 shadow_end - shadow_start, 735 kasan_populate_vmalloc_pte, NULL); 736 if (ret) 737 return ret; 738 739 flush_cache_vmap(shadow_start, shadow_end); 740 741 /* 742 * We need to be careful about inter-cpu effects here. Consider: 743 * 744 * CPU#0 CPU#1 745 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ; 746 * p[99] = 1; 747 * 748 * With compiler instrumentation, that ends up looking like this: 749 * 750 * CPU#0 CPU#1 751 * // vmalloc() allocates memory 752 * // let a = area->addr 753 * // we reach kasan_populate_vmalloc 754 * // and call kasan_unpoison_shadow: 755 * STORE shadow(a), unpoison_val 756 * ... 757 * STORE shadow(a+99), unpoison_val x = LOAD p 758 * // rest of vmalloc process <data dependency> 759 * STORE p, a LOAD shadow(x+99) 760 * 761 * If there is no barrier between the end of unpoisioning the shadow 762 * and the store of the result to p, the stores could be committed 763 * in a different order by CPU#0, and CPU#1 could erroneously observe 764 * poison in the shadow. 765 * 766 * We need some sort of barrier between the stores. 767 * 768 * In the vmalloc() case, this is provided by a smp_wmb() in 769 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in 770 * get_vm_area() and friends, the caller gets shadow allocated but 771 * doesn't have any pages mapped into the virtual address space that 772 * has been reserved. Mapping those pages in will involve taking and 773 * releasing a page-table lock, which will provide the barrier. 774 */ 775 776 return 0; 777 } 778 779 /* 780 * Poison the shadow for a vmalloc region. Called as part of the 781 * freeing process at the time the region is freed. 782 */ 783 void kasan_poison_vmalloc(const void *start, unsigned long size) 784 { 785 if (!is_vmalloc_or_module_addr(start)) 786 return; 787 788 size = round_up(size, KASAN_SHADOW_SCALE_SIZE); 789 kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID); 790 } 791 792 void kasan_unpoison_vmalloc(const void *start, unsigned long size) 793 { 794 if (!is_vmalloc_or_module_addr(start)) 795 return; 796 797 kasan_unpoison_shadow(start, size); 798 } 799 800 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr, 801 void *unused) 802 { 803 unsigned long page; 804 805 page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT); 806 807 spin_lock(&init_mm.page_table_lock); 808 809 if (likely(!pte_none(*ptep))) { 810 pte_clear(&init_mm, addr, ptep); 811 free_page(page); 812 } 813 spin_unlock(&init_mm.page_table_lock); 814 815 return 0; 816 } 817 818 /* 819 * Release the backing for the vmalloc region [start, end), which 820 * lies within the free region [free_region_start, free_region_end). 821 * 822 * This can be run lazily, long after the region was freed. It runs 823 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap 824 * infrastructure. 825 * 826 * How does this work? 827 * ------------------- 828 * 829 * We have a region that is page aligned, labelled as A. 830 * That might not map onto the shadow in a way that is page-aligned: 831 * 832 * start end 833 * v v 834 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc 835 * -------- -------- -------- -------- -------- 836 * | | | | | 837 * | | | /-------/ | 838 * \-------\|/------/ |/---------------/ 839 * ||| || 840 * |??AAAAAA|AAAAAAAA|AA??????| < shadow 841 * (1) (2) (3) 842 * 843 * First we align the start upwards and the end downwards, so that the 844 * shadow of the region aligns with shadow page boundaries. In the 845 * example, this gives us the shadow page (2). This is the shadow entirely 846 * covered by this allocation. 847 * 848 * Then we have the tricky bits. We want to know if we can free the 849 * partially covered shadow pages - (1) and (3) in the example. For this, 850 * we are given the start and end of the free region that contains this 851 * allocation. Extending our previous example, we could have: 852 * 853 * free_region_start free_region_end 854 * | start end | 855 * v v v v 856 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc 857 * -------- -------- -------- -------- -------- 858 * | | | | | 859 * | | | /-------/ | 860 * \-------\|/------/ |/---------------/ 861 * ||| || 862 * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow 863 * (1) (2) (3) 864 * 865 * Once again, we align the start of the free region up, and the end of 866 * the free region down so that the shadow is page aligned. So we can free 867 * page (1) - we know no allocation currently uses anything in that page, 868 * because all of it is in the vmalloc free region. But we cannot free 869 * page (3), because we can't be sure that the rest of it is unused. 870 * 871 * We only consider pages that contain part of the original region for 872 * freeing: we don't try to free other pages from the free region or we'd 873 * end up trying to free huge chunks of virtual address space. 874 * 875 * Concurrency 876 * ----------- 877 * 878 * How do we know that we're not freeing a page that is simultaneously 879 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)? 880 * 881 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running 882 * at the same time. While we run under free_vmap_area_lock, the population 883 * code does not. 884 * 885 * free_vmap_area_lock instead operates to ensure that the larger range 886 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and 887 * the per-cpu region-finding algorithm both run under free_vmap_area_lock, 888 * no space identified as free will become used while we are running. This 889 * means that so long as we are careful with alignment and only free shadow 890 * pages entirely covered by the free region, we will not run in to any 891 * trouble - any simultaneous allocations will be for disjoint regions. 892 */ 893 void kasan_release_vmalloc(unsigned long start, unsigned long end, 894 unsigned long free_region_start, 895 unsigned long free_region_end) 896 { 897 void *shadow_start, *shadow_end; 898 unsigned long region_start, region_end; 899 unsigned long size; 900 901 region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); 902 region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); 903 904 free_region_start = ALIGN(free_region_start, 905 PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); 906 907 if (start != region_start && 908 free_region_start < region_start) 909 region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE; 910 911 free_region_end = ALIGN_DOWN(free_region_end, 912 PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); 913 914 if (end != region_end && 915 free_region_end > region_end) 916 region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE; 917 918 shadow_start = kasan_mem_to_shadow((void *)region_start); 919 shadow_end = kasan_mem_to_shadow((void *)region_end); 920 921 if (shadow_end > shadow_start) { 922 size = shadow_end - shadow_start; 923 apply_to_existing_page_range(&init_mm, 924 (unsigned long)shadow_start, 925 size, kasan_depopulate_vmalloc_pte, 926 NULL); 927 flush_tlb_kernel_range((unsigned long)shadow_start, 928 (unsigned long)shadow_end); 929 } 930 } 931 #endif 932