1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common KASAN code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 */ 11 12 #include <linux/export.h> 13 #include <linux/init.h> 14 #include <linux/kasan.h> 15 #include <linux/kernel.h> 16 #include <linux/linkage.h> 17 #include <linux/memblock.h> 18 #include <linux/memory.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/printk.h> 22 #include <linux/sched.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/slab.h> 25 #include <linux/stacktrace.h> 26 #include <linux/string.h> 27 #include <linux/types.h> 28 #include <linux/bug.h> 29 30 #include "kasan.h" 31 #include "../slab.h" 32 33 depot_stack_handle_t kasan_save_stack(gfp_t flags, bool can_alloc) 34 { 35 unsigned long entries[KASAN_STACK_DEPTH]; 36 unsigned int nr_entries; 37 38 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); 39 return __stack_depot_save(entries, nr_entries, flags, can_alloc); 40 } 41 42 void kasan_set_track(struct kasan_track *track, gfp_t flags) 43 { 44 track->pid = current->pid; 45 track->stack = kasan_save_stack(flags, true); 46 } 47 48 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 49 void kasan_enable_current(void) 50 { 51 current->kasan_depth++; 52 } 53 EXPORT_SYMBOL(kasan_enable_current); 54 55 void kasan_disable_current(void) 56 { 57 current->kasan_depth--; 58 } 59 EXPORT_SYMBOL(kasan_disable_current); 60 61 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ 62 63 void __kasan_unpoison_range(const void *address, size_t size) 64 { 65 kasan_unpoison(address, size, false); 66 } 67 68 #ifdef CONFIG_KASAN_STACK 69 /* Unpoison the entire stack for a task. */ 70 void kasan_unpoison_task_stack(struct task_struct *task) 71 { 72 void *base = task_stack_page(task); 73 74 kasan_unpoison(base, THREAD_SIZE, false); 75 } 76 77 /* Unpoison the stack for the current task beyond a watermark sp value. */ 78 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) 79 { 80 /* 81 * Calculate the task stack base address. Avoid using 'current' 82 * because this function is called by early resume code which hasn't 83 * yet set up the percpu register (%gs). 84 */ 85 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); 86 87 kasan_unpoison(base, watermark - base, false); 88 } 89 #endif /* CONFIG_KASAN_STACK */ 90 91 /* 92 * Only allow cache merging when stack collection is disabled and no metadata 93 * is present. 94 */ 95 slab_flags_t __kasan_never_merge(void) 96 { 97 if (kasan_stack_collection_enabled()) 98 return SLAB_KASAN; 99 return 0; 100 } 101 102 void __kasan_unpoison_pages(struct page *page, unsigned int order, bool init) 103 { 104 u8 tag; 105 unsigned long i; 106 107 if (unlikely(PageHighMem(page))) 108 return; 109 110 tag = kasan_random_tag(); 111 for (i = 0; i < (1 << order); i++) 112 page_kasan_tag_set(page + i, tag); 113 kasan_unpoison(page_address(page), PAGE_SIZE << order, init); 114 } 115 116 void __kasan_poison_pages(struct page *page, unsigned int order, bool init) 117 { 118 if (likely(!PageHighMem(page))) 119 kasan_poison(page_address(page), PAGE_SIZE << order, 120 KASAN_PAGE_FREE, init); 121 } 122 123 /* 124 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. 125 * For larger allocations larger redzones are used. 126 */ 127 static inline unsigned int optimal_redzone(unsigned int object_size) 128 { 129 return 130 object_size <= 64 - 16 ? 16 : 131 object_size <= 128 - 32 ? 32 : 132 object_size <= 512 - 64 ? 64 : 133 object_size <= 4096 - 128 ? 128 : 134 object_size <= (1 << 14) - 256 ? 256 : 135 object_size <= (1 << 15) - 512 ? 512 : 136 object_size <= (1 << 16) - 1024 ? 1024 : 2048; 137 } 138 139 void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size, 140 slab_flags_t *flags) 141 { 142 unsigned int ok_size; 143 unsigned int optimal_size; 144 145 /* 146 * SLAB_KASAN is used to mark caches as ones that are sanitized by 147 * KASAN. Currently this flag is used in two places: 148 * 1. In slab_ksize() when calculating the size of the accessible 149 * memory within the object. 150 * 2. In slab_common.c to prevent merging of sanitized caches. 151 */ 152 *flags |= SLAB_KASAN; 153 154 if (!kasan_stack_collection_enabled()) 155 return; 156 157 ok_size = *size; 158 159 /* Add alloc meta into redzone. */ 160 cache->kasan_info.alloc_meta_offset = *size; 161 *size += sizeof(struct kasan_alloc_meta); 162 163 /* 164 * If alloc meta doesn't fit, don't add it. 165 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal 166 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for 167 * larger sizes. 168 */ 169 if (*size > KMALLOC_MAX_SIZE) { 170 cache->kasan_info.alloc_meta_offset = 0; 171 *size = ok_size; 172 /* Continue, since free meta might still fit. */ 173 } 174 175 /* Only the generic mode uses free meta or flexible redzones. */ 176 if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) { 177 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; 178 return; 179 } 180 181 /* 182 * Add free meta into redzone when it's not possible to store 183 * it in the object. This is the case when: 184 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can 185 * be touched after it was freed, or 186 * 2. Object has a constructor, which means it's expected to 187 * retain its content until the next allocation, or 188 * 3. Object is too small. 189 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied. 190 */ 191 if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor || 192 cache->object_size < sizeof(struct kasan_free_meta)) { 193 ok_size = *size; 194 195 cache->kasan_info.free_meta_offset = *size; 196 *size += sizeof(struct kasan_free_meta); 197 198 /* If free meta doesn't fit, don't add it. */ 199 if (*size > KMALLOC_MAX_SIZE) { 200 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; 201 *size = ok_size; 202 } 203 } 204 205 /* Calculate size with optimal redzone. */ 206 optimal_size = cache->object_size + optimal_redzone(cache->object_size); 207 /* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */ 208 if (optimal_size > KMALLOC_MAX_SIZE) 209 optimal_size = KMALLOC_MAX_SIZE; 210 /* Use optimal size if the size with added metas is not large enough. */ 211 if (*size < optimal_size) 212 *size = optimal_size; 213 } 214 215 void __kasan_cache_create_kmalloc(struct kmem_cache *cache) 216 { 217 cache->kasan_info.is_kmalloc = true; 218 } 219 220 size_t __kasan_metadata_size(struct kmem_cache *cache) 221 { 222 if (!kasan_stack_collection_enabled()) 223 return 0; 224 return (cache->kasan_info.alloc_meta_offset ? 225 sizeof(struct kasan_alloc_meta) : 0) + 226 (cache->kasan_info.free_meta_offset ? 227 sizeof(struct kasan_free_meta) : 0); 228 } 229 230 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache, 231 const void *object) 232 { 233 if (!cache->kasan_info.alloc_meta_offset) 234 return NULL; 235 return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset; 236 } 237 238 #ifdef CONFIG_KASAN_GENERIC 239 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache, 240 const void *object) 241 { 242 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); 243 if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META) 244 return NULL; 245 return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset; 246 } 247 #endif 248 249 void __kasan_poison_slab(struct slab *slab) 250 { 251 struct page *page = slab_page(slab); 252 unsigned long i; 253 254 for (i = 0; i < compound_nr(page); i++) 255 page_kasan_tag_reset(page + i); 256 kasan_poison(page_address(page), page_size(page), 257 KASAN_SLAB_REDZONE, false); 258 } 259 260 void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object) 261 { 262 kasan_unpoison(object, cache->object_size, false); 263 } 264 265 void __kasan_poison_object_data(struct kmem_cache *cache, void *object) 266 { 267 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), 268 KASAN_SLAB_REDZONE, false); 269 } 270 271 /* 272 * This function assigns a tag to an object considering the following: 273 * 1. A cache might have a constructor, which might save a pointer to a slab 274 * object somewhere (e.g. in the object itself). We preassign a tag for 275 * each object in caches with constructors during slab creation and reuse 276 * the same tag each time a particular object is allocated. 277 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be 278 * accessed after being freed. We preassign tags for objects in these 279 * caches as well. 280 * 3. For SLAB allocator we can't preassign tags randomly since the freelist 281 * is stored as an array of indexes instead of a linked list. Assign tags 282 * based on objects indexes, so that objects that are next to each other 283 * get different tags. 284 */ 285 static inline u8 assign_tag(struct kmem_cache *cache, 286 const void *object, bool init) 287 { 288 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 289 return 0xff; 290 291 /* 292 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU 293 * set, assign a tag when the object is being allocated (init == false). 294 */ 295 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) 296 return init ? KASAN_TAG_KERNEL : kasan_random_tag(); 297 298 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ 299 #ifdef CONFIG_SLAB 300 /* For SLAB assign tags based on the object index in the freelist. */ 301 return (u8)obj_to_index(cache, virt_to_slab(object), (void *)object); 302 #else 303 /* 304 * For SLUB assign a random tag during slab creation, otherwise reuse 305 * the already assigned tag. 306 */ 307 return init ? kasan_random_tag() : get_tag(object); 308 #endif 309 } 310 311 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache, 312 const void *object) 313 { 314 struct kasan_alloc_meta *alloc_meta; 315 316 if (kasan_stack_collection_enabled()) { 317 alloc_meta = kasan_get_alloc_meta(cache, object); 318 if (alloc_meta) 319 __memset(alloc_meta, 0, sizeof(*alloc_meta)); 320 } 321 322 /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */ 323 object = set_tag(object, assign_tag(cache, object, true)); 324 325 return (void *)object; 326 } 327 328 static inline bool ____kasan_slab_free(struct kmem_cache *cache, void *object, 329 unsigned long ip, bool quarantine, bool init) 330 { 331 u8 tag; 332 void *tagged_object; 333 334 if (!kasan_arch_is_ready()) 335 return false; 336 337 tag = get_tag(object); 338 tagged_object = object; 339 object = kasan_reset_tag(object); 340 341 if (is_kfence_address(object)) 342 return false; 343 344 if (unlikely(nearest_obj(cache, virt_to_slab(object), object) != 345 object)) { 346 kasan_report_invalid_free(tagged_object, ip); 347 return true; 348 } 349 350 /* RCU slabs could be legally used after free within the RCU period */ 351 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) 352 return false; 353 354 if (!kasan_byte_accessible(tagged_object)) { 355 kasan_report_invalid_free(tagged_object, ip); 356 return true; 357 } 358 359 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), 360 KASAN_SLAB_FREE, init); 361 362 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine)) 363 return false; 364 365 if (kasan_stack_collection_enabled()) 366 kasan_set_free_info(cache, object, tag); 367 368 return kasan_quarantine_put(cache, object); 369 } 370 371 bool __kasan_slab_free(struct kmem_cache *cache, void *object, 372 unsigned long ip, bool init) 373 { 374 return ____kasan_slab_free(cache, object, ip, true, init); 375 } 376 377 static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip) 378 { 379 if (ptr != page_address(virt_to_head_page(ptr))) { 380 kasan_report_invalid_free(ptr, ip); 381 return true; 382 } 383 384 if (!kasan_byte_accessible(ptr)) { 385 kasan_report_invalid_free(ptr, ip); 386 return true; 387 } 388 389 /* 390 * The object will be poisoned by kasan_poison_pages() or 391 * kasan_slab_free_mempool(). 392 */ 393 394 return false; 395 } 396 397 void __kasan_kfree_large(void *ptr, unsigned long ip) 398 { 399 ____kasan_kfree_large(ptr, ip); 400 } 401 402 void __kasan_slab_free_mempool(void *ptr, unsigned long ip) 403 { 404 struct folio *folio; 405 406 folio = virt_to_folio(ptr); 407 408 /* 409 * Even though this function is only called for kmem_cache_alloc and 410 * kmalloc backed mempool allocations, those allocations can still be 411 * !PageSlab() when the size provided to kmalloc is larger than 412 * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc. 413 */ 414 if (unlikely(!folio_test_slab(folio))) { 415 if (____kasan_kfree_large(ptr, ip)) 416 return; 417 kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false); 418 } else { 419 struct slab *slab = folio_slab(folio); 420 421 ____kasan_slab_free(slab->slab_cache, ptr, ip, false, false); 422 } 423 } 424 425 static void set_alloc_info(struct kmem_cache *cache, void *object, 426 gfp_t flags, bool is_kmalloc) 427 { 428 struct kasan_alloc_meta *alloc_meta; 429 430 /* Don't save alloc info for kmalloc caches in kasan_slab_alloc(). */ 431 if (cache->kasan_info.is_kmalloc && !is_kmalloc) 432 return; 433 434 alloc_meta = kasan_get_alloc_meta(cache, object); 435 if (alloc_meta) 436 kasan_set_track(&alloc_meta->alloc_track, flags); 437 } 438 439 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache, 440 void *object, gfp_t flags, bool init) 441 { 442 u8 tag; 443 void *tagged_object; 444 445 if (gfpflags_allow_blocking(flags)) 446 kasan_quarantine_reduce(); 447 448 if (unlikely(object == NULL)) 449 return NULL; 450 451 if (is_kfence_address(object)) 452 return (void *)object; 453 454 /* 455 * Generate and assign random tag for tag-based modes. 456 * Tag is ignored in set_tag() for the generic mode. 457 */ 458 tag = assign_tag(cache, object, false); 459 tagged_object = set_tag(object, tag); 460 461 /* 462 * Unpoison the whole object. 463 * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning. 464 */ 465 kasan_unpoison(tagged_object, cache->object_size, init); 466 467 /* Save alloc info (if possible) for non-kmalloc() allocations. */ 468 if (kasan_stack_collection_enabled()) 469 set_alloc_info(cache, (void *)object, flags, false); 470 471 return tagged_object; 472 } 473 474 static inline void *____kasan_kmalloc(struct kmem_cache *cache, 475 const void *object, size_t size, gfp_t flags) 476 { 477 unsigned long redzone_start; 478 unsigned long redzone_end; 479 480 if (gfpflags_allow_blocking(flags)) 481 kasan_quarantine_reduce(); 482 483 if (unlikely(object == NULL)) 484 return NULL; 485 486 if (is_kfence_address(kasan_reset_tag(object))) 487 return (void *)object; 488 489 /* 490 * The object has already been unpoisoned by kasan_slab_alloc() for 491 * kmalloc() or by kasan_krealloc() for krealloc(). 492 */ 493 494 /* 495 * The redzone has byte-level precision for the generic mode. 496 * Partially poison the last object granule to cover the unaligned 497 * part of the redzone. 498 */ 499 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 500 kasan_poison_last_granule((void *)object, size); 501 502 /* Poison the aligned part of the redzone. */ 503 redzone_start = round_up((unsigned long)(object + size), 504 KASAN_GRANULE_SIZE); 505 redzone_end = round_up((unsigned long)(object + cache->object_size), 506 KASAN_GRANULE_SIZE); 507 kasan_poison((void *)redzone_start, redzone_end - redzone_start, 508 KASAN_SLAB_REDZONE, false); 509 510 /* 511 * Save alloc info (if possible) for kmalloc() allocations. 512 * This also rewrites the alloc info when called from kasan_krealloc(). 513 */ 514 if (kasan_stack_collection_enabled()) 515 set_alloc_info(cache, (void *)object, flags, true); 516 517 /* Keep the tag that was set by kasan_slab_alloc(). */ 518 return (void *)object; 519 } 520 521 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object, 522 size_t size, gfp_t flags) 523 { 524 return ____kasan_kmalloc(cache, object, size, flags); 525 } 526 EXPORT_SYMBOL(__kasan_kmalloc); 527 528 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size, 529 gfp_t flags) 530 { 531 unsigned long redzone_start; 532 unsigned long redzone_end; 533 534 if (gfpflags_allow_blocking(flags)) 535 kasan_quarantine_reduce(); 536 537 if (unlikely(ptr == NULL)) 538 return NULL; 539 540 /* 541 * The object has already been unpoisoned by kasan_unpoison_pages() for 542 * alloc_pages() or by kasan_krealloc() for krealloc(). 543 */ 544 545 /* 546 * The redzone has byte-level precision for the generic mode. 547 * Partially poison the last object granule to cover the unaligned 548 * part of the redzone. 549 */ 550 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 551 kasan_poison_last_granule(ptr, size); 552 553 /* Poison the aligned part of the redzone. */ 554 redzone_start = round_up((unsigned long)(ptr + size), 555 KASAN_GRANULE_SIZE); 556 redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr)); 557 kasan_poison((void *)redzone_start, redzone_end - redzone_start, 558 KASAN_PAGE_REDZONE, false); 559 560 return (void *)ptr; 561 } 562 563 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags) 564 { 565 struct slab *slab; 566 567 if (unlikely(object == ZERO_SIZE_PTR)) 568 return (void *)object; 569 570 /* 571 * Unpoison the object's data. 572 * Part of it might already have been unpoisoned, but it's unknown 573 * how big that part is. 574 */ 575 kasan_unpoison(object, size, false); 576 577 slab = virt_to_slab(object); 578 579 /* Piggy-back on kmalloc() instrumentation to poison the redzone. */ 580 if (unlikely(!slab)) 581 return __kasan_kmalloc_large(object, size, flags); 582 else 583 return ____kasan_kmalloc(slab->slab_cache, object, size, flags); 584 } 585 586 bool __kasan_check_byte(const void *address, unsigned long ip) 587 { 588 if (!kasan_byte_accessible(address)) { 589 kasan_report((unsigned long)address, 1, false, ip); 590 return false; 591 } 592 return true; 593 } 594