xref: /openbmc/linux/mm/internal.h (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3  *
4  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9 
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/tracepoint-defs.h>
14 
15 /*
16  * The set of flags that only affect watermark checking and reclaim
17  * behaviour. This is used by the MM to obey the caller constraints
18  * about IO, FS and watermark checking while ignoring placement
19  * hints such as HIGHMEM usage.
20  */
21 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
22 			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
23 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
24 			__GFP_ATOMIC)
25 
26 /* The GFP flags allowed during early boot */
27 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
28 
29 /* Control allocation cpuset and node placement constraints */
30 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
31 
32 /* Do not use these with a slab allocator */
33 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
34 
35 void page_writeback_init(void);
36 
37 vm_fault_t do_swap_page(struct vm_fault *vmf);
38 
39 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
40 		unsigned long floor, unsigned long ceiling);
41 
42 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
43 {
44 	return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP));
45 }
46 
47 void unmap_page_range(struct mmu_gather *tlb,
48 			     struct vm_area_struct *vma,
49 			     unsigned long addr, unsigned long end,
50 			     struct zap_details *details);
51 
52 void force_page_cache_readahead(struct address_space *, struct file *,
53 		pgoff_t index, unsigned long nr_to_read);
54 void __do_page_cache_readahead(struct address_space *, struct file *,
55 		pgoff_t index, unsigned long nr_to_read,
56 		unsigned long lookahead_size);
57 
58 /*
59  * Submit IO for the read-ahead request in file_ra_state.
60  */
61 static inline void ra_submit(struct file_ra_state *ra,
62 		struct address_space *mapping, struct file *filp)
63 {
64 	__do_page_cache_readahead(mapping, filp,
65 			ra->start, ra->size, ra->async_size);
66 }
67 
68 /**
69  * page_evictable - test whether a page is evictable
70  * @page: the page to test
71  *
72  * Test whether page is evictable--i.e., should be placed on active/inactive
73  * lists vs unevictable list.
74  *
75  * Reasons page might not be evictable:
76  * (1) page's mapping marked unevictable
77  * (2) page is part of an mlocked VMA
78  *
79  */
80 static inline bool page_evictable(struct page *page)
81 {
82 	bool ret;
83 
84 	/* Prevent address_space of inode and swap cache from being freed */
85 	rcu_read_lock();
86 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
87 	rcu_read_unlock();
88 	return ret;
89 }
90 
91 /*
92  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
93  * a count of one.
94  */
95 static inline void set_page_refcounted(struct page *page)
96 {
97 	VM_BUG_ON_PAGE(PageTail(page), page);
98 	VM_BUG_ON_PAGE(page_ref_count(page), page);
99 	set_page_count(page, 1);
100 }
101 
102 extern unsigned long highest_memmap_pfn;
103 
104 /*
105  * Maximum number of reclaim retries without progress before the OOM
106  * killer is consider the only way forward.
107  */
108 #define MAX_RECLAIM_RETRIES 16
109 
110 /*
111  * in mm/vmscan.c:
112  */
113 extern int isolate_lru_page(struct page *page);
114 extern void putback_lru_page(struct page *page);
115 
116 /*
117  * in mm/rmap.c:
118  */
119 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
120 
121 /*
122  * in mm/page_alloc.c
123  */
124 
125 /*
126  * Structure for holding the mostly immutable allocation parameters passed
127  * between functions involved in allocations, including the alloc_pages*
128  * family of functions.
129  *
130  * nodemask, migratetype and highest_zoneidx are initialized only once in
131  * __alloc_pages_nodemask() and then never change.
132  *
133  * zonelist, preferred_zone and highest_zoneidx are set first in
134  * __alloc_pages_nodemask() for the fast path, and might be later changed
135  * in __alloc_pages_slowpath(). All other functions pass the whole structure
136  * by a const pointer.
137  */
138 struct alloc_context {
139 	struct zonelist *zonelist;
140 	nodemask_t *nodemask;
141 	struct zoneref *preferred_zoneref;
142 	int migratetype;
143 
144 	/*
145 	 * highest_zoneidx represents highest usable zone index of
146 	 * the allocation request. Due to the nature of the zone,
147 	 * memory on lower zone than the highest_zoneidx will be
148 	 * protected by lowmem_reserve[highest_zoneidx].
149 	 *
150 	 * highest_zoneidx is also used by reclaim/compaction to limit
151 	 * the target zone since higher zone than this index cannot be
152 	 * usable for this allocation request.
153 	 */
154 	enum zone_type highest_zoneidx;
155 	bool spread_dirty_pages;
156 };
157 
158 /*
159  * Locate the struct page for both the matching buddy in our
160  * pair (buddy1) and the combined O(n+1) page they form (page).
161  *
162  * 1) Any buddy B1 will have an order O twin B2 which satisfies
163  * the following equation:
164  *     B2 = B1 ^ (1 << O)
165  * For example, if the starting buddy (buddy2) is #8 its order
166  * 1 buddy is #10:
167  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
168  *
169  * 2) Any buddy B will have an order O+1 parent P which
170  * satisfies the following equation:
171  *     P = B & ~(1 << O)
172  *
173  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
174  */
175 static inline unsigned long
176 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
177 {
178 	return page_pfn ^ (1 << order);
179 }
180 
181 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
182 				unsigned long end_pfn, struct zone *zone);
183 
184 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
185 				unsigned long end_pfn, struct zone *zone)
186 {
187 	if (zone->contiguous)
188 		return pfn_to_page(start_pfn);
189 
190 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
191 }
192 
193 extern int __isolate_free_page(struct page *page, unsigned int order);
194 extern void __putback_isolated_page(struct page *page, unsigned int order,
195 				    int mt);
196 extern void memblock_free_pages(struct page *page, unsigned long pfn,
197 					unsigned int order);
198 extern void __free_pages_core(struct page *page, unsigned int order);
199 extern void prep_compound_page(struct page *page, unsigned int order);
200 extern void post_alloc_hook(struct page *page, unsigned int order,
201 					gfp_t gfp_flags);
202 extern int user_min_free_kbytes;
203 
204 extern void zone_pcp_update(struct zone *zone);
205 extern void zone_pcp_reset(struct zone *zone);
206 
207 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
208 
209 /*
210  * in mm/compaction.c
211  */
212 /*
213  * compact_control is used to track pages being migrated and the free pages
214  * they are being migrated to during memory compaction. The free_pfn starts
215  * at the end of a zone and migrate_pfn begins at the start. Movable pages
216  * are moved to the end of a zone during a compaction run and the run
217  * completes when free_pfn <= migrate_pfn
218  */
219 struct compact_control {
220 	struct list_head freepages;	/* List of free pages to migrate to */
221 	struct list_head migratepages;	/* List of pages being migrated */
222 	unsigned int nr_freepages;	/* Number of isolated free pages */
223 	unsigned int nr_migratepages;	/* Number of pages to migrate */
224 	unsigned long free_pfn;		/* isolate_freepages search base */
225 	unsigned long migrate_pfn;	/* isolate_migratepages search base */
226 	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
227 	struct zone *zone;
228 	unsigned long total_migrate_scanned;
229 	unsigned long total_free_scanned;
230 	unsigned short fast_search_fail;/* failures to use free list searches */
231 	short search_order;		/* order to start a fast search at */
232 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
233 	int order;			/* order a direct compactor needs */
234 	int migratetype;		/* migratetype of direct compactor */
235 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
236 	const int highest_zoneidx;	/* zone index of a direct compactor */
237 	enum migrate_mode mode;		/* Async or sync migration mode */
238 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
239 	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
240 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
241 	bool direct_compaction;		/* False from kcompactd or /proc/... */
242 	bool whole_zone;		/* Whole zone should/has been scanned */
243 	bool contended;			/* Signal lock or sched contention */
244 	bool rescan;			/* Rescanning the same pageblock */
245 	bool alloc_contig;		/* alloc_contig_range allocation */
246 };
247 
248 /*
249  * Used in direct compaction when a page should be taken from the freelists
250  * immediately when one is created during the free path.
251  */
252 struct capture_control {
253 	struct compact_control *cc;
254 	struct page *page;
255 };
256 
257 unsigned long
258 isolate_freepages_range(struct compact_control *cc,
259 			unsigned long start_pfn, unsigned long end_pfn);
260 unsigned long
261 isolate_migratepages_range(struct compact_control *cc,
262 			   unsigned long low_pfn, unsigned long end_pfn);
263 int find_suitable_fallback(struct free_area *area, unsigned int order,
264 			int migratetype, bool only_stealable, bool *can_steal);
265 
266 #endif
267 
268 /*
269  * This function returns the order of a free page in the buddy system. In
270  * general, page_zone(page)->lock must be held by the caller to prevent the
271  * page from being allocated in parallel and returning garbage as the order.
272  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
273  * page cannot be allocated or merged in parallel. Alternatively, it must
274  * handle invalid values gracefully, and use page_order_unsafe() below.
275  */
276 static inline unsigned int page_order(struct page *page)
277 {
278 	/* PageBuddy() must be checked by the caller */
279 	return page_private(page);
280 }
281 
282 /*
283  * Like page_order(), but for callers who cannot afford to hold the zone lock.
284  * PageBuddy() should be checked first by the caller to minimize race window,
285  * and invalid values must be handled gracefully.
286  *
287  * READ_ONCE is used so that if the caller assigns the result into a local
288  * variable and e.g. tests it for valid range before using, the compiler cannot
289  * decide to remove the variable and inline the page_private(page) multiple
290  * times, potentially observing different values in the tests and the actual
291  * use of the result.
292  */
293 #define page_order_unsafe(page)		READ_ONCE(page_private(page))
294 
295 static inline bool is_cow_mapping(vm_flags_t flags)
296 {
297 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
298 }
299 
300 /*
301  * These three helpers classifies VMAs for virtual memory accounting.
302  */
303 
304 /*
305  * Executable code area - executable, not writable, not stack
306  */
307 static inline bool is_exec_mapping(vm_flags_t flags)
308 {
309 	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
310 }
311 
312 /*
313  * Stack area - atomatically grows in one direction
314  *
315  * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
316  * do_mmap() forbids all other combinations.
317  */
318 static inline bool is_stack_mapping(vm_flags_t flags)
319 {
320 	return (flags & VM_STACK) == VM_STACK;
321 }
322 
323 /*
324  * Data area - private, writable, not stack
325  */
326 static inline bool is_data_mapping(vm_flags_t flags)
327 {
328 	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
329 }
330 
331 /* mm/util.c */
332 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
333 		struct vm_area_struct *prev);
334 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma);
335 
336 #ifdef CONFIG_MMU
337 extern long populate_vma_page_range(struct vm_area_struct *vma,
338 		unsigned long start, unsigned long end, int *nonblocking);
339 extern void munlock_vma_pages_range(struct vm_area_struct *vma,
340 			unsigned long start, unsigned long end);
341 static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
342 {
343 	munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
344 }
345 
346 /*
347  * must be called with vma's mmap_lock held for read or write, and page locked.
348  */
349 extern void mlock_vma_page(struct page *page);
350 extern unsigned int munlock_vma_page(struct page *page);
351 
352 /*
353  * Clear the page's PageMlocked().  This can be useful in a situation where
354  * we want to unconditionally remove a page from the pagecache -- e.g.,
355  * on truncation or freeing.
356  *
357  * It is legal to call this function for any page, mlocked or not.
358  * If called for a page that is still mapped by mlocked vmas, all we do
359  * is revert to lazy LRU behaviour -- semantics are not broken.
360  */
361 extern void clear_page_mlock(struct page *page);
362 
363 /*
364  * mlock_migrate_page - called only from migrate_misplaced_transhuge_page()
365  * (because that does not go through the full procedure of migration ptes):
366  * to migrate the Mlocked page flag; update statistics.
367  */
368 static inline void mlock_migrate_page(struct page *newpage, struct page *page)
369 {
370 	if (TestClearPageMlocked(page)) {
371 		int nr_pages = hpage_nr_pages(page);
372 
373 		/* Holding pmd lock, no change in irq context: __mod is safe */
374 		__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
375 		SetPageMlocked(newpage);
376 		__mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages);
377 	}
378 }
379 
380 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
381 
382 /*
383  * At what user virtual address is page expected in @vma?
384  */
385 static inline unsigned long
386 __vma_address(struct page *page, struct vm_area_struct *vma)
387 {
388 	pgoff_t pgoff = page_to_pgoff(page);
389 	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
390 }
391 
392 static inline unsigned long
393 vma_address(struct page *page, struct vm_area_struct *vma)
394 {
395 	unsigned long start, end;
396 
397 	start = __vma_address(page, vma);
398 	end = start + PAGE_SIZE * (hpage_nr_pages(page) - 1);
399 
400 	/* page should be within @vma mapping range */
401 	VM_BUG_ON_VMA(end < vma->vm_start || start >= vma->vm_end, vma);
402 
403 	return max(start, vma->vm_start);
404 }
405 
406 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
407 						    struct file *fpin)
408 {
409 	int flags = vmf->flags;
410 
411 	if (fpin)
412 		return fpin;
413 
414 	/*
415 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
416 	 * anything, so we only pin the file and drop the mmap_lock if only
417 	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
418 	 */
419 	if (fault_flag_allow_retry_first(flags) &&
420 	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
421 		fpin = get_file(vmf->vma->vm_file);
422 		mmap_read_unlock(vmf->vma->vm_mm);
423 	}
424 	return fpin;
425 }
426 
427 #else /* !CONFIG_MMU */
428 static inline void clear_page_mlock(struct page *page) { }
429 static inline void mlock_vma_page(struct page *page) { }
430 static inline void mlock_migrate_page(struct page *new, struct page *old) { }
431 
432 #endif /* !CONFIG_MMU */
433 
434 /*
435  * Return the mem_map entry representing the 'offset' subpage within
436  * the maximally aligned gigantic page 'base'.  Handle any discontiguity
437  * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
438  */
439 static inline struct page *mem_map_offset(struct page *base, int offset)
440 {
441 	if (unlikely(offset >= MAX_ORDER_NR_PAGES))
442 		return nth_page(base, offset);
443 	return base + offset;
444 }
445 
446 /*
447  * Iterator over all subpages within the maximally aligned gigantic
448  * page 'base'.  Handle any discontiguity in the mem_map.
449  */
450 static inline struct page *mem_map_next(struct page *iter,
451 						struct page *base, int offset)
452 {
453 	if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
454 		unsigned long pfn = page_to_pfn(base) + offset;
455 		if (!pfn_valid(pfn))
456 			return NULL;
457 		return pfn_to_page(pfn);
458 	}
459 	return iter + 1;
460 }
461 
462 /* Memory initialisation debug and verification */
463 enum mminit_level {
464 	MMINIT_WARNING,
465 	MMINIT_VERIFY,
466 	MMINIT_TRACE
467 };
468 
469 #ifdef CONFIG_DEBUG_MEMORY_INIT
470 
471 extern int mminit_loglevel;
472 
473 #define mminit_dprintk(level, prefix, fmt, arg...) \
474 do { \
475 	if (level < mminit_loglevel) { \
476 		if (level <= MMINIT_WARNING) \
477 			pr_warn("mminit::" prefix " " fmt, ##arg);	\
478 		else \
479 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
480 	} \
481 } while (0)
482 
483 extern void mminit_verify_pageflags_layout(void);
484 extern void mminit_verify_zonelist(void);
485 #else
486 
487 static inline void mminit_dprintk(enum mminit_level level,
488 				const char *prefix, const char *fmt, ...)
489 {
490 }
491 
492 static inline void mminit_verify_pageflags_layout(void)
493 {
494 }
495 
496 static inline void mminit_verify_zonelist(void)
497 {
498 }
499 #endif /* CONFIG_DEBUG_MEMORY_INIT */
500 
501 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
502 #if defined(CONFIG_SPARSEMEM)
503 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
504 				unsigned long *end_pfn);
505 #else
506 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
507 				unsigned long *end_pfn)
508 {
509 }
510 #endif /* CONFIG_SPARSEMEM */
511 
512 #define NODE_RECLAIM_NOSCAN	-2
513 #define NODE_RECLAIM_FULL	-1
514 #define NODE_RECLAIM_SOME	0
515 #define NODE_RECLAIM_SUCCESS	1
516 
517 #ifdef CONFIG_NUMA
518 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
519 #else
520 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
521 				unsigned int order)
522 {
523 	return NODE_RECLAIM_NOSCAN;
524 }
525 #endif
526 
527 extern int hwpoison_filter(struct page *p);
528 
529 extern u32 hwpoison_filter_dev_major;
530 extern u32 hwpoison_filter_dev_minor;
531 extern u64 hwpoison_filter_flags_mask;
532 extern u64 hwpoison_filter_flags_value;
533 extern u64 hwpoison_filter_memcg;
534 extern u32 hwpoison_filter_enable;
535 
536 extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
537         unsigned long, unsigned long,
538         unsigned long, unsigned long);
539 
540 extern void set_pageblock_order(void);
541 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
542 					    struct list_head *page_list);
543 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
544 #define ALLOC_WMARK_MIN		WMARK_MIN
545 #define ALLOC_WMARK_LOW		WMARK_LOW
546 #define ALLOC_WMARK_HIGH	WMARK_HIGH
547 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
548 
549 /* Mask to get the watermark bits */
550 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
551 
552 /*
553  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
554  * cannot assume a reduced access to memory reserves is sufficient for
555  * !MMU
556  */
557 #ifdef CONFIG_MMU
558 #define ALLOC_OOM		0x08
559 #else
560 #define ALLOC_OOM		ALLOC_NO_WATERMARKS
561 #endif
562 
563 #define ALLOC_HARDER		 0x10 /* try to alloc harder */
564 #define ALLOC_HIGH		 0x20 /* __GFP_HIGH set */
565 #define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
566 #define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
567 #ifdef CONFIG_ZONE_DMA32
568 #define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
569 #else
570 #define ALLOC_NOFRAGMENT	  0x0
571 #endif
572 #define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
573 
574 enum ttu_flags;
575 struct tlbflush_unmap_batch;
576 
577 
578 /*
579  * only for MM internal work items which do not depend on
580  * any allocations or locks which might depend on allocations
581  */
582 extern struct workqueue_struct *mm_percpu_wq;
583 
584 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
585 void try_to_unmap_flush(void);
586 void try_to_unmap_flush_dirty(void);
587 void flush_tlb_batched_pending(struct mm_struct *mm);
588 #else
589 static inline void try_to_unmap_flush(void)
590 {
591 }
592 static inline void try_to_unmap_flush_dirty(void)
593 {
594 }
595 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
596 {
597 }
598 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
599 
600 extern const struct trace_print_flags pageflag_names[];
601 extern const struct trace_print_flags vmaflag_names[];
602 extern const struct trace_print_flags gfpflag_names[];
603 
604 static inline bool is_migrate_highatomic(enum migratetype migratetype)
605 {
606 	return migratetype == MIGRATE_HIGHATOMIC;
607 }
608 
609 static inline bool is_migrate_highatomic_page(struct page *page)
610 {
611 	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
612 }
613 
614 void setup_zone_pageset(struct zone *zone);
615 extern struct page *alloc_new_node_page(struct page *page, unsigned long node);
616 #endif	/* __MM_INTERNAL_H */
617