1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 #ifndef __MM_INTERNAL_H 8 #define __MM_INTERNAL_H 9 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/tracepoint-defs.h> 14 15 /* 16 * The set of flags that only affect watermark checking and reclaim 17 * behaviour. This is used by the MM to obey the caller constraints 18 * about IO, FS and watermark checking while ignoring placement 19 * hints such as HIGHMEM usage. 20 */ 21 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 22 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 23 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 24 __GFP_ATOMIC) 25 26 /* The GFP flags allowed during early boot */ 27 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 28 29 /* Control allocation cpuset and node placement constraints */ 30 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 31 32 /* Do not use these with a slab allocator */ 33 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 34 35 void page_writeback_init(void); 36 37 static inline void *folio_raw_mapping(struct folio *folio) 38 { 39 unsigned long mapping = (unsigned long)folio->mapping; 40 41 return (void *)(mapping & ~PAGE_MAPPING_FLAGS); 42 } 43 44 vm_fault_t do_swap_page(struct vm_fault *vmf); 45 void folio_rotate_reclaimable(struct folio *folio); 46 bool __folio_end_writeback(struct folio *folio); 47 48 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 49 unsigned long floor, unsigned long ceiling); 50 51 static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 52 { 53 return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP)); 54 } 55 56 void unmap_page_range(struct mmu_gather *tlb, 57 struct vm_area_struct *vma, 58 unsigned long addr, unsigned long end, 59 struct zap_details *details); 60 61 void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read, 62 unsigned long lookahead_size); 63 void force_page_cache_ra(struct readahead_control *, unsigned long nr); 64 static inline void force_page_cache_readahead(struct address_space *mapping, 65 struct file *file, pgoff_t index, unsigned long nr_to_read) 66 { 67 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 68 force_page_cache_ra(&ractl, nr_to_read); 69 } 70 71 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 72 pgoff_t end, struct pagevec *pvec, pgoff_t *indices); 73 74 /** 75 * folio_evictable - Test whether a folio is evictable. 76 * @folio: The folio to test. 77 * 78 * Test whether @folio is evictable -- i.e., should be placed on 79 * active/inactive lists vs unevictable list. 80 * 81 * Reasons folio might not be evictable: 82 * 1. folio's mapping marked unevictable 83 * 2. One of the pages in the folio is part of an mlocked VMA 84 */ 85 static inline bool folio_evictable(struct folio *folio) 86 { 87 bool ret; 88 89 /* Prevent address_space of inode and swap cache from being freed */ 90 rcu_read_lock(); 91 ret = !mapping_unevictable(folio_mapping(folio)) && 92 !folio_test_mlocked(folio); 93 rcu_read_unlock(); 94 return ret; 95 } 96 97 static inline bool page_evictable(struct page *page) 98 { 99 bool ret; 100 101 /* Prevent address_space of inode and swap cache from being freed */ 102 rcu_read_lock(); 103 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 104 rcu_read_unlock(); 105 return ret; 106 } 107 108 /* 109 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 110 * a count of one. 111 */ 112 static inline void set_page_refcounted(struct page *page) 113 { 114 VM_BUG_ON_PAGE(PageTail(page), page); 115 VM_BUG_ON_PAGE(page_ref_count(page), page); 116 set_page_count(page, 1); 117 } 118 119 extern unsigned long highest_memmap_pfn; 120 121 /* 122 * Maximum number of reclaim retries without progress before the OOM 123 * killer is consider the only way forward. 124 */ 125 #define MAX_RECLAIM_RETRIES 16 126 127 /* 128 * in mm/vmscan.c: 129 */ 130 extern int isolate_lru_page(struct page *page); 131 extern void putback_lru_page(struct page *page); 132 133 /* 134 * in mm/rmap.c: 135 */ 136 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 137 138 /* 139 * in mm/memcontrol.c: 140 */ 141 extern bool cgroup_memory_nokmem; 142 143 /* 144 * in mm/page_alloc.c 145 */ 146 147 /* 148 * Structure for holding the mostly immutable allocation parameters passed 149 * between functions involved in allocations, including the alloc_pages* 150 * family of functions. 151 * 152 * nodemask, migratetype and highest_zoneidx are initialized only once in 153 * __alloc_pages() and then never change. 154 * 155 * zonelist, preferred_zone and highest_zoneidx are set first in 156 * __alloc_pages() for the fast path, and might be later changed 157 * in __alloc_pages_slowpath(). All other functions pass the whole structure 158 * by a const pointer. 159 */ 160 struct alloc_context { 161 struct zonelist *zonelist; 162 nodemask_t *nodemask; 163 struct zoneref *preferred_zoneref; 164 int migratetype; 165 166 /* 167 * highest_zoneidx represents highest usable zone index of 168 * the allocation request. Due to the nature of the zone, 169 * memory on lower zone than the highest_zoneidx will be 170 * protected by lowmem_reserve[highest_zoneidx]. 171 * 172 * highest_zoneidx is also used by reclaim/compaction to limit 173 * the target zone since higher zone than this index cannot be 174 * usable for this allocation request. 175 */ 176 enum zone_type highest_zoneidx; 177 bool spread_dirty_pages; 178 }; 179 180 /* 181 * Locate the struct page for both the matching buddy in our 182 * pair (buddy1) and the combined O(n+1) page they form (page). 183 * 184 * 1) Any buddy B1 will have an order O twin B2 which satisfies 185 * the following equation: 186 * B2 = B1 ^ (1 << O) 187 * For example, if the starting buddy (buddy2) is #8 its order 188 * 1 buddy is #10: 189 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 190 * 191 * 2) Any buddy B will have an order O+1 parent P which 192 * satisfies the following equation: 193 * P = B & ~(1 << O) 194 * 195 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 196 */ 197 static inline unsigned long 198 __find_buddy_pfn(unsigned long page_pfn, unsigned int order) 199 { 200 return page_pfn ^ (1 << order); 201 } 202 203 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 204 unsigned long end_pfn, struct zone *zone); 205 206 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 207 unsigned long end_pfn, struct zone *zone) 208 { 209 if (zone->contiguous) 210 return pfn_to_page(start_pfn); 211 212 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 213 } 214 215 extern int __isolate_free_page(struct page *page, unsigned int order); 216 extern void __putback_isolated_page(struct page *page, unsigned int order, 217 int mt); 218 extern void memblock_free_pages(struct page *page, unsigned long pfn, 219 unsigned int order); 220 extern void __free_pages_core(struct page *page, unsigned int order); 221 extern void prep_compound_page(struct page *page, unsigned int order); 222 extern void post_alloc_hook(struct page *page, unsigned int order, 223 gfp_t gfp_flags); 224 extern int user_min_free_kbytes; 225 226 extern void free_unref_page(struct page *page, unsigned int order); 227 extern void free_unref_page_list(struct list_head *list); 228 229 extern void zone_pcp_update(struct zone *zone, int cpu_online); 230 extern void zone_pcp_reset(struct zone *zone); 231 extern void zone_pcp_disable(struct zone *zone); 232 extern void zone_pcp_enable(struct zone *zone); 233 234 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, 235 phys_addr_t min_addr, 236 int nid, bool exact_nid); 237 238 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 239 240 /* 241 * in mm/compaction.c 242 */ 243 /* 244 * compact_control is used to track pages being migrated and the free pages 245 * they are being migrated to during memory compaction. The free_pfn starts 246 * at the end of a zone and migrate_pfn begins at the start. Movable pages 247 * are moved to the end of a zone during a compaction run and the run 248 * completes when free_pfn <= migrate_pfn 249 */ 250 struct compact_control { 251 struct list_head freepages; /* List of free pages to migrate to */ 252 struct list_head migratepages; /* List of pages being migrated */ 253 unsigned int nr_freepages; /* Number of isolated free pages */ 254 unsigned int nr_migratepages; /* Number of pages to migrate */ 255 unsigned long free_pfn; /* isolate_freepages search base */ 256 /* 257 * Acts as an in/out parameter to page isolation for migration. 258 * isolate_migratepages uses it as a search base. 259 * isolate_migratepages_block will update the value to the next pfn 260 * after the last isolated one. 261 */ 262 unsigned long migrate_pfn; 263 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 264 struct zone *zone; 265 unsigned long total_migrate_scanned; 266 unsigned long total_free_scanned; 267 unsigned short fast_search_fail;/* failures to use free list searches */ 268 short search_order; /* order to start a fast search at */ 269 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 270 int order; /* order a direct compactor needs */ 271 int migratetype; /* migratetype of direct compactor */ 272 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 273 const int highest_zoneidx; /* zone index of a direct compactor */ 274 enum migrate_mode mode; /* Async or sync migration mode */ 275 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 276 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 277 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 278 bool direct_compaction; /* False from kcompactd or /proc/... */ 279 bool proactive_compaction; /* kcompactd proactive compaction */ 280 bool whole_zone; /* Whole zone should/has been scanned */ 281 bool contended; /* Signal lock or sched contention */ 282 bool rescan; /* Rescanning the same pageblock */ 283 bool alloc_contig; /* alloc_contig_range allocation */ 284 }; 285 286 /* 287 * Used in direct compaction when a page should be taken from the freelists 288 * immediately when one is created during the free path. 289 */ 290 struct capture_control { 291 struct compact_control *cc; 292 struct page *page; 293 }; 294 295 unsigned long 296 isolate_freepages_range(struct compact_control *cc, 297 unsigned long start_pfn, unsigned long end_pfn); 298 int 299 isolate_migratepages_range(struct compact_control *cc, 300 unsigned long low_pfn, unsigned long end_pfn); 301 #endif 302 int find_suitable_fallback(struct free_area *area, unsigned int order, 303 int migratetype, bool only_stealable, bool *can_steal); 304 305 /* 306 * This function returns the order of a free page in the buddy system. In 307 * general, page_zone(page)->lock must be held by the caller to prevent the 308 * page from being allocated in parallel and returning garbage as the order. 309 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 310 * page cannot be allocated or merged in parallel. Alternatively, it must 311 * handle invalid values gracefully, and use buddy_order_unsafe() below. 312 */ 313 static inline unsigned int buddy_order(struct page *page) 314 { 315 /* PageBuddy() must be checked by the caller */ 316 return page_private(page); 317 } 318 319 /* 320 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 321 * PageBuddy() should be checked first by the caller to minimize race window, 322 * and invalid values must be handled gracefully. 323 * 324 * READ_ONCE is used so that if the caller assigns the result into a local 325 * variable and e.g. tests it for valid range before using, the compiler cannot 326 * decide to remove the variable and inline the page_private(page) multiple 327 * times, potentially observing different values in the tests and the actual 328 * use of the result. 329 */ 330 #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 331 332 /* 333 * These three helpers classifies VMAs for virtual memory accounting. 334 */ 335 336 /* 337 * Executable code area - executable, not writable, not stack 338 */ 339 static inline bool is_exec_mapping(vm_flags_t flags) 340 { 341 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 342 } 343 344 /* 345 * Stack area - automatically grows in one direction 346 * 347 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 348 * do_mmap() forbids all other combinations. 349 */ 350 static inline bool is_stack_mapping(vm_flags_t flags) 351 { 352 return (flags & VM_STACK) == VM_STACK; 353 } 354 355 /* 356 * Data area - private, writable, not stack 357 */ 358 static inline bool is_data_mapping(vm_flags_t flags) 359 { 360 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 361 } 362 363 /* mm/util.c */ 364 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 365 struct vm_area_struct *prev); 366 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma); 367 368 #ifdef CONFIG_MMU 369 extern long populate_vma_page_range(struct vm_area_struct *vma, 370 unsigned long start, unsigned long end, int *locked); 371 extern long faultin_vma_page_range(struct vm_area_struct *vma, 372 unsigned long start, unsigned long end, 373 bool write, int *locked); 374 extern void munlock_vma_pages_range(struct vm_area_struct *vma, 375 unsigned long start, unsigned long end); 376 static inline void munlock_vma_pages_all(struct vm_area_struct *vma) 377 { 378 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); 379 } 380 381 /* 382 * must be called with vma's mmap_lock held for read or write, and page locked. 383 */ 384 extern void mlock_vma_page(struct page *page); 385 extern unsigned int munlock_vma_page(struct page *page); 386 387 extern int mlock_future_check(struct mm_struct *mm, unsigned long flags, 388 unsigned long len); 389 390 /* 391 * Clear the page's PageMlocked(). This can be useful in a situation where 392 * we want to unconditionally remove a page from the pagecache -- e.g., 393 * on truncation or freeing. 394 * 395 * It is legal to call this function for any page, mlocked or not. 396 * If called for a page that is still mapped by mlocked vmas, all we do 397 * is revert to lazy LRU behaviour -- semantics are not broken. 398 */ 399 extern void clear_page_mlock(struct page *page); 400 401 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 402 403 /* 404 * At what user virtual address is page expected in vma? 405 * Returns -EFAULT if all of the page is outside the range of vma. 406 * If page is a compound head, the entire compound page is considered. 407 */ 408 static inline unsigned long 409 vma_address(struct page *page, struct vm_area_struct *vma) 410 { 411 pgoff_t pgoff; 412 unsigned long address; 413 414 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 415 pgoff = page_to_pgoff(page); 416 if (pgoff >= vma->vm_pgoff) { 417 address = vma->vm_start + 418 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 419 /* Check for address beyond vma (or wrapped through 0?) */ 420 if (address < vma->vm_start || address >= vma->vm_end) 421 address = -EFAULT; 422 } else if (PageHead(page) && 423 pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) { 424 /* Test above avoids possibility of wrap to 0 on 32-bit */ 425 address = vma->vm_start; 426 } else { 427 address = -EFAULT; 428 } 429 return address; 430 } 431 432 /* 433 * Then at what user virtual address will none of the page be found in vma? 434 * Assumes that vma_address() already returned a good starting address. 435 * If page is a compound head, the entire compound page is considered. 436 */ 437 static inline unsigned long 438 vma_address_end(struct page *page, struct vm_area_struct *vma) 439 { 440 pgoff_t pgoff; 441 unsigned long address; 442 443 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 444 pgoff = page_to_pgoff(page) + compound_nr(page); 445 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 446 /* Check for address beyond vma (or wrapped through 0?) */ 447 if (address < vma->vm_start || address > vma->vm_end) 448 address = vma->vm_end; 449 return address; 450 } 451 452 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 453 struct file *fpin) 454 { 455 int flags = vmf->flags; 456 457 if (fpin) 458 return fpin; 459 460 /* 461 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 462 * anything, so we only pin the file and drop the mmap_lock if only 463 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 464 */ 465 if (fault_flag_allow_retry_first(flags) && 466 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 467 fpin = get_file(vmf->vma->vm_file); 468 mmap_read_unlock(vmf->vma->vm_mm); 469 } 470 return fpin; 471 } 472 473 #else /* !CONFIG_MMU */ 474 static inline void clear_page_mlock(struct page *page) { } 475 static inline void mlock_vma_page(struct page *page) { } 476 static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 477 { 478 } 479 #endif /* !CONFIG_MMU */ 480 481 /* 482 * Return the mem_map entry representing the 'offset' subpage within 483 * the maximally aligned gigantic page 'base'. Handle any discontiguity 484 * in the mem_map at MAX_ORDER_NR_PAGES boundaries. 485 */ 486 static inline struct page *mem_map_offset(struct page *base, int offset) 487 { 488 if (unlikely(offset >= MAX_ORDER_NR_PAGES)) 489 return nth_page(base, offset); 490 return base + offset; 491 } 492 493 /* 494 * Iterator over all subpages within the maximally aligned gigantic 495 * page 'base'. Handle any discontiguity in the mem_map. 496 */ 497 static inline struct page *mem_map_next(struct page *iter, 498 struct page *base, int offset) 499 { 500 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { 501 unsigned long pfn = page_to_pfn(base) + offset; 502 if (!pfn_valid(pfn)) 503 return NULL; 504 return pfn_to_page(pfn); 505 } 506 return iter + 1; 507 } 508 509 /* Memory initialisation debug and verification */ 510 enum mminit_level { 511 MMINIT_WARNING, 512 MMINIT_VERIFY, 513 MMINIT_TRACE 514 }; 515 516 #ifdef CONFIG_DEBUG_MEMORY_INIT 517 518 extern int mminit_loglevel; 519 520 #define mminit_dprintk(level, prefix, fmt, arg...) \ 521 do { \ 522 if (level < mminit_loglevel) { \ 523 if (level <= MMINIT_WARNING) \ 524 pr_warn("mminit::" prefix " " fmt, ##arg); \ 525 else \ 526 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 527 } \ 528 } while (0) 529 530 extern void mminit_verify_pageflags_layout(void); 531 extern void mminit_verify_zonelist(void); 532 #else 533 534 static inline void mminit_dprintk(enum mminit_level level, 535 const char *prefix, const char *fmt, ...) 536 { 537 } 538 539 static inline void mminit_verify_pageflags_layout(void) 540 { 541 } 542 543 static inline void mminit_verify_zonelist(void) 544 { 545 } 546 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 547 548 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ 549 #if defined(CONFIG_SPARSEMEM) 550 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, 551 unsigned long *end_pfn); 552 #else 553 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, 554 unsigned long *end_pfn) 555 { 556 } 557 #endif /* CONFIG_SPARSEMEM */ 558 559 #define NODE_RECLAIM_NOSCAN -2 560 #define NODE_RECLAIM_FULL -1 561 #define NODE_RECLAIM_SOME 0 562 #define NODE_RECLAIM_SUCCESS 1 563 564 #ifdef CONFIG_NUMA 565 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 566 extern int find_next_best_node(int node, nodemask_t *used_node_mask); 567 #else 568 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 569 unsigned int order) 570 { 571 return NODE_RECLAIM_NOSCAN; 572 } 573 static inline int find_next_best_node(int node, nodemask_t *used_node_mask) 574 { 575 return NUMA_NO_NODE; 576 } 577 #endif 578 579 extern int hwpoison_filter(struct page *p); 580 581 extern u32 hwpoison_filter_dev_major; 582 extern u32 hwpoison_filter_dev_minor; 583 extern u64 hwpoison_filter_flags_mask; 584 extern u64 hwpoison_filter_flags_value; 585 extern u64 hwpoison_filter_memcg; 586 extern u32 hwpoison_filter_enable; 587 588 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 589 unsigned long, unsigned long, 590 unsigned long, unsigned long); 591 592 extern void set_pageblock_order(void); 593 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 594 struct list_head *page_list); 595 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 596 #define ALLOC_WMARK_MIN WMARK_MIN 597 #define ALLOC_WMARK_LOW WMARK_LOW 598 #define ALLOC_WMARK_HIGH WMARK_HIGH 599 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 600 601 /* Mask to get the watermark bits */ 602 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 603 604 /* 605 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 606 * cannot assume a reduced access to memory reserves is sufficient for 607 * !MMU 608 */ 609 #ifdef CONFIG_MMU 610 #define ALLOC_OOM 0x08 611 #else 612 #define ALLOC_OOM ALLOC_NO_WATERMARKS 613 #endif 614 615 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 616 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 617 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 618 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 619 #ifdef CONFIG_ZONE_DMA32 620 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 621 #else 622 #define ALLOC_NOFRAGMENT 0x0 623 #endif 624 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 625 626 enum ttu_flags; 627 struct tlbflush_unmap_batch; 628 629 630 /* 631 * only for MM internal work items which do not depend on 632 * any allocations or locks which might depend on allocations 633 */ 634 extern struct workqueue_struct *mm_percpu_wq; 635 636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 637 void try_to_unmap_flush(void); 638 void try_to_unmap_flush_dirty(void); 639 void flush_tlb_batched_pending(struct mm_struct *mm); 640 #else 641 static inline void try_to_unmap_flush(void) 642 { 643 } 644 static inline void try_to_unmap_flush_dirty(void) 645 { 646 } 647 static inline void flush_tlb_batched_pending(struct mm_struct *mm) 648 { 649 } 650 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 651 652 extern const struct trace_print_flags pageflag_names[]; 653 extern const struct trace_print_flags vmaflag_names[]; 654 extern const struct trace_print_flags gfpflag_names[]; 655 656 static inline bool is_migrate_highatomic(enum migratetype migratetype) 657 { 658 return migratetype == MIGRATE_HIGHATOMIC; 659 } 660 661 static inline bool is_migrate_highatomic_page(struct page *page) 662 { 663 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 664 } 665 666 void setup_zone_pageset(struct zone *zone); 667 668 struct migration_target_control { 669 int nid; /* preferred node id */ 670 nodemask_t *nmask; 671 gfp_t gfp_mask; 672 }; 673 674 /* 675 * mm/vmalloc.c 676 */ 677 #ifdef CONFIG_MMU 678 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 679 pgprot_t prot, struct page **pages, unsigned int page_shift); 680 #else 681 static inline 682 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 683 pgprot_t prot, struct page **pages, unsigned int page_shift) 684 { 685 return -EINVAL; 686 } 687 #endif 688 689 void vunmap_range_noflush(unsigned long start, unsigned long end); 690 691 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 692 unsigned long addr, int page_nid, int *flags); 693 694 #endif /* __MM_INTERNAL_H */ 695