1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 #ifndef __MM_INTERNAL_H 8 #define __MM_INTERNAL_H 9 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/rmap.h> 14 #include <linux/tracepoint-defs.h> 15 16 struct folio_batch; 17 18 /* 19 * The set of flags that only affect watermark checking and reclaim 20 * behaviour. This is used by the MM to obey the caller constraints 21 * about IO, FS and watermark checking while ignoring placement 22 * hints such as HIGHMEM usage. 23 */ 24 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 25 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 26 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 27 __GFP_NOLOCKDEP) 28 29 /* The GFP flags allowed during early boot */ 30 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 31 32 /* Control allocation cpuset and node placement constraints */ 33 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 34 35 /* Do not use these with a slab allocator */ 36 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 37 38 /* 39 * Different from WARN_ON_ONCE(), no warning will be issued 40 * when we specify __GFP_NOWARN. 41 */ 42 #define WARN_ON_ONCE_GFP(cond, gfp) ({ \ 43 static bool __section(".data.once") __warned; \ 44 int __ret_warn_once = !!(cond); \ 45 \ 46 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \ 47 __warned = true; \ 48 WARN_ON(1); \ 49 } \ 50 unlikely(__ret_warn_once); \ 51 }) 52 53 void page_writeback_init(void); 54 55 /* 56 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages, 57 * its nr_pages_mapped would be 0x400000: choose the COMPOUND_MAPPED bit 58 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently 59 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later. 60 */ 61 #define COMPOUND_MAPPED 0x800000 62 #define FOLIO_PAGES_MAPPED (COMPOUND_MAPPED - 1) 63 64 /* 65 * Flags passed to __show_mem() and show_free_areas() to suppress output in 66 * various contexts. 67 */ 68 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 69 70 /* 71 * How many individual pages have an elevated _mapcount. Excludes 72 * the folio's entire_mapcount. 73 */ 74 static inline int folio_nr_pages_mapped(struct folio *folio) 75 { 76 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED; 77 } 78 79 static inline void *folio_raw_mapping(struct folio *folio) 80 { 81 unsigned long mapping = (unsigned long)folio->mapping; 82 83 return (void *)(mapping & ~PAGE_MAPPING_FLAGS); 84 } 85 86 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 87 int nr_throttled); 88 static inline void acct_reclaim_writeback(struct folio *folio) 89 { 90 pg_data_t *pgdat = folio_pgdat(folio); 91 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); 92 93 if (nr_throttled) 94 __acct_reclaim_writeback(pgdat, folio, nr_throttled); 95 } 96 97 static inline void wake_throttle_isolated(pg_data_t *pgdat) 98 { 99 wait_queue_head_t *wqh; 100 101 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; 102 if (waitqueue_active(wqh)) 103 wake_up(wqh); 104 } 105 106 vm_fault_t do_swap_page(struct vm_fault *vmf); 107 void folio_rotate_reclaimable(struct folio *folio); 108 bool __folio_end_writeback(struct folio *folio); 109 void deactivate_file_folio(struct folio *folio); 110 void folio_activate(struct folio *folio); 111 112 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 113 struct vm_area_struct *start_vma, unsigned long floor, 114 unsigned long ceiling, bool mm_wr_locked); 115 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); 116 117 struct zap_details; 118 void unmap_page_range(struct mmu_gather *tlb, 119 struct vm_area_struct *vma, 120 unsigned long addr, unsigned long end, 121 struct zap_details *details); 122 123 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *, 124 unsigned int order); 125 void force_page_cache_ra(struct readahead_control *, unsigned long nr); 126 static inline void force_page_cache_readahead(struct address_space *mapping, 127 struct file *file, pgoff_t index, unsigned long nr_to_read) 128 { 129 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 130 force_page_cache_ra(&ractl, nr_to_read); 131 } 132 133 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 134 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 135 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 136 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 137 void filemap_free_folio(struct address_space *mapping, struct folio *folio); 138 int truncate_inode_folio(struct address_space *mapping, struct folio *folio); 139 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, 140 loff_t end); 141 long invalidate_inode_page(struct page *page); 142 unsigned long mapping_try_invalidate(struct address_space *mapping, 143 pgoff_t start, pgoff_t end, unsigned long *nr_failed); 144 145 /** 146 * folio_evictable - Test whether a folio is evictable. 147 * @folio: The folio to test. 148 * 149 * Test whether @folio is evictable -- i.e., should be placed on 150 * active/inactive lists vs unevictable list. 151 * 152 * Reasons folio might not be evictable: 153 * 1. folio's mapping marked unevictable 154 * 2. One of the pages in the folio is part of an mlocked VMA 155 */ 156 static inline bool folio_evictable(struct folio *folio) 157 { 158 bool ret; 159 160 /* Prevent address_space of inode and swap cache from being freed */ 161 rcu_read_lock(); 162 ret = !mapping_unevictable(folio_mapping(folio)) && 163 !folio_test_mlocked(folio); 164 rcu_read_unlock(); 165 return ret; 166 } 167 168 /* 169 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 170 * a count of one. 171 */ 172 static inline void set_page_refcounted(struct page *page) 173 { 174 VM_BUG_ON_PAGE(PageTail(page), page); 175 VM_BUG_ON_PAGE(page_ref_count(page), page); 176 set_page_count(page, 1); 177 } 178 179 /* 180 * Return true if a folio needs ->release_folio() calling upon it. 181 */ 182 static inline bool folio_needs_release(struct folio *folio) 183 { 184 struct address_space *mapping = folio_mapping(folio); 185 186 return folio_has_private(folio) || 187 (mapping && mapping_release_always(mapping)); 188 } 189 190 extern unsigned long highest_memmap_pfn; 191 192 /* 193 * Maximum number of reclaim retries without progress before the OOM 194 * killer is consider the only way forward. 195 */ 196 #define MAX_RECLAIM_RETRIES 16 197 198 /* 199 * in mm/vmscan.c: 200 */ 201 bool isolate_lru_page(struct page *page); 202 bool folio_isolate_lru(struct folio *folio); 203 void putback_lru_page(struct page *page); 204 void folio_putback_lru(struct folio *folio); 205 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); 206 207 /* 208 * in mm/rmap.c: 209 */ 210 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 211 212 /* 213 * in mm/page_alloc.c 214 */ 215 #define K(x) ((x) << (PAGE_SHIFT-10)) 216 217 extern char * const zone_names[MAX_NR_ZONES]; 218 219 /* perform sanity checks on struct pages being allocated or freed */ 220 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 221 222 extern int min_free_kbytes; 223 224 void setup_per_zone_wmarks(void); 225 void calculate_min_free_kbytes(void); 226 int __meminit init_per_zone_wmark_min(void); 227 void page_alloc_sysctl_init(void); 228 229 /* 230 * Structure for holding the mostly immutable allocation parameters passed 231 * between functions involved in allocations, including the alloc_pages* 232 * family of functions. 233 * 234 * nodemask, migratetype and highest_zoneidx are initialized only once in 235 * __alloc_pages() and then never change. 236 * 237 * zonelist, preferred_zone and highest_zoneidx are set first in 238 * __alloc_pages() for the fast path, and might be later changed 239 * in __alloc_pages_slowpath(). All other functions pass the whole structure 240 * by a const pointer. 241 */ 242 struct alloc_context { 243 struct zonelist *zonelist; 244 nodemask_t *nodemask; 245 struct zoneref *preferred_zoneref; 246 int migratetype; 247 248 /* 249 * highest_zoneidx represents highest usable zone index of 250 * the allocation request. Due to the nature of the zone, 251 * memory on lower zone than the highest_zoneidx will be 252 * protected by lowmem_reserve[highest_zoneidx]. 253 * 254 * highest_zoneidx is also used by reclaim/compaction to limit 255 * the target zone since higher zone than this index cannot be 256 * usable for this allocation request. 257 */ 258 enum zone_type highest_zoneidx; 259 bool spread_dirty_pages; 260 }; 261 262 /* 263 * This function returns the order of a free page in the buddy system. In 264 * general, page_zone(page)->lock must be held by the caller to prevent the 265 * page from being allocated in parallel and returning garbage as the order. 266 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 267 * page cannot be allocated or merged in parallel. Alternatively, it must 268 * handle invalid values gracefully, and use buddy_order_unsafe() below. 269 */ 270 static inline unsigned int buddy_order(struct page *page) 271 { 272 /* PageBuddy() must be checked by the caller */ 273 return page_private(page); 274 } 275 276 /* 277 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 278 * PageBuddy() should be checked first by the caller to minimize race window, 279 * and invalid values must be handled gracefully. 280 * 281 * READ_ONCE is used so that if the caller assigns the result into a local 282 * variable and e.g. tests it for valid range before using, the compiler cannot 283 * decide to remove the variable and inline the page_private(page) multiple 284 * times, potentially observing different values in the tests and the actual 285 * use of the result. 286 */ 287 #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 288 289 /* 290 * This function checks whether a page is free && is the buddy 291 * we can coalesce a page and its buddy if 292 * (a) the buddy is not in a hole (check before calling!) && 293 * (b) the buddy is in the buddy system && 294 * (c) a page and its buddy have the same order && 295 * (d) a page and its buddy are in the same zone. 296 * 297 * For recording whether a page is in the buddy system, we set PageBuddy. 298 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 299 * 300 * For recording page's order, we use page_private(page). 301 */ 302 static inline bool page_is_buddy(struct page *page, struct page *buddy, 303 unsigned int order) 304 { 305 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 306 return false; 307 308 if (buddy_order(buddy) != order) 309 return false; 310 311 /* 312 * zone check is done late to avoid uselessly calculating 313 * zone/node ids for pages that could never merge. 314 */ 315 if (page_zone_id(page) != page_zone_id(buddy)) 316 return false; 317 318 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 319 320 return true; 321 } 322 323 /* 324 * Locate the struct page for both the matching buddy in our 325 * pair (buddy1) and the combined O(n+1) page they form (page). 326 * 327 * 1) Any buddy B1 will have an order O twin B2 which satisfies 328 * the following equation: 329 * B2 = B1 ^ (1 << O) 330 * For example, if the starting buddy (buddy2) is #8 its order 331 * 1 buddy is #10: 332 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 333 * 334 * 2) Any buddy B will have an order O+1 parent P which 335 * satisfies the following equation: 336 * P = B & ~(1 << O) 337 * 338 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 339 */ 340 static inline unsigned long 341 __find_buddy_pfn(unsigned long page_pfn, unsigned int order) 342 { 343 return page_pfn ^ (1 << order); 344 } 345 346 /* 347 * Find the buddy of @page and validate it. 348 * @page: The input page 349 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the 350 * function is used in the performance-critical __free_one_page(). 351 * @order: The order of the page 352 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to 353 * page_to_pfn(). 354 * 355 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is 356 * not the same as @page. The validation is necessary before use it. 357 * 358 * Return: the found buddy page or NULL if not found. 359 */ 360 static inline struct page *find_buddy_page_pfn(struct page *page, 361 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn) 362 { 363 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order); 364 struct page *buddy; 365 366 buddy = page + (__buddy_pfn - pfn); 367 if (buddy_pfn) 368 *buddy_pfn = __buddy_pfn; 369 370 if (page_is_buddy(page, buddy, order)) 371 return buddy; 372 return NULL; 373 } 374 375 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 376 unsigned long end_pfn, struct zone *zone); 377 378 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 379 unsigned long end_pfn, struct zone *zone) 380 { 381 if (zone->contiguous) 382 return pfn_to_page(start_pfn); 383 384 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 385 } 386 387 void set_zone_contiguous(struct zone *zone); 388 389 static inline void clear_zone_contiguous(struct zone *zone) 390 { 391 zone->contiguous = false; 392 } 393 394 extern int __isolate_free_page(struct page *page, unsigned int order); 395 extern void __putback_isolated_page(struct page *page, unsigned int order, 396 int mt); 397 extern void memblock_free_pages(struct page *page, unsigned long pfn, 398 unsigned int order); 399 extern void __free_pages_core(struct page *page, unsigned int order); 400 401 /* 402 * This will have no effect, other than possibly generating a warning, if the 403 * caller passes in a non-large folio. 404 */ 405 static inline void folio_set_order(struct folio *folio, unsigned int order) 406 { 407 if (WARN_ON_ONCE(!order || !folio_test_large(folio))) 408 return; 409 410 folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order; 411 #ifdef CONFIG_64BIT 412 folio->_folio_nr_pages = 1U << order; 413 #endif 414 } 415 416 bool __folio_unqueue_deferred_split(struct folio *folio); 417 static inline bool folio_unqueue_deferred_split(struct folio *folio) 418 { 419 if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio)) 420 return false; 421 422 /* 423 * At this point, there is no one trying to add the folio to 424 * deferred_list. If folio is not in deferred_list, it's safe 425 * to check without acquiring the split_queue_lock. 426 */ 427 if (data_race(list_empty(&folio->_deferred_list))) 428 return false; 429 430 return __folio_unqueue_deferred_split(folio); 431 } 432 433 static inline struct folio *page_rmappable_folio(struct page *page) 434 { 435 struct folio *folio = (struct folio *)page; 436 437 folio_prep_large_rmappable(folio); 438 return folio; 439 } 440 441 static inline void prep_compound_head(struct page *page, unsigned int order) 442 { 443 struct folio *folio = (struct folio *)page; 444 445 folio_set_order(folio, order); 446 atomic_set(&folio->_entire_mapcount, -1); 447 atomic_set(&folio->_nr_pages_mapped, 0); 448 atomic_set(&folio->_pincount, 0); 449 if (order > 1) 450 INIT_LIST_HEAD(&folio->_deferred_list); 451 } 452 453 static inline void prep_compound_tail(struct page *head, int tail_idx) 454 { 455 struct page *p = head + tail_idx; 456 457 p->mapping = TAIL_MAPPING; 458 set_compound_head(p, head); 459 set_page_private(p, 0); 460 } 461 462 extern void prep_compound_page(struct page *page, unsigned int order); 463 464 extern void post_alloc_hook(struct page *page, unsigned int order, 465 gfp_t gfp_flags); 466 extern int user_min_free_kbytes; 467 468 extern void free_unref_page(struct page *page, unsigned int order); 469 extern void free_unref_page_list(struct list_head *list); 470 471 extern void zone_pcp_reset(struct zone *zone); 472 extern void zone_pcp_disable(struct zone *zone); 473 extern void zone_pcp_enable(struct zone *zone); 474 extern void zone_pcp_init(struct zone *zone); 475 476 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, 477 phys_addr_t min_addr, 478 int nid, bool exact_nid); 479 480 void memmap_init_range(unsigned long, int, unsigned long, unsigned long, 481 unsigned long, enum meminit_context, struct vmem_altmap *, int); 482 483 484 int split_free_page(struct page *free_page, 485 unsigned int order, unsigned long split_pfn_offset); 486 487 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 488 489 /* 490 * in mm/compaction.c 491 */ 492 /* 493 * compact_control is used to track pages being migrated and the free pages 494 * they are being migrated to during memory compaction. The free_pfn starts 495 * at the end of a zone and migrate_pfn begins at the start. Movable pages 496 * are moved to the end of a zone during a compaction run and the run 497 * completes when free_pfn <= migrate_pfn 498 */ 499 struct compact_control { 500 struct list_head freepages; /* List of free pages to migrate to */ 501 struct list_head migratepages; /* List of pages being migrated */ 502 unsigned int nr_freepages; /* Number of isolated free pages */ 503 unsigned int nr_migratepages; /* Number of pages to migrate */ 504 unsigned long free_pfn; /* isolate_freepages search base */ 505 /* 506 * Acts as an in/out parameter to page isolation for migration. 507 * isolate_migratepages uses it as a search base. 508 * isolate_migratepages_block will update the value to the next pfn 509 * after the last isolated one. 510 */ 511 unsigned long migrate_pfn; 512 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 513 struct zone *zone; 514 unsigned long total_migrate_scanned; 515 unsigned long total_free_scanned; 516 unsigned short fast_search_fail;/* failures to use free list searches */ 517 short search_order; /* order to start a fast search at */ 518 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 519 int order; /* order a direct compactor needs */ 520 int migratetype; /* migratetype of direct compactor */ 521 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 522 const int highest_zoneidx; /* zone index of a direct compactor */ 523 enum migrate_mode mode; /* Async or sync migration mode */ 524 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 525 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 526 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 527 bool direct_compaction; /* False from kcompactd or /proc/... */ 528 bool proactive_compaction; /* kcompactd proactive compaction */ 529 bool whole_zone; /* Whole zone should/has been scanned */ 530 bool contended; /* Signal lock contention */ 531 bool finish_pageblock; /* Scan the remainder of a pageblock. Used 532 * when there are potentially transient 533 * isolation or migration failures to 534 * ensure forward progress. 535 */ 536 bool alloc_contig; /* alloc_contig_range allocation */ 537 }; 538 539 /* 540 * Used in direct compaction when a page should be taken from the freelists 541 * immediately when one is created during the free path. 542 */ 543 struct capture_control { 544 struct compact_control *cc; 545 struct page *page; 546 }; 547 548 unsigned long 549 isolate_freepages_range(struct compact_control *cc, 550 unsigned long start_pfn, unsigned long end_pfn); 551 int 552 isolate_migratepages_range(struct compact_control *cc, 553 unsigned long low_pfn, unsigned long end_pfn); 554 555 int __alloc_contig_migrate_range(struct compact_control *cc, 556 unsigned long start, unsigned long end); 557 558 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 559 void init_cma_reserved_pageblock(struct page *page); 560 561 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 562 563 int find_suitable_fallback(struct free_area *area, unsigned int order, 564 int migratetype, bool only_stealable, bool *can_steal); 565 566 static inline bool free_area_empty(struct free_area *area, int migratetype) 567 { 568 return list_empty(&area->free_list[migratetype]); 569 } 570 571 /* 572 * These three helpers classifies VMAs for virtual memory accounting. 573 */ 574 575 /* 576 * Executable code area - executable, not writable, not stack 577 */ 578 static inline bool is_exec_mapping(vm_flags_t flags) 579 { 580 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 581 } 582 583 /* 584 * Stack area (including shadow stacks) 585 * 586 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 587 * do_mmap() forbids all other combinations. 588 */ 589 static inline bool is_stack_mapping(vm_flags_t flags) 590 { 591 return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK); 592 } 593 594 /* 595 * Data area - private, writable, not stack 596 */ 597 static inline bool is_data_mapping(vm_flags_t flags) 598 { 599 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 600 } 601 602 /* mm/util.c */ 603 struct anon_vma *folio_anon_vma(struct folio *folio); 604 605 #ifdef CONFIG_MMU 606 void unmap_mapping_folio(struct folio *folio); 607 extern long populate_vma_page_range(struct vm_area_struct *vma, 608 unsigned long start, unsigned long end, int *locked); 609 extern long faultin_page_range(struct mm_struct *mm, unsigned long start, 610 unsigned long end, bool write, int *locked); 611 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 612 unsigned long bytes); 613 /* 614 * mlock_vma_folio() and munlock_vma_folio(): 615 * should be called with vma's mmap_lock held for read or write, 616 * under page table lock for the pte/pmd being added or removed. 617 * 618 * mlock is usually called at the end of page_add_*_rmap(), munlock at 619 * the end of page_remove_rmap(); but new anon folios are managed by 620 * folio_add_lru_vma() calling mlock_new_folio(). 621 * 622 * @compound is used to include pmd mappings of THPs, but filter out 623 * pte mappings of THPs, which cannot be consistently counted: a pte 624 * mapping of the THP head cannot be distinguished by the page alone. 625 */ 626 void mlock_folio(struct folio *folio); 627 static inline void mlock_vma_folio(struct folio *folio, 628 struct vm_area_struct *vma, bool compound) 629 { 630 /* 631 * The VM_SPECIAL check here serves two purposes. 632 * 1) VM_IO check prevents migration from double-counting during mlock. 633 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED 634 * is never left set on a VM_SPECIAL vma, there is an interval while 635 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may 636 * still be set while VM_SPECIAL bits are added: so ignore it then. 637 */ 638 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) && 639 (compound || !folio_test_large(folio))) 640 mlock_folio(folio); 641 } 642 643 void munlock_folio(struct folio *folio); 644 static inline void munlock_vma_folio(struct folio *folio, 645 struct vm_area_struct *vma, bool compound) 646 { 647 if (unlikely(vma->vm_flags & VM_LOCKED) && 648 (compound || !folio_test_large(folio))) 649 munlock_folio(folio); 650 } 651 652 void mlock_new_folio(struct folio *folio); 653 bool need_mlock_drain(int cpu); 654 void mlock_drain_local(void); 655 void mlock_drain_remote(int cpu); 656 657 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 658 659 /* 660 * Return the start of user virtual address at the specific offset within 661 * a vma. 662 */ 663 static inline unsigned long 664 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages, 665 struct vm_area_struct *vma) 666 { 667 unsigned long address; 668 669 if (pgoff >= vma->vm_pgoff) { 670 address = vma->vm_start + 671 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 672 /* Check for address beyond vma (or wrapped through 0?) */ 673 if (address < vma->vm_start || address >= vma->vm_end) 674 address = -EFAULT; 675 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) { 676 /* Test above avoids possibility of wrap to 0 on 32-bit */ 677 address = vma->vm_start; 678 } else { 679 address = -EFAULT; 680 } 681 return address; 682 } 683 684 /* 685 * Return the start of user virtual address of a page within a vma. 686 * Returns -EFAULT if all of the page is outside the range of vma. 687 * If page is a compound head, the entire compound page is considered. 688 */ 689 static inline unsigned long 690 vma_address(struct page *page, struct vm_area_struct *vma) 691 { 692 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 693 return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma); 694 } 695 696 /* 697 * Then at what user virtual address will none of the range be found in vma? 698 * Assumes that vma_address() already returned a good starting address. 699 */ 700 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw) 701 { 702 struct vm_area_struct *vma = pvmw->vma; 703 pgoff_t pgoff; 704 unsigned long address; 705 706 /* Common case, plus ->pgoff is invalid for KSM */ 707 if (pvmw->nr_pages == 1) 708 return pvmw->address + PAGE_SIZE; 709 710 pgoff = pvmw->pgoff + pvmw->nr_pages; 711 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 712 /* Check for address beyond vma (or wrapped through 0?) */ 713 if (address < vma->vm_start || address > vma->vm_end) 714 address = vma->vm_end; 715 return address; 716 } 717 718 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 719 struct file *fpin) 720 { 721 int flags = vmf->flags; 722 723 if (fpin) 724 return fpin; 725 726 /* 727 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 728 * anything, so we only pin the file and drop the mmap_lock if only 729 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 730 */ 731 if (fault_flag_allow_retry_first(flags) && 732 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 733 fpin = get_file(vmf->vma->vm_file); 734 release_fault_lock(vmf); 735 } 736 return fpin; 737 } 738 #else /* !CONFIG_MMU */ 739 static inline void unmap_mapping_folio(struct folio *folio) { } 740 static inline void mlock_new_folio(struct folio *folio) { } 741 static inline bool need_mlock_drain(int cpu) { return false; } 742 static inline void mlock_drain_local(void) { } 743 static inline void mlock_drain_remote(int cpu) { } 744 static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 745 { 746 } 747 #endif /* !CONFIG_MMU */ 748 749 /* Memory initialisation debug and verification */ 750 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 751 DECLARE_STATIC_KEY_TRUE(deferred_pages); 752 753 bool __init deferred_grow_zone(struct zone *zone, unsigned int order); 754 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 755 756 enum mminit_level { 757 MMINIT_WARNING, 758 MMINIT_VERIFY, 759 MMINIT_TRACE 760 }; 761 762 #ifdef CONFIG_DEBUG_MEMORY_INIT 763 764 extern int mminit_loglevel; 765 766 #define mminit_dprintk(level, prefix, fmt, arg...) \ 767 do { \ 768 if (level < mminit_loglevel) { \ 769 if (level <= MMINIT_WARNING) \ 770 pr_warn("mminit::" prefix " " fmt, ##arg); \ 771 else \ 772 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 773 } \ 774 } while (0) 775 776 extern void mminit_verify_pageflags_layout(void); 777 extern void mminit_verify_zonelist(void); 778 #else 779 780 static inline void mminit_dprintk(enum mminit_level level, 781 const char *prefix, const char *fmt, ...) 782 { 783 } 784 785 static inline void mminit_verify_pageflags_layout(void) 786 { 787 } 788 789 static inline void mminit_verify_zonelist(void) 790 { 791 } 792 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 793 794 #define NODE_RECLAIM_NOSCAN -2 795 #define NODE_RECLAIM_FULL -1 796 #define NODE_RECLAIM_SOME 0 797 #define NODE_RECLAIM_SUCCESS 1 798 799 #ifdef CONFIG_NUMA 800 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 801 extern int find_next_best_node(int node, nodemask_t *used_node_mask); 802 #else 803 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 804 unsigned int order) 805 { 806 return NODE_RECLAIM_NOSCAN; 807 } 808 static inline int find_next_best_node(int node, nodemask_t *used_node_mask) 809 { 810 return NUMA_NO_NODE; 811 } 812 #endif 813 814 /* 815 * mm/memory-failure.c 816 */ 817 extern int hwpoison_filter(struct page *p); 818 819 extern u32 hwpoison_filter_dev_major; 820 extern u32 hwpoison_filter_dev_minor; 821 extern u64 hwpoison_filter_flags_mask; 822 extern u64 hwpoison_filter_flags_value; 823 extern u64 hwpoison_filter_memcg; 824 extern u32 hwpoison_filter_enable; 825 826 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 827 unsigned long, unsigned long, 828 unsigned long, unsigned long); 829 830 extern void set_pageblock_order(void); 831 unsigned long reclaim_pages(struct list_head *folio_list); 832 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 833 struct list_head *folio_list); 834 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 835 #define ALLOC_WMARK_MIN WMARK_MIN 836 #define ALLOC_WMARK_LOW WMARK_LOW 837 #define ALLOC_WMARK_HIGH WMARK_HIGH 838 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 839 840 /* Mask to get the watermark bits */ 841 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 842 843 /* 844 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 845 * cannot assume a reduced access to memory reserves is sufficient for 846 * !MMU 847 */ 848 #ifdef CONFIG_MMU 849 #define ALLOC_OOM 0x08 850 #else 851 #define ALLOC_OOM ALLOC_NO_WATERMARKS 852 #endif 853 854 #define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access 855 * to 25% of the min watermark or 856 * 62.5% if __GFP_HIGH is set. 857 */ 858 #define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50% 859 * of the min watermark. 860 */ 861 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 862 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 863 #ifdef CONFIG_ZONE_DMA32 864 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 865 #else 866 #define ALLOC_NOFRAGMENT 0x0 867 #endif 868 #define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */ 869 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 870 871 /* Flags that allow allocations below the min watermark. */ 872 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM) 873 874 enum ttu_flags; 875 struct tlbflush_unmap_batch; 876 877 878 /* 879 * only for MM internal work items which do not depend on 880 * any allocations or locks which might depend on allocations 881 */ 882 extern struct workqueue_struct *mm_percpu_wq; 883 884 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 885 void try_to_unmap_flush(void); 886 void try_to_unmap_flush_dirty(void); 887 void flush_tlb_batched_pending(struct mm_struct *mm); 888 #else 889 static inline void try_to_unmap_flush(void) 890 { 891 } 892 static inline void try_to_unmap_flush_dirty(void) 893 { 894 } 895 static inline void flush_tlb_batched_pending(struct mm_struct *mm) 896 { 897 } 898 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 899 900 extern const struct trace_print_flags pageflag_names[]; 901 extern const struct trace_print_flags pagetype_names[]; 902 extern const struct trace_print_flags vmaflag_names[]; 903 extern const struct trace_print_flags gfpflag_names[]; 904 905 static inline bool is_migrate_highatomic(enum migratetype migratetype) 906 { 907 return migratetype == MIGRATE_HIGHATOMIC; 908 } 909 910 static inline bool is_migrate_highatomic_page(struct page *page) 911 { 912 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 913 } 914 915 void setup_zone_pageset(struct zone *zone); 916 917 struct migration_target_control { 918 int nid; /* preferred node id */ 919 nodemask_t *nmask; 920 gfp_t gfp_mask; 921 }; 922 923 /* 924 * mm/filemap.c 925 */ 926 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 927 struct folio *folio, loff_t fpos, size_t size); 928 929 /* 930 * mm/vmalloc.c 931 */ 932 #ifdef CONFIG_MMU 933 void __init vmalloc_init(void); 934 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 935 pgprot_t prot, struct page **pages, unsigned int page_shift); 936 #else 937 static inline void vmalloc_init(void) 938 { 939 } 940 941 static inline 942 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 943 pgprot_t prot, struct page **pages, unsigned int page_shift) 944 { 945 return -EINVAL; 946 } 947 #endif 948 949 int __must_check __vmap_pages_range_noflush(unsigned long addr, 950 unsigned long end, pgprot_t prot, 951 struct page **pages, unsigned int page_shift); 952 953 void vunmap_range_noflush(unsigned long start, unsigned long end); 954 955 void __vunmap_range_noflush(unsigned long start, unsigned long end); 956 957 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 958 unsigned long addr, int page_nid, int *flags); 959 960 void free_zone_device_page(struct page *page); 961 int migrate_device_coherent_page(struct page *page); 962 963 /* 964 * mm/gup.c 965 */ 966 int __must_check try_grab_folio(struct folio *folio, int refs, 967 unsigned int flags); 968 969 /* 970 * mm/huge_memory.c 971 */ 972 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 973 unsigned long addr, pmd_t *pmd, 974 unsigned int flags); 975 976 enum { 977 /* mark page accessed */ 978 FOLL_TOUCH = 1 << 16, 979 /* a retry, previous pass started an IO */ 980 FOLL_TRIED = 1 << 17, 981 /* we are working on non-current tsk/mm */ 982 FOLL_REMOTE = 1 << 18, 983 /* pages must be released via unpin_user_page */ 984 FOLL_PIN = 1 << 19, 985 /* gup_fast: prevent fall-back to slow gup */ 986 FOLL_FAST_ONLY = 1 << 20, 987 /* allow unlocking the mmap lock */ 988 FOLL_UNLOCKABLE = 1 << 21, 989 /* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */ 990 FOLL_MADV_POPULATE = 1 << 22, 991 }; 992 993 #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \ 994 FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \ 995 FOLL_MADV_POPULATE) 996 997 /* 998 * Indicates for which pages that are write-protected in the page table, 999 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the 1000 * GUP pin will remain consistent with the pages mapped into the page tables 1001 * of the MM. 1002 * 1003 * Temporary unmapping of PageAnonExclusive() pages or clearing of 1004 * PageAnonExclusive() has to protect against concurrent GUP: 1005 * * Ordinary GUP: Using the PT lock 1006 * * GUP-fast and fork(): mm->write_protect_seq 1007 * * GUP-fast and KSM or temporary unmapping (swap, migration): see 1008 * page_try_share_anon_rmap() 1009 * 1010 * Must be called with the (sub)page that's actually referenced via the 1011 * page table entry, which might not necessarily be the head page for a 1012 * PTE-mapped THP. 1013 * 1014 * If the vma is NULL, we're coming from the GUP-fast path and might have 1015 * to fallback to the slow path just to lookup the vma. 1016 */ 1017 static inline bool gup_must_unshare(struct vm_area_struct *vma, 1018 unsigned int flags, struct page *page) 1019 { 1020 /* 1021 * FOLL_WRITE is implicitly handled correctly as the page table entry 1022 * has to be writable -- and if it references (part of) an anonymous 1023 * folio, that part is required to be marked exclusive. 1024 */ 1025 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) 1026 return false; 1027 /* 1028 * Note: PageAnon(page) is stable until the page is actually getting 1029 * freed. 1030 */ 1031 if (!PageAnon(page)) { 1032 /* 1033 * We only care about R/O long-term pining: R/O short-term 1034 * pinning does not have the semantics to observe successive 1035 * changes through the process page tables. 1036 */ 1037 if (!(flags & FOLL_LONGTERM)) 1038 return false; 1039 1040 /* We really need the vma ... */ 1041 if (!vma) 1042 return true; 1043 1044 /* 1045 * ... because we only care about writable private ("COW") 1046 * mappings where we have to break COW early. 1047 */ 1048 return is_cow_mapping(vma->vm_flags); 1049 } 1050 1051 /* Paired with a memory barrier in page_try_share_anon_rmap(). */ 1052 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) 1053 smp_rmb(); 1054 1055 /* 1056 * During GUP-fast we might not get called on the head page for a 1057 * hugetlb page that is mapped using cont-PTE, because GUP-fast does 1058 * not work with the abstracted hugetlb PTEs that always point at the 1059 * head page. For hugetlb, PageAnonExclusive only applies on the head 1060 * page (as it cannot be partially COW-shared), so lookup the head page. 1061 */ 1062 if (unlikely(!PageHead(page) && PageHuge(page))) 1063 page = compound_head(page); 1064 1065 /* 1066 * Note that PageKsm() pages cannot be exclusive, and consequently, 1067 * cannot get pinned. 1068 */ 1069 return !PageAnonExclusive(page); 1070 } 1071 1072 extern bool mirrored_kernelcore; 1073 extern bool memblock_has_mirror(void); 1074 1075 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma) 1076 { 1077 /* 1078 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty 1079 * enablements, because when without soft-dirty being compiled in, 1080 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY) 1081 * will be constantly true. 1082 */ 1083 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) 1084 return false; 1085 1086 /* 1087 * Soft-dirty is kind of special: its tracking is enabled when the 1088 * vma flags not set. 1089 */ 1090 return !(vma->vm_flags & VM_SOFTDIRTY); 1091 } 1092 1093 static inline void vma_iter_config(struct vma_iterator *vmi, 1094 unsigned long index, unsigned long last) 1095 { 1096 MAS_BUG_ON(&vmi->mas, vmi->mas.node != MAS_START && 1097 (vmi->mas.index > index || vmi->mas.last < index)); 1098 __mas_set_range(&vmi->mas, index, last - 1); 1099 } 1100 1101 /* 1102 * VMA Iterator functions shared between nommu and mmap 1103 */ 1104 static inline int vma_iter_prealloc(struct vma_iterator *vmi, 1105 struct vm_area_struct *vma) 1106 { 1107 return mas_preallocate(&vmi->mas, vma, GFP_KERNEL); 1108 } 1109 1110 static inline void vma_iter_clear(struct vma_iterator *vmi) 1111 { 1112 mas_store_prealloc(&vmi->mas, NULL); 1113 } 1114 1115 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1116 unsigned long start, unsigned long end, gfp_t gfp) 1117 { 1118 __mas_set_range(&vmi->mas, start, end - 1); 1119 mas_store_gfp(&vmi->mas, NULL, gfp); 1120 if (unlikely(mas_is_err(&vmi->mas))) 1121 return -ENOMEM; 1122 1123 return 0; 1124 } 1125 1126 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi) 1127 { 1128 return mas_walk(&vmi->mas); 1129 } 1130 1131 /* Store a VMA with preallocated memory */ 1132 static inline void vma_iter_store(struct vma_iterator *vmi, 1133 struct vm_area_struct *vma) 1134 { 1135 1136 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1137 if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START && 1138 vmi->mas.index > vma->vm_start)) { 1139 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n", 1140 vmi->mas.index, vma->vm_start, vma->vm_start, 1141 vma->vm_end, vmi->mas.index, vmi->mas.last); 1142 } 1143 if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START && 1144 vmi->mas.last < vma->vm_start)) { 1145 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n", 1146 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end, 1147 vmi->mas.index, vmi->mas.last); 1148 } 1149 #endif 1150 1151 if (vmi->mas.node != MAS_START && 1152 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 1153 vma_iter_invalidate(vmi); 1154 1155 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 1156 mas_store_prealloc(&vmi->mas, vma); 1157 } 1158 1159 static inline int vma_iter_store_gfp(struct vma_iterator *vmi, 1160 struct vm_area_struct *vma, gfp_t gfp) 1161 { 1162 if (vmi->mas.node != MAS_START && 1163 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 1164 vma_iter_invalidate(vmi); 1165 1166 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 1167 mas_store_gfp(&vmi->mas, vma, gfp); 1168 if (unlikely(mas_is_err(&vmi->mas))) 1169 return -ENOMEM; 1170 1171 return 0; 1172 } 1173 1174 /* 1175 * VMA lock generalization 1176 */ 1177 struct vma_prepare { 1178 struct vm_area_struct *vma; 1179 struct vm_area_struct *adj_next; 1180 struct file *file; 1181 struct address_space *mapping; 1182 struct anon_vma *anon_vma; 1183 struct vm_area_struct *insert; 1184 struct vm_area_struct *remove; 1185 struct vm_area_struct *remove2; 1186 }; 1187 #endif /* __MM_INTERNAL_H */ 1188