xref: /openbmc/linux/mm/internal.h (revision 47010c04)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3  *
4  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9 
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/rmap.h>
14 #include <linux/tracepoint-defs.h>
15 
16 struct folio_batch;
17 
18 /*
19  * The set of flags that only affect watermark checking and reclaim
20  * behaviour. This is used by the MM to obey the caller constraints
21  * about IO, FS and watermark checking while ignoring placement
22  * hints such as HIGHMEM usage.
23  */
24 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
25 			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
26 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
27 			__GFP_ATOMIC|__GFP_NOLOCKDEP)
28 
29 /* The GFP flags allowed during early boot */
30 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
31 
32 /* Control allocation cpuset and node placement constraints */
33 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
34 
35 /* Do not use these with a slab allocator */
36 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
37 
38 void page_writeback_init(void);
39 
40 static inline void *folio_raw_mapping(struct folio *folio)
41 {
42 	unsigned long mapping = (unsigned long)folio->mapping;
43 
44 	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
45 }
46 
47 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
48 						int nr_throttled);
49 static inline void acct_reclaim_writeback(struct folio *folio)
50 {
51 	pg_data_t *pgdat = folio_pgdat(folio);
52 	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
53 
54 	if (nr_throttled)
55 		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
56 }
57 
58 static inline void wake_throttle_isolated(pg_data_t *pgdat)
59 {
60 	wait_queue_head_t *wqh;
61 
62 	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
63 	if (waitqueue_active(wqh))
64 		wake_up(wqh);
65 }
66 
67 vm_fault_t do_swap_page(struct vm_fault *vmf);
68 void folio_rotate_reclaimable(struct folio *folio);
69 bool __folio_end_writeback(struct folio *folio);
70 void deactivate_file_folio(struct folio *folio);
71 
72 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
73 		unsigned long floor, unsigned long ceiling);
74 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
75 
76 struct zap_details;
77 void unmap_page_range(struct mmu_gather *tlb,
78 			     struct vm_area_struct *vma,
79 			     unsigned long addr, unsigned long end,
80 			     struct zap_details *details);
81 
82 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
83 		unsigned int order);
84 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
85 static inline void force_page_cache_readahead(struct address_space *mapping,
86 		struct file *file, pgoff_t index, unsigned long nr_to_read)
87 {
88 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
89 	force_page_cache_ra(&ractl, nr_to_read);
90 }
91 
92 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
93 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
94 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
95 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
96 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
97 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
98 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
99 		loff_t end);
100 long invalidate_inode_page(struct page *page);
101 unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
102 		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec);
103 
104 /**
105  * folio_evictable - Test whether a folio is evictable.
106  * @folio: The folio to test.
107  *
108  * Test whether @folio is evictable -- i.e., should be placed on
109  * active/inactive lists vs unevictable list.
110  *
111  * Reasons folio might not be evictable:
112  * 1. folio's mapping marked unevictable
113  * 2. One of the pages in the folio is part of an mlocked VMA
114  */
115 static inline bool folio_evictable(struct folio *folio)
116 {
117 	bool ret;
118 
119 	/* Prevent address_space of inode and swap cache from being freed */
120 	rcu_read_lock();
121 	ret = !mapping_unevictable(folio_mapping(folio)) &&
122 			!folio_test_mlocked(folio);
123 	rcu_read_unlock();
124 	return ret;
125 }
126 
127 static inline bool page_evictable(struct page *page)
128 {
129 	bool ret;
130 
131 	/* Prevent address_space of inode and swap cache from being freed */
132 	rcu_read_lock();
133 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
134 	rcu_read_unlock();
135 	return ret;
136 }
137 
138 /*
139  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
140  * a count of one.
141  */
142 static inline void set_page_refcounted(struct page *page)
143 {
144 	VM_BUG_ON_PAGE(PageTail(page), page);
145 	VM_BUG_ON_PAGE(page_ref_count(page), page);
146 	set_page_count(page, 1);
147 }
148 
149 extern unsigned long highest_memmap_pfn;
150 
151 /*
152  * Maximum number of reclaim retries without progress before the OOM
153  * killer is consider the only way forward.
154  */
155 #define MAX_RECLAIM_RETRIES 16
156 
157 /*
158  * in mm/early_ioremap.c
159  */
160 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
161 					unsigned long size, pgprot_t prot);
162 
163 /*
164  * in mm/vmscan.c:
165  */
166 int isolate_lru_page(struct page *page);
167 int folio_isolate_lru(struct folio *folio);
168 void putback_lru_page(struct page *page);
169 void folio_putback_lru(struct folio *folio);
170 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
171 
172 /*
173  * in mm/rmap.c:
174  */
175 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
176 
177 /*
178  * in mm/page_alloc.c
179  */
180 
181 /*
182  * Structure for holding the mostly immutable allocation parameters passed
183  * between functions involved in allocations, including the alloc_pages*
184  * family of functions.
185  *
186  * nodemask, migratetype and highest_zoneidx are initialized only once in
187  * __alloc_pages() and then never change.
188  *
189  * zonelist, preferred_zone and highest_zoneidx are set first in
190  * __alloc_pages() for the fast path, and might be later changed
191  * in __alloc_pages_slowpath(). All other functions pass the whole structure
192  * by a const pointer.
193  */
194 struct alloc_context {
195 	struct zonelist *zonelist;
196 	nodemask_t *nodemask;
197 	struct zoneref *preferred_zoneref;
198 	int migratetype;
199 
200 	/*
201 	 * highest_zoneidx represents highest usable zone index of
202 	 * the allocation request. Due to the nature of the zone,
203 	 * memory on lower zone than the highest_zoneidx will be
204 	 * protected by lowmem_reserve[highest_zoneidx].
205 	 *
206 	 * highest_zoneidx is also used by reclaim/compaction to limit
207 	 * the target zone since higher zone than this index cannot be
208 	 * usable for this allocation request.
209 	 */
210 	enum zone_type highest_zoneidx;
211 	bool spread_dirty_pages;
212 };
213 
214 /*
215  * This function returns the order of a free page in the buddy system. In
216  * general, page_zone(page)->lock must be held by the caller to prevent the
217  * page from being allocated in parallel and returning garbage as the order.
218  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
219  * page cannot be allocated or merged in parallel. Alternatively, it must
220  * handle invalid values gracefully, and use buddy_order_unsafe() below.
221  */
222 static inline unsigned int buddy_order(struct page *page)
223 {
224 	/* PageBuddy() must be checked by the caller */
225 	return page_private(page);
226 }
227 
228 /*
229  * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
230  * PageBuddy() should be checked first by the caller to minimize race window,
231  * and invalid values must be handled gracefully.
232  *
233  * READ_ONCE is used so that if the caller assigns the result into a local
234  * variable and e.g. tests it for valid range before using, the compiler cannot
235  * decide to remove the variable and inline the page_private(page) multiple
236  * times, potentially observing different values in the tests and the actual
237  * use of the result.
238  */
239 #define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
240 
241 /*
242  * This function checks whether a page is free && is the buddy
243  * we can coalesce a page and its buddy if
244  * (a) the buddy is not in a hole (check before calling!) &&
245  * (b) the buddy is in the buddy system &&
246  * (c) a page and its buddy have the same order &&
247  * (d) a page and its buddy are in the same zone.
248  *
249  * For recording whether a page is in the buddy system, we set PageBuddy.
250  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
251  *
252  * For recording page's order, we use page_private(page).
253  */
254 static inline bool page_is_buddy(struct page *page, struct page *buddy,
255 				 unsigned int order)
256 {
257 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
258 		return false;
259 
260 	if (buddy_order(buddy) != order)
261 		return false;
262 
263 	/*
264 	 * zone check is done late to avoid uselessly calculating
265 	 * zone/node ids for pages that could never merge.
266 	 */
267 	if (page_zone_id(page) != page_zone_id(buddy))
268 		return false;
269 
270 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
271 
272 	return true;
273 }
274 
275 /*
276  * Locate the struct page for both the matching buddy in our
277  * pair (buddy1) and the combined O(n+1) page they form (page).
278  *
279  * 1) Any buddy B1 will have an order O twin B2 which satisfies
280  * the following equation:
281  *     B2 = B1 ^ (1 << O)
282  * For example, if the starting buddy (buddy2) is #8 its order
283  * 1 buddy is #10:
284  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
285  *
286  * 2) Any buddy B will have an order O+1 parent P which
287  * satisfies the following equation:
288  *     P = B & ~(1 << O)
289  *
290  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
291  */
292 static inline unsigned long
293 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
294 {
295 	return page_pfn ^ (1 << order);
296 }
297 
298 /*
299  * Find the buddy of @page and validate it.
300  * @page: The input page
301  * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
302  *       function is used in the performance-critical __free_one_page().
303  * @order: The order of the page
304  * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
305  *             page_to_pfn().
306  *
307  * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
308  * not the same as @page. The validation is necessary before use it.
309  *
310  * Return: the found buddy page or NULL if not found.
311  */
312 static inline struct page *find_buddy_page_pfn(struct page *page,
313 			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
314 {
315 	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
316 	struct page *buddy;
317 
318 	buddy = page + (__buddy_pfn - pfn);
319 	if (buddy_pfn)
320 		*buddy_pfn = __buddy_pfn;
321 
322 	if (page_is_buddy(page, buddy, order))
323 		return buddy;
324 	return NULL;
325 }
326 
327 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
328 				unsigned long end_pfn, struct zone *zone);
329 
330 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
331 				unsigned long end_pfn, struct zone *zone)
332 {
333 	if (zone->contiguous)
334 		return pfn_to_page(start_pfn);
335 
336 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
337 }
338 
339 extern int __isolate_free_page(struct page *page, unsigned int order);
340 extern void __putback_isolated_page(struct page *page, unsigned int order,
341 				    int mt);
342 extern void memblock_free_pages(struct page *page, unsigned long pfn,
343 					unsigned int order);
344 extern void __free_pages_core(struct page *page, unsigned int order);
345 extern void prep_compound_page(struct page *page, unsigned int order);
346 extern void post_alloc_hook(struct page *page, unsigned int order,
347 					gfp_t gfp_flags);
348 extern int user_min_free_kbytes;
349 
350 extern void free_unref_page(struct page *page, unsigned int order);
351 extern void free_unref_page_list(struct list_head *list);
352 
353 extern void zone_pcp_update(struct zone *zone, int cpu_online);
354 extern void zone_pcp_reset(struct zone *zone);
355 extern void zone_pcp_disable(struct zone *zone);
356 extern void zone_pcp_enable(struct zone *zone);
357 
358 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
359 			  phys_addr_t min_addr,
360 			  int nid, bool exact_nid);
361 
362 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
363 
364 /*
365  * in mm/compaction.c
366  */
367 /*
368  * compact_control is used to track pages being migrated and the free pages
369  * they are being migrated to during memory compaction. The free_pfn starts
370  * at the end of a zone and migrate_pfn begins at the start. Movable pages
371  * are moved to the end of a zone during a compaction run and the run
372  * completes when free_pfn <= migrate_pfn
373  */
374 struct compact_control {
375 	struct list_head freepages;	/* List of free pages to migrate to */
376 	struct list_head migratepages;	/* List of pages being migrated */
377 	unsigned int nr_freepages;	/* Number of isolated free pages */
378 	unsigned int nr_migratepages;	/* Number of pages to migrate */
379 	unsigned long free_pfn;		/* isolate_freepages search base */
380 	/*
381 	 * Acts as an in/out parameter to page isolation for migration.
382 	 * isolate_migratepages uses it as a search base.
383 	 * isolate_migratepages_block will update the value to the next pfn
384 	 * after the last isolated one.
385 	 */
386 	unsigned long migrate_pfn;
387 	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
388 	struct zone *zone;
389 	unsigned long total_migrate_scanned;
390 	unsigned long total_free_scanned;
391 	unsigned short fast_search_fail;/* failures to use free list searches */
392 	short search_order;		/* order to start a fast search at */
393 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
394 	int order;			/* order a direct compactor needs */
395 	int migratetype;		/* migratetype of direct compactor */
396 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
397 	const int highest_zoneidx;	/* zone index of a direct compactor */
398 	enum migrate_mode mode;		/* Async or sync migration mode */
399 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
400 	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
401 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
402 	bool direct_compaction;		/* False from kcompactd or /proc/... */
403 	bool proactive_compaction;	/* kcompactd proactive compaction */
404 	bool whole_zone;		/* Whole zone should/has been scanned */
405 	bool contended;			/* Signal lock or sched contention */
406 	bool rescan;			/* Rescanning the same pageblock */
407 	bool alloc_contig;		/* alloc_contig_range allocation */
408 };
409 
410 /*
411  * Used in direct compaction when a page should be taken from the freelists
412  * immediately when one is created during the free path.
413  */
414 struct capture_control {
415 	struct compact_control *cc;
416 	struct page *page;
417 };
418 
419 unsigned long
420 isolate_freepages_range(struct compact_control *cc,
421 			unsigned long start_pfn, unsigned long end_pfn);
422 int
423 isolate_migratepages_range(struct compact_control *cc,
424 			   unsigned long low_pfn, unsigned long end_pfn);
425 #endif
426 int find_suitable_fallback(struct free_area *area, unsigned int order,
427 			int migratetype, bool only_stealable, bool *can_steal);
428 
429 /*
430  * These three helpers classifies VMAs for virtual memory accounting.
431  */
432 
433 /*
434  * Executable code area - executable, not writable, not stack
435  */
436 static inline bool is_exec_mapping(vm_flags_t flags)
437 {
438 	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
439 }
440 
441 /*
442  * Stack area - automatically grows in one direction
443  *
444  * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
445  * do_mmap() forbids all other combinations.
446  */
447 static inline bool is_stack_mapping(vm_flags_t flags)
448 {
449 	return (flags & VM_STACK) == VM_STACK;
450 }
451 
452 /*
453  * Data area - private, writable, not stack
454  */
455 static inline bool is_data_mapping(vm_flags_t flags)
456 {
457 	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
458 }
459 
460 /* mm/util.c */
461 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
462 		struct vm_area_struct *prev);
463 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma);
464 struct anon_vma *folio_anon_vma(struct folio *folio);
465 
466 #ifdef CONFIG_MMU
467 void unmap_mapping_folio(struct folio *folio);
468 extern long populate_vma_page_range(struct vm_area_struct *vma,
469 		unsigned long start, unsigned long end, int *locked);
470 extern long faultin_vma_page_range(struct vm_area_struct *vma,
471 				   unsigned long start, unsigned long end,
472 				   bool write, int *locked);
473 extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
474 			      unsigned long len);
475 /*
476  * mlock_vma_page() and munlock_vma_page():
477  * should be called with vma's mmap_lock held for read or write,
478  * under page table lock for the pte/pmd being added or removed.
479  *
480  * mlock is usually called at the end of page_add_*_rmap(),
481  * munlock at the end of page_remove_rmap(); but new anon
482  * pages are managed by lru_cache_add_inactive_or_unevictable()
483  * calling mlock_new_page().
484  *
485  * @compound is used to include pmd mappings of THPs, but filter out
486  * pte mappings of THPs, which cannot be consistently counted: a pte
487  * mapping of the THP head cannot be distinguished by the page alone.
488  */
489 void mlock_folio(struct folio *folio);
490 static inline void mlock_vma_folio(struct folio *folio,
491 			struct vm_area_struct *vma, bool compound)
492 {
493 	/*
494 	 * The VM_SPECIAL check here serves two purposes.
495 	 * 1) VM_IO check prevents migration from double-counting during mlock.
496 	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
497 	 *    is never left set on a VM_SPECIAL vma, there is an interval while
498 	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
499 	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
500 	 */
501 	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
502 	    (compound || !folio_test_large(folio)))
503 		mlock_folio(folio);
504 }
505 
506 static inline void mlock_vma_page(struct page *page,
507 			struct vm_area_struct *vma, bool compound)
508 {
509 	mlock_vma_folio(page_folio(page), vma, compound);
510 }
511 
512 void munlock_page(struct page *page);
513 static inline void munlock_vma_page(struct page *page,
514 			struct vm_area_struct *vma, bool compound)
515 {
516 	if (unlikely(vma->vm_flags & VM_LOCKED) &&
517 	    (compound || !PageTransCompound(page)))
518 		munlock_page(page);
519 }
520 void mlock_new_page(struct page *page);
521 bool need_mlock_page_drain(int cpu);
522 void mlock_page_drain_local(void);
523 void mlock_page_drain_remote(int cpu);
524 
525 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
526 
527 /*
528  * Return the start of user virtual address at the specific offset within
529  * a vma.
530  */
531 static inline unsigned long
532 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
533 		  struct vm_area_struct *vma)
534 {
535 	unsigned long address;
536 
537 	if (pgoff >= vma->vm_pgoff) {
538 		address = vma->vm_start +
539 			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
540 		/* Check for address beyond vma (or wrapped through 0?) */
541 		if (address < vma->vm_start || address >= vma->vm_end)
542 			address = -EFAULT;
543 	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
544 		/* Test above avoids possibility of wrap to 0 on 32-bit */
545 		address = vma->vm_start;
546 	} else {
547 		address = -EFAULT;
548 	}
549 	return address;
550 }
551 
552 /*
553  * Return the start of user virtual address of a page within a vma.
554  * Returns -EFAULT if all of the page is outside the range of vma.
555  * If page is a compound head, the entire compound page is considered.
556  */
557 static inline unsigned long
558 vma_address(struct page *page, struct vm_area_struct *vma)
559 {
560 	VM_BUG_ON_PAGE(PageKsm(page), page);	/* KSM page->index unusable */
561 	return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
562 }
563 
564 /*
565  * Then at what user virtual address will none of the range be found in vma?
566  * Assumes that vma_address() already returned a good starting address.
567  */
568 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
569 {
570 	struct vm_area_struct *vma = pvmw->vma;
571 	pgoff_t pgoff;
572 	unsigned long address;
573 
574 	/* Common case, plus ->pgoff is invalid for KSM */
575 	if (pvmw->nr_pages == 1)
576 		return pvmw->address + PAGE_SIZE;
577 
578 	pgoff = pvmw->pgoff + pvmw->nr_pages;
579 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
580 	/* Check for address beyond vma (or wrapped through 0?) */
581 	if (address < vma->vm_start || address > vma->vm_end)
582 		address = vma->vm_end;
583 	return address;
584 }
585 
586 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
587 						    struct file *fpin)
588 {
589 	int flags = vmf->flags;
590 
591 	if (fpin)
592 		return fpin;
593 
594 	/*
595 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
596 	 * anything, so we only pin the file and drop the mmap_lock if only
597 	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
598 	 */
599 	if (fault_flag_allow_retry_first(flags) &&
600 	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
601 		fpin = get_file(vmf->vma->vm_file);
602 		mmap_read_unlock(vmf->vma->vm_mm);
603 	}
604 	return fpin;
605 }
606 #else /* !CONFIG_MMU */
607 static inline void unmap_mapping_folio(struct folio *folio) { }
608 static inline void mlock_vma_page(struct page *page,
609 			struct vm_area_struct *vma, bool compound) { }
610 static inline void munlock_vma_page(struct page *page,
611 			struct vm_area_struct *vma, bool compound) { }
612 static inline void mlock_new_page(struct page *page) { }
613 static inline bool need_mlock_page_drain(int cpu) { return false; }
614 static inline void mlock_page_drain_local(void) { }
615 static inline void mlock_page_drain_remote(int cpu) { }
616 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
617 {
618 }
619 #endif /* !CONFIG_MMU */
620 
621 /*
622  * Return the mem_map entry representing the 'offset' subpage within
623  * the maximally aligned gigantic page 'base'.  Handle any discontiguity
624  * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
625  */
626 static inline struct page *mem_map_offset(struct page *base, int offset)
627 {
628 	if (unlikely(offset >= MAX_ORDER_NR_PAGES))
629 		return nth_page(base, offset);
630 	return base + offset;
631 }
632 
633 /*
634  * Iterator over all subpages within the maximally aligned gigantic
635  * page 'base'.  Handle any discontiguity in the mem_map.
636  */
637 static inline struct page *mem_map_next(struct page *iter,
638 						struct page *base, int offset)
639 {
640 	if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
641 		unsigned long pfn = page_to_pfn(base) + offset;
642 		if (!pfn_valid(pfn))
643 			return NULL;
644 		return pfn_to_page(pfn);
645 	}
646 	return iter + 1;
647 }
648 
649 /* Memory initialisation debug and verification */
650 enum mminit_level {
651 	MMINIT_WARNING,
652 	MMINIT_VERIFY,
653 	MMINIT_TRACE
654 };
655 
656 #ifdef CONFIG_DEBUG_MEMORY_INIT
657 
658 extern int mminit_loglevel;
659 
660 #define mminit_dprintk(level, prefix, fmt, arg...) \
661 do { \
662 	if (level < mminit_loglevel) { \
663 		if (level <= MMINIT_WARNING) \
664 			pr_warn("mminit::" prefix " " fmt, ##arg);	\
665 		else \
666 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
667 	} \
668 } while (0)
669 
670 extern void mminit_verify_pageflags_layout(void);
671 extern void mminit_verify_zonelist(void);
672 #else
673 
674 static inline void mminit_dprintk(enum mminit_level level,
675 				const char *prefix, const char *fmt, ...)
676 {
677 }
678 
679 static inline void mminit_verify_pageflags_layout(void)
680 {
681 }
682 
683 static inline void mminit_verify_zonelist(void)
684 {
685 }
686 #endif /* CONFIG_DEBUG_MEMORY_INIT */
687 
688 #define NODE_RECLAIM_NOSCAN	-2
689 #define NODE_RECLAIM_FULL	-1
690 #define NODE_RECLAIM_SOME	0
691 #define NODE_RECLAIM_SUCCESS	1
692 
693 #ifdef CONFIG_NUMA
694 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
695 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
696 #else
697 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
698 				unsigned int order)
699 {
700 	return NODE_RECLAIM_NOSCAN;
701 }
702 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
703 {
704 	return NUMA_NO_NODE;
705 }
706 #endif
707 
708 extern int hwpoison_filter(struct page *p);
709 
710 extern u32 hwpoison_filter_dev_major;
711 extern u32 hwpoison_filter_dev_minor;
712 extern u64 hwpoison_filter_flags_mask;
713 extern u64 hwpoison_filter_flags_value;
714 extern u64 hwpoison_filter_memcg;
715 extern u32 hwpoison_filter_enable;
716 
717 extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
718         unsigned long, unsigned long,
719         unsigned long, unsigned long);
720 
721 extern void set_pageblock_order(void);
722 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
723 					    struct list_head *page_list);
724 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
725 #define ALLOC_WMARK_MIN		WMARK_MIN
726 #define ALLOC_WMARK_LOW		WMARK_LOW
727 #define ALLOC_WMARK_HIGH	WMARK_HIGH
728 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
729 
730 /* Mask to get the watermark bits */
731 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
732 
733 /*
734  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
735  * cannot assume a reduced access to memory reserves is sufficient for
736  * !MMU
737  */
738 #ifdef CONFIG_MMU
739 #define ALLOC_OOM		0x08
740 #else
741 #define ALLOC_OOM		ALLOC_NO_WATERMARKS
742 #endif
743 
744 #define ALLOC_HARDER		 0x10 /* try to alloc harder */
745 #define ALLOC_HIGH		 0x20 /* __GFP_HIGH set */
746 #define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
747 #define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
748 #ifdef CONFIG_ZONE_DMA32
749 #define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
750 #else
751 #define ALLOC_NOFRAGMENT	  0x0
752 #endif
753 #define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
754 
755 enum ttu_flags;
756 struct tlbflush_unmap_batch;
757 
758 
759 /*
760  * only for MM internal work items which do not depend on
761  * any allocations or locks which might depend on allocations
762  */
763 extern struct workqueue_struct *mm_percpu_wq;
764 
765 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
766 void try_to_unmap_flush(void);
767 void try_to_unmap_flush_dirty(void);
768 void flush_tlb_batched_pending(struct mm_struct *mm);
769 #else
770 static inline void try_to_unmap_flush(void)
771 {
772 }
773 static inline void try_to_unmap_flush_dirty(void)
774 {
775 }
776 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
777 {
778 }
779 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
780 
781 extern const struct trace_print_flags pageflag_names[];
782 extern const struct trace_print_flags vmaflag_names[];
783 extern const struct trace_print_flags gfpflag_names[];
784 
785 static inline bool is_migrate_highatomic(enum migratetype migratetype)
786 {
787 	return migratetype == MIGRATE_HIGHATOMIC;
788 }
789 
790 static inline bool is_migrate_highatomic_page(struct page *page)
791 {
792 	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
793 }
794 
795 void setup_zone_pageset(struct zone *zone);
796 
797 struct migration_target_control {
798 	int nid;		/* preferred node id */
799 	nodemask_t *nmask;
800 	gfp_t gfp_mask;
801 };
802 
803 /*
804  * mm/vmalloc.c
805  */
806 #ifdef CONFIG_MMU
807 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
808                 pgprot_t prot, struct page **pages, unsigned int page_shift);
809 #else
810 static inline
811 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
812                 pgprot_t prot, struct page **pages, unsigned int page_shift)
813 {
814 	return -EINVAL;
815 }
816 #endif
817 
818 void vunmap_range_noflush(unsigned long start, unsigned long end);
819 
820 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
821 		      unsigned long addr, int page_nid, int *flags);
822 
823 void free_zone_device_page(struct page *page);
824 
825 /*
826  * mm/gup.c
827  */
828 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
829 
830 DECLARE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
831 
832 #endif	/* __MM_INTERNAL_H */
833