1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 #ifndef __MM_INTERNAL_H 8 #define __MM_INTERNAL_H 9 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/tracepoint-defs.h> 14 15 /* 16 * The set of flags that only affect watermark checking and reclaim 17 * behaviour. This is used by the MM to obey the caller constraints 18 * about IO, FS and watermark checking while ignoring placement 19 * hints such as HIGHMEM usage. 20 */ 21 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 22 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 23 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 24 __GFP_ATOMIC) 25 26 /* The GFP flags allowed during early boot */ 27 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 28 29 /* Control allocation cpuset and node placement constraints */ 30 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 31 32 /* Do not use these with a slab allocator */ 33 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 34 35 void page_writeback_init(void); 36 37 vm_fault_t do_swap_page(struct vm_fault *vmf); 38 39 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 40 unsigned long floor, unsigned long ceiling); 41 42 static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 43 { 44 return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP)); 45 } 46 47 void unmap_page_range(struct mmu_gather *tlb, 48 struct vm_area_struct *vma, 49 unsigned long addr, unsigned long end, 50 struct zap_details *details); 51 52 void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read, 53 unsigned long lookahead_size); 54 void force_page_cache_ra(struct readahead_control *, unsigned long nr); 55 static inline void force_page_cache_readahead(struct address_space *mapping, 56 struct file *file, pgoff_t index, unsigned long nr_to_read) 57 { 58 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 59 force_page_cache_ra(&ractl, nr_to_read); 60 } 61 62 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 63 pgoff_t end, struct pagevec *pvec, pgoff_t *indices); 64 65 /** 66 * page_evictable - test whether a page is evictable 67 * @page: the page to test 68 * 69 * Test whether page is evictable--i.e., should be placed on active/inactive 70 * lists vs unevictable list. 71 * 72 * Reasons page might not be evictable: 73 * (1) page's mapping marked unevictable 74 * (2) page is part of an mlocked VMA 75 * 76 */ 77 static inline bool page_evictable(struct page *page) 78 { 79 bool ret; 80 81 /* Prevent address_space of inode and swap cache from being freed */ 82 rcu_read_lock(); 83 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 84 rcu_read_unlock(); 85 return ret; 86 } 87 88 /* 89 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 90 * a count of one. 91 */ 92 static inline void set_page_refcounted(struct page *page) 93 { 94 VM_BUG_ON_PAGE(PageTail(page), page); 95 VM_BUG_ON_PAGE(page_ref_count(page), page); 96 set_page_count(page, 1); 97 } 98 99 extern unsigned long highest_memmap_pfn; 100 101 /* 102 * Maximum number of reclaim retries without progress before the OOM 103 * killer is consider the only way forward. 104 */ 105 #define MAX_RECLAIM_RETRIES 16 106 107 /* 108 * in mm/vmscan.c: 109 */ 110 extern int isolate_lru_page(struct page *page); 111 extern void putback_lru_page(struct page *page); 112 113 /* 114 * in mm/rmap.c: 115 */ 116 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 117 118 /* 119 * in mm/memcontrol.c: 120 */ 121 extern bool cgroup_memory_nokmem; 122 123 /* 124 * in mm/page_alloc.c 125 */ 126 127 /* 128 * Structure for holding the mostly immutable allocation parameters passed 129 * between functions involved in allocations, including the alloc_pages* 130 * family of functions. 131 * 132 * nodemask, migratetype and highest_zoneidx are initialized only once in 133 * __alloc_pages() and then never change. 134 * 135 * zonelist, preferred_zone and highest_zoneidx are set first in 136 * __alloc_pages() for the fast path, and might be later changed 137 * in __alloc_pages_slowpath(). All other functions pass the whole structure 138 * by a const pointer. 139 */ 140 struct alloc_context { 141 struct zonelist *zonelist; 142 nodemask_t *nodemask; 143 struct zoneref *preferred_zoneref; 144 int migratetype; 145 146 /* 147 * highest_zoneidx represents highest usable zone index of 148 * the allocation request. Due to the nature of the zone, 149 * memory on lower zone than the highest_zoneidx will be 150 * protected by lowmem_reserve[highest_zoneidx]. 151 * 152 * highest_zoneidx is also used by reclaim/compaction to limit 153 * the target zone since higher zone than this index cannot be 154 * usable for this allocation request. 155 */ 156 enum zone_type highest_zoneidx; 157 bool spread_dirty_pages; 158 }; 159 160 /* 161 * Locate the struct page for both the matching buddy in our 162 * pair (buddy1) and the combined O(n+1) page they form (page). 163 * 164 * 1) Any buddy B1 will have an order O twin B2 which satisfies 165 * the following equation: 166 * B2 = B1 ^ (1 << O) 167 * For example, if the starting buddy (buddy2) is #8 its order 168 * 1 buddy is #10: 169 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 170 * 171 * 2) Any buddy B will have an order O+1 parent P which 172 * satisfies the following equation: 173 * P = B & ~(1 << O) 174 * 175 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 176 */ 177 static inline unsigned long 178 __find_buddy_pfn(unsigned long page_pfn, unsigned int order) 179 { 180 return page_pfn ^ (1 << order); 181 } 182 183 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 184 unsigned long end_pfn, struct zone *zone); 185 186 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 187 unsigned long end_pfn, struct zone *zone) 188 { 189 if (zone->contiguous) 190 return pfn_to_page(start_pfn); 191 192 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 193 } 194 195 extern int __isolate_free_page(struct page *page, unsigned int order); 196 extern void __putback_isolated_page(struct page *page, unsigned int order, 197 int mt); 198 extern void memblock_free_pages(struct page *page, unsigned long pfn, 199 unsigned int order); 200 extern void __free_pages_core(struct page *page, unsigned int order); 201 extern void prep_compound_page(struct page *page, unsigned int order); 202 extern void post_alloc_hook(struct page *page, unsigned int order, 203 gfp_t gfp_flags); 204 extern int user_min_free_kbytes; 205 206 extern void free_unref_page(struct page *page, unsigned int order); 207 extern void free_unref_page_list(struct list_head *list); 208 209 extern void zone_pcp_update(struct zone *zone, int cpu_online); 210 extern void zone_pcp_reset(struct zone *zone); 211 extern void zone_pcp_disable(struct zone *zone); 212 extern void zone_pcp_enable(struct zone *zone); 213 214 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 215 216 /* 217 * in mm/compaction.c 218 */ 219 /* 220 * compact_control is used to track pages being migrated and the free pages 221 * they are being migrated to during memory compaction. The free_pfn starts 222 * at the end of a zone and migrate_pfn begins at the start. Movable pages 223 * are moved to the end of a zone during a compaction run and the run 224 * completes when free_pfn <= migrate_pfn 225 */ 226 struct compact_control { 227 struct list_head freepages; /* List of free pages to migrate to */ 228 struct list_head migratepages; /* List of pages being migrated */ 229 unsigned int nr_freepages; /* Number of isolated free pages */ 230 unsigned int nr_migratepages; /* Number of pages to migrate */ 231 unsigned long free_pfn; /* isolate_freepages search base */ 232 /* 233 * Acts as an in/out parameter to page isolation for migration. 234 * isolate_migratepages uses it as a search base. 235 * isolate_migratepages_block will update the value to the next pfn 236 * after the last isolated one. 237 */ 238 unsigned long migrate_pfn; 239 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 240 struct zone *zone; 241 unsigned long total_migrate_scanned; 242 unsigned long total_free_scanned; 243 unsigned short fast_search_fail;/* failures to use free list searches */ 244 short search_order; /* order to start a fast search at */ 245 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 246 int order; /* order a direct compactor needs */ 247 int migratetype; /* migratetype of direct compactor */ 248 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 249 const int highest_zoneidx; /* zone index of a direct compactor */ 250 enum migrate_mode mode; /* Async or sync migration mode */ 251 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 252 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 253 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 254 bool direct_compaction; /* False from kcompactd or /proc/... */ 255 bool proactive_compaction; /* kcompactd proactive compaction */ 256 bool whole_zone; /* Whole zone should/has been scanned */ 257 bool contended; /* Signal lock or sched contention */ 258 bool rescan; /* Rescanning the same pageblock */ 259 bool alloc_contig; /* alloc_contig_range allocation */ 260 }; 261 262 /* 263 * Used in direct compaction when a page should be taken from the freelists 264 * immediately when one is created during the free path. 265 */ 266 struct capture_control { 267 struct compact_control *cc; 268 struct page *page; 269 }; 270 271 unsigned long 272 isolate_freepages_range(struct compact_control *cc, 273 unsigned long start_pfn, unsigned long end_pfn); 274 int 275 isolate_migratepages_range(struct compact_control *cc, 276 unsigned long low_pfn, unsigned long end_pfn); 277 #endif 278 int find_suitable_fallback(struct free_area *area, unsigned int order, 279 int migratetype, bool only_stealable, bool *can_steal); 280 281 /* 282 * This function returns the order of a free page in the buddy system. In 283 * general, page_zone(page)->lock must be held by the caller to prevent the 284 * page from being allocated in parallel and returning garbage as the order. 285 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 286 * page cannot be allocated or merged in parallel. Alternatively, it must 287 * handle invalid values gracefully, and use buddy_order_unsafe() below. 288 */ 289 static inline unsigned int buddy_order(struct page *page) 290 { 291 /* PageBuddy() must be checked by the caller */ 292 return page_private(page); 293 } 294 295 /* 296 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 297 * PageBuddy() should be checked first by the caller to minimize race window, 298 * and invalid values must be handled gracefully. 299 * 300 * READ_ONCE is used so that if the caller assigns the result into a local 301 * variable and e.g. tests it for valid range before using, the compiler cannot 302 * decide to remove the variable and inline the page_private(page) multiple 303 * times, potentially observing different values in the tests and the actual 304 * use of the result. 305 */ 306 #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 307 308 /* 309 * These three helpers classifies VMAs for virtual memory accounting. 310 */ 311 312 /* 313 * Executable code area - executable, not writable, not stack 314 */ 315 static inline bool is_exec_mapping(vm_flags_t flags) 316 { 317 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 318 } 319 320 /* 321 * Stack area - automatically grows in one direction 322 * 323 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 324 * do_mmap() forbids all other combinations. 325 */ 326 static inline bool is_stack_mapping(vm_flags_t flags) 327 { 328 return (flags & VM_STACK) == VM_STACK; 329 } 330 331 /* 332 * Data area - private, writable, not stack 333 */ 334 static inline bool is_data_mapping(vm_flags_t flags) 335 { 336 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 337 } 338 339 /* mm/util.c */ 340 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 341 struct vm_area_struct *prev); 342 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma); 343 344 #ifdef CONFIG_MMU 345 extern long populate_vma_page_range(struct vm_area_struct *vma, 346 unsigned long start, unsigned long end, int *locked); 347 extern long faultin_vma_page_range(struct vm_area_struct *vma, 348 unsigned long start, unsigned long end, 349 bool write, int *locked); 350 extern void munlock_vma_pages_range(struct vm_area_struct *vma, 351 unsigned long start, unsigned long end); 352 static inline void munlock_vma_pages_all(struct vm_area_struct *vma) 353 { 354 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); 355 } 356 357 /* 358 * must be called with vma's mmap_lock held for read or write, and page locked. 359 */ 360 extern void mlock_vma_page(struct page *page); 361 extern unsigned int munlock_vma_page(struct page *page); 362 363 /* 364 * Clear the page's PageMlocked(). This can be useful in a situation where 365 * we want to unconditionally remove a page from the pagecache -- e.g., 366 * on truncation or freeing. 367 * 368 * It is legal to call this function for any page, mlocked or not. 369 * If called for a page that is still mapped by mlocked vmas, all we do 370 * is revert to lazy LRU behaviour -- semantics are not broken. 371 */ 372 extern void clear_page_mlock(struct page *page); 373 374 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 375 376 /* 377 * At what user virtual address is page expected in vma? 378 * Returns -EFAULT if all of the page is outside the range of vma. 379 * If page is a compound head, the entire compound page is considered. 380 */ 381 static inline unsigned long 382 vma_address(struct page *page, struct vm_area_struct *vma) 383 { 384 pgoff_t pgoff; 385 unsigned long address; 386 387 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 388 pgoff = page_to_pgoff(page); 389 if (pgoff >= vma->vm_pgoff) { 390 address = vma->vm_start + 391 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 392 /* Check for address beyond vma (or wrapped through 0?) */ 393 if (address < vma->vm_start || address >= vma->vm_end) 394 address = -EFAULT; 395 } else if (PageHead(page) && 396 pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) { 397 /* Test above avoids possibility of wrap to 0 on 32-bit */ 398 address = vma->vm_start; 399 } else { 400 address = -EFAULT; 401 } 402 return address; 403 } 404 405 /* 406 * Then at what user virtual address will none of the page be found in vma? 407 * Assumes that vma_address() already returned a good starting address. 408 * If page is a compound head, the entire compound page is considered. 409 */ 410 static inline unsigned long 411 vma_address_end(struct page *page, struct vm_area_struct *vma) 412 { 413 pgoff_t pgoff; 414 unsigned long address; 415 416 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 417 pgoff = page_to_pgoff(page) + compound_nr(page); 418 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 419 /* Check for address beyond vma (or wrapped through 0?) */ 420 if (address < vma->vm_start || address > vma->vm_end) 421 address = vma->vm_end; 422 return address; 423 } 424 425 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 426 struct file *fpin) 427 { 428 int flags = vmf->flags; 429 430 if (fpin) 431 return fpin; 432 433 /* 434 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 435 * anything, so we only pin the file and drop the mmap_lock if only 436 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 437 */ 438 if (fault_flag_allow_retry_first(flags) && 439 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 440 fpin = get_file(vmf->vma->vm_file); 441 mmap_read_unlock(vmf->vma->vm_mm); 442 } 443 return fpin; 444 } 445 446 #else /* !CONFIG_MMU */ 447 static inline void clear_page_mlock(struct page *page) { } 448 static inline void mlock_vma_page(struct page *page) { } 449 static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 450 { 451 } 452 #endif /* !CONFIG_MMU */ 453 454 /* 455 * Return the mem_map entry representing the 'offset' subpage within 456 * the maximally aligned gigantic page 'base'. Handle any discontiguity 457 * in the mem_map at MAX_ORDER_NR_PAGES boundaries. 458 */ 459 static inline struct page *mem_map_offset(struct page *base, int offset) 460 { 461 if (unlikely(offset >= MAX_ORDER_NR_PAGES)) 462 return nth_page(base, offset); 463 return base + offset; 464 } 465 466 /* 467 * Iterator over all subpages within the maximally aligned gigantic 468 * page 'base'. Handle any discontiguity in the mem_map. 469 */ 470 static inline struct page *mem_map_next(struct page *iter, 471 struct page *base, int offset) 472 { 473 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { 474 unsigned long pfn = page_to_pfn(base) + offset; 475 if (!pfn_valid(pfn)) 476 return NULL; 477 return pfn_to_page(pfn); 478 } 479 return iter + 1; 480 } 481 482 /* Memory initialisation debug and verification */ 483 enum mminit_level { 484 MMINIT_WARNING, 485 MMINIT_VERIFY, 486 MMINIT_TRACE 487 }; 488 489 #ifdef CONFIG_DEBUG_MEMORY_INIT 490 491 extern int mminit_loglevel; 492 493 #define mminit_dprintk(level, prefix, fmt, arg...) \ 494 do { \ 495 if (level < mminit_loglevel) { \ 496 if (level <= MMINIT_WARNING) \ 497 pr_warn("mminit::" prefix " " fmt, ##arg); \ 498 else \ 499 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 500 } \ 501 } while (0) 502 503 extern void mminit_verify_pageflags_layout(void); 504 extern void mminit_verify_zonelist(void); 505 #else 506 507 static inline void mminit_dprintk(enum mminit_level level, 508 const char *prefix, const char *fmt, ...) 509 { 510 } 511 512 static inline void mminit_verify_pageflags_layout(void) 513 { 514 } 515 516 static inline void mminit_verify_zonelist(void) 517 { 518 } 519 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 520 521 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ 522 #if defined(CONFIG_SPARSEMEM) 523 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, 524 unsigned long *end_pfn); 525 #else 526 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, 527 unsigned long *end_pfn) 528 { 529 } 530 #endif /* CONFIG_SPARSEMEM */ 531 532 #define NODE_RECLAIM_NOSCAN -2 533 #define NODE_RECLAIM_FULL -1 534 #define NODE_RECLAIM_SOME 0 535 #define NODE_RECLAIM_SUCCESS 1 536 537 #ifdef CONFIG_NUMA 538 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 539 #else 540 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 541 unsigned int order) 542 { 543 return NODE_RECLAIM_NOSCAN; 544 } 545 #endif 546 547 extern int hwpoison_filter(struct page *p); 548 549 extern u32 hwpoison_filter_dev_major; 550 extern u32 hwpoison_filter_dev_minor; 551 extern u64 hwpoison_filter_flags_mask; 552 extern u64 hwpoison_filter_flags_value; 553 extern u64 hwpoison_filter_memcg; 554 extern u32 hwpoison_filter_enable; 555 556 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 557 unsigned long, unsigned long, 558 unsigned long, unsigned long); 559 560 extern void set_pageblock_order(void); 561 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 562 struct list_head *page_list); 563 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 564 #define ALLOC_WMARK_MIN WMARK_MIN 565 #define ALLOC_WMARK_LOW WMARK_LOW 566 #define ALLOC_WMARK_HIGH WMARK_HIGH 567 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 568 569 /* Mask to get the watermark bits */ 570 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 571 572 /* 573 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 574 * cannot assume a reduced access to memory reserves is sufficient for 575 * !MMU 576 */ 577 #ifdef CONFIG_MMU 578 #define ALLOC_OOM 0x08 579 #else 580 #define ALLOC_OOM ALLOC_NO_WATERMARKS 581 #endif 582 583 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 584 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 585 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 586 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 587 #ifdef CONFIG_ZONE_DMA32 588 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 589 #else 590 #define ALLOC_NOFRAGMENT 0x0 591 #endif 592 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 593 594 enum ttu_flags; 595 struct tlbflush_unmap_batch; 596 597 598 /* 599 * only for MM internal work items which do not depend on 600 * any allocations or locks which might depend on allocations 601 */ 602 extern struct workqueue_struct *mm_percpu_wq; 603 604 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 605 void try_to_unmap_flush(void); 606 void try_to_unmap_flush_dirty(void); 607 void flush_tlb_batched_pending(struct mm_struct *mm); 608 #else 609 static inline void try_to_unmap_flush(void) 610 { 611 } 612 static inline void try_to_unmap_flush_dirty(void) 613 { 614 } 615 static inline void flush_tlb_batched_pending(struct mm_struct *mm) 616 { 617 } 618 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 619 620 extern const struct trace_print_flags pageflag_names[]; 621 extern const struct trace_print_flags vmaflag_names[]; 622 extern const struct trace_print_flags gfpflag_names[]; 623 624 static inline bool is_migrate_highatomic(enum migratetype migratetype) 625 { 626 return migratetype == MIGRATE_HIGHATOMIC; 627 } 628 629 static inline bool is_migrate_highatomic_page(struct page *page) 630 { 631 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 632 } 633 634 void setup_zone_pageset(struct zone *zone); 635 636 struct migration_target_control { 637 int nid; /* preferred node id */ 638 nodemask_t *nmask; 639 gfp_t gfp_mask; 640 }; 641 642 /* 643 * mm/vmalloc.c 644 */ 645 #ifdef CONFIG_MMU 646 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 647 pgprot_t prot, struct page **pages, unsigned int page_shift); 648 #else 649 static inline 650 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 651 pgprot_t prot, struct page **pages, unsigned int page_shift) 652 { 653 return -EINVAL; 654 } 655 #endif 656 657 void vunmap_range_noflush(unsigned long start, unsigned long end); 658 659 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 660 unsigned long addr, int page_nid, int *flags); 661 662 #endif /* __MM_INTERNAL_H */ 663