1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * HugeTLB Vmemmap Optimization (HVO) 4 * 5 * Copyright (c) 2020, ByteDance. All rights reserved. 6 * 7 * Author: Muchun Song <songmuchun@bytedance.com> 8 * 9 * See Documentation/mm/vmemmap_dedup.rst 10 */ 11 #define pr_fmt(fmt) "HugeTLB: " fmt 12 13 #include <linux/pgtable.h> 14 #include <linux/moduleparam.h> 15 #include <linux/bootmem_info.h> 16 #include <asm/pgalloc.h> 17 #include <asm/tlbflush.h> 18 #include "hugetlb_vmemmap.h" 19 20 /** 21 * struct vmemmap_remap_walk - walk vmemmap page table 22 * 23 * @remap_pte: called for each lowest-level entry (PTE). 24 * @nr_walked: the number of walked pte. 25 * @reuse_page: the page which is reused for the tail vmemmap pages. 26 * @reuse_addr: the virtual address of the @reuse_page page. 27 * @vmemmap_pages: the list head of the vmemmap pages that can be freed 28 * or is mapped from. 29 */ 30 struct vmemmap_remap_walk { 31 void (*remap_pte)(pte_t *pte, unsigned long addr, 32 struct vmemmap_remap_walk *walk); 33 unsigned long nr_walked; 34 struct page *reuse_page; 35 unsigned long reuse_addr; 36 struct list_head *vmemmap_pages; 37 }; 38 39 static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start) 40 { 41 pmd_t __pmd; 42 int i; 43 unsigned long addr = start; 44 struct page *page = pmd_page(*pmd); 45 pte_t *pgtable = pte_alloc_one_kernel(&init_mm); 46 47 if (!pgtable) 48 return -ENOMEM; 49 50 pmd_populate_kernel(&init_mm, &__pmd, pgtable); 51 52 for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) { 53 pte_t entry, *pte; 54 pgprot_t pgprot = PAGE_KERNEL; 55 56 entry = mk_pte(page + i, pgprot); 57 pte = pte_offset_kernel(&__pmd, addr); 58 set_pte_at(&init_mm, addr, pte, entry); 59 } 60 61 spin_lock(&init_mm.page_table_lock); 62 if (likely(pmd_leaf(*pmd))) { 63 /* 64 * Higher order allocations from buddy allocator must be able to 65 * be treated as indepdenent small pages (as they can be freed 66 * individually). 67 */ 68 if (!PageReserved(page)) 69 split_page(page, get_order(PMD_SIZE)); 70 71 /* Make pte visible before pmd. See comment in pmd_install(). */ 72 smp_wmb(); 73 pmd_populate_kernel(&init_mm, pmd, pgtable); 74 flush_tlb_kernel_range(start, start + PMD_SIZE); 75 } else { 76 pte_free_kernel(&init_mm, pgtable); 77 } 78 spin_unlock(&init_mm.page_table_lock); 79 80 return 0; 81 } 82 83 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start) 84 { 85 int leaf; 86 87 spin_lock(&init_mm.page_table_lock); 88 leaf = pmd_leaf(*pmd); 89 spin_unlock(&init_mm.page_table_lock); 90 91 if (!leaf) 92 return 0; 93 94 return __split_vmemmap_huge_pmd(pmd, start); 95 } 96 97 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr, 98 unsigned long end, 99 struct vmemmap_remap_walk *walk) 100 { 101 pte_t *pte = pte_offset_kernel(pmd, addr); 102 103 /* 104 * The reuse_page is found 'first' in table walk before we start 105 * remapping (which is calling @walk->remap_pte). 106 */ 107 if (!walk->reuse_page) { 108 walk->reuse_page = pte_page(*pte); 109 /* 110 * Because the reuse address is part of the range that we are 111 * walking, skip the reuse address range. 112 */ 113 addr += PAGE_SIZE; 114 pte++; 115 walk->nr_walked++; 116 } 117 118 for (; addr != end; addr += PAGE_SIZE, pte++) { 119 walk->remap_pte(pte, addr, walk); 120 walk->nr_walked++; 121 } 122 } 123 124 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr, 125 unsigned long end, 126 struct vmemmap_remap_walk *walk) 127 { 128 pmd_t *pmd; 129 unsigned long next; 130 131 pmd = pmd_offset(pud, addr); 132 do { 133 int ret; 134 135 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK); 136 if (ret) 137 return ret; 138 139 next = pmd_addr_end(addr, end); 140 vmemmap_pte_range(pmd, addr, next, walk); 141 } while (pmd++, addr = next, addr != end); 142 143 return 0; 144 } 145 146 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr, 147 unsigned long end, 148 struct vmemmap_remap_walk *walk) 149 { 150 pud_t *pud; 151 unsigned long next; 152 153 pud = pud_offset(p4d, addr); 154 do { 155 int ret; 156 157 next = pud_addr_end(addr, end); 158 ret = vmemmap_pmd_range(pud, addr, next, walk); 159 if (ret) 160 return ret; 161 } while (pud++, addr = next, addr != end); 162 163 return 0; 164 } 165 166 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr, 167 unsigned long end, 168 struct vmemmap_remap_walk *walk) 169 { 170 p4d_t *p4d; 171 unsigned long next; 172 173 p4d = p4d_offset(pgd, addr); 174 do { 175 int ret; 176 177 next = p4d_addr_end(addr, end); 178 ret = vmemmap_pud_range(p4d, addr, next, walk); 179 if (ret) 180 return ret; 181 } while (p4d++, addr = next, addr != end); 182 183 return 0; 184 } 185 186 static int vmemmap_remap_range(unsigned long start, unsigned long end, 187 struct vmemmap_remap_walk *walk) 188 { 189 unsigned long addr = start; 190 unsigned long next; 191 pgd_t *pgd; 192 193 VM_BUG_ON(!PAGE_ALIGNED(start)); 194 VM_BUG_ON(!PAGE_ALIGNED(end)); 195 196 pgd = pgd_offset_k(addr); 197 do { 198 int ret; 199 200 next = pgd_addr_end(addr, end); 201 ret = vmemmap_p4d_range(pgd, addr, next, walk); 202 if (ret) 203 return ret; 204 } while (pgd++, addr = next, addr != end); 205 206 /* 207 * We only change the mapping of the vmemmap virtual address range 208 * [@start + PAGE_SIZE, end), so we only need to flush the TLB which 209 * belongs to the range. 210 */ 211 flush_tlb_kernel_range(start + PAGE_SIZE, end); 212 213 return 0; 214 } 215 216 /* 217 * Free a vmemmap page. A vmemmap page can be allocated from the memblock 218 * allocator or buddy allocator. If the PG_reserved flag is set, it means 219 * that it allocated from the memblock allocator, just free it via the 220 * free_bootmem_page(). Otherwise, use __free_page(). 221 */ 222 static inline void free_vmemmap_page(struct page *page) 223 { 224 if (PageReserved(page)) 225 free_bootmem_page(page); 226 else 227 __free_page(page); 228 } 229 230 /* Free a list of the vmemmap pages */ 231 static void free_vmemmap_page_list(struct list_head *list) 232 { 233 struct page *page, *next; 234 235 list_for_each_entry_safe(page, next, list, lru) { 236 list_del(&page->lru); 237 free_vmemmap_page(page); 238 } 239 } 240 241 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr, 242 struct vmemmap_remap_walk *walk) 243 { 244 /* 245 * Remap the tail pages as read-only to catch illegal write operation 246 * to the tail pages. 247 */ 248 pgprot_t pgprot = PAGE_KERNEL_RO; 249 pte_t entry = mk_pte(walk->reuse_page, pgprot); 250 struct page *page = pte_page(*pte); 251 252 list_add_tail(&page->lru, walk->vmemmap_pages); 253 set_pte_at(&init_mm, addr, pte, entry); 254 } 255 256 /* 257 * How many struct page structs need to be reset. When we reuse the head 258 * struct page, the special metadata (e.g. page->flags or page->mapping) 259 * cannot copy to the tail struct page structs. The invalid value will be 260 * checked in the free_tail_pages_check(). In order to avoid the message 261 * of "corrupted mapping in tail page". We need to reset at least 3 (one 262 * head struct page struct and two tail struct page structs) struct page 263 * structs. 264 */ 265 #define NR_RESET_STRUCT_PAGE 3 266 267 static inline void reset_struct_pages(struct page *start) 268 { 269 struct page *from = start + NR_RESET_STRUCT_PAGE; 270 271 BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page)); 272 memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE); 273 } 274 275 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr, 276 struct vmemmap_remap_walk *walk) 277 { 278 pgprot_t pgprot = PAGE_KERNEL; 279 struct page *page; 280 void *to; 281 282 BUG_ON(pte_page(*pte) != walk->reuse_page); 283 284 page = list_first_entry(walk->vmemmap_pages, struct page, lru); 285 list_del(&page->lru); 286 to = page_to_virt(page); 287 copy_page(to, (void *)walk->reuse_addr); 288 reset_struct_pages(to); 289 290 /* 291 * Makes sure that preceding stores to the page contents become visible 292 * before the set_pte_at() write. 293 */ 294 smp_wmb(); 295 set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot)); 296 } 297 298 /** 299 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end) 300 * to the page which @reuse is mapped to, then free vmemmap 301 * which the range are mapped to. 302 * @start: start address of the vmemmap virtual address range that we want 303 * to remap. 304 * @end: end address of the vmemmap virtual address range that we want to 305 * remap. 306 * @reuse: reuse address. 307 * 308 * Return: %0 on success, negative error code otherwise. 309 */ 310 static int vmemmap_remap_free(unsigned long start, unsigned long end, 311 unsigned long reuse) 312 { 313 int ret; 314 LIST_HEAD(vmemmap_pages); 315 struct vmemmap_remap_walk walk = { 316 .remap_pte = vmemmap_remap_pte, 317 .reuse_addr = reuse, 318 .vmemmap_pages = &vmemmap_pages, 319 }; 320 321 /* 322 * In order to make remapping routine most efficient for the huge pages, 323 * the routine of vmemmap page table walking has the following rules 324 * (see more details from the vmemmap_pte_range()): 325 * 326 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE) 327 * should be continuous. 328 * - The @reuse address is part of the range [@reuse, @end) that we are 329 * walking which is passed to vmemmap_remap_range(). 330 * - The @reuse address is the first in the complete range. 331 * 332 * So we need to make sure that @start and @reuse meet the above rules. 333 */ 334 BUG_ON(start - reuse != PAGE_SIZE); 335 336 mmap_read_lock(&init_mm); 337 ret = vmemmap_remap_range(reuse, end, &walk); 338 if (ret && walk.nr_walked) { 339 end = reuse + walk.nr_walked * PAGE_SIZE; 340 /* 341 * vmemmap_pages contains pages from the previous 342 * vmemmap_remap_range call which failed. These 343 * are pages which were removed from the vmemmap. 344 * They will be restored in the following call. 345 */ 346 walk = (struct vmemmap_remap_walk) { 347 .remap_pte = vmemmap_restore_pte, 348 .reuse_addr = reuse, 349 .vmemmap_pages = &vmemmap_pages, 350 }; 351 352 vmemmap_remap_range(reuse, end, &walk); 353 } 354 mmap_read_unlock(&init_mm); 355 356 free_vmemmap_page_list(&vmemmap_pages); 357 358 return ret; 359 } 360 361 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end, 362 gfp_t gfp_mask, struct list_head *list) 363 { 364 unsigned long nr_pages = (end - start) >> PAGE_SHIFT; 365 int nid = page_to_nid((struct page *)start); 366 struct page *page, *next; 367 368 while (nr_pages--) { 369 page = alloc_pages_node(nid, gfp_mask, 0); 370 if (!page) 371 goto out; 372 list_add_tail(&page->lru, list); 373 } 374 375 return 0; 376 out: 377 list_for_each_entry_safe(page, next, list, lru) 378 __free_pages(page, 0); 379 return -ENOMEM; 380 } 381 382 /** 383 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end) 384 * to the page which is from the @vmemmap_pages 385 * respectively. 386 * @start: start address of the vmemmap virtual address range that we want 387 * to remap. 388 * @end: end address of the vmemmap virtual address range that we want to 389 * remap. 390 * @reuse: reuse address. 391 * @gfp_mask: GFP flag for allocating vmemmap pages. 392 * 393 * Return: %0 on success, negative error code otherwise. 394 */ 395 static int vmemmap_remap_alloc(unsigned long start, unsigned long end, 396 unsigned long reuse, gfp_t gfp_mask) 397 { 398 LIST_HEAD(vmemmap_pages); 399 struct vmemmap_remap_walk walk = { 400 .remap_pte = vmemmap_restore_pte, 401 .reuse_addr = reuse, 402 .vmemmap_pages = &vmemmap_pages, 403 }; 404 405 /* See the comment in the vmemmap_remap_free(). */ 406 BUG_ON(start - reuse != PAGE_SIZE); 407 408 if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages)) 409 return -ENOMEM; 410 411 mmap_read_lock(&init_mm); 412 vmemmap_remap_range(reuse, end, &walk); 413 mmap_read_unlock(&init_mm); 414 415 return 0; 416 } 417 418 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key); 419 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key); 420 421 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON); 422 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0); 423 424 /** 425 * hugetlb_vmemmap_restore - restore previously optimized (by 426 * hugetlb_vmemmap_optimize()) vmemmap pages which 427 * will be reallocated and remapped. 428 * @h: struct hstate. 429 * @head: the head page whose vmemmap pages will be restored. 430 * 431 * Return: %0 if @head's vmemmap pages have been reallocated and remapped, 432 * negative error code otherwise. 433 */ 434 int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head) 435 { 436 int ret; 437 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end; 438 unsigned long vmemmap_reuse; 439 440 if (!HPageVmemmapOptimized(head)) 441 return 0; 442 443 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h); 444 vmemmap_reuse = vmemmap_start; 445 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE; 446 447 /* 448 * The pages which the vmemmap virtual address range [@vmemmap_start, 449 * @vmemmap_end) are mapped to are freed to the buddy allocator, and 450 * the range is mapped to the page which @vmemmap_reuse is mapped to. 451 * When a HugeTLB page is freed to the buddy allocator, previously 452 * discarded vmemmap pages must be allocated and remapping. 453 */ 454 ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, 455 GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE); 456 if (!ret) { 457 ClearHPageVmemmapOptimized(head); 458 static_branch_dec(&hugetlb_optimize_vmemmap_key); 459 } 460 461 return ret; 462 } 463 464 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */ 465 static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head) 466 { 467 if (!READ_ONCE(vmemmap_optimize_enabled)) 468 return false; 469 470 if (!hugetlb_vmemmap_optimizable(h)) 471 return false; 472 473 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) { 474 pmd_t *pmdp, pmd; 475 struct page *vmemmap_page; 476 unsigned long vaddr = (unsigned long)head; 477 478 /* 479 * Only the vmemmap page's vmemmap page can be self-hosted. 480 * Walking the page tables to find the backing page of the 481 * vmemmap page. 482 */ 483 pmdp = pmd_off_k(vaddr); 484 /* 485 * The READ_ONCE() is used to stabilize *pmdp in a register or 486 * on the stack so that it will stop changing under the code. 487 * The only concurrent operation where it can be changed is 488 * split_vmemmap_huge_pmd() (*pmdp will be stable after this 489 * operation). 490 */ 491 pmd = READ_ONCE(*pmdp); 492 if (pmd_leaf(pmd)) 493 vmemmap_page = pmd_page(pmd) + pte_index(vaddr); 494 else 495 vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr)); 496 /* 497 * Due to HugeTLB alignment requirements and the vmemmap pages 498 * being at the start of the hotplugged memory region in 499 * memory_hotplug.memmap_on_memory case. Checking any vmemmap 500 * page's vmemmap page if it is marked as VmemmapSelfHosted is 501 * sufficient. 502 * 503 * [ hotplugged memory ] 504 * [ section ][...][ section ] 505 * [ vmemmap ][ usable memory ] 506 * ^ | | | 507 * +---+ | | 508 * ^ | | 509 * +-------+ | 510 * ^ | 511 * +-------------------------------------------+ 512 */ 513 if (PageVmemmapSelfHosted(vmemmap_page)) 514 return false; 515 } 516 517 return true; 518 } 519 520 /** 521 * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages. 522 * @h: struct hstate. 523 * @head: the head page whose vmemmap pages will be optimized. 524 * 525 * This function only tries to optimize @head's vmemmap pages and does not 526 * guarantee that the optimization will succeed after it returns. The caller 527 * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages 528 * have been optimized. 529 */ 530 void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head) 531 { 532 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end; 533 unsigned long vmemmap_reuse; 534 535 if (!vmemmap_should_optimize(h, head)) 536 return; 537 538 static_branch_inc(&hugetlb_optimize_vmemmap_key); 539 540 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h); 541 vmemmap_reuse = vmemmap_start; 542 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE; 543 544 /* 545 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end) 546 * to the page which @vmemmap_reuse is mapped to, then free the pages 547 * which the range [@vmemmap_start, @vmemmap_end] is mapped to. 548 */ 549 if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse)) 550 static_branch_dec(&hugetlb_optimize_vmemmap_key); 551 else 552 SetHPageVmemmapOptimized(head); 553 } 554 555 static struct ctl_table hugetlb_vmemmap_sysctls[] = { 556 { 557 .procname = "hugetlb_optimize_vmemmap", 558 .data = &vmemmap_optimize_enabled, 559 .maxlen = sizeof(int), 560 .mode = 0644, 561 .proc_handler = proc_dobool, 562 }, 563 { } 564 }; 565 566 static int __init hugetlb_vmemmap_init(void) 567 { 568 /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */ 569 BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE); 570 571 if (IS_ENABLED(CONFIG_PROC_SYSCTL)) { 572 const struct hstate *h; 573 574 for_each_hstate(h) { 575 if (hugetlb_vmemmap_optimizable(h)) { 576 register_sysctl_init("vm", hugetlb_vmemmap_sysctls); 577 break; 578 } 579 } 580 } 581 return 0; 582 } 583 late_initcall(hugetlb_vmemmap_init); 584