1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common KASAN code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 */ 11 12 #include <linux/export.h> 13 #include <linux/init.h> 14 #include <linux/kasan.h> 15 #include <linux/kernel.h> 16 #include <linux/linkage.h> 17 #include <linux/memblock.h> 18 #include <linux/memory.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/printk.h> 22 #include <linux/sched.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/slab.h> 25 #include <linux/stacktrace.h> 26 #include <linux/string.h> 27 #include <linux/types.h> 28 #include <linux/bug.h> 29 30 #include "kasan.h" 31 #include "../slab.h" 32 33 struct slab *kasan_addr_to_slab(const void *addr) 34 { 35 if (virt_addr_valid(addr)) 36 return virt_to_slab(addr); 37 return NULL; 38 } 39 40 depot_stack_handle_t kasan_save_stack(gfp_t flags, bool can_alloc) 41 { 42 unsigned long entries[KASAN_STACK_DEPTH]; 43 unsigned int nr_entries; 44 45 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); 46 return __stack_depot_save(entries, nr_entries, 0, flags, can_alloc); 47 } 48 49 void kasan_set_track(struct kasan_track *track, gfp_t flags) 50 { 51 track->pid = current->pid; 52 track->stack = kasan_save_stack(flags, true); 53 } 54 55 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 56 void kasan_enable_current(void) 57 { 58 current->kasan_depth++; 59 } 60 EXPORT_SYMBOL(kasan_enable_current); 61 62 void kasan_disable_current(void) 63 { 64 current->kasan_depth--; 65 } 66 EXPORT_SYMBOL(kasan_disable_current); 67 68 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ 69 70 void __kasan_unpoison_range(const void *address, size_t size) 71 { 72 kasan_unpoison(address, size, false); 73 } 74 75 #ifdef CONFIG_KASAN_STACK 76 /* Unpoison the entire stack for a task. */ 77 void kasan_unpoison_task_stack(struct task_struct *task) 78 { 79 void *base = task_stack_page(task); 80 81 kasan_unpoison(base, THREAD_SIZE, false); 82 } 83 84 /* Unpoison the stack for the current task beyond a watermark sp value. */ 85 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) 86 { 87 /* 88 * Calculate the task stack base address. Avoid using 'current' 89 * because this function is called by early resume code which hasn't 90 * yet set up the percpu register (%gs). 91 */ 92 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); 93 94 kasan_unpoison(base, watermark - base, false); 95 } 96 #endif /* CONFIG_KASAN_STACK */ 97 98 void __kasan_unpoison_pages(struct page *page, unsigned int order, bool init) 99 { 100 u8 tag; 101 unsigned long i; 102 103 if (unlikely(PageHighMem(page))) 104 return; 105 106 tag = kasan_random_tag(); 107 kasan_unpoison(set_tag(page_address(page), tag), 108 PAGE_SIZE << order, init); 109 for (i = 0; i < (1 << order); i++) 110 page_kasan_tag_set(page + i, tag); 111 } 112 113 void __kasan_poison_pages(struct page *page, unsigned int order, bool init) 114 { 115 if (likely(!PageHighMem(page))) 116 kasan_poison(page_address(page), PAGE_SIZE << order, 117 KASAN_PAGE_FREE, init); 118 } 119 120 void __kasan_cache_create_kmalloc(struct kmem_cache *cache) 121 { 122 cache->kasan_info.is_kmalloc = true; 123 } 124 125 void __kasan_poison_slab(struct slab *slab) 126 { 127 struct page *page = slab_page(slab); 128 unsigned long i; 129 130 for (i = 0; i < compound_nr(page); i++) 131 page_kasan_tag_reset(page + i); 132 kasan_poison(page_address(page), page_size(page), 133 KASAN_SLAB_REDZONE, false); 134 } 135 136 void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object) 137 { 138 kasan_unpoison(object, cache->object_size, false); 139 } 140 141 void __kasan_poison_object_data(struct kmem_cache *cache, void *object) 142 { 143 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), 144 KASAN_SLAB_REDZONE, false); 145 } 146 147 /* 148 * This function assigns a tag to an object considering the following: 149 * 1. A cache might have a constructor, which might save a pointer to a slab 150 * object somewhere (e.g. in the object itself). We preassign a tag for 151 * each object in caches with constructors during slab creation and reuse 152 * the same tag each time a particular object is allocated. 153 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be 154 * accessed after being freed. We preassign tags for objects in these 155 * caches as well. 156 * 3. For SLAB allocator we can't preassign tags randomly since the freelist 157 * is stored as an array of indexes instead of a linked list. Assign tags 158 * based on objects indexes, so that objects that are next to each other 159 * get different tags. 160 */ 161 static inline u8 assign_tag(struct kmem_cache *cache, 162 const void *object, bool init) 163 { 164 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 165 return 0xff; 166 167 /* 168 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU 169 * set, assign a tag when the object is being allocated (init == false). 170 */ 171 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) 172 return init ? KASAN_TAG_KERNEL : kasan_random_tag(); 173 174 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ 175 #ifdef CONFIG_SLAB 176 /* For SLAB assign tags based on the object index in the freelist. */ 177 return (u8)obj_to_index(cache, virt_to_slab(object), (void *)object); 178 #else 179 /* 180 * For SLUB assign a random tag during slab creation, otherwise reuse 181 * the already assigned tag. 182 */ 183 return init ? kasan_random_tag() : get_tag(object); 184 #endif 185 } 186 187 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache, 188 const void *object) 189 { 190 /* Initialize per-object metadata if it is present. */ 191 if (kasan_requires_meta()) 192 kasan_init_object_meta(cache, object); 193 194 /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */ 195 object = set_tag(object, assign_tag(cache, object, true)); 196 197 return (void *)object; 198 } 199 200 static inline bool ____kasan_slab_free(struct kmem_cache *cache, void *object, 201 unsigned long ip, bool quarantine, bool init) 202 { 203 void *tagged_object; 204 205 if (!kasan_arch_is_ready()) 206 return false; 207 208 tagged_object = object; 209 object = kasan_reset_tag(object); 210 211 if (is_kfence_address(object)) 212 return false; 213 214 if (unlikely(nearest_obj(cache, virt_to_slab(object), object) != 215 object)) { 216 kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_INVALID_FREE); 217 return true; 218 } 219 220 /* RCU slabs could be legally used after free within the RCU period */ 221 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) 222 return false; 223 224 if (!kasan_byte_accessible(tagged_object)) { 225 kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_DOUBLE_FREE); 226 return true; 227 } 228 229 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), 230 KASAN_SLAB_FREE, init); 231 232 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine)) 233 return false; 234 235 if (kasan_stack_collection_enabled()) 236 kasan_save_free_info(cache, tagged_object); 237 238 return kasan_quarantine_put(cache, object); 239 } 240 241 bool __kasan_slab_free(struct kmem_cache *cache, void *object, 242 unsigned long ip, bool init) 243 { 244 return ____kasan_slab_free(cache, object, ip, true, init); 245 } 246 247 static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip) 248 { 249 if (!kasan_arch_is_ready()) 250 return false; 251 252 if (ptr != page_address(virt_to_head_page(ptr))) { 253 kasan_report_invalid_free(ptr, ip, KASAN_REPORT_INVALID_FREE); 254 return true; 255 } 256 257 if (!kasan_byte_accessible(ptr)) { 258 kasan_report_invalid_free(ptr, ip, KASAN_REPORT_DOUBLE_FREE); 259 return true; 260 } 261 262 /* 263 * The object will be poisoned by kasan_poison_pages() or 264 * kasan_slab_free_mempool(). 265 */ 266 267 return false; 268 } 269 270 void __kasan_kfree_large(void *ptr, unsigned long ip) 271 { 272 ____kasan_kfree_large(ptr, ip); 273 } 274 275 void __kasan_slab_free_mempool(void *ptr, unsigned long ip) 276 { 277 struct folio *folio; 278 279 folio = virt_to_folio(ptr); 280 281 /* 282 * Even though this function is only called for kmem_cache_alloc and 283 * kmalloc backed mempool allocations, those allocations can still be 284 * !PageSlab() when the size provided to kmalloc is larger than 285 * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc. 286 */ 287 if (unlikely(!folio_test_slab(folio))) { 288 if (____kasan_kfree_large(ptr, ip)) 289 return; 290 kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false); 291 } else { 292 struct slab *slab = folio_slab(folio); 293 294 ____kasan_slab_free(slab->slab_cache, ptr, ip, false, false); 295 } 296 } 297 298 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache, 299 void *object, gfp_t flags, bool init) 300 { 301 u8 tag; 302 void *tagged_object; 303 304 if (gfpflags_allow_blocking(flags)) 305 kasan_quarantine_reduce(); 306 307 if (unlikely(object == NULL)) 308 return NULL; 309 310 if (is_kfence_address(object)) 311 return (void *)object; 312 313 /* 314 * Generate and assign random tag for tag-based modes. 315 * Tag is ignored in set_tag() for the generic mode. 316 */ 317 tag = assign_tag(cache, object, false); 318 tagged_object = set_tag(object, tag); 319 320 /* 321 * Unpoison the whole object. 322 * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning. 323 */ 324 kasan_unpoison(tagged_object, cache->object_size, init); 325 326 /* Save alloc info (if possible) for non-kmalloc() allocations. */ 327 if (kasan_stack_collection_enabled() && !cache->kasan_info.is_kmalloc) 328 kasan_save_alloc_info(cache, tagged_object, flags); 329 330 return tagged_object; 331 } 332 333 static inline void *____kasan_kmalloc(struct kmem_cache *cache, 334 const void *object, size_t size, gfp_t flags) 335 { 336 unsigned long redzone_start; 337 unsigned long redzone_end; 338 339 if (gfpflags_allow_blocking(flags)) 340 kasan_quarantine_reduce(); 341 342 if (unlikely(object == NULL)) 343 return NULL; 344 345 if (is_kfence_address(kasan_reset_tag(object))) 346 return (void *)object; 347 348 /* 349 * The object has already been unpoisoned by kasan_slab_alloc() for 350 * kmalloc() or by kasan_krealloc() for krealloc(). 351 */ 352 353 /* 354 * The redzone has byte-level precision for the generic mode. 355 * Partially poison the last object granule to cover the unaligned 356 * part of the redzone. 357 */ 358 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 359 kasan_poison_last_granule((void *)object, size); 360 361 /* Poison the aligned part of the redzone. */ 362 redzone_start = round_up((unsigned long)(object + size), 363 KASAN_GRANULE_SIZE); 364 redzone_end = round_up((unsigned long)(object + cache->object_size), 365 KASAN_GRANULE_SIZE); 366 kasan_poison((void *)redzone_start, redzone_end - redzone_start, 367 KASAN_SLAB_REDZONE, false); 368 369 /* 370 * Save alloc info (if possible) for kmalloc() allocations. 371 * This also rewrites the alloc info when called from kasan_krealloc(). 372 */ 373 if (kasan_stack_collection_enabled() && cache->kasan_info.is_kmalloc) 374 kasan_save_alloc_info(cache, (void *)object, flags); 375 376 /* Keep the tag that was set by kasan_slab_alloc(). */ 377 return (void *)object; 378 } 379 380 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object, 381 size_t size, gfp_t flags) 382 { 383 return ____kasan_kmalloc(cache, object, size, flags); 384 } 385 EXPORT_SYMBOL(__kasan_kmalloc); 386 387 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size, 388 gfp_t flags) 389 { 390 unsigned long redzone_start; 391 unsigned long redzone_end; 392 393 if (gfpflags_allow_blocking(flags)) 394 kasan_quarantine_reduce(); 395 396 if (unlikely(ptr == NULL)) 397 return NULL; 398 399 /* 400 * The object has already been unpoisoned by kasan_unpoison_pages() for 401 * alloc_pages() or by kasan_krealloc() for krealloc(). 402 */ 403 404 /* 405 * The redzone has byte-level precision for the generic mode. 406 * Partially poison the last object granule to cover the unaligned 407 * part of the redzone. 408 */ 409 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 410 kasan_poison_last_granule(ptr, size); 411 412 /* Poison the aligned part of the redzone. */ 413 redzone_start = round_up((unsigned long)(ptr + size), 414 KASAN_GRANULE_SIZE); 415 redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr)); 416 kasan_poison((void *)redzone_start, redzone_end - redzone_start, 417 KASAN_PAGE_REDZONE, false); 418 419 return (void *)ptr; 420 } 421 422 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags) 423 { 424 struct slab *slab; 425 426 if (unlikely(object == ZERO_SIZE_PTR)) 427 return (void *)object; 428 429 /* 430 * Unpoison the object's data. 431 * Part of it might already have been unpoisoned, but it's unknown 432 * how big that part is. 433 */ 434 kasan_unpoison(object, size, false); 435 436 slab = virt_to_slab(object); 437 438 /* Piggy-back on kmalloc() instrumentation to poison the redzone. */ 439 if (unlikely(!slab)) 440 return __kasan_kmalloc_large(object, size, flags); 441 else 442 return ____kasan_kmalloc(slab->slab_cache, object, size, flags); 443 } 444 445 bool __kasan_check_byte(const void *address, unsigned long ip) 446 { 447 if (!kasan_byte_accessible(address)) { 448 kasan_report((unsigned long)address, 1, false, ip); 449 return false; 450 } 451 return true; 452 } 453