1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 #ifndef __MM_INTERNAL_H 8 #define __MM_INTERNAL_H 9 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/rmap.h> 14 #include <linux/tracepoint-defs.h> 15 16 struct folio_batch; 17 18 /* 19 * The set of flags that only affect watermark checking and reclaim 20 * behaviour. This is used by the MM to obey the caller constraints 21 * about IO, FS and watermark checking while ignoring placement 22 * hints such as HIGHMEM usage. 23 */ 24 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 25 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 26 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 27 __GFP_NOLOCKDEP) 28 29 /* The GFP flags allowed during early boot */ 30 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 31 32 /* Control allocation cpuset and node placement constraints */ 33 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 34 35 /* Do not use these with a slab allocator */ 36 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 37 38 /* 39 * Different from WARN_ON_ONCE(), no warning will be issued 40 * when we specify __GFP_NOWARN. 41 */ 42 #define WARN_ON_ONCE_GFP(cond, gfp) ({ \ 43 static bool __section(".data.once") __warned; \ 44 int __ret_warn_once = !!(cond); \ 45 \ 46 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \ 47 __warned = true; \ 48 WARN_ON(1); \ 49 } \ 50 unlikely(__ret_warn_once); \ 51 }) 52 53 void page_writeback_init(void); 54 55 /* 56 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages, 57 * its nr_pages_mapped would be 0x400000: choose the COMPOUND_MAPPED bit 58 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently 59 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later. 60 */ 61 #define COMPOUND_MAPPED 0x800000 62 #define FOLIO_PAGES_MAPPED (COMPOUND_MAPPED - 1) 63 64 /* 65 * How many individual pages have an elevated _mapcount. Excludes 66 * the folio's entire_mapcount. 67 */ 68 static inline int folio_nr_pages_mapped(struct folio *folio) 69 { 70 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED; 71 } 72 73 static inline void *folio_raw_mapping(struct folio *folio) 74 { 75 unsigned long mapping = (unsigned long)folio->mapping; 76 77 return (void *)(mapping & ~PAGE_MAPPING_FLAGS); 78 } 79 80 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 81 int nr_throttled); 82 static inline void acct_reclaim_writeback(struct folio *folio) 83 { 84 pg_data_t *pgdat = folio_pgdat(folio); 85 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); 86 87 if (nr_throttled) 88 __acct_reclaim_writeback(pgdat, folio, nr_throttled); 89 } 90 91 static inline void wake_throttle_isolated(pg_data_t *pgdat) 92 { 93 wait_queue_head_t *wqh; 94 95 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; 96 if (waitqueue_active(wqh)) 97 wake_up(wqh); 98 } 99 100 vm_fault_t do_swap_page(struct vm_fault *vmf); 101 void folio_rotate_reclaimable(struct folio *folio); 102 bool __folio_end_writeback(struct folio *folio); 103 void deactivate_file_folio(struct folio *folio); 104 void folio_activate(struct folio *folio); 105 106 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, 107 struct vm_area_struct *start_vma, unsigned long floor, 108 unsigned long ceiling, bool mm_wr_locked); 109 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); 110 111 struct zap_details; 112 void unmap_page_range(struct mmu_gather *tlb, 113 struct vm_area_struct *vma, 114 unsigned long addr, unsigned long end, 115 struct zap_details *details); 116 117 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *, 118 unsigned int order); 119 void force_page_cache_ra(struct readahead_control *, unsigned long nr); 120 static inline void force_page_cache_readahead(struct address_space *mapping, 121 struct file *file, pgoff_t index, unsigned long nr_to_read) 122 { 123 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 124 force_page_cache_ra(&ractl, nr_to_read); 125 } 126 127 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 128 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 129 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 130 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 131 void filemap_free_folio(struct address_space *mapping, struct folio *folio); 132 int truncate_inode_folio(struct address_space *mapping, struct folio *folio); 133 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, 134 loff_t end); 135 long invalidate_inode_page(struct page *page); 136 unsigned long invalidate_mapping_pagevec(struct address_space *mapping, 137 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec); 138 139 /** 140 * folio_evictable - Test whether a folio is evictable. 141 * @folio: The folio to test. 142 * 143 * Test whether @folio is evictable -- i.e., should be placed on 144 * active/inactive lists vs unevictable list. 145 * 146 * Reasons folio might not be evictable: 147 * 1. folio's mapping marked unevictable 148 * 2. One of the pages in the folio is part of an mlocked VMA 149 */ 150 static inline bool folio_evictable(struct folio *folio) 151 { 152 bool ret; 153 154 /* Prevent address_space of inode and swap cache from being freed */ 155 rcu_read_lock(); 156 ret = !mapping_unevictable(folio_mapping(folio)) && 157 !folio_test_mlocked(folio); 158 rcu_read_unlock(); 159 return ret; 160 } 161 162 /* 163 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 164 * a count of one. 165 */ 166 static inline void set_page_refcounted(struct page *page) 167 { 168 VM_BUG_ON_PAGE(PageTail(page), page); 169 VM_BUG_ON_PAGE(page_ref_count(page), page); 170 set_page_count(page, 1); 171 } 172 173 extern unsigned long highest_memmap_pfn; 174 175 /* 176 * Maximum number of reclaim retries without progress before the OOM 177 * killer is consider the only way forward. 178 */ 179 #define MAX_RECLAIM_RETRIES 16 180 181 /* 182 * in mm/early_ioremap.c 183 */ 184 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, 185 unsigned long size, pgprot_t prot); 186 187 /* 188 * in mm/vmscan.c: 189 */ 190 bool isolate_lru_page(struct page *page); 191 bool folio_isolate_lru(struct folio *folio); 192 void putback_lru_page(struct page *page); 193 void folio_putback_lru(struct folio *folio); 194 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); 195 196 /* 197 * in mm/rmap.c: 198 */ 199 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 200 201 /* 202 * in mm/page_alloc.c 203 */ 204 #define K(x) ((x) << (PAGE_SHIFT-10)) 205 206 extern char * const zone_names[MAX_NR_ZONES]; 207 208 /* perform sanity checks on struct pages being allocated or freed */ 209 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 210 211 static inline bool is_check_pages_enabled(void) 212 { 213 return static_branch_unlikely(&check_pages_enabled); 214 } 215 216 /* 217 * Structure for holding the mostly immutable allocation parameters passed 218 * between functions involved in allocations, including the alloc_pages* 219 * family of functions. 220 * 221 * nodemask, migratetype and highest_zoneidx are initialized only once in 222 * __alloc_pages() and then never change. 223 * 224 * zonelist, preferred_zone and highest_zoneidx are set first in 225 * __alloc_pages() for the fast path, and might be later changed 226 * in __alloc_pages_slowpath(). All other functions pass the whole structure 227 * by a const pointer. 228 */ 229 struct alloc_context { 230 struct zonelist *zonelist; 231 nodemask_t *nodemask; 232 struct zoneref *preferred_zoneref; 233 int migratetype; 234 235 /* 236 * highest_zoneidx represents highest usable zone index of 237 * the allocation request. Due to the nature of the zone, 238 * memory on lower zone than the highest_zoneidx will be 239 * protected by lowmem_reserve[highest_zoneidx]. 240 * 241 * highest_zoneidx is also used by reclaim/compaction to limit 242 * the target zone since higher zone than this index cannot be 243 * usable for this allocation request. 244 */ 245 enum zone_type highest_zoneidx; 246 bool spread_dirty_pages; 247 }; 248 249 /* 250 * This function returns the order of a free page in the buddy system. In 251 * general, page_zone(page)->lock must be held by the caller to prevent the 252 * page from being allocated in parallel and returning garbage as the order. 253 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 254 * page cannot be allocated or merged in parallel. Alternatively, it must 255 * handle invalid values gracefully, and use buddy_order_unsafe() below. 256 */ 257 static inline unsigned int buddy_order(struct page *page) 258 { 259 /* PageBuddy() must be checked by the caller */ 260 return page_private(page); 261 } 262 263 /* 264 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 265 * PageBuddy() should be checked first by the caller to minimize race window, 266 * and invalid values must be handled gracefully. 267 * 268 * READ_ONCE is used so that if the caller assigns the result into a local 269 * variable and e.g. tests it for valid range before using, the compiler cannot 270 * decide to remove the variable and inline the page_private(page) multiple 271 * times, potentially observing different values in the tests and the actual 272 * use of the result. 273 */ 274 #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 275 276 /* 277 * This function checks whether a page is free && is the buddy 278 * we can coalesce a page and its buddy if 279 * (a) the buddy is not in a hole (check before calling!) && 280 * (b) the buddy is in the buddy system && 281 * (c) a page and its buddy have the same order && 282 * (d) a page and its buddy are in the same zone. 283 * 284 * For recording whether a page is in the buddy system, we set PageBuddy. 285 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 286 * 287 * For recording page's order, we use page_private(page). 288 */ 289 static inline bool page_is_buddy(struct page *page, struct page *buddy, 290 unsigned int order) 291 { 292 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 293 return false; 294 295 if (buddy_order(buddy) != order) 296 return false; 297 298 /* 299 * zone check is done late to avoid uselessly calculating 300 * zone/node ids for pages that could never merge. 301 */ 302 if (page_zone_id(page) != page_zone_id(buddy)) 303 return false; 304 305 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 306 307 return true; 308 } 309 310 /* 311 * Locate the struct page for both the matching buddy in our 312 * pair (buddy1) and the combined O(n+1) page they form (page). 313 * 314 * 1) Any buddy B1 will have an order O twin B2 which satisfies 315 * the following equation: 316 * B2 = B1 ^ (1 << O) 317 * For example, if the starting buddy (buddy2) is #8 its order 318 * 1 buddy is #10: 319 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 320 * 321 * 2) Any buddy B will have an order O+1 parent P which 322 * satisfies the following equation: 323 * P = B & ~(1 << O) 324 * 325 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 326 */ 327 static inline unsigned long 328 __find_buddy_pfn(unsigned long page_pfn, unsigned int order) 329 { 330 return page_pfn ^ (1 << order); 331 } 332 333 /* 334 * Find the buddy of @page and validate it. 335 * @page: The input page 336 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the 337 * function is used in the performance-critical __free_one_page(). 338 * @order: The order of the page 339 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to 340 * page_to_pfn(). 341 * 342 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is 343 * not the same as @page. The validation is necessary before use it. 344 * 345 * Return: the found buddy page or NULL if not found. 346 */ 347 static inline struct page *find_buddy_page_pfn(struct page *page, 348 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn) 349 { 350 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order); 351 struct page *buddy; 352 353 buddy = page + (__buddy_pfn - pfn); 354 if (buddy_pfn) 355 *buddy_pfn = __buddy_pfn; 356 357 if (page_is_buddy(page, buddy, order)) 358 return buddy; 359 return NULL; 360 } 361 362 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 363 unsigned long end_pfn, struct zone *zone); 364 365 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 366 unsigned long end_pfn, struct zone *zone) 367 { 368 if (zone->contiguous) 369 return pfn_to_page(start_pfn); 370 371 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 372 } 373 374 extern int __isolate_free_page(struct page *page, unsigned int order); 375 extern void __putback_isolated_page(struct page *page, unsigned int order, 376 int mt); 377 extern void memblock_free_pages(struct page *page, unsigned long pfn, 378 unsigned int order); 379 extern void __free_pages_core(struct page *page, unsigned int order); 380 381 static inline void prep_compound_head(struct page *page, unsigned int order) 382 { 383 struct folio *folio = (struct folio *)page; 384 385 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 386 set_compound_order(page, order); 387 atomic_set(&folio->_entire_mapcount, -1); 388 atomic_set(&folio->_nr_pages_mapped, 0); 389 atomic_set(&folio->_pincount, 0); 390 } 391 392 static inline void prep_compound_tail(struct page *head, int tail_idx) 393 { 394 struct page *p = head + tail_idx; 395 396 p->mapping = TAIL_MAPPING; 397 set_compound_head(p, head); 398 set_page_private(p, 0); 399 } 400 401 extern void prep_compound_page(struct page *page, unsigned int order); 402 403 extern void post_alloc_hook(struct page *page, unsigned int order, 404 gfp_t gfp_flags); 405 extern int user_min_free_kbytes; 406 407 extern void free_unref_page(struct page *page, unsigned int order); 408 extern void free_unref_page_list(struct list_head *list); 409 410 extern void zone_pcp_reset(struct zone *zone); 411 extern void zone_pcp_disable(struct zone *zone); 412 extern void zone_pcp_enable(struct zone *zone); 413 extern void zone_pcp_init(struct zone *zone); 414 415 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, 416 phys_addr_t min_addr, 417 int nid, bool exact_nid); 418 419 int split_free_page(struct page *free_page, 420 unsigned int order, unsigned long split_pfn_offset); 421 422 /* 423 * This will have no effect, other than possibly generating a warning, if the 424 * caller passes in a non-large folio. 425 */ 426 static inline void folio_set_order(struct folio *folio, unsigned int order) 427 { 428 if (WARN_ON_ONCE(!folio_test_large(folio))) 429 return; 430 431 folio->_folio_order = order; 432 #ifdef CONFIG_64BIT 433 /* 434 * When hugetlb dissolves a folio, we need to clear the tail 435 * page, rather than setting nr_pages to 1. 436 */ 437 folio->_folio_nr_pages = order ? 1U << order : 0; 438 #endif 439 } 440 441 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 442 443 /* 444 * in mm/compaction.c 445 */ 446 /* 447 * compact_control is used to track pages being migrated and the free pages 448 * they are being migrated to during memory compaction. The free_pfn starts 449 * at the end of a zone and migrate_pfn begins at the start. Movable pages 450 * are moved to the end of a zone during a compaction run and the run 451 * completes when free_pfn <= migrate_pfn 452 */ 453 struct compact_control { 454 struct list_head freepages; /* List of free pages to migrate to */ 455 struct list_head migratepages; /* List of pages being migrated */ 456 unsigned int nr_freepages; /* Number of isolated free pages */ 457 unsigned int nr_migratepages; /* Number of pages to migrate */ 458 unsigned long free_pfn; /* isolate_freepages search base */ 459 /* 460 * Acts as an in/out parameter to page isolation for migration. 461 * isolate_migratepages uses it as a search base. 462 * isolate_migratepages_block will update the value to the next pfn 463 * after the last isolated one. 464 */ 465 unsigned long migrate_pfn; 466 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 467 struct zone *zone; 468 unsigned long total_migrate_scanned; 469 unsigned long total_free_scanned; 470 unsigned short fast_search_fail;/* failures to use free list searches */ 471 short search_order; /* order to start a fast search at */ 472 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 473 int order; /* order a direct compactor needs */ 474 int migratetype; /* migratetype of direct compactor */ 475 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 476 const int highest_zoneidx; /* zone index of a direct compactor */ 477 enum migrate_mode mode; /* Async or sync migration mode */ 478 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 479 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 480 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 481 bool direct_compaction; /* False from kcompactd or /proc/... */ 482 bool proactive_compaction; /* kcompactd proactive compaction */ 483 bool whole_zone; /* Whole zone should/has been scanned */ 484 bool contended; /* Signal lock contention */ 485 bool finish_pageblock; /* Scan the remainder of a pageblock. Used 486 * when there are potentially transient 487 * isolation or migration failures to 488 * ensure forward progress. 489 */ 490 bool alloc_contig; /* alloc_contig_range allocation */ 491 }; 492 493 /* 494 * Used in direct compaction when a page should be taken from the freelists 495 * immediately when one is created during the free path. 496 */ 497 struct capture_control { 498 struct compact_control *cc; 499 struct page *page; 500 }; 501 502 unsigned long 503 isolate_freepages_range(struct compact_control *cc, 504 unsigned long start_pfn, unsigned long end_pfn); 505 int 506 isolate_migratepages_range(struct compact_control *cc, 507 unsigned long low_pfn, unsigned long end_pfn); 508 509 int __alloc_contig_migrate_range(struct compact_control *cc, 510 unsigned long start, unsigned long end); 511 512 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 513 void init_cma_reserved_pageblock(struct page *page); 514 515 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 516 517 int find_suitable_fallback(struct free_area *area, unsigned int order, 518 int migratetype, bool only_stealable, bool *can_steal); 519 520 static inline bool free_area_empty(struct free_area *area, int migratetype) 521 { 522 return list_empty(&area->free_list[migratetype]); 523 } 524 525 /* 526 * These three helpers classifies VMAs for virtual memory accounting. 527 */ 528 529 /* 530 * Executable code area - executable, not writable, not stack 531 */ 532 static inline bool is_exec_mapping(vm_flags_t flags) 533 { 534 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 535 } 536 537 /* 538 * Stack area - automatically grows in one direction 539 * 540 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 541 * do_mmap() forbids all other combinations. 542 */ 543 static inline bool is_stack_mapping(vm_flags_t flags) 544 { 545 return (flags & VM_STACK) == VM_STACK; 546 } 547 548 /* 549 * Data area - private, writable, not stack 550 */ 551 static inline bool is_data_mapping(vm_flags_t flags) 552 { 553 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 554 } 555 556 /* mm/util.c */ 557 struct anon_vma *folio_anon_vma(struct folio *folio); 558 559 #ifdef CONFIG_MMU 560 void unmap_mapping_folio(struct folio *folio); 561 extern long populate_vma_page_range(struct vm_area_struct *vma, 562 unsigned long start, unsigned long end, int *locked); 563 extern long faultin_vma_page_range(struct vm_area_struct *vma, 564 unsigned long start, unsigned long end, 565 bool write, int *locked); 566 extern int mlock_future_check(struct mm_struct *mm, unsigned long flags, 567 unsigned long len); 568 /* 569 * mlock_vma_folio() and munlock_vma_folio(): 570 * should be called with vma's mmap_lock held for read or write, 571 * under page table lock for the pte/pmd being added or removed. 572 * 573 * mlock is usually called at the end of page_add_*_rmap(), munlock at 574 * the end of page_remove_rmap(); but new anon folios are managed by 575 * folio_add_lru_vma() calling mlock_new_folio(). 576 * 577 * @compound is used to include pmd mappings of THPs, but filter out 578 * pte mappings of THPs, which cannot be consistently counted: a pte 579 * mapping of the THP head cannot be distinguished by the page alone. 580 */ 581 void mlock_folio(struct folio *folio); 582 static inline void mlock_vma_folio(struct folio *folio, 583 struct vm_area_struct *vma, bool compound) 584 { 585 /* 586 * The VM_SPECIAL check here serves two purposes. 587 * 1) VM_IO check prevents migration from double-counting during mlock. 588 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED 589 * is never left set on a VM_SPECIAL vma, there is an interval while 590 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may 591 * still be set while VM_SPECIAL bits are added: so ignore it then. 592 */ 593 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) && 594 (compound || !folio_test_large(folio))) 595 mlock_folio(folio); 596 } 597 598 void munlock_folio(struct folio *folio); 599 static inline void munlock_vma_folio(struct folio *folio, 600 struct vm_area_struct *vma, bool compound) 601 { 602 if (unlikely(vma->vm_flags & VM_LOCKED) && 603 (compound || !folio_test_large(folio))) 604 munlock_folio(folio); 605 } 606 607 void mlock_new_folio(struct folio *folio); 608 bool need_mlock_drain(int cpu); 609 void mlock_drain_local(void); 610 void mlock_drain_remote(int cpu); 611 612 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 613 614 /* 615 * Return the start of user virtual address at the specific offset within 616 * a vma. 617 */ 618 static inline unsigned long 619 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages, 620 struct vm_area_struct *vma) 621 { 622 unsigned long address; 623 624 if (pgoff >= vma->vm_pgoff) { 625 address = vma->vm_start + 626 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 627 /* Check for address beyond vma (or wrapped through 0?) */ 628 if (address < vma->vm_start || address >= vma->vm_end) 629 address = -EFAULT; 630 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) { 631 /* Test above avoids possibility of wrap to 0 on 32-bit */ 632 address = vma->vm_start; 633 } else { 634 address = -EFAULT; 635 } 636 return address; 637 } 638 639 /* 640 * Return the start of user virtual address of a page within a vma. 641 * Returns -EFAULT if all of the page is outside the range of vma. 642 * If page is a compound head, the entire compound page is considered. 643 */ 644 static inline unsigned long 645 vma_address(struct page *page, struct vm_area_struct *vma) 646 { 647 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 648 return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma); 649 } 650 651 /* 652 * Then at what user virtual address will none of the range be found in vma? 653 * Assumes that vma_address() already returned a good starting address. 654 */ 655 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw) 656 { 657 struct vm_area_struct *vma = pvmw->vma; 658 pgoff_t pgoff; 659 unsigned long address; 660 661 /* Common case, plus ->pgoff is invalid for KSM */ 662 if (pvmw->nr_pages == 1) 663 return pvmw->address + PAGE_SIZE; 664 665 pgoff = pvmw->pgoff + pvmw->nr_pages; 666 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 667 /* Check for address beyond vma (or wrapped through 0?) */ 668 if (address < vma->vm_start || address > vma->vm_end) 669 address = vma->vm_end; 670 return address; 671 } 672 673 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 674 struct file *fpin) 675 { 676 int flags = vmf->flags; 677 678 if (fpin) 679 return fpin; 680 681 /* 682 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 683 * anything, so we only pin the file and drop the mmap_lock if only 684 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 685 */ 686 if (fault_flag_allow_retry_first(flags) && 687 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 688 fpin = get_file(vmf->vma->vm_file); 689 mmap_read_unlock(vmf->vma->vm_mm); 690 } 691 return fpin; 692 } 693 #else /* !CONFIG_MMU */ 694 static inline void unmap_mapping_folio(struct folio *folio) { } 695 static inline void mlock_new_folio(struct folio *folio) { } 696 static inline bool need_mlock_drain(int cpu) { return false; } 697 static inline void mlock_drain_local(void) { } 698 static inline void mlock_drain_remote(int cpu) { } 699 static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 700 { 701 } 702 #endif /* !CONFIG_MMU */ 703 704 /* Memory initialisation debug and verification */ 705 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 706 DECLARE_STATIC_KEY_TRUE(deferred_pages); 707 708 bool __init deferred_grow_zone(struct zone *zone, unsigned int order); 709 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 710 711 enum mminit_level { 712 MMINIT_WARNING, 713 MMINIT_VERIFY, 714 MMINIT_TRACE 715 }; 716 717 #ifdef CONFIG_DEBUG_MEMORY_INIT 718 719 extern int mminit_loglevel; 720 721 #define mminit_dprintk(level, prefix, fmt, arg...) \ 722 do { \ 723 if (level < mminit_loglevel) { \ 724 if (level <= MMINIT_WARNING) \ 725 pr_warn("mminit::" prefix " " fmt, ##arg); \ 726 else \ 727 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 728 } \ 729 } while (0) 730 731 extern void mminit_verify_pageflags_layout(void); 732 extern void mminit_verify_zonelist(void); 733 #else 734 735 static inline void mminit_dprintk(enum mminit_level level, 736 const char *prefix, const char *fmt, ...) 737 { 738 } 739 740 static inline void mminit_verify_pageflags_layout(void) 741 { 742 } 743 744 static inline void mminit_verify_zonelist(void) 745 { 746 } 747 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 748 749 #define NODE_RECLAIM_NOSCAN -2 750 #define NODE_RECLAIM_FULL -1 751 #define NODE_RECLAIM_SOME 0 752 #define NODE_RECLAIM_SUCCESS 1 753 754 #ifdef CONFIG_NUMA 755 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 756 extern int find_next_best_node(int node, nodemask_t *used_node_mask); 757 #else 758 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 759 unsigned int order) 760 { 761 return NODE_RECLAIM_NOSCAN; 762 } 763 static inline int find_next_best_node(int node, nodemask_t *used_node_mask) 764 { 765 return NUMA_NO_NODE; 766 } 767 #endif 768 769 /* 770 * mm/memory-failure.c 771 */ 772 extern int hwpoison_filter(struct page *p); 773 774 extern u32 hwpoison_filter_dev_major; 775 extern u32 hwpoison_filter_dev_minor; 776 extern u64 hwpoison_filter_flags_mask; 777 extern u64 hwpoison_filter_flags_value; 778 extern u64 hwpoison_filter_memcg; 779 extern u32 hwpoison_filter_enable; 780 781 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 782 unsigned long, unsigned long, 783 unsigned long, unsigned long); 784 785 extern void set_pageblock_order(void); 786 unsigned long reclaim_pages(struct list_head *folio_list); 787 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 788 struct list_head *folio_list); 789 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 790 #define ALLOC_WMARK_MIN WMARK_MIN 791 #define ALLOC_WMARK_LOW WMARK_LOW 792 #define ALLOC_WMARK_HIGH WMARK_HIGH 793 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 794 795 /* Mask to get the watermark bits */ 796 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 797 798 /* 799 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 800 * cannot assume a reduced access to memory reserves is sufficient for 801 * !MMU 802 */ 803 #ifdef CONFIG_MMU 804 #define ALLOC_OOM 0x08 805 #else 806 #define ALLOC_OOM ALLOC_NO_WATERMARKS 807 #endif 808 809 #define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access 810 * to 25% of the min watermark or 811 * 62.5% if __GFP_HIGH is set. 812 */ 813 #define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50% 814 * of the min watermark. 815 */ 816 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 817 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 818 #ifdef CONFIG_ZONE_DMA32 819 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 820 #else 821 #define ALLOC_NOFRAGMENT 0x0 822 #endif 823 #define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */ 824 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 825 826 /* Flags that allow allocations below the min watermark. */ 827 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM) 828 829 enum ttu_flags; 830 struct tlbflush_unmap_batch; 831 832 833 /* 834 * only for MM internal work items which do not depend on 835 * any allocations or locks which might depend on allocations 836 */ 837 extern struct workqueue_struct *mm_percpu_wq; 838 839 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 840 void try_to_unmap_flush(void); 841 void try_to_unmap_flush_dirty(void); 842 void flush_tlb_batched_pending(struct mm_struct *mm); 843 #else 844 static inline void try_to_unmap_flush(void) 845 { 846 } 847 static inline void try_to_unmap_flush_dirty(void) 848 { 849 } 850 static inline void flush_tlb_batched_pending(struct mm_struct *mm) 851 { 852 } 853 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 854 855 extern const struct trace_print_flags pageflag_names[]; 856 extern const struct trace_print_flags pagetype_names[]; 857 extern const struct trace_print_flags vmaflag_names[]; 858 extern const struct trace_print_flags gfpflag_names[]; 859 860 static inline bool is_migrate_highatomic(enum migratetype migratetype) 861 { 862 return migratetype == MIGRATE_HIGHATOMIC; 863 } 864 865 static inline bool is_migrate_highatomic_page(struct page *page) 866 { 867 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 868 } 869 870 void setup_zone_pageset(struct zone *zone); 871 872 struct migration_target_control { 873 int nid; /* preferred node id */ 874 nodemask_t *nmask; 875 gfp_t gfp_mask; 876 }; 877 878 /* 879 * mm/filemap.c 880 */ 881 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 882 struct folio *folio, loff_t fpos, size_t size); 883 884 /* 885 * mm/vmalloc.c 886 */ 887 #ifdef CONFIG_MMU 888 void __init vmalloc_init(void); 889 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 890 pgprot_t prot, struct page **pages, unsigned int page_shift); 891 #else 892 static inline void vmalloc_init(void) 893 { 894 } 895 896 static inline 897 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 898 pgprot_t prot, struct page **pages, unsigned int page_shift) 899 { 900 return -EINVAL; 901 } 902 #endif 903 904 int __must_check __vmap_pages_range_noflush(unsigned long addr, 905 unsigned long end, pgprot_t prot, 906 struct page **pages, unsigned int page_shift); 907 908 void vunmap_range_noflush(unsigned long start, unsigned long end); 909 910 void __vunmap_range_noflush(unsigned long start, unsigned long end); 911 912 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 913 unsigned long addr, int page_nid, int *flags); 914 915 void free_zone_device_page(struct page *page); 916 int migrate_device_coherent_page(struct page *page); 917 918 /* 919 * mm/gup.c 920 */ 921 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags); 922 int __must_check try_grab_page(struct page *page, unsigned int flags); 923 924 enum { 925 /* mark page accessed */ 926 FOLL_TOUCH = 1 << 16, 927 /* a retry, previous pass started an IO */ 928 FOLL_TRIED = 1 << 17, 929 /* we are working on non-current tsk/mm */ 930 FOLL_REMOTE = 1 << 18, 931 /* pages must be released via unpin_user_page */ 932 FOLL_PIN = 1 << 19, 933 /* gup_fast: prevent fall-back to slow gup */ 934 FOLL_FAST_ONLY = 1 << 20, 935 /* allow unlocking the mmap lock */ 936 FOLL_UNLOCKABLE = 1 << 21, 937 }; 938 939 /* 940 * Indicates for which pages that are write-protected in the page table, 941 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the 942 * GUP pin will remain consistent with the pages mapped into the page tables 943 * of the MM. 944 * 945 * Temporary unmapping of PageAnonExclusive() pages or clearing of 946 * PageAnonExclusive() has to protect against concurrent GUP: 947 * * Ordinary GUP: Using the PT lock 948 * * GUP-fast and fork(): mm->write_protect_seq 949 * * GUP-fast and KSM or temporary unmapping (swap, migration): see 950 * page_try_share_anon_rmap() 951 * 952 * Must be called with the (sub)page that's actually referenced via the 953 * page table entry, which might not necessarily be the head page for a 954 * PTE-mapped THP. 955 * 956 * If the vma is NULL, we're coming from the GUP-fast path and might have 957 * to fallback to the slow path just to lookup the vma. 958 */ 959 static inline bool gup_must_unshare(struct vm_area_struct *vma, 960 unsigned int flags, struct page *page) 961 { 962 /* 963 * FOLL_WRITE is implicitly handled correctly as the page table entry 964 * has to be writable -- and if it references (part of) an anonymous 965 * folio, that part is required to be marked exclusive. 966 */ 967 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) 968 return false; 969 /* 970 * Note: PageAnon(page) is stable until the page is actually getting 971 * freed. 972 */ 973 if (!PageAnon(page)) { 974 /* 975 * We only care about R/O long-term pining: R/O short-term 976 * pinning does not have the semantics to observe successive 977 * changes through the process page tables. 978 */ 979 if (!(flags & FOLL_LONGTERM)) 980 return false; 981 982 /* We really need the vma ... */ 983 if (!vma) 984 return true; 985 986 /* 987 * ... because we only care about writable private ("COW") 988 * mappings where we have to break COW early. 989 */ 990 return is_cow_mapping(vma->vm_flags); 991 } 992 993 /* Paired with a memory barrier in page_try_share_anon_rmap(). */ 994 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) 995 smp_rmb(); 996 997 /* 998 * Note that PageKsm() pages cannot be exclusive, and consequently, 999 * cannot get pinned. 1000 */ 1001 return !PageAnonExclusive(page); 1002 } 1003 1004 extern bool mirrored_kernelcore; 1005 1006 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma) 1007 { 1008 /* 1009 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty 1010 * enablements, because when without soft-dirty being compiled in, 1011 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY) 1012 * will be constantly true. 1013 */ 1014 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) 1015 return false; 1016 1017 /* 1018 * Soft-dirty is kind of special: its tracking is enabled when the 1019 * vma flags not set. 1020 */ 1021 return !(vma->vm_flags & VM_SOFTDIRTY); 1022 } 1023 1024 /* 1025 * VMA Iterator functions shared between nommu and mmap 1026 */ 1027 static inline int vma_iter_prealloc(struct vma_iterator *vmi) 1028 { 1029 return mas_preallocate(&vmi->mas, GFP_KERNEL); 1030 } 1031 1032 static inline void vma_iter_clear(struct vma_iterator *vmi, 1033 unsigned long start, unsigned long end) 1034 { 1035 mas_set_range(&vmi->mas, start, end - 1); 1036 mas_store_prealloc(&vmi->mas, NULL); 1037 } 1038 1039 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi) 1040 { 1041 return mas_walk(&vmi->mas); 1042 } 1043 1044 /* Store a VMA with preallocated memory */ 1045 static inline void vma_iter_store(struct vma_iterator *vmi, 1046 struct vm_area_struct *vma) 1047 { 1048 1049 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1050 if (WARN_ON(vmi->mas.node != MAS_START && vmi->mas.index > vma->vm_start)) { 1051 printk("%lu > %lu\n", vmi->mas.index, vma->vm_start); 1052 printk("store of vma %lu-%lu", vma->vm_start, vma->vm_end); 1053 printk("into slot %lu-%lu", vmi->mas.index, vmi->mas.last); 1054 mt_dump(vmi->mas.tree); 1055 } 1056 if (WARN_ON(vmi->mas.node != MAS_START && vmi->mas.last < vma->vm_start)) { 1057 printk("%lu < %lu\n", vmi->mas.last, vma->vm_start); 1058 printk("store of vma %lu-%lu", vma->vm_start, vma->vm_end); 1059 printk("into slot %lu-%lu", vmi->mas.index, vmi->mas.last); 1060 mt_dump(vmi->mas.tree); 1061 } 1062 #endif 1063 1064 if (vmi->mas.node != MAS_START && 1065 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 1066 vma_iter_invalidate(vmi); 1067 1068 vmi->mas.index = vma->vm_start; 1069 vmi->mas.last = vma->vm_end - 1; 1070 mas_store_prealloc(&vmi->mas, vma); 1071 } 1072 1073 static inline int vma_iter_store_gfp(struct vma_iterator *vmi, 1074 struct vm_area_struct *vma, gfp_t gfp) 1075 { 1076 if (vmi->mas.node != MAS_START && 1077 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 1078 vma_iter_invalidate(vmi); 1079 1080 vmi->mas.index = vma->vm_start; 1081 vmi->mas.last = vma->vm_end - 1; 1082 mas_store_gfp(&vmi->mas, vma, gfp); 1083 if (unlikely(mas_is_err(&vmi->mas))) 1084 return -ENOMEM; 1085 1086 return 0; 1087 } 1088 1089 /* 1090 * VMA lock generalization 1091 */ 1092 struct vma_prepare { 1093 struct vm_area_struct *vma; 1094 struct vm_area_struct *adj_next; 1095 struct file *file; 1096 struct address_space *mapping; 1097 struct anon_vma *anon_vma; 1098 struct vm_area_struct *insert; 1099 struct vm_area_struct *remove; 1100 struct vm_area_struct *remove2; 1101 }; 1102 #endif /* __MM_INTERNAL_H */ 1103