1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common generic and tag-based KASAN code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License version 2 as 13 * published by the Free Software Foundation. 14 * 15 */ 16 17 #include <linux/export.h> 18 #include <linux/interrupt.h> 19 #include <linux/init.h> 20 #include <linux/kasan.h> 21 #include <linux/kernel.h> 22 #include <linux/kmemleak.h> 23 #include <linux/linkage.h> 24 #include <linux/memblock.h> 25 #include <linux/memory.h> 26 #include <linux/mm.h> 27 #include <linux/module.h> 28 #include <linux/printk.h> 29 #include <linux/sched.h> 30 #include <linux/sched/task_stack.h> 31 #include <linux/slab.h> 32 #include <linux/stacktrace.h> 33 #include <linux/string.h> 34 #include <linux/types.h> 35 #include <linux/vmalloc.h> 36 #include <linux/bug.h> 37 38 #include "kasan.h" 39 #include "../slab.h" 40 41 static inline int in_irqentry_text(unsigned long ptr) 42 { 43 return (ptr >= (unsigned long)&__irqentry_text_start && 44 ptr < (unsigned long)&__irqentry_text_end) || 45 (ptr >= (unsigned long)&__softirqentry_text_start && 46 ptr < (unsigned long)&__softirqentry_text_end); 47 } 48 49 static inline void filter_irq_stacks(struct stack_trace *trace) 50 { 51 int i; 52 53 if (!trace->nr_entries) 54 return; 55 for (i = 0; i < trace->nr_entries; i++) 56 if (in_irqentry_text(trace->entries[i])) { 57 /* Include the irqentry function into the stack. */ 58 trace->nr_entries = i + 1; 59 break; 60 } 61 } 62 63 static inline depot_stack_handle_t save_stack(gfp_t flags) 64 { 65 unsigned long entries[KASAN_STACK_DEPTH]; 66 struct stack_trace trace = { 67 .nr_entries = 0, 68 .entries = entries, 69 .max_entries = KASAN_STACK_DEPTH, 70 .skip = 0 71 }; 72 73 save_stack_trace(&trace); 74 filter_irq_stacks(&trace); 75 if (trace.nr_entries != 0 && 76 trace.entries[trace.nr_entries-1] == ULONG_MAX) 77 trace.nr_entries--; 78 79 return depot_save_stack(&trace, flags); 80 } 81 82 static inline void set_track(struct kasan_track *track, gfp_t flags) 83 { 84 track->pid = current->pid; 85 track->stack = save_stack(flags); 86 } 87 88 void kasan_enable_current(void) 89 { 90 current->kasan_depth++; 91 } 92 93 void kasan_disable_current(void) 94 { 95 current->kasan_depth--; 96 } 97 98 void kasan_check_read(const volatile void *p, unsigned int size) 99 { 100 check_memory_region((unsigned long)p, size, false, _RET_IP_); 101 } 102 EXPORT_SYMBOL(kasan_check_read); 103 104 void kasan_check_write(const volatile void *p, unsigned int size) 105 { 106 check_memory_region((unsigned long)p, size, true, _RET_IP_); 107 } 108 EXPORT_SYMBOL(kasan_check_write); 109 110 #undef memset 111 void *memset(void *addr, int c, size_t len) 112 { 113 check_memory_region((unsigned long)addr, len, true, _RET_IP_); 114 115 return __memset(addr, c, len); 116 } 117 118 #undef memmove 119 void *memmove(void *dest, const void *src, size_t len) 120 { 121 check_memory_region((unsigned long)src, len, false, _RET_IP_); 122 check_memory_region((unsigned long)dest, len, true, _RET_IP_); 123 124 return __memmove(dest, src, len); 125 } 126 127 #undef memcpy 128 void *memcpy(void *dest, const void *src, size_t len) 129 { 130 check_memory_region((unsigned long)src, len, false, _RET_IP_); 131 check_memory_region((unsigned long)dest, len, true, _RET_IP_); 132 133 return __memcpy(dest, src, len); 134 } 135 136 /* 137 * Poisons the shadow memory for 'size' bytes starting from 'addr'. 138 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE. 139 */ 140 void kasan_poison_shadow(const void *address, size_t size, u8 value) 141 { 142 void *shadow_start, *shadow_end; 143 144 /* 145 * Perform shadow offset calculation based on untagged address, as 146 * some of the callers (e.g. kasan_poison_object_data) pass tagged 147 * addresses to this function. 148 */ 149 address = reset_tag(address); 150 151 shadow_start = kasan_mem_to_shadow(address); 152 shadow_end = kasan_mem_to_shadow(address + size); 153 154 __memset(shadow_start, value, shadow_end - shadow_start); 155 } 156 157 void kasan_unpoison_shadow(const void *address, size_t size) 158 { 159 u8 tag = get_tag(address); 160 161 /* 162 * Perform shadow offset calculation based on untagged address, as 163 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged 164 * addresses to this function. 165 */ 166 address = reset_tag(address); 167 168 kasan_poison_shadow(address, size, tag); 169 170 if (size & KASAN_SHADOW_MASK) { 171 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size); 172 173 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 174 *shadow = tag; 175 else 176 *shadow = size & KASAN_SHADOW_MASK; 177 } 178 } 179 180 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp) 181 { 182 void *base = task_stack_page(task); 183 size_t size = sp - base; 184 185 kasan_unpoison_shadow(base, size); 186 } 187 188 /* Unpoison the entire stack for a task. */ 189 void kasan_unpoison_task_stack(struct task_struct *task) 190 { 191 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE); 192 } 193 194 /* Unpoison the stack for the current task beyond a watermark sp value. */ 195 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) 196 { 197 /* 198 * Calculate the task stack base address. Avoid using 'current' 199 * because this function is called by early resume code which hasn't 200 * yet set up the percpu register (%gs). 201 */ 202 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); 203 204 kasan_unpoison_shadow(base, watermark - base); 205 } 206 207 /* 208 * Clear all poison for the region between the current SP and a provided 209 * watermark value, as is sometimes required prior to hand-crafted asm function 210 * returns in the middle of functions. 211 */ 212 void kasan_unpoison_stack_above_sp_to(const void *watermark) 213 { 214 const void *sp = __builtin_frame_address(0); 215 size_t size = watermark - sp; 216 217 if (WARN_ON(sp > watermark)) 218 return; 219 kasan_unpoison_shadow(sp, size); 220 } 221 222 void kasan_alloc_pages(struct page *page, unsigned int order) 223 { 224 u8 tag; 225 unsigned long i; 226 227 if (unlikely(PageHighMem(page))) 228 return; 229 230 tag = random_tag(); 231 for (i = 0; i < (1 << order); i++) 232 page_kasan_tag_set(page + i, tag); 233 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order); 234 } 235 236 void kasan_free_pages(struct page *page, unsigned int order) 237 { 238 if (likely(!PageHighMem(page))) 239 kasan_poison_shadow(page_address(page), 240 PAGE_SIZE << order, 241 KASAN_FREE_PAGE); 242 } 243 244 /* 245 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. 246 * For larger allocations larger redzones are used. 247 */ 248 static inline unsigned int optimal_redzone(unsigned int object_size) 249 { 250 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 251 return 0; 252 253 return 254 object_size <= 64 - 16 ? 16 : 255 object_size <= 128 - 32 ? 32 : 256 object_size <= 512 - 64 ? 64 : 257 object_size <= 4096 - 128 ? 128 : 258 object_size <= (1 << 14) - 256 ? 256 : 259 object_size <= (1 << 15) - 512 ? 512 : 260 object_size <= (1 << 16) - 1024 ? 1024 : 2048; 261 } 262 263 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, 264 slab_flags_t *flags) 265 { 266 unsigned int orig_size = *size; 267 unsigned int redzone_size; 268 int redzone_adjust; 269 270 /* Add alloc meta. */ 271 cache->kasan_info.alloc_meta_offset = *size; 272 *size += sizeof(struct kasan_alloc_meta); 273 274 /* Add free meta. */ 275 if (IS_ENABLED(CONFIG_KASAN_GENERIC) && 276 (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor || 277 cache->object_size < sizeof(struct kasan_free_meta))) { 278 cache->kasan_info.free_meta_offset = *size; 279 *size += sizeof(struct kasan_free_meta); 280 } 281 282 redzone_size = optimal_redzone(cache->object_size); 283 redzone_adjust = redzone_size - (*size - cache->object_size); 284 if (redzone_adjust > 0) 285 *size += redzone_adjust; 286 287 *size = min_t(unsigned int, KMALLOC_MAX_SIZE, 288 max(*size, cache->object_size + redzone_size)); 289 290 /* 291 * If the metadata doesn't fit, don't enable KASAN at all. 292 */ 293 if (*size <= cache->kasan_info.alloc_meta_offset || 294 *size <= cache->kasan_info.free_meta_offset) { 295 cache->kasan_info.alloc_meta_offset = 0; 296 cache->kasan_info.free_meta_offset = 0; 297 *size = orig_size; 298 return; 299 } 300 301 *flags |= SLAB_KASAN; 302 } 303 304 size_t kasan_metadata_size(struct kmem_cache *cache) 305 { 306 return (cache->kasan_info.alloc_meta_offset ? 307 sizeof(struct kasan_alloc_meta) : 0) + 308 (cache->kasan_info.free_meta_offset ? 309 sizeof(struct kasan_free_meta) : 0); 310 } 311 312 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache, 313 const void *object) 314 { 315 BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32); 316 return (void *)object + cache->kasan_info.alloc_meta_offset; 317 } 318 319 struct kasan_free_meta *get_free_info(struct kmem_cache *cache, 320 const void *object) 321 { 322 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); 323 return (void *)object + cache->kasan_info.free_meta_offset; 324 } 325 326 void kasan_poison_slab(struct page *page) 327 { 328 unsigned long i; 329 330 for (i = 0; i < (1 << compound_order(page)); i++) 331 page_kasan_tag_reset(page + i); 332 kasan_poison_shadow(page_address(page), 333 PAGE_SIZE << compound_order(page), 334 KASAN_KMALLOC_REDZONE); 335 } 336 337 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) 338 { 339 kasan_unpoison_shadow(object, cache->object_size); 340 } 341 342 void kasan_poison_object_data(struct kmem_cache *cache, void *object) 343 { 344 kasan_poison_shadow(object, 345 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE), 346 KASAN_KMALLOC_REDZONE); 347 } 348 349 /* 350 * This function assigns a tag to an object considering the following: 351 * 1. A cache might have a constructor, which might save a pointer to a slab 352 * object somewhere (e.g. in the object itself). We preassign a tag for 353 * each object in caches with constructors during slab creation and reuse 354 * the same tag each time a particular object is allocated. 355 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be 356 * accessed after being freed. We preassign tags for objects in these 357 * caches as well. 358 * 3. For SLAB allocator we can't preassign tags randomly since the freelist 359 * is stored as an array of indexes instead of a linked list. Assign tags 360 * based on objects indexes, so that objects that are next to each other 361 * get different tags. 362 */ 363 static u8 assign_tag(struct kmem_cache *cache, const void *object, 364 bool init, bool krealloc) 365 { 366 /* Reuse the same tag for krealloc'ed objects. */ 367 if (krealloc) 368 return get_tag(object); 369 370 /* 371 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU 372 * set, assign a tag when the object is being allocated (init == false). 373 */ 374 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) 375 return init ? KASAN_TAG_KERNEL : random_tag(); 376 377 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ 378 #ifdef CONFIG_SLAB 379 /* For SLAB assign tags based on the object index in the freelist. */ 380 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object); 381 #else 382 /* 383 * For SLUB assign a random tag during slab creation, otherwise reuse 384 * the already assigned tag. 385 */ 386 return init ? random_tag() : get_tag(object); 387 #endif 388 } 389 390 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache, 391 const void *object) 392 { 393 struct kasan_alloc_meta *alloc_info; 394 395 if (!(cache->flags & SLAB_KASAN)) 396 return (void *)object; 397 398 alloc_info = get_alloc_info(cache, object); 399 __memset(alloc_info, 0, sizeof(*alloc_info)); 400 401 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 402 object = set_tag(object, 403 assign_tag(cache, object, true, false)); 404 405 return (void *)object; 406 } 407 408 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object, 409 gfp_t flags) 410 { 411 return kasan_kmalloc(cache, object, cache->object_size, flags); 412 } 413 414 static inline bool shadow_invalid(u8 tag, s8 shadow_byte) 415 { 416 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 417 return shadow_byte < 0 || 418 shadow_byte >= KASAN_SHADOW_SCALE_SIZE; 419 else 420 return tag != (u8)shadow_byte; 421 } 422 423 static bool __kasan_slab_free(struct kmem_cache *cache, void *object, 424 unsigned long ip, bool quarantine) 425 { 426 s8 shadow_byte; 427 u8 tag; 428 void *tagged_object; 429 unsigned long rounded_up_size; 430 431 tag = get_tag(object); 432 tagged_object = object; 433 object = reset_tag(object); 434 435 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != 436 object)) { 437 kasan_report_invalid_free(tagged_object, ip); 438 return true; 439 } 440 441 /* RCU slabs could be legally used after free within the RCU period */ 442 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) 443 return false; 444 445 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object)); 446 if (shadow_invalid(tag, shadow_byte)) { 447 kasan_report_invalid_free(tagged_object, ip); 448 return true; 449 } 450 451 rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE); 452 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE); 453 454 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) || 455 unlikely(!(cache->flags & SLAB_KASAN))) 456 return false; 457 458 set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT); 459 quarantine_put(get_free_info(cache, object), cache); 460 461 return IS_ENABLED(CONFIG_KASAN_GENERIC); 462 } 463 464 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) 465 { 466 return __kasan_slab_free(cache, object, ip, true); 467 } 468 469 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object, 470 size_t size, gfp_t flags, bool krealloc) 471 { 472 unsigned long redzone_start; 473 unsigned long redzone_end; 474 u8 tag; 475 476 if (gfpflags_allow_blocking(flags)) 477 quarantine_reduce(); 478 479 if (unlikely(object == NULL)) 480 return NULL; 481 482 redzone_start = round_up((unsigned long)(object + size), 483 KASAN_SHADOW_SCALE_SIZE); 484 redzone_end = round_up((unsigned long)object + cache->object_size, 485 KASAN_SHADOW_SCALE_SIZE); 486 487 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 488 tag = assign_tag(cache, object, false, krealloc); 489 490 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */ 491 kasan_unpoison_shadow(set_tag(object, tag), size); 492 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, 493 KASAN_KMALLOC_REDZONE); 494 495 if (cache->flags & SLAB_KASAN) 496 set_track(&get_alloc_info(cache, object)->alloc_track, flags); 497 498 return set_tag(object, tag); 499 } 500 501 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object, 502 size_t size, gfp_t flags) 503 { 504 return __kasan_kmalloc(cache, object, size, flags, false); 505 } 506 EXPORT_SYMBOL(kasan_kmalloc); 507 508 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, 509 gfp_t flags) 510 { 511 struct page *page; 512 unsigned long redzone_start; 513 unsigned long redzone_end; 514 515 if (gfpflags_allow_blocking(flags)) 516 quarantine_reduce(); 517 518 if (unlikely(ptr == NULL)) 519 return NULL; 520 521 page = virt_to_page(ptr); 522 redzone_start = round_up((unsigned long)(ptr + size), 523 KASAN_SHADOW_SCALE_SIZE); 524 redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page)); 525 526 kasan_unpoison_shadow(ptr, size); 527 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, 528 KASAN_PAGE_REDZONE); 529 530 return (void *)ptr; 531 } 532 533 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags) 534 { 535 struct page *page; 536 537 if (unlikely(object == ZERO_SIZE_PTR)) 538 return (void *)object; 539 540 page = virt_to_head_page(object); 541 542 if (unlikely(!PageSlab(page))) 543 return kasan_kmalloc_large(object, size, flags); 544 else 545 return __kasan_kmalloc(page->slab_cache, object, size, 546 flags, true); 547 } 548 549 void kasan_poison_kfree(void *ptr, unsigned long ip) 550 { 551 struct page *page; 552 553 page = virt_to_head_page(ptr); 554 555 if (unlikely(!PageSlab(page))) { 556 if (ptr != page_address(page)) { 557 kasan_report_invalid_free(ptr, ip); 558 return; 559 } 560 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page), 561 KASAN_FREE_PAGE); 562 } else { 563 __kasan_slab_free(page->slab_cache, ptr, ip, false); 564 } 565 } 566 567 void kasan_kfree_large(void *ptr, unsigned long ip) 568 { 569 if (ptr != page_address(virt_to_head_page(ptr))) 570 kasan_report_invalid_free(ptr, ip); 571 /* The object will be poisoned by page_alloc. */ 572 } 573 574 int kasan_module_alloc(void *addr, size_t size) 575 { 576 void *ret; 577 size_t scaled_size; 578 size_t shadow_size; 579 unsigned long shadow_start; 580 581 shadow_start = (unsigned long)kasan_mem_to_shadow(addr); 582 scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT; 583 shadow_size = round_up(scaled_size, PAGE_SIZE); 584 585 if (WARN_ON(!PAGE_ALIGNED(shadow_start))) 586 return -EINVAL; 587 588 ret = __vmalloc_node_range(shadow_size, 1, shadow_start, 589 shadow_start + shadow_size, 590 GFP_KERNEL, 591 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE, 592 __builtin_return_address(0)); 593 594 if (ret) { 595 __memset(ret, KASAN_SHADOW_INIT, shadow_size); 596 find_vm_area(addr)->flags |= VM_KASAN; 597 kmemleak_ignore(ret); 598 return 0; 599 } 600 601 return -ENOMEM; 602 } 603 604 void kasan_free_shadow(const struct vm_struct *vm) 605 { 606 if (vm->flags & VM_KASAN) 607 vfree(kasan_mem_to_shadow(vm->addr)); 608 } 609 610 #ifdef CONFIG_MEMORY_HOTPLUG 611 static bool shadow_mapped(unsigned long addr) 612 { 613 pgd_t *pgd = pgd_offset_k(addr); 614 p4d_t *p4d; 615 pud_t *pud; 616 pmd_t *pmd; 617 pte_t *pte; 618 619 if (pgd_none(*pgd)) 620 return false; 621 p4d = p4d_offset(pgd, addr); 622 if (p4d_none(*p4d)) 623 return false; 624 pud = pud_offset(p4d, addr); 625 if (pud_none(*pud)) 626 return false; 627 628 /* 629 * We can't use pud_large() or pud_huge(), the first one is 630 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse 631 * pud_bad(), if pud is bad then it's bad because it's huge. 632 */ 633 if (pud_bad(*pud)) 634 return true; 635 pmd = pmd_offset(pud, addr); 636 if (pmd_none(*pmd)) 637 return false; 638 639 if (pmd_bad(*pmd)) 640 return true; 641 pte = pte_offset_kernel(pmd, addr); 642 return !pte_none(*pte); 643 } 644 645 static int __meminit kasan_mem_notifier(struct notifier_block *nb, 646 unsigned long action, void *data) 647 { 648 struct memory_notify *mem_data = data; 649 unsigned long nr_shadow_pages, start_kaddr, shadow_start; 650 unsigned long shadow_end, shadow_size; 651 652 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT; 653 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn); 654 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr); 655 shadow_size = nr_shadow_pages << PAGE_SHIFT; 656 shadow_end = shadow_start + shadow_size; 657 658 if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) || 659 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT))) 660 return NOTIFY_BAD; 661 662 switch (action) { 663 case MEM_GOING_ONLINE: { 664 void *ret; 665 666 /* 667 * If shadow is mapped already than it must have been mapped 668 * during the boot. This could happen if we onlining previously 669 * offlined memory. 670 */ 671 if (shadow_mapped(shadow_start)) 672 return NOTIFY_OK; 673 674 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start, 675 shadow_end, GFP_KERNEL, 676 PAGE_KERNEL, VM_NO_GUARD, 677 pfn_to_nid(mem_data->start_pfn), 678 __builtin_return_address(0)); 679 if (!ret) 680 return NOTIFY_BAD; 681 682 kmemleak_ignore(ret); 683 return NOTIFY_OK; 684 } 685 case MEM_CANCEL_ONLINE: 686 case MEM_OFFLINE: { 687 struct vm_struct *vm; 688 689 /* 690 * shadow_start was either mapped during boot by kasan_init() 691 * or during memory online by __vmalloc_node_range(). 692 * In the latter case we can use vfree() to free shadow. 693 * Non-NULL result of the find_vm_area() will tell us if 694 * that was the second case. 695 * 696 * Currently it's not possible to free shadow mapped 697 * during boot by kasan_init(). It's because the code 698 * to do that hasn't been written yet. So we'll just 699 * leak the memory. 700 */ 701 vm = find_vm_area((void *)shadow_start); 702 if (vm) 703 vfree((void *)shadow_start); 704 } 705 } 706 707 return NOTIFY_OK; 708 } 709 710 static int __init kasan_memhotplug_init(void) 711 { 712 hotplug_memory_notifier(kasan_mem_notifier, 0); 713 714 return 0; 715 } 716 717 core_initcall(kasan_memhotplug_init); 718 #endif 719