1 /* internal.h: mm/ internal definitions 2 * 3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #ifndef __MM_INTERNAL_H 12 #define __MM_INTERNAL_H 13 14 #include <linux/fs.h> 15 #include <linux/mm.h> 16 17 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 18 unsigned long floor, unsigned long ceiling); 19 20 static inline void set_page_count(struct page *page, int v) 21 { 22 atomic_set(&page->_count, v); 23 } 24 25 extern int __do_page_cache_readahead(struct address_space *mapping, 26 struct file *filp, pgoff_t offset, unsigned long nr_to_read, 27 unsigned long lookahead_size); 28 29 /* 30 * Submit IO for the read-ahead request in file_ra_state. 31 */ 32 static inline unsigned long ra_submit(struct file_ra_state *ra, 33 struct address_space *mapping, struct file *filp) 34 { 35 return __do_page_cache_readahead(mapping, filp, 36 ra->start, ra->size, ra->async_size); 37 } 38 39 /* 40 * Turn a non-refcounted page (->_count == 0) into refcounted with 41 * a count of one. 42 */ 43 static inline void set_page_refcounted(struct page *page) 44 { 45 VM_BUG_ON_PAGE(PageTail(page), page); 46 VM_BUG_ON_PAGE(atomic_read(&page->_count), page); 47 set_page_count(page, 1); 48 } 49 50 static inline void __get_page_tail_foll(struct page *page, 51 bool get_page_head) 52 { 53 /* 54 * If we're getting a tail page, the elevated page->_count is 55 * required only in the head page and we will elevate the head 56 * page->_count and tail page->_mapcount. 57 * 58 * We elevate page_tail->_mapcount for tail pages to force 59 * page_tail->_count to be zero at all times to avoid getting 60 * false positives from get_page_unless_zero() with 61 * speculative page access (like in 62 * page_cache_get_speculative()) on tail pages. 63 */ 64 VM_BUG_ON_PAGE(atomic_read(&page->first_page->_count) <= 0, page); 65 if (get_page_head) 66 atomic_inc(&page->first_page->_count); 67 get_huge_page_tail(page); 68 } 69 70 /* 71 * This is meant to be called as the FOLL_GET operation of 72 * follow_page() and it must be called while holding the proper PT 73 * lock while the pte (or pmd_trans_huge) is still mapping the page. 74 */ 75 static inline void get_page_foll(struct page *page) 76 { 77 if (unlikely(PageTail(page))) 78 /* 79 * This is safe only because 80 * __split_huge_page_refcount() can't run under 81 * get_page_foll() because we hold the proper PT lock. 82 */ 83 __get_page_tail_foll(page, true); 84 else { 85 /* 86 * Getting a normal page or the head of a compound page 87 * requires to already have an elevated page->_count. 88 */ 89 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 90 atomic_inc(&page->_count); 91 } 92 } 93 94 extern unsigned long highest_memmap_pfn; 95 96 /* 97 * in mm/vmscan.c: 98 */ 99 extern int isolate_lru_page(struct page *page); 100 extern void putback_lru_page(struct page *page); 101 extern bool zone_reclaimable(struct zone *zone); 102 103 /* 104 * in mm/rmap.c: 105 */ 106 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 107 108 /* 109 * in mm/page_alloc.c 110 */ 111 112 /* 113 * Locate the struct page for both the matching buddy in our 114 * pair (buddy1) and the combined O(n+1) page they form (page). 115 * 116 * 1) Any buddy B1 will have an order O twin B2 which satisfies 117 * the following equation: 118 * B2 = B1 ^ (1 << O) 119 * For example, if the starting buddy (buddy2) is #8 its order 120 * 1 buddy is #10: 121 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 122 * 123 * 2) Any buddy B will have an order O+1 parent P which 124 * satisfies the following equation: 125 * P = B & ~(1 << O) 126 * 127 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 128 */ 129 static inline unsigned long 130 __find_buddy_index(unsigned long page_idx, unsigned int order) 131 { 132 return page_idx ^ (1 << order); 133 } 134 135 extern int __isolate_free_page(struct page *page, unsigned int order); 136 extern void __free_pages_bootmem(struct page *page, unsigned int order); 137 extern void prep_compound_page(struct page *page, unsigned long order); 138 #ifdef CONFIG_MEMORY_FAILURE 139 extern bool is_free_buddy_page(struct page *page); 140 #endif 141 extern int user_min_free_kbytes; 142 143 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 144 145 /* 146 * in mm/compaction.c 147 */ 148 /* 149 * compact_control is used to track pages being migrated and the free pages 150 * they are being migrated to during memory compaction. The free_pfn starts 151 * at the end of a zone and migrate_pfn begins at the start. Movable pages 152 * are moved to the end of a zone during a compaction run and the run 153 * completes when free_pfn <= migrate_pfn 154 */ 155 struct compact_control { 156 struct list_head freepages; /* List of free pages to migrate to */ 157 struct list_head migratepages; /* List of pages being migrated */ 158 unsigned long nr_freepages; /* Number of isolated free pages */ 159 unsigned long nr_migratepages; /* Number of pages to migrate */ 160 unsigned long free_pfn; /* isolate_freepages search base */ 161 unsigned long migrate_pfn; /* isolate_migratepages search base */ 162 enum migrate_mode mode; /* Async or sync migration mode */ 163 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 164 int order; /* order a direct compactor needs */ 165 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 166 const int alloc_flags; /* alloc flags of a direct compactor */ 167 const int classzone_idx; /* zone index of a direct compactor */ 168 struct zone *zone; 169 int contended; /* Signal need_sched() or lock 170 * contention detected during 171 * compaction 172 */ 173 }; 174 175 unsigned long 176 isolate_freepages_range(struct compact_control *cc, 177 unsigned long start_pfn, unsigned long end_pfn); 178 unsigned long 179 isolate_migratepages_range(struct compact_control *cc, 180 unsigned long low_pfn, unsigned long end_pfn); 181 182 #endif 183 184 /* 185 * This function returns the order of a free page in the buddy system. In 186 * general, page_zone(page)->lock must be held by the caller to prevent the 187 * page from being allocated in parallel and returning garbage as the order. 188 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 189 * page cannot be allocated or merged in parallel. Alternatively, it must 190 * handle invalid values gracefully, and use page_order_unsafe() below. 191 */ 192 static inline unsigned long page_order(struct page *page) 193 { 194 /* PageBuddy() must be checked by the caller */ 195 return page_private(page); 196 } 197 198 /* 199 * Like page_order(), but for callers who cannot afford to hold the zone lock. 200 * PageBuddy() should be checked first by the caller to minimize race window, 201 * and invalid values must be handled gracefully. 202 * 203 * ACCESS_ONCE is used so that if the caller assigns the result into a local 204 * variable and e.g. tests it for valid range before using, the compiler cannot 205 * decide to remove the variable and inline the page_private(page) multiple 206 * times, potentially observing different values in the tests and the actual 207 * use of the result. 208 */ 209 #define page_order_unsafe(page) ACCESS_ONCE(page_private(page)) 210 211 static inline bool is_cow_mapping(vm_flags_t flags) 212 { 213 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 214 } 215 216 /* mm/util.c */ 217 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 218 struct vm_area_struct *prev, struct rb_node *rb_parent); 219 220 #ifdef CONFIG_MMU 221 extern long __mlock_vma_pages_range(struct vm_area_struct *vma, 222 unsigned long start, unsigned long end, int *nonblocking); 223 extern void munlock_vma_pages_range(struct vm_area_struct *vma, 224 unsigned long start, unsigned long end); 225 static inline void munlock_vma_pages_all(struct vm_area_struct *vma) 226 { 227 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); 228 } 229 230 /* 231 * must be called with vma's mmap_sem held for read or write, and page locked. 232 */ 233 extern void mlock_vma_page(struct page *page); 234 extern unsigned int munlock_vma_page(struct page *page); 235 236 /* 237 * Clear the page's PageMlocked(). This can be useful in a situation where 238 * we want to unconditionally remove a page from the pagecache -- e.g., 239 * on truncation or freeing. 240 * 241 * It is legal to call this function for any page, mlocked or not. 242 * If called for a page that is still mapped by mlocked vmas, all we do 243 * is revert to lazy LRU behaviour -- semantics are not broken. 244 */ 245 extern void clear_page_mlock(struct page *page); 246 247 /* 248 * mlock_migrate_page - called only from migrate_page_copy() to 249 * migrate the Mlocked page flag; update statistics. 250 */ 251 static inline void mlock_migrate_page(struct page *newpage, struct page *page) 252 { 253 if (TestClearPageMlocked(page)) { 254 unsigned long flags; 255 int nr_pages = hpage_nr_pages(page); 256 257 local_irq_save(flags); 258 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 259 SetPageMlocked(newpage); 260 __mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages); 261 local_irq_restore(flags); 262 } 263 } 264 265 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 266 267 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 268 extern unsigned long vma_address(struct page *page, 269 struct vm_area_struct *vma); 270 #endif 271 #else /* !CONFIG_MMU */ 272 static inline void clear_page_mlock(struct page *page) { } 273 static inline void mlock_vma_page(struct page *page) { } 274 static inline void mlock_migrate_page(struct page *new, struct page *old) { } 275 276 #endif /* !CONFIG_MMU */ 277 278 /* 279 * Return the mem_map entry representing the 'offset' subpage within 280 * the maximally aligned gigantic page 'base'. Handle any discontiguity 281 * in the mem_map at MAX_ORDER_NR_PAGES boundaries. 282 */ 283 static inline struct page *mem_map_offset(struct page *base, int offset) 284 { 285 if (unlikely(offset >= MAX_ORDER_NR_PAGES)) 286 return nth_page(base, offset); 287 return base + offset; 288 } 289 290 /* 291 * Iterator over all subpages within the maximally aligned gigantic 292 * page 'base'. Handle any discontiguity in the mem_map. 293 */ 294 static inline struct page *mem_map_next(struct page *iter, 295 struct page *base, int offset) 296 { 297 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { 298 unsigned long pfn = page_to_pfn(base) + offset; 299 if (!pfn_valid(pfn)) 300 return NULL; 301 return pfn_to_page(pfn); 302 } 303 return iter + 1; 304 } 305 306 /* 307 * FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node, 308 * so all functions starting at paging_init should be marked __init 309 * in those cases. SPARSEMEM, however, allows for memory hotplug, 310 * and alloc_bootmem_node is not used. 311 */ 312 #ifdef CONFIG_SPARSEMEM 313 #define __paginginit __meminit 314 #else 315 #define __paginginit __init 316 #endif 317 318 /* Memory initialisation debug and verification */ 319 enum mminit_level { 320 MMINIT_WARNING, 321 MMINIT_VERIFY, 322 MMINIT_TRACE 323 }; 324 325 #ifdef CONFIG_DEBUG_MEMORY_INIT 326 327 extern int mminit_loglevel; 328 329 #define mminit_dprintk(level, prefix, fmt, arg...) \ 330 do { \ 331 if (level < mminit_loglevel) { \ 332 printk(level <= MMINIT_WARNING ? KERN_WARNING : KERN_DEBUG); \ 333 printk(KERN_CONT "mminit::" prefix " " fmt, ##arg); \ 334 } \ 335 } while (0) 336 337 extern void mminit_verify_pageflags_layout(void); 338 extern void mminit_verify_page_links(struct page *page, 339 enum zone_type zone, unsigned long nid, unsigned long pfn); 340 extern void mminit_verify_zonelist(void); 341 342 #else 343 344 static inline void mminit_dprintk(enum mminit_level level, 345 const char *prefix, const char *fmt, ...) 346 { 347 } 348 349 static inline void mminit_verify_pageflags_layout(void) 350 { 351 } 352 353 static inline void mminit_verify_page_links(struct page *page, 354 enum zone_type zone, unsigned long nid, unsigned long pfn) 355 { 356 } 357 358 static inline void mminit_verify_zonelist(void) 359 { 360 } 361 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 362 363 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ 364 #if defined(CONFIG_SPARSEMEM) 365 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, 366 unsigned long *end_pfn); 367 #else 368 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, 369 unsigned long *end_pfn) 370 { 371 } 372 #endif /* CONFIG_SPARSEMEM */ 373 374 #define ZONE_RECLAIM_NOSCAN -2 375 #define ZONE_RECLAIM_FULL -1 376 #define ZONE_RECLAIM_SOME 0 377 #define ZONE_RECLAIM_SUCCESS 1 378 379 extern int hwpoison_filter(struct page *p); 380 381 extern u32 hwpoison_filter_dev_major; 382 extern u32 hwpoison_filter_dev_minor; 383 extern u64 hwpoison_filter_flags_mask; 384 extern u64 hwpoison_filter_flags_value; 385 extern u64 hwpoison_filter_memcg; 386 extern u32 hwpoison_filter_enable; 387 388 extern unsigned long vm_mmap_pgoff(struct file *, unsigned long, 389 unsigned long, unsigned long, 390 unsigned long, unsigned long); 391 392 extern void set_pageblock_order(void); 393 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 394 struct list_head *page_list); 395 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 396 #define ALLOC_WMARK_MIN WMARK_MIN 397 #define ALLOC_WMARK_LOW WMARK_LOW 398 #define ALLOC_WMARK_HIGH WMARK_HIGH 399 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 400 401 /* Mask to get the watermark bits */ 402 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 403 404 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 405 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 406 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 407 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 408 #define ALLOC_FAIR 0x100 /* fair zone allocation */ 409 410 #endif /* __MM_INTERNAL_H */ 411