1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common KASAN code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 */ 11 12 #include <linux/export.h> 13 #include <linux/init.h> 14 #include <linux/kasan.h> 15 #include <linux/kernel.h> 16 #include <linux/linkage.h> 17 #include <linux/memblock.h> 18 #include <linux/memory.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/printk.h> 22 #include <linux/sched.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/slab.h> 25 #include <linux/stacktrace.h> 26 #include <linux/string.h> 27 #include <linux/types.h> 28 #include <linux/bug.h> 29 30 #include "kasan.h" 31 #include "../slab.h" 32 33 depot_stack_handle_t kasan_save_stack(gfp_t flags, bool can_alloc) 34 { 35 unsigned long entries[KASAN_STACK_DEPTH]; 36 unsigned int nr_entries; 37 38 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); 39 nr_entries = filter_irq_stacks(entries, nr_entries); 40 return __stack_depot_save(entries, nr_entries, flags, can_alloc); 41 } 42 43 void kasan_set_track(struct kasan_track *track, gfp_t flags) 44 { 45 track->pid = current->pid; 46 track->stack = kasan_save_stack(flags, true); 47 } 48 49 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 50 void kasan_enable_current(void) 51 { 52 current->kasan_depth++; 53 } 54 EXPORT_SYMBOL(kasan_enable_current); 55 56 void kasan_disable_current(void) 57 { 58 current->kasan_depth--; 59 } 60 EXPORT_SYMBOL(kasan_disable_current); 61 62 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ 63 64 void __kasan_unpoison_range(const void *address, size_t size) 65 { 66 kasan_unpoison(address, size, false); 67 } 68 69 #ifdef CONFIG_KASAN_STACK 70 /* Unpoison the entire stack for a task. */ 71 void kasan_unpoison_task_stack(struct task_struct *task) 72 { 73 void *base = task_stack_page(task); 74 75 kasan_unpoison(base, THREAD_SIZE, false); 76 } 77 78 /* Unpoison the stack for the current task beyond a watermark sp value. */ 79 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) 80 { 81 /* 82 * Calculate the task stack base address. Avoid using 'current' 83 * because this function is called by early resume code which hasn't 84 * yet set up the percpu register (%gs). 85 */ 86 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); 87 88 kasan_unpoison(base, watermark - base, false); 89 } 90 #endif /* CONFIG_KASAN_STACK */ 91 92 /* 93 * Only allow cache merging when stack collection is disabled and no metadata 94 * is present. 95 */ 96 slab_flags_t __kasan_never_merge(void) 97 { 98 if (kasan_stack_collection_enabled()) 99 return SLAB_KASAN; 100 return 0; 101 } 102 103 void __kasan_unpoison_pages(struct page *page, unsigned int order, bool init) 104 { 105 u8 tag; 106 unsigned long i; 107 108 if (unlikely(PageHighMem(page))) 109 return; 110 111 tag = kasan_random_tag(); 112 for (i = 0; i < (1 << order); i++) 113 page_kasan_tag_set(page + i, tag); 114 kasan_unpoison(page_address(page), PAGE_SIZE << order, init); 115 } 116 117 void __kasan_poison_pages(struct page *page, unsigned int order, bool init) 118 { 119 if (likely(!PageHighMem(page))) 120 kasan_poison(page_address(page), PAGE_SIZE << order, 121 KASAN_FREE_PAGE, init); 122 } 123 124 /* 125 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. 126 * For larger allocations larger redzones are used. 127 */ 128 static inline unsigned int optimal_redzone(unsigned int object_size) 129 { 130 return 131 object_size <= 64 - 16 ? 16 : 132 object_size <= 128 - 32 ? 32 : 133 object_size <= 512 - 64 ? 64 : 134 object_size <= 4096 - 128 ? 128 : 135 object_size <= (1 << 14) - 256 ? 256 : 136 object_size <= (1 << 15) - 512 ? 512 : 137 object_size <= (1 << 16) - 1024 ? 1024 : 2048; 138 } 139 140 void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size, 141 slab_flags_t *flags) 142 { 143 unsigned int ok_size; 144 unsigned int optimal_size; 145 146 /* 147 * SLAB_KASAN is used to mark caches as ones that are sanitized by 148 * KASAN. Currently this flag is used in two places: 149 * 1. In slab_ksize() when calculating the size of the accessible 150 * memory within the object. 151 * 2. In slab_common.c to prevent merging of sanitized caches. 152 */ 153 *flags |= SLAB_KASAN; 154 155 if (!kasan_stack_collection_enabled()) 156 return; 157 158 ok_size = *size; 159 160 /* Add alloc meta into redzone. */ 161 cache->kasan_info.alloc_meta_offset = *size; 162 *size += sizeof(struct kasan_alloc_meta); 163 164 /* 165 * If alloc meta doesn't fit, don't add it. 166 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal 167 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for 168 * larger sizes. 169 */ 170 if (*size > KMALLOC_MAX_SIZE) { 171 cache->kasan_info.alloc_meta_offset = 0; 172 *size = ok_size; 173 /* Continue, since free meta might still fit. */ 174 } 175 176 /* Only the generic mode uses free meta or flexible redzones. */ 177 if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) { 178 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; 179 return; 180 } 181 182 /* 183 * Add free meta into redzone when it's not possible to store 184 * it in the object. This is the case when: 185 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can 186 * be touched after it was freed, or 187 * 2. Object has a constructor, which means it's expected to 188 * retain its content until the next allocation, or 189 * 3. Object is too small. 190 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied. 191 */ 192 if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor || 193 cache->object_size < sizeof(struct kasan_free_meta)) { 194 ok_size = *size; 195 196 cache->kasan_info.free_meta_offset = *size; 197 *size += sizeof(struct kasan_free_meta); 198 199 /* If free meta doesn't fit, don't add it. */ 200 if (*size > KMALLOC_MAX_SIZE) { 201 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; 202 *size = ok_size; 203 } 204 } 205 206 /* Calculate size with optimal redzone. */ 207 optimal_size = cache->object_size + optimal_redzone(cache->object_size); 208 /* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */ 209 if (optimal_size > KMALLOC_MAX_SIZE) 210 optimal_size = KMALLOC_MAX_SIZE; 211 /* Use optimal size if the size with added metas is not large enough. */ 212 if (*size < optimal_size) 213 *size = optimal_size; 214 } 215 216 void __kasan_cache_create_kmalloc(struct kmem_cache *cache) 217 { 218 cache->kasan_info.is_kmalloc = true; 219 } 220 221 size_t __kasan_metadata_size(struct kmem_cache *cache) 222 { 223 if (!kasan_stack_collection_enabled()) 224 return 0; 225 return (cache->kasan_info.alloc_meta_offset ? 226 sizeof(struct kasan_alloc_meta) : 0) + 227 (cache->kasan_info.free_meta_offset ? 228 sizeof(struct kasan_free_meta) : 0); 229 } 230 231 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache, 232 const void *object) 233 { 234 if (!cache->kasan_info.alloc_meta_offset) 235 return NULL; 236 return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset; 237 } 238 239 #ifdef CONFIG_KASAN_GENERIC 240 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache, 241 const void *object) 242 { 243 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); 244 if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META) 245 return NULL; 246 return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset; 247 } 248 #endif 249 250 void __kasan_poison_slab(struct page *page) 251 { 252 unsigned long i; 253 254 for (i = 0; i < compound_nr(page); i++) 255 page_kasan_tag_reset(page + i); 256 kasan_poison(page_address(page), page_size(page), 257 KASAN_KMALLOC_REDZONE, false); 258 } 259 260 void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object) 261 { 262 kasan_unpoison(object, cache->object_size, false); 263 } 264 265 void __kasan_poison_object_data(struct kmem_cache *cache, void *object) 266 { 267 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), 268 KASAN_KMALLOC_REDZONE, false); 269 } 270 271 /* 272 * This function assigns a tag to an object considering the following: 273 * 1. A cache might have a constructor, which might save a pointer to a slab 274 * object somewhere (e.g. in the object itself). We preassign a tag for 275 * each object in caches with constructors during slab creation and reuse 276 * the same tag each time a particular object is allocated. 277 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be 278 * accessed after being freed. We preassign tags for objects in these 279 * caches as well. 280 * 3. For SLAB allocator we can't preassign tags randomly since the freelist 281 * is stored as an array of indexes instead of a linked list. Assign tags 282 * based on objects indexes, so that objects that are next to each other 283 * get different tags. 284 */ 285 static inline u8 assign_tag(struct kmem_cache *cache, 286 const void *object, bool init) 287 { 288 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 289 return 0xff; 290 291 /* 292 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU 293 * set, assign a tag when the object is being allocated (init == false). 294 */ 295 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) 296 return init ? KASAN_TAG_KERNEL : kasan_random_tag(); 297 298 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ 299 #ifdef CONFIG_SLAB 300 /* For SLAB assign tags based on the object index in the freelist. */ 301 return (u8)obj_to_index(cache, virt_to_head_page(object), (void *)object); 302 #else 303 /* 304 * For SLUB assign a random tag during slab creation, otherwise reuse 305 * the already assigned tag. 306 */ 307 return init ? kasan_random_tag() : get_tag(object); 308 #endif 309 } 310 311 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache, 312 const void *object) 313 { 314 struct kasan_alloc_meta *alloc_meta; 315 316 if (kasan_stack_collection_enabled()) { 317 alloc_meta = kasan_get_alloc_meta(cache, object); 318 if (alloc_meta) 319 __memset(alloc_meta, 0, sizeof(*alloc_meta)); 320 } 321 322 /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */ 323 object = set_tag(object, assign_tag(cache, object, true)); 324 325 return (void *)object; 326 } 327 328 static inline bool ____kasan_slab_free(struct kmem_cache *cache, void *object, 329 unsigned long ip, bool quarantine, bool init) 330 { 331 u8 tag; 332 void *tagged_object; 333 334 if (!kasan_arch_is_ready()) 335 return false; 336 337 tag = get_tag(object); 338 tagged_object = object; 339 object = kasan_reset_tag(object); 340 341 if (is_kfence_address(object)) 342 return false; 343 344 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != 345 object)) { 346 kasan_report_invalid_free(tagged_object, ip); 347 return true; 348 } 349 350 /* RCU slabs could be legally used after free within the RCU period */ 351 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) 352 return false; 353 354 if (!kasan_byte_accessible(tagged_object)) { 355 kasan_report_invalid_free(tagged_object, ip); 356 return true; 357 } 358 359 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), 360 KASAN_KMALLOC_FREE, init); 361 362 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine)) 363 return false; 364 365 if (kasan_stack_collection_enabled()) 366 kasan_set_free_info(cache, object, tag); 367 368 return kasan_quarantine_put(cache, object); 369 } 370 371 bool __kasan_slab_free(struct kmem_cache *cache, void *object, 372 unsigned long ip, bool init) 373 { 374 return ____kasan_slab_free(cache, object, ip, true, init); 375 } 376 377 static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip) 378 { 379 if (ptr != page_address(virt_to_head_page(ptr))) { 380 kasan_report_invalid_free(ptr, ip); 381 return true; 382 } 383 384 if (!kasan_byte_accessible(ptr)) { 385 kasan_report_invalid_free(ptr, ip); 386 return true; 387 } 388 389 /* 390 * The object will be poisoned by kasan_free_pages() or 391 * kasan_slab_free_mempool(). 392 */ 393 394 return false; 395 } 396 397 void __kasan_kfree_large(void *ptr, unsigned long ip) 398 { 399 ____kasan_kfree_large(ptr, ip); 400 } 401 402 void __kasan_slab_free_mempool(void *ptr, unsigned long ip) 403 { 404 struct page *page; 405 406 page = virt_to_head_page(ptr); 407 408 /* 409 * Even though this function is only called for kmem_cache_alloc and 410 * kmalloc backed mempool allocations, those allocations can still be 411 * !PageSlab() when the size provided to kmalloc is larger than 412 * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc. 413 */ 414 if (unlikely(!PageSlab(page))) { 415 if (____kasan_kfree_large(ptr, ip)) 416 return; 417 kasan_poison(ptr, page_size(page), KASAN_FREE_PAGE, false); 418 } else { 419 ____kasan_slab_free(page->slab_cache, ptr, ip, false, false); 420 } 421 } 422 423 static void set_alloc_info(struct kmem_cache *cache, void *object, 424 gfp_t flags, bool is_kmalloc) 425 { 426 struct kasan_alloc_meta *alloc_meta; 427 428 /* Don't save alloc info for kmalloc caches in kasan_slab_alloc(). */ 429 if (cache->kasan_info.is_kmalloc && !is_kmalloc) 430 return; 431 432 alloc_meta = kasan_get_alloc_meta(cache, object); 433 if (alloc_meta) 434 kasan_set_track(&alloc_meta->alloc_track, flags); 435 } 436 437 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache, 438 void *object, gfp_t flags, bool init) 439 { 440 u8 tag; 441 void *tagged_object; 442 443 if (gfpflags_allow_blocking(flags)) 444 kasan_quarantine_reduce(); 445 446 if (unlikely(object == NULL)) 447 return NULL; 448 449 if (is_kfence_address(object)) 450 return (void *)object; 451 452 /* 453 * Generate and assign random tag for tag-based modes. 454 * Tag is ignored in set_tag() for the generic mode. 455 */ 456 tag = assign_tag(cache, object, false); 457 tagged_object = set_tag(object, tag); 458 459 /* 460 * Unpoison the whole object. 461 * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning. 462 */ 463 kasan_unpoison(tagged_object, cache->object_size, init); 464 465 /* Save alloc info (if possible) for non-kmalloc() allocations. */ 466 if (kasan_stack_collection_enabled()) 467 set_alloc_info(cache, (void *)object, flags, false); 468 469 return tagged_object; 470 } 471 472 static inline void *____kasan_kmalloc(struct kmem_cache *cache, 473 const void *object, size_t size, gfp_t flags) 474 { 475 unsigned long redzone_start; 476 unsigned long redzone_end; 477 478 if (gfpflags_allow_blocking(flags)) 479 kasan_quarantine_reduce(); 480 481 if (unlikely(object == NULL)) 482 return NULL; 483 484 if (is_kfence_address(kasan_reset_tag(object))) 485 return (void *)object; 486 487 /* 488 * The object has already been unpoisoned by kasan_slab_alloc() for 489 * kmalloc() or by kasan_krealloc() for krealloc(). 490 */ 491 492 /* 493 * The redzone has byte-level precision for the generic mode. 494 * Partially poison the last object granule to cover the unaligned 495 * part of the redzone. 496 */ 497 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 498 kasan_poison_last_granule((void *)object, size); 499 500 /* Poison the aligned part of the redzone. */ 501 redzone_start = round_up((unsigned long)(object + size), 502 KASAN_GRANULE_SIZE); 503 redzone_end = round_up((unsigned long)(object + cache->object_size), 504 KASAN_GRANULE_SIZE); 505 kasan_poison((void *)redzone_start, redzone_end - redzone_start, 506 KASAN_KMALLOC_REDZONE, false); 507 508 /* 509 * Save alloc info (if possible) for kmalloc() allocations. 510 * This also rewrites the alloc info when called from kasan_krealloc(). 511 */ 512 if (kasan_stack_collection_enabled()) 513 set_alloc_info(cache, (void *)object, flags, true); 514 515 /* Keep the tag that was set by kasan_slab_alloc(). */ 516 return (void *)object; 517 } 518 519 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object, 520 size_t size, gfp_t flags) 521 { 522 return ____kasan_kmalloc(cache, object, size, flags); 523 } 524 EXPORT_SYMBOL(__kasan_kmalloc); 525 526 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size, 527 gfp_t flags) 528 { 529 unsigned long redzone_start; 530 unsigned long redzone_end; 531 532 if (gfpflags_allow_blocking(flags)) 533 kasan_quarantine_reduce(); 534 535 if (unlikely(ptr == NULL)) 536 return NULL; 537 538 /* 539 * The object has already been unpoisoned by kasan_alloc_pages() for 540 * alloc_pages() or by kasan_krealloc() for krealloc(). 541 */ 542 543 /* 544 * The redzone has byte-level precision for the generic mode. 545 * Partially poison the last object granule to cover the unaligned 546 * part of the redzone. 547 */ 548 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 549 kasan_poison_last_granule(ptr, size); 550 551 /* Poison the aligned part of the redzone. */ 552 redzone_start = round_up((unsigned long)(ptr + size), 553 KASAN_GRANULE_SIZE); 554 redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr)); 555 kasan_poison((void *)redzone_start, redzone_end - redzone_start, 556 KASAN_PAGE_REDZONE, false); 557 558 return (void *)ptr; 559 } 560 561 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags) 562 { 563 struct page *page; 564 565 if (unlikely(object == ZERO_SIZE_PTR)) 566 return (void *)object; 567 568 /* 569 * Unpoison the object's data. 570 * Part of it might already have been unpoisoned, but it's unknown 571 * how big that part is. 572 */ 573 kasan_unpoison(object, size, false); 574 575 page = virt_to_head_page(object); 576 577 /* Piggy-back on kmalloc() instrumentation to poison the redzone. */ 578 if (unlikely(!PageSlab(page))) 579 return __kasan_kmalloc_large(object, size, flags); 580 else 581 return ____kasan_kmalloc(page->slab_cache, object, size, flags); 582 } 583 584 bool __kasan_check_byte(const void *address, unsigned long ip) 585 { 586 if (!kasan_byte_accessible(address)) { 587 kasan_report((unsigned long)address, 1, false, ip); 588 return false; 589 } 590 return true; 591 } 592