1 /* internal.h: mm/ internal definitions 2 * 3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #ifndef __MM_INTERNAL_H 12 #define __MM_INTERNAL_H 13 14 #include <linux/fs.h> 15 #include <linux/mm.h> 16 17 /* 18 * The set of flags that only affect watermark checking and reclaim 19 * behaviour. This is used by the MM to obey the caller constraints 20 * about IO, FS and watermark checking while ignoring placement 21 * hints such as HIGHMEM usage. 22 */ 23 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 24 __GFP_NOWARN|__GFP_REPEAT|__GFP_NOFAIL|\ 25 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC) 26 27 /* The GFP flags allowed during early boot */ 28 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 29 30 /* Control allocation cpuset and node placement constraints */ 31 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 32 33 /* Do not use these with a slab allocator */ 34 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 35 36 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 37 unsigned long floor, unsigned long ceiling); 38 39 static inline void set_page_count(struct page *page, int v) 40 { 41 atomic_set(&page->_count, v); 42 } 43 44 extern int __do_page_cache_readahead(struct address_space *mapping, 45 struct file *filp, pgoff_t offset, unsigned long nr_to_read, 46 unsigned long lookahead_size); 47 48 /* 49 * Submit IO for the read-ahead request in file_ra_state. 50 */ 51 static inline unsigned long ra_submit(struct file_ra_state *ra, 52 struct address_space *mapping, struct file *filp) 53 { 54 return __do_page_cache_readahead(mapping, filp, 55 ra->start, ra->size, ra->async_size); 56 } 57 58 /* 59 * Turn a non-refcounted page (->_count == 0) into refcounted with 60 * a count of one. 61 */ 62 static inline void set_page_refcounted(struct page *page) 63 { 64 VM_BUG_ON_PAGE(PageTail(page), page); 65 VM_BUG_ON_PAGE(atomic_read(&page->_count), page); 66 set_page_count(page, 1); 67 } 68 69 static inline void __get_page_tail_foll(struct page *page, 70 bool get_page_head) 71 { 72 /* 73 * If we're getting a tail page, the elevated page->_count is 74 * required only in the head page and we will elevate the head 75 * page->_count and tail page->_mapcount. 76 * 77 * We elevate page_tail->_mapcount for tail pages to force 78 * page_tail->_count to be zero at all times to avoid getting 79 * false positives from get_page_unless_zero() with 80 * speculative page access (like in 81 * page_cache_get_speculative()) on tail pages. 82 */ 83 VM_BUG_ON_PAGE(atomic_read(&compound_head(page)->_count) <= 0, page); 84 if (get_page_head) 85 atomic_inc(&compound_head(page)->_count); 86 get_huge_page_tail(page); 87 } 88 89 /* 90 * This is meant to be called as the FOLL_GET operation of 91 * follow_page() and it must be called while holding the proper PT 92 * lock while the pte (or pmd_trans_huge) is still mapping the page. 93 */ 94 static inline void get_page_foll(struct page *page) 95 { 96 if (unlikely(PageTail(page))) 97 /* 98 * This is safe only because 99 * __split_huge_page_refcount() can't run under 100 * get_page_foll() because we hold the proper PT lock. 101 */ 102 __get_page_tail_foll(page, true); 103 else { 104 /* 105 * Getting a normal page or the head of a compound page 106 * requires to already have an elevated page->_count. 107 */ 108 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 109 atomic_inc(&page->_count); 110 } 111 } 112 113 extern unsigned long highest_memmap_pfn; 114 115 /* 116 * in mm/vmscan.c: 117 */ 118 extern int isolate_lru_page(struct page *page); 119 extern void putback_lru_page(struct page *page); 120 extern bool zone_reclaimable(struct zone *zone); 121 122 /* 123 * in mm/rmap.c: 124 */ 125 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 126 127 /* 128 * in mm/page_alloc.c 129 */ 130 131 /* 132 * Structure for holding the mostly immutable allocation parameters passed 133 * between functions involved in allocations, including the alloc_pages* 134 * family of functions. 135 * 136 * nodemask, migratetype and high_zoneidx are initialized only once in 137 * __alloc_pages_nodemask() and then never change. 138 * 139 * zonelist, preferred_zone and classzone_idx are set first in 140 * __alloc_pages_nodemask() for the fast path, and might be later changed 141 * in __alloc_pages_slowpath(). All other functions pass the whole strucure 142 * by a const pointer. 143 */ 144 struct alloc_context { 145 struct zonelist *zonelist; 146 nodemask_t *nodemask; 147 struct zone *preferred_zone; 148 int classzone_idx; 149 int migratetype; 150 enum zone_type high_zoneidx; 151 bool spread_dirty_pages; 152 }; 153 154 /* 155 * Locate the struct page for both the matching buddy in our 156 * pair (buddy1) and the combined O(n+1) page they form (page). 157 * 158 * 1) Any buddy B1 will have an order O twin B2 which satisfies 159 * the following equation: 160 * B2 = B1 ^ (1 << O) 161 * For example, if the starting buddy (buddy2) is #8 its order 162 * 1 buddy is #10: 163 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 164 * 165 * 2) Any buddy B will have an order O+1 parent P which 166 * satisfies the following equation: 167 * P = B & ~(1 << O) 168 * 169 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 170 */ 171 static inline unsigned long 172 __find_buddy_index(unsigned long page_idx, unsigned int order) 173 { 174 return page_idx ^ (1 << order); 175 } 176 177 extern int __isolate_free_page(struct page *page, unsigned int order); 178 extern void __free_pages_bootmem(struct page *page, unsigned long pfn, 179 unsigned int order); 180 extern void prep_compound_page(struct page *page, unsigned int order); 181 #ifdef CONFIG_MEMORY_FAILURE 182 extern bool is_free_buddy_page(struct page *page); 183 #endif 184 extern int user_min_free_kbytes; 185 186 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 187 188 /* 189 * in mm/compaction.c 190 */ 191 /* 192 * compact_control is used to track pages being migrated and the free pages 193 * they are being migrated to during memory compaction. The free_pfn starts 194 * at the end of a zone and migrate_pfn begins at the start. Movable pages 195 * are moved to the end of a zone during a compaction run and the run 196 * completes when free_pfn <= migrate_pfn 197 */ 198 struct compact_control { 199 struct list_head freepages; /* List of free pages to migrate to */ 200 struct list_head migratepages; /* List of pages being migrated */ 201 unsigned long nr_freepages; /* Number of isolated free pages */ 202 unsigned long nr_migratepages; /* Number of pages to migrate */ 203 unsigned long free_pfn; /* isolate_freepages search base */ 204 unsigned long migrate_pfn; /* isolate_migratepages search base */ 205 unsigned long last_migrated_pfn;/* Not yet flushed page being freed */ 206 enum migrate_mode mode; /* Async or sync migration mode */ 207 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 208 int order; /* order a direct compactor needs */ 209 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 210 const int alloc_flags; /* alloc flags of a direct compactor */ 211 const int classzone_idx; /* zone index of a direct compactor */ 212 struct zone *zone; 213 int contended; /* Signal need_sched() or lock 214 * contention detected during 215 * compaction 216 */ 217 }; 218 219 unsigned long 220 isolate_freepages_range(struct compact_control *cc, 221 unsigned long start_pfn, unsigned long end_pfn); 222 unsigned long 223 isolate_migratepages_range(struct compact_control *cc, 224 unsigned long low_pfn, unsigned long end_pfn); 225 int find_suitable_fallback(struct free_area *area, unsigned int order, 226 int migratetype, bool only_stealable, bool *can_steal); 227 228 #endif 229 230 /* 231 * This function returns the order of a free page in the buddy system. In 232 * general, page_zone(page)->lock must be held by the caller to prevent the 233 * page from being allocated in parallel and returning garbage as the order. 234 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 235 * page cannot be allocated or merged in parallel. Alternatively, it must 236 * handle invalid values gracefully, and use page_order_unsafe() below. 237 */ 238 static inline unsigned int page_order(struct page *page) 239 { 240 /* PageBuddy() must be checked by the caller */ 241 return page_private(page); 242 } 243 244 /* 245 * Like page_order(), but for callers who cannot afford to hold the zone lock. 246 * PageBuddy() should be checked first by the caller to minimize race window, 247 * and invalid values must be handled gracefully. 248 * 249 * READ_ONCE is used so that if the caller assigns the result into a local 250 * variable and e.g. tests it for valid range before using, the compiler cannot 251 * decide to remove the variable and inline the page_private(page) multiple 252 * times, potentially observing different values in the tests and the actual 253 * use of the result. 254 */ 255 #define page_order_unsafe(page) READ_ONCE(page_private(page)) 256 257 static inline bool is_cow_mapping(vm_flags_t flags) 258 { 259 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 260 } 261 262 /* mm/util.c */ 263 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 264 struct vm_area_struct *prev, struct rb_node *rb_parent); 265 266 #ifdef CONFIG_MMU 267 extern long populate_vma_page_range(struct vm_area_struct *vma, 268 unsigned long start, unsigned long end, int *nonblocking); 269 extern void munlock_vma_pages_range(struct vm_area_struct *vma, 270 unsigned long start, unsigned long end); 271 static inline void munlock_vma_pages_all(struct vm_area_struct *vma) 272 { 273 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); 274 } 275 276 /* 277 * must be called with vma's mmap_sem held for read or write, and page locked. 278 */ 279 extern void mlock_vma_page(struct page *page); 280 extern unsigned int munlock_vma_page(struct page *page); 281 282 /* 283 * Clear the page's PageMlocked(). This can be useful in a situation where 284 * we want to unconditionally remove a page from the pagecache -- e.g., 285 * on truncation or freeing. 286 * 287 * It is legal to call this function for any page, mlocked or not. 288 * If called for a page that is still mapped by mlocked vmas, all we do 289 * is revert to lazy LRU behaviour -- semantics are not broken. 290 */ 291 extern void clear_page_mlock(struct page *page); 292 293 /* 294 * mlock_migrate_page - called only from migrate_misplaced_transhuge_page() 295 * (because that does not go through the full procedure of migration ptes): 296 * to migrate the Mlocked page flag; update statistics. 297 */ 298 static inline void mlock_migrate_page(struct page *newpage, struct page *page) 299 { 300 if (TestClearPageMlocked(page)) { 301 int nr_pages = hpage_nr_pages(page); 302 303 /* Holding pmd lock, no change in irq context: __mod is safe */ 304 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 305 SetPageMlocked(newpage); 306 __mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages); 307 } 308 } 309 310 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 311 312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 313 extern unsigned long vma_address(struct page *page, 314 struct vm_area_struct *vma); 315 #endif 316 #else /* !CONFIG_MMU */ 317 static inline void clear_page_mlock(struct page *page) { } 318 static inline void mlock_vma_page(struct page *page) { } 319 static inline void mlock_migrate_page(struct page *new, struct page *old) { } 320 321 #endif /* !CONFIG_MMU */ 322 323 /* 324 * Return the mem_map entry representing the 'offset' subpage within 325 * the maximally aligned gigantic page 'base'. Handle any discontiguity 326 * in the mem_map at MAX_ORDER_NR_PAGES boundaries. 327 */ 328 static inline struct page *mem_map_offset(struct page *base, int offset) 329 { 330 if (unlikely(offset >= MAX_ORDER_NR_PAGES)) 331 return nth_page(base, offset); 332 return base + offset; 333 } 334 335 /* 336 * Iterator over all subpages within the maximally aligned gigantic 337 * page 'base'. Handle any discontiguity in the mem_map. 338 */ 339 static inline struct page *mem_map_next(struct page *iter, 340 struct page *base, int offset) 341 { 342 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { 343 unsigned long pfn = page_to_pfn(base) + offset; 344 if (!pfn_valid(pfn)) 345 return NULL; 346 return pfn_to_page(pfn); 347 } 348 return iter + 1; 349 } 350 351 /* 352 * FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node, 353 * so all functions starting at paging_init should be marked __init 354 * in those cases. SPARSEMEM, however, allows for memory hotplug, 355 * and alloc_bootmem_node is not used. 356 */ 357 #ifdef CONFIG_SPARSEMEM 358 #define __paginginit __meminit 359 #else 360 #define __paginginit __init 361 #endif 362 363 /* Memory initialisation debug and verification */ 364 enum mminit_level { 365 MMINIT_WARNING, 366 MMINIT_VERIFY, 367 MMINIT_TRACE 368 }; 369 370 #ifdef CONFIG_DEBUG_MEMORY_INIT 371 372 extern int mminit_loglevel; 373 374 #define mminit_dprintk(level, prefix, fmt, arg...) \ 375 do { \ 376 if (level < mminit_loglevel) { \ 377 if (level <= MMINIT_WARNING) \ 378 printk(KERN_WARNING "mminit::" prefix " " fmt, ##arg); \ 379 else \ 380 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 381 } \ 382 } while (0) 383 384 extern void mminit_verify_pageflags_layout(void); 385 extern void mminit_verify_zonelist(void); 386 #else 387 388 static inline void mminit_dprintk(enum mminit_level level, 389 const char *prefix, const char *fmt, ...) 390 { 391 } 392 393 static inline void mminit_verify_pageflags_layout(void) 394 { 395 } 396 397 static inline void mminit_verify_zonelist(void) 398 { 399 } 400 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 401 402 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ 403 #if defined(CONFIG_SPARSEMEM) 404 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, 405 unsigned long *end_pfn); 406 #else 407 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, 408 unsigned long *end_pfn) 409 { 410 } 411 #endif /* CONFIG_SPARSEMEM */ 412 413 #define ZONE_RECLAIM_NOSCAN -2 414 #define ZONE_RECLAIM_FULL -1 415 #define ZONE_RECLAIM_SOME 0 416 #define ZONE_RECLAIM_SUCCESS 1 417 418 extern int hwpoison_filter(struct page *p); 419 420 extern u32 hwpoison_filter_dev_major; 421 extern u32 hwpoison_filter_dev_minor; 422 extern u64 hwpoison_filter_flags_mask; 423 extern u64 hwpoison_filter_flags_value; 424 extern u64 hwpoison_filter_memcg; 425 extern u32 hwpoison_filter_enable; 426 427 extern unsigned long vm_mmap_pgoff(struct file *, unsigned long, 428 unsigned long, unsigned long, 429 unsigned long, unsigned long); 430 431 extern void set_pageblock_order(void); 432 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 433 struct list_head *page_list); 434 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 435 #define ALLOC_WMARK_MIN WMARK_MIN 436 #define ALLOC_WMARK_LOW WMARK_LOW 437 #define ALLOC_WMARK_HIGH WMARK_HIGH 438 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 439 440 /* Mask to get the watermark bits */ 441 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 442 443 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 444 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 445 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 446 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 447 #define ALLOC_FAIR 0x100 /* fair zone allocation */ 448 449 enum ttu_flags; 450 struct tlbflush_unmap_batch; 451 452 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 453 void try_to_unmap_flush(void); 454 void try_to_unmap_flush_dirty(void); 455 #else 456 static inline void try_to_unmap_flush(void) 457 { 458 } 459 static inline void try_to_unmap_flush_dirty(void) 460 { 461 } 462 463 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 464 #endif /* __MM_INTERNAL_H */ 465