1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common KASAN code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 */ 11 12 #include <linux/export.h> 13 #include <linux/init.h> 14 #include <linux/kasan.h> 15 #include <linux/kernel.h> 16 #include <linux/linkage.h> 17 #include <linux/memblock.h> 18 #include <linux/memory.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/printk.h> 22 #include <linux/sched.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/slab.h> 25 #include <linux/stacktrace.h> 26 #include <linux/string.h> 27 #include <linux/types.h> 28 #include <linux/bug.h> 29 30 #include "kasan.h" 31 #include "../slab.h" 32 33 depot_stack_handle_t kasan_save_stack(gfp_t flags, bool can_alloc) 34 { 35 unsigned long entries[KASAN_STACK_DEPTH]; 36 unsigned int nr_entries; 37 38 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); 39 return __stack_depot_save(entries, nr_entries, flags, can_alloc); 40 } 41 42 void kasan_set_track(struct kasan_track *track, gfp_t flags) 43 { 44 track->pid = current->pid; 45 track->stack = kasan_save_stack(flags, true); 46 } 47 48 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 49 void kasan_enable_current(void) 50 { 51 current->kasan_depth++; 52 } 53 EXPORT_SYMBOL(kasan_enable_current); 54 55 void kasan_disable_current(void) 56 { 57 current->kasan_depth--; 58 } 59 EXPORT_SYMBOL(kasan_disable_current); 60 61 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ 62 63 void __kasan_unpoison_range(const void *address, size_t size) 64 { 65 kasan_unpoison(address, size, false); 66 } 67 68 #ifdef CONFIG_KASAN_STACK 69 /* Unpoison the entire stack for a task. */ 70 void kasan_unpoison_task_stack(struct task_struct *task) 71 { 72 void *base = task_stack_page(task); 73 74 kasan_unpoison(base, THREAD_SIZE, false); 75 } 76 77 /* Unpoison the stack for the current task beyond a watermark sp value. */ 78 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) 79 { 80 /* 81 * Calculate the task stack base address. Avoid using 'current' 82 * because this function is called by early resume code which hasn't 83 * yet set up the percpu register (%gs). 84 */ 85 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); 86 87 kasan_unpoison(base, watermark - base, false); 88 } 89 #endif /* CONFIG_KASAN_STACK */ 90 91 /* 92 * Only allow cache merging when stack collection is disabled and no metadata 93 * is present. 94 */ 95 slab_flags_t __kasan_never_merge(void) 96 { 97 if (kasan_stack_collection_enabled()) 98 return SLAB_KASAN; 99 return 0; 100 } 101 102 void __kasan_unpoison_pages(struct page *page, unsigned int order, bool init) 103 { 104 u8 tag; 105 unsigned long i; 106 107 if (unlikely(PageHighMem(page))) 108 return; 109 110 tag = kasan_random_tag(); 111 kasan_unpoison(set_tag(page_address(page), tag), 112 PAGE_SIZE << order, init); 113 for (i = 0; i < (1 << order); i++) 114 page_kasan_tag_set(page + i, tag); 115 } 116 117 void __kasan_poison_pages(struct page *page, unsigned int order, bool init) 118 { 119 if (likely(!PageHighMem(page))) 120 kasan_poison(page_address(page), PAGE_SIZE << order, 121 KASAN_PAGE_FREE, init); 122 } 123 124 /* 125 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. 126 * For larger allocations larger redzones are used. 127 */ 128 static inline unsigned int optimal_redzone(unsigned int object_size) 129 { 130 return 131 object_size <= 64 - 16 ? 16 : 132 object_size <= 128 - 32 ? 32 : 133 object_size <= 512 - 64 ? 64 : 134 object_size <= 4096 - 128 ? 128 : 135 object_size <= (1 << 14) - 256 ? 256 : 136 object_size <= (1 << 15) - 512 ? 512 : 137 object_size <= (1 << 16) - 1024 ? 1024 : 2048; 138 } 139 140 void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size, 141 slab_flags_t *flags) 142 { 143 unsigned int ok_size; 144 unsigned int optimal_size; 145 146 /* 147 * SLAB_KASAN is used to mark caches as ones that are sanitized by 148 * KASAN. Currently this flag is used in two places: 149 * 1. In slab_ksize() when calculating the size of the accessible 150 * memory within the object. 151 * 2. In slab_common.c to prevent merging of sanitized caches. 152 */ 153 *flags |= SLAB_KASAN; 154 155 if (!kasan_stack_collection_enabled()) 156 return; 157 158 ok_size = *size; 159 160 /* Add alloc meta into redzone. */ 161 cache->kasan_info.alloc_meta_offset = *size; 162 *size += sizeof(struct kasan_alloc_meta); 163 164 /* 165 * If alloc meta doesn't fit, don't add it. 166 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal 167 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for 168 * larger sizes. 169 */ 170 if (*size > KMALLOC_MAX_SIZE) { 171 cache->kasan_info.alloc_meta_offset = 0; 172 *size = ok_size; 173 /* Continue, since free meta might still fit. */ 174 } 175 176 /* Only the generic mode uses free meta or flexible redzones. */ 177 if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) { 178 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; 179 return; 180 } 181 182 /* 183 * Add free meta into redzone when it's not possible to store 184 * it in the object. This is the case when: 185 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can 186 * be touched after it was freed, or 187 * 2. Object has a constructor, which means it's expected to 188 * retain its content until the next allocation, or 189 * 3. Object is too small. 190 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied. 191 */ 192 if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor || 193 cache->object_size < sizeof(struct kasan_free_meta)) { 194 ok_size = *size; 195 196 cache->kasan_info.free_meta_offset = *size; 197 *size += sizeof(struct kasan_free_meta); 198 199 /* If free meta doesn't fit, don't add it. */ 200 if (*size > KMALLOC_MAX_SIZE) { 201 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; 202 *size = ok_size; 203 } 204 } 205 206 /* Calculate size with optimal redzone. */ 207 optimal_size = cache->object_size + optimal_redzone(cache->object_size); 208 /* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */ 209 if (optimal_size > KMALLOC_MAX_SIZE) 210 optimal_size = KMALLOC_MAX_SIZE; 211 /* Use optimal size if the size with added metas is not large enough. */ 212 if (*size < optimal_size) 213 *size = optimal_size; 214 } 215 216 void __kasan_cache_create_kmalloc(struct kmem_cache *cache) 217 { 218 cache->kasan_info.is_kmalloc = true; 219 } 220 221 size_t __kasan_metadata_size(struct kmem_cache *cache) 222 { 223 if (!kasan_stack_collection_enabled()) 224 return 0; 225 return (cache->kasan_info.alloc_meta_offset ? 226 sizeof(struct kasan_alloc_meta) : 0) + 227 (cache->kasan_info.free_meta_offset ? 228 sizeof(struct kasan_free_meta) : 0); 229 } 230 231 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache, 232 const void *object) 233 { 234 if (!cache->kasan_info.alloc_meta_offset) 235 return NULL; 236 return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset; 237 } 238 239 #ifdef CONFIG_KASAN_GENERIC 240 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache, 241 const void *object) 242 { 243 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); 244 if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META) 245 return NULL; 246 return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset; 247 } 248 #endif 249 250 void __kasan_poison_slab(struct slab *slab) 251 { 252 struct page *page = slab_page(slab); 253 unsigned long i; 254 255 for (i = 0; i < compound_nr(page); i++) 256 page_kasan_tag_reset(page + i); 257 kasan_poison(page_address(page), page_size(page), 258 KASAN_SLAB_REDZONE, false); 259 } 260 261 void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object) 262 { 263 kasan_unpoison(object, cache->object_size, false); 264 } 265 266 void __kasan_poison_object_data(struct kmem_cache *cache, void *object) 267 { 268 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), 269 KASAN_SLAB_REDZONE, false); 270 } 271 272 /* 273 * This function assigns a tag to an object considering the following: 274 * 1. A cache might have a constructor, which might save a pointer to a slab 275 * object somewhere (e.g. in the object itself). We preassign a tag for 276 * each object in caches with constructors during slab creation and reuse 277 * the same tag each time a particular object is allocated. 278 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be 279 * accessed after being freed. We preassign tags for objects in these 280 * caches as well. 281 * 3. For SLAB allocator we can't preassign tags randomly since the freelist 282 * is stored as an array of indexes instead of a linked list. Assign tags 283 * based on objects indexes, so that objects that are next to each other 284 * get different tags. 285 */ 286 static inline u8 assign_tag(struct kmem_cache *cache, 287 const void *object, bool init) 288 { 289 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 290 return 0xff; 291 292 /* 293 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU 294 * set, assign a tag when the object is being allocated (init == false). 295 */ 296 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) 297 return init ? KASAN_TAG_KERNEL : kasan_random_tag(); 298 299 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ 300 #ifdef CONFIG_SLAB 301 /* For SLAB assign tags based on the object index in the freelist. */ 302 return (u8)obj_to_index(cache, virt_to_slab(object), (void *)object); 303 #else 304 /* 305 * For SLUB assign a random tag during slab creation, otherwise reuse 306 * the already assigned tag. 307 */ 308 return init ? kasan_random_tag() : get_tag(object); 309 #endif 310 } 311 312 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache, 313 const void *object) 314 { 315 struct kasan_alloc_meta *alloc_meta; 316 317 if (kasan_stack_collection_enabled()) { 318 alloc_meta = kasan_get_alloc_meta(cache, object); 319 if (alloc_meta) 320 __memset(alloc_meta, 0, sizeof(*alloc_meta)); 321 } 322 323 /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */ 324 object = set_tag(object, assign_tag(cache, object, true)); 325 326 return (void *)object; 327 } 328 329 static inline bool ____kasan_slab_free(struct kmem_cache *cache, void *object, 330 unsigned long ip, bool quarantine, bool init) 331 { 332 u8 tag; 333 void *tagged_object; 334 335 if (!kasan_arch_is_ready()) 336 return false; 337 338 tag = get_tag(object); 339 tagged_object = object; 340 object = kasan_reset_tag(object); 341 342 if (is_kfence_address(object)) 343 return false; 344 345 if (unlikely(nearest_obj(cache, virt_to_slab(object), object) != 346 object)) { 347 kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_INVALID_FREE); 348 return true; 349 } 350 351 /* RCU slabs could be legally used after free within the RCU period */ 352 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) 353 return false; 354 355 if (!kasan_byte_accessible(tagged_object)) { 356 kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_DOUBLE_FREE); 357 return true; 358 } 359 360 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), 361 KASAN_SLAB_FREE, init); 362 363 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine)) 364 return false; 365 366 if (kasan_stack_collection_enabled()) 367 kasan_set_free_info(cache, object, tag); 368 369 return kasan_quarantine_put(cache, object); 370 } 371 372 bool __kasan_slab_free(struct kmem_cache *cache, void *object, 373 unsigned long ip, bool init) 374 { 375 return ____kasan_slab_free(cache, object, ip, true, init); 376 } 377 378 static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip) 379 { 380 if (ptr != page_address(virt_to_head_page(ptr))) { 381 kasan_report_invalid_free(ptr, ip, KASAN_REPORT_INVALID_FREE); 382 return true; 383 } 384 385 if (!kasan_byte_accessible(ptr)) { 386 kasan_report_invalid_free(ptr, ip, KASAN_REPORT_DOUBLE_FREE); 387 return true; 388 } 389 390 /* 391 * The object will be poisoned by kasan_poison_pages() or 392 * kasan_slab_free_mempool(). 393 */ 394 395 return false; 396 } 397 398 void __kasan_kfree_large(void *ptr, unsigned long ip) 399 { 400 ____kasan_kfree_large(ptr, ip); 401 } 402 403 void __kasan_slab_free_mempool(void *ptr, unsigned long ip) 404 { 405 struct folio *folio; 406 407 folio = virt_to_folio(ptr); 408 409 /* 410 * Even though this function is only called for kmem_cache_alloc and 411 * kmalloc backed mempool allocations, those allocations can still be 412 * !PageSlab() when the size provided to kmalloc is larger than 413 * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc. 414 */ 415 if (unlikely(!folio_test_slab(folio))) { 416 if (____kasan_kfree_large(ptr, ip)) 417 return; 418 kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false); 419 } else { 420 struct slab *slab = folio_slab(folio); 421 422 ____kasan_slab_free(slab->slab_cache, ptr, ip, false, false); 423 } 424 } 425 426 static void set_alloc_info(struct kmem_cache *cache, void *object, 427 gfp_t flags, bool is_kmalloc) 428 { 429 struct kasan_alloc_meta *alloc_meta; 430 431 /* Don't save alloc info for kmalloc caches in kasan_slab_alloc(). */ 432 if (cache->kasan_info.is_kmalloc && !is_kmalloc) 433 return; 434 435 alloc_meta = kasan_get_alloc_meta(cache, object); 436 if (alloc_meta) 437 kasan_set_track(&alloc_meta->alloc_track, flags); 438 } 439 440 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache, 441 void *object, gfp_t flags, bool init) 442 { 443 u8 tag; 444 void *tagged_object; 445 446 if (gfpflags_allow_blocking(flags)) 447 kasan_quarantine_reduce(); 448 449 if (unlikely(object == NULL)) 450 return NULL; 451 452 if (is_kfence_address(object)) 453 return (void *)object; 454 455 /* 456 * Generate and assign random tag for tag-based modes. 457 * Tag is ignored in set_tag() for the generic mode. 458 */ 459 tag = assign_tag(cache, object, false); 460 tagged_object = set_tag(object, tag); 461 462 /* 463 * Unpoison the whole object. 464 * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning. 465 */ 466 kasan_unpoison(tagged_object, cache->object_size, init); 467 468 /* Save alloc info (if possible) for non-kmalloc() allocations. */ 469 if (kasan_stack_collection_enabled()) 470 set_alloc_info(cache, (void *)object, flags, false); 471 472 return tagged_object; 473 } 474 475 static inline void *____kasan_kmalloc(struct kmem_cache *cache, 476 const void *object, size_t size, gfp_t flags) 477 { 478 unsigned long redzone_start; 479 unsigned long redzone_end; 480 481 if (gfpflags_allow_blocking(flags)) 482 kasan_quarantine_reduce(); 483 484 if (unlikely(object == NULL)) 485 return NULL; 486 487 if (is_kfence_address(kasan_reset_tag(object))) 488 return (void *)object; 489 490 /* 491 * The object has already been unpoisoned by kasan_slab_alloc() for 492 * kmalloc() or by kasan_krealloc() for krealloc(). 493 */ 494 495 /* 496 * The redzone has byte-level precision for the generic mode. 497 * Partially poison the last object granule to cover the unaligned 498 * part of the redzone. 499 */ 500 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 501 kasan_poison_last_granule((void *)object, size); 502 503 /* Poison the aligned part of the redzone. */ 504 redzone_start = round_up((unsigned long)(object + size), 505 KASAN_GRANULE_SIZE); 506 redzone_end = round_up((unsigned long)(object + cache->object_size), 507 KASAN_GRANULE_SIZE); 508 kasan_poison((void *)redzone_start, redzone_end - redzone_start, 509 KASAN_SLAB_REDZONE, false); 510 511 /* 512 * Save alloc info (if possible) for kmalloc() allocations. 513 * This also rewrites the alloc info when called from kasan_krealloc(). 514 */ 515 if (kasan_stack_collection_enabled()) 516 set_alloc_info(cache, (void *)object, flags, true); 517 518 /* Keep the tag that was set by kasan_slab_alloc(). */ 519 return (void *)object; 520 } 521 522 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object, 523 size_t size, gfp_t flags) 524 { 525 return ____kasan_kmalloc(cache, object, size, flags); 526 } 527 EXPORT_SYMBOL(__kasan_kmalloc); 528 529 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size, 530 gfp_t flags) 531 { 532 unsigned long redzone_start; 533 unsigned long redzone_end; 534 535 if (gfpflags_allow_blocking(flags)) 536 kasan_quarantine_reduce(); 537 538 if (unlikely(ptr == NULL)) 539 return NULL; 540 541 /* 542 * The object has already been unpoisoned by kasan_unpoison_pages() for 543 * alloc_pages() or by kasan_krealloc() for krealloc(). 544 */ 545 546 /* 547 * The redzone has byte-level precision for the generic mode. 548 * Partially poison the last object granule to cover the unaligned 549 * part of the redzone. 550 */ 551 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 552 kasan_poison_last_granule(ptr, size); 553 554 /* Poison the aligned part of the redzone. */ 555 redzone_start = round_up((unsigned long)(ptr + size), 556 KASAN_GRANULE_SIZE); 557 redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr)); 558 kasan_poison((void *)redzone_start, redzone_end - redzone_start, 559 KASAN_PAGE_REDZONE, false); 560 561 return (void *)ptr; 562 } 563 564 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags) 565 { 566 struct slab *slab; 567 568 if (unlikely(object == ZERO_SIZE_PTR)) 569 return (void *)object; 570 571 /* 572 * Unpoison the object's data. 573 * Part of it might already have been unpoisoned, but it's unknown 574 * how big that part is. 575 */ 576 kasan_unpoison(object, size, false); 577 578 slab = virt_to_slab(object); 579 580 /* Piggy-back on kmalloc() instrumentation to poison the redzone. */ 581 if (unlikely(!slab)) 582 return __kasan_kmalloc_large(object, size, flags); 583 else 584 return ____kasan_kmalloc(slab->slab_cache, object, size, flags); 585 } 586 587 bool __kasan_check_byte(const void *address, unsigned long ip) 588 { 589 if (!kasan_byte_accessible(address)) { 590 kasan_report((unsigned long)address, 1, false, ip); 591 return false; 592 } 593 return true; 594 } 595