1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * HugeTLB Vmemmap Optimization (HVO) 4 * 5 * Copyright (c) 2020, ByteDance. All rights reserved. 6 * 7 * Author: Muchun Song <songmuchun@bytedance.com> 8 * 9 * See Documentation/mm/vmemmap_dedup.rst 10 */ 11 #define pr_fmt(fmt) "HugeTLB: " fmt 12 13 #include <linux/pgtable.h> 14 #include <linux/moduleparam.h> 15 #include <linux/bootmem_info.h> 16 #include <asm/pgalloc.h> 17 #include <asm/tlbflush.h> 18 #include "hugetlb_vmemmap.h" 19 20 /** 21 * struct vmemmap_remap_walk - walk vmemmap page table 22 * 23 * @remap_pte: called for each lowest-level entry (PTE). 24 * @nr_walked: the number of walked pte. 25 * @reuse_page: the page which is reused for the tail vmemmap pages. 26 * @reuse_addr: the virtual address of the @reuse_page page. 27 * @vmemmap_pages: the list head of the vmemmap pages that can be freed 28 * or is mapped from. 29 */ 30 struct vmemmap_remap_walk { 31 void (*remap_pte)(pte_t *pte, unsigned long addr, 32 struct vmemmap_remap_walk *walk); 33 unsigned long nr_walked; 34 struct page *reuse_page; 35 unsigned long reuse_addr; 36 struct list_head *vmemmap_pages; 37 }; 38 39 static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start) 40 { 41 pmd_t __pmd; 42 int i; 43 unsigned long addr = start; 44 struct page *page = pmd_page(*pmd); 45 pte_t *pgtable = pte_alloc_one_kernel(&init_mm); 46 47 if (!pgtable) 48 return -ENOMEM; 49 50 pmd_populate_kernel(&init_mm, &__pmd, pgtable); 51 52 for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) { 53 pte_t entry, *pte; 54 pgprot_t pgprot = PAGE_KERNEL; 55 56 entry = mk_pte(page + i, pgprot); 57 pte = pte_offset_kernel(&__pmd, addr); 58 set_pte_at(&init_mm, addr, pte, entry); 59 } 60 61 spin_lock(&init_mm.page_table_lock); 62 if (likely(pmd_leaf(*pmd))) { 63 /* 64 * Higher order allocations from buddy allocator must be able to 65 * be treated as indepdenent small pages (as they can be freed 66 * individually). 67 */ 68 if (!PageReserved(page)) 69 split_page(page, get_order(PMD_SIZE)); 70 71 /* Make pte visible before pmd. See comment in pmd_install(). */ 72 smp_wmb(); 73 pmd_populate_kernel(&init_mm, pmd, pgtable); 74 flush_tlb_kernel_range(start, start + PMD_SIZE); 75 } else { 76 pte_free_kernel(&init_mm, pgtable); 77 } 78 spin_unlock(&init_mm.page_table_lock); 79 80 return 0; 81 } 82 83 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start) 84 { 85 int leaf; 86 87 spin_lock(&init_mm.page_table_lock); 88 leaf = pmd_leaf(*pmd); 89 spin_unlock(&init_mm.page_table_lock); 90 91 if (!leaf) 92 return 0; 93 94 return __split_vmemmap_huge_pmd(pmd, start); 95 } 96 97 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr, 98 unsigned long end, 99 struct vmemmap_remap_walk *walk) 100 { 101 pte_t *pte = pte_offset_kernel(pmd, addr); 102 103 /* 104 * The reuse_page is found 'first' in table walk before we start 105 * remapping (which is calling @walk->remap_pte). 106 */ 107 if (!walk->reuse_page) { 108 walk->reuse_page = pte_page(*pte); 109 /* 110 * Because the reuse address is part of the range that we are 111 * walking, skip the reuse address range. 112 */ 113 addr += PAGE_SIZE; 114 pte++; 115 walk->nr_walked++; 116 } 117 118 for (; addr != end; addr += PAGE_SIZE, pte++) { 119 walk->remap_pte(pte, addr, walk); 120 walk->nr_walked++; 121 } 122 } 123 124 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr, 125 unsigned long end, 126 struct vmemmap_remap_walk *walk) 127 { 128 pmd_t *pmd; 129 unsigned long next; 130 131 pmd = pmd_offset(pud, addr); 132 do { 133 int ret; 134 135 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK); 136 if (ret) 137 return ret; 138 139 next = pmd_addr_end(addr, end); 140 vmemmap_pte_range(pmd, addr, next, walk); 141 } while (pmd++, addr = next, addr != end); 142 143 return 0; 144 } 145 146 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr, 147 unsigned long end, 148 struct vmemmap_remap_walk *walk) 149 { 150 pud_t *pud; 151 unsigned long next; 152 153 pud = pud_offset(p4d, addr); 154 do { 155 int ret; 156 157 next = pud_addr_end(addr, end); 158 ret = vmemmap_pmd_range(pud, addr, next, walk); 159 if (ret) 160 return ret; 161 } while (pud++, addr = next, addr != end); 162 163 return 0; 164 } 165 166 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr, 167 unsigned long end, 168 struct vmemmap_remap_walk *walk) 169 { 170 p4d_t *p4d; 171 unsigned long next; 172 173 p4d = p4d_offset(pgd, addr); 174 do { 175 int ret; 176 177 next = p4d_addr_end(addr, end); 178 ret = vmemmap_pud_range(p4d, addr, next, walk); 179 if (ret) 180 return ret; 181 } while (p4d++, addr = next, addr != end); 182 183 return 0; 184 } 185 186 static int vmemmap_remap_range(unsigned long start, unsigned long end, 187 struct vmemmap_remap_walk *walk) 188 { 189 unsigned long addr = start; 190 unsigned long next; 191 pgd_t *pgd; 192 193 VM_BUG_ON(!PAGE_ALIGNED(start)); 194 VM_BUG_ON(!PAGE_ALIGNED(end)); 195 196 pgd = pgd_offset_k(addr); 197 do { 198 int ret; 199 200 next = pgd_addr_end(addr, end); 201 ret = vmemmap_p4d_range(pgd, addr, next, walk); 202 if (ret) 203 return ret; 204 } while (pgd++, addr = next, addr != end); 205 206 flush_tlb_kernel_range(start, end); 207 208 return 0; 209 } 210 211 /* 212 * Free a vmemmap page. A vmemmap page can be allocated from the memblock 213 * allocator or buddy allocator. If the PG_reserved flag is set, it means 214 * that it allocated from the memblock allocator, just free it via the 215 * free_bootmem_page(). Otherwise, use __free_page(). 216 */ 217 static inline void free_vmemmap_page(struct page *page) 218 { 219 if (PageReserved(page)) 220 free_bootmem_page(page); 221 else 222 __free_page(page); 223 } 224 225 /* Free a list of the vmemmap pages */ 226 static void free_vmemmap_page_list(struct list_head *list) 227 { 228 struct page *page, *next; 229 230 list_for_each_entry_safe(page, next, list, lru) 231 free_vmemmap_page(page); 232 } 233 234 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr, 235 struct vmemmap_remap_walk *walk) 236 { 237 /* 238 * Remap the tail pages as read-only to catch illegal write operation 239 * to the tail pages. 240 */ 241 pgprot_t pgprot = PAGE_KERNEL_RO; 242 struct page *page = pte_page(*pte); 243 pte_t entry; 244 245 /* Remapping the head page requires r/w */ 246 if (unlikely(addr == walk->reuse_addr)) { 247 pgprot = PAGE_KERNEL; 248 list_del(&walk->reuse_page->lru); 249 250 /* 251 * Makes sure that preceding stores to the page contents from 252 * vmemmap_remap_free() become visible before the set_pte_at() 253 * write. 254 */ 255 smp_wmb(); 256 } 257 258 entry = mk_pte(walk->reuse_page, pgprot); 259 list_add_tail(&page->lru, walk->vmemmap_pages); 260 set_pte_at(&init_mm, addr, pte, entry); 261 } 262 263 /* 264 * How many struct page structs need to be reset. When we reuse the head 265 * struct page, the special metadata (e.g. page->flags or page->mapping) 266 * cannot copy to the tail struct page structs. The invalid value will be 267 * checked in the free_tail_pages_check(). In order to avoid the message 268 * of "corrupted mapping in tail page". We need to reset at least 3 (one 269 * head struct page struct and two tail struct page structs) struct page 270 * structs. 271 */ 272 #define NR_RESET_STRUCT_PAGE 3 273 274 static inline void reset_struct_pages(struct page *start) 275 { 276 struct page *from = start + NR_RESET_STRUCT_PAGE; 277 278 BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page)); 279 memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE); 280 } 281 282 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr, 283 struct vmemmap_remap_walk *walk) 284 { 285 pgprot_t pgprot = PAGE_KERNEL; 286 struct page *page; 287 void *to; 288 289 BUG_ON(pte_page(*pte) != walk->reuse_page); 290 291 page = list_first_entry(walk->vmemmap_pages, struct page, lru); 292 list_del(&page->lru); 293 to = page_to_virt(page); 294 copy_page(to, (void *)walk->reuse_addr); 295 reset_struct_pages(to); 296 297 /* 298 * Makes sure that preceding stores to the page contents become visible 299 * before the set_pte_at() write. 300 */ 301 smp_wmb(); 302 set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot)); 303 } 304 305 /** 306 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end) 307 * to the page which @reuse is mapped to, then free vmemmap 308 * which the range are mapped to. 309 * @start: start address of the vmemmap virtual address range that we want 310 * to remap. 311 * @end: end address of the vmemmap virtual address range that we want to 312 * remap. 313 * @reuse: reuse address. 314 * 315 * Return: %0 on success, negative error code otherwise. 316 */ 317 static int vmemmap_remap_free(unsigned long start, unsigned long end, 318 unsigned long reuse) 319 { 320 int ret; 321 LIST_HEAD(vmemmap_pages); 322 struct vmemmap_remap_walk walk = { 323 .remap_pte = vmemmap_remap_pte, 324 .reuse_addr = reuse, 325 .vmemmap_pages = &vmemmap_pages, 326 }; 327 int nid = page_to_nid((struct page *)start); 328 gfp_t gfp_mask = GFP_KERNEL | __GFP_THISNODE | __GFP_NORETRY | 329 __GFP_NOWARN; 330 331 /* 332 * Allocate a new head vmemmap page to avoid breaking a contiguous 333 * block of struct page memory when freeing it back to page allocator 334 * in free_vmemmap_page_list(). This will allow the likely contiguous 335 * struct page backing memory to be kept contiguous and allowing for 336 * more allocations of hugepages. Fallback to the currently 337 * mapped head page in case should it fail to allocate. 338 */ 339 walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0); 340 if (walk.reuse_page) { 341 copy_page(page_to_virt(walk.reuse_page), 342 (void *)walk.reuse_addr); 343 list_add(&walk.reuse_page->lru, &vmemmap_pages); 344 } 345 346 /* 347 * In order to make remapping routine most efficient for the huge pages, 348 * the routine of vmemmap page table walking has the following rules 349 * (see more details from the vmemmap_pte_range()): 350 * 351 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE) 352 * should be continuous. 353 * - The @reuse address is part of the range [@reuse, @end) that we are 354 * walking which is passed to vmemmap_remap_range(). 355 * - The @reuse address is the first in the complete range. 356 * 357 * So we need to make sure that @start and @reuse meet the above rules. 358 */ 359 BUG_ON(start - reuse != PAGE_SIZE); 360 361 mmap_read_lock(&init_mm); 362 ret = vmemmap_remap_range(reuse, end, &walk); 363 if (ret && walk.nr_walked) { 364 end = reuse + walk.nr_walked * PAGE_SIZE; 365 /* 366 * vmemmap_pages contains pages from the previous 367 * vmemmap_remap_range call which failed. These 368 * are pages which were removed from the vmemmap. 369 * They will be restored in the following call. 370 */ 371 walk = (struct vmemmap_remap_walk) { 372 .remap_pte = vmemmap_restore_pte, 373 .reuse_addr = reuse, 374 .vmemmap_pages = &vmemmap_pages, 375 }; 376 377 vmemmap_remap_range(reuse, end, &walk); 378 } 379 mmap_read_unlock(&init_mm); 380 381 free_vmemmap_page_list(&vmemmap_pages); 382 383 return ret; 384 } 385 386 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end, 387 gfp_t gfp_mask, struct list_head *list) 388 { 389 unsigned long nr_pages = (end - start) >> PAGE_SHIFT; 390 int nid = page_to_nid((struct page *)start); 391 struct page *page, *next; 392 393 while (nr_pages--) { 394 page = alloc_pages_node(nid, gfp_mask, 0); 395 if (!page) 396 goto out; 397 list_add_tail(&page->lru, list); 398 } 399 400 return 0; 401 out: 402 list_for_each_entry_safe(page, next, list, lru) 403 __free_pages(page, 0); 404 return -ENOMEM; 405 } 406 407 /** 408 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end) 409 * to the page which is from the @vmemmap_pages 410 * respectively. 411 * @start: start address of the vmemmap virtual address range that we want 412 * to remap. 413 * @end: end address of the vmemmap virtual address range that we want to 414 * remap. 415 * @reuse: reuse address. 416 * @gfp_mask: GFP flag for allocating vmemmap pages. 417 * 418 * Return: %0 on success, negative error code otherwise. 419 */ 420 static int vmemmap_remap_alloc(unsigned long start, unsigned long end, 421 unsigned long reuse, gfp_t gfp_mask) 422 { 423 LIST_HEAD(vmemmap_pages); 424 struct vmemmap_remap_walk walk = { 425 .remap_pte = vmemmap_restore_pte, 426 .reuse_addr = reuse, 427 .vmemmap_pages = &vmemmap_pages, 428 }; 429 430 /* See the comment in the vmemmap_remap_free(). */ 431 BUG_ON(start - reuse != PAGE_SIZE); 432 433 if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages)) 434 return -ENOMEM; 435 436 mmap_read_lock(&init_mm); 437 vmemmap_remap_range(reuse, end, &walk); 438 mmap_read_unlock(&init_mm); 439 440 return 0; 441 } 442 443 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key); 444 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key); 445 446 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON); 447 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0); 448 449 /** 450 * hugetlb_vmemmap_restore - restore previously optimized (by 451 * hugetlb_vmemmap_optimize()) vmemmap pages which 452 * will be reallocated and remapped. 453 * @h: struct hstate. 454 * @head: the head page whose vmemmap pages will be restored. 455 * 456 * Return: %0 if @head's vmemmap pages have been reallocated and remapped, 457 * negative error code otherwise. 458 */ 459 int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head) 460 { 461 int ret; 462 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end; 463 unsigned long vmemmap_reuse; 464 465 if (!HPageVmemmapOptimized(head)) 466 return 0; 467 468 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h); 469 vmemmap_reuse = vmemmap_start; 470 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE; 471 472 /* 473 * The pages which the vmemmap virtual address range [@vmemmap_start, 474 * @vmemmap_end) are mapped to are freed to the buddy allocator, and 475 * the range is mapped to the page which @vmemmap_reuse is mapped to. 476 * When a HugeTLB page is freed to the buddy allocator, previously 477 * discarded vmemmap pages must be allocated and remapping. 478 */ 479 ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, 480 GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE); 481 if (!ret) { 482 ClearHPageVmemmapOptimized(head); 483 static_branch_dec(&hugetlb_optimize_vmemmap_key); 484 } 485 486 return ret; 487 } 488 489 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */ 490 static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head) 491 { 492 if (!READ_ONCE(vmemmap_optimize_enabled)) 493 return false; 494 495 if (!hugetlb_vmemmap_optimizable(h)) 496 return false; 497 498 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) { 499 pmd_t *pmdp, pmd; 500 struct page *vmemmap_page; 501 unsigned long vaddr = (unsigned long)head; 502 503 /* 504 * Only the vmemmap page's vmemmap page can be self-hosted. 505 * Walking the page tables to find the backing page of the 506 * vmemmap page. 507 */ 508 pmdp = pmd_off_k(vaddr); 509 /* 510 * The READ_ONCE() is used to stabilize *pmdp in a register or 511 * on the stack so that it will stop changing under the code. 512 * The only concurrent operation where it can be changed is 513 * split_vmemmap_huge_pmd() (*pmdp will be stable after this 514 * operation). 515 */ 516 pmd = READ_ONCE(*pmdp); 517 if (pmd_leaf(pmd)) 518 vmemmap_page = pmd_page(pmd) + pte_index(vaddr); 519 else 520 vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr)); 521 /* 522 * Due to HugeTLB alignment requirements and the vmemmap pages 523 * being at the start of the hotplugged memory region in 524 * memory_hotplug.memmap_on_memory case. Checking any vmemmap 525 * page's vmemmap page if it is marked as VmemmapSelfHosted is 526 * sufficient. 527 * 528 * [ hotplugged memory ] 529 * [ section ][...][ section ] 530 * [ vmemmap ][ usable memory ] 531 * ^ | | | 532 * +---+ | | 533 * ^ | | 534 * +-------+ | 535 * ^ | 536 * +-------------------------------------------+ 537 */ 538 if (PageVmemmapSelfHosted(vmemmap_page)) 539 return false; 540 } 541 542 return true; 543 } 544 545 /** 546 * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages. 547 * @h: struct hstate. 548 * @head: the head page whose vmemmap pages will be optimized. 549 * 550 * This function only tries to optimize @head's vmemmap pages and does not 551 * guarantee that the optimization will succeed after it returns. The caller 552 * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages 553 * have been optimized. 554 */ 555 void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head) 556 { 557 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end; 558 unsigned long vmemmap_reuse; 559 560 if (!vmemmap_should_optimize(h, head)) 561 return; 562 563 static_branch_inc(&hugetlb_optimize_vmemmap_key); 564 565 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h); 566 vmemmap_reuse = vmemmap_start; 567 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE; 568 569 /* 570 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end) 571 * to the page which @vmemmap_reuse is mapped to, then free the pages 572 * which the range [@vmemmap_start, @vmemmap_end] is mapped to. 573 */ 574 if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse)) 575 static_branch_dec(&hugetlb_optimize_vmemmap_key); 576 else 577 SetHPageVmemmapOptimized(head); 578 } 579 580 static struct ctl_table hugetlb_vmemmap_sysctls[] = { 581 { 582 .procname = "hugetlb_optimize_vmemmap", 583 .data = &vmemmap_optimize_enabled, 584 .maxlen = sizeof(vmemmap_optimize_enabled), 585 .mode = 0644, 586 .proc_handler = proc_dobool, 587 }, 588 { } 589 }; 590 591 static int __init hugetlb_vmemmap_init(void) 592 { 593 /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */ 594 BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE); 595 596 if (IS_ENABLED(CONFIG_PROC_SYSCTL)) { 597 const struct hstate *h; 598 599 for_each_hstate(h) { 600 if (hugetlb_vmemmap_optimizable(h)) { 601 register_sysctl_init("vm", hugetlb_vmemmap_sysctls); 602 break; 603 } 604 } 605 } 606 return 0; 607 } 608 late_initcall(hugetlb_vmemmap_init); 609