xref: /openbmc/linux/mm/internal.h (revision 54a611b6)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3  *
4  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9 
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/rmap.h>
14 #include <linux/tracepoint-defs.h>
15 
16 struct folio_batch;
17 
18 /*
19  * The set of flags that only affect watermark checking and reclaim
20  * behaviour. This is used by the MM to obey the caller constraints
21  * about IO, FS and watermark checking while ignoring placement
22  * hints such as HIGHMEM usage.
23  */
24 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
25 			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
26 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
27 			__GFP_ATOMIC|__GFP_NOLOCKDEP)
28 
29 /* The GFP flags allowed during early boot */
30 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
31 
32 /* Control allocation cpuset and node placement constraints */
33 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
34 
35 /* Do not use these with a slab allocator */
36 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
37 
38 /*
39  * Different from WARN_ON_ONCE(), no warning will be issued
40  * when we specify __GFP_NOWARN.
41  */
42 #define WARN_ON_ONCE_GFP(cond, gfp)	({				\
43 	static bool __section(".data.once") __warned;			\
44 	int __ret_warn_once = !!(cond);					\
45 									\
46 	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
47 		__warned = true;					\
48 		WARN_ON(1);						\
49 	}								\
50 	unlikely(__ret_warn_once);					\
51 })
52 
53 void page_writeback_init(void);
54 
55 static inline void *folio_raw_mapping(struct folio *folio)
56 {
57 	unsigned long mapping = (unsigned long)folio->mapping;
58 
59 	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
60 }
61 
62 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
63 						int nr_throttled);
64 static inline void acct_reclaim_writeback(struct folio *folio)
65 {
66 	pg_data_t *pgdat = folio_pgdat(folio);
67 	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
68 
69 	if (nr_throttled)
70 		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
71 }
72 
73 static inline void wake_throttle_isolated(pg_data_t *pgdat)
74 {
75 	wait_queue_head_t *wqh;
76 
77 	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
78 	if (waitqueue_active(wqh))
79 		wake_up(wqh);
80 }
81 
82 vm_fault_t do_swap_page(struct vm_fault *vmf);
83 void folio_rotate_reclaimable(struct folio *folio);
84 bool __folio_end_writeback(struct folio *folio);
85 void deactivate_file_folio(struct folio *folio);
86 void folio_activate(struct folio *folio);
87 
88 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
89 		unsigned long floor, unsigned long ceiling);
90 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
91 
92 struct zap_details;
93 void unmap_page_range(struct mmu_gather *tlb,
94 			     struct vm_area_struct *vma,
95 			     unsigned long addr, unsigned long end,
96 			     struct zap_details *details);
97 
98 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
99 		unsigned int order);
100 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
101 static inline void force_page_cache_readahead(struct address_space *mapping,
102 		struct file *file, pgoff_t index, unsigned long nr_to_read)
103 {
104 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
105 	force_page_cache_ra(&ractl, nr_to_read);
106 }
107 
108 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
109 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
110 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
111 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
112 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
113 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
114 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
115 		loff_t end);
116 long invalidate_inode_page(struct page *page);
117 unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
118 		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec);
119 
120 /**
121  * folio_evictable - Test whether a folio is evictable.
122  * @folio: The folio to test.
123  *
124  * Test whether @folio is evictable -- i.e., should be placed on
125  * active/inactive lists vs unevictable list.
126  *
127  * Reasons folio might not be evictable:
128  * 1. folio's mapping marked unevictable
129  * 2. One of the pages in the folio is part of an mlocked VMA
130  */
131 static inline bool folio_evictable(struct folio *folio)
132 {
133 	bool ret;
134 
135 	/* Prevent address_space of inode and swap cache from being freed */
136 	rcu_read_lock();
137 	ret = !mapping_unevictable(folio_mapping(folio)) &&
138 			!folio_test_mlocked(folio);
139 	rcu_read_unlock();
140 	return ret;
141 }
142 
143 static inline bool page_evictable(struct page *page)
144 {
145 	bool ret;
146 
147 	/* Prevent address_space of inode and swap cache from being freed */
148 	rcu_read_lock();
149 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
150 	rcu_read_unlock();
151 	return ret;
152 }
153 
154 /*
155  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
156  * a count of one.
157  */
158 static inline void set_page_refcounted(struct page *page)
159 {
160 	VM_BUG_ON_PAGE(PageTail(page), page);
161 	VM_BUG_ON_PAGE(page_ref_count(page), page);
162 	set_page_count(page, 1);
163 }
164 
165 extern unsigned long highest_memmap_pfn;
166 
167 /*
168  * Maximum number of reclaim retries without progress before the OOM
169  * killer is consider the only way forward.
170  */
171 #define MAX_RECLAIM_RETRIES 16
172 
173 /*
174  * in mm/early_ioremap.c
175  */
176 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
177 					unsigned long size, pgprot_t prot);
178 
179 /*
180  * in mm/vmscan.c:
181  */
182 int isolate_lru_page(struct page *page);
183 int folio_isolate_lru(struct folio *folio);
184 void putback_lru_page(struct page *page);
185 void folio_putback_lru(struct folio *folio);
186 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
187 
188 /*
189  * in mm/rmap.c:
190  */
191 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
192 
193 /*
194  * in mm/page_alloc.c
195  */
196 
197 /*
198  * Structure for holding the mostly immutable allocation parameters passed
199  * between functions involved in allocations, including the alloc_pages*
200  * family of functions.
201  *
202  * nodemask, migratetype and highest_zoneidx are initialized only once in
203  * __alloc_pages() and then never change.
204  *
205  * zonelist, preferred_zone and highest_zoneidx are set first in
206  * __alloc_pages() for the fast path, and might be later changed
207  * in __alloc_pages_slowpath(). All other functions pass the whole structure
208  * by a const pointer.
209  */
210 struct alloc_context {
211 	struct zonelist *zonelist;
212 	nodemask_t *nodemask;
213 	struct zoneref *preferred_zoneref;
214 	int migratetype;
215 
216 	/*
217 	 * highest_zoneidx represents highest usable zone index of
218 	 * the allocation request. Due to the nature of the zone,
219 	 * memory on lower zone than the highest_zoneidx will be
220 	 * protected by lowmem_reserve[highest_zoneidx].
221 	 *
222 	 * highest_zoneidx is also used by reclaim/compaction to limit
223 	 * the target zone since higher zone than this index cannot be
224 	 * usable for this allocation request.
225 	 */
226 	enum zone_type highest_zoneidx;
227 	bool spread_dirty_pages;
228 };
229 
230 /*
231  * This function returns the order of a free page in the buddy system. In
232  * general, page_zone(page)->lock must be held by the caller to prevent the
233  * page from being allocated in parallel and returning garbage as the order.
234  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
235  * page cannot be allocated or merged in parallel. Alternatively, it must
236  * handle invalid values gracefully, and use buddy_order_unsafe() below.
237  */
238 static inline unsigned int buddy_order(struct page *page)
239 {
240 	/* PageBuddy() must be checked by the caller */
241 	return page_private(page);
242 }
243 
244 /*
245  * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
246  * PageBuddy() should be checked first by the caller to minimize race window,
247  * and invalid values must be handled gracefully.
248  *
249  * READ_ONCE is used so that if the caller assigns the result into a local
250  * variable and e.g. tests it for valid range before using, the compiler cannot
251  * decide to remove the variable and inline the page_private(page) multiple
252  * times, potentially observing different values in the tests and the actual
253  * use of the result.
254  */
255 #define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
256 
257 /*
258  * This function checks whether a page is free && is the buddy
259  * we can coalesce a page and its buddy if
260  * (a) the buddy is not in a hole (check before calling!) &&
261  * (b) the buddy is in the buddy system &&
262  * (c) a page and its buddy have the same order &&
263  * (d) a page and its buddy are in the same zone.
264  *
265  * For recording whether a page is in the buddy system, we set PageBuddy.
266  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
267  *
268  * For recording page's order, we use page_private(page).
269  */
270 static inline bool page_is_buddy(struct page *page, struct page *buddy,
271 				 unsigned int order)
272 {
273 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
274 		return false;
275 
276 	if (buddy_order(buddy) != order)
277 		return false;
278 
279 	/*
280 	 * zone check is done late to avoid uselessly calculating
281 	 * zone/node ids for pages that could never merge.
282 	 */
283 	if (page_zone_id(page) != page_zone_id(buddy))
284 		return false;
285 
286 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
287 
288 	return true;
289 }
290 
291 /*
292  * Locate the struct page for both the matching buddy in our
293  * pair (buddy1) and the combined O(n+1) page they form (page).
294  *
295  * 1) Any buddy B1 will have an order O twin B2 which satisfies
296  * the following equation:
297  *     B2 = B1 ^ (1 << O)
298  * For example, if the starting buddy (buddy2) is #8 its order
299  * 1 buddy is #10:
300  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
301  *
302  * 2) Any buddy B will have an order O+1 parent P which
303  * satisfies the following equation:
304  *     P = B & ~(1 << O)
305  *
306  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
307  */
308 static inline unsigned long
309 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
310 {
311 	return page_pfn ^ (1 << order);
312 }
313 
314 /*
315  * Find the buddy of @page and validate it.
316  * @page: The input page
317  * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
318  *       function is used in the performance-critical __free_one_page().
319  * @order: The order of the page
320  * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
321  *             page_to_pfn().
322  *
323  * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
324  * not the same as @page. The validation is necessary before use it.
325  *
326  * Return: the found buddy page or NULL if not found.
327  */
328 static inline struct page *find_buddy_page_pfn(struct page *page,
329 			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
330 {
331 	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
332 	struct page *buddy;
333 
334 	buddy = page + (__buddy_pfn - pfn);
335 	if (buddy_pfn)
336 		*buddy_pfn = __buddy_pfn;
337 
338 	if (page_is_buddy(page, buddy, order))
339 		return buddy;
340 	return NULL;
341 }
342 
343 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
344 				unsigned long end_pfn, struct zone *zone);
345 
346 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
347 				unsigned long end_pfn, struct zone *zone)
348 {
349 	if (zone->contiguous)
350 		return pfn_to_page(start_pfn);
351 
352 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
353 }
354 
355 extern int __isolate_free_page(struct page *page, unsigned int order);
356 extern void __putback_isolated_page(struct page *page, unsigned int order,
357 				    int mt);
358 extern void memblock_free_pages(struct page *page, unsigned long pfn,
359 					unsigned int order);
360 extern void __free_pages_core(struct page *page, unsigned int order);
361 extern void prep_compound_page(struct page *page, unsigned int order);
362 extern void post_alloc_hook(struct page *page, unsigned int order,
363 					gfp_t gfp_flags);
364 extern int user_min_free_kbytes;
365 
366 extern void free_unref_page(struct page *page, unsigned int order);
367 extern void free_unref_page_list(struct list_head *list);
368 
369 extern void zone_pcp_update(struct zone *zone, int cpu_online);
370 extern void zone_pcp_reset(struct zone *zone);
371 extern void zone_pcp_disable(struct zone *zone);
372 extern void zone_pcp_enable(struct zone *zone);
373 
374 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
375 			  phys_addr_t min_addr,
376 			  int nid, bool exact_nid);
377 
378 int split_free_page(struct page *free_page,
379 			unsigned int order, unsigned long split_pfn_offset);
380 
381 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
382 
383 /*
384  * in mm/compaction.c
385  */
386 /*
387  * compact_control is used to track pages being migrated and the free pages
388  * they are being migrated to during memory compaction. The free_pfn starts
389  * at the end of a zone and migrate_pfn begins at the start. Movable pages
390  * are moved to the end of a zone during a compaction run and the run
391  * completes when free_pfn <= migrate_pfn
392  */
393 struct compact_control {
394 	struct list_head freepages;	/* List of free pages to migrate to */
395 	struct list_head migratepages;	/* List of pages being migrated */
396 	unsigned int nr_freepages;	/* Number of isolated free pages */
397 	unsigned int nr_migratepages;	/* Number of pages to migrate */
398 	unsigned long free_pfn;		/* isolate_freepages search base */
399 	/*
400 	 * Acts as an in/out parameter to page isolation for migration.
401 	 * isolate_migratepages uses it as a search base.
402 	 * isolate_migratepages_block will update the value to the next pfn
403 	 * after the last isolated one.
404 	 */
405 	unsigned long migrate_pfn;
406 	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
407 	struct zone *zone;
408 	unsigned long total_migrate_scanned;
409 	unsigned long total_free_scanned;
410 	unsigned short fast_search_fail;/* failures to use free list searches */
411 	short search_order;		/* order to start a fast search at */
412 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
413 	int order;			/* order a direct compactor needs */
414 	int migratetype;		/* migratetype of direct compactor */
415 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
416 	const int highest_zoneidx;	/* zone index of a direct compactor */
417 	enum migrate_mode mode;		/* Async or sync migration mode */
418 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
419 	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
420 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
421 	bool direct_compaction;		/* False from kcompactd or /proc/... */
422 	bool proactive_compaction;	/* kcompactd proactive compaction */
423 	bool whole_zone;		/* Whole zone should/has been scanned */
424 	bool contended;			/* Signal lock contention */
425 	bool rescan;			/* Rescanning the same pageblock */
426 	bool alloc_contig;		/* alloc_contig_range allocation */
427 };
428 
429 /*
430  * Used in direct compaction when a page should be taken from the freelists
431  * immediately when one is created during the free path.
432  */
433 struct capture_control {
434 	struct compact_control *cc;
435 	struct page *page;
436 };
437 
438 unsigned long
439 isolate_freepages_range(struct compact_control *cc,
440 			unsigned long start_pfn, unsigned long end_pfn);
441 int
442 isolate_migratepages_range(struct compact_control *cc,
443 			   unsigned long low_pfn, unsigned long end_pfn);
444 
445 int __alloc_contig_migrate_range(struct compact_control *cc,
446 					unsigned long start, unsigned long end);
447 #endif
448 int find_suitable_fallback(struct free_area *area, unsigned int order,
449 			int migratetype, bool only_stealable, bool *can_steal);
450 
451 /*
452  * These three helpers classifies VMAs for virtual memory accounting.
453  */
454 
455 /*
456  * Executable code area - executable, not writable, not stack
457  */
458 static inline bool is_exec_mapping(vm_flags_t flags)
459 {
460 	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
461 }
462 
463 /*
464  * Stack area - automatically grows in one direction
465  *
466  * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
467  * do_mmap() forbids all other combinations.
468  */
469 static inline bool is_stack_mapping(vm_flags_t flags)
470 {
471 	return (flags & VM_STACK) == VM_STACK;
472 }
473 
474 /*
475  * Data area - private, writable, not stack
476  */
477 static inline bool is_data_mapping(vm_flags_t flags)
478 {
479 	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
480 }
481 
482 /* mm/util.c */
483 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
484 		struct vm_area_struct *prev);
485 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma);
486 struct anon_vma *folio_anon_vma(struct folio *folio);
487 
488 #ifdef CONFIG_MMU
489 void unmap_mapping_folio(struct folio *folio);
490 extern long populate_vma_page_range(struct vm_area_struct *vma,
491 		unsigned long start, unsigned long end, int *locked);
492 extern long faultin_vma_page_range(struct vm_area_struct *vma,
493 				   unsigned long start, unsigned long end,
494 				   bool write, int *locked);
495 extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
496 			      unsigned long len);
497 /*
498  * mlock_vma_page() and munlock_vma_page():
499  * should be called with vma's mmap_lock held for read or write,
500  * under page table lock for the pte/pmd being added or removed.
501  *
502  * mlock is usually called at the end of page_add_*_rmap(),
503  * munlock at the end of page_remove_rmap(); but new anon
504  * pages are managed by lru_cache_add_inactive_or_unevictable()
505  * calling mlock_new_page().
506  *
507  * @compound is used to include pmd mappings of THPs, but filter out
508  * pte mappings of THPs, which cannot be consistently counted: a pte
509  * mapping of the THP head cannot be distinguished by the page alone.
510  */
511 void mlock_folio(struct folio *folio);
512 static inline void mlock_vma_folio(struct folio *folio,
513 			struct vm_area_struct *vma, bool compound)
514 {
515 	/*
516 	 * The VM_SPECIAL check here serves two purposes.
517 	 * 1) VM_IO check prevents migration from double-counting during mlock.
518 	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
519 	 *    is never left set on a VM_SPECIAL vma, there is an interval while
520 	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
521 	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
522 	 */
523 	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
524 	    (compound || !folio_test_large(folio)))
525 		mlock_folio(folio);
526 }
527 
528 static inline void mlock_vma_page(struct page *page,
529 			struct vm_area_struct *vma, bool compound)
530 {
531 	mlock_vma_folio(page_folio(page), vma, compound);
532 }
533 
534 void munlock_page(struct page *page);
535 static inline void munlock_vma_page(struct page *page,
536 			struct vm_area_struct *vma, bool compound)
537 {
538 	if (unlikely(vma->vm_flags & VM_LOCKED) &&
539 	    (compound || !PageTransCompound(page)))
540 		munlock_page(page);
541 }
542 void mlock_new_page(struct page *page);
543 bool need_mlock_page_drain(int cpu);
544 void mlock_page_drain_local(void);
545 void mlock_page_drain_remote(int cpu);
546 
547 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
548 
549 /*
550  * Return the start of user virtual address at the specific offset within
551  * a vma.
552  */
553 static inline unsigned long
554 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
555 		  struct vm_area_struct *vma)
556 {
557 	unsigned long address;
558 
559 	if (pgoff >= vma->vm_pgoff) {
560 		address = vma->vm_start +
561 			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
562 		/* Check for address beyond vma (or wrapped through 0?) */
563 		if (address < vma->vm_start || address >= vma->vm_end)
564 			address = -EFAULT;
565 	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
566 		/* Test above avoids possibility of wrap to 0 on 32-bit */
567 		address = vma->vm_start;
568 	} else {
569 		address = -EFAULT;
570 	}
571 	return address;
572 }
573 
574 /*
575  * Return the start of user virtual address of a page within a vma.
576  * Returns -EFAULT if all of the page is outside the range of vma.
577  * If page is a compound head, the entire compound page is considered.
578  */
579 static inline unsigned long
580 vma_address(struct page *page, struct vm_area_struct *vma)
581 {
582 	VM_BUG_ON_PAGE(PageKsm(page), page);	/* KSM page->index unusable */
583 	return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
584 }
585 
586 /*
587  * Then at what user virtual address will none of the range be found in vma?
588  * Assumes that vma_address() already returned a good starting address.
589  */
590 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
591 {
592 	struct vm_area_struct *vma = pvmw->vma;
593 	pgoff_t pgoff;
594 	unsigned long address;
595 
596 	/* Common case, plus ->pgoff is invalid for KSM */
597 	if (pvmw->nr_pages == 1)
598 		return pvmw->address + PAGE_SIZE;
599 
600 	pgoff = pvmw->pgoff + pvmw->nr_pages;
601 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
602 	/* Check for address beyond vma (or wrapped through 0?) */
603 	if (address < vma->vm_start || address > vma->vm_end)
604 		address = vma->vm_end;
605 	return address;
606 }
607 
608 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
609 						    struct file *fpin)
610 {
611 	int flags = vmf->flags;
612 
613 	if (fpin)
614 		return fpin;
615 
616 	/*
617 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
618 	 * anything, so we only pin the file and drop the mmap_lock if only
619 	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
620 	 */
621 	if (fault_flag_allow_retry_first(flags) &&
622 	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
623 		fpin = get_file(vmf->vma->vm_file);
624 		mmap_read_unlock(vmf->vma->vm_mm);
625 	}
626 	return fpin;
627 }
628 #else /* !CONFIG_MMU */
629 static inline void unmap_mapping_folio(struct folio *folio) { }
630 static inline void mlock_vma_page(struct page *page,
631 			struct vm_area_struct *vma, bool compound) { }
632 static inline void munlock_vma_page(struct page *page,
633 			struct vm_area_struct *vma, bool compound) { }
634 static inline void mlock_new_page(struct page *page) { }
635 static inline bool need_mlock_page_drain(int cpu) { return false; }
636 static inline void mlock_page_drain_local(void) { }
637 static inline void mlock_page_drain_remote(int cpu) { }
638 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
639 {
640 }
641 #endif /* !CONFIG_MMU */
642 
643 /*
644  * Return the mem_map entry representing the 'offset' subpage within
645  * the maximally aligned gigantic page 'base'.  Handle any discontiguity
646  * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
647  */
648 static inline struct page *mem_map_offset(struct page *base, int offset)
649 {
650 	if (unlikely(offset >= MAX_ORDER_NR_PAGES))
651 		return nth_page(base, offset);
652 	return base + offset;
653 }
654 
655 /*
656  * Iterator over all subpages within the maximally aligned gigantic
657  * page 'base'.  Handle any discontiguity in the mem_map.
658  */
659 static inline struct page *mem_map_next(struct page *iter,
660 						struct page *base, int offset)
661 {
662 	if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
663 		unsigned long pfn = page_to_pfn(base) + offset;
664 		if (!pfn_valid(pfn))
665 			return NULL;
666 		return pfn_to_page(pfn);
667 	}
668 	return iter + 1;
669 }
670 
671 /* Memory initialisation debug and verification */
672 enum mminit_level {
673 	MMINIT_WARNING,
674 	MMINIT_VERIFY,
675 	MMINIT_TRACE
676 };
677 
678 #ifdef CONFIG_DEBUG_MEMORY_INIT
679 
680 extern int mminit_loglevel;
681 
682 #define mminit_dprintk(level, prefix, fmt, arg...) \
683 do { \
684 	if (level < mminit_loglevel) { \
685 		if (level <= MMINIT_WARNING) \
686 			pr_warn("mminit::" prefix " " fmt, ##arg);	\
687 		else \
688 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
689 	} \
690 } while (0)
691 
692 extern void mminit_verify_pageflags_layout(void);
693 extern void mminit_verify_zonelist(void);
694 #else
695 
696 static inline void mminit_dprintk(enum mminit_level level,
697 				const char *prefix, const char *fmt, ...)
698 {
699 }
700 
701 static inline void mminit_verify_pageflags_layout(void)
702 {
703 }
704 
705 static inline void mminit_verify_zonelist(void)
706 {
707 }
708 #endif /* CONFIG_DEBUG_MEMORY_INIT */
709 
710 #define NODE_RECLAIM_NOSCAN	-2
711 #define NODE_RECLAIM_FULL	-1
712 #define NODE_RECLAIM_SOME	0
713 #define NODE_RECLAIM_SUCCESS	1
714 
715 #ifdef CONFIG_NUMA
716 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
717 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
718 #else
719 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
720 				unsigned int order)
721 {
722 	return NODE_RECLAIM_NOSCAN;
723 }
724 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
725 {
726 	return NUMA_NO_NODE;
727 }
728 #endif
729 
730 /*
731  * mm/memory-failure.c
732  */
733 extern int hwpoison_filter(struct page *p);
734 
735 extern u32 hwpoison_filter_dev_major;
736 extern u32 hwpoison_filter_dev_minor;
737 extern u64 hwpoison_filter_flags_mask;
738 extern u64 hwpoison_filter_flags_value;
739 extern u64 hwpoison_filter_memcg;
740 extern u32 hwpoison_filter_enable;
741 
742 #ifdef CONFIG_MEMORY_FAILURE
743 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages);
744 #else
745 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
746 {
747 }
748 #endif
749 
750 extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
751         unsigned long, unsigned long,
752         unsigned long, unsigned long);
753 
754 extern void set_pageblock_order(void);
755 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
756 					    struct list_head *page_list);
757 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
758 #define ALLOC_WMARK_MIN		WMARK_MIN
759 #define ALLOC_WMARK_LOW		WMARK_LOW
760 #define ALLOC_WMARK_HIGH	WMARK_HIGH
761 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
762 
763 /* Mask to get the watermark bits */
764 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
765 
766 /*
767  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
768  * cannot assume a reduced access to memory reserves is sufficient for
769  * !MMU
770  */
771 #ifdef CONFIG_MMU
772 #define ALLOC_OOM		0x08
773 #else
774 #define ALLOC_OOM		ALLOC_NO_WATERMARKS
775 #endif
776 
777 #define ALLOC_HARDER		 0x10 /* try to alloc harder */
778 #define ALLOC_HIGH		 0x20 /* __GFP_HIGH set */
779 #define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
780 #define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
781 #ifdef CONFIG_ZONE_DMA32
782 #define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
783 #else
784 #define ALLOC_NOFRAGMENT	  0x0
785 #endif
786 #define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
787 
788 enum ttu_flags;
789 struct tlbflush_unmap_batch;
790 
791 
792 /*
793  * only for MM internal work items which do not depend on
794  * any allocations or locks which might depend on allocations
795  */
796 extern struct workqueue_struct *mm_percpu_wq;
797 
798 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
799 void try_to_unmap_flush(void);
800 void try_to_unmap_flush_dirty(void);
801 void flush_tlb_batched_pending(struct mm_struct *mm);
802 #else
803 static inline void try_to_unmap_flush(void)
804 {
805 }
806 static inline void try_to_unmap_flush_dirty(void)
807 {
808 }
809 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
810 {
811 }
812 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
813 
814 extern const struct trace_print_flags pageflag_names[];
815 extern const struct trace_print_flags vmaflag_names[];
816 extern const struct trace_print_flags gfpflag_names[];
817 
818 static inline bool is_migrate_highatomic(enum migratetype migratetype)
819 {
820 	return migratetype == MIGRATE_HIGHATOMIC;
821 }
822 
823 static inline bool is_migrate_highatomic_page(struct page *page)
824 {
825 	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
826 }
827 
828 void setup_zone_pageset(struct zone *zone);
829 
830 struct migration_target_control {
831 	int nid;		/* preferred node id */
832 	nodemask_t *nmask;
833 	gfp_t gfp_mask;
834 };
835 
836 /*
837  * mm/vmalloc.c
838  */
839 #ifdef CONFIG_MMU
840 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
841                 pgprot_t prot, struct page **pages, unsigned int page_shift);
842 #else
843 static inline
844 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
845                 pgprot_t prot, struct page **pages, unsigned int page_shift)
846 {
847 	return -EINVAL;
848 }
849 #endif
850 
851 void vunmap_range_noflush(unsigned long start, unsigned long end);
852 
853 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
854 		      unsigned long addr, int page_nid, int *flags);
855 
856 void free_zone_device_page(struct page *page);
857 int migrate_device_coherent_page(struct page *page);
858 
859 /*
860  * mm/gup.c
861  */
862 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
863 
864 DECLARE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
865 
866 extern bool mirrored_kernelcore;
867 
868 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
869 {
870 	/*
871 	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
872 	 * enablements, because when without soft-dirty being compiled in,
873 	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
874 	 * will be constantly true.
875 	 */
876 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
877 		return false;
878 
879 	/*
880 	 * Soft-dirty is kind of special: its tracking is enabled when the
881 	 * vma flags not set.
882 	 */
883 	return !(vma->vm_flags & VM_SOFTDIRTY);
884 }
885 
886 #endif	/* __MM_INTERNAL_H */
887