1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 #ifndef __MM_INTERNAL_H 8 #define __MM_INTERNAL_H 9 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/rmap.h> 14 #include <linux/tracepoint-defs.h> 15 16 struct folio_batch; 17 18 /* 19 * The set of flags that only affect watermark checking and reclaim 20 * behaviour. This is used by the MM to obey the caller constraints 21 * about IO, FS and watermark checking while ignoring placement 22 * hints such as HIGHMEM usage. 23 */ 24 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 25 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 26 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 27 __GFP_NOLOCKDEP) 28 29 /* The GFP flags allowed during early boot */ 30 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 31 32 /* Control allocation cpuset and node placement constraints */ 33 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 34 35 /* Do not use these with a slab allocator */ 36 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 37 38 /* 39 * Different from WARN_ON_ONCE(), no warning will be issued 40 * when we specify __GFP_NOWARN. 41 */ 42 #define WARN_ON_ONCE_GFP(cond, gfp) ({ \ 43 static bool __section(".data.once") __warned; \ 44 int __ret_warn_once = !!(cond); \ 45 \ 46 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \ 47 __warned = true; \ 48 WARN_ON(1); \ 49 } \ 50 unlikely(__ret_warn_once); \ 51 }) 52 53 void page_writeback_init(void); 54 55 /* 56 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages, 57 * its nr_pages_mapped would be 0x400000: choose the COMPOUND_MAPPED bit 58 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently 59 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later. 60 */ 61 #define COMPOUND_MAPPED 0x800000 62 #define FOLIO_PAGES_MAPPED (COMPOUND_MAPPED - 1) 63 64 /* 65 * How many individual pages have an elevated _mapcount. Excludes 66 * the folio's entire_mapcount. 67 */ 68 static inline int folio_nr_pages_mapped(struct folio *folio) 69 { 70 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED; 71 } 72 73 static inline void *folio_raw_mapping(struct folio *folio) 74 { 75 unsigned long mapping = (unsigned long)folio->mapping; 76 77 return (void *)(mapping & ~PAGE_MAPPING_FLAGS); 78 } 79 80 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 81 int nr_throttled); 82 static inline void acct_reclaim_writeback(struct folio *folio) 83 { 84 pg_data_t *pgdat = folio_pgdat(folio); 85 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); 86 87 if (nr_throttled) 88 __acct_reclaim_writeback(pgdat, folio, nr_throttled); 89 } 90 91 static inline void wake_throttle_isolated(pg_data_t *pgdat) 92 { 93 wait_queue_head_t *wqh; 94 95 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; 96 if (waitqueue_active(wqh)) 97 wake_up(wqh); 98 } 99 100 vm_fault_t do_swap_page(struct vm_fault *vmf); 101 void folio_rotate_reclaimable(struct folio *folio); 102 bool __folio_end_writeback(struct folio *folio); 103 void deactivate_file_folio(struct folio *folio); 104 void folio_activate(struct folio *folio); 105 106 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, 107 struct vm_area_struct *start_vma, unsigned long floor, 108 unsigned long ceiling, bool mm_wr_locked); 109 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); 110 111 struct zap_details; 112 void unmap_page_range(struct mmu_gather *tlb, 113 struct vm_area_struct *vma, 114 unsigned long addr, unsigned long end, 115 struct zap_details *details); 116 117 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *, 118 unsigned int order); 119 void force_page_cache_ra(struct readahead_control *, unsigned long nr); 120 static inline void force_page_cache_readahead(struct address_space *mapping, 121 struct file *file, pgoff_t index, unsigned long nr_to_read) 122 { 123 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 124 force_page_cache_ra(&ractl, nr_to_read); 125 } 126 127 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 128 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 129 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 130 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 131 void filemap_free_folio(struct address_space *mapping, struct folio *folio); 132 int truncate_inode_folio(struct address_space *mapping, struct folio *folio); 133 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, 134 loff_t end); 135 long invalidate_inode_page(struct page *page); 136 unsigned long invalidate_mapping_pagevec(struct address_space *mapping, 137 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec); 138 139 /** 140 * folio_evictable - Test whether a folio is evictable. 141 * @folio: The folio to test. 142 * 143 * Test whether @folio is evictable -- i.e., should be placed on 144 * active/inactive lists vs unevictable list. 145 * 146 * Reasons folio might not be evictable: 147 * 1. folio's mapping marked unevictable 148 * 2. One of the pages in the folio is part of an mlocked VMA 149 */ 150 static inline bool folio_evictable(struct folio *folio) 151 { 152 bool ret; 153 154 /* Prevent address_space of inode and swap cache from being freed */ 155 rcu_read_lock(); 156 ret = !mapping_unevictable(folio_mapping(folio)) && 157 !folio_test_mlocked(folio); 158 rcu_read_unlock(); 159 return ret; 160 } 161 162 /* 163 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 164 * a count of one. 165 */ 166 static inline void set_page_refcounted(struct page *page) 167 { 168 VM_BUG_ON_PAGE(PageTail(page), page); 169 VM_BUG_ON_PAGE(page_ref_count(page), page); 170 set_page_count(page, 1); 171 } 172 173 extern unsigned long highest_memmap_pfn; 174 175 /* 176 * Maximum number of reclaim retries without progress before the OOM 177 * killer is consider the only way forward. 178 */ 179 #define MAX_RECLAIM_RETRIES 16 180 181 /* 182 * in mm/vmscan.c: 183 */ 184 bool isolate_lru_page(struct page *page); 185 bool folio_isolate_lru(struct folio *folio); 186 void putback_lru_page(struct page *page); 187 void folio_putback_lru(struct folio *folio); 188 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); 189 190 /* 191 * in mm/rmap.c: 192 */ 193 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 194 195 /* 196 * in mm/page_alloc.c 197 */ 198 #define K(x) ((x) << (PAGE_SHIFT-10)) 199 200 extern char * const zone_names[MAX_NR_ZONES]; 201 202 /* perform sanity checks on struct pages being allocated or freed */ 203 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 204 205 static inline bool is_check_pages_enabled(void) 206 { 207 return static_branch_unlikely(&check_pages_enabled); 208 } 209 210 /* 211 * Structure for holding the mostly immutable allocation parameters passed 212 * between functions involved in allocations, including the alloc_pages* 213 * family of functions. 214 * 215 * nodemask, migratetype and highest_zoneidx are initialized only once in 216 * __alloc_pages() and then never change. 217 * 218 * zonelist, preferred_zone and highest_zoneidx are set first in 219 * __alloc_pages() for the fast path, and might be later changed 220 * in __alloc_pages_slowpath(). All other functions pass the whole structure 221 * by a const pointer. 222 */ 223 struct alloc_context { 224 struct zonelist *zonelist; 225 nodemask_t *nodemask; 226 struct zoneref *preferred_zoneref; 227 int migratetype; 228 229 /* 230 * highest_zoneidx represents highest usable zone index of 231 * the allocation request. Due to the nature of the zone, 232 * memory on lower zone than the highest_zoneidx will be 233 * protected by lowmem_reserve[highest_zoneidx]. 234 * 235 * highest_zoneidx is also used by reclaim/compaction to limit 236 * the target zone since higher zone than this index cannot be 237 * usable for this allocation request. 238 */ 239 enum zone_type highest_zoneidx; 240 bool spread_dirty_pages; 241 }; 242 243 /* 244 * This function returns the order of a free page in the buddy system. In 245 * general, page_zone(page)->lock must be held by the caller to prevent the 246 * page from being allocated in parallel and returning garbage as the order. 247 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 248 * page cannot be allocated or merged in parallel. Alternatively, it must 249 * handle invalid values gracefully, and use buddy_order_unsafe() below. 250 */ 251 static inline unsigned int buddy_order(struct page *page) 252 { 253 /* PageBuddy() must be checked by the caller */ 254 return page_private(page); 255 } 256 257 /* 258 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 259 * PageBuddy() should be checked first by the caller to minimize race window, 260 * and invalid values must be handled gracefully. 261 * 262 * READ_ONCE is used so that if the caller assigns the result into a local 263 * variable and e.g. tests it for valid range before using, the compiler cannot 264 * decide to remove the variable and inline the page_private(page) multiple 265 * times, potentially observing different values in the tests and the actual 266 * use of the result. 267 */ 268 #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 269 270 /* 271 * This function checks whether a page is free && is the buddy 272 * we can coalesce a page and its buddy if 273 * (a) the buddy is not in a hole (check before calling!) && 274 * (b) the buddy is in the buddy system && 275 * (c) a page and its buddy have the same order && 276 * (d) a page and its buddy are in the same zone. 277 * 278 * For recording whether a page is in the buddy system, we set PageBuddy. 279 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 280 * 281 * For recording page's order, we use page_private(page). 282 */ 283 static inline bool page_is_buddy(struct page *page, struct page *buddy, 284 unsigned int order) 285 { 286 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 287 return false; 288 289 if (buddy_order(buddy) != order) 290 return false; 291 292 /* 293 * zone check is done late to avoid uselessly calculating 294 * zone/node ids for pages that could never merge. 295 */ 296 if (page_zone_id(page) != page_zone_id(buddy)) 297 return false; 298 299 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 300 301 return true; 302 } 303 304 /* 305 * Locate the struct page for both the matching buddy in our 306 * pair (buddy1) and the combined O(n+1) page they form (page). 307 * 308 * 1) Any buddy B1 will have an order O twin B2 which satisfies 309 * the following equation: 310 * B2 = B1 ^ (1 << O) 311 * For example, if the starting buddy (buddy2) is #8 its order 312 * 1 buddy is #10: 313 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 314 * 315 * 2) Any buddy B will have an order O+1 parent P which 316 * satisfies the following equation: 317 * P = B & ~(1 << O) 318 * 319 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 320 */ 321 static inline unsigned long 322 __find_buddy_pfn(unsigned long page_pfn, unsigned int order) 323 { 324 return page_pfn ^ (1 << order); 325 } 326 327 /* 328 * Find the buddy of @page and validate it. 329 * @page: The input page 330 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the 331 * function is used in the performance-critical __free_one_page(). 332 * @order: The order of the page 333 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to 334 * page_to_pfn(). 335 * 336 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is 337 * not the same as @page. The validation is necessary before use it. 338 * 339 * Return: the found buddy page or NULL if not found. 340 */ 341 static inline struct page *find_buddy_page_pfn(struct page *page, 342 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn) 343 { 344 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order); 345 struct page *buddy; 346 347 buddy = page + (__buddy_pfn - pfn); 348 if (buddy_pfn) 349 *buddy_pfn = __buddy_pfn; 350 351 if (page_is_buddy(page, buddy, order)) 352 return buddy; 353 return NULL; 354 } 355 356 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 357 unsigned long end_pfn, struct zone *zone); 358 359 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 360 unsigned long end_pfn, struct zone *zone) 361 { 362 if (zone->contiguous) 363 return pfn_to_page(start_pfn); 364 365 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 366 } 367 368 extern int __isolate_free_page(struct page *page, unsigned int order); 369 extern void __putback_isolated_page(struct page *page, unsigned int order, 370 int mt); 371 extern void memblock_free_pages(struct page *page, unsigned long pfn, 372 unsigned int order); 373 extern void __free_pages_core(struct page *page, unsigned int order); 374 375 static inline void prep_compound_head(struct page *page, unsigned int order) 376 { 377 struct folio *folio = (struct folio *)page; 378 379 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 380 set_compound_order(page, order); 381 atomic_set(&folio->_entire_mapcount, -1); 382 atomic_set(&folio->_nr_pages_mapped, 0); 383 atomic_set(&folio->_pincount, 0); 384 } 385 386 static inline void prep_compound_tail(struct page *head, int tail_idx) 387 { 388 struct page *p = head + tail_idx; 389 390 p->mapping = TAIL_MAPPING; 391 set_compound_head(p, head); 392 set_page_private(p, 0); 393 } 394 395 extern void prep_compound_page(struct page *page, unsigned int order); 396 397 extern void post_alloc_hook(struct page *page, unsigned int order, 398 gfp_t gfp_flags); 399 extern int user_min_free_kbytes; 400 401 extern void free_unref_page(struct page *page, unsigned int order); 402 extern void free_unref_page_list(struct list_head *list); 403 404 extern void zone_pcp_reset(struct zone *zone); 405 extern void zone_pcp_disable(struct zone *zone); 406 extern void zone_pcp_enable(struct zone *zone); 407 extern void zone_pcp_init(struct zone *zone); 408 409 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, 410 phys_addr_t min_addr, 411 int nid, bool exact_nid); 412 413 int split_free_page(struct page *free_page, 414 unsigned int order, unsigned long split_pfn_offset); 415 416 /* 417 * This will have no effect, other than possibly generating a warning, if the 418 * caller passes in a non-large folio. 419 */ 420 static inline void folio_set_order(struct folio *folio, unsigned int order) 421 { 422 if (WARN_ON_ONCE(!folio_test_large(folio))) 423 return; 424 425 folio->_folio_order = order; 426 #ifdef CONFIG_64BIT 427 /* 428 * When hugetlb dissolves a folio, we need to clear the tail 429 * page, rather than setting nr_pages to 1. 430 */ 431 folio->_folio_nr_pages = order ? 1U << order : 0; 432 #endif 433 } 434 435 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 436 437 /* 438 * in mm/compaction.c 439 */ 440 /* 441 * compact_control is used to track pages being migrated and the free pages 442 * they are being migrated to during memory compaction. The free_pfn starts 443 * at the end of a zone and migrate_pfn begins at the start. Movable pages 444 * are moved to the end of a zone during a compaction run and the run 445 * completes when free_pfn <= migrate_pfn 446 */ 447 struct compact_control { 448 struct list_head freepages; /* List of free pages to migrate to */ 449 struct list_head migratepages; /* List of pages being migrated */ 450 unsigned int nr_freepages; /* Number of isolated free pages */ 451 unsigned int nr_migratepages; /* Number of pages to migrate */ 452 unsigned long free_pfn; /* isolate_freepages search base */ 453 /* 454 * Acts as an in/out parameter to page isolation for migration. 455 * isolate_migratepages uses it as a search base. 456 * isolate_migratepages_block will update the value to the next pfn 457 * after the last isolated one. 458 */ 459 unsigned long migrate_pfn; 460 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 461 struct zone *zone; 462 unsigned long total_migrate_scanned; 463 unsigned long total_free_scanned; 464 unsigned short fast_search_fail;/* failures to use free list searches */ 465 short search_order; /* order to start a fast search at */ 466 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 467 int order; /* order a direct compactor needs */ 468 int migratetype; /* migratetype of direct compactor */ 469 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 470 const int highest_zoneidx; /* zone index of a direct compactor */ 471 enum migrate_mode mode; /* Async or sync migration mode */ 472 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 473 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 474 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 475 bool direct_compaction; /* False from kcompactd or /proc/... */ 476 bool proactive_compaction; /* kcompactd proactive compaction */ 477 bool whole_zone; /* Whole zone should/has been scanned */ 478 bool contended; /* Signal lock contention */ 479 bool finish_pageblock; /* Scan the remainder of a pageblock. Used 480 * when there are potentially transient 481 * isolation or migration failures to 482 * ensure forward progress. 483 */ 484 bool alloc_contig; /* alloc_contig_range allocation */ 485 }; 486 487 /* 488 * Used in direct compaction when a page should be taken from the freelists 489 * immediately when one is created during the free path. 490 */ 491 struct capture_control { 492 struct compact_control *cc; 493 struct page *page; 494 }; 495 496 unsigned long 497 isolate_freepages_range(struct compact_control *cc, 498 unsigned long start_pfn, unsigned long end_pfn); 499 int 500 isolate_migratepages_range(struct compact_control *cc, 501 unsigned long low_pfn, unsigned long end_pfn); 502 503 int __alloc_contig_migrate_range(struct compact_control *cc, 504 unsigned long start, unsigned long end); 505 506 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 507 void init_cma_reserved_pageblock(struct page *page); 508 509 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 510 511 int find_suitable_fallback(struct free_area *area, unsigned int order, 512 int migratetype, bool only_stealable, bool *can_steal); 513 514 static inline bool free_area_empty(struct free_area *area, int migratetype) 515 { 516 return list_empty(&area->free_list[migratetype]); 517 } 518 519 /* 520 * These three helpers classifies VMAs for virtual memory accounting. 521 */ 522 523 /* 524 * Executable code area - executable, not writable, not stack 525 */ 526 static inline bool is_exec_mapping(vm_flags_t flags) 527 { 528 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 529 } 530 531 /* 532 * Stack area - automatically grows in one direction 533 * 534 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 535 * do_mmap() forbids all other combinations. 536 */ 537 static inline bool is_stack_mapping(vm_flags_t flags) 538 { 539 return (flags & VM_STACK) == VM_STACK; 540 } 541 542 /* 543 * Data area - private, writable, not stack 544 */ 545 static inline bool is_data_mapping(vm_flags_t flags) 546 { 547 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 548 } 549 550 /* mm/util.c */ 551 struct anon_vma *folio_anon_vma(struct folio *folio); 552 553 #ifdef CONFIG_MMU 554 void unmap_mapping_folio(struct folio *folio); 555 extern long populate_vma_page_range(struct vm_area_struct *vma, 556 unsigned long start, unsigned long end, int *locked); 557 extern long faultin_vma_page_range(struct vm_area_struct *vma, 558 unsigned long start, unsigned long end, 559 bool write, int *locked); 560 extern int mlock_future_check(struct mm_struct *mm, unsigned long flags, 561 unsigned long len); 562 /* 563 * mlock_vma_folio() and munlock_vma_folio(): 564 * should be called with vma's mmap_lock held for read or write, 565 * under page table lock for the pte/pmd being added or removed. 566 * 567 * mlock is usually called at the end of page_add_*_rmap(), munlock at 568 * the end of page_remove_rmap(); but new anon folios are managed by 569 * folio_add_lru_vma() calling mlock_new_folio(). 570 * 571 * @compound is used to include pmd mappings of THPs, but filter out 572 * pte mappings of THPs, which cannot be consistently counted: a pte 573 * mapping of the THP head cannot be distinguished by the page alone. 574 */ 575 void mlock_folio(struct folio *folio); 576 static inline void mlock_vma_folio(struct folio *folio, 577 struct vm_area_struct *vma, bool compound) 578 { 579 /* 580 * The VM_SPECIAL check here serves two purposes. 581 * 1) VM_IO check prevents migration from double-counting during mlock. 582 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED 583 * is never left set on a VM_SPECIAL vma, there is an interval while 584 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may 585 * still be set while VM_SPECIAL bits are added: so ignore it then. 586 */ 587 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) && 588 (compound || !folio_test_large(folio))) 589 mlock_folio(folio); 590 } 591 592 void munlock_folio(struct folio *folio); 593 static inline void munlock_vma_folio(struct folio *folio, 594 struct vm_area_struct *vma, bool compound) 595 { 596 if (unlikely(vma->vm_flags & VM_LOCKED) && 597 (compound || !folio_test_large(folio))) 598 munlock_folio(folio); 599 } 600 601 void mlock_new_folio(struct folio *folio); 602 bool need_mlock_drain(int cpu); 603 void mlock_drain_local(void); 604 void mlock_drain_remote(int cpu); 605 606 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 607 608 /* 609 * Return the start of user virtual address at the specific offset within 610 * a vma. 611 */ 612 static inline unsigned long 613 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages, 614 struct vm_area_struct *vma) 615 { 616 unsigned long address; 617 618 if (pgoff >= vma->vm_pgoff) { 619 address = vma->vm_start + 620 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 621 /* Check for address beyond vma (or wrapped through 0?) */ 622 if (address < vma->vm_start || address >= vma->vm_end) 623 address = -EFAULT; 624 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) { 625 /* Test above avoids possibility of wrap to 0 on 32-bit */ 626 address = vma->vm_start; 627 } else { 628 address = -EFAULT; 629 } 630 return address; 631 } 632 633 /* 634 * Return the start of user virtual address of a page within a vma. 635 * Returns -EFAULT if all of the page is outside the range of vma. 636 * If page is a compound head, the entire compound page is considered. 637 */ 638 static inline unsigned long 639 vma_address(struct page *page, struct vm_area_struct *vma) 640 { 641 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 642 return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma); 643 } 644 645 /* 646 * Then at what user virtual address will none of the range be found in vma? 647 * Assumes that vma_address() already returned a good starting address. 648 */ 649 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw) 650 { 651 struct vm_area_struct *vma = pvmw->vma; 652 pgoff_t pgoff; 653 unsigned long address; 654 655 /* Common case, plus ->pgoff is invalid for KSM */ 656 if (pvmw->nr_pages == 1) 657 return pvmw->address + PAGE_SIZE; 658 659 pgoff = pvmw->pgoff + pvmw->nr_pages; 660 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 661 /* Check for address beyond vma (or wrapped through 0?) */ 662 if (address < vma->vm_start || address > vma->vm_end) 663 address = vma->vm_end; 664 return address; 665 } 666 667 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 668 struct file *fpin) 669 { 670 int flags = vmf->flags; 671 672 if (fpin) 673 return fpin; 674 675 /* 676 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 677 * anything, so we only pin the file and drop the mmap_lock if only 678 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 679 */ 680 if (fault_flag_allow_retry_first(flags) && 681 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 682 fpin = get_file(vmf->vma->vm_file); 683 mmap_read_unlock(vmf->vma->vm_mm); 684 } 685 return fpin; 686 } 687 #else /* !CONFIG_MMU */ 688 static inline void unmap_mapping_folio(struct folio *folio) { } 689 static inline void mlock_new_folio(struct folio *folio) { } 690 static inline bool need_mlock_drain(int cpu) { return false; } 691 static inline void mlock_drain_local(void) { } 692 static inline void mlock_drain_remote(int cpu) { } 693 static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 694 { 695 } 696 #endif /* !CONFIG_MMU */ 697 698 /* Memory initialisation debug and verification */ 699 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 700 DECLARE_STATIC_KEY_TRUE(deferred_pages); 701 702 bool __init deferred_grow_zone(struct zone *zone, unsigned int order); 703 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 704 705 enum mminit_level { 706 MMINIT_WARNING, 707 MMINIT_VERIFY, 708 MMINIT_TRACE 709 }; 710 711 #ifdef CONFIG_DEBUG_MEMORY_INIT 712 713 extern int mminit_loglevel; 714 715 #define mminit_dprintk(level, prefix, fmt, arg...) \ 716 do { \ 717 if (level < mminit_loglevel) { \ 718 if (level <= MMINIT_WARNING) \ 719 pr_warn("mminit::" prefix " " fmt, ##arg); \ 720 else \ 721 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 722 } \ 723 } while (0) 724 725 extern void mminit_verify_pageflags_layout(void); 726 extern void mminit_verify_zonelist(void); 727 #else 728 729 static inline void mminit_dprintk(enum mminit_level level, 730 const char *prefix, const char *fmt, ...) 731 { 732 } 733 734 static inline void mminit_verify_pageflags_layout(void) 735 { 736 } 737 738 static inline void mminit_verify_zonelist(void) 739 { 740 } 741 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 742 743 #define NODE_RECLAIM_NOSCAN -2 744 #define NODE_RECLAIM_FULL -1 745 #define NODE_RECLAIM_SOME 0 746 #define NODE_RECLAIM_SUCCESS 1 747 748 #ifdef CONFIG_NUMA 749 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 750 extern int find_next_best_node(int node, nodemask_t *used_node_mask); 751 #else 752 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 753 unsigned int order) 754 { 755 return NODE_RECLAIM_NOSCAN; 756 } 757 static inline int find_next_best_node(int node, nodemask_t *used_node_mask) 758 { 759 return NUMA_NO_NODE; 760 } 761 #endif 762 763 /* 764 * mm/memory-failure.c 765 */ 766 extern int hwpoison_filter(struct page *p); 767 768 extern u32 hwpoison_filter_dev_major; 769 extern u32 hwpoison_filter_dev_minor; 770 extern u64 hwpoison_filter_flags_mask; 771 extern u64 hwpoison_filter_flags_value; 772 extern u64 hwpoison_filter_memcg; 773 extern u32 hwpoison_filter_enable; 774 775 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 776 unsigned long, unsigned long, 777 unsigned long, unsigned long); 778 779 extern void set_pageblock_order(void); 780 unsigned long reclaim_pages(struct list_head *folio_list); 781 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 782 struct list_head *folio_list); 783 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 784 #define ALLOC_WMARK_MIN WMARK_MIN 785 #define ALLOC_WMARK_LOW WMARK_LOW 786 #define ALLOC_WMARK_HIGH WMARK_HIGH 787 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 788 789 /* Mask to get the watermark bits */ 790 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 791 792 /* 793 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 794 * cannot assume a reduced access to memory reserves is sufficient for 795 * !MMU 796 */ 797 #ifdef CONFIG_MMU 798 #define ALLOC_OOM 0x08 799 #else 800 #define ALLOC_OOM ALLOC_NO_WATERMARKS 801 #endif 802 803 #define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access 804 * to 25% of the min watermark or 805 * 62.5% if __GFP_HIGH is set. 806 */ 807 #define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50% 808 * of the min watermark. 809 */ 810 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 811 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 812 #ifdef CONFIG_ZONE_DMA32 813 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 814 #else 815 #define ALLOC_NOFRAGMENT 0x0 816 #endif 817 #define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */ 818 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 819 820 /* Flags that allow allocations below the min watermark. */ 821 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM) 822 823 enum ttu_flags; 824 struct tlbflush_unmap_batch; 825 826 827 /* 828 * only for MM internal work items which do not depend on 829 * any allocations or locks which might depend on allocations 830 */ 831 extern struct workqueue_struct *mm_percpu_wq; 832 833 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 834 void try_to_unmap_flush(void); 835 void try_to_unmap_flush_dirty(void); 836 void flush_tlb_batched_pending(struct mm_struct *mm); 837 #else 838 static inline void try_to_unmap_flush(void) 839 { 840 } 841 static inline void try_to_unmap_flush_dirty(void) 842 { 843 } 844 static inline void flush_tlb_batched_pending(struct mm_struct *mm) 845 { 846 } 847 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 848 849 extern const struct trace_print_flags pageflag_names[]; 850 extern const struct trace_print_flags pagetype_names[]; 851 extern const struct trace_print_flags vmaflag_names[]; 852 extern const struct trace_print_flags gfpflag_names[]; 853 854 static inline bool is_migrate_highatomic(enum migratetype migratetype) 855 { 856 return migratetype == MIGRATE_HIGHATOMIC; 857 } 858 859 static inline bool is_migrate_highatomic_page(struct page *page) 860 { 861 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 862 } 863 864 void setup_zone_pageset(struct zone *zone); 865 866 struct migration_target_control { 867 int nid; /* preferred node id */ 868 nodemask_t *nmask; 869 gfp_t gfp_mask; 870 }; 871 872 /* 873 * mm/filemap.c 874 */ 875 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 876 struct folio *folio, loff_t fpos, size_t size); 877 878 /* 879 * mm/vmalloc.c 880 */ 881 #ifdef CONFIG_MMU 882 void __init vmalloc_init(void); 883 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 884 pgprot_t prot, struct page **pages, unsigned int page_shift); 885 #else 886 static inline void vmalloc_init(void) 887 { 888 } 889 890 static inline 891 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 892 pgprot_t prot, struct page **pages, unsigned int page_shift) 893 { 894 return -EINVAL; 895 } 896 #endif 897 898 int __must_check __vmap_pages_range_noflush(unsigned long addr, 899 unsigned long end, pgprot_t prot, 900 struct page **pages, unsigned int page_shift); 901 902 void vunmap_range_noflush(unsigned long start, unsigned long end); 903 904 void __vunmap_range_noflush(unsigned long start, unsigned long end); 905 906 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 907 unsigned long addr, int page_nid, int *flags); 908 909 void free_zone_device_page(struct page *page); 910 int migrate_device_coherent_page(struct page *page); 911 912 /* 913 * mm/gup.c 914 */ 915 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags); 916 int __must_check try_grab_page(struct page *page, unsigned int flags); 917 918 enum { 919 /* mark page accessed */ 920 FOLL_TOUCH = 1 << 16, 921 /* a retry, previous pass started an IO */ 922 FOLL_TRIED = 1 << 17, 923 /* we are working on non-current tsk/mm */ 924 FOLL_REMOTE = 1 << 18, 925 /* pages must be released via unpin_user_page */ 926 FOLL_PIN = 1 << 19, 927 /* gup_fast: prevent fall-back to slow gup */ 928 FOLL_FAST_ONLY = 1 << 20, 929 /* allow unlocking the mmap lock */ 930 FOLL_UNLOCKABLE = 1 << 21, 931 }; 932 933 /* 934 * Indicates for which pages that are write-protected in the page table, 935 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the 936 * GUP pin will remain consistent with the pages mapped into the page tables 937 * of the MM. 938 * 939 * Temporary unmapping of PageAnonExclusive() pages or clearing of 940 * PageAnonExclusive() has to protect against concurrent GUP: 941 * * Ordinary GUP: Using the PT lock 942 * * GUP-fast and fork(): mm->write_protect_seq 943 * * GUP-fast and KSM or temporary unmapping (swap, migration): see 944 * page_try_share_anon_rmap() 945 * 946 * Must be called with the (sub)page that's actually referenced via the 947 * page table entry, which might not necessarily be the head page for a 948 * PTE-mapped THP. 949 * 950 * If the vma is NULL, we're coming from the GUP-fast path and might have 951 * to fallback to the slow path just to lookup the vma. 952 */ 953 static inline bool gup_must_unshare(struct vm_area_struct *vma, 954 unsigned int flags, struct page *page) 955 { 956 /* 957 * FOLL_WRITE is implicitly handled correctly as the page table entry 958 * has to be writable -- and if it references (part of) an anonymous 959 * folio, that part is required to be marked exclusive. 960 */ 961 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) 962 return false; 963 /* 964 * Note: PageAnon(page) is stable until the page is actually getting 965 * freed. 966 */ 967 if (!PageAnon(page)) { 968 /* 969 * We only care about R/O long-term pining: R/O short-term 970 * pinning does not have the semantics to observe successive 971 * changes through the process page tables. 972 */ 973 if (!(flags & FOLL_LONGTERM)) 974 return false; 975 976 /* We really need the vma ... */ 977 if (!vma) 978 return true; 979 980 /* 981 * ... because we only care about writable private ("COW") 982 * mappings where we have to break COW early. 983 */ 984 return is_cow_mapping(vma->vm_flags); 985 } 986 987 /* Paired with a memory barrier in page_try_share_anon_rmap(). */ 988 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) 989 smp_rmb(); 990 991 /* 992 * Note that PageKsm() pages cannot be exclusive, and consequently, 993 * cannot get pinned. 994 */ 995 return !PageAnonExclusive(page); 996 } 997 998 extern bool mirrored_kernelcore; 999 1000 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma) 1001 { 1002 /* 1003 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty 1004 * enablements, because when without soft-dirty being compiled in, 1005 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY) 1006 * will be constantly true. 1007 */ 1008 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) 1009 return false; 1010 1011 /* 1012 * Soft-dirty is kind of special: its tracking is enabled when the 1013 * vma flags not set. 1014 */ 1015 return !(vma->vm_flags & VM_SOFTDIRTY); 1016 } 1017 1018 /* 1019 * VMA Iterator functions shared between nommu and mmap 1020 */ 1021 static inline int vma_iter_prealloc(struct vma_iterator *vmi) 1022 { 1023 return mas_preallocate(&vmi->mas, GFP_KERNEL); 1024 } 1025 1026 static inline void vma_iter_clear(struct vma_iterator *vmi, 1027 unsigned long start, unsigned long end) 1028 { 1029 mas_set_range(&vmi->mas, start, end - 1); 1030 mas_store_prealloc(&vmi->mas, NULL); 1031 } 1032 1033 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi) 1034 { 1035 return mas_walk(&vmi->mas); 1036 } 1037 1038 /* Store a VMA with preallocated memory */ 1039 static inline void vma_iter_store(struct vma_iterator *vmi, 1040 struct vm_area_struct *vma) 1041 { 1042 1043 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1044 if (WARN_ON(vmi->mas.node != MAS_START && vmi->mas.index > vma->vm_start)) { 1045 printk("%lu > %lu\n", vmi->mas.index, vma->vm_start); 1046 printk("store of vma %lu-%lu", vma->vm_start, vma->vm_end); 1047 printk("into slot %lu-%lu", vmi->mas.index, vmi->mas.last); 1048 mt_dump(vmi->mas.tree); 1049 } 1050 if (WARN_ON(vmi->mas.node != MAS_START && vmi->mas.last < vma->vm_start)) { 1051 printk("%lu < %lu\n", vmi->mas.last, vma->vm_start); 1052 printk("store of vma %lu-%lu", vma->vm_start, vma->vm_end); 1053 printk("into slot %lu-%lu", vmi->mas.index, vmi->mas.last); 1054 mt_dump(vmi->mas.tree); 1055 } 1056 #endif 1057 1058 if (vmi->mas.node != MAS_START && 1059 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 1060 vma_iter_invalidate(vmi); 1061 1062 vmi->mas.index = vma->vm_start; 1063 vmi->mas.last = vma->vm_end - 1; 1064 mas_store_prealloc(&vmi->mas, vma); 1065 } 1066 1067 static inline int vma_iter_store_gfp(struct vma_iterator *vmi, 1068 struct vm_area_struct *vma, gfp_t gfp) 1069 { 1070 if (vmi->mas.node != MAS_START && 1071 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 1072 vma_iter_invalidate(vmi); 1073 1074 vmi->mas.index = vma->vm_start; 1075 vmi->mas.last = vma->vm_end - 1; 1076 mas_store_gfp(&vmi->mas, vma, gfp); 1077 if (unlikely(mas_is_err(&vmi->mas))) 1078 return -ENOMEM; 1079 1080 return 0; 1081 } 1082 1083 /* 1084 * VMA lock generalization 1085 */ 1086 struct vma_prepare { 1087 struct vm_area_struct *vma; 1088 struct vm_area_struct *adj_next; 1089 struct file *file; 1090 struct address_space *mapping; 1091 struct anon_vma *anon_vma; 1092 struct vm_area_struct *insert; 1093 struct vm_area_struct *remove; 1094 struct vm_area_struct *remove2; 1095 }; 1096 #endif /* __MM_INTERNAL_H */ 1097