xref: /openbmc/linux/mm/kasan/common.c (revision 84b102f5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  */
11 
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/linkage.h>
17 #include <linux/memblock.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/printk.h>
22 #include <linux/sched.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/slab.h>
25 #include <linux/stacktrace.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/bug.h>
29 
30 #include "kasan.h"
31 #include "../slab.h"
32 
33 depot_stack_handle_t kasan_save_stack(gfp_t flags)
34 {
35 	unsigned long entries[KASAN_STACK_DEPTH];
36 	unsigned int nr_entries;
37 
38 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
39 	nr_entries = filter_irq_stacks(entries, nr_entries);
40 	return stack_depot_save(entries, nr_entries, flags);
41 }
42 
43 void kasan_set_track(struct kasan_track *track, gfp_t flags)
44 {
45 	track->pid = current->pid;
46 	track->stack = kasan_save_stack(flags);
47 }
48 
49 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
50 void kasan_enable_current(void)
51 {
52 	current->kasan_depth++;
53 }
54 
55 void kasan_disable_current(void)
56 {
57 	current->kasan_depth--;
58 }
59 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
60 
61 void __kasan_unpoison_range(const void *address, size_t size)
62 {
63 	unpoison_range(address, size);
64 }
65 
66 #if CONFIG_KASAN_STACK
67 /* Unpoison the entire stack for a task. */
68 void kasan_unpoison_task_stack(struct task_struct *task)
69 {
70 	void *base = task_stack_page(task);
71 
72 	unpoison_range(base, THREAD_SIZE);
73 }
74 
75 /* Unpoison the stack for the current task beyond a watermark sp value. */
76 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
77 {
78 	/*
79 	 * Calculate the task stack base address.  Avoid using 'current'
80 	 * because this function is called by early resume code which hasn't
81 	 * yet set up the percpu register (%gs).
82 	 */
83 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
84 
85 	unpoison_range(base, watermark - base);
86 }
87 #endif /* CONFIG_KASAN_STACK */
88 
89 /*
90  * Only allow cache merging when stack collection is disabled and no metadata
91  * is present.
92  */
93 slab_flags_t __kasan_never_merge(void)
94 {
95 	if (kasan_stack_collection_enabled())
96 		return SLAB_KASAN;
97 	return 0;
98 }
99 
100 void __kasan_alloc_pages(struct page *page, unsigned int order)
101 {
102 	u8 tag;
103 	unsigned long i;
104 
105 	if (unlikely(PageHighMem(page)))
106 		return;
107 
108 	tag = random_tag();
109 	for (i = 0; i < (1 << order); i++)
110 		page_kasan_tag_set(page + i, tag);
111 	unpoison_range(page_address(page), PAGE_SIZE << order);
112 }
113 
114 void __kasan_free_pages(struct page *page, unsigned int order)
115 {
116 	if (likely(!PageHighMem(page)))
117 		poison_range(page_address(page),
118 				PAGE_SIZE << order,
119 				KASAN_FREE_PAGE);
120 }
121 
122 /*
123  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
124  * For larger allocations larger redzones are used.
125  */
126 static inline unsigned int optimal_redzone(unsigned int object_size)
127 {
128 	return
129 		object_size <= 64        - 16   ? 16 :
130 		object_size <= 128       - 32   ? 32 :
131 		object_size <= 512       - 64   ? 64 :
132 		object_size <= 4096      - 128  ? 128 :
133 		object_size <= (1 << 14) - 256  ? 256 :
134 		object_size <= (1 << 15) - 512  ? 512 :
135 		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
136 }
137 
138 void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
139 			  slab_flags_t *flags)
140 {
141 	unsigned int ok_size;
142 	unsigned int optimal_size;
143 
144 	/*
145 	 * SLAB_KASAN is used to mark caches as ones that are sanitized by
146 	 * KASAN. Currently this flag is used in two places:
147 	 * 1. In slab_ksize() when calculating the size of the accessible
148 	 *    memory within the object.
149 	 * 2. In slab_common.c to prevent merging of sanitized caches.
150 	 */
151 	*flags |= SLAB_KASAN;
152 
153 	if (!kasan_stack_collection_enabled())
154 		return;
155 
156 	ok_size = *size;
157 
158 	/* Add alloc meta into redzone. */
159 	cache->kasan_info.alloc_meta_offset = *size;
160 	*size += sizeof(struct kasan_alloc_meta);
161 
162 	/*
163 	 * If alloc meta doesn't fit, don't add it.
164 	 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
165 	 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
166 	 * larger sizes.
167 	 */
168 	if (*size > KMALLOC_MAX_SIZE) {
169 		cache->kasan_info.alloc_meta_offset = 0;
170 		*size = ok_size;
171 		/* Continue, since free meta might still fit. */
172 	}
173 
174 	/* Only the generic mode uses free meta or flexible redzones. */
175 	if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) {
176 		cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
177 		return;
178 	}
179 
180 	/*
181 	 * Add free meta into redzone when it's not possible to store
182 	 * it in the object. This is the case when:
183 	 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
184 	 *    be touched after it was freed, or
185 	 * 2. Object has a constructor, which means it's expected to
186 	 *    retain its content until the next allocation, or
187 	 * 3. Object is too small.
188 	 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
189 	 */
190 	if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
191 	    cache->object_size < sizeof(struct kasan_free_meta)) {
192 		ok_size = *size;
193 
194 		cache->kasan_info.free_meta_offset = *size;
195 		*size += sizeof(struct kasan_free_meta);
196 
197 		/* If free meta doesn't fit, don't add it. */
198 		if (*size > KMALLOC_MAX_SIZE) {
199 			cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
200 			*size = ok_size;
201 		}
202 	}
203 
204 	/* Calculate size with optimal redzone. */
205 	optimal_size = cache->object_size + optimal_redzone(cache->object_size);
206 	/* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
207 	if (optimal_size > KMALLOC_MAX_SIZE)
208 		optimal_size = KMALLOC_MAX_SIZE;
209 	/* Use optimal size if the size with added metas is not large enough. */
210 	if (*size < optimal_size)
211 		*size = optimal_size;
212 }
213 
214 size_t __kasan_metadata_size(struct kmem_cache *cache)
215 {
216 	if (!kasan_stack_collection_enabled())
217 		return 0;
218 	return (cache->kasan_info.alloc_meta_offset ?
219 		sizeof(struct kasan_alloc_meta) : 0) +
220 		(cache->kasan_info.free_meta_offset ?
221 		sizeof(struct kasan_free_meta) : 0);
222 }
223 
224 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
225 					      const void *object)
226 {
227 	if (!cache->kasan_info.alloc_meta_offset)
228 		return NULL;
229 	return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset;
230 }
231 
232 #ifdef CONFIG_KASAN_GENERIC
233 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
234 					    const void *object)
235 {
236 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
237 	if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
238 		return NULL;
239 	return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset;
240 }
241 #endif
242 
243 void __kasan_poison_slab(struct page *page)
244 {
245 	unsigned long i;
246 
247 	for (i = 0; i < compound_nr(page); i++)
248 		page_kasan_tag_reset(page + i);
249 	poison_range(page_address(page), page_size(page),
250 		     KASAN_KMALLOC_REDZONE);
251 }
252 
253 void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
254 {
255 	unpoison_range(object, cache->object_size);
256 }
257 
258 void __kasan_poison_object_data(struct kmem_cache *cache, void *object)
259 {
260 	poison_range(object, cache->object_size, KASAN_KMALLOC_REDZONE);
261 }
262 
263 /*
264  * This function assigns a tag to an object considering the following:
265  * 1. A cache might have a constructor, which might save a pointer to a slab
266  *    object somewhere (e.g. in the object itself). We preassign a tag for
267  *    each object in caches with constructors during slab creation and reuse
268  *    the same tag each time a particular object is allocated.
269  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
270  *    accessed after being freed. We preassign tags for objects in these
271  *    caches as well.
272  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
273  *    is stored as an array of indexes instead of a linked list. Assign tags
274  *    based on objects indexes, so that objects that are next to each other
275  *    get different tags.
276  */
277 static u8 assign_tag(struct kmem_cache *cache, const void *object,
278 			bool init, bool keep_tag)
279 {
280 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
281 		return 0xff;
282 
283 	/*
284 	 * 1. When an object is kmalloc()'ed, two hooks are called:
285 	 *    kasan_slab_alloc() and kasan_kmalloc(). We assign the
286 	 *    tag only in the first one.
287 	 * 2. We reuse the same tag for krealloc'ed objects.
288 	 */
289 	if (keep_tag)
290 		return get_tag(object);
291 
292 	/*
293 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
294 	 * set, assign a tag when the object is being allocated (init == false).
295 	 */
296 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
297 		return init ? KASAN_TAG_KERNEL : random_tag();
298 
299 	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
300 #ifdef CONFIG_SLAB
301 	/* For SLAB assign tags based on the object index in the freelist. */
302 	return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
303 #else
304 	/*
305 	 * For SLUB assign a random tag during slab creation, otherwise reuse
306 	 * the already assigned tag.
307 	 */
308 	return init ? random_tag() : get_tag(object);
309 #endif
310 }
311 
312 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
313 						const void *object)
314 {
315 	struct kasan_alloc_meta *alloc_meta;
316 
317 	if (kasan_stack_collection_enabled()) {
318 		alloc_meta = kasan_get_alloc_meta(cache, object);
319 		if (alloc_meta)
320 			__memset(alloc_meta, 0, sizeof(*alloc_meta));
321 	}
322 
323 	/* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
324 	object = set_tag(object, assign_tag(cache, object, true, false));
325 
326 	return (void *)object;
327 }
328 
329 static bool ____kasan_slab_free(struct kmem_cache *cache, void *object,
330 			      unsigned long ip, bool quarantine)
331 {
332 	u8 tag;
333 	void *tagged_object;
334 
335 	tag = get_tag(object);
336 	tagged_object = object;
337 	object = kasan_reset_tag(object);
338 
339 	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
340 	    object)) {
341 		kasan_report_invalid_free(tagged_object, ip);
342 		return true;
343 	}
344 
345 	/* RCU slabs could be legally used after free within the RCU period */
346 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
347 		return false;
348 
349 	if (check_invalid_free(tagged_object)) {
350 		kasan_report_invalid_free(tagged_object, ip);
351 		return true;
352 	}
353 
354 	poison_range(object, cache->object_size, KASAN_KMALLOC_FREE);
355 
356 	if (!kasan_stack_collection_enabled())
357 		return false;
358 
359 	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine))
360 		return false;
361 
362 	kasan_set_free_info(cache, object, tag);
363 
364 	return quarantine_put(cache, object);
365 }
366 
367 bool __kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
368 {
369 	return ____kasan_slab_free(cache, object, ip, true);
370 }
371 
372 void __kasan_slab_free_mempool(void *ptr, unsigned long ip)
373 {
374 	struct page *page;
375 
376 	page = virt_to_head_page(ptr);
377 
378 	/*
379 	 * Even though this function is only called for kmem_cache_alloc and
380 	 * kmalloc backed mempool allocations, those allocations can still be
381 	 * !PageSlab() when the size provided to kmalloc is larger than
382 	 * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc.
383 	 */
384 	if (unlikely(!PageSlab(page))) {
385 		if (ptr != page_address(page)) {
386 			kasan_report_invalid_free(ptr, ip);
387 			return;
388 		}
389 		poison_range(ptr, page_size(page), KASAN_FREE_PAGE);
390 	} else {
391 		____kasan_slab_free(page->slab_cache, ptr, ip, false);
392 	}
393 }
394 
395 static void set_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags)
396 {
397 	struct kasan_alloc_meta *alloc_meta;
398 
399 	alloc_meta = kasan_get_alloc_meta(cache, object);
400 	if (alloc_meta)
401 		kasan_set_track(&alloc_meta->alloc_track, flags);
402 }
403 
404 static void *____kasan_kmalloc(struct kmem_cache *cache, const void *object,
405 				size_t size, gfp_t flags, bool keep_tag)
406 {
407 	unsigned long redzone_start;
408 	unsigned long redzone_end;
409 	u8 tag;
410 
411 	if (gfpflags_allow_blocking(flags))
412 		quarantine_reduce();
413 
414 	if (unlikely(object == NULL))
415 		return NULL;
416 
417 	redzone_start = round_up((unsigned long)(object + size),
418 				KASAN_GRANULE_SIZE);
419 	redzone_end = round_up((unsigned long)object + cache->object_size,
420 				KASAN_GRANULE_SIZE);
421 	tag = assign_tag(cache, object, false, keep_tag);
422 
423 	/* Tag is ignored in set_tag without CONFIG_KASAN_SW/HW_TAGS */
424 	unpoison_range(set_tag(object, tag), size);
425 	poison_range((void *)redzone_start, redzone_end - redzone_start,
426 		     KASAN_KMALLOC_REDZONE);
427 
428 	if (kasan_stack_collection_enabled())
429 		set_alloc_info(cache, (void *)object, flags);
430 
431 	return set_tag(object, tag);
432 }
433 
434 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
435 					void *object, gfp_t flags)
436 {
437 	return ____kasan_kmalloc(cache, object, cache->object_size, flags, false);
438 }
439 
440 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
441 					size_t size, gfp_t flags)
442 {
443 	return ____kasan_kmalloc(cache, object, size, flags, true);
444 }
445 EXPORT_SYMBOL(__kasan_kmalloc);
446 
447 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
448 						gfp_t flags)
449 {
450 	struct page *page;
451 	unsigned long redzone_start;
452 	unsigned long redzone_end;
453 
454 	if (gfpflags_allow_blocking(flags))
455 		quarantine_reduce();
456 
457 	if (unlikely(ptr == NULL))
458 		return NULL;
459 
460 	page = virt_to_page(ptr);
461 	redzone_start = round_up((unsigned long)(ptr + size),
462 				KASAN_GRANULE_SIZE);
463 	redzone_end = (unsigned long)ptr + page_size(page);
464 
465 	unpoison_range(ptr, size);
466 	poison_range((void *)redzone_start, redzone_end - redzone_start,
467 		     KASAN_PAGE_REDZONE);
468 
469 	return (void *)ptr;
470 }
471 
472 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
473 {
474 	struct page *page;
475 
476 	if (unlikely(object == ZERO_SIZE_PTR))
477 		return (void *)object;
478 
479 	page = virt_to_head_page(object);
480 
481 	if (unlikely(!PageSlab(page)))
482 		return __kasan_kmalloc_large(object, size, flags);
483 	else
484 		return ____kasan_kmalloc(page->slab_cache, object, size,
485 						flags, true);
486 }
487 
488 void __kasan_kfree_large(void *ptr, unsigned long ip)
489 {
490 	if (ptr != page_address(virt_to_head_page(ptr)))
491 		kasan_report_invalid_free(ptr, ip);
492 	/* The object will be poisoned by kasan_free_pages(). */
493 }
494