1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * HugeTLB Vmemmap Optimization (HVO) 4 * 5 * Copyright (c) 2020, ByteDance. All rights reserved. 6 * 7 * Author: Muchun Song <songmuchun@bytedance.com> 8 * 9 * See Documentation/mm/vmemmap_dedup.rst 10 */ 11 #define pr_fmt(fmt) "HugeTLB: " fmt 12 13 #include <linux/pgtable.h> 14 #include <linux/bootmem_info.h> 15 #include <asm/pgalloc.h> 16 #include <asm/tlbflush.h> 17 #include "hugetlb_vmemmap.h" 18 19 /** 20 * struct vmemmap_remap_walk - walk vmemmap page table 21 * 22 * @remap_pte: called for each lowest-level entry (PTE). 23 * @nr_walked: the number of walked pte. 24 * @reuse_page: the page which is reused for the tail vmemmap pages. 25 * @reuse_addr: the virtual address of the @reuse_page page. 26 * @vmemmap_pages: the list head of the vmemmap pages that can be freed 27 * or is mapped from. 28 */ 29 struct vmemmap_remap_walk { 30 void (*remap_pte)(pte_t *pte, unsigned long addr, 31 struct vmemmap_remap_walk *walk); 32 unsigned long nr_walked; 33 struct page *reuse_page; 34 unsigned long reuse_addr; 35 struct list_head *vmemmap_pages; 36 }; 37 38 static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start) 39 { 40 pmd_t __pmd; 41 int i; 42 unsigned long addr = start; 43 struct page *page = pmd_page(*pmd); 44 pte_t *pgtable = pte_alloc_one_kernel(&init_mm); 45 46 if (!pgtable) 47 return -ENOMEM; 48 49 pmd_populate_kernel(&init_mm, &__pmd, pgtable); 50 51 for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) { 52 pte_t entry, *pte; 53 pgprot_t pgprot = PAGE_KERNEL; 54 55 entry = mk_pte(page + i, pgprot); 56 pte = pte_offset_kernel(&__pmd, addr); 57 set_pte_at(&init_mm, addr, pte, entry); 58 } 59 60 spin_lock(&init_mm.page_table_lock); 61 if (likely(pmd_leaf(*pmd))) { 62 /* 63 * Higher order allocations from buddy allocator must be able to 64 * be treated as indepdenent small pages (as they can be freed 65 * individually). 66 */ 67 if (!PageReserved(page)) 68 split_page(page, get_order(PMD_SIZE)); 69 70 /* Make pte visible before pmd. See comment in pmd_install(). */ 71 smp_wmb(); 72 pmd_populate_kernel(&init_mm, pmd, pgtable); 73 flush_tlb_kernel_range(start, start + PMD_SIZE); 74 } else { 75 pte_free_kernel(&init_mm, pgtable); 76 } 77 spin_unlock(&init_mm.page_table_lock); 78 79 return 0; 80 } 81 82 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start) 83 { 84 int leaf; 85 86 spin_lock(&init_mm.page_table_lock); 87 leaf = pmd_leaf(*pmd); 88 spin_unlock(&init_mm.page_table_lock); 89 90 if (!leaf) 91 return 0; 92 93 return __split_vmemmap_huge_pmd(pmd, start); 94 } 95 96 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr, 97 unsigned long end, 98 struct vmemmap_remap_walk *walk) 99 { 100 pte_t *pte = pte_offset_kernel(pmd, addr); 101 102 /* 103 * The reuse_page is found 'first' in table walk before we start 104 * remapping (which is calling @walk->remap_pte). 105 */ 106 if (!walk->reuse_page) { 107 walk->reuse_page = pte_page(*pte); 108 /* 109 * Because the reuse address is part of the range that we are 110 * walking, skip the reuse address range. 111 */ 112 addr += PAGE_SIZE; 113 pte++; 114 walk->nr_walked++; 115 } 116 117 for (; addr != end; addr += PAGE_SIZE, pte++) { 118 walk->remap_pte(pte, addr, walk); 119 walk->nr_walked++; 120 } 121 } 122 123 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr, 124 unsigned long end, 125 struct vmemmap_remap_walk *walk) 126 { 127 pmd_t *pmd; 128 unsigned long next; 129 130 pmd = pmd_offset(pud, addr); 131 do { 132 int ret; 133 134 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK); 135 if (ret) 136 return ret; 137 138 next = pmd_addr_end(addr, end); 139 vmemmap_pte_range(pmd, addr, next, walk); 140 } while (pmd++, addr = next, addr != end); 141 142 return 0; 143 } 144 145 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr, 146 unsigned long end, 147 struct vmemmap_remap_walk *walk) 148 { 149 pud_t *pud; 150 unsigned long next; 151 152 pud = pud_offset(p4d, addr); 153 do { 154 int ret; 155 156 next = pud_addr_end(addr, end); 157 ret = vmemmap_pmd_range(pud, addr, next, walk); 158 if (ret) 159 return ret; 160 } while (pud++, addr = next, addr != end); 161 162 return 0; 163 } 164 165 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr, 166 unsigned long end, 167 struct vmemmap_remap_walk *walk) 168 { 169 p4d_t *p4d; 170 unsigned long next; 171 172 p4d = p4d_offset(pgd, addr); 173 do { 174 int ret; 175 176 next = p4d_addr_end(addr, end); 177 ret = vmemmap_pud_range(p4d, addr, next, walk); 178 if (ret) 179 return ret; 180 } while (p4d++, addr = next, addr != end); 181 182 return 0; 183 } 184 185 static int vmemmap_remap_range(unsigned long start, unsigned long end, 186 struct vmemmap_remap_walk *walk) 187 { 188 unsigned long addr = start; 189 unsigned long next; 190 pgd_t *pgd; 191 192 VM_BUG_ON(!PAGE_ALIGNED(start)); 193 VM_BUG_ON(!PAGE_ALIGNED(end)); 194 195 pgd = pgd_offset_k(addr); 196 do { 197 int ret; 198 199 next = pgd_addr_end(addr, end); 200 ret = vmemmap_p4d_range(pgd, addr, next, walk); 201 if (ret) 202 return ret; 203 } while (pgd++, addr = next, addr != end); 204 205 /* 206 * We only change the mapping of the vmemmap virtual address range 207 * [@start + PAGE_SIZE, end), so we only need to flush the TLB which 208 * belongs to the range. 209 */ 210 flush_tlb_kernel_range(start + PAGE_SIZE, end); 211 212 return 0; 213 } 214 215 /* 216 * Free a vmemmap page. A vmemmap page can be allocated from the memblock 217 * allocator or buddy allocator. If the PG_reserved flag is set, it means 218 * that it allocated from the memblock allocator, just free it via the 219 * free_bootmem_page(). Otherwise, use __free_page(). 220 */ 221 static inline void free_vmemmap_page(struct page *page) 222 { 223 if (PageReserved(page)) 224 free_bootmem_page(page); 225 else 226 __free_page(page); 227 } 228 229 /* Free a list of the vmemmap pages */ 230 static void free_vmemmap_page_list(struct list_head *list) 231 { 232 struct page *page, *next; 233 234 list_for_each_entry_safe(page, next, list, lru) { 235 list_del(&page->lru); 236 free_vmemmap_page(page); 237 } 238 } 239 240 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr, 241 struct vmemmap_remap_walk *walk) 242 { 243 /* 244 * Remap the tail pages as read-only to catch illegal write operation 245 * to the tail pages. 246 */ 247 pgprot_t pgprot = PAGE_KERNEL_RO; 248 pte_t entry = mk_pte(walk->reuse_page, pgprot); 249 struct page *page = pte_page(*pte); 250 251 list_add_tail(&page->lru, walk->vmemmap_pages); 252 set_pte_at(&init_mm, addr, pte, entry); 253 } 254 255 /* 256 * How many struct page structs need to be reset. When we reuse the head 257 * struct page, the special metadata (e.g. page->flags or page->mapping) 258 * cannot copy to the tail struct page structs. The invalid value will be 259 * checked in the free_tail_pages_check(). In order to avoid the message 260 * of "corrupted mapping in tail page". We need to reset at least 3 (one 261 * head struct page struct and two tail struct page structs) struct page 262 * structs. 263 */ 264 #define NR_RESET_STRUCT_PAGE 3 265 266 static inline void reset_struct_pages(struct page *start) 267 { 268 int i; 269 struct page *from = start + NR_RESET_STRUCT_PAGE; 270 271 for (i = 0; i < NR_RESET_STRUCT_PAGE; i++) 272 memcpy(start + i, from, sizeof(*from)); 273 } 274 275 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr, 276 struct vmemmap_remap_walk *walk) 277 { 278 pgprot_t pgprot = PAGE_KERNEL; 279 struct page *page; 280 void *to; 281 282 BUG_ON(pte_page(*pte) != walk->reuse_page); 283 284 page = list_first_entry(walk->vmemmap_pages, struct page, lru); 285 list_del(&page->lru); 286 to = page_to_virt(page); 287 copy_page(to, (void *)walk->reuse_addr); 288 reset_struct_pages(to); 289 290 set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot)); 291 } 292 293 /** 294 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end) 295 * to the page which @reuse is mapped to, then free vmemmap 296 * which the range are mapped to. 297 * @start: start address of the vmemmap virtual address range that we want 298 * to remap. 299 * @end: end address of the vmemmap virtual address range that we want to 300 * remap. 301 * @reuse: reuse address. 302 * 303 * Return: %0 on success, negative error code otherwise. 304 */ 305 static int vmemmap_remap_free(unsigned long start, unsigned long end, 306 unsigned long reuse) 307 { 308 int ret; 309 LIST_HEAD(vmemmap_pages); 310 struct vmemmap_remap_walk walk = { 311 .remap_pte = vmemmap_remap_pte, 312 .reuse_addr = reuse, 313 .vmemmap_pages = &vmemmap_pages, 314 }; 315 316 /* 317 * In order to make remapping routine most efficient for the huge pages, 318 * the routine of vmemmap page table walking has the following rules 319 * (see more details from the vmemmap_pte_range()): 320 * 321 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE) 322 * should be continuous. 323 * - The @reuse address is part of the range [@reuse, @end) that we are 324 * walking which is passed to vmemmap_remap_range(). 325 * - The @reuse address is the first in the complete range. 326 * 327 * So we need to make sure that @start and @reuse meet the above rules. 328 */ 329 BUG_ON(start - reuse != PAGE_SIZE); 330 331 mmap_read_lock(&init_mm); 332 ret = vmemmap_remap_range(reuse, end, &walk); 333 if (ret && walk.nr_walked) { 334 end = reuse + walk.nr_walked * PAGE_SIZE; 335 /* 336 * vmemmap_pages contains pages from the previous 337 * vmemmap_remap_range call which failed. These 338 * are pages which were removed from the vmemmap. 339 * They will be restored in the following call. 340 */ 341 walk = (struct vmemmap_remap_walk) { 342 .remap_pte = vmemmap_restore_pte, 343 .reuse_addr = reuse, 344 .vmemmap_pages = &vmemmap_pages, 345 }; 346 347 vmemmap_remap_range(reuse, end, &walk); 348 } 349 mmap_read_unlock(&init_mm); 350 351 free_vmemmap_page_list(&vmemmap_pages); 352 353 return ret; 354 } 355 356 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end, 357 gfp_t gfp_mask, struct list_head *list) 358 { 359 unsigned long nr_pages = (end - start) >> PAGE_SHIFT; 360 int nid = page_to_nid((struct page *)start); 361 struct page *page, *next; 362 363 while (nr_pages--) { 364 page = alloc_pages_node(nid, gfp_mask, 0); 365 if (!page) 366 goto out; 367 list_add_tail(&page->lru, list); 368 } 369 370 return 0; 371 out: 372 list_for_each_entry_safe(page, next, list, lru) 373 __free_pages(page, 0); 374 return -ENOMEM; 375 } 376 377 /** 378 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end) 379 * to the page which is from the @vmemmap_pages 380 * respectively. 381 * @start: start address of the vmemmap virtual address range that we want 382 * to remap. 383 * @end: end address of the vmemmap virtual address range that we want to 384 * remap. 385 * @reuse: reuse address. 386 * @gfp_mask: GFP flag for allocating vmemmap pages. 387 * 388 * Return: %0 on success, negative error code otherwise. 389 */ 390 static int vmemmap_remap_alloc(unsigned long start, unsigned long end, 391 unsigned long reuse, gfp_t gfp_mask) 392 { 393 LIST_HEAD(vmemmap_pages); 394 struct vmemmap_remap_walk walk = { 395 .remap_pte = vmemmap_restore_pte, 396 .reuse_addr = reuse, 397 .vmemmap_pages = &vmemmap_pages, 398 }; 399 400 /* See the comment in the vmemmap_remap_free(). */ 401 BUG_ON(start - reuse != PAGE_SIZE); 402 403 if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages)) 404 return -ENOMEM; 405 406 mmap_read_lock(&init_mm); 407 vmemmap_remap_range(reuse, end, &walk); 408 mmap_read_unlock(&init_mm); 409 410 return 0; 411 } 412 413 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key); 414 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key); 415 416 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON); 417 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0); 418 419 /** 420 * hugetlb_vmemmap_restore - restore previously optimized (by 421 * hugetlb_vmemmap_optimize()) vmemmap pages which 422 * will be reallocated and remapped. 423 * @h: struct hstate. 424 * @head: the head page whose vmemmap pages will be restored. 425 * 426 * Return: %0 if @head's vmemmap pages have been reallocated and remapped, 427 * negative error code otherwise. 428 */ 429 int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head) 430 { 431 int ret; 432 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end; 433 unsigned long vmemmap_reuse; 434 435 if (!HPageVmemmapOptimized(head)) 436 return 0; 437 438 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h); 439 vmemmap_reuse = vmemmap_start; 440 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE; 441 442 /* 443 * The pages which the vmemmap virtual address range [@vmemmap_start, 444 * @vmemmap_end) are mapped to are freed to the buddy allocator, and 445 * the range is mapped to the page which @vmemmap_reuse is mapped to. 446 * When a HugeTLB page is freed to the buddy allocator, previously 447 * discarded vmemmap pages must be allocated and remapping. 448 */ 449 ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, 450 GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE); 451 if (!ret) { 452 ClearHPageVmemmapOptimized(head); 453 static_branch_dec(&hugetlb_optimize_vmemmap_key); 454 } 455 456 return ret; 457 } 458 459 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */ 460 static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head) 461 { 462 if (!READ_ONCE(vmemmap_optimize_enabled)) 463 return false; 464 465 if (!hugetlb_vmemmap_optimizable(h)) 466 return false; 467 468 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) { 469 pmd_t *pmdp, pmd; 470 struct page *vmemmap_page; 471 unsigned long vaddr = (unsigned long)head; 472 473 /* 474 * Only the vmemmap page's vmemmap page can be self-hosted. 475 * Walking the page tables to find the backing page of the 476 * vmemmap page. 477 */ 478 pmdp = pmd_off_k(vaddr); 479 /* 480 * The READ_ONCE() is used to stabilize *pmdp in a register or 481 * on the stack so that it will stop changing under the code. 482 * The only concurrent operation where it can be changed is 483 * split_vmemmap_huge_pmd() (*pmdp will be stable after this 484 * operation). 485 */ 486 pmd = READ_ONCE(*pmdp); 487 if (pmd_leaf(pmd)) 488 vmemmap_page = pmd_page(pmd) + pte_index(vaddr); 489 else 490 vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr)); 491 /* 492 * Due to HugeTLB alignment requirements and the vmemmap pages 493 * being at the start of the hotplugged memory region in 494 * memory_hotplug.memmap_on_memory case. Checking any vmemmap 495 * page's vmemmap page if it is marked as VmemmapSelfHosted is 496 * sufficient. 497 * 498 * [ hotplugged memory ] 499 * [ section ][...][ section ] 500 * [ vmemmap ][ usable memory ] 501 * ^ | | | 502 * +---+ | | 503 * ^ | | 504 * +-------+ | 505 * ^ | 506 * +-------------------------------------------+ 507 */ 508 if (PageVmemmapSelfHosted(vmemmap_page)) 509 return false; 510 } 511 512 return true; 513 } 514 515 /** 516 * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages. 517 * @h: struct hstate. 518 * @head: the head page whose vmemmap pages will be optimized. 519 * 520 * This function only tries to optimize @head's vmemmap pages and does not 521 * guarantee that the optimization will succeed after it returns. The caller 522 * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages 523 * have been optimized. 524 */ 525 void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head) 526 { 527 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end; 528 unsigned long vmemmap_reuse; 529 530 if (!vmemmap_should_optimize(h, head)) 531 return; 532 533 static_branch_inc(&hugetlb_optimize_vmemmap_key); 534 535 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h); 536 vmemmap_reuse = vmemmap_start; 537 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE; 538 539 /* 540 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end) 541 * to the page which @vmemmap_reuse is mapped to, then free the pages 542 * which the range [@vmemmap_start, @vmemmap_end] is mapped to. 543 */ 544 if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse)) 545 static_branch_dec(&hugetlb_optimize_vmemmap_key); 546 else 547 SetHPageVmemmapOptimized(head); 548 } 549 550 static struct ctl_table hugetlb_vmemmap_sysctls[] = { 551 { 552 .procname = "hugetlb_optimize_vmemmap", 553 .data = &vmemmap_optimize_enabled, 554 .maxlen = sizeof(int), 555 .mode = 0644, 556 .proc_handler = proc_dobool, 557 }, 558 { } 559 }; 560 561 static int __init hugetlb_vmemmap_init(void) 562 { 563 /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */ 564 BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE); 565 566 if (IS_ENABLED(CONFIG_PROC_SYSCTL)) { 567 const struct hstate *h; 568 569 for_each_hstate(h) { 570 if (hugetlb_vmemmap_optimizable(h)) { 571 register_sysctl_init("vm", hugetlb_vmemmap_sysctls); 572 break; 573 } 574 } 575 } 576 return 0; 577 } 578 late_initcall(hugetlb_vmemmap_init); 579