xref: /openbmc/linux/mm/kasan/common.c (revision 0e96cf7f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common generic and tag-based KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  *
15  */
16 
17 #define __KASAN_INTERNAL
18 
19 #include <linux/export.h>
20 #include <linux/interrupt.h>
21 #include <linux/init.h>
22 #include <linux/kasan.h>
23 #include <linux/kernel.h>
24 #include <linux/kmemleak.h>
25 #include <linux/linkage.h>
26 #include <linux/memblock.h>
27 #include <linux/memory.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/printk.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/slab.h>
34 #include <linux/stacktrace.h>
35 #include <linux/string.h>
36 #include <linux/types.h>
37 #include <linux/vmalloc.h>
38 #include <linux/bug.h>
39 #include <linux/uaccess.h>
40 
41 #include "kasan.h"
42 #include "../slab.h"
43 
44 static inline int in_irqentry_text(unsigned long ptr)
45 {
46 	return (ptr >= (unsigned long)&__irqentry_text_start &&
47 		ptr < (unsigned long)&__irqentry_text_end) ||
48 		(ptr >= (unsigned long)&__softirqentry_text_start &&
49 		 ptr < (unsigned long)&__softirqentry_text_end);
50 }
51 
52 static inline unsigned int filter_irq_stacks(unsigned long *entries,
53 					     unsigned int nr_entries)
54 {
55 	unsigned int i;
56 
57 	for (i = 0; i < nr_entries; i++) {
58 		if (in_irqentry_text(entries[i])) {
59 			/* Include the irqentry function into the stack. */
60 			return i + 1;
61 		}
62 	}
63 	return nr_entries;
64 }
65 
66 static inline depot_stack_handle_t save_stack(gfp_t flags)
67 {
68 	unsigned long entries[KASAN_STACK_DEPTH];
69 	unsigned int nr_entries;
70 
71 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
72 	nr_entries = filter_irq_stacks(entries, nr_entries);
73 	return stack_depot_save(entries, nr_entries, flags);
74 }
75 
76 static inline void set_track(struct kasan_track *track, gfp_t flags)
77 {
78 	track->pid = current->pid;
79 	track->stack = save_stack(flags);
80 }
81 
82 void kasan_enable_current(void)
83 {
84 	current->kasan_depth++;
85 }
86 
87 void kasan_disable_current(void)
88 {
89 	current->kasan_depth--;
90 }
91 
92 void kasan_check_read(const volatile void *p, unsigned int size)
93 {
94 	check_memory_region((unsigned long)p, size, false, _RET_IP_);
95 }
96 EXPORT_SYMBOL(kasan_check_read);
97 
98 void kasan_check_write(const volatile void *p, unsigned int size)
99 {
100 	check_memory_region((unsigned long)p, size, true, _RET_IP_);
101 }
102 EXPORT_SYMBOL(kasan_check_write);
103 
104 #undef memset
105 void *memset(void *addr, int c, size_t len)
106 {
107 	check_memory_region((unsigned long)addr, len, true, _RET_IP_);
108 
109 	return __memset(addr, c, len);
110 }
111 
112 #undef memmove
113 void *memmove(void *dest, const void *src, size_t len)
114 {
115 	check_memory_region((unsigned long)src, len, false, _RET_IP_);
116 	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
117 
118 	return __memmove(dest, src, len);
119 }
120 
121 #undef memcpy
122 void *memcpy(void *dest, const void *src, size_t len)
123 {
124 	check_memory_region((unsigned long)src, len, false, _RET_IP_);
125 	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
126 
127 	return __memcpy(dest, src, len);
128 }
129 
130 /*
131  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
132  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
133  */
134 void kasan_poison_shadow(const void *address, size_t size, u8 value)
135 {
136 	void *shadow_start, *shadow_end;
137 
138 	/*
139 	 * Perform shadow offset calculation based on untagged address, as
140 	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
141 	 * addresses to this function.
142 	 */
143 	address = reset_tag(address);
144 
145 	shadow_start = kasan_mem_to_shadow(address);
146 	shadow_end = kasan_mem_to_shadow(address + size);
147 
148 	__memset(shadow_start, value, shadow_end - shadow_start);
149 }
150 
151 void kasan_unpoison_shadow(const void *address, size_t size)
152 {
153 	u8 tag = get_tag(address);
154 
155 	/*
156 	 * Perform shadow offset calculation based on untagged address, as
157 	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
158 	 * addresses to this function.
159 	 */
160 	address = reset_tag(address);
161 
162 	kasan_poison_shadow(address, size, tag);
163 
164 	if (size & KASAN_SHADOW_MASK) {
165 		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
166 
167 		if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
168 			*shadow = tag;
169 		else
170 			*shadow = size & KASAN_SHADOW_MASK;
171 	}
172 }
173 
174 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
175 {
176 	void *base = task_stack_page(task);
177 	size_t size = sp - base;
178 
179 	kasan_unpoison_shadow(base, size);
180 }
181 
182 /* Unpoison the entire stack for a task. */
183 void kasan_unpoison_task_stack(struct task_struct *task)
184 {
185 	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
186 }
187 
188 /* Unpoison the stack for the current task beyond a watermark sp value. */
189 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
190 {
191 	/*
192 	 * Calculate the task stack base address.  Avoid using 'current'
193 	 * because this function is called by early resume code which hasn't
194 	 * yet set up the percpu register (%gs).
195 	 */
196 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
197 
198 	kasan_unpoison_shadow(base, watermark - base);
199 }
200 
201 /*
202  * Clear all poison for the region between the current SP and a provided
203  * watermark value, as is sometimes required prior to hand-crafted asm function
204  * returns in the middle of functions.
205  */
206 void kasan_unpoison_stack_above_sp_to(const void *watermark)
207 {
208 	const void *sp = __builtin_frame_address(0);
209 	size_t size = watermark - sp;
210 
211 	if (WARN_ON(sp > watermark))
212 		return;
213 	kasan_unpoison_shadow(sp, size);
214 }
215 
216 void kasan_alloc_pages(struct page *page, unsigned int order)
217 {
218 	u8 tag;
219 	unsigned long i;
220 
221 	if (unlikely(PageHighMem(page)))
222 		return;
223 
224 	tag = random_tag();
225 	for (i = 0; i < (1 << order); i++)
226 		page_kasan_tag_set(page + i, tag);
227 	kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
228 }
229 
230 void kasan_free_pages(struct page *page, unsigned int order)
231 {
232 	if (likely(!PageHighMem(page)))
233 		kasan_poison_shadow(page_address(page),
234 				PAGE_SIZE << order,
235 				KASAN_FREE_PAGE);
236 }
237 
238 /*
239  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
240  * For larger allocations larger redzones are used.
241  */
242 static inline unsigned int optimal_redzone(unsigned int object_size)
243 {
244 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
245 		return 0;
246 
247 	return
248 		object_size <= 64        - 16   ? 16 :
249 		object_size <= 128       - 32   ? 32 :
250 		object_size <= 512       - 64   ? 64 :
251 		object_size <= 4096      - 128  ? 128 :
252 		object_size <= (1 << 14) - 256  ? 256 :
253 		object_size <= (1 << 15) - 512  ? 512 :
254 		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
255 }
256 
257 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
258 			slab_flags_t *flags)
259 {
260 	unsigned int orig_size = *size;
261 	unsigned int redzone_size;
262 	int redzone_adjust;
263 
264 	/* Add alloc meta. */
265 	cache->kasan_info.alloc_meta_offset = *size;
266 	*size += sizeof(struct kasan_alloc_meta);
267 
268 	/* Add free meta. */
269 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
270 	    (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
271 	     cache->object_size < sizeof(struct kasan_free_meta))) {
272 		cache->kasan_info.free_meta_offset = *size;
273 		*size += sizeof(struct kasan_free_meta);
274 	}
275 
276 	redzone_size = optimal_redzone(cache->object_size);
277 	redzone_adjust = redzone_size -	(*size - cache->object_size);
278 	if (redzone_adjust > 0)
279 		*size += redzone_adjust;
280 
281 	*size = min_t(unsigned int, KMALLOC_MAX_SIZE,
282 			max(*size, cache->object_size + redzone_size));
283 
284 	/*
285 	 * If the metadata doesn't fit, don't enable KASAN at all.
286 	 */
287 	if (*size <= cache->kasan_info.alloc_meta_offset ||
288 			*size <= cache->kasan_info.free_meta_offset) {
289 		cache->kasan_info.alloc_meta_offset = 0;
290 		cache->kasan_info.free_meta_offset = 0;
291 		*size = orig_size;
292 		return;
293 	}
294 
295 	*flags |= SLAB_KASAN;
296 }
297 
298 size_t kasan_metadata_size(struct kmem_cache *cache)
299 {
300 	return (cache->kasan_info.alloc_meta_offset ?
301 		sizeof(struct kasan_alloc_meta) : 0) +
302 		(cache->kasan_info.free_meta_offset ?
303 		sizeof(struct kasan_free_meta) : 0);
304 }
305 
306 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
307 					const void *object)
308 {
309 	BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
310 	return (void *)object + cache->kasan_info.alloc_meta_offset;
311 }
312 
313 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
314 				      const void *object)
315 {
316 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
317 	return (void *)object + cache->kasan_info.free_meta_offset;
318 }
319 
320 void kasan_poison_slab(struct page *page)
321 {
322 	unsigned long i;
323 
324 	for (i = 0; i < (1 << compound_order(page)); i++)
325 		page_kasan_tag_reset(page + i);
326 	kasan_poison_shadow(page_address(page),
327 			PAGE_SIZE << compound_order(page),
328 			KASAN_KMALLOC_REDZONE);
329 }
330 
331 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
332 {
333 	kasan_unpoison_shadow(object, cache->object_size);
334 }
335 
336 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
337 {
338 	kasan_poison_shadow(object,
339 			round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
340 			KASAN_KMALLOC_REDZONE);
341 }
342 
343 /*
344  * This function assigns a tag to an object considering the following:
345  * 1. A cache might have a constructor, which might save a pointer to a slab
346  *    object somewhere (e.g. in the object itself). We preassign a tag for
347  *    each object in caches with constructors during slab creation and reuse
348  *    the same tag each time a particular object is allocated.
349  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
350  *    accessed after being freed. We preassign tags for objects in these
351  *    caches as well.
352  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
353  *    is stored as an array of indexes instead of a linked list. Assign tags
354  *    based on objects indexes, so that objects that are next to each other
355  *    get different tags.
356  */
357 static u8 assign_tag(struct kmem_cache *cache, const void *object,
358 			bool init, bool keep_tag)
359 {
360 	/*
361 	 * 1. When an object is kmalloc()'ed, two hooks are called:
362 	 *    kasan_slab_alloc() and kasan_kmalloc(). We assign the
363 	 *    tag only in the first one.
364 	 * 2. We reuse the same tag for krealloc'ed objects.
365 	 */
366 	if (keep_tag)
367 		return get_tag(object);
368 
369 	/*
370 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
371 	 * set, assign a tag when the object is being allocated (init == false).
372 	 */
373 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
374 		return init ? KASAN_TAG_KERNEL : random_tag();
375 
376 	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
377 #ifdef CONFIG_SLAB
378 	/* For SLAB assign tags based on the object index in the freelist. */
379 	return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
380 #else
381 	/*
382 	 * For SLUB assign a random tag during slab creation, otherwise reuse
383 	 * the already assigned tag.
384 	 */
385 	return init ? random_tag() : get_tag(object);
386 #endif
387 }
388 
389 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
390 						const void *object)
391 {
392 	struct kasan_alloc_meta *alloc_info;
393 
394 	if (!(cache->flags & SLAB_KASAN))
395 		return (void *)object;
396 
397 	alloc_info = get_alloc_info(cache, object);
398 	__memset(alloc_info, 0, sizeof(*alloc_info));
399 
400 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
401 		object = set_tag(object,
402 				assign_tag(cache, object, true, false));
403 
404 	return (void *)object;
405 }
406 
407 static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
408 {
409 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
410 		return shadow_byte < 0 ||
411 			shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
412 	else
413 		return tag != (u8)shadow_byte;
414 }
415 
416 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
417 			      unsigned long ip, bool quarantine)
418 {
419 	s8 shadow_byte;
420 	u8 tag;
421 	void *tagged_object;
422 	unsigned long rounded_up_size;
423 
424 	tag = get_tag(object);
425 	tagged_object = object;
426 	object = reset_tag(object);
427 
428 	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
429 	    object)) {
430 		kasan_report_invalid_free(tagged_object, ip);
431 		return true;
432 	}
433 
434 	/* RCU slabs could be legally used after free within the RCU period */
435 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
436 		return false;
437 
438 	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
439 	if (shadow_invalid(tag, shadow_byte)) {
440 		kasan_report_invalid_free(tagged_object, ip);
441 		return true;
442 	}
443 
444 	rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
445 	kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
446 
447 	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
448 			unlikely(!(cache->flags & SLAB_KASAN)))
449 		return false;
450 
451 	set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
452 	quarantine_put(get_free_info(cache, object), cache);
453 
454 	return IS_ENABLED(CONFIG_KASAN_GENERIC);
455 }
456 
457 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
458 {
459 	return __kasan_slab_free(cache, object, ip, true);
460 }
461 
462 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
463 				size_t size, gfp_t flags, bool keep_tag)
464 {
465 	unsigned long redzone_start;
466 	unsigned long redzone_end;
467 	u8 tag = 0xff;
468 
469 	if (gfpflags_allow_blocking(flags))
470 		quarantine_reduce();
471 
472 	if (unlikely(object == NULL))
473 		return NULL;
474 
475 	redzone_start = round_up((unsigned long)(object + size),
476 				KASAN_SHADOW_SCALE_SIZE);
477 	redzone_end = round_up((unsigned long)object + cache->object_size,
478 				KASAN_SHADOW_SCALE_SIZE);
479 
480 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
481 		tag = assign_tag(cache, object, false, keep_tag);
482 
483 	/* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
484 	kasan_unpoison_shadow(set_tag(object, tag), size);
485 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
486 		KASAN_KMALLOC_REDZONE);
487 
488 	if (cache->flags & SLAB_KASAN)
489 		set_track(&get_alloc_info(cache, object)->alloc_track, flags);
490 
491 	return set_tag(object, tag);
492 }
493 
494 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
495 					gfp_t flags)
496 {
497 	return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
498 }
499 
500 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
501 				size_t size, gfp_t flags)
502 {
503 	return __kasan_kmalloc(cache, object, size, flags, true);
504 }
505 EXPORT_SYMBOL(kasan_kmalloc);
506 
507 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
508 						gfp_t flags)
509 {
510 	struct page *page;
511 	unsigned long redzone_start;
512 	unsigned long redzone_end;
513 
514 	if (gfpflags_allow_blocking(flags))
515 		quarantine_reduce();
516 
517 	if (unlikely(ptr == NULL))
518 		return NULL;
519 
520 	page = virt_to_page(ptr);
521 	redzone_start = round_up((unsigned long)(ptr + size),
522 				KASAN_SHADOW_SCALE_SIZE);
523 	redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
524 
525 	kasan_unpoison_shadow(ptr, size);
526 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
527 		KASAN_PAGE_REDZONE);
528 
529 	return (void *)ptr;
530 }
531 
532 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
533 {
534 	struct page *page;
535 
536 	if (unlikely(object == ZERO_SIZE_PTR))
537 		return (void *)object;
538 
539 	page = virt_to_head_page(object);
540 
541 	if (unlikely(!PageSlab(page)))
542 		return kasan_kmalloc_large(object, size, flags);
543 	else
544 		return __kasan_kmalloc(page->slab_cache, object, size,
545 						flags, true);
546 }
547 
548 void kasan_poison_kfree(void *ptr, unsigned long ip)
549 {
550 	struct page *page;
551 
552 	page = virt_to_head_page(ptr);
553 
554 	if (unlikely(!PageSlab(page))) {
555 		if (ptr != page_address(page)) {
556 			kasan_report_invalid_free(ptr, ip);
557 			return;
558 		}
559 		kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
560 				KASAN_FREE_PAGE);
561 	} else {
562 		__kasan_slab_free(page->slab_cache, ptr, ip, false);
563 	}
564 }
565 
566 void kasan_kfree_large(void *ptr, unsigned long ip)
567 {
568 	if (ptr != page_address(virt_to_head_page(ptr)))
569 		kasan_report_invalid_free(ptr, ip);
570 	/* The object will be poisoned by page_alloc. */
571 }
572 
573 int kasan_module_alloc(void *addr, size_t size)
574 {
575 	void *ret;
576 	size_t scaled_size;
577 	size_t shadow_size;
578 	unsigned long shadow_start;
579 
580 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
581 	scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
582 	shadow_size = round_up(scaled_size, PAGE_SIZE);
583 
584 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
585 		return -EINVAL;
586 
587 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
588 			shadow_start + shadow_size,
589 			GFP_KERNEL,
590 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
591 			__builtin_return_address(0));
592 
593 	if (ret) {
594 		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
595 		find_vm_area(addr)->flags |= VM_KASAN;
596 		kmemleak_ignore(ret);
597 		return 0;
598 	}
599 
600 	return -ENOMEM;
601 }
602 
603 void kasan_free_shadow(const struct vm_struct *vm)
604 {
605 	if (vm->flags & VM_KASAN)
606 		vfree(kasan_mem_to_shadow(vm->addr));
607 }
608 
609 extern void __kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip);
610 
611 void kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip)
612 {
613 	unsigned long flags = user_access_save();
614 	__kasan_report(addr, size, is_write, ip);
615 	user_access_restore(flags);
616 }
617 
618 #ifdef CONFIG_MEMORY_HOTPLUG
619 static bool shadow_mapped(unsigned long addr)
620 {
621 	pgd_t *pgd = pgd_offset_k(addr);
622 	p4d_t *p4d;
623 	pud_t *pud;
624 	pmd_t *pmd;
625 	pte_t *pte;
626 
627 	if (pgd_none(*pgd))
628 		return false;
629 	p4d = p4d_offset(pgd, addr);
630 	if (p4d_none(*p4d))
631 		return false;
632 	pud = pud_offset(p4d, addr);
633 	if (pud_none(*pud))
634 		return false;
635 
636 	/*
637 	 * We can't use pud_large() or pud_huge(), the first one is
638 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
639 	 * pud_bad(), if pud is bad then it's bad because it's huge.
640 	 */
641 	if (pud_bad(*pud))
642 		return true;
643 	pmd = pmd_offset(pud, addr);
644 	if (pmd_none(*pmd))
645 		return false;
646 
647 	if (pmd_bad(*pmd))
648 		return true;
649 	pte = pte_offset_kernel(pmd, addr);
650 	return !pte_none(*pte);
651 }
652 
653 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
654 			unsigned long action, void *data)
655 {
656 	struct memory_notify *mem_data = data;
657 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
658 	unsigned long shadow_end, shadow_size;
659 
660 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
661 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
662 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
663 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
664 	shadow_end = shadow_start + shadow_size;
665 
666 	if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
667 		WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
668 		return NOTIFY_BAD;
669 
670 	switch (action) {
671 	case MEM_GOING_ONLINE: {
672 		void *ret;
673 
674 		/*
675 		 * If shadow is mapped already than it must have been mapped
676 		 * during the boot. This could happen if we onlining previously
677 		 * offlined memory.
678 		 */
679 		if (shadow_mapped(shadow_start))
680 			return NOTIFY_OK;
681 
682 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
683 					shadow_end, GFP_KERNEL,
684 					PAGE_KERNEL, VM_NO_GUARD,
685 					pfn_to_nid(mem_data->start_pfn),
686 					__builtin_return_address(0));
687 		if (!ret)
688 			return NOTIFY_BAD;
689 
690 		kmemleak_ignore(ret);
691 		return NOTIFY_OK;
692 	}
693 	case MEM_CANCEL_ONLINE:
694 	case MEM_OFFLINE: {
695 		struct vm_struct *vm;
696 
697 		/*
698 		 * shadow_start was either mapped during boot by kasan_init()
699 		 * or during memory online by __vmalloc_node_range().
700 		 * In the latter case we can use vfree() to free shadow.
701 		 * Non-NULL result of the find_vm_area() will tell us if
702 		 * that was the second case.
703 		 *
704 		 * Currently it's not possible to free shadow mapped
705 		 * during boot by kasan_init(). It's because the code
706 		 * to do that hasn't been written yet. So we'll just
707 		 * leak the memory.
708 		 */
709 		vm = find_vm_area((void *)shadow_start);
710 		if (vm)
711 			vfree((void *)shadow_start);
712 	}
713 	}
714 
715 	return NOTIFY_OK;
716 }
717 
718 static int __init kasan_memhotplug_init(void)
719 {
720 	hotplug_memory_notifier(kasan_mem_notifier, 0);
721 
722 	return 0;
723 }
724 
725 core_initcall(kasan_memhotplug_init);
726 #endif
727