1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 #ifndef __MM_INTERNAL_H 8 #define __MM_INTERNAL_H 9 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/rmap.h> 14 #include <linux/tracepoint-defs.h> 15 16 struct folio_batch; 17 18 /* 19 * The set of flags that only affect watermark checking and reclaim 20 * behaviour. This is used by the MM to obey the caller constraints 21 * about IO, FS and watermark checking while ignoring placement 22 * hints such as HIGHMEM usage. 23 */ 24 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 25 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 26 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 27 __GFP_ATOMIC|__GFP_NOLOCKDEP) 28 29 /* The GFP flags allowed during early boot */ 30 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 31 32 /* Control allocation cpuset and node placement constraints */ 33 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 34 35 /* Do not use these with a slab allocator */ 36 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 37 38 /* 39 * Different from WARN_ON_ONCE(), no warning will be issued 40 * when we specify __GFP_NOWARN. 41 */ 42 #define WARN_ON_ONCE_GFP(cond, gfp) ({ \ 43 static bool __section(".data.once") __warned; \ 44 int __ret_warn_once = !!(cond); \ 45 \ 46 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \ 47 __warned = true; \ 48 WARN_ON(1); \ 49 } \ 50 unlikely(__ret_warn_once); \ 51 }) 52 53 void page_writeback_init(void); 54 55 static inline void *folio_raw_mapping(struct folio *folio) 56 { 57 unsigned long mapping = (unsigned long)folio->mapping; 58 59 return (void *)(mapping & ~PAGE_MAPPING_FLAGS); 60 } 61 62 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 63 int nr_throttled); 64 static inline void acct_reclaim_writeback(struct folio *folio) 65 { 66 pg_data_t *pgdat = folio_pgdat(folio); 67 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); 68 69 if (nr_throttled) 70 __acct_reclaim_writeback(pgdat, folio, nr_throttled); 71 } 72 73 static inline void wake_throttle_isolated(pg_data_t *pgdat) 74 { 75 wait_queue_head_t *wqh; 76 77 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; 78 if (waitqueue_active(wqh)) 79 wake_up(wqh); 80 } 81 82 vm_fault_t do_swap_page(struct vm_fault *vmf); 83 void folio_rotate_reclaimable(struct folio *folio); 84 bool __folio_end_writeback(struct folio *folio); 85 void deactivate_file_folio(struct folio *folio); 86 void folio_activate(struct folio *folio); 87 88 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, 89 struct vm_area_struct *start_vma, unsigned long floor, 90 unsigned long ceiling); 91 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); 92 93 struct zap_details; 94 void unmap_page_range(struct mmu_gather *tlb, 95 struct vm_area_struct *vma, 96 unsigned long addr, unsigned long end, 97 struct zap_details *details); 98 99 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *, 100 unsigned int order); 101 void force_page_cache_ra(struct readahead_control *, unsigned long nr); 102 static inline void force_page_cache_readahead(struct address_space *mapping, 103 struct file *file, pgoff_t index, unsigned long nr_to_read) 104 { 105 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 106 force_page_cache_ra(&ractl, nr_to_read); 107 } 108 109 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 110 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 111 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 112 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 113 void filemap_free_folio(struct address_space *mapping, struct folio *folio); 114 int truncate_inode_folio(struct address_space *mapping, struct folio *folio); 115 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, 116 loff_t end); 117 long invalidate_inode_page(struct page *page); 118 unsigned long invalidate_mapping_pagevec(struct address_space *mapping, 119 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec); 120 121 /** 122 * folio_evictable - Test whether a folio is evictable. 123 * @folio: The folio to test. 124 * 125 * Test whether @folio is evictable -- i.e., should be placed on 126 * active/inactive lists vs unevictable list. 127 * 128 * Reasons folio might not be evictable: 129 * 1. folio's mapping marked unevictable 130 * 2. One of the pages in the folio is part of an mlocked VMA 131 */ 132 static inline bool folio_evictable(struct folio *folio) 133 { 134 bool ret; 135 136 /* Prevent address_space of inode and swap cache from being freed */ 137 rcu_read_lock(); 138 ret = !mapping_unevictable(folio_mapping(folio)) && 139 !folio_test_mlocked(folio); 140 rcu_read_unlock(); 141 return ret; 142 } 143 144 static inline bool page_evictable(struct page *page) 145 { 146 bool ret; 147 148 /* Prevent address_space of inode and swap cache from being freed */ 149 rcu_read_lock(); 150 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 151 rcu_read_unlock(); 152 return ret; 153 } 154 155 /* 156 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 157 * a count of one. 158 */ 159 static inline void set_page_refcounted(struct page *page) 160 { 161 VM_BUG_ON_PAGE(PageTail(page), page); 162 VM_BUG_ON_PAGE(page_ref_count(page), page); 163 set_page_count(page, 1); 164 } 165 166 extern unsigned long highest_memmap_pfn; 167 168 /* 169 * Maximum number of reclaim retries without progress before the OOM 170 * killer is consider the only way forward. 171 */ 172 #define MAX_RECLAIM_RETRIES 16 173 174 /* 175 * in mm/early_ioremap.c 176 */ 177 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, 178 unsigned long size, pgprot_t prot); 179 180 /* 181 * in mm/vmscan.c: 182 */ 183 int isolate_lru_page(struct page *page); 184 int folio_isolate_lru(struct folio *folio); 185 void putback_lru_page(struct page *page); 186 void folio_putback_lru(struct folio *folio); 187 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); 188 189 /* 190 * in mm/rmap.c: 191 */ 192 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 193 194 /* 195 * in mm/page_alloc.c 196 */ 197 198 /* 199 * Structure for holding the mostly immutable allocation parameters passed 200 * between functions involved in allocations, including the alloc_pages* 201 * family of functions. 202 * 203 * nodemask, migratetype and highest_zoneidx are initialized only once in 204 * __alloc_pages() and then never change. 205 * 206 * zonelist, preferred_zone and highest_zoneidx are set first in 207 * __alloc_pages() for the fast path, and might be later changed 208 * in __alloc_pages_slowpath(). All other functions pass the whole structure 209 * by a const pointer. 210 */ 211 struct alloc_context { 212 struct zonelist *zonelist; 213 nodemask_t *nodemask; 214 struct zoneref *preferred_zoneref; 215 int migratetype; 216 217 /* 218 * highest_zoneidx represents highest usable zone index of 219 * the allocation request. Due to the nature of the zone, 220 * memory on lower zone than the highest_zoneidx will be 221 * protected by lowmem_reserve[highest_zoneidx]. 222 * 223 * highest_zoneidx is also used by reclaim/compaction to limit 224 * the target zone since higher zone than this index cannot be 225 * usable for this allocation request. 226 */ 227 enum zone_type highest_zoneidx; 228 bool spread_dirty_pages; 229 }; 230 231 /* 232 * This function returns the order of a free page in the buddy system. In 233 * general, page_zone(page)->lock must be held by the caller to prevent the 234 * page from being allocated in parallel and returning garbage as the order. 235 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 236 * page cannot be allocated or merged in parallel. Alternatively, it must 237 * handle invalid values gracefully, and use buddy_order_unsafe() below. 238 */ 239 static inline unsigned int buddy_order(struct page *page) 240 { 241 /* PageBuddy() must be checked by the caller */ 242 return page_private(page); 243 } 244 245 /* 246 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 247 * PageBuddy() should be checked first by the caller to minimize race window, 248 * and invalid values must be handled gracefully. 249 * 250 * READ_ONCE is used so that if the caller assigns the result into a local 251 * variable and e.g. tests it for valid range before using, the compiler cannot 252 * decide to remove the variable and inline the page_private(page) multiple 253 * times, potentially observing different values in the tests and the actual 254 * use of the result. 255 */ 256 #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 257 258 /* 259 * This function checks whether a page is free && is the buddy 260 * we can coalesce a page and its buddy if 261 * (a) the buddy is not in a hole (check before calling!) && 262 * (b) the buddy is in the buddy system && 263 * (c) a page and its buddy have the same order && 264 * (d) a page and its buddy are in the same zone. 265 * 266 * For recording whether a page is in the buddy system, we set PageBuddy. 267 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 268 * 269 * For recording page's order, we use page_private(page). 270 */ 271 static inline bool page_is_buddy(struct page *page, struct page *buddy, 272 unsigned int order) 273 { 274 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 275 return false; 276 277 if (buddy_order(buddy) != order) 278 return false; 279 280 /* 281 * zone check is done late to avoid uselessly calculating 282 * zone/node ids for pages that could never merge. 283 */ 284 if (page_zone_id(page) != page_zone_id(buddy)) 285 return false; 286 287 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 288 289 return true; 290 } 291 292 /* 293 * Locate the struct page for both the matching buddy in our 294 * pair (buddy1) and the combined O(n+1) page they form (page). 295 * 296 * 1) Any buddy B1 will have an order O twin B2 which satisfies 297 * the following equation: 298 * B2 = B1 ^ (1 << O) 299 * For example, if the starting buddy (buddy2) is #8 its order 300 * 1 buddy is #10: 301 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 302 * 303 * 2) Any buddy B will have an order O+1 parent P which 304 * satisfies the following equation: 305 * P = B & ~(1 << O) 306 * 307 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 308 */ 309 static inline unsigned long 310 __find_buddy_pfn(unsigned long page_pfn, unsigned int order) 311 { 312 return page_pfn ^ (1 << order); 313 } 314 315 /* 316 * Find the buddy of @page and validate it. 317 * @page: The input page 318 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the 319 * function is used in the performance-critical __free_one_page(). 320 * @order: The order of the page 321 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to 322 * page_to_pfn(). 323 * 324 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is 325 * not the same as @page. The validation is necessary before use it. 326 * 327 * Return: the found buddy page or NULL if not found. 328 */ 329 static inline struct page *find_buddy_page_pfn(struct page *page, 330 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn) 331 { 332 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order); 333 struct page *buddy; 334 335 buddy = page + (__buddy_pfn - pfn); 336 if (buddy_pfn) 337 *buddy_pfn = __buddy_pfn; 338 339 if (page_is_buddy(page, buddy, order)) 340 return buddy; 341 return NULL; 342 } 343 344 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 345 unsigned long end_pfn, struct zone *zone); 346 347 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 348 unsigned long end_pfn, struct zone *zone) 349 { 350 if (zone->contiguous) 351 return pfn_to_page(start_pfn); 352 353 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 354 } 355 356 extern int __isolate_free_page(struct page *page, unsigned int order); 357 extern void __putback_isolated_page(struct page *page, unsigned int order, 358 int mt); 359 extern void memblock_free_pages(struct page *page, unsigned long pfn, 360 unsigned int order); 361 extern void __free_pages_core(struct page *page, unsigned int order); 362 extern void prep_compound_page(struct page *page, unsigned int order); 363 extern void post_alloc_hook(struct page *page, unsigned int order, 364 gfp_t gfp_flags); 365 extern int user_min_free_kbytes; 366 367 extern void free_unref_page(struct page *page, unsigned int order); 368 extern void free_unref_page_list(struct list_head *list); 369 370 extern void zone_pcp_update(struct zone *zone, int cpu_online); 371 extern void zone_pcp_reset(struct zone *zone); 372 extern void zone_pcp_disable(struct zone *zone); 373 extern void zone_pcp_enable(struct zone *zone); 374 375 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, 376 phys_addr_t min_addr, 377 int nid, bool exact_nid); 378 379 int split_free_page(struct page *free_page, 380 unsigned int order, unsigned long split_pfn_offset); 381 382 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 383 384 /* 385 * in mm/compaction.c 386 */ 387 /* 388 * compact_control is used to track pages being migrated and the free pages 389 * they are being migrated to during memory compaction. The free_pfn starts 390 * at the end of a zone and migrate_pfn begins at the start. Movable pages 391 * are moved to the end of a zone during a compaction run and the run 392 * completes when free_pfn <= migrate_pfn 393 */ 394 struct compact_control { 395 struct list_head freepages; /* List of free pages to migrate to */ 396 struct list_head migratepages; /* List of pages being migrated */ 397 unsigned int nr_freepages; /* Number of isolated free pages */ 398 unsigned int nr_migratepages; /* Number of pages to migrate */ 399 unsigned long free_pfn; /* isolate_freepages search base */ 400 /* 401 * Acts as an in/out parameter to page isolation for migration. 402 * isolate_migratepages uses it as a search base. 403 * isolate_migratepages_block will update the value to the next pfn 404 * after the last isolated one. 405 */ 406 unsigned long migrate_pfn; 407 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 408 struct zone *zone; 409 unsigned long total_migrate_scanned; 410 unsigned long total_free_scanned; 411 unsigned short fast_search_fail;/* failures to use free list searches */ 412 short search_order; /* order to start a fast search at */ 413 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 414 int order; /* order a direct compactor needs */ 415 int migratetype; /* migratetype of direct compactor */ 416 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 417 const int highest_zoneidx; /* zone index of a direct compactor */ 418 enum migrate_mode mode; /* Async or sync migration mode */ 419 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 420 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 421 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 422 bool direct_compaction; /* False from kcompactd or /proc/... */ 423 bool proactive_compaction; /* kcompactd proactive compaction */ 424 bool whole_zone; /* Whole zone should/has been scanned */ 425 bool contended; /* Signal lock contention */ 426 bool rescan; /* Rescanning the same pageblock */ 427 bool alloc_contig; /* alloc_contig_range allocation */ 428 }; 429 430 /* 431 * Used in direct compaction when a page should be taken from the freelists 432 * immediately when one is created during the free path. 433 */ 434 struct capture_control { 435 struct compact_control *cc; 436 struct page *page; 437 }; 438 439 unsigned long 440 isolate_freepages_range(struct compact_control *cc, 441 unsigned long start_pfn, unsigned long end_pfn); 442 int 443 isolate_migratepages_range(struct compact_control *cc, 444 unsigned long low_pfn, unsigned long end_pfn); 445 446 int __alloc_contig_migrate_range(struct compact_control *cc, 447 unsigned long start, unsigned long end); 448 #endif 449 int find_suitable_fallback(struct free_area *area, unsigned int order, 450 int migratetype, bool only_stealable, bool *can_steal); 451 452 /* 453 * These three helpers classifies VMAs for virtual memory accounting. 454 */ 455 456 /* 457 * Executable code area - executable, not writable, not stack 458 */ 459 static inline bool is_exec_mapping(vm_flags_t flags) 460 { 461 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 462 } 463 464 /* 465 * Stack area - automatically grows in one direction 466 * 467 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 468 * do_mmap() forbids all other combinations. 469 */ 470 static inline bool is_stack_mapping(vm_flags_t flags) 471 { 472 return (flags & VM_STACK) == VM_STACK; 473 } 474 475 /* 476 * Data area - private, writable, not stack 477 */ 478 static inline bool is_data_mapping(vm_flags_t flags) 479 { 480 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 481 } 482 483 /* mm/util.c */ 484 struct anon_vma *folio_anon_vma(struct folio *folio); 485 486 #ifdef CONFIG_MMU 487 void unmap_mapping_folio(struct folio *folio); 488 extern long populate_vma_page_range(struct vm_area_struct *vma, 489 unsigned long start, unsigned long end, int *locked); 490 extern long faultin_vma_page_range(struct vm_area_struct *vma, 491 unsigned long start, unsigned long end, 492 bool write, int *locked); 493 extern int mlock_future_check(struct mm_struct *mm, unsigned long flags, 494 unsigned long len); 495 /* 496 * mlock_vma_page() and munlock_vma_page(): 497 * should be called with vma's mmap_lock held for read or write, 498 * under page table lock for the pte/pmd being added or removed. 499 * 500 * mlock is usually called at the end of page_add_*_rmap(), 501 * munlock at the end of page_remove_rmap(); but new anon 502 * pages are managed by lru_cache_add_inactive_or_unevictable() 503 * calling mlock_new_page(). 504 * 505 * @compound is used to include pmd mappings of THPs, but filter out 506 * pte mappings of THPs, which cannot be consistently counted: a pte 507 * mapping of the THP head cannot be distinguished by the page alone. 508 */ 509 void mlock_folio(struct folio *folio); 510 static inline void mlock_vma_folio(struct folio *folio, 511 struct vm_area_struct *vma, bool compound) 512 { 513 /* 514 * The VM_SPECIAL check here serves two purposes. 515 * 1) VM_IO check prevents migration from double-counting during mlock. 516 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED 517 * is never left set on a VM_SPECIAL vma, there is an interval while 518 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may 519 * still be set while VM_SPECIAL bits are added: so ignore it then. 520 */ 521 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) && 522 (compound || !folio_test_large(folio))) 523 mlock_folio(folio); 524 } 525 526 static inline void mlock_vma_page(struct page *page, 527 struct vm_area_struct *vma, bool compound) 528 { 529 mlock_vma_folio(page_folio(page), vma, compound); 530 } 531 532 void munlock_page(struct page *page); 533 static inline void munlock_vma_page(struct page *page, 534 struct vm_area_struct *vma, bool compound) 535 { 536 if (unlikely(vma->vm_flags & VM_LOCKED) && 537 (compound || !PageTransCompound(page))) 538 munlock_page(page); 539 } 540 void mlock_new_page(struct page *page); 541 bool need_mlock_page_drain(int cpu); 542 void mlock_page_drain_local(void); 543 void mlock_page_drain_remote(int cpu); 544 545 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 546 547 /* 548 * Return the start of user virtual address at the specific offset within 549 * a vma. 550 */ 551 static inline unsigned long 552 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages, 553 struct vm_area_struct *vma) 554 { 555 unsigned long address; 556 557 if (pgoff >= vma->vm_pgoff) { 558 address = vma->vm_start + 559 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 560 /* Check for address beyond vma (or wrapped through 0?) */ 561 if (address < vma->vm_start || address >= vma->vm_end) 562 address = -EFAULT; 563 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) { 564 /* Test above avoids possibility of wrap to 0 on 32-bit */ 565 address = vma->vm_start; 566 } else { 567 address = -EFAULT; 568 } 569 return address; 570 } 571 572 /* 573 * Return the start of user virtual address of a page within a vma. 574 * Returns -EFAULT if all of the page is outside the range of vma. 575 * If page is a compound head, the entire compound page is considered. 576 */ 577 static inline unsigned long 578 vma_address(struct page *page, struct vm_area_struct *vma) 579 { 580 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 581 return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma); 582 } 583 584 /* 585 * Then at what user virtual address will none of the range be found in vma? 586 * Assumes that vma_address() already returned a good starting address. 587 */ 588 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw) 589 { 590 struct vm_area_struct *vma = pvmw->vma; 591 pgoff_t pgoff; 592 unsigned long address; 593 594 /* Common case, plus ->pgoff is invalid for KSM */ 595 if (pvmw->nr_pages == 1) 596 return pvmw->address + PAGE_SIZE; 597 598 pgoff = pvmw->pgoff + pvmw->nr_pages; 599 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 600 /* Check for address beyond vma (or wrapped through 0?) */ 601 if (address < vma->vm_start || address > vma->vm_end) 602 address = vma->vm_end; 603 return address; 604 } 605 606 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 607 struct file *fpin) 608 { 609 int flags = vmf->flags; 610 611 if (fpin) 612 return fpin; 613 614 /* 615 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 616 * anything, so we only pin the file and drop the mmap_lock if only 617 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 618 */ 619 if (fault_flag_allow_retry_first(flags) && 620 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 621 fpin = get_file(vmf->vma->vm_file); 622 mmap_read_unlock(vmf->vma->vm_mm); 623 } 624 return fpin; 625 } 626 #else /* !CONFIG_MMU */ 627 static inline void unmap_mapping_folio(struct folio *folio) { } 628 static inline void mlock_vma_page(struct page *page, 629 struct vm_area_struct *vma, bool compound) { } 630 static inline void munlock_vma_page(struct page *page, 631 struct vm_area_struct *vma, bool compound) { } 632 static inline void mlock_new_page(struct page *page) { } 633 static inline bool need_mlock_page_drain(int cpu) { return false; } 634 static inline void mlock_page_drain_local(void) { } 635 static inline void mlock_page_drain_remote(int cpu) { } 636 static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 637 { 638 } 639 #endif /* !CONFIG_MMU */ 640 641 /* Memory initialisation debug and verification */ 642 enum mminit_level { 643 MMINIT_WARNING, 644 MMINIT_VERIFY, 645 MMINIT_TRACE 646 }; 647 648 #ifdef CONFIG_DEBUG_MEMORY_INIT 649 650 extern int mminit_loglevel; 651 652 #define mminit_dprintk(level, prefix, fmt, arg...) \ 653 do { \ 654 if (level < mminit_loglevel) { \ 655 if (level <= MMINIT_WARNING) \ 656 pr_warn("mminit::" prefix " " fmt, ##arg); \ 657 else \ 658 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 659 } \ 660 } while (0) 661 662 extern void mminit_verify_pageflags_layout(void); 663 extern void mminit_verify_zonelist(void); 664 #else 665 666 static inline void mminit_dprintk(enum mminit_level level, 667 const char *prefix, const char *fmt, ...) 668 { 669 } 670 671 static inline void mminit_verify_pageflags_layout(void) 672 { 673 } 674 675 static inline void mminit_verify_zonelist(void) 676 { 677 } 678 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 679 680 #define NODE_RECLAIM_NOSCAN -2 681 #define NODE_RECLAIM_FULL -1 682 #define NODE_RECLAIM_SOME 0 683 #define NODE_RECLAIM_SUCCESS 1 684 685 #ifdef CONFIG_NUMA 686 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 687 extern int find_next_best_node(int node, nodemask_t *used_node_mask); 688 #else 689 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 690 unsigned int order) 691 { 692 return NODE_RECLAIM_NOSCAN; 693 } 694 static inline int find_next_best_node(int node, nodemask_t *used_node_mask) 695 { 696 return NUMA_NO_NODE; 697 } 698 #endif 699 700 /* 701 * mm/memory-failure.c 702 */ 703 extern int hwpoison_filter(struct page *p); 704 705 extern u32 hwpoison_filter_dev_major; 706 extern u32 hwpoison_filter_dev_minor; 707 extern u64 hwpoison_filter_flags_mask; 708 extern u64 hwpoison_filter_flags_value; 709 extern u64 hwpoison_filter_memcg; 710 extern u32 hwpoison_filter_enable; 711 712 #ifdef CONFIG_MEMORY_FAILURE 713 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages); 714 #else 715 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 716 { 717 } 718 #endif 719 720 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 721 unsigned long, unsigned long, 722 unsigned long, unsigned long); 723 724 extern void set_pageblock_order(void); 725 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 726 struct list_head *page_list); 727 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 728 #define ALLOC_WMARK_MIN WMARK_MIN 729 #define ALLOC_WMARK_LOW WMARK_LOW 730 #define ALLOC_WMARK_HIGH WMARK_HIGH 731 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 732 733 /* Mask to get the watermark bits */ 734 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 735 736 /* 737 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 738 * cannot assume a reduced access to memory reserves is sufficient for 739 * !MMU 740 */ 741 #ifdef CONFIG_MMU 742 #define ALLOC_OOM 0x08 743 #else 744 #define ALLOC_OOM ALLOC_NO_WATERMARKS 745 #endif 746 747 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 748 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 749 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 750 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 751 #ifdef CONFIG_ZONE_DMA32 752 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 753 #else 754 #define ALLOC_NOFRAGMENT 0x0 755 #endif 756 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 757 758 enum ttu_flags; 759 struct tlbflush_unmap_batch; 760 761 762 /* 763 * only for MM internal work items which do not depend on 764 * any allocations or locks which might depend on allocations 765 */ 766 extern struct workqueue_struct *mm_percpu_wq; 767 768 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 769 void try_to_unmap_flush(void); 770 void try_to_unmap_flush_dirty(void); 771 void flush_tlb_batched_pending(struct mm_struct *mm); 772 #else 773 static inline void try_to_unmap_flush(void) 774 { 775 } 776 static inline void try_to_unmap_flush_dirty(void) 777 { 778 } 779 static inline void flush_tlb_batched_pending(struct mm_struct *mm) 780 { 781 } 782 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 783 784 extern const struct trace_print_flags pageflag_names[]; 785 extern const struct trace_print_flags vmaflag_names[]; 786 extern const struct trace_print_flags gfpflag_names[]; 787 788 static inline bool is_migrate_highatomic(enum migratetype migratetype) 789 { 790 return migratetype == MIGRATE_HIGHATOMIC; 791 } 792 793 static inline bool is_migrate_highatomic_page(struct page *page) 794 { 795 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 796 } 797 798 void setup_zone_pageset(struct zone *zone); 799 800 struct migration_target_control { 801 int nid; /* preferred node id */ 802 nodemask_t *nmask; 803 gfp_t gfp_mask; 804 }; 805 806 /* 807 * mm/vmalloc.c 808 */ 809 #ifdef CONFIG_MMU 810 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 811 pgprot_t prot, struct page **pages, unsigned int page_shift); 812 #else 813 static inline 814 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 815 pgprot_t prot, struct page **pages, unsigned int page_shift) 816 { 817 return -EINVAL; 818 } 819 #endif 820 821 void vunmap_range_noflush(unsigned long start, unsigned long end); 822 823 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 824 unsigned long addr, int page_nid, int *flags); 825 826 void free_zone_device_page(struct page *page); 827 int migrate_device_coherent_page(struct page *page); 828 829 /* 830 * mm/gup.c 831 */ 832 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags); 833 834 DECLARE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 835 836 extern bool mirrored_kernelcore; 837 838 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma) 839 { 840 /* 841 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty 842 * enablements, because when without soft-dirty being compiled in, 843 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY) 844 * will be constantly true. 845 */ 846 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) 847 return false; 848 849 /* 850 * Soft-dirty is kind of special: its tracking is enabled when the 851 * vma flags not set. 852 */ 853 return !(vma->vm_flags & VM_SOFTDIRTY); 854 } 855 856 #endif /* __MM_INTERNAL_H */ 857