1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 #ifndef __MM_INTERNAL_H 8 #define __MM_INTERNAL_H 9 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/tracepoint-defs.h> 14 15 /* 16 * The set of flags that only affect watermark checking and reclaim 17 * behaviour. This is used by the MM to obey the caller constraints 18 * about IO, FS and watermark checking while ignoring placement 19 * hints such as HIGHMEM usage. 20 */ 21 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 22 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 23 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 24 __GFP_ATOMIC) 25 26 /* The GFP flags allowed during early boot */ 27 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 28 29 /* Control allocation cpuset and node placement constraints */ 30 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 31 32 /* Do not use these with a slab allocator */ 33 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 34 35 void page_writeback_init(void); 36 37 vm_fault_t do_swap_page(struct vm_fault *vmf); 38 39 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 40 unsigned long floor, unsigned long ceiling); 41 42 static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 43 { 44 return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP)); 45 } 46 47 void unmap_page_range(struct mmu_gather *tlb, 48 struct vm_area_struct *vma, 49 unsigned long addr, unsigned long end, 50 struct zap_details *details); 51 52 void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read, 53 unsigned long lookahead_size); 54 void force_page_cache_ra(struct readahead_control *, struct file_ra_state *, 55 unsigned long nr); 56 static inline void force_page_cache_readahead(struct address_space *mapping, 57 struct file *file, pgoff_t index, unsigned long nr_to_read) 58 { 59 DEFINE_READAHEAD(ractl, file, mapping, index); 60 force_page_cache_ra(&ractl, &file->f_ra, nr_to_read); 61 } 62 63 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 64 pgoff_t end, struct pagevec *pvec, pgoff_t *indices); 65 66 /** 67 * page_evictable - test whether a page is evictable 68 * @page: the page to test 69 * 70 * Test whether page is evictable--i.e., should be placed on active/inactive 71 * lists vs unevictable list. 72 * 73 * Reasons page might not be evictable: 74 * (1) page's mapping marked unevictable 75 * (2) page is part of an mlocked VMA 76 * 77 */ 78 static inline bool page_evictable(struct page *page) 79 { 80 bool ret; 81 82 /* Prevent address_space of inode and swap cache from being freed */ 83 rcu_read_lock(); 84 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 85 rcu_read_unlock(); 86 return ret; 87 } 88 89 /* 90 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 91 * a count of one. 92 */ 93 static inline void set_page_refcounted(struct page *page) 94 { 95 VM_BUG_ON_PAGE(PageTail(page), page); 96 VM_BUG_ON_PAGE(page_ref_count(page), page); 97 set_page_count(page, 1); 98 } 99 100 /* 101 * When kernel touch the user page, the user page may be have been marked 102 * poison but still mapped in user space, if without this page, the kernel 103 * can guarantee the data integrity and operation success, the kernel is 104 * better to check the posion status and avoid touching it, be good not to 105 * panic, coredump for process fatal signal is a sample case matching this 106 * scenario. Or if kernel can't guarantee the data integrity, it's better 107 * not to call this function, let kernel touch the poison page and get to 108 * panic. 109 */ 110 static inline bool is_page_poisoned(struct page *page) 111 { 112 if (PageHWPoison(page)) 113 return true; 114 else if (PageHuge(page) && PageHWPoison(compound_head(page))) 115 return true; 116 117 return false; 118 } 119 120 extern unsigned long highest_memmap_pfn; 121 122 /* 123 * Maximum number of reclaim retries without progress before the OOM 124 * killer is consider the only way forward. 125 */ 126 #define MAX_RECLAIM_RETRIES 16 127 128 /* 129 * in mm/vmscan.c: 130 */ 131 extern int isolate_lru_page(struct page *page); 132 extern void putback_lru_page(struct page *page); 133 134 /* 135 * in mm/rmap.c: 136 */ 137 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 138 139 /* 140 * in mm/page_alloc.c 141 */ 142 143 /* 144 * Structure for holding the mostly immutable allocation parameters passed 145 * between functions involved in allocations, including the alloc_pages* 146 * family of functions. 147 * 148 * nodemask, migratetype and highest_zoneidx are initialized only once in 149 * __alloc_pages_nodemask() and then never change. 150 * 151 * zonelist, preferred_zone and highest_zoneidx are set first in 152 * __alloc_pages_nodemask() for the fast path, and might be later changed 153 * in __alloc_pages_slowpath(). All other functions pass the whole structure 154 * by a const pointer. 155 */ 156 struct alloc_context { 157 struct zonelist *zonelist; 158 nodemask_t *nodemask; 159 struct zoneref *preferred_zoneref; 160 int migratetype; 161 162 /* 163 * highest_zoneidx represents highest usable zone index of 164 * the allocation request. Due to the nature of the zone, 165 * memory on lower zone than the highest_zoneidx will be 166 * protected by lowmem_reserve[highest_zoneidx]. 167 * 168 * highest_zoneidx is also used by reclaim/compaction to limit 169 * the target zone since higher zone than this index cannot be 170 * usable for this allocation request. 171 */ 172 enum zone_type highest_zoneidx; 173 bool spread_dirty_pages; 174 }; 175 176 /* 177 * Locate the struct page for both the matching buddy in our 178 * pair (buddy1) and the combined O(n+1) page they form (page). 179 * 180 * 1) Any buddy B1 will have an order O twin B2 which satisfies 181 * the following equation: 182 * B2 = B1 ^ (1 << O) 183 * For example, if the starting buddy (buddy2) is #8 its order 184 * 1 buddy is #10: 185 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 186 * 187 * 2) Any buddy B will have an order O+1 parent P which 188 * satisfies the following equation: 189 * P = B & ~(1 << O) 190 * 191 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 192 */ 193 static inline unsigned long 194 __find_buddy_pfn(unsigned long page_pfn, unsigned int order) 195 { 196 return page_pfn ^ (1 << order); 197 } 198 199 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 200 unsigned long end_pfn, struct zone *zone); 201 202 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 203 unsigned long end_pfn, struct zone *zone) 204 { 205 if (zone->contiguous) 206 return pfn_to_page(start_pfn); 207 208 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 209 } 210 211 extern int __isolate_free_page(struct page *page, unsigned int order); 212 extern void __putback_isolated_page(struct page *page, unsigned int order, 213 int mt); 214 extern void memblock_free_pages(struct page *page, unsigned long pfn, 215 unsigned int order); 216 extern void __free_pages_core(struct page *page, unsigned int order); 217 extern void prep_compound_page(struct page *page, unsigned int order); 218 extern void post_alloc_hook(struct page *page, unsigned int order, 219 gfp_t gfp_flags); 220 extern int user_min_free_kbytes; 221 222 extern void free_unref_page(struct page *page); 223 extern void free_unref_page_list(struct list_head *list); 224 225 extern void zone_pcp_update(struct zone *zone); 226 extern void zone_pcp_reset(struct zone *zone); 227 extern void zone_pcp_disable(struct zone *zone); 228 extern void zone_pcp_enable(struct zone *zone); 229 230 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 231 232 /* 233 * in mm/compaction.c 234 */ 235 /* 236 * compact_control is used to track pages being migrated and the free pages 237 * they are being migrated to during memory compaction. The free_pfn starts 238 * at the end of a zone and migrate_pfn begins at the start. Movable pages 239 * are moved to the end of a zone during a compaction run and the run 240 * completes when free_pfn <= migrate_pfn 241 */ 242 struct compact_control { 243 struct list_head freepages; /* List of free pages to migrate to */ 244 struct list_head migratepages; /* List of pages being migrated */ 245 unsigned int nr_freepages; /* Number of isolated free pages */ 246 unsigned int nr_migratepages; /* Number of pages to migrate */ 247 unsigned long free_pfn; /* isolate_freepages search base */ 248 unsigned long migrate_pfn; /* isolate_migratepages search base */ 249 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 250 struct zone *zone; 251 unsigned long total_migrate_scanned; 252 unsigned long total_free_scanned; 253 unsigned short fast_search_fail;/* failures to use free list searches */ 254 short search_order; /* order to start a fast search at */ 255 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 256 int order; /* order a direct compactor needs */ 257 int migratetype; /* migratetype of direct compactor */ 258 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 259 const int highest_zoneidx; /* zone index of a direct compactor */ 260 enum migrate_mode mode; /* Async or sync migration mode */ 261 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 262 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 263 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 264 bool direct_compaction; /* False from kcompactd or /proc/... */ 265 bool proactive_compaction; /* kcompactd proactive compaction */ 266 bool whole_zone; /* Whole zone should/has been scanned */ 267 bool contended; /* Signal lock or sched contention */ 268 bool rescan; /* Rescanning the same pageblock */ 269 bool alloc_contig; /* alloc_contig_range allocation */ 270 }; 271 272 /* 273 * Used in direct compaction when a page should be taken from the freelists 274 * immediately when one is created during the free path. 275 */ 276 struct capture_control { 277 struct compact_control *cc; 278 struct page *page; 279 }; 280 281 unsigned long 282 isolate_freepages_range(struct compact_control *cc, 283 unsigned long start_pfn, unsigned long end_pfn); 284 unsigned long 285 isolate_migratepages_range(struct compact_control *cc, 286 unsigned long low_pfn, unsigned long end_pfn); 287 int find_suitable_fallback(struct free_area *area, unsigned int order, 288 int migratetype, bool only_stealable, bool *can_steal); 289 290 #endif 291 292 /* 293 * This function returns the order of a free page in the buddy system. In 294 * general, page_zone(page)->lock must be held by the caller to prevent the 295 * page from being allocated in parallel and returning garbage as the order. 296 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 297 * page cannot be allocated or merged in parallel. Alternatively, it must 298 * handle invalid values gracefully, and use buddy_order_unsafe() below. 299 */ 300 static inline unsigned int buddy_order(struct page *page) 301 { 302 /* PageBuddy() must be checked by the caller */ 303 return page_private(page); 304 } 305 306 /* 307 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 308 * PageBuddy() should be checked first by the caller to minimize race window, 309 * and invalid values must be handled gracefully. 310 * 311 * READ_ONCE is used so that if the caller assigns the result into a local 312 * variable and e.g. tests it for valid range before using, the compiler cannot 313 * decide to remove the variable and inline the page_private(page) multiple 314 * times, potentially observing different values in the tests and the actual 315 * use of the result. 316 */ 317 #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 318 319 /* 320 * These three helpers classifies VMAs for virtual memory accounting. 321 */ 322 323 /* 324 * Executable code area - executable, not writable, not stack 325 */ 326 static inline bool is_exec_mapping(vm_flags_t flags) 327 { 328 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 329 } 330 331 /* 332 * Stack area - atomatically grows in one direction 333 * 334 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 335 * do_mmap() forbids all other combinations. 336 */ 337 static inline bool is_stack_mapping(vm_flags_t flags) 338 { 339 return (flags & VM_STACK) == VM_STACK; 340 } 341 342 /* 343 * Data area - private, writable, not stack 344 */ 345 static inline bool is_data_mapping(vm_flags_t flags) 346 { 347 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 348 } 349 350 /* mm/util.c */ 351 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 352 struct vm_area_struct *prev); 353 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma); 354 355 #ifdef CONFIG_MMU 356 extern long populate_vma_page_range(struct vm_area_struct *vma, 357 unsigned long start, unsigned long end, int *nonblocking); 358 extern void munlock_vma_pages_range(struct vm_area_struct *vma, 359 unsigned long start, unsigned long end); 360 static inline void munlock_vma_pages_all(struct vm_area_struct *vma) 361 { 362 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); 363 } 364 365 /* 366 * must be called with vma's mmap_lock held for read or write, and page locked. 367 */ 368 extern void mlock_vma_page(struct page *page); 369 extern unsigned int munlock_vma_page(struct page *page); 370 371 /* 372 * Clear the page's PageMlocked(). This can be useful in a situation where 373 * we want to unconditionally remove a page from the pagecache -- e.g., 374 * on truncation or freeing. 375 * 376 * It is legal to call this function for any page, mlocked or not. 377 * If called for a page that is still mapped by mlocked vmas, all we do 378 * is revert to lazy LRU behaviour -- semantics are not broken. 379 */ 380 extern void clear_page_mlock(struct page *page); 381 382 /* 383 * mlock_migrate_page - called only from migrate_misplaced_transhuge_page() 384 * (because that does not go through the full procedure of migration ptes): 385 * to migrate the Mlocked page flag; update statistics. 386 */ 387 static inline void mlock_migrate_page(struct page *newpage, struct page *page) 388 { 389 if (TestClearPageMlocked(page)) { 390 int nr_pages = thp_nr_pages(page); 391 392 /* Holding pmd lock, no change in irq context: __mod is safe */ 393 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 394 SetPageMlocked(newpage); 395 __mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages); 396 } 397 } 398 399 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 400 401 /* 402 * At what user virtual address is page expected in @vma? 403 */ 404 static inline unsigned long 405 __vma_address(struct page *page, struct vm_area_struct *vma) 406 { 407 pgoff_t pgoff = page_to_pgoff(page); 408 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 409 } 410 411 static inline unsigned long 412 vma_address(struct page *page, struct vm_area_struct *vma) 413 { 414 unsigned long start, end; 415 416 start = __vma_address(page, vma); 417 end = start + thp_size(page) - PAGE_SIZE; 418 419 /* page should be within @vma mapping range */ 420 VM_BUG_ON_VMA(end < vma->vm_start || start >= vma->vm_end, vma); 421 422 return max(start, vma->vm_start); 423 } 424 425 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 426 struct file *fpin) 427 { 428 int flags = vmf->flags; 429 430 if (fpin) 431 return fpin; 432 433 /* 434 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 435 * anything, so we only pin the file and drop the mmap_lock if only 436 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 437 */ 438 if (fault_flag_allow_retry_first(flags) && 439 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 440 fpin = get_file(vmf->vma->vm_file); 441 mmap_read_unlock(vmf->vma->vm_mm); 442 } 443 return fpin; 444 } 445 446 #else /* !CONFIG_MMU */ 447 static inline void clear_page_mlock(struct page *page) { } 448 static inline void mlock_vma_page(struct page *page) { } 449 static inline void mlock_migrate_page(struct page *new, struct page *old) { } 450 451 #endif /* !CONFIG_MMU */ 452 453 /* 454 * Return the mem_map entry representing the 'offset' subpage within 455 * the maximally aligned gigantic page 'base'. Handle any discontiguity 456 * in the mem_map at MAX_ORDER_NR_PAGES boundaries. 457 */ 458 static inline struct page *mem_map_offset(struct page *base, int offset) 459 { 460 if (unlikely(offset >= MAX_ORDER_NR_PAGES)) 461 return nth_page(base, offset); 462 return base + offset; 463 } 464 465 /* 466 * Iterator over all subpages within the maximally aligned gigantic 467 * page 'base'. Handle any discontiguity in the mem_map. 468 */ 469 static inline struct page *mem_map_next(struct page *iter, 470 struct page *base, int offset) 471 { 472 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { 473 unsigned long pfn = page_to_pfn(base) + offset; 474 if (!pfn_valid(pfn)) 475 return NULL; 476 return pfn_to_page(pfn); 477 } 478 return iter + 1; 479 } 480 481 /* Memory initialisation debug and verification */ 482 enum mminit_level { 483 MMINIT_WARNING, 484 MMINIT_VERIFY, 485 MMINIT_TRACE 486 }; 487 488 #ifdef CONFIG_DEBUG_MEMORY_INIT 489 490 extern int mminit_loglevel; 491 492 #define mminit_dprintk(level, prefix, fmt, arg...) \ 493 do { \ 494 if (level < mminit_loglevel) { \ 495 if (level <= MMINIT_WARNING) \ 496 pr_warn("mminit::" prefix " " fmt, ##arg); \ 497 else \ 498 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 499 } \ 500 } while (0) 501 502 extern void mminit_verify_pageflags_layout(void); 503 extern void mminit_verify_zonelist(void); 504 #else 505 506 static inline void mminit_dprintk(enum mminit_level level, 507 const char *prefix, const char *fmt, ...) 508 { 509 } 510 511 static inline void mminit_verify_pageflags_layout(void) 512 { 513 } 514 515 static inline void mminit_verify_zonelist(void) 516 { 517 } 518 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 519 520 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ 521 #if defined(CONFIG_SPARSEMEM) 522 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, 523 unsigned long *end_pfn); 524 #else 525 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, 526 unsigned long *end_pfn) 527 { 528 } 529 #endif /* CONFIG_SPARSEMEM */ 530 531 #define NODE_RECLAIM_NOSCAN -2 532 #define NODE_RECLAIM_FULL -1 533 #define NODE_RECLAIM_SOME 0 534 #define NODE_RECLAIM_SUCCESS 1 535 536 #ifdef CONFIG_NUMA 537 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 538 #else 539 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 540 unsigned int order) 541 { 542 return NODE_RECLAIM_NOSCAN; 543 } 544 #endif 545 546 extern int hwpoison_filter(struct page *p); 547 548 extern u32 hwpoison_filter_dev_major; 549 extern u32 hwpoison_filter_dev_minor; 550 extern u64 hwpoison_filter_flags_mask; 551 extern u64 hwpoison_filter_flags_value; 552 extern u64 hwpoison_filter_memcg; 553 extern u32 hwpoison_filter_enable; 554 555 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 556 unsigned long, unsigned long, 557 unsigned long, unsigned long); 558 559 extern void set_pageblock_order(void); 560 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 561 struct list_head *page_list); 562 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 563 #define ALLOC_WMARK_MIN WMARK_MIN 564 #define ALLOC_WMARK_LOW WMARK_LOW 565 #define ALLOC_WMARK_HIGH WMARK_HIGH 566 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 567 568 /* Mask to get the watermark bits */ 569 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 570 571 /* 572 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 573 * cannot assume a reduced access to memory reserves is sufficient for 574 * !MMU 575 */ 576 #ifdef CONFIG_MMU 577 #define ALLOC_OOM 0x08 578 #else 579 #define ALLOC_OOM ALLOC_NO_WATERMARKS 580 #endif 581 582 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 583 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 584 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 585 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 586 #ifdef CONFIG_ZONE_DMA32 587 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 588 #else 589 #define ALLOC_NOFRAGMENT 0x0 590 #endif 591 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 592 593 enum ttu_flags; 594 struct tlbflush_unmap_batch; 595 596 597 /* 598 * only for MM internal work items which do not depend on 599 * any allocations or locks which might depend on allocations 600 */ 601 extern struct workqueue_struct *mm_percpu_wq; 602 603 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 604 void try_to_unmap_flush(void); 605 void try_to_unmap_flush_dirty(void); 606 void flush_tlb_batched_pending(struct mm_struct *mm); 607 #else 608 static inline void try_to_unmap_flush(void) 609 { 610 } 611 static inline void try_to_unmap_flush_dirty(void) 612 { 613 } 614 static inline void flush_tlb_batched_pending(struct mm_struct *mm) 615 { 616 } 617 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 618 619 extern const struct trace_print_flags pageflag_names[]; 620 extern const struct trace_print_flags vmaflag_names[]; 621 extern const struct trace_print_flags gfpflag_names[]; 622 623 static inline bool is_migrate_highatomic(enum migratetype migratetype) 624 { 625 return migratetype == MIGRATE_HIGHATOMIC; 626 } 627 628 static inline bool is_migrate_highatomic_page(struct page *page) 629 { 630 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 631 } 632 633 void setup_zone_pageset(struct zone *zone); 634 635 struct migration_target_control { 636 int nid; /* preferred node id */ 637 nodemask_t *nmask; 638 gfp_t gfp_mask; 639 }; 640 641 #endif /* __MM_INTERNAL_H */ 642