xref: /openbmc/linux/mm/kasan/common.c (revision 37b9b9a5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common generic and tag-based KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  *
15  */
16 
17 #include <linux/export.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/kasan.h>
21 #include <linux/kernel.h>
22 #include <linux/kmemleak.h>
23 #include <linux/linkage.h>
24 #include <linux/memblock.h>
25 #include <linux/memory.h>
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/printk.h>
29 #include <linux/sched.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/slab.h>
32 #include <linux/stacktrace.h>
33 #include <linux/string.h>
34 #include <linux/types.h>
35 #include <linux/vmalloc.h>
36 #include <linux/bug.h>
37 #include <linux/uaccess.h>
38 
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 
42 #include "kasan.h"
43 #include "../slab.h"
44 
45 static inline int in_irqentry_text(unsigned long ptr)
46 {
47 	return (ptr >= (unsigned long)&__irqentry_text_start &&
48 		ptr < (unsigned long)&__irqentry_text_end) ||
49 		(ptr >= (unsigned long)&__softirqentry_text_start &&
50 		 ptr < (unsigned long)&__softirqentry_text_end);
51 }
52 
53 static inline unsigned int filter_irq_stacks(unsigned long *entries,
54 					     unsigned int nr_entries)
55 {
56 	unsigned int i;
57 
58 	for (i = 0; i < nr_entries; i++) {
59 		if (in_irqentry_text(entries[i])) {
60 			/* Include the irqentry function into the stack. */
61 			return i + 1;
62 		}
63 	}
64 	return nr_entries;
65 }
66 
67 static inline depot_stack_handle_t save_stack(gfp_t flags)
68 {
69 	unsigned long entries[KASAN_STACK_DEPTH];
70 	unsigned int nr_entries;
71 
72 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
73 	nr_entries = filter_irq_stacks(entries, nr_entries);
74 	return stack_depot_save(entries, nr_entries, flags);
75 }
76 
77 static inline void set_track(struct kasan_track *track, gfp_t flags)
78 {
79 	track->pid = current->pid;
80 	track->stack = save_stack(flags);
81 }
82 
83 void kasan_enable_current(void)
84 {
85 	current->kasan_depth++;
86 }
87 
88 void kasan_disable_current(void)
89 {
90 	current->kasan_depth--;
91 }
92 
93 bool __kasan_check_read(const volatile void *p, unsigned int size)
94 {
95 	return check_memory_region((unsigned long)p, size, false, _RET_IP_);
96 }
97 EXPORT_SYMBOL(__kasan_check_read);
98 
99 bool __kasan_check_write(const volatile void *p, unsigned int size)
100 {
101 	return check_memory_region((unsigned long)p, size, true, _RET_IP_);
102 }
103 EXPORT_SYMBOL(__kasan_check_write);
104 
105 #undef memset
106 void *memset(void *addr, int c, size_t len)
107 {
108 	check_memory_region((unsigned long)addr, len, true, _RET_IP_);
109 
110 	return __memset(addr, c, len);
111 }
112 
113 #undef memmove
114 void *memmove(void *dest, const void *src, size_t len)
115 {
116 	check_memory_region((unsigned long)src, len, false, _RET_IP_);
117 	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
118 
119 	return __memmove(dest, src, len);
120 }
121 
122 #undef memcpy
123 void *memcpy(void *dest, const void *src, size_t len)
124 {
125 	check_memory_region((unsigned long)src, len, false, _RET_IP_);
126 	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
127 
128 	return __memcpy(dest, src, len);
129 }
130 
131 /*
132  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
133  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
134  */
135 void kasan_poison_shadow(const void *address, size_t size, u8 value)
136 {
137 	void *shadow_start, *shadow_end;
138 
139 	/*
140 	 * Perform shadow offset calculation based on untagged address, as
141 	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
142 	 * addresses to this function.
143 	 */
144 	address = reset_tag(address);
145 
146 	shadow_start = kasan_mem_to_shadow(address);
147 	shadow_end = kasan_mem_to_shadow(address + size);
148 
149 	__memset(shadow_start, value, shadow_end - shadow_start);
150 }
151 
152 void kasan_unpoison_shadow(const void *address, size_t size)
153 {
154 	u8 tag = get_tag(address);
155 
156 	/*
157 	 * Perform shadow offset calculation based on untagged address, as
158 	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
159 	 * addresses to this function.
160 	 */
161 	address = reset_tag(address);
162 
163 	kasan_poison_shadow(address, size, tag);
164 
165 	if (size & KASAN_SHADOW_MASK) {
166 		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
167 
168 		if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
169 			*shadow = tag;
170 		else
171 			*shadow = size & KASAN_SHADOW_MASK;
172 	}
173 }
174 
175 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
176 {
177 	void *base = task_stack_page(task);
178 	size_t size = sp - base;
179 
180 	kasan_unpoison_shadow(base, size);
181 }
182 
183 /* Unpoison the entire stack for a task. */
184 void kasan_unpoison_task_stack(struct task_struct *task)
185 {
186 	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
187 }
188 
189 /* Unpoison the stack for the current task beyond a watermark sp value. */
190 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
191 {
192 	/*
193 	 * Calculate the task stack base address.  Avoid using 'current'
194 	 * because this function is called by early resume code which hasn't
195 	 * yet set up the percpu register (%gs).
196 	 */
197 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
198 
199 	kasan_unpoison_shadow(base, watermark - base);
200 }
201 
202 /*
203  * Clear all poison for the region between the current SP and a provided
204  * watermark value, as is sometimes required prior to hand-crafted asm function
205  * returns in the middle of functions.
206  */
207 void kasan_unpoison_stack_above_sp_to(const void *watermark)
208 {
209 	const void *sp = __builtin_frame_address(0);
210 	size_t size = watermark - sp;
211 
212 	if (WARN_ON(sp > watermark))
213 		return;
214 	kasan_unpoison_shadow(sp, size);
215 }
216 
217 void kasan_alloc_pages(struct page *page, unsigned int order)
218 {
219 	u8 tag;
220 	unsigned long i;
221 
222 	if (unlikely(PageHighMem(page)))
223 		return;
224 
225 	tag = random_tag();
226 	for (i = 0; i < (1 << order); i++)
227 		page_kasan_tag_set(page + i, tag);
228 	kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
229 }
230 
231 void kasan_free_pages(struct page *page, unsigned int order)
232 {
233 	if (likely(!PageHighMem(page)))
234 		kasan_poison_shadow(page_address(page),
235 				PAGE_SIZE << order,
236 				KASAN_FREE_PAGE);
237 }
238 
239 /*
240  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
241  * For larger allocations larger redzones are used.
242  */
243 static inline unsigned int optimal_redzone(unsigned int object_size)
244 {
245 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
246 		return 0;
247 
248 	return
249 		object_size <= 64        - 16   ? 16 :
250 		object_size <= 128       - 32   ? 32 :
251 		object_size <= 512       - 64   ? 64 :
252 		object_size <= 4096      - 128  ? 128 :
253 		object_size <= (1 << 14) - 256  ? 256 :
254 		object_size <= (1 << 15) - 512  ? 512 :
255 		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
256 }
257 
258 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
259 			slab_flags_t *flags)
260 {
261 	unsigned int orig_size = *size;
262 	unsigned int redzone_size;
263 	int redzone_adjust;
264 
265 	/* Add alloc meta. */
266 	cache->kasan_info.alloc_meta_offset = *size;
267 	*size += sizeof(struct kasan_alloc_meta);
268 
269 	/* Add free meta. */
270 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
271 	    (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
272 	     cache->object_size < sizeof(struct kasan_free_meta))) {
273 		cache->kasan_info.free_meta_offset = *size;
274 		*size += sizeof(struct kasan_free_meta);
275 	}
276 
277 	redzone_size = optimal_redzone(cache->object_size);
278 	redzone_adjust = redzone_size -	(*size - cache->object_size);
279 	if (redzone_adjust > 0)
280 		*size += redzone_adjust;
281 
282 	*size = min_t(unsigned int, KMALLOC_MAX_SIZE,
283 			max(*size, cache->object_size + redzone_size));
284 
285 	/*
286 	 * If the metadata doesn't fit, don't enable KASAN at all.
287 	 */
288 	if (*size <= cache->kasan_info.alloc_meta_offset ||
289 			*size <= cache->kasan_info.free_meta_offset) {
290 		cache->kasan_info.alloc_meta_offset = 0;
291 		cache->kasan_info.free_meta_offset = 0;
292 		*size = orig_size;
293 		return;
294 	}
295 
296 	*flags |= SLAB_KASAN;
297 }
298 
299 size_t kasan_metadata_size(struct kmem_cache *cache)
300 {
301 	return (cache->kasan_info.alloc_meta_offset ?
302 		sizeof(struct kasan_alloc_meta) : 0) +
303 		(cache->kasan_info.free_meta_offset ?
304 		sizeof(struct kasan_free_meta) : 0);
305 }
306 
307 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
308 					const void *object)
309 {
310 	return (void *)object + cache->kasan_info.alloc_meta_offset;
311 }
312 
313 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
314 				      const void *object)
315 {
316 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
317 	return (void *)object + cache->kasan_info.free_meta_offset;
318 }
319 
320 
321 static void kasan_set_free_info(struct kmem_cache *cache,
322 		void *object, u8 tag)
323 {
324 	struct kasan_alloc_meta *alloc_meta;
325 	u8 idx = 0;
326 
327 	alloc_meta = get_alloc_info(cache, object);
328 
329 #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY
330 	idx = alloc_meta->free_track_idx;
331 	alloc_meta->free_pointer_tag[idx] = tag;
332 	alloc_meta->free_track_idx = (idx + 1) % KASAN_NR_FREE_STACKS;
333 #endif
334 
335 	set_track(&alloc_meta->free_track[idx], GFP_NOWAIT);
336 }
337 
338 void kasan_poison_slab(struct page *page)
339 {
340 	unsigned long i;
341 
342 	for (i = 0; i < compound_nr(page); i++)
343 		page_kasan_tag_reset(page + i);
344 	kasan_poison_shadow(page_address(page), page_size(page),
345 			KASAN_KMALLOC_REDZONE);
346 }
347 
348 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
349 {
350 	kasan_unpoison_shadow(object, cache->object_size);
351 }
352 
353 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
354 {
355 	kasan_poison_shadow(object,
356 			round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
357 			KASAN_KMALLOC_REDZONE);
358 }
359 
360 /*
361  * This function assigns a tag to an object considering the following:
362  * 1. A cache might have a constructor, which might save a pointer to a slab
363  *    object somewhere (e.g. in the object itself). We preassign a tag for
364  *    each object in caches with constructors during slab creation and reuse
365  *    the same tag each time a particular object is allocated.
366  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
367  *    accessed after being freed. We preassign tags for objects in these
368  *    caches as well.
369  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
370  *    is stored as an array of indexes instead of a linked list. Assign tags
371  *    based on objects indexes, so that objects that are next to each other
372  *    get different tags.
373  */
374 static u8 assign_tag(struct kmem_cache *cache, const void *object,
375 			bool init, bool keep_tag)
376 {
377 	/*
378 	 * 1. When an object is kmalloc()'ed, two hooks are called:
379 	 *    kasan_slab_alloc() and kasan_kmalloc(). We assign the
380 	 *    tag only in the first one.
381 	 * 2. We reuse the same tag for krealloc'ed objects.
382 	 */
383 	if (keep_tag)
384 		return get_tag(object);
385 
386 	/*
387 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
388 	 * set, assign a tag when the object is being allocated (init == false).
389 	 */
390 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
391 		return init ? KASAN_TAG_KERNEL : random_tag();
392 
393 	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
394 #ifdef CONFIG_SLAB
395 	/* For SLAB assign tags based on the object index in the freelist. */
396 	return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
397 #else
398 	/*
399 	 * For SLUB assign a random tag during slab creation, otherwise reuse
400 	 * the already assigned tag.
401 	 */
402 	return init ? random_tag() : get_tag(object);
403 #endif
404 }
405 
406 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
407 						const void *object)
408 {
409 	struct kasan_alloc_meta *alloc_info;
410 
411 	if (!(cache->flags & SLAB_KASAN))
412 		return (void *)object;
413 
414 	alloc_info = get_alloc_info(cache, object);
415 	__memset(alloc_info, 0, sizeof(*alloc_info));
416 
417 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
418 		object = set_tag(object,
419 				assign_tag(cache, object, true, false));
420 
421 	return (void *)object;
422 }
423 
424 static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
425 {
426 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
427 		return shadow_byte < 0 ||
428 			shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
429 
430 	/* else CONFIG_KASAN_SW_TAGS: */
431 	if ((u8)shadow_byte == KASAN_TAG_INVALID)
432 		return true;
433 	if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
434 		return true;
435 
436 	return false;
437 }
438 
439 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
440 			      unsigned long ip, bool quarantine)
441 {
442 	s8 shadow_byte;
443 	u8 tag;
444 	void *tagged_object;
445 	unsigned long rounded_up_size;
446 
447 	tag = get_tag(object);
448 	tagged_object = object;
449 	object = reset_tag(object);
450 
451 	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
452 	    object)) {
453 		kasan_report_invalid_free(tagged_object, ip);
454 		return true;
455 	}
456 
457 	/* RCU slabs could be legally used after free within the RCU period */
458 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
459 		return false;
460 
461 	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
462 	if (shadow_invalid(tag, shadow_byte)) {
463 		kasan_report_invalid_free(tagged_object, ip);
464 		return true;
465 	}
466 
467 	rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
468 	kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
469 
470 	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
471 			unlikely(!(cache->flags & SLAB_KASAN)))
472 		return false;
473 
474 	kasan_set_free_info(cache, object, tag);
475 
476 	quarantine_put(get_free_info(cache, object), cache);
477 
478 	return IS_ENABLED(CONFIG_KASAN_GENERIC);
479 }
480 
481 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
482 {
483 	return __kasan_slab_free(cache, object, ip, true);
484 }
485 
486 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
487 				size_t size, gfp_t flags, bool keep_tag)
488 {
489 	unsigned long redzone_start;
490 	unsigned long redzone_end;
491 	u8 tag = 0xff;
492 
493 	if (gfpflags_allow_blocking(flags))
494 		quarantine_reduce();
495 
496 	if (unlikely(object == NULL))
497 		return NULL;
498 
499 	redzone_start = round_up((unsigned long)(object + size),
500 				KASAN_SHADOW_SCALE_SIZE);
501 	redzone_end = round_up((unsigned long)object + cache->object_size,
502 				KASAN_SHADOW_SCALE_SIZE);
503 
504 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
505 		tag = assign_tag(cache, object, false, keep_tag);
506 
507 	/* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
508 	kasan_unpoison_shadow(set_tag(object, tag), size);
509 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
510 		KASAN_KMALLOC_REDZONE);
511 
512 	if (cache->flags & SLAB_KASAN)
513 		set_track(&get_alloc_info(cache, object)->alloc_track, flags);
514 
515 	return set_tag(object, tag);
516 }
517 
518 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
519 					gfp_t flags)
520 {
521 	return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
522 }
523 
524 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
525 				size_t size, gfp_t flags)
526 {
527 	return __kasan_kmalloc(cache, object, size, flags, true);
528 }
529 EXPORT_SYMBOL(kasan_kmalloc);
530 
531 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
532 						gfp_t flags)
533 {
534 	struct page *page;
535 	unsigned long redzone_start;
536 	unsigned long redzone_end;
537 
538 	if (gfpflags_allow_blocking(flags))
539 		quarantine_reduce();
540 
541 	if (unlikely(ptr == NULL))
542 		return NULL;
543 
544 	page = virt_to_page(ptr);
545 	redzone_start = round_up((unsigned long)(ptr + size),
546 				KASAN_SHADOW_SCALE_SIZE);
547 	redzone_end = (unsigned long)ptr + page_size(page);
548 
549 	kasan_unpoison_shadow(ptr, size);
550 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
551 		KASAN_PAGE_REDZONE);
552 
553 	return (void *)ptr;
554 }
555 
556 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
557 {
558 	struct page *page;
559 
560 	if (unlikely(object == ZERO_SIZE_PTR))
561 		return (void *)object;
562 
563 	page = virt_to_head_page(object);
564 
565 	if (unlikely(!PageSlab(page)))
566 		return kasan_kmalloc_large(object, size, flags);
567 	else
568 		return __kasan_kmalloc(page->slab_cache, object, size,
569 						flags, true);
570 }
571 
572 void kasan_poison_kfree(void *ptr, unsigned long ip)
573 {
574 	struct page *page;
575 
576 	page = virt_to_head_page(ptr);
577 
578 	if (unlikely(!PageSlab(page))) {
579 		if (ptr != page_address(page)) {
580 			kasan_report_invalid_free(ptr, ip);
581 			return;
582 		}
583 		kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE);
584 	} else {
585 		__kasan_slab_free(page->slab_cache, ptr, ip, false);
586 	}
587 }
588 
589 void kasan_kfree_large(void *ptr, unsigned long ip)
590 {
591 	if (ptr != page_address(virt_to_head_page(ptr)))
592 		kasan_report_invalid_free(ptr, ip);
593 	/* The object will be poisoned by page_alloc. */
594 }
595 
596 #ifndef CONFIG_KASAN_VMALLOC
597 int kasan_module_alloc(void *addr, size_t size)
598 {
599 	void *ret;
600 	size_t scaled_size;
601 	size_t shadow_size;
602 	unsigned long shadow_start;
603 
604 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
605 	scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
606 	shadow_size = round_up(scaled_size, PAGE_SIZE);
607 
608 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
609 		return -EINVAL;
610 
611 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
612 			shadow_start + shadow_size,
613 			GFP_KERNEL,
614 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
615 			__builtin_return_address(0));
616 
617 	if (ret) {
618 		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
619 		find_vm_area(addr)->flags |= VM_KASAN;
620 		kmemleak_ignore(ret);
621 		return 0;
622 	}
623 
624 	return -ENOMEM;
625 }
626 
627 void kasan_free_shadow(const struct vm_struct *vm)
628 {
629 	if (vm->flags & VM_KASAN)
630 		vfree(kasan_mem_to_shadow(vm->addr));
631 }
632 #endif
633 
634 extern void __kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip);
635 
636 void kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip)
637 {
638 	unsigned long flags = user_access_save();
639 	__kasan_report(addr, size, is_write, ip);
640 	user_access_restore(flags);
641 }
642 
643 #ifdef CONFIG_MEMORY_HOTPLUG
644 static bool shadow_mapped(unsigned long addr)
645 {
646 	pgd_t *pgd = pgd_offset_k(addr);
647 	p4d_t *p4d;
648 	pud_t *pud;
649 	pmd_t *pmd;
650 	pte_t *pte;
651 
652 	if (pgd_none(*pgd))
653 		return false;
654 	p4d = p4d_offset(pgd, addr);
655 	if (p4d_none(*p4d))
656 		return false;
657 	pud = pud_offset(p4d, addr);
658 	if (pud_none(*pud))
659 		return false;
660 
661 	/*
662 	 * We can't use pud_large() or pud_huge(), the first one is
663 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
664 	 * pud_bad(), if pud is bad then it's bad because it's huge.
665 	 */
666 	if (pud_bad(*pud))
667 		return true;
668 	pmd = pmd_offset(pud, addr);
669 	if (pmd_none(*pmd))
670 		return false;
671 
672 	if (pmd_bad(*pmd))
673 		return true;
674 	pte = pte_offset_kernel(pmd, addr);
675 	return !pte_none(*pte);
676 }
677 
678 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
679 			unsigned long action, void *data)
680 {
681 	struct memory_notify *mem_data = data;
682 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
683 	unsigned long shadow_end, shadow_size;
684 
685 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
686 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
687 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
688 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
689 	shadow_end = shadow_start + shadow_size;
690 
691 	if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
692 		WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
693 		return NOTIFY_BAD;
694 
695 	switch (action) {
696 	case MEM_GOING_ONLINE: {
697 		void *ret;
698 
699 		/*
700 		 * If shadow is mapped already than it must have been mapped
701 		 * during the boot. This could happen if we onlining previously
702 		 * offlined memory.
703 		 */
704 		if (shadow_mapped(shadow_start))
705 			return NOTIFY_OK;
706 
707 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
708 					shadow_end, GFP_KERNEL,
709 					PAGE_KERNEL, VM_NO_GUARD,
710 					pfn_to_nid(mem_data->start_pfn),
711 					__builtin_return_address(0));
712 		if (!ret)
713 			return NOTIFY_BAD;
714 
715 		kmemleak_ignore(ret);
716 		return NOTIFY_OK;
717 	}
718 	case MEM_CANCEL_ONLINE:
719 	case MEM_OFFLINE: {
720 		struct vm_struct *vm;
721 
722 		/*
723 		 * shadow_start was either mapped during boot by kasan_init()
724 		 * or during memory online by __vmalloc_node_range().
725 		 * In the latter case we can use vfree() to free shadow.
726 		 * Non-NULL result of the find_vm_area() will tell us if
727 		 * that was the second case.
728 		 *
729 		 * Currently it's not possible to free shadow mapped
730 		 * during boot by kasan_init(). It's because the code
731 		 * to do that hasn't been written yet. So we'll just
732 		 * leak the memory.
733 		 */
734 		vm = find_vm_area((void *)shadow_start);
735 		if (vm)
736 			vfree((void *)shadow_start);
737 	}
738 	}
739 
740 	return NOTIFY_OK;
741 }
742 
743 static int __init kasan_memhotplug_init(void)
744 {
745 	hotplug_memory_notifier(kasan_mem_notifier, 0);
746 
747 	return 0;
748 }
749 
750 core_initcall(kasan_memhotplug_init);
751 #endif
752 
753 #ifdef CONFIG_KASAN_VMALLOC
754 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
755 				      void *unused)
756 {
757 	unsigned long page;
758 	pte_t pte;
759 
760 	if (likely(!pte_none(*ptep)))
761 		return 0;
762 
763 	page = __get_free_page(GFP_KERNEL);
764 	if (!page)
765 		return -ENOMEM;
766 
767 	memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
768 	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
769 
770 	spin_lock(&init_mm.page_table_lock);
771 	if (likely(pte_none(*ptep))) {
772 		set_pte_at(&init_mm, addr, ptep, pte);
773 		page = 0;
774 	}
775 	spin_unlock(&init_mm.page_table_lock);
776 	if (page)
777 		free_page(page);
778 	return 0;
779 }
780 
781 int kasan_populate_vmalloc(unsigned long requested_size, struct vm_struct *area)
782 {
783 	unsigned long shadow_start, shadow_end;
784 	int ret;
785 
786 	shadow_start = (unsigned long)kasan_mem_to_shadow(area->addr);
787 	shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
788 	shadow_end = (unsigned long)kasan_mem_to_shadow(area->addr +
789 							area->size);
790 	shadow_end = ALIGN(shadow_end, PAGE_SIZE);
791 
792 	ret = apply_to_page_range(&init_mm, shadow_start,
793 				  shadow_end - shadow_start,
794 				  kasan_populate_vmalloc_pte, NULL);
795 	if (ret)
796 		return ret;
797 
798 	flush_cache_vmap(shadow_start, shadow_end);
799 
800 	kasan_unpoison_shadow(area->addr, requested_size);
801 
802 	area->flags |= VM_KASAN;
803 
804 	/*
805 	 * We need to be careful about inter-cpu effects here. Consider:
806 	 *
807 	 *   CPU#0				  CPU#1
808 	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
809 	 *					p[99] = 1;
810 	 *
811 	 * With compiler instrumentation, that ends up looking like this:
812 	 *
813 	 *   CPU#0				  CPU#1
814 	 * // vmalloc() allocates memory
815 	 * // let a = area->addr
816 	 * // we reach kasan_populate_vmalloc
817 	 * // and call kasan_unpoison_shadow:
818 	 * STORE shadow(a), unpoison_val
819 	 * ...
820 	 * STORE shadow(a+99), unpoison_val	x = LOAD p
821 	 * // rest of vmalloc process		<data dependency>
822 	 * STORE p, a				LOAD shadow(x+99)
823 	 *
824 	 * If there is no barrier between the end of unpoisioning the shadow
825 	 * and the store of the result to p, the stores could be committed
826 	 * in a different order by CPU#0, and CPU#1 could erroneously observe
827 	 * poison in the shadow.
828 	 *
829 	 * We need some sort of barrier between the stores.
830 	 *
831 	 * In the vmalloc() case, this is provided by a smp_wmb() in
832 	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
833 	 * get_vm_area() and friends, the caller gets shadow allocated but
834 	 * doesn't have any pages mapped into the virtual address space that
835 	 * has been reserved. Mapping those pages in will involve taking and
836 	 * releasing a page-table lock, which will provide the barrier.
837 	 */
838 
839 	return 0;
840 }
841 
842 /*
843  * Poison the shadow for a vmalloc region. Called as part of the
844  * freeing process at the time the region is freed.
845  */
846 void kasan_poison_vmalloc(void *start, unsigned long size)
847 {
848 	size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
849 	kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID);
850 }
851 
852 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
853 					void *unused)
854 {
855 	unsigned long page;
856 
857 	page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
858 
859 	spin_lock(&init_mm.page_table_lock);
860 
861 	if (likely(!pte_none(*ptep))) {
862 		pte_clear(&init_mm, addr, ptep);
863 		free_page(page);
864 	}
865 	spin_unlock(&init_mm.page_table_lock);
866 
867 	return 0;
868 }
869 
870 /*
871  * Release the backing for the vmalloc region [start, end), which
872  * lies within the free region [free_region_start, free_region_end).
873  *
874  * This can be run lazily, long after the region was freed. It runs
875  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
876  * infrastructure.
877  *
878  * How does this work?
879  * -------------------
880  *
881  * We have a region that is page aligned, labelled as A.
882  * That might not map onto the shadow in a way that is page-aligned:
883  *
884  *                    start                     end
885  *                    v                         v
886  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
887  *  -------- -------- --------          -------- --------
888  *      |        |       |                 |        |
889  *      |        |       |         /-------/        |
890  *      \-------\|/------/         |/---------------/
891  *              |||                ||
892  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
893  *                 (1)      (2)      (3)
894  *
895  * First we align the start upwards and the end downwards, so that the
896  * shadow of the region aligns with shadow page boundaries. In the
897  * example, this gives us the shadow page (2). This is the shadow entirely
898  * covered by this allocation.
899  *
900  * Then we have the tricky bits. We want to know if we can free the
901  * partially covered shadow pages - (1) and (3) in the example. For this,
902  * we are given the start and end of the free region that contains this
903  * allocation. Extending our previous example, we could have:
904  *
905  *  free_region_start                                    free_region_end
906  *  |                 start                     end      |
907  *  v                 v                         v        v
908  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
909  *  -------- -------- --------          -------- --------
910  *      |        |       |                 |        |
911  *      |        |       |         /-------/        |
912  *      \-------\|/------/         |/---------------/
913  *              |||                ||
914  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
915  *                 (1)      (2)      (3)
916  *
917  * Once again, we align the start of the free region up, and the end of
918  * the free region down so that the shadow is page aligned. So we can free
919  * page (1) - we know no allocation currently uses anything in that page,
920  * because all of it is in the vmalloc free region. But we cannot free
921  * page (3), because we can't be sure that the rest of it is unused.
922  *
923  * We only consider pages that contain part of the original region for
924  * freeing: we don't try to free other pages from the free region or we'd
925  * end up trying to free huge chunks of virtual address space.
926  *
927  * Concurrency
928  * -----------
929  *
930  * How do we know that we're not freeing a page that is simultaneously
931  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
932  *
933  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
934  * at the same time. While we run under free_vmap_area_lock, the population
935  * code does not.
936  *
937  * free_vmap_area_lock instead operates to ensure that the larger range
938  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
939  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
940  * no space identified as free will become used while we are running. This
941  * means that so long as we are careful with alignment and only free shadow
942  * pages entirely covered by the free region, we will not run in to any
943  * trouble - any simultaneous allocations will be for disjoint regions.
944  */
945 void kasan_release_vmalloc(unsigned long start, unsigned long end,
946 			   unsigned long free_region_start,
947 			   unsigned long free_region_end)
948 {
949 	void *shadow_start, *shadow_end;
950 	unsigned long region_start, region_end;
951 
952 	region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
953 	region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
954 
955 	free_region_start = ALIGN(free_region_start,
956 				  PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
957 
958 	if (start != region_start &&
959 	    free_region_start < region_start)
960 		region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
961 
962 	free_region_end = ALIGN_DOWN(free_region_end,
963 				     PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
964 
965 	if (end != region_end &&
966 	    free_region_end > region_end)
967 		region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
968 
969 	shadow_start = kasan_mem_to_shadow((void *)region_start);
970 	shadow_end = kasan_mem_to_shadow((void *)region_end);
971 
972 	if (shadow_end > shadow_start) {
973 		apply_to_page_range(&init_mm, (unsigned long)shadow_start,
974 				    (unsigned long)(shadow_end - shadow_start),
975 				    kasan_depopulate_vmalloc_pte, NULL);
976 		flush_tlb_kernel_range((unsigned long)shadow_start,
977 				       (unsigned long)shadow_end);
978 	}
979 }
980 #endif
981