1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common KASAN code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 */ 11 12 #include <linux/export.h> 13 #include <linux/init.h> 14 #include <linux/kasan.h> 15 #include <linux/kernel.h> 16 #include <linux/linkage.h> 17 #include <linux/memblock.h> 18 #include <linux/memory.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/printk.h> 22 #include <linux/sched.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/slab.h> 25 #include <linux/stacktrace.h> 26 #include <linux/string.h> 27 #include <linux/types.h> 28 #include <linux/bug.h> 29 30 #include "kasan.h" 31 #include "../slab.h" 32 33 depot_stack_handle_t kasan_save_stack(gfp_t flags) 34 { 35 unsigned long entries[KASAN_STACK_DEPTH]; 36 unsigned int nr_entries; 37 38 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); 39 nr_entries = filter_irq_stacks(entries, nr_entries); 40 return stack_depot_save(entries, nr_entries, flags); 41 } 42 43 void kasan_set_track(struct kasan_track *track, gfp_t flags) 44 { 45 track->pid = current->pid; 46 track->stack = kasan_save_stack(flags); 47 } 48 49 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 50 void kasan_enable_current(void) 51 { 52 current->kasan_depth++; 53 } 54 55 void kasan_disable_current(void) 56 { 57 current->kasan_depth--; 58 } 59 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ 60 61 void __kasan_unpoison_range(const void *address, size_t size) 62 { 63 unpoison_range(address, size); 64 } 65 66 #if CONFIG_KASAN_STACK 67 /* Unpoison the entire stack for a task. */ 68 void kasan_unpoison_task_stack(struct task_struct *task) 69 { 70 void *base = task_stack_page(task); 71 72 unpoison_range(base, THREAD_SIZE); 73 } 74 75 /* Unpoison the stack for the current task beyond a watermark sp value. */ 76 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) 77 { 78 /* 79 * Calculate the task stack base address. Avoid using 'current' 80 * because this function is called by early resume code which hasn't 81 * yet set up the percpu register (%gs). 82 */ 83 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); 84 85 unpoison_range(base, watermark - base); 86 } 87 #endif /* CONFIG_KASAN_STACK */ 88 89 /* 90 * Only allow cache merging when stack collection is disabled and no metadata 91 * is present. 92 */ 93 slab_flags_t __kasan_never_merge(void) 94 { 95 if (kasan_stack_collection_enabled()) 96 return SLAB_KASAN; 97 return 0; 98 } 99 100 void __kasan_alloc_pages(struct page *page, unsigned int order) 101 { 102 u8 tag; 103 unsigned long i; 104 105 if (unlikely(PageHighMem(page))) 106 return; 107 108 tag = random_tag(); 109 for (i = 0; i < (1 << order); i++) 110 page_kasan_tag_set(page + i, tag); 111 unpoison_range(page_address(page), PAGE_SIZE << order); 112 } 113 114 void __kasan_free_pages(struct page *page, unsigned int order) 115 { 116 if (likely(!PageHighMem(page))) 117 poison_range(page_address(page), 118 PAGE_SIZE << order, 119 KASAN_FREE_PAGE); 120 } 121 122 /* 123 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. 124 * For larger allocations larger redzones are used. 125 */ 126 static inline unsigned int optimal_redzone(unsigned int object_size) 127 { 128 return 129 object_size <= 64 - 16 ? 16 : 130 object_size <= 128 - 32 ? 32 : 131 object_size <= 512 - 64 ? 64 : 132 object_size <= 4096 - 128 ? 128 : 133 object_size <= (1 << 14) - 256 ? 256 : 134 object_size <= (1 << 15) - 512 ? 512 : 135 object_size <= (1 << 16) - 1024 ? 1024 : 2048; 136 } 137 138 void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size, 139 slab_flags_t *flags) 140 { 141 unsigned int ok_size; 142 unsigned int optimal_size; 143 144 /* 145 * SLAB_KASAN is used to mark caches as ones that are sanitized by 146 * KASAN. Currently this flag is used in two places: 147 * 1. In slab_ksize() when calculating the size of the accessible 148 * memory within the object. 149 * 2. In slab_common.c to prevent merging of sanitized caches. 150 */ 151 *flags |= SLAB_KASAN; 152 153 if (!kasan_stack_collection_enabled()) 154 return; 155 156 ok_size = *size; 157 158 /* Add alloc meta into redzone. */ 159 cache->kasan_info.alloc_meta_offset = *size; 160 *size += sizeof(struct kasan_alloc_meta); 161 162 /* 163 * If alloc meta doesn't fit, don't add it. 164 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal 165 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for 166 * larger sizes. 167 */ 168 if (*size > KMALLOC_MAX_SIZE) { 169 cache->kasan_info.alloc_meta_offset = 0; 170 *size = ok_size; 171 /* Continue, since free meta might still fit. */ 172 } 173 174 /* Only the generic mode uses free meta or flexible redzones. */ 175 if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) { 176 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; 177 return; 178 } 179 180 /* 181 * Add free meta into redzone when it's not possible to store 182 * it in the object. This is the case when: 183 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can 184 * be touched after it was freed, or 185 * 2. Object has a constructor, which means it's expected to 186 * retain its content until the next allocation, or 187 * 3. Object is too small. 188 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied. 189 */ 190 if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor || 191 cache->object_size < sizeof(struct kasan_free_meta)) { 192 ok_size = *size; 193 194 cache->kasan_info.free_meta_offset = *size; 195 *size += sizeof(struct kasan_free_meta); 196 197 /* If free meta doesn't fit, don't add it. */ 198 if (*size > KMALLOC_MAX_SIZE) { 199 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; 200 *size = ok_size; 201 } 202 } 203 204 /* Calculate size with optimal redzone. */ 205 optimal_size = cache->object_size + optimal_redzone(cache->object_size); 206 /* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */ 207 if (optimal_size > KMALLOC_MAX_SIZE) 208 optimal_size = KMALLOC_MAX_SIZE; 209 /* Use optimal size if the size with added metas is not large enough. */ 210 if (*size < optimal_size) 211 *size = optimal_size; 212 } 213 214 size_t __kasan_metadata_size(struct kmem_cache *cache) 215 { 216 if (!kasan_stack_collection_enabled()) 217 return 0; 218 return (cache->kasan_info.alloc_meta_offset ? 219 sizeof(struct kasan_alloc_meta) : 0) + 220 (cache->kasan_info.free_meta_offset ? 221 sizeof(struct kasan_free_meta) : 0); 222 } 223 224 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache, 225 const void *object) 226 { 227 if (!cache->kasan_info.alloc_meta_offset) 228 return NULL; 229 return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset; 230 } 231 232 #ifdef CONFIG_KASAN_GENERIC 233 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache, 234 const void *object) 235 { 236 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); 237 if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META) 238 return NULL; 239 return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset; 240 } 241 #endif 242 243 void __kasan_poison_slab(struct page *page) 244 { 245 unsigned long i; 246 247 for (i = 0; i < compound_nr(page); i++) 248 page_kasan_tag_reset(page + i); 249 poison_range(page_address(page), page_size(page), 250 KASAN_KMALLOC_REDZONE); 251 } 252 253 void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object) 254 { 255 unpoison_range(object, cache->object_size); 256 } 257 258 void __kasan_poison_object_data(struct kmem_cache *cache, void *object) 259 { 260 poison_range(object, cache->object_size, KASAN_KMALLOC_REDZONE); 261 } 262 263 /* 264 * This function assigns a tag to an object considering the following: 265 * 1. A cache might have a constructor, which might save a pointer to a slab 266 * object somewhere (e.g. in the object itself). We preassign a tag for 267 * each object in caches with constructors during slab creation and reuse 268 * the same tag each time a particular object is allocated. 269 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be 270 * accessed after being freed. We preassign tags for objects in these 271 * caches as well. 272 * 3. For SLAB allocator we can't preassign tags randomly since the freelist 273 * is stored as an array of indexes instead of a linked list. Assign tags 274 * based on objects indexes, so that objects that are next to each other 275 * get different tags. 276 */ 277 static u8 assign_tag(struct kmem_cache *cache, const void *object, 278 bool init, bool keep_tag) 279 { 280 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 281 return 0xff; 282 283 /* 284 * 1. When an object is kmalloc()'ed, two hooks are called: 285 * kasan_slab_alloc() and kasan_kmalloc(). We assign the 286 * tag only in the first one. 287 * 2. We reuse the same tag for krealloc'ed objects. 288 */ 289 if (keep_tag) 290 return get_tag(object); 291 292 /* 293 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU 294 * set, assign a tag when the object is being allocated (init == false). 295 */ 296 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) 297 return init ? KASAN_TAG_KERNEL : random_tag(); 298 299 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ 300 #ifdef CONFIG_SLAB 301 /* For SLAB assign tags based on the object index in the freelist. */ 302 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object); 303 #else 304 /* 305 * For SLUB assign a random tag during slab creation, otherwise reuse 306 * the already assigned tag. 307 */ 308 return init ? random_tag() : get_tag(object); 309 #endif 310 } 311 312 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache, 313 const void *object) 314 { 315 struct kasan_alloc_meta *alloc_meta; 316 317 if (kasan_stack_collection_enabled()) { 318 alloc_meta = kasan_get_alloc_meta(cache, object); 319 if (alloc_meta) 320 __memset(alloc_meta, 0, sizeof(*alloc_meta)); 321 } 322 323 /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */ 324 object = set_tag(object, assign_tag(cache, object, true, false)); 325 326 return (void *)object; 327 } 328 329 static bool ____kasan_slab_free(struct kmem_cache *cache, void *object, 330 unsigned long ip, bool quarantine) 331 { 332 u8 tag; 333 void *tagged_object; 334 335 tag = get_tag(object); 336 tagged_object = object; 337 object = kasan_reset_tag(object); 338 339 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != 340 object)) { 341 kasan_report_invalid_free(tagged_object, ip); 342 return true; 343 } 344 345 /* RCU slabs could be legally used after free within the RCU period */ 346 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) 347 return false; 348 349 if (check_invalid_free(tagged_object)) { 350 kasan_report_invalid_free(tagged_object, ip); 351 return true; 352 } 353 354 poison_range(object, cache->object_size, KASAN_KMALLOC_FREE); 355 356 if (!kasan_stack_collection_enabled()) 357 return false; 358 359 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine)) 360 return false; 361 362 kasan_set_free_info(cache, object, tag); 363 364 return quarantine_put(cache, object); 365 } 366 367 bool __kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) 368 { 369 return ____kasan_slab_free(cache, object, ip, true); 370 } 371 372 void __kasan_slab_free_mempool(void *ptr, unsigned long ip) 373 { 374 struct page *page; 375 376 page = virt_to_head_page(ptr); 377 378 /* 379 * Even though this function is only called for kmem_cache_alloc and 380 * kmalloc backed mempool allocations, those allocations can still be 381 * !PageSlab() when the size provided to kmalloc is larger than 382 * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc. 383 */ 384 if (unlikely(!PageSlab(page))) { 385 if (ptr != page_address(page)) { 386 kasan_report_invalid_free(ptr, ip); 387 return; 388 } 389 poison_range(ptr, page_size(page), KASAN_FREE_PAGE); 390 } else { 391 ____kasan_slab_free(page->slab_cache, ptr, ip, false); 392 } 393 } 394 395 static void set_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags) 396 { 397 struct kasan_alloc_meta *alloc_meta; 398 399 alloc_meta = kasan_get_alloc_meta(cache, object); 400 if (alloc_meta) 401 kasan_set_track(&alloc_meta->alloc_track, flags); 402 } 403 404 static void *____kasan_kmalloc(struct kmem_cache *cache, const void *object, 405 size_t size, gfp_t flags, bool keep_tag) 406 { 407 unsigned long redzone_start; 408 unsigned long redzone_end; 409 u8 tag; 410 411 if (gfpflags_allow_blocking(flags)) 412 quarantine_reduce(); 413 414 if (unlikely(object == NULL)) 415 return NULL; 416 417 redzone_start = round_up((unsigned long)(object + size), 418 KASAN_GRANULE_SIZE); 419 redzone_end = round_up((unsigned long)object + cache->object_size, 420 KASAN_GRANULE_SIZE); 421 tag = assign_tag(cache, object, false, keep_tag); 422 423 /* Tag is ignored in set_tag without CONFIG_KASAN_SW/HW_TAGS */ 424 unpoison_range(set_tag(object, tag), size); 425 poison_range((void *)redzone_start, redzone_end - redzone_start, 426 KASAN_KMALLOC_REDZONE); 427 428 if (kasan_stack_collection_enabled()) 429 set_alloc_info(cache, (void *)object, flags); 430 431 return set_tag(object, tag); 432 } 433 434 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache, 435 void *object, gfp_t flags) 436 { 437 return ____kasan_kmalloc(cache, object, cache->object_size, flags, false); 438 } 439 440 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object, 441 size_t size, gfp_t flags) 442 { 443 return ____kasan_kmalloc(cache, object, size, flags, true); 444 } 445 EXPORT_SYMBOL(__kasan_kmalloc); 446 447 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size, 448 gfp_t flags) 449 { 450 struct page *page; 451 unsigned long redzone_start; 452 unsigned long redzone_end; 453 454 if (gfpflags_allow_blocking(flags)) 455 quarantine_reduce(); 456 457 if (unlikely(ptr == NULL)) 458 return NULL; 459 460 page = virt_to_page(ptr); 461 redzone_start = round_up((unsigned long)(ptr + size), 462 KASAN_GRANULE_SIZE); 463 redzone_end = (unsigned long)ptr + page_size(page); 464 465 unpoison_range(ptr, size); 466 poison_range((void *)redzone_start, redzone_end - redzone_start, 467 KASAN_PAGE_REDZONE); 468 469 return (void *)ptr; 470 } 471 472 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags) 473 { 474 struct page *page; 475 476 if (unlikely(object == ZERO_SIZE_PTR)) 477 return (void *)object; 478 479 page = virt_to_head_page(object); 480 481 if (unlikely(!PageSlab(page))) 482 return __kasan_kmalloc_large(object, size, flags); 483 else 484 return ____kasan_kmalloc(page->slab_cache, object, size, 485 flags, true); 486 } 487 488 void __kasan_kfree_large(void *ptr, unsigned long ip) 489 { 490 if (ptr != page_address(virt_to_head_page(ptr))) 491 kasan_report_invalid_free(ptr, ip); 492 /* The object will be poisoned by kasan_free_pages(). */ 493 } 494