1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common generic and tag-based KASAN code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License version 2 as 13 * published by the Free Software Foundation. 14 * 15 */ 16 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/kasan.h> 20 #include <linux/kernel.h> 21 #include <linux/kmemleak.h> 22 #include <linux/linkage.h> 23 #include <linux/memblock.h> 24 #include <linux/memory.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/printk.h> 28 #include <linux/sched.h> 29 #include <linux/sched/task_stack.h> 30 #include <linux/slab.h> 31 #include <linux/stacktrace.h> 32 #include <linux/string.h> 33 #include <linux/types.h> 34 #include <linux/vmalloc.h> 35 #include <linux/bug.h> 36 37 #include <asm/cacheflush.h> 38 #include <asm/tlbflush.h> 39 40 #include "kasan.h" 41 #include "../slab.h" 42 43 static inline depot_stack_handle_t save_stack(gfp_t flags) 44 { 45 unsigned long entries[KASAN_STACK_DEPTH]; 46 unsigned int nr_entries; 47 48 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); 49 nr_entries = filter_irq_stacks(entries, nr_entries); 50 return stack_depot_save(entries, nr_entries, flags); 51 } 52 53 static inline void set_track(struct kasan_track *track, gfp_t flags) 54 { 55 track->pid = current->pid; 56 track->stack = save_stack(flags); 57 } 58 59 void kasan_enable_current(void) 60 { 61 current->kasan_depth++; 62 } 63 64 void kasan_disable_current(void) 65 { 66 current->kasan_depth--; 67 } 68 69 bool __kasan_check_read(const volatile void *p, unsigned int size) 70 { 71 return check_memory_region((unsigned long)p, size, false, _RET_IP_); 72 } 73 EXPORT_SYMBOL(__kasan_check_read); 74 75 bool __kasan_check_write(const volatile void *p, unsigned int size) 76 { 77 return check_memory_region((unsigned long)p, size, true, _RET_IP_); 78 } 79 EXPORT_SYMBOL(__kasan_check_write); 80 81 #undef memset 82 void *memset(void *addr, int c, size_t len) 83 { 84 if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_)) 85 return NULL; 86 87 return __memset(addr, c, len); 88 } 89 90 #ifdef __HAVE_ARCH_MEMMOVE 91 #undef memmove 92 void *memmove(void *dest, const void *src, size_t len) 93 { 94 if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) || 95 !check_memory_region((unsigned long)dest, len, true, _RET_IP_)) 96 return NULL; 97 98 return __memmove(dest, src, len); 99 } 100 #endif 101 102 #undef memcpy 103 void *memcpy(void *dest, const void *src, size_t len) 104 { 105 if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) || 106 !check_memory_region((unsigned long)dest, len, true, _RET_IP_)) 107 return NULL; 108 109 return __memcpy(dest, src, len); 110 } 111 112 /* 113 * Poisons the shadow memory for 'size' bytes starting from 'addr'. 114 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE. 115 */ 116 void kasan_poison_shadow(const void *address, size_t size, u8 value) 117 { 118 void *shadow_start, *shadow_end; 119 120 /* 121 * Perform shadow offset calculation based on untagged address, as 122 * some of the callers (e.g. kasan_poison_object_data) pass tagged 123 * addresses to this function. 124 */ 125 address = reset_tag(address); 126 127 shadow_start = kasan_mem_to_shadow(address); 128 shadow_end = kasan_mem_to_shadow(address + size); 129 130 __memset(shadow_start, value, shadow_end - shadow_start); 131 } 132 133 void kasan_unpoison_shadow(const void *address, size_t size) 134 { 135 u8 tag = get_tag(address); 136 137 /* 138 * Perform shadow offset calculation based on untagged address, as 139 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged 140 * addresses to this function. 141 */ 142 address = reset_tag(address); 143 144 kasan_poison_shadow(address, size, tag); 145 146 if (size & KASAN_SHADOW_MASK) { 147 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size); 148 149 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 150 *shadow = tag; 151 else 152 *shadow = size & KASAN_SHADOW_MASK; 153 } 154 } 155 156 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp) 157 { 158 void *base = task_stack_page(task); 159 size_t size = sp - base; 160 161 kasan_unpoison_shadow(base, size); 162 } 163 164 /* Unpoison the entire stack for a task. */ 165 void kasan_unpoison_task_stack(struct task_struct *task) 166 { 167 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE); 168 } 169 170 /* Unpoison the stack for the current task beyond a watermark sp value. */ 171 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) 172 { 173 /* 174 * Calculate the task stack base address. Avoid using 'current' 175 * because this function is called by early resume code which hasn't 176 * yet set up the percpu register (%gs). 177 */ 178 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); 179 180 kasan_unpoison_shadow(base, watermark - base); 181 } 182 183 /* 184 * Clear all poison for the region between the current SP and a provided 185 * watermark value, as is sometimes required prior to hand-crafted asm function 186 * returns in the middle of functions. 187 */ 188 void kasan_unpoison_stack_above_sp_to(const void *watermark) 189 { 190 const void *sp = __builtin_frame_address(0); 191 size_t size = watermark - sp; 192 193 if (WARN_ON(sp > watermark)) 194 return; 195 kasan_unpoison_shadow(sp, size); 196 } 197 198 void kasan_alloc_pages(struct page *page, unsigned int order) 199 { 200 u8 tag; 201 unsigned long i; 202 203 if (unlikely(PageHighMem(page))) 204 return; 205 206 tag = random_tag(); 207 for (i = 0; i < (1 << order); i++) 208 page_kasan_tag_set(page + i, tag); 209 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order); 210 } 211 212 void kasan_free_pages(struct page *page, unsigned int order) 213 { 214 if (likely(!PageHighMem(page))) 215 kasan_poison_shadow(page_address(page), 216 PAGE_SIZE << order, 217 KASAN_FREE_PAGE); 218 } 219 220 /* 221 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. 222 * For larger allocations larger redzones are used. 223 */ 224 static inline unsigned int optimal_redzone(unsigned int object_size) 225 { 226 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 227 return 0; 228 229 return 230 object_size <= 64 - 16 ? 16 : 231 object_size <= 128 - 32 ? 32 : 232 object_size <= 512 - 64 ? 64 : 233 object_size <= 4096 - 128 ? 128 : 234 object_size <= (1 << 14) - 256 ? 256 : 235 object_size <= (1 << 15) - 512 ? 512 : 236 object_size <= (1 << 16) - 1024 ? 1024 : 2048; 237 } 238 239 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, 240 slab_flags_t *flags) 241 { 242 unsigned int orig_size = *size; 243 unsigned int redzone_size; 244 int redzone_adjust; 245 246 /* Add alloc meta. */ 247 cache->kasan_info.alloc_meta_offset = *size; 248 *size += sizeof(struct kasan_alloc_meta); 249 250 /* Add free meta. */ 251 if (IS_ENABLED(CONFIG_KASAN_GENERIC) && 252 (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor || 253 cache->object_size < sizeof(struct kasan_free_meta))) { 254 cache->kasan_info.free_meta_offset = *size; 255 *size += sizeof(struct kasan_free_meta); 256 } 257 258 redzone_size = optimal_redzone(cache->object_size); 259 redzone_adjust = redzone_size - (*size - cache->object_size); 260 if (redzone_adjust > 0) 261 *size += redzone_adjust; 262 263 *size = min_t(unsigned int, KMALLOC_MAX_SIZE, 264 max(*size, cache->object_size + redzone_size)); 265 266 /* 267 * If the metadata doesn't fit, don't enable KASAN at all. 268 */ 269 if (*size <= cache->kasan_info.alloc_meta_offset || 270 *size <= cache->kasan_info.free_meta_offset) { 271 cache->kasan_info.alloc_meta_offset = 0; 272 cache->kasan_info.free_meta_offset = 0; 273 *size = orig_size; 274 return; 275 } 276 277 *flags |= SLAB_KASAN; 278 } 279 280 size_t kasan_metadata_size(struct kmem_cache *cache) 281 { 282 return (cache->kasan_info.alloc_meta_offset ? 283 sizeof(struct kasan_alloc_meta) : 0) + 284 (cache->kasan_info.free_meta_offset ? 285 sizeof(struct kasan_free_meta) : 0); 286 } 287 288 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache, 289 const void *object) 290 { 291 return (void *)object + cache->kasan_info.alloc_meta_offset; 292 } 293 294 struct kasan_free_meta *get_free_info(struct kmem_cache *cache, 295 const void *object) 296 { 297 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); 298 return (void *)object + cache->kasan_info.free_meta_offset; 299 } 300 301 302 static void kasan_set_free_info(struct kmem_cache *cache, 303 void *object, u8 tag) 304 { 305 struct kasan_alloc_meta *alloc_meta; 306 u8 idx = 0; 307 308 alloc_meta = get_alloc_info(cache, object); 309 310 #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY 311 idx = alloc_meta->free_track_idx; 312 alloc_meta->free_pointer_tag[idx] = tag; 313 alloc_meta->free_track_idx = (idx + 1) % KASAN_NR_FREE_STACKS; 314 #endif 315 316 set_track(&alloc_meta->free_track[idx], GFP_NOWAIT); 317 } 318 319 void kasan_poison_slab(struct page *page) 320 { 321 unsigned long i; 322 323 for (i = 0; i < compound_nr(page); i++) 324 page_kasan_tag_reset(page + i); 325 kasan_poison_shadow(page_address(page), page_size(page), 326 KASAN_KMALLOC_REDZONE); 327 } 328 329 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) 330 { 331 kasan_unpoison_shadow(object, cache->object_size); 332 } 333 334 void kasan_poison_object_data(struct kmem_cache *cache, void *object) 335 { 336 kasan_poison_shadow(object, 337 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE), 338 KASAN_KMALLOC_REDZONE); 339 } 340 341 /* 342 * This function assigns a tag to an object considering the following: 343 * 1. A cache might have a constructor, which might save a pointer to a slab 344 * object somewhere (e.g. in the object itself). We preassign a tag for 345 * each object in caches with constructors during slab creation and reuse 346 * the same tag each time a particular object is allocated. 347 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be 348 * accessed after being freed. We preassign tags for objects in these 349 * caches as well. 350 * 3. For SLAB allocator we can't preassign tags randomly since the freelist 351 * is stored as an array of indexes instead of a linked list. Assign tags 352 * based on objects indexes, so that objects that are next to each other 353 * get different tags. 354 */ 355 static u8 assign_tag(struct kmem_cache *cache, const void *object, 356 bool init, bool keep_tag) 357 { 358 /* 359 * 1. When an object is kmalloc()'ed, two hooks are called: 360 * kasan_slab_alloc() and kasan_kmalloc(). We assign the 361 * tag only in the first one. 362 * 2. We reuse the same tag for krealloc'ed objects. 363 */ 364 if (keep_tag) 365 return get_tag(object); 366 367 /* 368 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU 369 * set, assign a tag when the object is being allocated (init == false). 370 */ 371 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) 372 return init ? KASAN_TAG_KERNEL : random_tag(); 373 374 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ 375 #ifdef CONFIG_SLAB 376 /* For SLAB assign tags based on the object index in the freelist. */ 377 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object); 378 #else 379 /* 380 * For SLUB assign a random tag during slab creation, otherwise reuse 381 * the already assigned tag. 382 */ 383 return init ? random_tag() : get_tag(object); 384 #endif 385 } 386 387 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache, 388 const void *object) 389 { 390 struct kasan_alloc_meta *alloc_info; 391 392 if (!(cache->flags & SLAB_KASAN)) 393 return (void *)object; 394 395 alloc_info = get_alloc_info(cache, object); 396 __memset(alloc_info, 0, sizeof(*alloc_info)); 397 398 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 399 object = set_tag(object, 400 assign_tag(cache, object, true, false)); 401 402 return (void *)object; 403 } 404 405 static inline bool shadow_invalid(u8 tag, s8 shadow_byte) 406 { 407 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 408 return shadow_byte < 0 || 409 shadow_byte >= KASAN_SHADOW_SCALE_SIZE; 410 411 /* else CONFIG_KASAN_SW_TAGS: */ 412 if ((u8)shadow_byte == KASAN_TAG_INVALID) 413 return true; 414 if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte)) 415 return true; 416 417 return false; 418 } 419 420 static bool __kasan_slab_free(struct kmem_cache *cache, void *object, 421 unsigned long ip, bool quarantine) 422 { 423 s8 shadow_byte; 424 u8 tag; 425 void *tagged_object; 426 unsigned long rounded_up_size; 427 428 tag = get_tag(object); 429 tagged_object = object; 430 object = reset_tag(object); 431 432 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != 433 object)) { 434 kasan_report_invalid_free(tagged_object, ip); 435 return true; 436 } 437 438 /* RCU slabs could be legally used after free within the RCU period */ 439 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) 440 return false; 441 442 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object)); 443 if (shadow_invalid(tag, shadow_byte)) { 444 kasan_report_invalid_free(tagged_object, ip); 445 return true; 446 } 447 448 rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE); 449 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE); 450 451 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) || 452 unlikely(!(cache->flags & SLAB_KASAN))) 453 return false; 454 455 kasan_set_free_info(cache, object, tag); 456 457 quarantine_put(get_free_info(cache, object), cache); 458 459 return IS_ENABLED(CONFIG_KASAN_GENERIC); 460 } 461 462 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) 463 { 464 return __kasan_slab_free(cache, object, ip, true); 465 } 466 467 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object, 468 size_t size, gfp_t flags, bool keep_tag) 469 { 470 unsigned long redzone_start; 471 unsigned long redzone_end; 472 u8 tag = 0xff; 473 474 if (gfpflags_allow_blocking(flags)) 475 quarantine_reduce(); 476 477 if (unlikely(object == NULL)) 478 return NULL; 479 480 redzone_start = round_up((unsigned long)(object + size), 481 KASAN_SHADOW_SCALE_SIZE); 482 redzone_end = round_up((unsigned long)object + cache->object_size, 483 KASAN_SHADOW_SCALE_SIZE); 484 485 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 486 tag = assign_tag(cache, object, false, keep_tag); 487 488 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */ 489 kasan_unpoison_shadow(set_tag(object, tag), size); 490 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, 491 KASAN_KMALLOC_REDZONE); 492 493 if (cache->flags & SLAB_KASAN) 494 set_track(&get_alloc_info(cache, object)->alloc_track, flags); 495 496 return set_tag(object, tag); 497 } 498 499 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object, 500 gfp_t flags) 501 { 502 return __kasan_kmalloc(cache, object, cache->object_size, flags, false); 503 } 504 505 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object, 506 size_t size, gfp_t flags) 507 { 508 return __kasan_kmalloc(cache, object, size, flags, true); 509 } 510 EXPORT_SYMBOL(kasan_kmalloc); 511 512 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, 513 gfp_t flags) 514 { 515 struct page *page; 516 unsigned long redzone_start; 517 unsigned long redzone_end; 518 519 if (gfpflags_allow_blocking(flags)) 520 quarantine_reduce(); 521 522 if (unlikely(ptr == NULL)) 523 return NULL; 524 525 page = virt_to_page(ptr); 526 redzone_start = round_up((unsigned long)(ptr + size), 527 KASAN_SHADOW_SCALE_SIZE); 528 redzone_end = (unsigned long)ptr + page_size(page); 529 530 kasan_unpoison_shadow(ptr, size); 531 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, 532 KASAN_PAGE_REDZONE); 533 534 return (void *)ptr; 535 } 536 537 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags) 538 { 539 struct page *page; 540 541 if (unlikely(object == ZERO_SIZE_PTR)) 542 return (void *)object; 543 544 page = virt_to_head_page(object); 545 546 if (unlikely(!PageSlab(page))) 547 return kasan_kmalloc_large(object, size, flags); 548 else 549 return __kasan_kmalloc(page->slab_cache, object, size, 550 flags, true); 551 } 552 553 void kasan_poison_kfree(void *ptr, unsigned long ip) 554 { 555 struct page *page; 556 557 page = virt_to_head_page(ptr); 558 559 if (unlikely(!PageSlab(page))) { 560 if (ptr != page_address(page)) { 561 kasan_report_invalid_free(ptr, ip); 562 return; 563 } 564 kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE); 565 } else { 566 __kasan_slab_free(page->slab_cache, ptr, ip, false); 567 } 568 } 569 570 void kasan_kfree_large(void *ptr, unsigned long ip) 571 { 572 if (ptr != page_address(virt_to_head_page(ptr))) 573 kasan_report_invalid_free(ptr, ip); 574 /* The object will be poisoned by page_alloc. */ 575 } 576 577 #ifndef CONFIG_KASAN_VMALLOC 578 int kasan_module_alloc(void *addr, size_t size) 579 { 580 void *ret; 581 size_t scaled_size; 582 size_t shadow_size; 583 unsigned long shadow_start; 584 585 shadow_start = (unsigned long)kasan_mem_to_shadow(addr); 586 scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT; 587 shadow_size = round_up(scaled_size, PAGE_SIZE); 588 589 if (WARN_ON(!PAGE_ALIGNED(shadow_start))) 590 return -EINVAL; 591 592 ret = __vmalloc_node_range(shadow_size, 1, shadow_start, 593 shadow_start + shadow_size, 594 GFP_KERNEL, 595 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE, 596 __builtin_return_address(0)); 597 598 if (ret) { 599 __memset(ret, KASAN_SHADOW_INIT, shadow_size); 600 find_vm_area(addr)->flags |= VM_KASAN; 601 kmemleak_ignore(ret); 602 return 0; 603 } 604 605 return -ENOMEM; 606 } 607 608 void kasan_free_shadow(const struct vm_struct *vm) 609 { 610 if (vm->flags & VM_KASAN) 611 vfree(kasan_mem_to_shadow(vm->addr)); 612 } 613 #endif 614 615 #ifdef CONFIG_MEMORY_HOTPLUG 616 static bool shadow_mapped(unsigned long addr) 617 { 618 pgd_t *pgd = pgd_offset_k(addr); 619 p4d_t *p4d; 620 pud_t *pud; 621 pmd_t *pmd; 622 pte_t *pte; 623 624 if (pgd_none(*pgd)) 625 return false; 626 p4d = p4d_offset(pgd, addr); 627 if (p4d_none(*p4d)) 628 return false; 629 pud = pud_offset(p4d, addr); 630 if (pud_none(*pud)) 631 return false; 632 633 /* 634 * We can't use pud_large() or pud_huge(), the first one is 635 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse 636 * pud_bad(), if pud is bad then it's bad because it's huge. 637 */ 638 if (pud_bad(*pud)) 639 return true; 640 pmd = pmd_offset(pud, addr); 641 if (pmd_none(*pmd)) 642 return false; 643 644 if (pmd_bad(*pmd)) 645 return true; 646 pte = pte_offset_kernel(pmd, addr); 647 return !pte_none(*pte); 648 } 649 650 static int __meminit kasan_mem_notifier(struct notifier_block *nb, 651 unsigned long action, void *data) 652 { 653 struct memory_notify *mem_data = data; 654 unsigned long nr_shadow_pages, start_kaddr, shadow_start; 655 unsigned long shadow_end, shadow_size; 656 657 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT; 658 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn); 659 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr); 660 shadow_size = nr_shadow_pages << PAGE_SHIFT; 661 shadow_end = shadow_start + shadow_size; 662 663 if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) || 664 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT))) 665 return NOTIFY_BAD; 666 667 switch (action) { 668 case MEM_GOING_ONLINE: { 669 void *ret; 670 671 /* 672 * If shadow is mapped already than it must have been mapped 673 * during the boot. This could happen if we onlining previously 674 * offlined memory. 675 */ 676 if (shadow_mapped(shadow_start)) 677 return NOTIFY_OK; 678 679 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start, 680 shadow_end, GFP_KERNEL, 681 PAGE_KERNEL, VM_NO_GUARD, 682 pfn_to_nid(mem_data->start_pfn), 683 __builtin_return_address(0)); 684 if (!ret) 685 return NOTIFY_BAD; 686 687 kmemleak_ignore(ret); 688 return NOTIFY_OK; 689 } 690 case MEM_CANCEL_ONLINE: 691 case MEM_OFFLINE: { 692 struct vm_struct *vm; 693 694 /* 695 * shadow_start was either mapped during boot by kasan_init() 696 * or during memory online by __vmalloc_node_range(). 697 * In the latter case we can use vfree() to free shadow. 698 * Non-NULL result of the find_vm_area() will tell us if 699 * that was the second case. 700 * 701 * Currently it's not possible to free shadow mapped 702 * during boot by kasan_init(). It's because the code 703 * to do that hasn't been written yet. So we'll just 704 * leak the memory. 705 */ 706 vm = find_vm_area((void *)shadow_start); 707 if (vm) 708 vfree((void *)shadow_start); 709 } 710 } 711 712 return NOTIFY_OK; 713 } 714 715 static int __init kasan_memhotplug_init(void) 716 { 717 hotplug_memory_notifier(kasan_mem_notifier, 0); 718 719 return 0; 720 } 721 722 core_initcall(kasan_memhotplug_init); 723 #endif 724 725 #ifdef CONFIG_KASAN_VMALLOC 726 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr, 727 void *unused) 728 { 729 unsigned long page; 730 pte_t pte; 731 732 if (likely(!pte_none(*ptep))) 733 return 0; 734 735 page = __get_free_page(GFP_KERNEL); 736 if (!page) 737 return -ENOMEM; 738 739 memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE); 740 pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL); 741 742 spin_lock(&init_mm.page_table_lock); 743 if (likely(pte_none(*ptep))) { 744 set_pte_at(&init_mm, addr, ptep, pte); 745 page = 0; 746 } 747 spin_unlock(&init_mm.page_table_lock); 748 if (page) 749 free_page(page); 750 return 0; 751 } 752 753 int kasan_populate_vmalloc(unsigned long addr, unsigned long size) 754 { 755 unsigned long shadow_start, shadow_end; 756 int ret; 757 758 if (!is_vmalloc_or_module_addr((void *)addr)) 759 return 0; 760 761 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr); 762 shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE); 763 shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size); 764 shadow_end = ALIGN(shadow_end, PAGE_SIZE); 765 766 ret = apply_to_page_range(&init_mm, shadow_start, 767 shadow_end - shadow_start, 768 kasan_populate_vmalloc_pte, NULL); 769 if (ret) 770 return ret; 771 772 flush_cache_vmap(shadow_start, shadow_end); 773 774 /* 775 * We need to be careful about inter-cpu effects here. Consider: 776 * 777 * CPU#0 CPU#1 778 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ; 779 * p[99] = 1; 780 * 781 * With compiler instrumentation, that ends up looking like this: 782 * 783 * CPU#0 CPU#1 784 * // vmalloc() allocates memory 785 * // let a = area->addr 786 * // we reach kasan_populate_vmalloc 787 * // and call kasan_unpoison_shadow: 788 * STORE shadow(a), unpoison_val 789 * ... 790 * STORE shadow(a+99), unpoison_val x = LOAD p 791 * // rest of vmalloc process <data dependency> 792 * STORE p, a LOAD shadow(x+99) 793 * 794 * If there is no barrier between the end of unpoisioning the shadow 795 * and the store of the result to p, the stores could be committed 796 * in a different order by CPU#0, and CPU#1 could erroneously observe 797 * poison in the shadow. 798 * 799 * We need some sort of barrier between the stores. 800 * 801 * In the vmalloc() case, this is provided by a smp_wmb() in 802 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in 803 * get_vm_area() and friends, the caller gets shadow allocated but 804 * doesn't have any pages mapped into the virtual address space that 805 * has been reserved. Mapping those pages in will involve taking and 806 * releasing a page-table lock, which will provide the barrier. 807 */ 808 809 return 0; 810 } 811 812 /* 813 * Poison the shadow for a vmalloc region. Called as part of the 814 * freeing process at the time the region is freed. 815 */ 816 void kasan_poison_vmalloc(const void *start, unsigned long size) 817 { 818 if (!is_vmalloc_or_module_addr(start)) 819 return; 820 821 size = round_up(size, KASAN_SHADOW_SCALE_SIZE); 822 kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID); 823 } 824 825 void kasan_unpoison_vmalloc(const void *start, unsigned long size) 826 { 827 if (!is_vmalloc_or_module_addr(start)) 828 return; 829 830 kasan_unpoison_shadow(start, size); 831 } 832 833 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr, 834 void *unused) 835 { 836 unsigned long page; 837 838 page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT); 839 840 spin_lock(&init_mm.page_table_lock); 841 842 if (likely(!pte_none(*ptep))) { 843 pte_clear(&init_mm, addr, ptep); 844 free_page(page); 845 } 846 spin_unlock(&init_mm.page_table_lock); 847 848 return 0; 849 } 850 851 /* 852 * Release the backing for the vmalloc region [start, end), which 853 * lies within the free region [free_region_start, free_region_end). 854 * 855 * This can be run lazily, long after the region was freed. It runs 856 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap 857 * infrastructure. 858 * 859 * How does this work? 860 * ------------------- 861 * 862 * We have a region that is page aligned, labelled as A. 863 * That might not map onto the shadow in a way that is page-aligned: 864 * 865 * start end 866 * v v 867 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc 868 * -------- -------- -------- -------- -------- 869 * | | | | | 870 * | | | /-------/ | 871 * \-------\|/------/ |/---------------/ 872 * ||| || 873 * |??AAAAAA|AAAAAAAA|AA??????| < shadow 874 * (1) (2) (3) 875 * 876 * First we align the start upwards and the end downwards, so that the 877 * shadow of the region aligns with shadow page boundaries. In the 878 * example, this gives us the shadow page (2). This is the shadow entirely 879 * covered by this allocation. 880 * 881 * Then we have the tricky bits. We want to know if we can free the 882 * partially covered shadow pages - (1) and (3) in the example. For this, 883 * we are given the start and end of the free region that contains this 884 * allocation. Extending our previous example, we could have: 885 * 886 * free_region_start free_region_end 887 * | start end | 888 * v v v v 889 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc 890 * -------- -------- -------- -------- -------- 891 * | | | | | 892 * | | | /-------/ | 893 * \-------\|/------/ |/---------------/ 894 * ||| || 895 * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow 896 * (1) (2) (3) 897 * 898 * Once again, we align the start of the free region up, and the end of 899 * the free region down so that the shadow is page aligned. So we can free 900 * page (1) - we know no allocation currently uses anything in that page, 901 * because all of it is in the vmalloc free region. But we cannot free 902 * page (3), because we can't be sure that the rest of it is unused. 903 * 904 * We only consider pages that contain part of the original region for 905 * freeing: we don't try to free other pages from the free region or we'd 906 * end up trying to free huge chunks of virtual address space. 907 * 908 * Concurrency 909 * ----------- 910 * 911 * How do we know that we're not freeing a page that is simultaneously 912 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)? 913 * 914 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running 915 * at the same time. While we run under free_vmap_area_lock, the population 916 * code does not. 917 * 918 * free_vmap_area_lock instead operates to ensure that the larger range 919 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and 920 * the per-cpu region-finding algorithm both run under free_vmap_area_lock, 921 * no space identified as free will become used while we are running. This 922 * means that so long as we are careful with alignment and only free shadow 923 * pages entirely covered by the free region, we will not run in to any 924 * trouble - any simultaneous allocations will be for disjoint regions. 925 */ 926 void kasan_release_vmalloc(unsigned long start, unsigned long end, 927 unsigned long free_region_start, 928 unsigned long free_region_end) 929 { 930 void *shadow_start, *shadow_end; 931 unsigned long region_start, region_end; 932 unsigned long size; 933 934 region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); 935 region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); 936 937 free_region_start = ALIGN(free_region_start, 938 PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); 939 940 if (start != region_start && 941 free_region_start < region_start) 942 region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE; 943 944 free_region_end = ALIGN_DOWN(free_region_end, 945 PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); 946 947 if (end != region_end && 948 free_region_end > region_end) 949 region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE; 950 951 shadow_start = kasan_mem_to_shadow((void *)region_start); 952 shadow_end = kasan_mem_to_shadow((void *)region_end); 953 954 if (shadow_end > shadow_start) { 955 size = shadow_end - shadow_start; 956 apply_to_existing_page_range(&init_mm, 957 (unsigned long)shadow_start, 958 size, kasan_depopulate_vmalloc_pte, 959 NULL); 960 flush_tlb_kernel_range((unsigned long)shadow_start, 961 (unsigned long)shadow_end); 962 } 963 } 964 #endif 965