xref: /openbmc/linux/mm/internal.h (revision 66127f0d)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3  *
4  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9 
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/rmap.h>
14 #include <linux/tracepoint-defs.h>
15 
16 struct folio_batch;
17 
18 /*
19  * The set of flags that only affect watermark checking and reclaim
20  * behaviour. This is used by the MM to obey the caller constraints
21  * about IO, FS and watermark checking while ignoring placement
22  * hints such as HIGHMEM usage.
23  */
24 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
25 			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
26 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
27 			__GFP_NOLOCKDEP)
28 
29 /* The GFP flags allowed during early boot */
30 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
31 
32 /* Control allocation cpuset and node placement constraints */
33 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
34 
35 /* Do not use these with a slab allocator */
36 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
37 
38 /*
39  * Different from WARN_ON_ONCE(), no warning will be issued
40  * when we specify __GFP_NOWARN.
41  */
42 #define WARN_ON_ONCE_GFP(cond, gfp)	({				\
43 	static bool __section(".data..once") __warned;			\
44 	int __ret_warn_once = !!(cond);					\
45 									\
46 	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
47 		__warned = true;					\
48 		WARN_ON(1);						\
49 	}								\
50 	unlikely(__ret_warn_once);					\
51 })
52 
53 void page_writeback_init(void);
54 
55 /*
56  * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
57  * its nr_pages_mapped would be 0x400000: choose the COMPOUND_MAPPED bit
58  * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
59  * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
60  */
61 #define COMPOUND_MAPPED		0x800000
62 #define FOLIO_PAGES_MAPPED	(COMPOUND_MAPPED - 1)
63 
64 /*
65  * Flags passed to __show_mem() and show_free_areas() to suppress output in
66  * various contexts.
67  */
68 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
69 
70 /*
71  * How many individual pages have an elevated _mapcount.  Excludes
72  * the folio's entire_mapcount.
73  */
74 static inline int folio_nr_pages_mapped(struct folio *folio)
75 {
76 	return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
77 }
78 
79 static inline void *folio_raw_mapping(struct folio *folio)
80 {
81 	unsigned long mapping = (unsigned long)folio->mapping;
82 
83 	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
84 }
85 
86 /*
87  * This is a file-backed mapping, and is about to be memory mapped - invoke its
88  * mmap hook and safely handle error conditions. On error, VMA hooks will be
89  * mutated.
90  *
91  * @file: File which backs the mapping.
92  * @vma:  VMA which we are mapping.
93  *
94  * Returns: 0 if success, error otherwise.
95  */
96 static inline int mmap_file(struct file *file, struct vm_area_struct *vma)
97 {
98 	int err = call_mmap(file, vma);
99 
100 	if (likely(!err))
101 		return 0;
102 
103 	/*
104 	 * OK, we tried to call the file hook for mmap(), but an error
105 	 * arose. The mapping is in an inconsistent state and we most not invoke
106 	 * any further hooks on it.
107 	 */
108 	vma->vm_ops = &vma_dummy_vm_ops;
109 
110 	return err;
111 }
112 
113 /*
114  * If the VMA has a close hook then close it, and since closing it might leave
115  * it in an inconsistent state which makes the use of any hooks suspect, clear
116  * them down by installing dummy empty hooks.
117  */
118 static inline void vma_close(struct vm_area_struct *vma)
119 {
120 	if (vma->vm_ops && vma->vm_ops->close) {
121 		vma->vm_ops->close(vma);
122 
123 		/*
124 		 * The mapping is in an inconsistent state, and no further hooks
125 		 * may be invoked upon it.
126 		 */
127 		vma->vm_ops = &vma_dummy_vm_ops;
128 	}
129 }
130 
131 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
132 						int nr_throttled);
133 static inline void acct_reclaim_writeback(struct folio *folio)
134 {
135 	pg_data_t *pgdat = folio_pgdat(folio);
136 	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
137 
138 	if (nr_throttled)
139 		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
140 }
141 
142 static inline void wake_throttle_isolated(pg_data_t *pgdat)
143 {
144 	wait_queue_head_t *wqh;
145 
146 	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
147 	if (waitqueue_active(wqh))
148 		wake_up(wqh);
149 }
150 
151 vm_fault_t do_swap_page(struct vm_fault *vmf);
152 void folio_rotate_reclaimable(struct folio *folio);
153 bool __folio_end_writeback(struct folio *folio);
154 void deactivate_file_folio(struct folio *folio);
155 void folio_activate(struct folio *folio);
156 
157 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
158 		   struct vm_area_struct *start_vma, unsigned long floor,
159 		   unsigned long ceiling, bool mm_wr_locked);
160 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
161 
162 struct zap_details;
163 void unmap_page_range(struct mmu_gather *tlb,
164 			     struct vm_area_struct *vma,
165 			     unsigned long addr, unsigned long end,
166 			     struct zap_details *details);
167 
168 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
169 		unsigned int order);
170 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
171 static inline void force_page_cache_readahead(struct address_space *mapping,
172 		struct file *file, pgoff_t index, unsigned long nr_to_read)
173 {
174 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
175 	force_page_cache_ra(&ractl, nr_to_read);
176 }
177 
178 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
179 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
180 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
181 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
182 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
183 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
184 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
185 		loff_t end);
186 long invalidate_inode_page(struct page *page);
187 unsigned long mapping_try_invalidate(struct address_space *mapping,
188 		pgoff_t start, pgoff_t end, unsigned long *nr_failed);
189 
190 /**
191  * folio_evictable - Test whether a folio is evictable.
192  * @folio: The folio to test.
193  *
194  * Test whether @folio is evictable -- i.e., should be placed on
195  * active/inactive lists vs unevictable list.
196  *
197  * Reasons folio might not be evictable:
198  * 1. folio's mapping marked unevictable
199  * 2. One of the pages in the folio is part of an mlocked VMA
200  */
201 static inline bool folio_evictable(struct folio *folio)
202 {
203 	bool ret;
204 
205 	/* Prevent address_space of inode and swap cache from being freed */
206 	rcu_read_lock();
207 	ret = !mapping_unevictable(folio_mapping(folio)) &&
208 			!folio_test_mlocked(folio);
209 	rcu_read_unlock();
210 	return ret;
211 }
212 
213 /*
214  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
215  * a count of one.
216  */
217 static inline void set_page_refcounted(struct page *page)
218 {
219 	VM_BUG_ON_PAGE(PageTail(page), page);
220 	VM_BUG_ON_PAGE(page_ref_count(page), page);
221 	set_page_count(page, 1);
222 }
223 
224 /*
225  * Return true if a folio needs ->release_folio() calling upon it.
226  */
227 static inline bool folio_needs_release(struct folio *folio)
228 {
229 	struct address_space *mapping = folio_mapping(folio);
230 
231 	return folio_has_private(folio) ||
232 		(mapping && mapping_release_always(mapping));
233 }
234 
235 extern unsigned long highest_memmap_pfn;
236 
237 /*
238  * Maximum number of reclaim retries without progress before the OOM
239  * killer is consider the only way forward.
240  */
241 #define MAX_RECLAIM_RETRIES 16
242 
243 /*
244  * in mm/vmscan.c:
245  */
246 bool isolate_lru_page(struct page *page);
247 bool folio_isolate_lru(struct folio *folio);
248 void putback_lru_page(struct page *page);
249 void folio_putback_lru(struct folio *folio);
250 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
251 
252 /*
253  * in mm/rmap.c:
254  */
255 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
256 
257 /*
258  * in mm/page_alloc.c
259  */
260 #define K(x) ((x) << (PAGE_SHIFT-10))
261 
262 extern char * const zone_names[MAX_NR_ZONES];
263 
264 /* perform sanity checks on struct pages being allocated or freed */
265 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
266 
267 extern int min_free_kbytes;
268 
269 void setup_per_zone_wmarks(void);
270 void calculate_min_free_kbytes(void);
271 int __meminit init_per_zone_wmark_min(void);
272 void page_alloc_sysctl_init(void);
273 
274 /*
275  * Structure for holding the mostly immutable allocation parameters passed
276  * between functions involved in allocations, including the alloc_pages*
277  * family of functions.
278  *
279  * nodemask, migratetype and highest_zoneidx are initialized only once in
280  * __alloc_pages() and then never change.
281  *
282  * zonelist, preferred_zone and highest_zoneidx are set first in
283  * __alloc_pages() for the fast path, and might be later changed
284  * in __alloc_pages_slowpath(). All other functions pass the whole structure
285  * by a const pointer.
286  */
287 struct alloc_context {
288 	struct zonelist *zonelist;
289 	nodemask_t *nodemask;
290 	struct zoneref *preferred_zoneref;
291 	int migratetype;
292 
293 	/*
294 	 * highest_zoneidx represents highest usable zone index of
295 	 * the allocation request. Due to the nature of the zone,
296 	 * memory on lower zone than the highest_zoneidx will be
297 	 * protected by lowmem_reserve[highest_zoneidx].
298 	 *
299 	 * highest_zoneidx is also used by reclaim/compaction to limit
300 	 * the target zone since higher zone than this index cannot be
301 	 * usable for this allocation request.
302 	 */
303 	enum zone_type highest_zoneidx;
304 	bool spread_dirty_pages;
305 };
306 
307 /*
308  * This function returns the order of a free page in the buddy system. In
309  * general, page_zone(page)->lock must be held by the caller to prevent the
310  * page from being allocated in parallel and returning garbage as the order.
311  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
312  * page cannot be allocated or merged in parallel. Alternatively, it must
313  * handle invalid values gracefully, and use buddy_order_unsafe() below.
314  */
315 static inline unsigned int buddy_order(struct page *page)
316 {
317 	/* PageBuddy() must be checked by the caller */
318 	return page_private(page);
319 }
320 
321 /*
322  * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
323  * PageBuddy() should be checked first by the caller to minimize race window,
324  * and invalid values must be handled gracefully.
325  *
326  * READ_ONCE is used so that if the caller assigns the result into a local
327  * variable and e.g. tests it for valid range before using, the compiler cannot
328  * decide to remove the variable and inline the page_private(page) multiple
329  * times, potentially observing different values in the tests and the actual
330  * use of the result.
331  */
332 #define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
333 
334 /*
335  * This function checks whether a page is free && is the buddy
336  * we can coalesce a page and its buddy if
337  * (a) the buddy is not in a hole (check before calling!) &&
338  * (b) the buddy is in the buddy system &&
339  * (c) a page and its buddy have the same order &&
340  * (d) a page and its buddy are in the same zone.
341  *
342  * For recording whether a page is in the buddy system, we set PageBuddy.
343  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
344  *
345  * For recording page's order, we use page_private(page).
346  */
347 static inline bool page_is_buddy(struct page *page, struct page *buddy,
348 				 unsigned int order)
349 {
350 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
351 		return false;
352 
353 	if (buddy_order(buddy) != order)
354 		return false;
355 
356 	/*
357 	 * zone check is done late to avoid uselessly calculating
358 	 * zone/node ids for pages that could never merge.
359 	 */
360 	if (page_zone_id(page) != page_zone_id(buddy))
361 		return false;
362 
363 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
364 
365 	return true;
366 }
367 
368 /*
369  * Locate the struct page for both the matching buddy in our
370  * pair (buddy1) and the combined O(n+1) page they form (page).
371  *
372  * 1) Any buddy B1 will have an order O twin B2 which satisfies
373  * the following equation:
374  *     B2 = B1 ^ (1 << O)
375  * For example, if the starting buddy (buddy2) is #8 its order
376  * 1 buddy is #10:
377  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
378  *
379  * 2) Any buddy B will have an order O+1 parent P which
380  * satisfies the following equation:
381  *     P = B & ~(1 << O)
382  *
383  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
384  */
385 static inline unsigned long
386 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
387 {
388 	return page_pfn ^ (1 << order);
389 }
390 
391 /*
392  * Find the buddy of @page and validate it.
393  * @page: The input page
394  * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
395  *       function is used in the performance-critical __free_one_page().
396  * @order: The order of the page
397  * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
398  *             page_to_pfn().
399  *
400  * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
401  * not the same as @page. The validation is necessary before use it.
402  *
403  * Return: the found buddy page or NULL if not found.
404  */
405 static inline struct page *find_buddy_page_pfn(struct page *page,
406 			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
407 {
408 	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
409 	struct page *buddy;
410 
411 	buddy = page + (__buddy_pfn - pfn);
412 	if (buddy_pfn)
413 		*buddy_pfn = __buddy_pfn;
414 
415 	if (page_is_buddy(page, buddy, order))
416 		return buddy;
417 	return NULL;
418 }
419 
420 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
421 				unsigned long end_pfn, struct zone *zone);
422 
423 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
424 				unsigned long end_pfn, struct zone *zone)
425 {
426 	if (zone->contiguous)
427 		return pfn_to_page(start_pfn);
428 
429 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
430 }
431 
432 void set_zone_contiguous(struct zone *zone);
433 
434 static inline void clear_zone_contiguous(struct zone *zone)
435 {
436 	zone->contiguous = false;
437 }
438 
439 extern int __isolate_free_page(struct page *page, unsigned int order);
440 extern void __putback_isolated_page(struct page *page, unsigned int order,
441 				    int mt);
442 extern void memblock_free_pages(struct page *page, unsigned long pfn,
443 					unsigned int order);
444 extern void __free_pages_core(struct page *page, unsigned int order);
445 
446 /*
447  * This will have no effect, other than possibly generating a warning, if the
448  * caller passes in a non-large folio.
449  */
450 static inline void folio_set_order(struct folio *folio, unsigned int order)
451 {
452 	if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
453 		return;
454 
455 	folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
456 #ifdef CONFIG_64BIT
457 	folio->_folio_nr_pages = 1U << order;
458 #endif
459 }
460 
461 bool __folio_unqueue_deferred_split(struct folio *folio);
462 static inline bool folio_unqueue_deferred_split(struct folio *folio)
463 {
464 	if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
465 		return false;
466 
467 	/*
468 	 * At this point, there is no one trying to add the folio to
469 	 * deferred_list. If folio is not in deferred_list, it's safe
470 	 * to check without acquiring the split_queue_lock.
471 	 */
472 	if (data_race(list_empty(&folio->_deferred_list)))
473 		return false;
474 
475 	return __folio_unqueue_deferred_split(folio);
476 }
477 
478 static inline struct folio *page_rmappable_folio(struct page *page)
479 {
480 	struct folio *folio = (struct folio *)page;
481 
482 	folio_prep_large_rmappable(folio);
483 	return folio;
484 }
485 
486 static inline void prep_compound_head(struct page *page, unsigned int order)
487 {
488 	struct folio *folio = (struct folio *)page;
489 
490 	folio_set_order(folio, order);
491 	atomic_set(&folio->_entire_mapcount, -1);
492 	atomic_set(&folio->_nr_pages_mapped, 0);
493 	atomic_set(&folio->_pincount, 0);
494 	if (order > 1)
495 		INIT_LIST_HEAD(&folio->_deferred_list);
496 }
497 
498 static inline void prep_compound_tail(struct page *head, int tail_idx)
499 {
500 	struct page *p = head + tail_idx;
501 
502 	p->mapping = TAIL_MAPPING;
503 	set_compound_head(p, head);
504 	set_page_private(p, 0);
505 }
506 
507 extern void prep_compound_page(struct page *page, unsigned int order);
508 
509 extern void post_alloc_hook(struct page *page, unsigned int order,
510 					gfp_t gfp_flags);
511 extern int user_min_free_kbytes;
512 
513 extern void free_unref_page(struct page *page, unsigned int order);
514 extern void free_unref_page_list(struct list_head *list);
515 
516 extern void zone_pcp_reset(struct zone *zone);
517 extern void zone_pcp_disable(struct zone *zone);
518 extern void zone_pcp_enable(struct zone *zone);
519 extern void zone_pcp_init(struct zone *zone);
520 
521 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
522 			  phys_addr_t min_addr,
523 			  int nid, bool exact_nid);
524 
525 void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
526 		unsigned long, enum meminit_context, struct vmem_altmap *, int);
527 
528 
529 int split_free_page(struct page *free_page,
530 			unsigned int order, unsigned long split_pfn_offset);
531 
532 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
533 
534 /*
535  * in mm/compaction.c
536  */
537 /*
538  * compact_control is used to track pages being migrated and the free pages
539  * they are being migrated to during memory compaction. The free_pfn starts
540  * at the end of a zone and migrate_pfn begins at the start. Movable pages
541  * are moved to the end of a zone during a compaction run and the run
542  * completes when free_pfn <= migrate_pfn
543  */
544 struct compact_control {
545 	struct list_head freepages;	/* List of free pages to migrate to */
546 	struct list_head migratepages;	/* List of pages being migrated */
547 	unsigned int nr_freepages;	/* Number of isolated free pages */
548 	unsigned int nr_migratepages;	/* Number of pages to migrate */
549 	unsigned long free_pfn;		/* isolate_freepages search base */
550 	/*
551 	 * Acts as an in/out parameter to page isolation for migration.
552 	 * isolate_migratepages uses it as a search base.
553 	 * isolate_migratepages_block will update the value to the next pfn
554 	 * after the last isolated one.
555 	 */
556 	unsigned long migrate_pfn;
557 	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
558 	struct zone *zone;
559 	unsigned long total_migrate_scanned;
560 	unsigned long total_free_scanned;
561 	unsigned short fast_search_fail;/* failures to use free list searches */
562 	short search_order;		/* order to start a fast search at */
563 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
564 	int order;			/* order a direct compactor needs */
565 	int migratetype;		/* migratetype of direct compactor */
566 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
567 	const int highest_zoneidx;	/* zone index of a direct compactor */
568 	enum migrate_mode mode;		/* Async or sync migration mode */
569 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
570 	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
571 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
572 	bool direct_compaction;		/* False from kcompactd or /proc/... */
573 	bool proactive_compaction;	/* kcompactd proactive compaction */
574 	bool whole_zone;		/* Whole zone should/has been scanned */
575 	bool contended;			/* Signal lock contention */
576 	bool finish_pageblock;		/* Scan the remainder of a pageblock. Used
577 					 * when there are potentially transient
578 					 * isolation or migration failures to
579 					 * ensure forward progress.
580 					 */
581 	bool alloc_contig;		/* alloc_contig_range allocation */
582 };
583 
584 /*
585  * Used in direct compaction when a page should be taken from the freelists
586  * immediately when one is created during the free path.
587  */
588 struct capture_control {
589 	struct compact_control *cc;
590 	struct page *page;
591 };
592 
593 unsigned long
594 isolate_freepages_range(struct compact_control *cc,
595 			unsigned long start_pfn, unsigned long end_pfn);
596 int
597 isolate_migratepages_range(struct compact_control *cc,
598 			   unsigned long low_pfn, unsigned long end_pfn);
599 
600 int __alloc_contig_migrate_range(struct compact_control *cc,
601 					unsigned long start, unsigned long end);
602 
603 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
604 void init_cma_reserved_pageblock(struct page *page);
605 
606 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
607 
608 int find_suitable_fallback(struct free_area *area, unsigned int order,
609 			int migratetype, bool only_stealable, bool *can_steal);
610 
611 static inline bool free_area_empty(struct free_area *area, int migratetype)
612 {
613 	return list_empty(&area->free_list[migratetype]);
614 }
615 
616 /*
617  * These three helpers classifies VMAs for virtual memory accounting.
618  */
619 
620 /*
621  * Executable code area - executable, not writable, not stack
622  */
623 static inline bool is_exec_mapping(vm_flags_t flags)
624 {
625 	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
626 }
627 
628 /*
629  * Stack area (including shadow stacks)
630  *
631  * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
632  * do_mmap() forbids all other combinations.
633  */
634 static inline bool is_stack_mapping(vm_flags_t flags)
635 {
636 	return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
637 }
638 
639 /*
640  * Data area - private, writable, not stack
641  */
642 static inline bool is_data_mapping(vm_flags_t flags)
643 {
644 	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
645 }
646 
647 /* mm/util.c */
648 struct anon_vma *folio_anon_vma(struct folio *folio);
649 
650 #ifdef CONFIG_MMU
651 void unmap_mapping_folio(struct folio *folio);
652 extern long populate_vma_page_range(struct vm_area_struct *vma,
653 		unsigned long start, unsigned long end, int *locked);
654 extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
655 		unsigned long end, bool write, int *locked);
656 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
657 			       unsigned long bytes);
658 /*
659  * mlock_vma_folio() and munlock_vma_folio():
660  * should be called with vma's mmap_lock held for read or write,
661  * under page table lock for the pte/pmd being added or removed.
662  *
663  * mlock is usually called at the end of page_add_*_rmap(), munlock at
664  * the end of page_remove_rmap(); but new anon folios are managed by
665  * folio_add_lru_vma() calling mlock_new_folio().
666  *
667  * @compound is used to include pmd mappings of THPs, but filter out
668  * pte mappings of THPs, which cannot be consistently counted: a pte
669  * mapping of the THP head cannot be distinguished by the page alone.
670  */
671 void mlock_folio(struct folio *folio);
672 static inline void mlock_vma_folio(struct folio *folio,
673 			struct vm_area_struct *vma, bool compound)
674 {
675 	/*
676 	 * The VM_SPECIAL check here serves two purposes.
677 	 * 1) VM_IO check prevents migration from double-counting during mlock.
678 	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
679 	 *    is never left set on a VM_SPECIAL vma, there is an interval while
680 	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
681 	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
682 	 */
683 	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
684 	    (compound || !folio_test_large(folio)))
685 		mlock_folio(folio);
686 }
687 
688 void munlock_folio(struct folio *folio);
689 static inline void munlock_vma_folio(struct folio *folio,
690 			struct vm_area_struct *vma, bool compound)
691 {
692 	if (unlikely(vma->vm_flags & VM_LOCKED) &&
693 	    (compound || !folio_test_large(folio)))
694 		munlock_folio(folio);
695 }
696 
697 void mlock_new_folio(struct folio *folio);
698 bool need_mlock_drain(int cpu);
699 void mlock_drain_local(void);
700 void mlock_drain_remote(int cpu);
701 
702 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
703 
704 /*
705  * Return the start of user virtual address at the specific offset within
706  * a vma.
707  */
708 static inline unsigned long
709 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
710 		  struct vm_area_struct *vma)
711 {
712 	unsigned long address;
713 
714 	if (pgoff >= vma->vm_pgoff) {
715 		address = vma->vm_start +
716 			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
717 		/* Check for address beyond vma (or wrapped through 0?) */
718 		if (address < vma->vm_start || address >= vma->vm_end)
719 			address = -EFAULT;
720 	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
721 		/* Test above avoids possibility of wrap to 0 on 32-bit */
722 		address = vma->vm_start;
723 	} else {
724 		address = -EFAULT;
725 	}
726 	return address;
727 }
728 
729 /*
730  * Return the start of user virtual address of a page within a vma.
731  * Returns -EFAULT if all of the page is outside the range of vma.
732  * If page is a compound head, the entire compound page is considered.
733  */
734 static inline unsigned long
735 vma_address(struct page *page, struct vm_area_struct *vma)
736 {
737 	VM_BUG_ON_PAGE(PageKsm(page), page);	/* KSM page->index unusable */
738 	return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
739 }
740 
741 /*
742  * Then at what user virtual address will none of the range be found in vma?
743  * Assumes that vma_address() already returned a good starting address.
744  */
745 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
746 {
747 	struct vm_area_struct *vma = pvmw->vma;
748 	pgoff_t pgoff;
749 	unsigned long address;
750 
751 	/* Common case, plus ->pgoff is invalid for KSM */
752 	if (pvmw->nr_pages == 1)
753 		return pvmw->address + PAGE_SIZE;
754 
755 	pgoff = pvmw->pgoff + pvmw->nr_pages;
756 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
757 	/* Check for address beyond vma (or wrapped through 0?) */
758 	if (address < vma->vm_start || address > vma->vm_end)
759 		address = vma->vm_end;
760 	return address;
761 }
762 
763 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
764 						    struct file *fpin)
765 {
766 	int flags = vmf->flags;
767 
768 	if (fpin)
769 		return fpin;
770 
771 	/*
772 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
773 	 * anything, so we only pin the file and drop the mmap_lock if only
774 	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
775 	 */
776 	if (fault_flag_allow_retry_first(flags) &&
777 	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
778 		fpin = get_file(vmf->vma->vm_file);
779 		release_fault_lock(vmf);
780 	}
781 	return fpin;
782 }
783 #else /* !CONFIG_MMU */
784 static inline void unmap_mapping_folio(struct folio *folio) { }
785 static inline void mlock_new_folio(struct folio *folio) { }
786 static inline bool need_mlock_drain(int cpu) { return false; }
787 static inline void mlock_drain_local(void) { }
788 static inline void mlock_drain_remote(int cpu) { }
789 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
790 {
791 }
792 #endif /* !CONFIG_MMU */
793 
794 /* Memory initialisation debug and verification */
795 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
796 DECLARE_STATIC_KEY_TRUE(deferred_pages);
797 
798 bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
799 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
800 
801 enum mminit_level {
802 	MMINIT_WARNING,
803 	MMINIT_VERIFY,
804 	MMINIT_TRACE
805 };
806 
807 #ifdef CONFIG_DEBUG_MEMORY_INIT
808 
809 extern int mminit_loglevel;
810 
811 #define mminit_dprintk(level, prefix, fmt, arg...) \
812 do { \
813 	if (level < mminit_loglevel) { \
814 		if (level <= MMINIT_WARNING) \
815 			pr_warn("mminit::" prefix " " fmt, ##arg);	\
816 		else \
817 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
818 	} \
819 } while (0)
820 
821 extern void mminit_verify_pageflags_layout(void);
822 extern void mminit_verify_zonelist(void);
823 #else
824 
825 static inline void mminit_dprintk(enum mminit_level level,
826 				const char *prefix, const char *fmt, ...)
827 {
828 }
829 
830 static inline void mminit_verify_pageflags_layout(void)
831 {
832 }
833 
834 static inline void mminit_verify_zonelist(void)
835 {
836 }
837 #endif /* CONFIG_DEBUG_MEMORY_INIT */
838 
839 #define NODE_RECLAIM_NOSCAN	-2
840 #define NODE_RECLAIM_FULL	-1
841 #define NODE_RECLAIM_SOME	0
842 #define NODE_RECLAIM_SUCCESS	1
843 
844 #ifdef CONFIG_NUMA
845 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
846 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
847 #else
848 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
849 				unsigned int order)
850 {
851 	return NODE_RECLAIM_NOSCAN;
852 }
853 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
854 {
855 	return NUMA_NO_NODE;
856 }
857 #endif
858 
859 /*
860  * mm/memory-failure.c
861  */
862 extern int hwpoison_filter(struct page *p);
863 
864 extern u32 hwpoison_filter_dev_major;
865 extern u32 hwpoison_filter_dev_minor;
866 extern u64 hwpoison_filter_flags_mask;
867 extern u64 hwpoison_filter_flags_value;
868 extern u64 hwpoison_filter_memcg;
869 extern u32 hwpoison_filter_enable;
870 
871 extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
872         unsigned long, unsigned long,
873         unsigned long, unsigned long);
874 
875 extern void set_pageblock_order(void);
876 unsigned long reclaim_pages(struct list_head *folio_list);
877 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
878 					    struct list_head *folio_list);
879 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
880 #define ALLOC_WMARK_MIN		WMARK_MIN
881 #define ALLOC_WMARK_LOW		WMARK_LOW
882 #define ALLOC_WMARK_HIGH	WMARK_HIGH
883 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
884 
885 /* Mask to get the watermark bits */
886 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
887 
888 /*
889  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
890  * cannot assume a reduced access to memory reserves is sufficient for
891  * !MMU
892  */
893 #ifdef CONFIG_MMU
894 #define ALLOC_OOM		0x08
895 #else
896 #define ALLOC_OOM		ALLOC_NO_WATERMARKS
897 #endif
898 
899 #define ALLOC_NON_BLOCK		 0x10 /* Caller cannot block. Allow access
900 				       * to 25% of the min watermark or
901 				       * 62.5% if __GFP_HIGH is set.
902 				       */
903 #define ALLOC_MIN_RESERVE	 0x20 /* __GFP_HIGH set. Allow access to 50%
904 				       * of the min watermark.
905 				       */
906 #define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
907 #define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
908 #ifdef CONFIG_ZONE_DMA32
909 #define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
910 #else
911 #define ALLOC_NOFRAGMENT	  0x0
912 #endif
913 #define ALLOC_HIGHATOMIC	0x200 /* Allows access to MIGRATE_HIGHATOMIC */
914 #define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
915 
916 /* Flags that allow allocations below the min watermark. */
917 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
918 
919 enum ttu_flags;
920 struct tlbflush_unmap_batch;
921 
922 
923 /*
924  * only for MM internal work items which do not depend on
925  * any allocations or locks which might depend on allocations
926  */
927 extern struct workqueue_struct *mm_percpu_wq;
928 
929 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
930 void try_to_unmap_flush(void);
931 void try_to_unmap_flush_dirty(void);
932 void flush_tlb_batched_pending(struct mm_struct *mm);
933 #else
934 static inline void try_to_unmap_flush(void)
935 {
936 }
937 static inline void try_to_unmap_flush_dirty(void)
938 {
939 }
940 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
941 {
942 }
943 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
944 
945 extern const struct trace_print_flags pageflag_names[];
946 extern const struct trace_print_flags pagetype_names[];
947 extern const struct trace_print_flags vmaflag_names[];
948 extern const struct trace_print_flags gfpflag_names[];
949 
950 static inline bool is_migrate_highatomic(enum migratetype migratetype)
951 {
952 	return migratetype == MIGRATE_HIGHATOMIC;
953 }
954 
955 static inline bool is_migrate_highatomic_page(struct page *page)
956 {
957 	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
958 }
959 
960 void setup_zone_pageset(struct zone *zone);
961 
962 struct migration_target_control {
963 	int nid;		/* preferred node id */
964 	nodemask_t *nmask;
965 	gfp_t gfp_mask;
966 };
967 
968 /*
969  * mm/filemap.c
970  */
971 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
972 			      struct folio *folio, loff_t fpos, size_t size);
973 
974 /*
975  * mm/vmalloc.c
976  */
977 #ifdef CONFIG_MMU
978 void __init vmalloc_init(void);
979 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
980                 pgprot_t prot, struct page **pages, unsigned int page_shift);
981 #else
982 static inline void vmalloc_init(void)
983 {
984 }
985 
986 static inline
987 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
988                 pgprot_t prot, struct page **pages, unsigned int page_shift)
989 {
990 	return -EINVAL;
991 }
992 #endif
993 
994 int __must_check __vmap_pages_range_noflush(unsigned long addr,
995 			       unsigned long end, pgprot_t prot,
996 			       struct page **pages, unsigned int page_shift);
997 
998 void vunmap_range_noflush(unsigned long start, unsigned long end);
999 
1000 void __vunmap_range_noflush(unsigned long start, unsigned long end);
1001 
1002 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
1003 		      unsigned long addr, int page_nid, int *flags);
1004 
1005 void free_zone_device_page(struct page *page);
1006 int migrate_device_coherent_page(struct page *page);
1007 
1008 /*
1009  * mm/gup.c
1010  */
1011 int __must_check try_grab_folio(struct folio *folio, int refs,
1012 				unsigned int flags);
1013 
1014 /*
1015  * mm/huge_memory.c
1016  */
1017 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1018 				   unsigned long addr, pmd_t *pmd,
1019 				   unsigned int flags);
1020 
1021 enum {
1022 	/* mark page accessed */
1023 	FOLL_TOUCH = 1 << 16,
1024 	/* a retry, previous pass started an IO */
1025 	FOLL_TRIED = 1 << 17,
1026 	/* we are working on non-current tsk/mm */
1027 	FOLL_REMOTE = 1 << 18,
1028 	/* pages must be released via unpin_user_page */
1029 	FOLL_PIN = 1 << 19,
1030 	/* gup_fast: prevent fall-back to slow gup */
1031 	FOLL_FAST_ONLY = 1 << 20,
1032 	/* allow unlocking the mmap lock */
1033 	FOLL_UNLOCKABLE = 1 << 21,
1034 	/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1035 	FOLL_MADV_POPULATE = 1 << 22,
1036 };
1037 
1038 #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1039 			    FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1040 			    FOLL_MADV_POPULATE)
1041 
1042 /*
1043  * Indicates for which pages that are write-protected in the page table,
1044  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1045  * GUP pin will remain consistent with the pages mapped into the page tables
1046  * of the MM.
1047  *
1048  * Temporary unmapping of PageAnonExclusive() pages or clearing of
1049  * PageAnonExclusive() has to protect against concurrent GUP:
1050  * * Ordinary GUP: Using the PT lock
1051  * * GUP-fast and fork(): mm->write_protect_seq
1052  * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1053  *    page_try_share_anon_rmap()
1054  *
1055  * Must be called with the (sub)page that's actually referenced via the
1056  * page table entry, which might not necessarily be the head page for a
1057  * PTE-mapped THP.
1058  *
1059  * If the vma is NULL, we're coming from the GUP-fast path and might have
1060  * to fallback to the slow path just to lookup the vma.
1061  */
1062 static inline bool gup_must_unshare(struct vm_area_struct *vma,
1063 				    unsigned int flags, struct page *page)
1064 {
1065 	/*
1066 	 * FOLL_WRITE is implicitly handled correctly as the page table entry
1067 	 * has to be writable -- and if it references (part of) an anonymous
1068 	 * folio, that part is required to be marked exclusive.
1069 	 */
1070 	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1071 		return false;
1072 	/*
1073 	 * Note: PageAnon(page) is stable until the page is actually getting
1074 	 * freed.
1075 	 */
1076 	if (!PageAnon(page)) {
1077 		/*
1078 		 * We only care about R/O long-term pining: R/O short-term
1079 		 * pinning does not have the semantics to observe successive
1080 		 * changes through the process page tables.
1081 		 */
1082 		if (!(flags & FOLL_LONGTERM))
1083 			return false;
1084 
1085 		/* We really need the vma ... */
1086 		if (!vma)
1087 			return true;
1088 
1089 		/*
1090 		 * ... because we only care about writable private ("COW")
1091 		 * mappings where we have to break COW early.
1092 		 */
1093 		return is_cow_mapping(vma->vm_flags);
1094 	}
1095 
1096 	/* Paired with a memory barrier in page_try_share_anon_rmap(). */
1097 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
1098 		smp_rmb();
1099 
1100 	/*
1101 	 * During GUP-fast we might not get called on the head page for a
1102 	 * hugetlb page that is mapped using cont-PTE, because GUP-fast does
1103 	 * not work with the abstracted hugetlb PTEs that always point at the
1104 	 * head page. For hugetlb, PageAnonExclusive only applies on the head
1105 	 * page (as it cannot be partially COW-shared), so lookup the head page.
1106 	 */
1107 	if (unlikely(!PageHead(page) && PageHuge(page)))
1108 		page = compound_head(page);
1109 
1110 	/*
1111 	 * Note that PageKsm() pages cannot be exclusive, and consequently,
1112 	 * cannot get pinned.
1113 	 */
1114 	return !PageAnonExclusive(page);
1115 }
1116 
1117 extern bool mirrored_kernelcore;
1118 extern bool memblock_has_mirror(void);
1119 
1120 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1121 {
1122 	/*
1123 	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1124 	 * enablements, because when without soft-dirty being compiled in,
1125 	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1126 	 * will be constantly true.
1127 	 */
1128 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1129 		return false;
1130 
1131 	/*
1132 	 * Soft-dirty is kind of special: its tracking is enabled when the
1133 	 * vma flags not set.
1134 	 */
1135 	return !(vma->vm_flags & VM_SOFTDIRTY);
1136 }
1137 
1138 static inline void vma_iter_config(struct vma_iterator *vmi,
1139 		unsigned long index, unsigned long last)
1140 {
1141 	MAS_BUG_ON(&vmi->mas, vmi->mas.node != MAS_START &&
1142 		   (vmi->mas.index > index || vmi->mas.last < index));
1143 	__mas_set_range(&vmi->mas, index, last - 1);
1144 }
1145 
1146 /*
1147  * VMA Iterator functions shared between nommu and mmap
1148  */
1149 static inline int vma_iter_prealloc(struct vma_iterator *vmi,
1150 		struct vm_area_struct *vma)
1151 {
1152 	return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
1153 }
1154 
1155 static inline void vma_iter_clear(struct vma_iterator *vmi)
1156 {
1157 	mas_store_prealloc(&vmi->mas, NULL);
1158 }
1159 
1160 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1161 			unsigned long start, unsigned long end, gfp_t gfp)
1162 {
1163 	__mas_set_range(&vmi->mas, start, end - 1);
1164 	mas_store_gfp(&vmi->mas, NULL, gfp);
1165 	if (unlikely(mas_is_err(&vmi->mas)))
1166 		return -ENOMEM;
1167 
1168 	return 0;
1169 }
1170 
1171 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
1172 {
1173 	return mas_walk(&vmi->mas);
1174 }
1175 
1176 /* Store a VMA with preallocated memory */
1177 static inline void vma_iter_store(struct vma_iterator *vmi,
1178 				  struct vm_area_struct *vma)
1179 {
1180 
1181 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1182 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START &&
1183 			vmi->mas.index > vma->vm_start)) {
1184 		pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
1185 			vmi->mas.index, vma->vm_start, vma->vm_start,
1186 			vma->vm_end, vmi->mas.index, vmi->mas.last);
1187 	}
1188 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START &&
1189 			vmi->mas.last <  vma->vm_start)) {
1190 		pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
1191 		       vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
1192 		       vmi->mas.index, vmi->mas.last);
1193 	}
1194 #endif
1195 
1196 	if (vmi->mas.node != MAS_START &&
1197 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1198 		vma_iter_invalidate(vmi);
1199 
1200 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1201 	mas_store_prealloc(&vmi->mas, vma);
1202 }
1203 
1204 static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
1205 			struct vm_area_struct *vma, gfp_t gfp)
1206 {
1207 	if (vmi->mas.node != MAS_START &&
1208 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1209 		vma_iter_invalidate(vmi);
1210 
1211 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1212 	mas_store_gfp(&vmi->mas, vma, gfp);
1213 	if (unlikely(mas_is_err(&vmi->mas)))
1214 		return -ENOMEM;
1215 
1216 	return 0;
1217 }
1218 
1219 /*
1220  * VMA lock generalization
1221  */
1222 struct vma_prepare {
1223 	struct vm_area_struct *vma;
1224 	struct vm_area_struct *adj_next;
1225 	struct file *file;
1226 	struct address_space *mapping;
1227 	struct anon_vma *anon_vma;
1228 	struct vm_area_struct *insert;
1229 	struct vm_area_struct *remove;
1230 	struct vm_area_struct *remove2;
1231 };
1232 #endif	/* __MM_INTERNAL_H */
1233