1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 #ifndef __MM_INTERNAL_H 8 #define __MM_INTERNAL_H 9 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/rmap.h> 14 #include <linux/tracepoint-defs.h> 15 16 struct folio_batch; 17 18 /* 19 * The set of flags that only affect watermark checking and reclaim 20 * behaviour. This is used by the MM to obey the caller constraints 21 * about IO, FS and watermark checking while ignoring placement 22 * hints such as HIGHMEM usage. 23 */ 24 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 25 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 26 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 27 __GFP_NOLOCKDEP) 28 29 /* The GFP flags allowed during early boot */ 30 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 31 32 /* Control allocation cpuset and node placement constraints */ 33 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 34 35 /* Do not use these with a slab allocator */ 36 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 37 38 /* 39 * Different from WARN_ON_ONCE(), no warning will be issued 40 * when we specify __GFP_NOWARN. 41 */ 42 #define WARN_ON_ONCE_GFP(cond, gfp) ({ \ 43 static bool __section(".data.once") __warned; \ 44 int __ret_warn_once = !!(cond); \ 45 \ 46 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \ 47 __warned = true; \ 48 WARN_ON(1); \ 49 } \ 50 unlikely(__ret_warn_once); \ 51 }) 52 53 void page_writeback_init(void); 54 55 /* 56 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages, 57 * its nr_pages_mapped would be 0x400000: choose the COMPOUND_MAPPED bit 58 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently 59 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later. 60 */ 61 #define COMPOUND_MAPPED 0x800000 62 #define FOLIO_PAGES_MAPPED (COMPOUND_MAPPED - 1) 63 64 /* 65 * How many individual pages have an elevated _mapcount. Excludes 66 * the folio's entire_mapcount. 67 */ 68 static inline int folio_nr_pages_mapped(struct folio *folio) 69 { 70 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED; 71 } 72 73 static inline void *folio_raw_mapping(struct folio *folio) 74 { 75 unsigned long mapping = (unsigned long)folio->mapping; 76 77 return (void *)(mapping & ~PAGE_MAPPING_FLAGS); 78 } 79 80 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 81 int nr_throttled); 82 static inline void acct_reclaim_writeback(struct folio *folio) 83 { 84 pg_data_t *pgdat = folio_pgdat(folio); 85 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); 86 87 if (nr_throttled) 88 __acct_reclaim_writeback(pgdat, folio, nr_throttled); 89 } 90 91 static inline void wake_throttle_isolated(pg_data_t *pgdat) 92 { 93 wait_queue_head_t *wqh; 94 95 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; 96 if (waitqueue_active(wqh)) 97 wake_up(wqh); 98 } 99 100 vm_fault_t do_swap_page(struct vm_fault *vmf); 101 void folio_rotate_reclaimable(struct folio *folio); 102 bool __folio_end_writeback(struct folio *folio); 103 void deactivate_file_folio(struct folio *folio); 104 void folio_activate(struct folio *folio); 105 106 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, 107 struct vm_area_struct *start_vma, unsigned long floor, 108 unsigned long ceiling, bool mm_wr_locked); 109 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); 110 111 struct zap_details; 112 void unmap_page_range(struct mmu_gather *tlb, 113 struct vm_area_struct *vma, 114 unsigned long addr, unsigned long end, 115 struct zap_details *details); 116 117 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *, 118 unsigned int order); 119 void force_page_cache_ra(struct readahead_control *, unsigned long nr); 120 static inline void force_page_cache_readahead(struct address_space *mapping, 121 struct file *file, pgoff_t index, unsigned long nr_to_read) 122 { 123 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 124 force_page_cache_ra(&ractl, nr_to_read); 125 } 126 127 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 128 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 129 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 130 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 131 void filemap_free_folio(struct address_space *mapping, struct folio *folio); 132 int truncate_inode_folio(struct address_space *mapping, struct folio *folio); 133 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, 134 loff_t end); 135 long invalidate_inode_page(struct page *page); 136 unsigned long invalidate_mapping_pagevec(struct address_space *mapping, 137 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec); 138 139 /** 140 * folio_evictable - Test whether a folio is evictable. 141 * @folio: The folio to test. 142 * 143 * Test whether @folio is evictable -- i.e., should be placed on 144 * active/inactive lists vs unevictable list. 145 * 146 * Reasons folio might not be evictable: 147 * 1. folio's mapping marked unevictable 148 * 2. One of the pages in the folio is part of an mlocked VMA 149 */ 150 static inline bool folio_evictable(struct folio *folio) 151 { 152 bool ret; 153 154 /* Prevent address_space of inode and swap cache from being freed */ 155 rcu_read_lock(); 156 ret = !mapping_unevictable(folio_mapping(folio)) && 157 !folio_test_mlocked(folio); 158 rcu_read_unlock(); 159 return ret; 160 } 161 162 /* 163 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 164 * a count of one. 165 */ 166 static inline void set_page_refcounted(struct page *page) 167 { 168 VM_BUG_ON_PAGE(PageTail(page), page); 169 VM_BUG_ON_PAGE(page_ref_count(page), page); 170 set_page_count(page, 1); 171 } 172 173 extern unsigned long highest_memmap_pfn; 174 175 /* 176 * Maximum number of reclaim retries without progress before the OOM 177 * killer is consider the only way forward. 178 */ 179 #define MAX_RECLAIM_RETRIES 16 180 181 /* 182 * in mm/early_ioremap.c 183 */ 184 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, 185 unsigned long size, pgprot_t prot); 186 187 /* 188 * in mm/vmscan.c: 189 */ 190 bool isolate_lru_page(struct page *page); 191 bool folio_isolate_lru(struct folio *folio); 192 void putback_lru_page(struct page *page); 193 void folio_putback_lru(struct folio *folio); 194 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); 195 196 /* 197 * in mm/rmap.c: 198 */ 199 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 200 201 /* 202 * in mm/page_alloc.c 203 */ 204 #define K(x) ((x) << (PAGE_SHIFT-10)) 205 206 extern char * const zone_names[MAX_NR_ZONES]; 207 208 /* perform sanity checks on struct pages being allocated or freed */ 209 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 210 211 extern int min_free_kbytes; 212 213 void setup_per_zone_wmarks(void); 214 void calculate_min_free_kbytes(void); 215 int __meminit init_per_zone_wmark_min(void); 216 void page_alloc_sysctl_init(void); 217 218 /* 219 * Structure for holding the mostly immutable allocation parameters passed 220 * between functions involved in allocations, including the alloc_pages* 221 * family of functions. 222 * 223 * nodemask, migratetype and highest_zoneidx are initialized only once in 224 * __alloc_pages() and then never change. 225 * 226 * zonelist, preferred_zone and highest_zoneidx are set first in 227 * __alloc_pages() for the fast path, and might be later changed 228 * in __alloc_pages_slowpath(). All other functions pass the whole structure 229 * by a const pointer. 230 */ 231 struct alloc_context { 232 struct zonelist *zonelist; 233 nodemask_t *nodemask; 234 struct zoneref *preferred_zoneref; 235 int migratetype; 236 237 /* 238 * highest_zoneidx represents highest usable zone index of 239 * the allocation request. Due to the nature of the zone, 240 * memory on lower zone than the highest_zoneidx will be 241 * protected by lowmem_reserve[highest_zoneidx]. 242 * 243 * highest_zoneidx is also used by reclaim/compaction to limit 244 * the target zone since higher zone than this index cannot be 245 * usable for this allocation request. 246 */ 247 enum zone_type highest_zoneidx; 248 bool spread_dirty_pages; 249 }; 250 251 /* 252 * This function returns the order of a free page in the buddy system. In 253 * general, page_zone(page)->lock must be held by the caller to prevent the 254 * page from being allocated in parallel and returning garbage as the order. 255 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 256 * page cannot be allocated or merged in parallel. Alternatively, it must 257 * handle invalid values gracefully, and use buddy_order_unsafe() below. 258 */ 259 static inline unsigned int buddy_order(struct page *page) 260 { 261 /* PageBuddy() must be checked by the caller */ 262 return page_private(page); 263 } 264 265 /* 266 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 267 * PageBuddy() should be checked first by the caller to minimize race window, 268 * and invalid values must be handled gracefully. 269 * 270 * READ_ONCE is used so that if the caller assigns the result into a local 271 * variable and e.g. tests it for valid range before using, the compiler cannot 272 * decide to remove the variable and inline the page_private(page) multiple 273 * times, potentially observing different values in the tests and the actual 274 * use of the result. 275 */ 276 #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 277 278 /* 279 * This function checks whether a page is free && is the buddy 280 * we can coalesce a page and its buddy if 281 * (a) the buddy is not in a hole (check before calling!) && 282 * (b) the buddy is in the buddy system && 283 * (c) a page and its buddy have the same order && 284 * (d) a page and its buddy are in the same zone. 285 * 286 * For recording whether a page is in the buddy system, we set PageBuddy. 287 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 288 * 289 * For recording page's order, we use page_private(page). 290 */ 291 static inline bool page_is_buddy(struct page *page, struct page *buddy, 292 unsigned int order) 293 { 294 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 295 return false; 296 297 if (buddy_order(buddy) != order) 298 return false; 299 300 /* 301 * zone check is done late to avoid uselessly calculating 302 * zone/node ids for pages that could never merge. 303 */ 304 if (page_zone_id(page) != page_zone_id(buddy)) 305 return false; 306 307 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 308 309 return true; 310 } 311 312 /* 313 * Locate the struct page for both the matching buddy in our 314 * pair (buddy1) and the combined O(n+1) page they form (page). 315 * 316 * 1) Any buddy B1 will have an order O twin B2 which satisfies 317 * the following equation: 318 * B2 = B1 ^ (1 << O) 319 * For example, if the starting buddy (buddy2) is #8 its order 320 * 1 buddy is #10: 321 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 322 * 323 * 2) Any buddy B will have an order O+1 parent P which 324 * satisfies the following equation: 325 * P = B & ~(1 << O) 326 * 327 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 328 */ 329 static inline unsigned long 330 __find_buddy_pfn(unsigned long page_pfn, unsigned int order) 331 { 332 return page_pfn ^ (1 << order); 333 } 334 335 /* 336 * Find the buddy of @page and validate it. 337 * @page: The input page 338 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the 339 * function is used in the performance-critical __free_one_page(). 340 * @order: The order of the page 341 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to 342 * page_to_pfn(). 343 * 344 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is 345 * not the same as @page. The validation is necessary before use it. 346 * 347 * Return: the found buddy page or NULL if not found. 348 */ 349 static inline struct page *find_buddy_page_pfn(struct page *page, 350 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn) 351 { 352 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order); 353 struct page *buddy; 354 355 buddy = page + (__buddy_pfn - pfn); 356 if (buddy_pfn) 357 *buddy_pfn = __buddy_pfn; 358 359 if (page_is_buddy(page, buddy, order)) 360 return buddy; 361 return NULL; 362 } 363 364 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 365 unsigned long end_pfn, struct zone *zone); 366 367 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 368 unsigned long end_pfn, struct zone *zone) 369 { 370 if (zone->contiguous) 371 return pfn_to_page(start_pfn); 372 373 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 374 } 375 376 void set_zone_contiguous(struct zone *zone); 377 378 static inline void clear_zone_contiguous(struct zone *zone) 379 { 380 zone->contiguous = false; 381 } 382 383 extern int __isolate_free_page(struct page *page, unsigned int order); 384 extern void __putback_isolated_page(struct page *page, unsigned int order, 385 int mt); 386 extern void memblock_free_pages(struct page *page, unsigned long pfn, 387 unsigned int order); 388 extern void __free_pages_core(struct page *page, unsigned int order); 389 390 /* 391 * This will have no effect, other than possibly generating a warning, if the 392 * caller passes in a non-large folio. 393 */ 394 static inline void folio_set_order(struct folio *folio, unsigned int order) 395 { 396 if (WARN_ON_ONCE(!order || !folio_test_large(folio))) 397 return; 398 399 folio->_folio_order = order; 400 #ifdef CONFIG_64BIT 401 folio->_folio_nr_pages = 1U << order; 402 #endif 403 } 404 405 static inline void prep_compound_head(struct page *page, unsigned int order) 406 { 407 struct folio *folio = (struct folio *)page; 408 409 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR); 410 folio_set_order(folio, order); 411 atomic_set(&folio->_entire_mapcount, -1); 412 atomic_set(&folio->_nr_pages_mapped, 0); 413 atomic_set(&folio->_pincount, 0); 414 } 415 416 static inline void prep_compound_tail(struct page *head, int tail_idx) 417 { 418 struct page *p = head + tail_idx; 419 420 p->mapping = TAIL_MAPPING; 421 set_compound_head(p, head); 422 set_page_private(p, 0); 423 } 424 425 extern void prep_compound_page(struct page *page, unsigned int order); 426 427 extern void post_alloc_hook(struct page *page, unsigned int order, 428 gfp_t gfp_flags); 429 extern int user_min_free_kbytes; 430 431 extern void free_unref_page(struct page *page, unsigned int order); 432 extern void free_unref_page_list(struct list_head *list); 433 434 extern void zone_pcp_reset(struct zone *zone); 435 extern void zone_pcp_disable(struct zone *zone); 436 extern void zone_pcp_enable(struct zone *zone); 437 extern void zone_pcp_init(struct zone *zone); 438 439 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, 440 phys_addr_t min_addr, 441 int nid, bool exact_nid); 442 443 void memmap_init_range(unsigned long, int, unsigned long, unsigned long, 444 unsigned long, enum meminit_context, struct vmem_altmap *, int); 445 446 447 int split_free_page(struct page *free_page, 448 unsigned int order, unsigned long split_pfn_offset); 449 450 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 451 452 /* 453 * in mm/compaction.c 454 */ 455 /* 456 * compact_control is used to track pages being migrated and the free pages 457 * they are being migrated to during memory compaction. The free_pfn starts 458 * at the end of a zone and migrate_pfn begins at the start. Movable pages 459 * are moved to the end of a zone during a compaction run and the run 460 * completes when free_pfn <= migrate_pfn 461 */ 462 struct compact_control { 463 struct list_head freepages; /* List of free pages to migrate to */ 464 struct list_head migratepages; /* List of pages being migrated */ 465 unsigned int nr_freepages; /* Number of isolated free pages */ 466 unsigned int nr_migratepages; /* Number of pages to migrate */ 467 unsigned long free_pfn; /* isolate_freepages search base */ 468 /* 469 * Acts as an in/out parameter to page isolation for migration. 470 * isolate_migratepages uses it as a search base. 471 * isolate_migratepages_block will update the value to the next pfn 472 * after the last isolated one. 473 */ 474 unsigned long migrate_pfn; 475 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 476 struct zone *zone; 477 unsigned long total_migrate_scanned; 478 unsigned long total_free_scanned; 479 unsigned short fast_search_fail;/* failures to use free list searches */ 480 short search_order; /* order to start a fast search at */ 481 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 482 int order; /* order a direct compactor needs */ 483 int migratetype; /* migratetype of direct compactor */ 484 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 485 const int highest_zoneidx; /* zone index of a direct compactor */ 486 enum migrate_mode mode; /* Async or sync migration mode */ 487 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 488 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 489 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 490 bool direct_compaction; /* False from kcompactd or /proc/... */ 491 bool proactive_compaction; /* kcompactd proactive compaction */ 492 bool whole_zone; /* Whole zone should/has been scanned */ 493 bool contended; /* Signal lock contention */ 494 bool finish_pageblock; /* Scan the remainder of a pageblock. Used 495 * when there are potentially transient 496 * isolation or migration failures to 497 * ensure forward progress. 498 */ 499 bool alloc_contig; /* alloc_contig_range allocation */ 500 }; 501 502 /* 503 * Used in direct compaction when a page should be taken from the freelists 504 * immediately when one is created during the free path. 505 */ 506 struct capture_control { 507 struct compact_control *cc; 508 struct page *page; 509 }; 510 511 unsigned long 512 isolate_freepages_range(struct compact_control *cc, 513 unsigned long start_pfn, unsigned long end_pfn); 514 int 515 isolate_migratepages_range(struct compact_control *cc, 516 unsigned long low_pfn, unsigned long end_pfn); 517 518 int __alloc_contig_migrate_range(struct compact_control *cc, 519 unsigned long start, unsigned long end); 520 521 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 522 void init_cma_reserved_pageblock(struct page *page); 523 524 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 525 526 int find_suitable_fallback(struct free_area *area, unsigned int order, 527 int migratetype, bool only_stealable, bool *can_steal); 528 529 static inline bool free_area_empty(struct free_area *area, int migratetype) 530 { 531 return list_empty(&area->free_list[migratetype]); 532 } 533 534 /* 535 * These three helpers classifies VMAs for virtual memory accounting. 536 */ 537 538 /* 539 * Executable code area - executable, not writable, not stack 540 */ 541 static inline bool is_exec_mapping(vm_flags_t flags) 542 { 543 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 544 } 545 546 /* 547 * Stack area - automatically grows in one direction 548 * 549 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 550 * do_mmap() forbids all other combinations. 551 */ 552 static inline bool is_stack_mapping(vm_flags_t flags) 553 { 554 return (flags & VM_STACK) == VM_STACK; 555 } 556 557 /* 558 * Data area - private, writable, not stack 559 */ 560 static inline bool is_data_mapping(vm_flags_t flags) 561 { 562 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 563 } 564 565 /* mm/util.c */ 566 struct anon_vma *folio_anon_vma(struct folio *folio); 567 568 #ifdef CONFIG_MMU 569 void unmap_mapping_folio(struct folio *folio); 570 extern long populate_vma_page_range(struct vm_area_struct *vma, 571 unsigned long start, unsigned long end, int *locked); 572 extern long faultin_vma_page_range(struct vm_area_struct *vma, 573 unsigned long start, unsigned long end, 574 bool write, int *locked); 575 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 576 unsigned long bytes); 577 /* 578 * mlock_vma_folio() and munlock_vma_folio(): 579 * should be called with vma's mmap_lock held for read or write, 580 * under page table lock for the pte/pmd being added or removed. 581 * 582 * mlock is usually called at the end of page_add_*_rmap(), munlock at 583 * the end of page_remove_rmap(); but new anon folios are managed by 584 * folio_add_lru_vma() calling mlock_new_folio(). 585 * 586 * @compound is used to include pmd mappings of THPs, but filter out 587 * pte mappings of THPs, which cannot be consistently counted: a pte 588 * mapping of the THP head cannot be distinguished by the page alone. 589 */ 590 void mlock_folio(struct folio *folio); 591 static inline void mlock_vma_folio(struct folio *folio, 592 struct vm_area_struct *vma, bool compound) 593 { 594 /* 595 * The VM_SPECIAL check here serves two purposes. 596 * 1) VM_IO check prevents migration from double-counting during mlock. 597 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED 598 * is never left set on a VM_SPECIAL vma, there is an interval while 599 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may 600 * still be set while VM_SPECIAL bits are added: so ignore it then. 601 */ 602 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) && 603 (compound || !folio_test_large(folio))) 604 mlock_folio(folio); 605 } 606 607 void munlock_folio(struct folio *folio); 608 static inline void munlock_vma_folio(struct folio *folio, 609 struct vm_area_struct *vma, bool compound) 610 { 611 if (unlikely(vma->vm_flags & VM_LOCKED) && 612 (compound || !folio_test_large(folio))) 613 munlock_folio(folio); 614 } 615 616 void mlock_new_folio(struct folio *folio); 617 bool need_mlock_drain(int cpu); 618 void mlock_drain_local(void); 619 void mlock_drain_remote(int cpu); 620 621 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 622 623 /* 624 * Return the start of user virtual address at the specific offset within 625 * a vma. 626 */ 627 static inline unsigned long 628 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages, 629 struct vm_area_struct *vma) 630 { 631 unsigned long address; 632 633 if (pgoff >= vma->vm_pgoff) { 634 address = vma->vm_start + 635 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 636 /* Check for address beyond vma (or wrapped through 0?) */ 637 if (address < vma->vm_start || address >= vma->vm_end) 638 address = -EFAULT; 639 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) { 640 /* Test above avoids possibility of wrap to 0 on 32-bit */ 641 address = vma->vm_start; 642 } else { 643 address = -EFAULT; 644 } 645 return address; 646 } 647 648 /* 649 * Return the start of user virtual address of a page within a vma. 650 * Returns -EFAULT if all of the page is outside the range of vma. 651 * If page is a compound head, the entire compound page is considered. 652 */ 653 static inline unsigned long 654 vma_address(struct page *page, struct vm_area_struct *vma) 655 { 656 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 657 return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma); 658 } 659 660 /* 661 * Then at what user virtual address will none of the range be found in vma? 662 * Assumes that vma_address() already returned a good starting address. 663 */ 664 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw) 665 { 666 struct vm_area_struct *vma = pvmw->vma; 667 pgoff_t pgoff; 668 unsigned long address; 669 670 /* Common case, plus ->pgoff is invalid for KSM */ 671 if (pvmw->nr_pages == 1) 672 return pvmw->address + PAGE_SIZE; 673 674 pgoff = pvmw->pgoff + pvmw->nr_pages; 675 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 676 /* Check for address beyond vma (or wrapped through 0?) */ 677 if (address < vma->vm_start || address > vma->vm_end) 678 address = vma->vm_end; 679 return address; 680 } 681 682 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 683 struct file *fpin) 684 { 685 int flags = vmf->flags; 686 687 if (fpin) 688 return fpin; 689 690 /* 691 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 692 * anything, so we only pin the file and drop the mmap_lock if only 693 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 694 */ 695 if (fault_flag_allow_retry_first(flags) && 696 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 697 fpin = get_file(vmf->vma->vm_file); 698 mmap_read_unlock(vmf->vma->vm_mm); 699 } 700 return fpin; 701 } 702 #else /* !CONFIG_MMU */ 703 static inline void unmap_mapping_folio(struct folio *folio) { } 704 static inline void mlock_new_folio(struct folio *folio) { } 705 static inline bool need_mlock_drain(int cpu) { return false; } 706 static inline void mlock_drain_local(void) { } 707 static inline void mlock_drain_remote(int cpu) { } 708 static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 709 { 710 } 711 #endif /* !CONFIG_MMU */ 712 713 /* Memory initialisation debug and verification */ 714 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 715 DECLARE_STATIC_KEY_TRUE(deferred_pages); 716 717 bool __init deferred_grow_zone(struct zone *zone, unsigned int order); 718 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 719 720 enum mminit_level { 721 MMINIT_WARNING, 722 MMINIT_VERIFY, 723 MMINIT_TRACE 724 }; 725 726 #ifdef CONFIG_DEBUG_MEMORY_INIT 727 728 extern int mminit_loglevel; 729 730 #define mminit_dprintk(level, prefix, fmt, arg...) \ 731 do { \ 732 if (level < mminit_loglevel) { \ 733 if (level <= MMINIT_WARNING) \ 734 pr_warn("mminit::" prefix " " fmt, ##arg); \ 735 else \ 736 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 737 } \ 738 } while (0) 739 740 extern void mminit_verify_pageflags_layout(void); 741 extern void mminit_verify_zonelist(void); 742 #else 743 744 static inline void mminit_dprintk(enum mminit_level level, 745 const char *prefix, const char *fmt, ...) 746 { 747 } 748 749 static inline void mminit_verify_pageflags_layout(void) 750 { 751 } 752 753 static inline void mminit_verify_zonelist(void) 754 { 755 } 756 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 757 758 #define NODE_RECLAIM_NOSCAN -2 759 #define NODE_RECLAIM_FULL -1 760 #define NODE_RECLAIM_SOME 0 761 #define NODE_RECLAIM_SUCCESS 1 762 763 #ifdef CONFIG_NUMA 764 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 765 extern int find_next_best_node(int node, nodemask_t *used_node_mask); 766 #else 767 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 768 unsigned int order) 769 { 770 return NODE_RECLAIM_NOSCAN; 771 } 772 static inline int find_next_best_node(int node, nodemask_t *used_node_mask) 773 { 774 return NUMA_NO_NODE; 775 } 776 #endif 777 778 /* 779 * mm/memory-failure.c 780 */ 781 extern int hwpoison_filter(struct page *p); 782 783 extern u32 hwpoison_filter_dev_major; 784 extern u32 hwpoison_filter_dev_minor; 785 extern u64 hwpoison_filter_flags_mask; 786 extern u64 hwpoison_filter_flags_value; 787 extern u64 hwpoison_filter_memcg; 788 extern u32 hwpoison_filter_enable; 789 790 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 791 unsigned long, unsigned long, 792 unsigned long, unsigned long); 793 794 extern void set_pageblock_order(void); 795 unsigned long reclaim_pages(struct list_head *folio_list); 796 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 797 struct list_head *folio_list); 798 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 799 #define ALLOC_WMARK_MIN WMARK_MIN 800 #define ALLOC_WMARK_LOW WMARK_LOW 801 #define ALLOC_WMARK_HIGH WMARK_HIGH 802 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 803 804 /* Mask to get the watermark bits */ 805 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 806 807 /* 808 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 809 * cannot assume a reduced access to memory reserves is sufficient for 810 * !MMU 811 */ 812 #ifdef CONFIG_MMU 813 #define ALLOC_OOM 0x08 814 #else 815 #define ALLOC_OOM ALLOC_NO_WATERMARKS 816 #endif 817 818 #define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access 819 * to 25% of the min watermark or 820 * 62.5% if __GFP_HIGH is set. 821 */ 822 #define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50% 823 * of the min watermark. 824 */ 825 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 826 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 827 #ifdef CONFIG_ZONE_DMA32 828 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 829 #else 830 #define ALLOC_NOFRAGMENT 0x0 831 #endif 832 #define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */ 833 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 834 835 /* Flags that allow allocations below the min watermark. */ 836 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM) 837 838 enum ttu_flags; 839 struct tlbflush_unmap_batch; 840 841 842 /* 843 * only for MM internal work items which do not depend on 844 * any allocations or locks which might depend on allocations 845 */ 846 extern struct workqueue_struct *mm_percpu_wq; 847 848 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 849 void try_to_unmap_flush(void); 850 void try_to_unmap_flush_dirty(void); 851 void flush_tlb_batched_pending(struct mm_struct *mm); 852 #else 853 static inline void try_to_unmap_flush(void) 854 { 855 } 856 static inline void try_to_unmap_flush_dirty(void) 857 { 858 } 859 static inline void flush_tlb_batched_pending(struct mm_struct *mm) 860 { 861 } 862 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 863 864 extern const struct trace_print_flags pageflag_names[]; 865 extern const struct trace_print_flags pagetype_names[]; 866 extern const struct trace_print_flags vmaflag_names[]; 867 extern const struct trace_print_flags gfpflag_names[]; 868 869 static inline bool is_migrate_highatomic(enum migratetype migratetype) 870 { 871 return migratetype == MIGRATE_HIGHATOMIC; 872 } 873 874 static inline bool is_migrate_highatomic_page(struct page *page) 875 { 876 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 877 } 878 879 void setup_zone_pageset(struct zone *zone); 880 881 struct migration_target_control { 882 int nid; /* preferred node id */ 883 nodemask_t *nmask; 884 gfp_t gfp_mask; 885 }; 886 887 /* 888 * mm/filemap.c 889 */ 890 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 891 struct folio *folio, loff_t fpos, size_t size); 892 893 /* 894 * mm/vmalloc.c 895 */ 896 #ifdef CONFIG_MMU 897 void __init vmalloc_init(void); 898 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 899 pgprot_t prot, struct page **pages, unsigned int page_shift); 900 #else 901 static inline void vmalloc_init(void) 902 { 903 } 904 905 static inline 906 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 907 pgprot_t prot, struct page **pages, unsigned int page_shift) 908 { 909 return -EINVAL; 910 } 911 #endif 912 913 int __must_check __vmap_pages_range_noflush(unsigned long addr, 914 unsigned long end, pgprot_t prot, 915 struct page **pages, unsigned int page_shift); 916 917 void vunmap_range_noflush(unsigned long start, unsigned long end); 918 919 void __vunmap_range_noflush(unsigned long start, unsigned long end); 920 921 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 922 unsigned long addr, int page_nid, int *flags); 923 924 void free_zone_device_page(struct page *page); 925 int migrate_device_coherent_page(struct page *page); 926 927 /* 928 * mm/gup.c 929 */ 930 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags); 931 int __must_check try_grab_page(struct page *page, unsigned int flags); 932 933 enum { 934 /* mark page accessed */ 935 FOLL_TOUCH = 1 << 16, 936 /* a retry, previous pass started an IO */ 937 FOLL_TRIED = 1 << 17, 938 /* we are working on non-current tsk/mm */ 939 FOLL_REMOTE = 1 << 18, 940 /* pages must be released via unpin_user_page */ 941 FOLL_PIN = 1 << 19, 942 /* gup_fast: prevent fall-back to slow gup */ 943 FOLL_FAST_ONLY = 1 << 20, 944 /* allow unlocking the mmap lock */ 945 FOLL_UNLOCKABLE = 1 << 21, 946 }; 947 948 /* 949 * Indicates for which pages that are write-protected in the page table, 950 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the 951 * GUP pin will remain consistent with the pages mapped into the page tables 952 * of the MM. 953 * 954 * Temporary unmapping of PageAnonExclusive() pages or clearing of 955 * PageAnonExclusive() has to protect against concurrent GUP: 956 * * Ordinary GUP: Using the PT lock 957 * * GUP-fast and fork(): mm->write_protect_seq 958 * * GUP-fast and KSM or temporary unmapping (swap, migration): see 959 * page_try_share_anon_rmap() 960 * 961 * Must be called with the (sub)page that's actually referenced via the 962 * page table entry, which might not necessarily be the head page for a 963 * PTE-mapped THP. 964 * 965 * If the vma is NULL, we're coming from the GUP-fast path and might have 966 * to fallback to the slow path just to lookup the vma. 967 */ 968 static inline bool gup_must_unshare(struct vm_area_struct *vma, 969 unsigned int flags, struct page *page) 970 { 971 /* 972 * FOLL_WRITE is implicitly handled correctly as the page table entry 973 * has to be writable -- and if it references (part of) an anonymous 974 * folio, that part is required to be marked exclusive. 975 */ 976 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) 977 return false; 978 /* 979 * Note: PageAnon(page) is stable until the page is actually getting 980 * freed. 981 */ 982 if (!PageAnon(page)) { 983 /* 984 * We only care about R/O long-term pining: R/O short-term 985 * pinning does not have the semantics to observe successive 986 * changes through the process page tables. 987 */ 988 if (!(flags & FOLL_LONGTERM)) 989 return false; 990 991 /* We really need the vma ... */ 992 if (!vma) 993 return true; 994 995 /* 996 * ... because we only care about writable private ("COW") 997 * mappings where we have to break COW early. 998 */ 999 return is_cow_mapping(vma->vm_flags); 1000 } 1001 1002 /* Paired with a memory barrier in page_try_share_anon_rmap(). */ 1003 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) 1004 smp_rmb(); 1005 1006 /* 1007 * Note that PageKsm() pages cannot be exclusive, and consequently, 1008 * cannot get pinned. 1009 */ 1010 return !PageAnonExclusive(page); 1011 } 1012 1013 extern bool mirrored_kernelcore; 1014 1015 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma) 1016 { 1017 /* 1018 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty 1019 * enablements, because when without soft-dirty being compiled in, 1020 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY) 1021 * will be constantly true. 1022 */ 1023 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) 1024 return false; 1025 1026 /* 1027 * Soft-dirty is kind of special: its tracking is enabled when the 1028 * vma flags not set. 1029 */ 1030 return !(vma->vm_flags & VM_SOFTDIRTY); 1031 } 1032 1033 /* 1034 * VMA Iterator functions shared between nommu and mmap 1035 */ 1036 static inline int vma_iter_prealloc(struct vma_iterator *vmi) 1037 { 1038 return mas_preallocate(&vmi->mas, GFP_KERNEL); 1039 } 1040 1041 static inline void vma_iter_clear(struct vma_iterator *vmi, 1042 unsigned long start, unsigned long end) 1043 { 1044 mas_set_range(&vmi->mas, start, end - 1); 1045 mas_store_prealloc(&vmi->mas, NULL); 1046 } 1047 1048 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi) 1049 { 1050 return mas_walk(&vmi->mas); 1051 } 1052 1053 /* Store a VMA with preallocated memory */ 1054 static inline void vma_iter_store(struct vma_iterator *vmi, 1055 struct vm_area_struct *vma) 1056 { 1057 1058 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1059 if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START && 1060 vmi->mas.index > vma->vm_start)) { 1061 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n", 1062 vmi->mas.index, vma->vm_start, vma->vm_start, 1063 vma->vm_end, vmi->mas.index, vmi->mas.last); 1064 } 1065 if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START && 1066 vmi->mas.last < vma->vm_start)) { 1067 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n", 1068 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end, 1069 vmi->mas.index, vmi->mas.last); 1070 } 1071 #endif 1072 1073 if (vmi->mas.node != MAS_START && 1074 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 1075 vma_iter_invalidate(vmi); 1076 1077 vmi->mas.index = vma->vm_start; 1078 vmi->mas.last = vma->vm_end - 1; 1079 mas_store_prealloc(&vmi->mas, vma); 1080 } 1081 1082 static inline int vma_iter_store_gfp(struct vma_iterator *vmi, 1083 struct vm_area_struct *vma, gfp_t gfp) 1084 { 1085 if (vmi->mas.node != MAS_START && 1086 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 1087 vma_iter_invalidate(vmi); 1088 1089 vmi->mas.index = vma->vm_start; 1090 vmi->mas.last = vma->vm_end - 1; 1091 mas_store_gfp(&vmi->mas, vma, gfp); 1092 if (unlikely(mas_is_err(&vmi->mas))) 1093 return -ENOMEM; 1094 1095 return 0; 1096 } 1097 1098 /* 1099 * VMA lock generalization 1100 */ 1101 struct vma_prepare { 1102 struct vm_area_struct *vma; 1103 struct vm_area_struct *adj_next; 1104 struct file *file; 1105 struct address_space *mapping; 1106 struct anon_vma *anon_vma; 1107 struct vm_area_struct *insert; 1108 struct vm_area_struct *remove; 1109 struct vm_area_struct *remove2; 1110 }; 1111 #endif /* __MM_INTERNAL_H */ 1112