1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 39 #include <asm/page.h> 40 #include <asm/pgalloc.h> 41 #include <asm/tlb.h> 42 43 #include <linux/io.h> 44 #include <linux/hugetlb.h> 45 #include <linux/hugetlb_cgroup.h> 46 #include <linux/node.h> 47 #include <linux/page_owner.h> 48 #include "internal.h" 49 #include "hugetlb_vmemmap.h" 50 51 int hugetlb_max_hstate __read_mostly; 52 unsigned int default_hstate_idx; 53 struct hstate hstates[HUGE_MAX_HSTATE]; 54 55 #ifdef CONFIG_CMA 56 static struct cma *hugetlb_cma[MAX_NUMNODES]; 57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 59 { 60 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 61 1 << order); 62 } 63 #else 64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 65 { 66 return false; 67 } 68 #endif 69 static unsigned long hugetlb_cma_size __initdata; 70 71 __initdata LIST_HEAD(huge_boot_pages); 72 73 /* for command line parsing */ 74 static struct hstate * __initdata parsed_hstate; 75 static unsigned long __initdata default_hstate_max_huge_pages; 76 static bool __initdata parsed_valid_hugepagesz = true; 77 static bool __initdata parsed_default_hugepagesz; 78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 79 80 /* 81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 82 * free_huge_pages, and surplus_huge_pages. 83 */ 84 DEFINE_SPINLOCK(hugetlb_lock); 85 86 /* 87 * Serializes faults on the same logical page. This is used to 88 * prevent spurious OOMs when the hugepage pool is fully utilized. 89 */ 90 static int num_fault_mutexes; 91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 92 93 /* Forward declaration */ 94 static int hugetlb_acct_memory(struct hstate *h, long delta); 95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 99 unsigned long start, unsigned long end); 100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 101 102 static inline bool subpool_is_free(struct hugepage_subpool *spool) 103 { 104 if (spool->count) 105 return false; 106 if (spool->max_hpages != -1) 107 return spool->used_hpages == 0; 108 if (spool->min_hpages != -1) 109 return spool->rsv_hpages == spool->min_hpages; 110 111 return true; 112 } 113 114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 115 unsigned long irq_flags) 116 { 117 spin_unlock_irqrestore(&spool->lock, irq_flags); 118 119 /* If no pages are used, and no other handles to the subpool 120 * remain, give up any reservations based on minimum size and 121 * free the subpool */ 122 if (subpool_is_free(spool)) { 123 if (spool->min_hpages != -1) 124 hugetlb_acct_memory(spool->hstate, 125 -spool->min_hpages); 126 kfree(spool); 127 } 128 } 129 130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 131 long min_hpages) 132 { 133 struct hugepage_subpool *spool; 134 135 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 136 if (!spool) 137 return NULL; 138 139 spin_lock_init(&spool->lock); 140 spool->count = 1; 141 spool->max_hpages = max_hpages; 142 spool->hstate = h; 143 spool->min_hpages = min_hpages; 144 145 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 146 kfree(spool); 147 return NULL; 148 } 149 spool->rsv_hpages = min_hpages; 150 151 return spool; 152 } 153 154 void hugepage_put_subpool(struct hugepage_subpool *spool) 155 { 156 unsigned long flags; 157 158 spin_lock_irqsave(&spool->lock, flags); 159 BUG_ON(!spool->count); 160 spool->count--; 161 unlock_or_release_subpool(spool, flags); 162 } 163 164 /* 165 * Subpool accounting for allocating and reserving pages. 166 * Return -ENOMEM if there are not enough resources to satisfy the 167 * request. Otherwise, return the number of pages by which the 168 * global pools must be adjusted (upward). The returned value may 169 * only be different than the passed value (delta) in the case where 170 * a subpool minimum size must be maintained. 171 */ 172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 173 long delta) 174 { 175 long ret = delta; 176 177 if (!spool) 178 return ret; 179 180 spin_lock_irq(&spool->lock); 181 182 if (spool->max_hpages != -1) { /* maximum size accounting */ 183 if ((spool->used_hpages + delta) <= spool->max_hpages) 184 spool->used_hpages += delta; 185 else { 186 ret = -ENOMEM; 187 goto unlock_ret; 188 } 189 } 190 191 /* minimum size accounting */ 192 if (spool->min_hpages != -1 && spool->rsv_hpages) { 193 if (delta > spool->rsv_hpages) { 194 /* 195 * Asking for more reserves than those already taken on 196 * behalf of subpool. Return difference. 197 */ 198 ret = delta - spool->rsv_hpages; 199 spool->rsv_hpages = 0; 200 } else { 201 ret = 0; /* reserves already accounted for */ 202 spool->rsv_hpages -= delta; 203 } 204 } 205 206 unlock_ret: 207 spin_unlock_irq(&spool->lock); 208 return ret; 209 } 210 211 /* 212 * Subpool accounting for freeing and unreserving pages. 213 * Return the number of global page reservations that must be dropped. 214 * The return value may only be different than the passed value (delta) 215 * in the case where a subpool minimum size must be maintained. 216 */ 217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 218 long delta) 219 { 220 long ret = delta; 221 unsigned long flags; 222 223 if (!spool) 224 return delta; 225 226 spin_lock_irqsave(&spool->lock, flags); 227 228 if (spool->max_hpages != -1) /* maximum size accounting */ 229 spool->used_hpages -= delta; 230 231 /* minimum size accounting */ 232 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 233 if (spool->rsv_hpages + delta <= spool->min_hpages) 234 ret = 0; 235 else 236 ret = spool->rsv_hpages + delta - spool->min_hpages; 237 238 spool->rsv_hpages += delta; 239 if (spool->rsv_hpages > spool->min_hpages) 240 spool->rsv_hpages = spool->min_hpages; 241 } 242 243 /* 244 * If hugetlbfs_put_super couldn't free spool due to an outstanding 245 * quota reference, free it now. 246 */ 247 unlock_or_release_subpool(spool, flags); 248 249 return ret; 250 } 251 252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 253 { 254 return HUGETLBFS_SB(inode->i_sb)->spool; 255 } 256 257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 258 { 259 return subpool_inode(file_inode(vma->vm_file)); 260 } 261 262 /* 263 * hugetlb vma_lock helper routines 264 */ 265 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 266 { 267 if (__vma_shareable_lock(vma)) { 268 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 269 270 down_read(&vma_lock->rw_sema); 271 } else if (__vma_private_lock(vma)) { 272 struct resv_map *resv_map = vma_resv_map(vma); 273 274 down_read(&resv_map->rw_sema); 275 } 276 } 277 278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 279 { 280 if (__vma_shareable_lock(vma)) { 281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 282 283 up_read(&vma_lock->rw_sema); 284 } else if (__vma_private_lock(vma)) { 285 struct resv_map *resv_map = vma_resv_map(vma); 286 287 up_read(&resv_map->rw_sema); 288 } 289 } 290 291 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 292 { 293 if (__vma_shareable_lock(vma)) { 294 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 295 296 down_write(&vma_lock->rw_sema); 297 } else if (__vma_private_lock(vma)) { 298 struct resv_map *resv_map = vma_resv_map(vma); 299 300 down_write(&resv_map->rw_sema); 301 } 302 } 303 304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 305 { 306 if (__vma_shareable_lock(vma)) { 307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 308 309 up_write(&vma_lock->rw_sema); 310 } else if (__vma_private_lock(vma)) { 311 struct resv_map *resv_map = vma_resv_map(vma); 312 313 up_write(&resv_map->rw_sema); 314 } 315 } 316 317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 318 { 319 320 if (__vma_shareable_lock(vma)) { 321 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 322 323 return down_write_trylock(&vma_lock->rw_sema); 324 } else if (__vma_private_lock(vma)) { 325 struct resv_map *resv_map = vma_resv_map(vma); 326 327 return down_write_trylock(&resv_map->rw_sema); 328 } 329 330 return 1; 331 } 332 333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 334 { 335 if (__vma_shareable_lock(vma)) { 336 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 337 338 lockdep_assert_held(&vma_lock->rw_sema); 339 } else if (__vma_private_lock(vma)) { 340 struct resv_map *resv_map = vma_resv_map(vma); 341 342 lockdep_assert_held(&resv_map->rw_sema); 343 } 344 } 345 346 void hugetlb_vma_lock_release(struct kref *kref) 347 { 348 struct hugetlb_vma_lock *vma_lock = container_of(kref, 349 struct hugetlb_vma_lock, refs); 350 351 kfree(vma_lock); 352 } 353 354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 355 { 356 struct vm_area_struct *vma = vma_lock->vma; 357 358 /* 359 * vma_lock structure may or not be released as a result of put, 360 * it certainly will no longer be attached to vma so clear pointer. 361 * Semaphore synchronizes access to vma_lock->vma field. 362 */ 363 vma_lock->vma = NULL; 364 vma->vm_private_data = NULL; 365 up_write(&vma_lock->rw_sema); 366 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 367 } 368 369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 370 { 371 if (__vma_shareable_lock(vma)) { 372 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 373 374 __hugetlb_vma_unlock_write_put(vma_lock); 375 } else if (__vma_private_lock(vma)) { 376 struct resv_map *resv_map = vma_resv_map(vma); 377 378 /* no free for anon vmas, but still need to unlock */ 379 up_write(&resv_map->rw_sema); 380 } 381 } 382 383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 384 { 385 /* 386 * Only present in sharable vmas. 387 */ 388 if (!vma || !__vma_shareable_lock(vma)) 389 return; 390 391 if (vma->vm_private_data) { 392 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 393 394 down_write(&vma_lock->rw_sema); 395 __hugetlb_vma_unlock_write_put(vma_lock); 396 } 397 } 398 399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 400 { 401 struct hugetlb_vma_lock *vma_lock; 402 403 /* Only establish in (flags) sharable vmas */ 404 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 405 return; 406 407 /* Should never get here with non-NULL vm_private_data */ 408 if (vma->vm_private_data) 409 return; 410 411 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 412 if (!vma_lock) { 413 /* 414 * If we can not allocate structure, then vma can not 415 * participate in pmd sharing. This is only a possible 416 * performance enhancement and memory saving issue. 417 * However, the lock is also used to synchronize page 418 * faults with truncation. If the lock is not present, 419 * unlikely races could leave pages in a file past i_size 420 * until the file is removed. Warn in the unlikely case of 421 * allocation failure. 422 */ 423 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 424 return; 425 } 426 427 kref_init(&vma_lock->refs); 428 init_rwsem(&vma_lock->rw_sema); 429 vma_lock->vma = vma; 430 vma->vm_private_data = vma_lock; 431 } 432 433 /* Helper that removes a struct file_region from the resv_map cache and returns 434 * it for use. 435 */ 436 static struct file_region * 437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 438 { 439 struct file_region *nrg; 440 441 VM_BUG_ON(resv->region_cache_count <= 0); 442 443 resv->region_cache_count--; 444 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 445 list_del(&nrg->link); 446 447 nrg->from = from; 448 nrg->to = to; 449 450 return nrg; 451 } 452 453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 454 struct file_region *rg) 455 { 456 #ifdef CONFIG_CGROUP_HUGETLB 457 nrg->reservation_counter = rg->reservation_counter; 458 nrg->css = rg->css; 459 if (rg->css) 460 css_get(rg->css); 461 #endif 462 } 463 464 /* Helper that records hugetlb_cgroup uncharge info. */ 465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 466 struct hstate *h, 467 struct resv_map *resv, 468 struct file_region *nrg) 469 { 470 #ifdef CONFIG_CGROUP_HUGETLB 471 if (h_cg) { 472 nrg->reservation_counter = 473 &h_cg->rsvd_hugepage[hstate_index(h)]; 474 nrg->css = &h_cg->css; 475 /* 476 * The caller will hold exactly one h_cg->css reference for the 477 * whole contiguous reservation region. But this area might be 478 * scattered when there are already some file_regions reside in 479 * it. As a result, many file_regions may share only one css 480 * reference. In order to ensure that one file_region must hold 481 * exactly one h_cg->css reference, we should do css_get for 482 * each file_region and leave the reference held by caller 483 * untouched. 484 */ 485 css_get(&h_cg->css); 486 if (!resv->pages_per_hpage) 487 resv->pages_per_hpage = pages_per_huge_page(h); 488 /* pages_per_hpage should be the same for all entries in 489 * a resv_map. 490 */ 491 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 492 } else { 493 nrg->reservation_counter = NULL; 494 nrg->css = NULL; 495 } 496 #endif 497 } 498 499 static void put_uncharge_info(struct file_region *rg) 500 { 501 #ifdef CONFIG_CGROUP_HUGETLB 502 if (rg->css) 503 css_put(rg->css); 504 #endif 505 } 506 507 static bool has_same_uncharge_info(struct file_region *rg, 508 struct file_region *org) 509 { 510 #ifdef CONFIG_CGROUP_HUGETLB 511 return rg->reservation_counter == org->reservation_counter && 512 rg->css == org->css; 513 514 #else 515 return true; 516 #endif 517 } 518 519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 520 { 521 struct file_region *nrg, *prg; 522 523 prg = list_prev_entry(rg, link); 524 if (&prg->link != &resv->regions && prg->to == rg->from && 525 has_same_uncharge_info(prg, rg)) { 526 prg->to = rg->to; 527 528 list_del(&rg->link); 529 put_uncharge_info(rg); 530 kfree(rg); 531 532 rg = prg; 533 } 534 535 nrg = list_next_entry(rg, link); 536 if (&nrg->link != &resv->regions && nrg->from == rg->to && 537 has_same_uncharge_info(nrg, rg)) { 538 nrg->from = rg->from; 539 540 list_del(&rg->link); 541 put_uncharge_info(rg); 542 kfree(rg); 543 } 544 } 545 546 static inline long 547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 548 long to, struct hstate *h, struct hugetlb_cgroup *cg, 549 long *regions_needed) 550 { 551 struct file_region *nrg; 552 553 if (!regions_needed) { 554 nrg = get_file_region_entry_from_cache(map, from, to); 555 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 556 list_add(&nrg->link, rg); 557 coalesce_file_region(map, nrg); 558 } else 559 *regions_needed += 1; 560 561 return to - from; 562 } 563 564 /* 565 * Must be called with resv->lock held. 566 * 567 * Calling this with regions_needed != NULL will count the number of pages 568 * to be added but will not modify the linked list. And regions_needed will 569 * indicate the number of file_regions needed in the cache to carry out to add 570 * the regions for this range. 571 */ 572 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 573 struct hugetlb_cgroup *h_cg, 574 struct hstate *h, long *regions_needed) 575 { 576 long add = 0; 577 struct list_head *head = &resv->regions; 578 long last_accounted_offset = f; 579 struct file_region *iter, *trg = NULL; 580 struct list_head *rg = NULL; 581 582 if (regions_needed) 583 *regions_needed = 0; 584 585 /* In this loop, we essentially handle an entry for the range 586 * [last_accounted_offset, iter->from), at every iteration, with some 587 * bounds checking. 588 */ 589 list_for_each_entry_safe(iter, trg, head, link) { 590 /* Skip irrelevant regions that start before our range. */ 591 if (iter->from < f) { 592 /* If this region ends after the last accounted offset, 593 * then we need to update last_accounted_offset. 594 */ 595 if (iter->to > last_accounted_offset) 596 last_accounted_offset = iter->to; 597 continue; 598 } 599 600 /* When we find a region that starts beyond our range, we've 601 * finished. 602 */ 603 if (iter->from >= t) { 604 rg = iter->link.prev; 605 break; 606 } 607 608 /* Add an entry for last_accounted_offset -> iter->from, and 609 * update last_accounted_offset. 610 */ 611 if (iter->from > last_accounted_offset) 612 add += hugetlb_resv_map_add(resv, iter->link.prev, 613 last_accounted_offset, 614 iter->from, h, h_cg, 615 regions_needed); 616 617 last_accounted_offset = iter->to; 618 } 619 620 /* Handle the case where our range extends beyond 621 * last_accounted_offset. 622 */ 623 if (!rg) 624 rg = head->prev; 625 if (last_accounted_offset < t) 626 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 627 t, h, h_cg, regions_needed); 628 629 return add; 630 } 631 632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 633 */ 634 static int allocate_file_region_entries(struct resv_map *resv, 635 int regions_needed) 636 __must_hold(&resv->lock) 637 { 638 LIST_HEAD(allocated_regions); 639 int to_allocate = 0, i = 0; 640 struct file_region *trg = NULL, *rg = NULL; 641 642 VM_BUG_ON(regions_needed < 0); 643 644 /* 645 * Check for sufficient descriptors in the cache to accommodate 646 * the number of in progress add operations plus regions_needed. 647 * 648 * This is a while loop because when we drop the lock, some other call 649 * to region_add or region_del may have consumed some region_entries, 650 * so we keep looping here until we finally have enough entries for 651 * (adds_in_progress + regions_needed). 652 */ 653 while (resv->region_cache_count < 654 (resv->adds_in_progress + regions_needed)) { 655 to_allocate = resv->adds_in_progress + regions_needed - 656 resv->region_cache_count; 657 658 /* At this point, we should have enough entries in the cache 659 * for all the existing adds_in_progress. We should only be 660 * needing to allocate for regions_needed. 661 */ 662 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 663 664 spin_unlock(&resv->lock); 665 for (i = 0; i < to_allocate; i++) { 666 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 667 if (!trg) 668 goto out_of_memory; 669 list_add(&trg->link, &allocated_regions); 670 } 671 672 spin_lock(&resv->lock); 673 674 list_splice(&allocated_regions, &resv->region_cache); 675 resv->region_cache_count += to_allocate; 676 } 677 678 return 0; 679 680 out_of_memory: 681 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 682 list_del(&rg->link); 683 kfree(rg); 684 } 685 return -ENOMEM; 686 } 687 688 /* 689 * Add the huge page range represented by [f, t) to the reserve 690 * map. Regions will be taken from the cache to fill in this range. 691 * Sufficient regions should exist in the cache due to the previous 692 * call to region_chg with the same range, but in some cases the cache will not 693 * have sufficient entries due to races with other code doing region_add or 694 * region_del. The extra needed entries will be allocated. 695 * 696 * regions_needed is the out value provided by a previous call to region_chg. 697 * 698 * Return the number of new huge pages added to the map. This number is greater 699 * than or equal to zero. If file_region entries needed to be allocated for 700 * this operation and we were not able to allocate, it returns -ENOMEM. 701 * region_add of regions of length 1 never allocate file_regions and cannot 702 * fail; region_chg will always allocate at least 1 entry and a region_add for 703 * 1 page will only require at most 1 entry. 704 */ 705 static long region_add(struct resv_map *resv, long f, long t, 706 long in_regions_needed, struct hstate *h, 707 struct hugetlb_cgroup *h_cg) 708 { 709 long add = 0, actual_regions_needed = 0; 710 711 spin_lock(&resv->lock); 712 retry: 713 714 /* Count how many regions are actually needed to execute this add. */ 715 add_reservation_in_range(resv, f, t, NULL, NULL, 716 &actual_regions_needed); 717 718 /* 719 * Check for sufficient descriptors in the cache to accommodate 720 * this add operation. Note that actual_regions_needed may be greater 721 * than in_regions_needed, as the resv_map may have been modified since 722 * the region_chg call. In this case, we need to make sure that we 723 * allocate extra entries, such that we have enough for all the 724 * existing adds_in_progress, plus the excess needed for this 725 * operation. 726 */ 727 if (actual_regions_needed > in_regions_needed && 728 resv->region_cache_count < 729 resv->adds_in_progress + 730 (actual_regions_needed - in_regions_needed)) { 731 /* region_add operation of range 1 should never need to 732 * allocate file_region entries. 733 */ 734 VM_BUG_ON(t - f <= 1); 735 736 if (allocate_file_region_entries( 737 resv, actual_regions_needed - in_regions_needed)) { 738 return -ENOMEM; 739 } 740 741 goto retry; 742 } 743 744 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 745 746 resv->adds_in_progress -= in_regions_needed; 747 748 spin_unlock(&resv->lock); 749 return add; 750 } 751 752 /* 753 * Examine the existing reserve map and determine how many 754 * huge pages in the specified range [f, t) are NOT currently 755 * represented. This routine is called before a subsequent 756 * call to region_add that will actually modify the reserve 757 * map to add the specified range [f, t). region_chg does 758 * not change the number of huge pages represented by the 759 * map. A number of new file_region structures is added to the cache as a 760 * placeholder, for the subsequent region_add call to use. At least 1 761 * file_region structure is added. 762 * 763 * out_regions_needed is the number of regions added to the 764 * resv->adds_in_progress. This value needs to be provided to a follow up call 765 * to region_add or region_abort for proper accounting. 766 * 767 * Returns the number of huge pages that need to be added to the existing 768 * reservation map for the range [f, t). This number is greater or equal to 769 * zero. -ENOMEM is returned if a new file_region structure or cache entry 770 * is needed and can not be allocated. 771 */ 772 static long region_chg(struct resv_map *resv, long f, long t, 773 long *out_regions_needed) 774 { 775 long chg = 0; 776 777 spin_lock(&resv->lock); 778 779 /* Count how many hugepages in this range are NOT represented. */ 780 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 781 out_regions_needed); 782 783 if (*out_regions_needed == 0) 784 *out_regions_needed = 1; 785 786 if (allocate_file_region_entries(resv, *out_regions_needed)) 787 return -ENOMEM; 788 789 resv->adds_in_progress += *out_regions_needed; 790 791 spin_unlock(&resv->lock); 792 return chg; 793 } 794 795 /* 796 * Abort the in progress add operation. The adds_in_progress field 797 * of the resv_map keeps track of the operations in progress between 798 * calls to region_chg and region_add. Operations are sometimes 799 * aborted after the call to region_chg. In such cases, region_abort 800 * is called to decrement the adds_in_progress counter. regions_needed 801 * is the value returned by the region_chg call, it is used to decrement 802 * the adds_in_progress counter. 803 * 804 * NOTE: The range arguments [f, t) are not needed or used in this 805 * routine. They are kept to make reading the calling code easier as 806 * arguments will match the associated region_chg call. 807 */ 808 static void region_abort(struct resv_map *resv, long f, long t, 809 long regions_needed) 810 { 811 spin_lock(&resv->lock); 812 VM_BUG_ON(!resv->region_cache_count); 813 resv->adds_in_progress -= regions_needed; 814 spin_unlock(&resv->lock); 815 } 816 817 /* 818 * Delete the specified range [f, t) from the reserve map. If the 819 * t parameter is LONG_MAX, this indicates that ALL regions after f 820 * should be deleted. Locate the regions which intersect [f, t) 821 * and either trim, delete or split the existing regions. 822 * 823 * Returns the number of huge pages deleted from the reserve map. 824 * In the normal case, the return value is zero or more. In the 825 * case where a region must be split, a new region descriptor must 826 * be allocated. If the allocation fails, -ENOMEM will be returned. 827 * NOTE: If the parameter t == LONG_MAX, then we will never split 828 * a region and possibly return -ENOMEM. Callers specifying 829 * t == LONG_MAX do not need to check for -ENOMEM error. 830 */ 831 static long region_del(struct resv_map *resv, long f, long t) 832 { 833 struct list_head *head = &resv->regions; 834 struct file_region *rg, *trg; 835 struct file_region *nrg = NULL; 836 long del = 0; 837 838 retry: 839 spin_lock(&resv->lock); 840 list_for_each_entry_safe(rg, trg, head, link) { 841 /* 842 * Skip regions before the range to be deleted. file_region 843 * ranges are normally of the form [from, to). However, there 844 * may be a "placeholder" entry in the map which is of the form 845 * (from, to) with from == to. Check for placeholder entries 846 * at the beginning of the range to be deleted. 847 */ 848 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 849 continue; 850 851 if (rg->from >= t) 852 break; 853 854 if (f > rg->from && t < rg->to) { /* Must split region */ 855 /* 856 * Check for an entry in the cache before dropping 857 * lock and attempting allocation. 858 */ 859 if (!nrg && 860 resv->region_cache_count > resv->adds_in_progress) { 861 nrg = list_first_entry(&resv->region_cache, 862 struct file_region, 863 link); 864 list_del(&nrg->link); 865 resv->region_cache_count--; 866 } 867 868 if (!nrg) { 869 spin_unlock(&resv->lock); 870 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 871 if (!nrg) 872 return -ENOMEM; 873 goto retry; 874 } 875 876 del += t - f; 877 hugetlb_cgroup_uncharge_file_region( 878 resv, rg, t - f, false); 879 880 /* New entry for end of split region */ 881 nrg->from = t; 882 nrg->to = rg->to; 883 884 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 885 886 INIT_LIST_HEAD(&nrg->link); 887 888 /* Original entry is trimmed */ 889 rg->to = f; 890 891 list_add(&nrg->link, &rg->link); 892 nrg = NULL; 893 break; 894 } 895 896 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 897 del += rg->to - rg->from; 898 hugetlb_cgroup_uncharge_file_region(resv, rg, 899 rg->to - rg->from, true); 900 list_del(&rg->link); 901 kfree(rg); 902 continue; 903 } 904 905 if (f <= rg->from) { /* Trim beginning of region */ 906 hugetlb_cgroup_uncharge_file_region(resv, rg, 907 t - rg->from, false); 908 909 del += t - rg->from; 910 rg->from = t; 911 } else { /* Trim end of region */ 912 hugetlb_cgroup_uncharge_file_region(resv, rg, 913 rg->to - f, false); 914 915 del += rg->to - f; 916 rg->to = f; 917 } 918 } 919 920 spin_unlock(&resv->lock); 921 kfree(nrg); 922 return del; 923 } 924 925 /* 926 * A rare out of memory error was encountered which prevented removal of 927 * the reserve map region for a page. The huge page itself was free'ed 928 * and removed from the page cache. This routine will adjust the subpool 929 * usage count, and the global reserve count if needed. By incrementing 930 * these counts, the reserve map entry which could not be deleted will 931 * appear as a "reserved" entry instead of simply dangling with incorrect 932 * counts. 933 */ 934 void hugetlb_fix_reserve_counts(struct inode *inode) 935 { 936 struct hugepage_subpool *spool = subpool_inode(inode); 937 long rsv_adjust; 938 bool reserved = false; 939 940 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 941 if (rsv_adjust > 0) { 942 struct hstate *h = hstate_inode(inode); 943 944 if (!hugetlb_acct_memory(h, 1)) 945 reserved = true; 946 } else if (!rsv_adjust) { 947 reserved = true; 948 } 949 950 if (!reserved) 951 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 952 } 953 954 /* 955 * Count and return the number of huge pages in the reserve map 956 * that intersect with the range [f, t). 957 */ 958 static long region_count(struct resv_map *resv, long f, long t) 959 { 960 struct list_head *head = &resv->regions; 961 struct file_region *rg; 962 long chg = 0; 963 964 spin_lock(&resv->lock); 965 /* Locate each segment we overlap with, and count that overlap. */ 966 list_for_each_entry(rg, head, link) { 967 long seg_from; 968 long seg_to; 969 970 if (rg->to <= f) 971 continue; 972 if (rg->from >= t) 973 break; 974 975 seg_from = max(rg->from, f); 976 seg_to = min(rg->to, t); 977 978 chg += seg_to - seg_from; 979 } 980 spin_unlock(&resv->lock); 981 982 return chg; 983 } 984 985 /* 986 * Convert the address within this vma to the page offset within 987 * the mapping, in pagecache page units; huge pages here. 988 */ 989 static pgoff_t vma_hugecache_offset(struct hstate *h, 990 struct vm_area_struct *vma, unsigned long address) 991 { 992 return ((address - vma->vm_start) >> huge_page_shift(h)) + 993 (vma->vm_pgoff >> huge_page_order(h)); 994 } 995 996 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 997 unsigned long address) 998 { 999 return vma_hugecache_offset(hstate_vma(vma), vma, address); 1000 } 1001 EXPORT_SYMBOL_GPL(linear_hugepage_index); 1002 1003 /** 1004 * vma_kernel_pagesize - Page size granularity for this VMA. 1005 * @vma: The user mapping. 1006 * 1007 * Folios in this VMA will be aligned to, and at least the size of the 1008 * number of bytes returned by this function. 1009 * 1010 * Return: The default size of the folios allocated when backing a VMA. 1011 */ 1012 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1013 { 1014 if (vma->vm_ops && vma->vm_ops->pagesize) 1015 return vma->vm_ops->pagesize(vma); 1016 return PAGE_SIZE; 1017 } 1018 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1019 1020 /* 1021 * Return the page size being used by the MMU to back a VMA. In the majority 1022 * of cases, the page size used by the kernel matches the MMU size. On 1023 * architectures where it differs, an architecture-specific 'strong' 1024 * version of this symbol is required. 1025 */ 1026 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1027 { 1028 return vma_kernel_pagesize(vma); 1029 } 1030 1031 /* 1032 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1033 * bits of the reservation map pointer, which are always clear due to 1034 * alignment. 1035 */ 1036 #define HPAGE_RESV_OWNER (1UL << 0) 1037 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1038 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1039 1040 /* 1041 * These helpers are used to track how many pages are reserved for 1042 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1043 * is guaranteed to have their future faults succeed. 1044 * 1045 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1046 * the reserve counters are updated with the hugetlb_lock held. It is safe 1047 * to reset the VMA at fork() time as it is not in use yet and there is no 1048 * chance of the global counters getting corrupted as a result of the values. 1049 * 1050 * The private mapping reservation is represented in a subtly different 1051 * manner to a shared mapping. A shared mapping has a region map associated 1052 * with the underlying file, this region map represents the backing file 1053 * pages which have ever had a reservation assigned which this persists even 1054 * after the page is instantiated. A private mapping has a region map 1055 * associated with the original mmap which is attached to all VMAs which 1056 * reference it, this region map represents those offsets which have consumed 1057 * reservation ie. where pages have been instantiated. 1058 */ 1059 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1060 { 1061 return (unsigned long)vma->vm_private_data; 1062 } 1063 1064 static void set_vma_private_data(struct vm_area_struct *vma, 1065 unsigned long value) 1066 { 1067 vma->vm_private_data = (void *)value; 1068 } 1069 1070 static void 1071 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1072 struct hugetlb_cgroup *h_cg, 1073 struct hstate *h) 1074 { 1075 #ifdef CONFIG_CGROUP_HUGETLB 1076 if (!h_cg || !h) { 1077 resv_map->reservation_counter = NULL; 1078 resv_map->pages_per_hpage = 0; 1079 resv_map->css = NULL; 1080 } else { 1081 resv_map->reservation_counter = 1082 &h_cg->rsvd_hugepage[hstate_index(h)]; 1083 resv_map->pages_per_hpage = pages_per_huge_page(h); 1084 resv_map->css = &h_cg->css; 1085 } 1086 #endif 1087 } 1088 1089 struct resv_map *resv_map_alloc(void) 1090 { 1091 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1092 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1093 1094 if (!resv_map || !rg) { 1095 kfree(resv_map); 1096 kfree(rg); 1097 return NULL; 1098 } 1099 1100 kref_init(&resv_map->refs); 1101 spin_lock_init(&resv_map->lock); 1102 INIT_LIST_HEAD(&resv_map->regions); 1103 init_rwsem(&resv_map->rw_sema); 1104 1105 resv_map->adds_in_progress = 0; 1106 /* 1107 * Initialize these to 0. On shared mappings, 0's here indicate these 1108 * fields don't do cgroup accounting. On private mappings, these will be 1109 * re-initialized to the proper values, to indicate that hugetlb cgroup 1110 * reservations are to be un-charged from here. 1111 */ 1112 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1113 1114 INIT_LIST_HEAD(&resv_map->region_cache); 1115 list_add(&rg->link, &resv_map->region_cache); 1116 resv_map->region_cache_count = 1; 1117 1118 return resv_map; 1119 } 1120 1121 void resv_map_release(struct kref *ref) 1122 { 1123 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1124 struct list_head *head = &resv_map->region_cache; 1125 struct file_region *rg, *trg; 1126 1127 /* Clear out any active regions before we release the map. */ 1128 region_del(resv_map, 0, LONG_MAX); 1129 1130 /* ... and any entries left in the cache */ 1131 list_for_each_entry_safe(rg, trg, head, link) { 1132 list_del(&rg->link); 1133 kfree(rg); 1134 } 1135 1136 VM_BUG_ON(resv_map->adds_in_progress); 1137 1138 kfree(resv_map); 1139 } 1140 1141 static inline struct resv_map *inode_resv_map(struct inode *inode) 1142 { 1143 /* 1144 * At inode evict time, i_mapping may not point to the original 1145 * address space within the inode. This original address space 1146 * contains the pointer to the resv_map. So, always use the 1147 * address space embedded within the inode. 1148 * The VERY common case is inode->mapping == &inode->i_data but, 1149 * this may not be true for device special inodes. 1150 */ 1151 return (struct resv_map *)(&inode->i_data)->private_data; 1152 } 1153 1154 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1155 { 1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1157 if (vma->vm_flags & VM_MAYSHARE) { 1158 struct address_space *mapping = vma->vm_file->f_mapping; 1159 struct inode *inode = mapping->host; 1160 1161 return inode_resv_map(inode); 1162 1163 } else { 1164 return (struct resv_map *)(get_vma_private_data(vma) & 1165 ~HPAGE_RESV_MASK); 1166 } 1167 } 1168 1169 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1170 { 1171 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1172 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1173 1174 set_vma_private_data(vma, (unsigned long)map); 1175 } 1176 1177 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1178 { 1179 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1180 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1181 1182 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1183 } 1184 1185 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1186 { 1187 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1188 1189 return (get_vma_private_data(vma) & flag) != 0; 1190 } 1191 1192 bool __vma_private_lock(struct vm_area_struct *vma) 1193 { 1194 return !(vma->vm_flags & VM_MAYSHARE) && 1195 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1196 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1197 } 1198 1199 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1200 { 1201 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1202 /* 1203 * Clear vm_private_data 1204 * - For shared mappings this is a per-vma semaphore that may be 1205 * allocated in a subsequent call to hugetlb_vm_op_open. 1206 * Before clearing, make sure pointer is not associated with vma 1207 * as this will leak the structure. This is the case when called 1208 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1209 * been called to allocate a new structure. 1210 * - For MAP_PRIVATE mappings, this is the reserve map which does 1211 * not apply to children. Faults generated by the children are 1212 * not guaranteed to succeed, even if read-only. 1213 */ 1214 if (vma->vm_flags & VM_MAYSHARE) { 1215 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1216 1217 if (vma_lock && vma_lock->vma != vma) 1218 vma->vm_private_data = NULL; 1219 } else 1220 vma->vm_private_data = NULL; 1221 } 1222 1223 /* 1224 * Reset and decrement one ref on hugepage private reservation. 1225 * Called with mm->mmap_lock writer semaphore held. 1226 * This function should be only used by move_vma() and operate on 1227 * same sized vma. It should never come here with last ref on the 1228 * reservation. 1229 */ 1230 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1231 { 1232 /* 1233 * Clear the old hugetlb private page reservation. 1234 * It has already been transferred to new_vma. 1235 * 1236 * During a mremap() operation of a hugetlb vma we call move_vma() 1237 * which copies vma into new_vma and unmaps vma. After the copy 1238 * operation both new_vma and vma share a reference to the resv_map 1239 * struct, and at that point vma is about to be unmapped. We don't 1240 * want to return the reservation to the pool at unmap of vma because 1241 * the reservation still lives on in new_vma, so simply decrement the 1242 * ref here and remove the resv_map reference from this vma. 1243 */ 1244 struct resv_map *reservations = vma_resv_map(vma); 1245 1246 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1247 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1248 kref_put(&reservations->refs, resv_map_release); 1249 } 1250 1251 hugetlb_dup_vma_private(vma); 1252 } 1253 1254 /* Returns true if the VMA has associated reserve pages */ 1255 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1256 { 1257 if (vma->vm_flags & VM_NORESERVE) { 1258 /* 1259 * This address is already reserved by other process(chg == 0), 1260 * so, we should decrement reserved count. Without decrementing, 1261 * reserve count remains after releasing inode, because this 1262 * allocated page will go into page cache and is regarded as 1263 * coming from reserved pool in releasing step. Currently, we 1264 * don't have any other solution to deal with this situation 1265 * properly, so add work-around here. 1266 */ 1267 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1268 return true; 1269 else 1270 return false; 1271 } 1272 1273 /* Shared mappings always use reserves */ 1274 if (vma->vm_flags & VM_MAYSHARE) { 1275 /* 1276 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1277 * be a region map for all pages. The only situation where 1278 * there is no region map is if a hole was punched via 1279 * fallocate. In this case, there really are no reserves to 1280 * use. This situation is indicated if chg != 0. 1281 */ 1282 if (chg) 1283 return false; 1284 else 1285 return true; 1286 } 1287 1288 /* 1289 * Only the process that called mmap() has reserves for 1290 * private mappings. 1291 */ 1292 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1293 /* 1294 * Like the shared case above, a hole punch or truncate 1295 * could have been performed on the private mapping. 1296 * Examine the value of chg to determine if reserves 1297 * actually exist or were previously consumed. 1298 * Very Subtle - The value of chg comes from a previous 1299 * call to vma_needs_reserves(). The reserve map for 1300 * private mappings has different (opposite) semantics 1301 * than that of shared mappings. vma_needs_reserves() 1302 * has already taken this difference in semantics into 1303 * account. Therefore, the meaning of chg is the same 1304 * as in the shared case above. Code could easily be 1305 * combined, but keeping it separate draws attention to 1306 * subtle differences. 1307 */ 1308 if (chg) 1309 return false; 1310 else 1311 return true; 1312 } 1313 1314 return false; 1315 } 1316 1317 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1318 { 1319 int nid = folio_nid(folio); 1320 1321 lockdep_assert_held(&hugetlb_lock); 1322 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1323 1324 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1325 h->free_huge_pages++; 1326 h->free_huge_pages_node[nid]++; 1327 folio_set_hugetlb_freed(folio); 1328 } 1329 1330 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1331 int nid) 1332 { 1333 struct folio *folio; 1334 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1335 1336 lockdep_assert_held(&hugetlb_lock); 1337 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1338 if (pin && !folio_is_longterm_pinnable(folio)) 1339 continue; 1340 1341 if (folio_test_hwpoison(folio)) 1342 continue; 1343 1344 list_move(&folio->lru, &h->hugepage_activelist); 1345 folio_ref_unfreeze(folio, 1); 1346 folio_clear_hugetlb_freed(folio); 1347 h->free_huge_pages--; 1348 h->free_huge_pages_node[nid]--; 1349 return folio; 1350 } 1351 1352 return NULL; 1353 } 1354 1355 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1356 int nid, nodemask_t *nmask) 1357 { 1358 unsigned int cpuset_mems_cookie; 1359 struct zonelist *zonelist; 1360 struct zone *zone; 1361 struct zoneref *z; 1362 int node = NUMA_NO_NODE; 1363 1364 zonelist = node_zonelist(nid, gfp_mask); 1365 1366 retry_cpuset: 1367 cpuset_mems_cookie = read_mems_allowed_begin(); 1368 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1369 struct folio *folio; 1370 1371 if (!cpuset_zone_allowed(zone, gfp_mask)) 1372 continue; 1373 /* 1374 * no need to ask again on the same node. Pool is node rather than 1375 * zone aware 1376 */ 1377 if (zone_to_nid(zone) == node) 1378 continue; 1379 node = zone_to_nid(zone); 1380 1381 folio = dequeue_hugetlb_folio_node_exact(h, node); 1382 if (folio) 1383 return folio; 1384 } 1385 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1386 goto retry_cpuset; 1387 1388 return NULL; 1389 } 1390 1391 static unsigned long available_huge_pages(struct hstate *h) 1392 { 1393 return h->free_huge_pages - h->resv_huge_pages; 1394 } 1395 1396 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1397 struct vm_area_struct *vma, 1398 unsigned long address, int avoid_reserve, 1399 long chg) 1400 { 1401 struct folio *folio = NULL; 1402 struct mempolicy *mpol; 1403 gfp_t gfp_mask; 1404 nodemask_t *nodemask; 1405 int nid; 1406 1407 /* 1408 * A child process with MAP_PRIVATE mappings created by their parent 1409 * have no page reserves. This check ensures that reservations are 1410 * not "stolen". The child may still get SIGKILLed 1411 */ 1412 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1413 goto err; 1414 1415 /* If reserves cannot be used, ensure enough pages are in the pool */ 1416 if (avoid_reserve && !available_huge_pages(h)) 1417 goto err; 1418 1419 gfp_mask = htlb_alloc_mask(h); 1420 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1421 1422 if (mpol_is_preferred_many(mpol)) { 1423 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1424 nid, nodemask); 1425 1426 /* Fallback to all nodes if page==NULL */ 1427 nodemask = NULL; 1428 } 1429 1430 if (!folio) 1431 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1432 nid, nodemask); 1433 1434 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1435 folio_set_hugetlb_restore_reserve(folio); 1436 h->resv_huge_pages--; 1437 } 1438 1439 mpol_cond_put(mpol); 1440 return folio; 1441 1442 err: 1443 return NULL; 1444 } 1445 1446 /* 1447 * common helper functions for hstate_next_node_to_{alloc|free}. 1448 * We may have allocated or freed a huge page based on a different 1449 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1450 * be outside of *nodes_allowed. Ensure that we use an allowed 1451 * node for alloc or free. 1452 */ 1453 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1454 { 1455 nid = next_node_in(nid, *nodes_allowed); 1456 VM_BUG_ON(nid >= MAX_NUMNODES); 1457 1458 return nid; 1459 } 1460 1461 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1462 { 1463 if (!node_isset(nid, *nodes_allowed)) 1464 nid = next_node_allowed(nid, nodes_allowed); 1465 return nid; 1466 } 1467 1468 /* 1469 * returns the previously saved node ["this node"] from which to 1470 * allocate a persistent huge page for the pool and advance the 1471 * next node from which to allocate, handling wrap at end of node 1472 * mask. 1473 */ 1474 static int hstate_next_node_to_alloc(struct hstate *h, 1475 nodemask_t *nodes_allowed) 1476 { 1477 int nid; 1478 1479 VM_BUG_ON(!nodes_allowed); 1480 1481 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1482 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1483 1484 return nid; 1485 } 1486 1487 /* 1488 * helper for remove_pool_huge_page() - return the previously saved 1489 * node ["this node"] from which to free a huge page. Advance the 1490 * next node id whether or not we find a free huge page to free so 1491 * that the next attempt to free addresses the next node. 1492 */ 1493 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1494 { 1495 int nid; 1496 1497 VM_BUG_ON(!nodes_allowed); 1498 1499 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1500 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1501 1502 return nid; 1503 } 1504 1505 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1506 for (nr_nodes = nodes_weight(*mask); \ 1507 nr_nodes > 0 && \ 1508 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1509 nr_nodes--) 1510 1511 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1512 for (nr_nodes = nodes_weight(*mask); \ 1513 nr_nodes > 0 && \ 1514 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1515 nr_nodes--) 1516 1517 /* used to demote non-gigantic_huge pages as well */ 1518 static void __destroy_compound_gigantic_folio(struct folio *folio, 1519 unsigned int order, bool demote) 1520 { 1521 int i; 1522 int nr_pages = 1 << order; 1523 struct page *p; 1524 1525 atomic_set(&folio->_entire_mapcount, 0); 1526 atomic_set(&folio->_nr_pages_mapped, 0); 1527 atomic_set(&folio->_pincount, 0); 1528 1529 for (i = 1; i < nr_pages; i++) { 1530 p = folio_page(folio, i); 1531 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE; 1532 p->mapping = NULL; 1533 clear_compound_head(p); 1534 if (!demote) 1535 set_page_refcounted(p); 1536 } 1537 1538 __folio_clear_head(folio); 1539 } 1540 1541 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1542 unsigned int order) 1543 { 1544 __destroy_compound_gigantic_folio(folio, order, true); 1545 } 1546 1547 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1548 static void destroy_compound_gigantic_folio(struct folio *folio, 1549 unsigned int order) 1550 { 1551 __destroy_compound_gigantic_folio(folio, order, false); 1552 } 1553 1554 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1555 { 1556 /* 1557 * If the page isn't allocated using the cma allocator, 1558 * cma_release() returns false. 1559 */ 1560 #ifdef CONFIG_CMA 1561 int nid = folio_nid(folio); 1562 1563 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1564 return; 1565 #endif 1566 1567 free_contig_range(folio_pfn(folio), 1 << order); 1568 } 1569 1570 #ifdef CONFIG_CONTIG_ALLOC 1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1572 int nid, nodemask_t *nodemask) 1573 { 1574 struct page *page; 1575 unsigned long nr_pages = pages_per_huge_page(h); 1576 if (nid == NUMA_NO_NODE) 1577 nid = numa_mem_id(); 1578 1579 #ifdef CONFIG_CMA 1580 { 1581 int node; 1582 1583 if (hugetlb_cma[nid]) { 1584 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1585 huge_page_order(h), true); 1586 if (page) 1587 return page_folio(page); 1588 } 1589 1590 if (!(gfp_mask & __GFP_THISNODE)) { 1591 for_each_node_mask(node, *nodemask) { 1592 if (node == nid || !hugetlb_cma[node]) 1593 continue; 1594 1595 page = cma_alloc(hugetlb_cma[node], nr_pages, 1596 huge_page_order(h), true); 1597 if (page) 1598 return page_folio(page); 1599 } 1600 } 1601 } 1602 #endif 1603 1604 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1605 return page ? page_folio(page) : NULL; 1606 } 1607 1608 #else /* !CONFIG_CONTIG_ALLOC */ 1609 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1610 int nid, nodemask_t *nodemask) 1611 { 1612 return NULL; 1613 } 1614 #endif /* CONFIG_CONTIG_ALLOC */ 1615 1616 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1617 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1618 int nid, nodemask_t *nodemask) 1619 { 1620 return NULL; 1621 } 1622 static inline void free_gigantic_folio(struct folio *folio, 1623 unsigned int order) { } 1624 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1625 unsigned int order) { } 1626 #endif 1627 1628 static inline void __clear_hugetlb_destructor(struct hstate *h, 1629 struct folio *folio) 1630 { 1631 lockdep_assert_held(&hugetlb_lock); 1632 1633 __folio_clear_hugetlb(folio); 1634 } 1635 1636 /* 1637 * Remove hugetlb folio from lists. 1638 * If vmemmap exists for the folio, update dtor so that the folio appears 1639 * as just a compound page. Otherwise, wait until after allocating vmemmap 1640 * to update dtor. 1641 * 1642 * A reference is held on the folio, except in the case of demote. 1643 * 1644 * Must be called with hugetlb lock held. 1645 */ 1646 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1647 bool adjust_surplus, 1648 bool demote) 1649 { 1650 int nid = folio_nid(folio); 1651 1652 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1653 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1654 1655 lockdep_assert_held(&hugetlb_lock); 1656 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1657 return; 1658 1659 list_del(&folio->lru); 1660 1661 if (folio_test_hugetlb_freed(folio)) { 1662 h->free_huge_pages--; 1663 h->free_huge_pages_node[nid]--; 1664 } 1665 if (adjust_surplus) { 1666 h->surplus_huge_pages--; 1667 h->surplus_huge_pages_node[nid]--; 1668 } 1669 1670 /* 1671 * We can only clear the hugetlb destructor after allocating vmemmap 1672 * pages. Otherwise, someone (memory error handling) may try to write 1673 * to tail struct pages. 1674 */ 1675 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1676 __clear_hugetlb_destructor(h, folio); 1677 1678 /* 1679 * In the case of demote we do not ref count the page as it will soon 1680 * be turned into a page of smaller size. 1681 */ 1682 if (!demote) 1683 folio_ref_unfreeze(folio, 1); 1684 1685 h->nr_huge_pages--; 1686 h->nr_huge_pages_node[nid]--; 1687 } 1688 1689 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1690 bool adjust_surplus) 1691 { 1692 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1693 } 1694 1695 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1696 bool adjust_surplus) 1697 { 1698 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1699 } 1700 1701 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1702 bool adjust_surplus) 1703 { 1704 int zeroed; 1705 int nid = folio_nid(folio); 1706 1707 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1708 1709 lockdep_assert_held(&hugetlb_lock); 1710 1711 INIT_LIST_HEAD(&folio->lru); 1712 h->nr_huge_pages++; 1713 h->nr_huge_pages_node[nid]++; 1714 1715 if (adjust_surplus) { 1716 h->surplus_huge_pages++; 1717 h->surplus_huge_pages_node[nid]++; 1718 } 1719 1720 __folio_set_hugetlb(folio); 1721 folio_change_private(folio, NULL); 1722 /* 1723 * We have to set hugetlb_vmemmap_optimized again as above 1724 * folio_change_private(folio, NULL) cleared it. 1725 */ 1726 folio_set_hugetlb_vmemmap_optimized(folio); 1727 1728 /* 1729 * This folio is about to be managed by the hugetlb allocator and 1730 * should have no users. Drop our reference, and check for others 1731 * just in case. 1732 */ 1733 zeroed = folio_put_testzero(folio); 1734 if (unlikely(!zeroed)) 1735 /* 1736 * It is VERY unlikely soneone else has taken a ref 1737 * on the folio. In this case, we simply return as 1738 * free_huge_folio() will be called when this other ref 1739 * is dropped. 1740 */ 1741 return; 1742 1743 arch_clear_hugepage_flags(&folio->page); 1744 enqueue_hugetlb_folio(h, folio); 1745 } 1746 1747 static void __update_and_free_hugetlb_folio(struct hstate *h, 1748 struct folio *folio) 1749 { 1750 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1751 return; 1752 1753 /* 1754 * If we don't know which subpages are hwpoisoned, we can't free 1755 * the hugepage, so it's leaked intentionally. 1756 */ 1757 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1758 return; 1759 1760 if (hugetlb_vmemmap_restore(h, &folio->page)) { 1761 spin_lock_irq(&hugetlb_lock); 1762 /* 1763 * If we cannot allocate vmemmap pages, just refuse to free the 1764 * page and put the page back on the hugetlb free list and treat 1765 * as a surplus page. 1766 */ 1767 add_hugetlb_folio(h, folio, true); 1768 spin_unlock_irq(&hugetlb_lock); 1769 return; 1770 } 1771 1772 /* 1773 * Move PageHWPoison flag from head page to the raw error pages, 1774 * which makes any healthy subpages reusable. 1775 */ 1776 if (unlikely(folio_test_hwpoison(folio))) 1777 folio_clear_hugetlb_hwpoison(folio); 1778 1779 /* 1780 * If vmemmap pages were allocated above, then we need to clear the 1781 * hugetlb destructor under the hugetlb lock. 1782 */ 1783 if (folio_test_hugetlb(folio)) { 1784 spin_lock_irq(&hugetlb_lock); 1785 __clear_hugetlb_destructor(h, folio); 1786 spin_unlock_irq(&hugetlb_lock); 1787 } 1788 1789 /* 1790 * Non-gigantic pages demoted from CMA allocated gigantic pages 1791 * need to be given back to CMA in free_gigantic_folio. 1792 */ 1793 if (hstate_is_gigantic(h) || 1794 hugetlb_cma_folio(folio, huge_page_order(h))) { 1795 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1796 free_gigantic_folio(folio, huge_page_order(h)); 1797 } else { 1798 __free_pages(&folio->page, huge_page_order(h)); 1799 } 1800 } 1801 1802 /* 1803 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1804 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1805 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1806 * the vmemmap pages. 1807 * 1808 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1809 * freed and frees them one-by-one. As the page->mapping pointer is going 1810 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1811 * structure of a lockless linked list of huge pages to be freed. 1812 */ 1813 static LLIST_HEAD(hpage_freelist); 1814 1815 static void free_hpage_workfn(struct work_struct *work) 1816 { 1817 struct llist_node *node; 1818 1819 node = llist_del_all(&hpage_freelist); 1820 1821 while (node) { 1822 struct page *page; 1823 struct hstate *h; 1824 1825 page = container_of((struct address_space **)node, 1826 struct page, mapping); 1827 node = node->next; 1828 page->mapping = NULL; 1829 /* 1830 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1831 * folio_hstate() is going to trigger because a previous call to 1832 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1833 * not use folio_hstate() directly. 1834 */ 1835 h = size_to_hstate(page_size(page)); 1836 1837 __update_and_free_hugetlb_folio(h, page_folio(page)); 1838 1839 cond_resched(); 1840 } 1841 } 1842 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1843 1844 static inline void flush_free_hpage_work(struct hstate *h) 1845 { 1846 if (hugetlb_vmemmap_optimizable(h)) 1847 flush_work(&free_hpage_work); 1848 } 1849 1850 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1851 bool atomic) 1852 { 1853 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1854 __update_and_free_hugetlb_folio(h, folio); 1855 return; 1856 } 1857 1858 /* 1859 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1860 * 1861 * Only call schedule_work() if hpage_freelist is previously 1862 * empty. Otherwise, schedule_work() had been called but the workfn 1863 * hasn't retrieved the list yet. 1864 */ 1865 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1866 schedule_work(&free_hpage_work); 1867 } 1868 1869 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1870 { 1871 struct page *page, *t_page; 1872 struct folio *folio; 1873 1874 list_for_each_entry_safe(page, t_page, list, lru) { 1875 folio = page_folio(page); 1876 update_and_free_hugetlb_folio(h, folio, false); 1877 cond_resched(); 1878 } 1879 } 1880 1881 struct hstate *size_to_hstate(unsigned long size) 1882 { 1883 struct hstate *h; 1884 1885 for_each_hstate(h) { 1886 if (huge_page_size(h) == size) 1887 return h; 1888 } 1889 return NULL; 1890 } 1891 1892 void free_huge_folio(struct folio *folio) 1893 { 1894 /* 1895 * Can't pass hstate in here because it is called from the 1896 * compound page destructor. 1897 */ 1898 struct hstate *h = folio_hstate(folio); 1899 int nid = folio_nid(folio); 1900 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1901 bool restore_reserve; 1902 unsigned long flags; 1903 1904 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1905 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1906 1907 hugetlb_set_folio_subpool(folio, NULL); 1908 if (folio_test_anon(folio)) 1909 __ClearPageAnonExclusive(&folio->page); 1910 folio->mapping = NULL; 1911 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1912 folio_clear_hugetlb_restore_reserve(folio); 1913 1914 /* 1915 * If HPageRestoreReserve was set on page, page allocation consumed a 1916 * reservation. If the page was associated with a subpool, there 1917 * would have been a page reserved in the subpool before allocation 1918 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1919 * reservation, do not call hugepage_subpool_put_pages() as this will 1920 * remove the reserved page from the subpool. 1921 */ 1922 if (!restore_reserve) { 1923 /* 1924 * A return code of zero implies that the subpool will be 1925 * under its minimum size if the reservation is not restored 1926 * after page is free. Therefore, force restore_reserve 1927 * operation. 1928 */ 1929 if (hugepage_subpool_put_pages(spool, 1) == 0) 1930 restore_reserve = true; 1931 } 1932 1933 spin_lock_irqsave(&hugetlb_lock, flags); 1934 folio_clear_hugetlb_migratable(folio); 1935 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1936 pages_per_huge_page(h), folio); 1937 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1938 pages_per_huge_page(h), folio); 1939 if (restore_reserve) 1940 h->resv_huge_pages++; 1941 1942 if (folio_test_hugetlb_temporary(folio)) { 1943 remove_hugetlb_folio(h, folio, false); 1944 spin_unlock_irqrestore(&hugetlb_lock, flags); 1945 update_and_free_hugetlb_folio(h, folio, true); 1946 } else if (h->surplus_huge_pages_node[nid]) { 1947 /* remove the page from active list */ 1948 remove_hugetlb_folio(h, folio, true); 1949 spin_unlock_irqrestore(&hugetlb_lock, flags); 1950 update_and_free_hugetlb_folio(h, folio, true); 1951 } else { 1952 arch_clear_hugepage_flags(&folio->page); 1953 enqueue_hugetlb_folio(h, folio); 1954 spin_unlock_irqrestore(&hugetlb_lock, flags); 1955 } 1956 } 1957 1958 /* 1959 * Must be called with the hugetlb lock held 1960 */ 1961 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1962 { 1963 lockdep_assert_held(&hugetlb_lock); 1964 h->nr_huge_pages++; 1965 h->nr_huge_pages_node[nid]++; 1966 } 1967 1968 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1969 { 1970 hugetlb_vmemmap_optimize(h, &folio->page); 1971 INIT_LIST_HEAD(&folio->lru); 1972 __folio_set_hugetlb(folio); 1973 hugetlb_set_folio_subpool(folio, NULL); 1974 set_hugetlb_cgroup(folio, NULL); 1975 set_hugetlb_cgroup_rsvd(folio, NULL); 1976 } 1977 1978 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1979 { 1980 __prep_new_hugetlb_folio(h, folio); 1981 spin_lock_irq(&hugetlb_lock); 1982 __prep_account_new_huge_page(h, nid); 1983 spin_unlock_irq(&hugetlb_lock); 1984 } 1985 1986 static bool __prep_compound_gigantic_folio(struct folio *folio, 1987 unsigned int order, bool demote) 1988 { 1989 int i, j; 1990 int nr_pages = 1 << order; 1991 struct page *p; 1992 1993 __folio_clear_reserved(folio); 1994 for (i = 0; i < nr_pages; i++) { 1995 p = folio_page(folio, i); 1996 1997 /* 1998 * For gigantic hugepages allocated through bootmem at 1999 * boot, it's safer to be consistent with the not-gigantic 2000 * hugepages and clear the PG_reserved bit from all tail pages 2001 * too. Otherwise drivers using get_user_pages() to access tail 2002 * pages may get the reference counting wrong if they see 2003 * PG_reserved set on a tail page (despite the head page not 2004 * having PG_reserved set). Enforcing this consistency between 2005 * head and tail pages allows drivers to optimize away a check 2006 * on the head page when they need know if put_page() is needed 2007 * after get_user_pages(). 2008 */ 2009 if (i != 0) /* head page cleared above */ 2010 __ClearPageReserved(p); 2011 /* 2012 * Subtle and very unlikely 2013 * 2014 * Gigantic 'page allocators' such as memblock or cma will 2015 * return a set of pages with each page ref counted. We need 2016 * to turn this set of pages into a compound page with tail 2017 * page ref counts set to zero. Code such as speculative page 2018 * cache adding could take a ref on a 'to be' tail page. 2019 * We need to respect any increased ref count, and only set 2020 * the ref count to zero if count is currently 1. If count 2021 * is not 1, we return an error. An error return indicates 2022 * the set of pages can not be converted to a gigantic page. 2023 * The caller who allocated the pages should then discard the 2024 * pages using the appropriate free interface. 2025 * 2026 * In the case of demote, the ref count will be zero. 2027 */ 2028 if (!demote) { 2029 if (!page_ref_freeze(p, 1)) { 2030 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 2031 goto out_error; 2032 } 2033 } else { 2034 VM_BUG_ON_PAGE(page_count(p), p); 2035 } 2036 if (i != 0) 2037 set_compound_head(p, &folio->page); 2038 } 2039 __folio_set_head(folio); 2040 /* we rely on prep_new_hugetlb_folio to set the destructor */ 2041 folio_set_order(folio, order); 2042 atomic_set(&folio->_entire_mapcount, -1); 2043 atomic_set(&folio->_nr_pages_mapped, 0); 2044 atomic_set(&folio->_pincount, 0); 2045 return true; 2046 2047 out_error: 2048 /* undo page modifications made above */ 2049 for (j = 0; j < i; j++) { 2050 p = folio_page(folio, j); 2051 if (j != 0) 2052 clear_compound_head(p); 2053 set_page_refcounted(p); 2054 } 2055 /* need to clear PG_reserved on remaining tail pages */ 2056 for (; j < nr_pages; j++) { 2057 p = folio_page(folio, j); 2058 __ClearPageReserved(p); 2059 } 2060 return false; 2061 } 2062 2063 static bool prep_compound_gigantic_folio(struct folio *folio, 2064 unsigned int order) 2065 { 2066 return __prep_compound_gigantic_folio(folio, order, false); 2067 } 2068 2069 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2070 unsigned int order) 2071 { 2072 return __prep_compound_gigantic_folio(folio, order, true); 2073 } 2074 2075 /* 2076 * Find and lock address space (mapping) in write mode. 2077 * 2078 * Upon entry, the page is locked which means that page_mapping() is 2079 * stable. Due to locking order, we can only trylock_write. If we can 2080 * not get the lock, simply return NULL to caller. 2081 */ 2082 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 2083 { 2084 struct address_space *mapping = page_mapping(hpage); 2085 2086 if (!mapping) 2087 return mapping; 2088 2089 if (i_mmap_trylock_write(mapping)) 2090 return mapping; 2091 2092 return NULL; 2093 } 2094 2095 pgoff_t hugetlb_basepage_index(struct page *page) 2096 { 2097 struct page *page_head = compound_head(page); 2098 pgoff_t index = page_index(page_head); 2099 unsigned long compound_idx; 2100 2101 if (compound_order(page_head) > MAX_ORDER) 2102 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 2103 else 2104 compound_idx = page - page_head; 2105 2106 return (index << compound_order(page_head)) + compound_idx; 2107 } 2108 2109 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2110 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2111 nodemask_t *node_alloc_noretry) 2112 { 2113 int order = huge_page_order(h); 2114 struct page *page; 2115 bool alloc_try_hard = true; 2116 bool retry = true; 2117 2118 /* 2119 * By default we always try hard to allocate the page with 2120 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 2121 * a loop (to adjust global huge page counts) and previous allocation 2122 * failed, do not continue to try hard on the same node. Use the 2123 * node_alloc_noretry bitmap to manage this state information. 2124 */ 2125 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2126 alloc_try_hard = false; 2127 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2128 if (alloc_try_hard) 2129 gfp_mask |= __GFP_RETRY_MAYFAIL; 2130 if (nid == NUMA_NO_NODE) 2131 nid = numa_mem_id(); 2132 retry: 2133 page = __alloc_pages(gfp_mask, order, nid, nmask); 2134 2135 /* Freeze head page */ 2136 if (page && !page_ref_freeze(page, 1)) { 2137 __free_pages(page, order); 2138 if (retry) { /* retry once */ 2139 retry = false; 2140 goto retry; 2141 } 2142 /* WOW! twice in a row. */ 2143 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 2144 page = NULL; 2145 } 2146 2147 /* 2148 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 2149 * indicates an overall state change. Clear bit so that we resume 2150 * normal 'try hard' allocations. 2151 */ 2152 if (node_alloc_noretry && page && !alloc_try_hard) 2153 node_clear(nid, *node_alloc_noretry); 2154 2155 /* 2156 * If we tried hard to get a page but failed, set bit so that 2157 * subsequent attempts will not try as hard until there is an 2158 * overall state change. 2159 */ 2160 if (node_alloc_noretry && !page && alloc_try_hard) 2161 node_set(nid, *node_alloc_noretry); 2162 2163 if (!page) { 2164 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2165 return NULL; 2166 } 2167 2168 __count_vm_event(HTLB_BUDDY_PGALLOC); 2169 return page_folio(page); 2170 } 2171 2172 /* 2173 * Common helper to allocate a fresh hugetlb page. All specific allocators 2174 * should use this function to get new hugetlb pages 2175 * 2176 * Note that returned page is 'frozen': ref count of head page and all tail 2177 * pages is zero. 2178 */ 2179 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2180 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2181 nodemask_t *node_alloc_noretry) 2182 { 2183 struct folio *folio; 2184 bool retry = false; 2185 2186 retry: 2187 if (hstate_is_gigantic(h)) 2188 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2189 else 2190 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2191 nid, nmask, node_alloc_noretry); 2192 if (!folio) 2193 return NULL; 2194 if (hstate_is_gigantic(h)) { 2195 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2196 /* 2197 * Rare failure to convert pages to compound page. 2198 * Free pages and try again - ONCE! 2199 */ 2200 free_gigantic_folio(folio, huge_page_order(h)); 2201 if (!retry) { 2202 retry = true; 2203 goto retry; 2204 } 2205 return NULL; 2206 } 2207 } 2208 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2209 2210 return folio; 2211 } 2212 2213 /* 2214 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2215 * manner. 2216 */ 2217 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2218 nodemask_t *node_alloc_noretry) 2219 { 2220 struct folio *folio; 2221 int nr_nodes, node; 2222 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2223 2224 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2225 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2226 nodes_allowed, node_alloc_noretry); 2227 if (folio) { 2228 free_huge_folio(folio); /* free it into the hugepage allocator */ 2229 return 1; 2230 } 2231 } 2232 2233 return 0; 2234 } 2235 2236 /* 2237 * Remove huge page from pool from next node to free. Attempt to keep 2238 * persistent huge pages more or less balanced over allowed nodes. 2239 * This routine only 'removes' the hugetlb page. The caller must make 2240 * an additional call to free the page to low level allocators. 2241 * Called with hugetlb_lock locked. 2242 */ 2243 static struct page *remove_pool_huge_page(struct hstate *h, 2244 nodemask_t *nodes_allowed, 2245 bool acct_surplus) 2246 { 2247 int nr_nodes, node; 2248 struct page *page = NULL; 2249 struct folio *folio; 2250 2251 lockdep_assert_held(&hugetlb_lock); 2252 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2253 /* 2254 * If we're returning unused surplus pages, only examine 2255 * nodes with surplus pages. 2256 */ 2257 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2258 !list_empty(&h->hugepage_freelists[node])) { 2259 page = list_entry(h->hugepage_freelists[node].next, 2260 struct page, lru); 2261 folio = page_folio(page); 2262 remove_hugetlb_folio(h, folio, acct_surplus); 2263 break; 2264 } 2265 } 2266 2267 return page; 2268 } 2269 2270 /* 2271 * Dissolve a given free hugepage into free buddy pages. This function does 2272 * nothing for in-use hugepages and non-hugepages. 2273 * This function returns values like below: 2274 * 2275 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2276 * when the system is under memory pressure and the feature of 2277 * freeing unused vmemmap pages associated with each hugetlb page 2278 * is enabled. 2279 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2280 * (allocated or reserved.) 2281 * 0: successfully dissolved free hugepages or the page is not a 2282 * hugepage (considered as already dissolved) 2283 */ 2284 int dissolve_free_huge_page(struct page *page) 2285 { 2286 int rc = -EBUSY; 2287 struct folio *folio = page_folio(page); 2288 2289 retry: 2290 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2291 if (!folio_test_hugetlb(folio)) 2292 return 0; 2293 2294 spin_lock_irq(&hugetlb_lock); 2295 if (!folio_test_hugetlb(folio)) { 2296 rc = 0; 2297 goto out; 2298 } 2299 2300 if (!folio_ref_count(folio)) { 2301 struct hstate *h = folio_hstate(folio); 2302 if (!available_huge_pages(h)) 2303 goto out; 2304 2305 /* 2306 * We should make sure that the page is already on the free list 2307 * when it is dissolved. 2308 */ 2309 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2310 spin_unlock_irq(&hugetlb_lock); 2311 cond_resched(); 2312 2313 /* 2314 * Theoretically, we should return -EBUSY when we 2315 * encounter this race. In fact, we have a chance 2316 * to successfully dissolve the page if we do a 2317 * retry. Because the race window is quite small. 2318 * If we seize this opportunity, it is an optimization 2319 * for increasing the success rate of dissolving page. 2320 */ 2321 goto retry; 2322 } 2323 2324 remove_hugetlb_folio(h, folio, false); 2325 h->max_huge_pages--; 2326 spin_unlock_irq(&hugetlb_lock); 2327 2328 /* 2329 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2330 * before freeing the page. update_and_free_hugtlb_folio will fail to 2331 * free the page if it can not allocate required vmemmap. We 2332 * need to adjust max_huge_pages if the page is not freed. 2333 * Attempt to allocate vmemmmap here so that we can take 2334 * appropriate action on failure. 2335 */ 2336 rc = hugetlb_vmemmap_restore(h, &folio->page); 2337 if (!rc) { 2338 update_and_free_hugetlb_folio(h, folio, false); 2339 } else { 2340 spin_lock_irq(&hugetlb_lock); 2341 add_hugetlb_folio(h, folio, false); 2342 h->max_huge_pages++; 2343 spin_unlock_irq(&hugetlb_lock); 2344 } 2345 2346 return rc; 2347 } 2348 out: 2349 spin_unlock_irq(&hugetlb_lock); 2350 return rc; 2351 } 2352 2353 /* 2354 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2355 * make specified memory blocks removable from the system. 2356 * Note that this will dissolve a free gigantic hugepage completely, if any 2357 * part of it lies within the given range. 2358 * Also note that if dissolve_free_huge_page() returns with an error, all 2359 * free hugepages that were dissolved before that error are lost. 2360 */ 2361 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2362 { 2363 unsigned long pfn; 2364 struct page *page; 2365 int rc = 0; 2366 unsigned int order; 2367 struct hstate *h; 2368 2369 if (!hugepages_supported()) 2370 return rc; 2371 2372 order = huge_page_order(&default_hstate); 2373 for_each_hstate(h) 2374 order = min(order, huge_page_order(h)); 2375 2376 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2377 page = pfn_to_page(pfn); 2378 rc = dissolve_free_huge_page(page); 2379 if (rc) 2380 break; 2381 } 2382 2383 return rc; 2384 } 2385 2386 /* 2387 * Allocates a fresh surplus page from the page allocator. 2388 */ 2389 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2390 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2391 { 2392 struct folio *folio = NULL; 2393 2394 if (hstate_is_gigantic(h)) 2395 return NULL; 2396 2397 spin_lock_irq(&hugetlb_lock); 2398 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2399 goto out_unlock; 2400 spin_unlock_irq(&hugetlb_lock); 2401 2402 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2403 if (!folio) 2404 return NULL; 2405 2406 spin_lock_irq(&hugetlb_lock); 2407 /* 2408 * We could have raced with the pool size change. 2409 * Double check that and simply deallocate the new page 2410 * if we would end up overcommiting the surpluses. Abuse 2411 * temporary page to workaround the nasty free_huge_folio 2412 * codeflow 2413 */ 2414 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2415 folio_set_hugetlb_temporary(folio); 2416 spin_unlock_irq(&hugetlb_lock); 2417 free_huge_folio(folio); 2418 return NULL; 2419 } 2420 2421 h->surplus_huge_pages++; 2422 h->surplus_huge_pages_node[folio_nid(folio)]++; 2423 2424 out_unlock: 2425 spin_unlock_irq(&hugetlb_lock); 2426 2427 return folio; 2428 } 2429 2430 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2431 int nid, nodemask_t *nmask) 2432 { 2433 struct folio *folio; 2434 2435 if (hstate_is_gigantic(h)) 2436 return NULL; 2437 2438 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2439 if (!folio) 2440 return NULL; 2441 2442 /* fresh huge pages are frozen */ 2443 folio_ref_unfreeze(folio, 1); 2444 /* 2445 * We do not account these pages as surplus because they are only 2446 * temporary and will be released properly on the last reference 2447 */ 2448 folio_set_hugetlb_temporary(folio); 2449 2450 return folio; 2451 } 2452 2453 /* 2454 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2455 */ 2456 static 2457 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2458 struct vm_area_struct *vma, unsigned long addr) 2459 { 2460 struct folio *folio = NULL; 2461 struct mempolicy *mpol; 2462 gfp_t gfp_mask = htlb_alloc_mask(h); 2463 int nid; 2464 nodemask_t *nodemask; 2465 2466 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2467 if (mpol_is_preferred_many(mpol)) { 2468 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2469 2470 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2471 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2472 2473 /* Fallback to all nodes if page==NULL */ 2474 nodemask = NULL; 2475 } 2476 2477 if (!folio) 2478 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2479 mpol_cond_put(mpol); 2480 return folio; 2481 } 2482 2483 /* folio migration callback function */ 2484 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2485 nodemask_t *nmask, gfp_t gfp_mask) 2486 { 2487 spin_lock_irq(&hugetlb_lock); 2488 if (available_huge_pages(h)) { 2489 struct folio *folio; 2490 2491 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2492 preferred_nid, nmask); 2493 if (folio) { 2494 spin_unlock_irq(&hugetlb_lock); 2495 return folio; 2496 } 2497 } 2498 spin_unlock_irq(&hugetlb_lock); 2499 2500 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2501 } 2502 2503 /* mempolicy aware migration callback */ 2504 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma, 2505 unsigned long address) 2506 { 2507 struct mempolicy *mpol; 2508 nodemask_t *nodemask; 2509 struct folio *folio; 2510 gfp_t gfp_mask; 2511 int node; 2512 2513 gfp_mask = htlb_alloc_mask(h); 2514 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2515 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask); 2516 mpol_cond_put(mpol); 2517 2518 return folio; 2519 } 2520 2521 /* 2522 * Increase the hugetlb pool such that it can accommodate a reservation 2523 * of size 'delta'. 2524 */ 2525 static int gather_surplus_pages(struct hstate *h, long delta) 2526 __must_hold(&hugetlb_lock) 2527 { 2528 LIST_HEAD(surplus_list); 2529 struct folio *folio, *tmp; 2530 int ret; 2531 long i; 2532 long needed, allocated; 2533 bool alloc_ok = true; 2534 2535 lockdep_assert_held(&hugetlb_lock); 2536 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2537 if (needed <= 0) { 2538 h->resv_huge_pages += delta; 2539 return 0; 2540 } 2541 2542 allocated = 0; 2543 2544 ret = -ENOMEM; 2545 retry: 2546 spin_unlock_irq(&hugetlb_lock); 2547 for (i = 0; i < needed; i++) { 2548 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2549 NUMA_NO_NODE, NULL); 2550 if (!folio) { 2551 alloc_ok = false; 2552 break; 2553 } 2554 list_add(&folio->lru, &surplus_list); 2555 cond_resched(); 2556 } 2557 allocated += i; 2558 2559 /* 2560 * After retaking hugetlb_lock, we need to recalculate 'needed' 2561 * because either resv_huge_pages or free_huge_pages may have changed. 2562 */ 2563 spin_lock_irq(&hugetlb_lock); 2564 needed = (h->resv_huge_pages + delta) - 2565 (h->free_huge_pages + allocated); 2566 if (needed > 0) { 2567 if (alloc_ok) 2568 goto retry; 2569 /* 2570 * We were not able to allocate enough pages to 2571 * satisfy the entire reservation so we free what 2572 * we've allocated so far. 2573 */ 2574 goto free; 2575 } 2576 /* 2577 * The surplus_list now contains _at_least_ the number of extra pages 2578 * needed to accommodate the reservation. Add the appropriate number 2579 * of pages to the hugetlb pool and free the extras back to the buddy 2580 * allocator. Commit the entire reservation here to prevent another 2581 * process from stealing the pages as they are added to the pool but 2582 * before they are reserved. 2583 */ 2584 needed += allocated; 2585 h->resv_huge_pages += delta; 2586 ret = 0; 2587 2588 /* Free the needed pages to the hugetlb pool */ 2589 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2590 if ((--needed) < 0) 2591 break; 2592 /* Add the page to the hugetlb allocator */ 2593 enqueue_hugetlb_folio(h, folio); 2594 } 2595 free: 2596 spin_unlock_irq(&hugetlb_lock); 2597 2598 /* 2599 * Free unnecessary surplus pages to the buddy allocator. 2600 * Pages have no ref count, call free_huge_folio directly. 2601 */ 2602 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2603 free_huge_folio(folio); 2604 spin_lock_irq(&hugetlb_lock); 2605 2606 return ret; 2607 } 2608 2609 /* 2610 * This routine has two main purposes: 2611 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2612 * in unused_resv_pages. This corresponds to the prior adjustments made 2613 * to the associated reservation map. 2614 * 2) Free any unused surplus pages that may have been allocated to satisfy 2615 * the reservation. As many as unused_resv_pages may be freed. 2616 */ 2617 static void return_unused_surplus_pages(struct hstate *h, 2618 unsigned long unused_resv_pages) 2619 { 2620 unsigned long nr_pages; 2621 struct page *page; 2622 LIST_HEAD(page_list); 2623 2624 lockdep_assert_held(&hugetlb_lock); 2625 /* Uncommit the reservation */ 2626 h->resv_huge_pages -= unused_resv_pages; 2627 2628 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2629 goto out; 2630 2631 /* 2632 * Part (or even all) of the reservation could have been backed 2633 * by pre-allocated pages. Only free surplus pages. 2634 */ 2635 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2636 2637 /* 2638 * We want to release as many surplus pages as possible, spread 2639 * evenly across all nodes with memory. Iterate across these nodes 2640 * until we can no longer free unreserved surplus pages. This occurs 2641 * when the nodes with surplus pages have no free pages. 2642 * remove_pool_huge_page() will balance the freed pages across the 2643 * on-line nodes with memory and will handle the hstate accounting. 2644 */ 2645 while (nr_pages--) { 2646 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2647 if (!page) 2648 goto out; 2649 2650 list_add(&page->lru, &page_list); 2651 } 2652 2653 out: 2654 spin_unlock_irq(&hugetlb_lock); 2655 update_and_free_pages_bulk(h, &page_list); 2656 spin_lock_irq(&hugetlb_lock); 2657 } 2658 2659 2660 /* 2661 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2662 * are used by the huge page allocation routines to manage reservations. 2663 * 2664 * vma_needs_reservation is called to determine if the huge page at addr 2665 * within the vma has an associated reservation. If a reservation is 2666 * needed, the value 1 is returned. The caller is then responsible for 2667 * managing the global reservation and subpool usage counts. After 2668 * the huge page has been allocated, vma_commit_reservation is called 2669 * to add the page to the reservation map. If the page allocation fails, 2670 * the reservation must be ended instead of committed. vma_end_reservation 2671 * is called in such cases. 2672 * 2673 * In the normal case, vma_commit_reservation returns the same value 2674 * as the preceding vma_needs_reservation call. The only time this 2675 * is not the case is if a reserve map was changed between calls. It 2676 * is the responsibility of the caller to notice the difference and 2677 * take appropriate action. 2678 * 2679 * vma_add_reservation is used in error paths where a reservation must 2680 * be restored when a newly allocated huge page must be freed. It is 2681 * to be called after calling vma_needs_reservation to determine if a 2682 * reservation exists. 2683 * 2684 * vma_del_reservation is used in error paths where an entry in the reserve 2685 * map was created during huge page allocation and must be removed. It is to 2686 * be called after calling vma_needs_reservation to determine if a reservation 2687 * exists. 2688 */ 2689 enum vma_resv_mode { 2690 VMA_NEEDS_RESV, 2691 VMA_COMMIT_RESV, 2692 VMA_END_RESV, 2693 VMA_ADD_RESV, 2694 VMA_DEL_RESV, 2695 }; 2696 static long __vma_reservation_common(struct hstate *h, 2697 struct vm_area_struct *vma, unsigned long addr, 2698 enum vma_resv_mode mode) 2699 { 2700 struct resv_map *resv; 2701 pgoff_t idx; 2702 long ret; 2703 long dummy_out_regions_needed; 2704 2705 resv = vma_resv_map(vma); 2706 if (!resv) 2707 return 1; 2708 2709 idx = vma_hugecache_offset(h, vma, addr); 2710 switch (mode) { 2711 case VMA_NEEDS_RESV: 2712 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2713 /* We assume that vma_reservation_* routines always operate on 2714 * 1 page, and that adding to resv map a 1 page entry can only 2715 * ever require 1 region. 2716 */ 2717 VM_BUG_ON(dummy_out_regions_needed != 1); 2718 break; 2719 case VMA_COMMIT_RESV: 2720 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2721 /* region_add calls of range 1 should never fail. */ 2722 VM_BUG_ON(ret < 0); 2723 break; 2724 case VMA_END_RESV: 2725 region_abort(resv, idx, idx + 1, 1); 2726 ret = 0; 2727 break; 2728 case VMA_ADD_RESV: 2729 if (vma->vm_flags & VM_MAYSHARE) { 2730 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2731 /* region_add calls of range 1 should never fail. */ 2732 VM_BUG_ON(ret < 0); 2733 } else { 2734 region_abort(resv, idx, idx + 1, 1); 2735 ret = region_del(resv, idx, idx + 1); 2736 } 2737 break; 2738 case VMA_DEL_RESV: 2739 if (vma->vm_flags & VM_MAYSHARE) { 2740 region_abort(resv, idx, idx + 1, 1); 2741 ret = region_del(resv, idx, idx + 1); 2742 } else { 2743 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2744 /* region_add calls of range 1 should never fail. */ 2745 VM_BUG_ON(ret < 0); 2746 } 2747 break; 2748 default: 2749 BUG(); 2750 } 2751 2752 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2753 return ret; 2754 /* 2755 * We know private mapping must have HPAGE_RESV_OWNER set. 2756 * 2757 * In most cases, reserves always exist for private mappings. 2758 * However, a file associated with mapping could have been 2759 * hole punched or truncated after reserves were consumed. 2760 * As subsequent fault on such a range will not use reserves. 2761 * Subtle - The reserve map for private mappings has the 2762 * opposite meaning than that of shared mappings. If NO 2763 * entry is in the reserve map, it means a reservation exists. 2764 * If an entry exists in the reserve map, it means the 2765 * reservation has already been consumed. As a result, the 2766 * return value of this routine is the opposite of the 2767 * value returned from reserve map manipulation routines above. 2768 */ 2769 if (ret > 0) 2770 return 0; 2771 if (ret == 0) 2772 return 1; 2773 return ret; 2774 } 2775 2776 static long vma_needs_reservation(struct hstate *h, 2777 struct vm_area_struct *vma, unsigned long addr) 2778 { 2779 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2780 } 2781 2782 static long vma_commit_reservation(struct hstate *h, 2783 struct vm_area_struct *vma, unsigned long addr) 2784 { 2785 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2786 } 2787 2788 static void vma_end_reservation(struct hstate *h, 2789 struct vm_area_struct *vma, unsigned long addr) 2790 { 2791 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2792 } 2793 2794 static long vma_add_reservation(struct hstate *h, 2795 struct vm_area_struct *vma, unsigned long addr) 2796 { 2797 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2798 } 2799 2800 static long vma_del_reservation(struct hstate *h, 2801 struct vm_area_struct *vma, unsigned long addr) 2802 { 2803 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2804 } 2805 2806 /* 2807 * This routine is called to restore reservation information on error paths. 2808 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2809 * and the hugetlb mutex should remain held when calling this routine. 2810 * 2811 * It handles two specific cases: 2812 * 1) A reservation was in place and the folio consumed the reservation. 2813 * hugetlb_restore_reserve is set in the folio. 2814 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2815 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2816 * 2817 * In case 1, free_huge_folio later in the error path will increment the 2818 * global reserve count. But, free_huge_folio does not have enough context 2819 * to adjust the reservation map. This case deals primarily with private 2820 * mappings. Adjust the reserve map here to be consistent with global 2821 * reserve count adjustments to be made by free_huge_folio. Make sure the 2822 * reserve map indicates there is a reservation present. 2823 * 2824 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2825 */ 2826 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2827 unsigned long address, struct folio *folio) 2828 { 2829 long rc = vma_needs_reservation(h, vma, address); 2830 2831 if (folio_test_hugetlb_restore_reserve(folio)) { 2832 if (unlikely(rc < 0)) 2833 /* 2834 * Rare out of memory condition in reserve map 2835 * manipulation. Clear hugetlb_restore_reserve so 2836 * that global reserve count will not be incremented 2837 * by free_huge_folio. This will make it appear 2838 * as though the reservation for this folio was 2839 * consumed. This may prevent the task from 2840 * faulting in the folio at a later time. This 2841 * is better than inconsistent global huge page 2842 * accounting of reserve counts. 2843 */ 2844 folio_clear_hugetlb_restore_reserve(folio); 2845 else if (rc) 2846 (void)vma_add_reservation(h, vma, address); 2847 else 2848 vma_end_reservation(h, vma, address); 2849 } else { 2850 if (!rc) { 2851 /* 2852 * This indicates there is an entry in the reserve map 2853 * not added by alloc_hugetlb_folio. We know it was added 2854 * before the alloc_hugetlb_folio call, otherwise 2855 * hugetlb_restore_reserve would be set on the folio. 2856 * Remove the entry so that a subsequent allocation 2857 * does not consume a reservation. 2858 */ 2859 rc = vma_del_reservation(h, vma, address); 2860 if (rc < 0) 2861 /* 2862 * VERY rare out of memory condition. Since 2863 * we can not delete the entry, set 2864 * hugetlb_restore_reserve so that the reserve 2865 * count will be incremented when the folio 2866 * is freed. This reserve will be consumed 2867 * on a subsequent allocation. 2868 */ 2869 folio_set_hugetlb_restore_reserve(folio); 2870 } else if (rc < 0) { 2871 /* 2872 * Rare out of memory condition from 2873 * vma_needs_reservation call. Memory allocation is 2874 * only attempted if a new entry is needed. Therefore, 2875 * this implies there is not an entry in the 2876 * reserve map. 2877 * 2878 * For shared mappings, no entry in the map indicates 2879 * no reservation. We are done. 2880 */ 2881 if (!(vma->vm_flags & VM_MAYSHARE)) 2882 /* 2883 * For private mappings, no entry indicates 2884 * a reservation is present. Since we can 2885 * not add an entry, set hugetlb_restore_reserve 2886 * on the folio so reserve count will be 2887 * incremented when freed. This reserve will 2888 * be consumed on a subsequent allocation. 2889 */ 2890 folio_set_hugetlb_restore_reserve(folio); 2891 } else 2892 /* 2893 * No reservation present, do nothing 2894 */ 2895 vma_end_reservation(h, vma, address); 2896 } 2897 } 2898 2899 /* 2900 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2901 * the old one 2902 * @h: struct hstate old page belongs to 2903 * @old_folio: Old folio to dissolve 2904 * @list: List to isolate the page in case we need to 2905 * Returns 0 on success, otherwise negated error. 2906 */ 2907 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2908 struct folio *old_folio, struct list_head *list) 2909 { 2910 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2911 int nid = folio_nid(old_folio); 2912 struct folio *new_folio; 2913 int ret = 0; 2914 2915 /* 2916 * Before dissolving the folio, we need to allocate a new one for the 2917 * pool to remain stable. Here, we allocate the folio and 'prep' it 2918 * by doing everything but actually updating counters and adding to 2919 * the pool. This simplifies and let us do most of the processing 2920 * under the lock. 2921 */ 2922 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); 2923 if (!new_folio) 2924 return -ENOMEM; 2925 __prep_new_hugetlb_folio(h, new_folio); 2926 2927 retry: 2928 spin_lock_irq(&hugetlb_lock); 2929 if (!folio_test_hugetlb(old_folio)) { 2930 /* 2931 * Freed from under us. Drop new_folio too. 2932 */ 2933 goto free_new; 2934 } else if (folio_ref_count(old_folio)) { 2935 bool isolated; 2936 2937 /* 2938 * Someone has grabbed the folio, try to isolate it here. 2939 * Fail with -EBUSY if not possible. 2940 */ 2941 spin_unlock_irq(&hugetlb_lock); 2942 isolated = isolate_hugetlb(old_folio, list); 2943 ret = isolated ? 0 : -EBUSY; 2944 spin_lock_irq(&hugetlb_lock); 2945 goto free_new; 2946 } else if (!folio_test_hugetlb_freed(old_folio)) { 2947 /* 2948 * Folio's refcount is 0 but it has not been enqueued in the 2949 * freelist yet. Race window is small, so we can succeed here if 2950 * we retry. 2951 */ 2952 spin_unlock_irq(&hugetlb_lock); 2953 cond_resched(); 2954 goto retry; 2955 } else { 2956 /* 2957 * Ok, old_folio is still a genuine free hugepage. Remove it from 2958 * the freelist and decrease the counters. These will be 2959 * incremented again when calling __prep_account_new_huge_page() 2960 * and enqueue_hugetlb_folio() for new_folio. The counters will 2961 * remain stable since this happens under the lock. 2962 */ 2963 remove_hugetlb_folio(h, old_folio, false); 2964 2965 /* 2966 * Ref count on new_folio is already zero as it was dropped 2967 * earlier. It can be directly added to the pool free list. 2968 */ 2969 __prep_account_new_huge_page(h, nid); 2970 enqueue_hugetlb_folio(h, new_folio); 2971 2972 /* 2973 * Folio has been replaced, we can safely free the old one. 2974 */ 2975 spin_unlock_irq(&hugetlb_lock); 2976 update_and_free_hugetlb_folio(h, old_folio, false); 2977 } 2978 2979 return ret; 2980 2981 free_new: 2982 spin_unlock_irq(&hugetlb_lock); 2983 /* Folio has a zero ref count, but needs a ref to be freed */ 2984 folio_ref_unfreeze(new_folio, 1); 2985 update_and_free_hugetlb_folio(h, new_folio, false); 2986 2987 return ret; 2988 } 2989 2990 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2991 { 2992 struct hstate *h; 2993 struct folio *folio = page_folio(page); 2994 int ret = -EBUSY; 2995 2996 /* 2997 * The page might have been dissolved from under our feet, so make sure 2998 * to carefully check the state under the lock. 2999 * Return success when racing as if we dissolved the page ourselves. 3000 */ 3001 spin_lock_irq(&hugetlb_lock); 3002 if (folio_test_hugetlb(folio)) { 3003 h = folio_hstate(folio); 3004 } else { 3005 spin_unlock_irq(&hugetlb_lock); 3006 return 0; 3007 } 3008 spin_unlock_irq(&hugetlb_lock); 3009 3010 /* 3011 * Fence off gigantic pages as there is a cyclic dependency between 3012 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3013 * of bailing out right away without further retrying. 3014 */ 3015 if (hstate_is_gigantic(h)) 3016 return -ENOMEM; 3017 3018 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3019 ret = 0; 3020 else if (!folio_ref_count(folio)) 3021 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3022 3023 return ret; 3024 } 3025 3026 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3027 unsigned long addr, int avoid_reserve) 3028 { 3029 struct hugepage_subpool *spool = subpool_vma(vma); 3030 struct hstate *h = hstate_vma(vma); 3031 struct folio *folio; 3032 long map_chg, map_commit; 3033 long gbl_chg; 3034 int ret, idx; 3035 struct hugetlb_cgroup *h_cg = NULL; 3036 bool deferred_reserve; 3037 3038 idx = hstate_index(h); 3039 /* 3040 * Examine the region/reserve map to determine if the process 3041 * has a reservation for the page to be allocated. A return 3042 * code of zero indicates a reservation exists (no change). 3043 */ 3044 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3045 if (map_chg < 0) 3046 return ERR_PTR(-ENOMEM); 3047 3048 /* 3049 * Processes that did not create the mapping will have no 3050 * reserves as indicated by the region/reserve map. Check 3051 * that the allocation will not exceed the subpool limit. 3052 * Allocations for MAP_NORESERVE mappings also need to be 3053 * checked against any subpool limit. 3054 */ 3055 if (map_chg || avoid_reserve) { 3056 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3057 if (gbl_chg < 0) { 3058 vma_end_reservation(h, vma, addr); 3059 return ERR_PTR(-ENOSPC); 3060 } 3061 3062 /* 3063 * Even though there was no reservation in the region/reserve 3064 * map, there could be reservations associated with the 3065 * subpool that can be used. This would be indicated if the 3066 * return value of hugepage_subpool_get_pages() is zero. 3067 * However, if avoid_reserve is specified we still avoid even 3068 * the subpool reservations. 3069 */ 3070 if (avoid_reserve) 3071 gbl_chg = 1; 3072 } 3073 3074 /* If this allocation is not consuming a reservation, charge it now. 3075 */ 3076 deferred_reserve = map_chg || avoid_reserve; 3077 if (deferred_reserve) { 3078 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3079 idx, pages_per_huge_page(h), &h_cg); 3080 if (ret) 3081 goto out_subpool_put; 3082 } 3083 3084 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3085 if (ret) 3086 goto out_uncharge_cgroup_reservation; 3087 3088 spin_lock_irq(&hugetlb_lock); 3089 /* 3090 * glb_chg is passed to indicate whether or not a page must be taken 3091 * from the global free pool (global change). gbl_chg == 0 indicates 3092 * a reservation exists for the allocation. 3093 */ 3094 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3095 if (!folio) { 3096 spin_unlock_irq(&hugetlb_lock); 3097 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3098 if (!folio) 3099 goto out_uncharge_cgroup; 3100 spin_lock_irq(&hugetlb_lock); 3101 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3102 folio_set_hugetlb_restore_reserve(folio); 3103 h->resv_huge_pages--; 3104 } 3105 list_add(&folio->lru, &h->hugepage_activelist); 3106 folio_ref_unfreeze(folio, 1); 3107 /* Fall through */ 3108 } 3109 3110 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3111 /* If allocation is not consuming a reservation, also store the 3112 * hugetlb_cgroup pointer on the page. 3113 */ 3114 if (deferred_reserve) { 3115 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3116 h_cg, folio); 3117 } 3118 3119 spin_unlock_irq(&hugetlb_lock); 3120 3121 hugetlb_set_folio_subpool(folio, spool); 3122 3123 map_commit = vma_commit_reservation(h, vma, addr); 3124 if (unlikely(map_chg > map_commit)) { 3125 /* 3126 * The page was added to the reservation map between 3127 * vma_needs_reservation and vma_commit_reservation. 3128 * This indicates a race with hugetlb_reserve_pages. 3129 * Adjust for the subpool count incremented above AND 3130 * in hugetlb_reserve_pages for the same page. Also, 3131 * the reservation count added in hugetlb_reserve_pages 3132 * no longer applies. 3133 */ 3134 long rsv_adjust; 3135 3136 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3137 hugetlb_acct_memory(h, -rsv_adjust); 3138 if (deferred_reserve) { 3139 spin_lock_irq(&hugetlb_lock); 3140 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3141 pages_per_huge_page(h), folio); 3142 spin_unlock_irq(&hugetlb_lock); 3143 } 3144 } 3145 return folio; 3146 3147 out_uncharge_cgroup: 3148 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3149 out_uncharge_cgroup_reservation: 3150 if (deferred_reserve) 3151 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3152 h_cg); 3153 out_subpool_put: 3154 if (map_chg || avoid_reserve) 3155 hugepage_subpool_put_pages(spool, 1); 3156 vma_end_reservation(h, vma, addr); 3157 return ERR_PTR(-ENOSPC); 3158 } 3159 3160 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3161 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3162 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3163 { 3164 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3165 int nr_nodes, node; 3166 3167 /* do node specific alloc */ 3168 if (nid != NUMA_NO_NODE) { 3169 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3170 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3171 if (!m) 3172 return 0; 3173 goto found; 3174 } 3175 /* allocate from next node when distributing huge pages */ 3176 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3177 m = memblock_alloc_try_nid_raw( 3178 huge_page_size(h), huge_page_size(h), 3179 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3180 /* 3181 * Use the beginning of the huge page to store the 3182 * huge_bootmem_page struct (until gather_bootmem 3183 * puts them into the mem_map). 3184 */ 3185 if (!m) 3186 return 0; 3187 goto found; 3188 } 3189 3190 found: 3191 /* Put them into a private list first because mem_map is not up yet */ 3192 INIT_LIST_HEAD(&m->list); 3193 list_add(&m->list, &huge_boot_pages); 3194 m->hstate = h; 3195 return 1; 3196 } 3197 3198 /* 3199 * Put bootmem huge pages into the standard lists after mem_map is up. 3200 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3201 */ 3202 static void __init gather_bootmem_prealloc(void) 3203 { 3204 struct huge_bootmem_page *m; 3205 3206 list_for_each_entry(m, &huge_boot_pages, list) { 3207 struct page *page = virt_to_page(m); 3208 struct folio *folio = page_folio(page); 3209 struct hstate *h = m->hstate; 3210 3211 VM_BUG_ON(!hstate_is_gigantic(h)); 3212 WARN_ON(folio_ref_count(folio) != 1); 3213 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) { 3214 WARN_ON(folio_test_reserved(folio)); 3215 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 3216 free_huge_folio(folio); /* add to the hugepage allocator */ 3217 } else { 3218 /* VERY unlikely inflated ref count on a tail page */ 3219 free_gigantic_folio(folio, huge_page_order(h)); 3220 } 3221 3222 /* 3223 * We need to restore the 'stolen' pages to totalram_pages 3224 * in order to fix confusing memory reports from free(1) and 3225 * other side-effects, like CommitLimit going negative. 3226 */ 3227 adjust_managed_page_count(page, pages_per_huge_page(h)); 3228 cond_resched(); 3229 } 3230 } 3231 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3232 { 3233 unsigned long i; 3234 char buf[32]; 3235 3236 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3237 if (hstate_is_gigantic(h)) { 3238 if (!alloc_bootmem_huge_page(h, nid)) 3239 break; 3240 } else { 3241 struct folio *folio; 3242 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3243 3244 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3245 &node_states[N_MEMORY], NULL); 3246 if (!folio) 3247 break; 3248 free_huge_folio(folio); /* free it into the hugepage allocator */ 3249 } 3250 cond_resched(); 3251 } 3252 if (i == h->max_huge_pages_node[nid]) 3253 return; 3254 3255 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3256 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3257 h->max_huge_pages_node[nid], buf, nid, i); 3258 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3259 h->max_huge_pages_node[nid] = i; 3260 } 3261 3262 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3263 { 3264 unsigned long i; 3265 nodemask_t *node_alloc_noretry; 3266 bool node_specific_alloc = false; 3267 3268 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3269 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3270 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3271 return; 3272 } 3273 3274 /* do node specific alloc */ 3275 for_each_online_node(i) { 3276 if (h->max_huge_pages_node[i] > 0) { 3277 hugetlb_hstate_alloc_pages_onenode(h, i); 3278 node_specific_alloc = true; 3279 } 3280 } 3281 3282 if (node_specific_alloc) 3283 return; 3284 3285 /* below will do all node balanced alloc */ 3286 if (!hstate_is_gigantic(h)) { 3287 /* 3288 * Bit mask controlling how hard we retry per-node allocations. 3289 * Ignore errors as lower level routines can deal with 3290 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3291 * time, we are likely in bigger trouble. 3292 */ 3293 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3294 GFP_KERNEL); 3295 } else { 3296 /* allocations done at boot time */ 3297 node_alloc_noretry = NULL; 3298 } 3299 3300 /* bit mask controlling how hard we retry per-node allocations */ 3301 if (node_alloc_noretry) 3302 nodes_clear(*node_alloc_noretry); 3303 3304 for (i = 0; i < h->max_huge_pages; ++i) { 3305 if (hstate_is_gigantic(h)) { 3306 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3307 break; 3308 } else if (!alloc_pool_huge_page(h, 3309 &node_states[N_MEMORY], 3310 node_alloc_noretry)) 3311 break; 3312 cond_resched(); 3313 } 3314 if (i < h->max_huge_pages) { 3315 char buf[32]; 3316 3317 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3318 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3319 h->max_huge_pages, buf, i); 3320 h->max_huge_pages = i; 3321 } 3322 kfree(node_alloc_noretry); 3323 } 3324 3325 static void __init hugetlb_init_hstates(void) 3326 { 3327 struct hstate *h, *h2; 3328 3329 for_each_hstate(h) { 3330 /* oversize hugepages were init'ed in early boot */ 3331 if (!hstate_is_gigantic(h)) 3332 hugetlb_hstate_alloc_pages(h); 3333 3334 /* 3335 * Set demote order for each hstate. Note that 3336 * h->demote_order is initially 0. 3337 * - We can not demote gigantic pages if runtime freeing 3338 * is not supported, so skip this. 3339 * - If CMA allocation is possible, we can not demote 3340 * HUGETLB_PAGE_ORDER or smaller size pages. 3341 */ 3342 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3343 continue; 3344 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3345 continue; 3346 for_each_hstate(h2) { 3347 if (h2 == h) 3348 continue; 3349 if (h2->order < h->order && 3350 h2->order > h->demote_order) 3351 h->demote_order = h2->order; 3352 } 3353 } 3354 } 3355 3356 static void __init report_hugepages(void) 3357 { 3358 struct hstate *h; 3359 3360 for_each_hstate(h) { 3361 char buf[32]; 3362 3363 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3364 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3365 buf, h->free_huge_pages); 3366 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3367 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3368 } 3369 } 3370 3371 #ifdef CONFIG_HIGHMEM 3372 static void try_to_free_low(struct hstate *h, unsigned long count, 3373 nodemask_t *nodes_allowed) 3374 { 3375 int i; 3376 LIST_HEAD(page_list); 3377 3378 lockdep_assert_held(&hugetlb_lock); 3379 if (hstate_is_gigantic(h)) 3380 return; 3381 3382 /* 3383 * Collect pages to be freed on a list, and free after dropping lock 3384 */ 3385 for_each_node_mask(i, *nodes_allowed) { 3386 struct page *page, *next; 3387 struct list_head *freel = &h->hugepage_freelists[i]; 3388 list_for_each_entry_safe(page, next, freel, lru) { 3389 if (count >= h->nr_huge_pages) 3390 goto out; 3391 if (PageHighMem(page)) 3392 continue; 3393 remove_hugetlb_folio(h, page_folio(page), false); 3394 list_add(&page->lru, &page_list); 3395 } 3396 } 3397 3398 out: 3399 spin_unlock_irq(&hugetlb_lock); 3400 update_and_free_pages_bulk(h, &page_list); 3401 spin_lock_irq(&hugetlb_lock); 3402 } 3403 #else 3404 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3405 nodemask_t *nodes_allowed) 3406 { 3407 } 3408 #endif 3409 3410 /* 3411 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3412 * balanced by operating on them in a round-robin fashion. 3413 * Returns 1 if an adjustment was made. 3414 */ 3415 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3416 int delta) 3417 { 3418 int nr_nodes, node; 3419 3420 lockdep_assert_held(&hugetlb_lock); 3421 VM_BUG_ON(delta != -1 && delta != 1); 3422 3423 if (delta < 0) { 3424 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3425 if (h->surplus_huge_pages_node[node]) 3426 goto found; 3427 } 3428 } else { 3429 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3430 if (h->surplus_huge_pages_node[node] < 3431 h->nr_huge_pages_node[node]) 3432 goto found; 3433 } 3434 } 3435 return 0; 3436 3437 found: 3438 h->surplus_huge_pages += delta; 3439 h->surplus_huge_pages_node[node] += delta; 3440 return 1; 3441 } 3442 3443 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3444 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3445 nodemask_t *nodes_allowed) 3446 { 3447 unsigned long min_count, ret; 3448 struct page *page; 3449 LIST_HEAD(page_list); 3450 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3451 3452 /* 3453 * Bit mask controlling how hard we retry per-node allocations. 3454 * If we can not allocate the bit mask, do not attempt to allocate 3455 * the requested huge pages. 3456 */ 3457 if (node_alloc_noretry) 3458 nodes_clear(*node_alloc_noretry); 3459 else 3460 return -ENOMEM; 3461 3462 /* 3463 * resize_lock mutex prevents concurrent adjustments to number of 3464 * pages in hstate via the proc/sysfs interfaces. 3465 */ 3466 mutex_lock(&h->resize_lock); 3467 flush_free_hpage_work(h); 3468 spin_lock_irq(&hugetlb_lock); 3469 3470 /* 3471 * Check for a node specific request. 3472 * Changing node specific huge page count may require a corresponding 3473 * change to the global count. In any case, the passed node mask 3474 * (nodes_allowed) will restrict alloc/free to the specified node. 3475 */ 3476 if (nid != NUMA_NO_NODE) { 3477 unsigned long old_count = count; 3478 3479 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3480 /* 3481 * User may have specified a large count value which caused the 3482 * above calculation to overflow. In this case, they wanted 3483 * to allocate as many huge pages as possible. Set count to 3484 * largest possible value to align with their intention. 3485 */ 3486 if (count < old_count) 3487 count = ULONG_MAX; 3488 } 3489 3490 /* 3491 * Gigantic pages runtime allocation depend on the capability for large 3492 * page range allocation. 3493 * If the system does not provide this feature, return an error when 3494 * the user tries to allocate gigantic pages but let the user free the 3495 * boottime allocated gigantic pages. 3496 */ 3497 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3498 if (count > persistent_huge_pages(h)) { 3499 spin_unlock_irq(&hugetlb_lock); 3500 mutex_unlock(&h->resize_lock); 3501 NODEMASK_FREE(node_alloc_noretry); 3502 return -EINVAL; 3503 } 3504 /* Fall through to decrease pool */ 3505 } 3506 3507 /* 3508 * Increase the pool size 3509 * First take pages out of surplus state. Then make up the 3510 * remaining difference by allocating fresh huge pages. 3511 * 3512 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3513 * to convert a surplus huge page to a normal huge page. That is 3514 * not critical, though, it just means the overall size of the 3515 * pool might be one hugepage larger than it needs to be, but 3516 * within all the constraints specified by the sysctls. 3517 */ 3518 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3519 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3520 break; 3521 } 3522 3523 while (count > persistent_huge_pages(h)) { 3524 /* 3525 * If this allocation races such that we no longer need the 3526 * page, free_huge_folio will handle it by freeing the page 3527 * and reducing the surplus. 3528 */ 3529 spin_unlock_irq(&hugetlb_lock); 3530 3531 /* yield cpu to avoid soft lockup */ 3532 cond_resched(); 3533 3534 ret = alloc_pool_huge_page(h, nodes_allowed, 3535 node_alloc_noretry); 3536 spin_lock_irq(&hugetlb_lock); 3537 if (!ret) 3538 goto out; 3539 3540 /* Bail for signals. Probably ctrl-c from user */ 3541 if (signal_pending(current)) 3542 goto out; 3543 } 3544 3545 /* 3546 * Decrease the pool size 3547 * First return free pages to the buddy allocator (being careful 3548 * to keep enough around to satisfy reservations). Then place 3549 * pages into surplus state as needed so the pool will shrink 3550 * to the desired size as pages become free. 3551 * 3552 * By placing pages into the surplus state independent of the 3553 * overcommit value, we are allowing the surplus pool size to 3554 * exceed overcommit. There are few sane options here. Since 3555 * alloc_surplus_hugetlb_folio() is checking the global counter, 3556 * though, we'll note that we're not allowed to exceed surplus 3557 * and won't grow the pool anywhere else. Not until one of the 3558 * sysctls are changed, or the surplus pages go out of use. 3559 */ 3560 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3561 min_count = max(count, min_count); 3562 try_to_free_low(h, min_count, nodes_allowed); 3563 3564 /* 3565 * Collect pages to be removed on list without dropping lock 3566 */ 3567 while (min_count < persistent_huge_pages(h)) { 3568 page = remove_pool_huge_page(h, nodes_allowed, 0); 3569 if (!page) 3570 break; 3571 3572 list_add(&page->lru, &page_list); 3573 } 3574 /* free the pages after dropping lock */ 3575 spin_unlock_irq(&hugetlb_lock); 3576 update_and_free_pages_bulk(h, &page_list); 3577 flush_free_hpage_work(h); 3578 spin_lock_irq(&hugetlb_lock); 3579 3580 while (count < persistent_huge_pages(h)) { 3581 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3582 break; 3583 } 3584 out: 3585 h->max_huge_pages = persistent_huge_pages(h); 3586 spin_unlock_irq(&hugetlb_lock); 3587 mutex_unlock(&h->resize_lock); 3588 3589 NODEMASK_FREE(node_alloc_noretry); 3590 3591 return 0; 3592 } 3593 3594 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) 3595 { 3596 int i, nid = folio_nid(folio); 3597 struct hstate *target_hstate; 3598 struct page *subpage; 3599 struct folio *inner_folio; 3600 int rc = 0; 3601 3602 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3603 3604 remove_hugetlb_folio_for_demote(h, folio, false); 3605 spin_unlock_irq(&hugetlb_lock); 3606 3607 rc = hugetlb_vmemmap_restore(h, &folio->page); 3608 if (rc) { 3609 /* Allocation of vmemmmap failed, we can not demote folio */ 3610 spin_lock_irq(&hugetlb_lock); 3611 folio_ref_unfreeze(folio, 1); 3612 add_hugetlb_folio(h, folio, false); 3613 return rc; 3614 } 3615 3616 /* 3617 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3618 * sizes as it will not ref count folios. 3619 */ 3620 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3621 3622 /* 3623 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3624 * Without the mutex, pages added to target hstate could be marked 3625 * as surplus. 3626 * 3627 * Note that we already hold h->resize_lock. To prevent deadlock, 3628 * use the convention of always taking larger size hstate mutex first. 3629 */ 3630 mutex_lock(&target_hstate->resize_lock); 3631 for (i = 0; i < pages_per_huge_page(h); 3632 i += pages_per_huge_page(target_hstate)) { 3633 subpage = folio_page(folio, i); 3634 inner_folio = page_folio(subpage); 3635 if (hstate_is_gigantic(target_hstate)) 3636 prep_compound_gigantic_folio_for_demote(inner_folio, 3637 target_hstate->order); 3638 else 3639 prep_compound_page(subpage, target_hstate->order); 3640 folio_change_private(inner_folio, NULL); 3641 prep_new_hugetlb_folio(target_hstate, inner_folio, nid); 3642 free_huge_folio(inner_folio); 3643 } 3644 mutex_unlock(&target_hstate->resize_lock); 3645 3646 spin_lock_irq(&hugetlb_lock); 3647 3648 /* 3649 * Not absolutely necessary, but for consistency update max_huge_pages 3650 * based on pool changes for the demoted page. 3651 */ 3652 h->max_huge_pages--; 3653 target_hstate->max_huge_pages += 3654 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3655 3656 return rc; 3657 } 3658 3659 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3660 __must_hold(&hugetlb_lock) 3661 { 3662 int nr_nodes, node; 3663 struct folio *folio; 3664 3665 lockdep_assert_held(&hugetlb_lock); 3666 3667 /* We should never get here if no demote order */ 3668 if (!h->demote_order) { 3669 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3670 return -EINVAL; /* internal error */ 3671 } 3672 3673 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3674 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { 3675 if (folio_test_hwpoison(folio)) 3676 continue; 3677 return demote_free_hugetlb_folio(h, folio); 3678 } 3679 } 3680 3681 /* 3682 * Only way to get here is if all pages on free lists are poisoned. 3683 * Return -EBUSY so that caller will not retry. 3684 */ 3685 return -EBUSY; 3686 } 3687 3688 #define HSTATE_ATTR_RO(_name) \ 3689 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3690 3691 #define HSTATE_ATTR_WO(_name) \ 3692 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3693 3694 #define HSTATE_ATTR(_name) \ 3695 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3696 3697 static struct kobject *hugepages_kobj; 3698 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3699 3700 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3701 3702 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3703 { 3704 int i; 3705 3706 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3707 if (hstate_kobjs[i] == kobj) { 3708 if (nidp) 3709 *nidp = NUMA_NO_NODE; 3710 return &hstates[i]; 3711 } 3712 3713 return kobj_to_node_hstate(kobj, nidp); 3714 } 3715 3716 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3717 struct kobj_attribute *attr, char *buf) 3718 { 3719 struct hstate *h; 3720 unsigned long nr_huge_pages; 3721 int nid; 3722 3723 h = kobj_to_hstate(kobj, &nid); 3724 if (nid == NUMA_NO_NODE) 3725 nr_huge_pages = h->nr_huge_pages; 3726 else 3727 nr_huge_pages = h->nr_huge_pages_node[nid]; 3728 3729 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3730 } 3731 3732 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3733 struct hstate *h, int nid, 3734 unsigned long count, size_t len) 3735 { 3736 int err; 3737 nodemask_t nodes_allowed, *n_mask; 3738 3739 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3740 return -EINVAL; 3741 3742 if (nid == NUMA_NO_NODE) { 3743 /* 3744 * global hstate attribute 3745 */ 3746 if (!(obey_mempolicy && 3747 init_nodemask_of_mempolicy(&nodes_allowed))) 3748 n_mask = &node_states[N_MEMORY]; 3749 else 3750 n_mask = &nodes_allowed; 3751 } else { 3752 /* 3753 * Node specific request. count adjustment happens in 3754 * set_max_huge_pages() after acquiring hugetlb_lock. 3755 */ 3756 init_nodemask_of_node(&nodes_allowed, nid); 3757 n_mask = &nodes_allowed; 3758 } 3759 3760 err = set_max_huge_pages(h, count, nid, n_mask); 3761 3762 return err ? err : len; 3763 } 3764 3765 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3766 struct kobject *kobj, const char *buf, 3767 size_t len) 3768 { 3769 struct hstate *h; 3770 unsigned long count; 3771 int nid; 3772 int err; 3773 3774 err = kstrtoul(buf, 10, &count); 3775 if (err) 3776 return err; 3777 3778 h = kobj_to_hstate(kobj, &nid); 3779 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3780 } 3781 3782 static ssize_t nr_hugepages_show(struct kobject *kobj, 3783 struct kobj_attribute *attr, char *buf) 3784 { 3785 return nr_hugepages_show_common(kobj, attr, buf); 3786 } 3787 3788 static ssize_t nr_hugepages_store(struct kobject *kobj, 3789 struct kobj_attribute *attr, const char *buf, size_t len) 3790 { 3791 return nr_hugepages_store_common(false, kobj, buf, len); 3792 } 3793 HSTATE_ATTR(nr_hugepages); 3794 3795 #ifdef CONFIG_NUMA 3796 3797 /* 3798 * hstate attribute for optionally mempolicy-based constraint on persistent 3799 * huge page alloc/free. 3800 */ 3801 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3802 struct kobj_attribute *attr, 3803 char *buf) 3804 { 3805 return nr_hugepages_show_common(kobj, attr, buf); 3806 } 3807 3808 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3809 struct kobj_attribute *attr, const char *buf, size_t len) 3810 { 3811 return nr_hugepages_store_common(true, kobj, buf, len); 3812 } 3813 HSTATE_ATTR(nr_hugepages_mempolicy); 3814 #endif 3815 3816 3817 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3818 struct kobj_attribute *attr, char *buf) 3819 { 3820 struct hstate *h = kobj_to_hstate(kobj, NULL); 3821 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3822 } 3823 3824 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3825 struct kobj_attribute *attr, const char *buf, size_t count) 3826 { 3827 int err; 3828 unsigned long input; 3829 struct hstate *h = kobj_to_hstate(kobj, NULL); 3830 3831 if (hstate_is_gigantic(h)) 3832 return -EINVAL; 3833 3834 err = kstrtoul(buf, 10, &input); 3835 if (err) 3836 return err; 3837 3838 spin_lock_irq(&hugetlb_lock); 3839 h->nr_overcommit_huge_pages = input; 3840 spin_unlock_irq(&hugetlb_lock); 3841 3842 return count; 3843 } 3844 HSTATE_ATTR(nr_overcommit_hugepages); 3845 3846 static ssize_t free_hugepages_show(struct kobject *kobj, 3847 struct kobj_attribute *attr, char *buf) 3848 { 3849 struct hstate *h; 3850 unsigned long free_huge_pages; 3851 int nid; 3852 3853 h = kobj_to_hstate(kobj, &nid); 3854 if (nid == NUMA_NO_NODE) 3855 free_huge_pages = h->free_huge_pages; 3856 else 3857 free_huge_pages = h->free_huge_pages_node[nid]; 3858 3859 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3860 } 3861 HSTATE_ATTR_RO(free_hugepages); 3862 3863 static ssize_t resv_hugepages_show(struct kobject *kobj, 3864 struct kobj_attribute *attr, char *buf) 3865 { 3866 struct hstate *h = kobj_to_hstate(kobj, NULL); 3867 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3868 } 3869 HSTATE_ATTR_RO(resv_hugepages); 3870 3871 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3872 struct kobj_attribute *attr, char *buf) 3873 { 3874 struct hstate *h; 3875 unsigned long surplus_huge_pages; 3876 int nid; 3877 3878 h = kobj_to_hstate(kobj, &nid); 3879 if (nid == NUMA_NO_NODE) 3880 surplus_huge_pages = h->surplus_huge_pages; 3881 else 3882 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3883 3884 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3885 } 3886 HSTATE_ATTR_RO(surplus_hugepages); 3887 3888 static ssize_t demote_store(struct kobject *kobj, 3889 struct kobj_attribute *attr, const char *buf, size_t len) 3890 { 3891 unsigned long nr_demote; 3892 unsigned long nr_available; 3893 nodemask_t nodes_allowed, *n_mask; 3894 struct hstate *h; 3895 int err; 3896 int nid; 3897 3898 err = kstrtoul(buf, 10, &nr_demote); 3899 if (err) 3900 return err; 3901 h = kobj_to_hstate(kobj, &nid); 3902 3903 if (nid != NUMA_NO_NODE) { 3904 init_nodemask_of_node(&nodes_allowed, nid); 3905 n_mask = &nodes_allowed; 3906 } else { 3907 n_mask = &node_states[N_MEMORY]; 3908 } 3909 3910 /* Synchronize with other sysfs operations modifying huge pages */ 3911 mutex_lock(&h->resize_lock); 3912 spin_lock_irq(&hugetlb_lock); 3913 3914 while (nr_demote) { 3915 /* 3916 * Check for available pages to demote each time thorough the 3917 * loop as demote_pool_huge_page will drop hugetlb_lock. 3918 */ 3919 if (nid != NUMA_NO_NODE) 3920 nr_available = h->free_huge_pages_node[nid]; 3921 else 3922 nr_available = h->free_huge_pages; 3923 nr_available -= h->resv_huge_pages; 3924 if (!nr_available) 3925 break; 3926 3927 err = demote_pool_huge_page(h, n_mask); 3928 if (err) 3929 break; 3930 3931 nr_demote--; 3932 } 3933 3934 spin_unlock_irq(&hugetlb_lock); 3935 mutex_unlock(&h->resize_lock); 3936 3937 if (err) 3938 return err; 3939 return len; 3940 } 3941 HSTATE_ATTR_WO(demote); 3942 3943 static ssize_t demote_size_show(struct kobject *kobj, 3944 struct kobj_attribute *attr, char *buf) 3945 { 3946 struct hstate *h = kobj_to_hstate(kobj, NULL); 3947 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3948 3949 return sysfs_emit(buf, "%lukB\n", demote_size); 3950 } 3951 3952 static ssize_t demote_size_store(struct kobject *kobj, 3953 struct kobj_attribute *attr, 3954 const char *buf, size_t count) 3955 { 3956 struct hstate *h, *demote_hstate; 3957 unsigned long demote_size; 3958 unsigned int demote_order; 3959 3960 demote_size = (unsigned long)memparse(buf, NULL); 3961 3962 demote_hstate = size_to_hstate(demote_size); 3963 if (!demote_hstate) 3964 return -EINVAL; 3965 demote_order = demote_hstate->order; 3966 if (demote_order < HUGETLB_PAGE_ORDER) 3967 return -EINVAL; 3968 3969 /* demote order must be smaller than hstate order */ 3970 h = kobj_to_hstate(kobj, NULL); 3971 if (demote_order >= h->order) 3972 return -EINVAL; 3973 3974 /* resize_lock synchronizes access to demote size and writes */ 3975 mutex_lock(&h->resize_lock); 3976 h->demote_order = demote_order; 3977 mutex_unlock(&h->resize_lock); 3978 3979 return count; 3980 } 3981 HSTATE_ATTR(demote_size); 3982 3983 static struct attribute *hstate_attrs[] = { 3984 &nr_hugepages_attr.attr, 3985 &nr_overcommit_hugepages_attr.attr, 3986 &free_hugepages_attr.attr, 3987 &resv_hugepages_attr.attr, 3988 &surplus_hugepages_attr.attr, 3989 #ifdef CONFIG_NUMA 3990 &nr_hugepages_mempolicy_attr.attr, 3991 #endif 3992 NULL, 3993 }; 3994 3995 static const struct attribute_group hstate_attr_group = { 3996 .attrs = hstate_attrs, 3997 }; 3998 3999 static struct attribute *hstate_demote_attrs[] = { 4000 &demote_size_attr.attr, 4001 &demote_attr.attr, 4002 NULL, 4003 }; 4004 4005 static const struct attribute_group hstate_demote_attr_group = { 4006 .attrs = hstate_demote_attrs, 4007 }; 4008 4009 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4010 struct kobject **hstate_kobjs, 4011 const struct attribute_group *hstate_attr_group) 4012 { 4013 int retval; 4014 int hi = hstate_index(h); 4015 4016 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4017 if (!hstate_kobjs[hi]) 4018 return -ENOMEM; 4019 4020 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4021 if (retval) { 4022 kobject_put(hstate_kobjs[hi]); 4023 hstate_kobjs[hi] = NULL; 4024 return retval; 4025 } 4026 4027 if (h->demote_order) { 4028 retval = sysfs_create_group(hstate_kobjs[hi], 4029 &hstate_demote_attr_group); 4030 if (retval) { 4031 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4032 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4033 kobject_put(hstate_kobjs[hi]); 4034 hstate_kobjs[hi] = NULL; 4035 return retval; 4036 } 4037 } 4038 4039 return 0; 4040 } 4041 4042 #ifdef CONFIG_NUMA 4043 static bool hugetlb_sysfs_initialized __ro_after_init; 4044 4045 /* 4046 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4047 * with node devices in node_devices[] using a parallel array. The array 4048 * index of a node device or _hstate == node id. 4049 * This is here to avoid any static dependency of the node device driver, in 4050 * the base kernel, on the hugetlb module. 4051 */ 4052 struct node_hstate { 4053 struct kobject *hugepages_kobj; 4054 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4055 }; 4056 static struct node_hstate node_hstates[MAX_NUMNODES]; 4057 4058 /* 4059 * A subset of global hstate attributes for node devices 4060 */ 4061 static struct attribute *per_node_hstate_attrs[] = { 4062 &nr_hugepages_attr.attr, 4063 &free_hugepages_attr.attr, 4064 &surplus_hugepages_attr.attr, 4065 NULL, 4066 }; 4067 4068 static const struct attribute_group per_node_hstate_attr_group = { 4069 .attrs = per_node_hstate_attrs, 4070 }; 4071 4072 /* 4073 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4074 * Returns node id via non-NULL nidp. 4075 */ 4076 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4077 { 4078 int nid; 4079 4080 for (nid = 0; nid < nr_node_ids; nid++) { 4081 struct node_hstate *nhs = &node_hstates[nid]; 4082 int i; 4083 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4084 if (nhs->hstate_kobjs[i] == kobj) { 4085 if (nidp) 4086 *nidp = nid; 4087 return &hstates[i]; 4088 } 4089 } 4090 4091 BUG(); 4092 return NULL; 4093 } 4094 4095 /* 4096 * Unregister hstate attributes from a single node device. 4097 * No-op if no hstate attributes attached. 4098 */ 4099 void hugetlb_unregister_node(struct node *node) 4100 { 4101 struct hstate *h; 4102 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4103 4104 if (!nhs->hugepages_kobj) 4105 return; /* no hstate attributes */ 4106 4107 for_each_hstate(h) { 4108 int idx = hstate_index(h); 4109 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4110 4111 if (!hstate_kobj) 4112 continue; 4113 if (h->demote_order) 4114 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4115 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4116 kobject_put(hstate_kobj); 4117 nhs->hstate_kobjs[idx] = NULL; 4118 } 4119 4120 kobject_put(nhs->hugepages_kobj); 4121 nhs->hugepages_kobj = NULL; 4122 } 4123 4124 4125 /* 4126 * Register hstate attributes for a single node device. 4127 * No-op if attributes already registered. 4128 */ 4129 void hugetlb_register_node(struct node *node) 4130 { 4131 struct hstate *h; 4132 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4133 int err; 4134 4135 if (!hugetlb_sysfs_initialized) 4136 return; 4137 4138 if (nhs->hugepages_kobj) 4139 return; /* already allocated */ 4140 4141 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4142 &node->dev.kobj); 4143 if (!nhs->hugepages_kobj) 4144 return; 4145 4146 for_each_hstate(h) { 4147 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4148 nhs->hstate_kobjs, 4149 &per_node_hstate_attr_group); 4150 if (err) { 4151 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4152 h->name, node->dev.id); 4153 hugetlb_unregister_node(node); 4154 break; 4155 } 4156 } 4157 } 4158 4159 /* 4160 * hugetlb init time: register hstate attributes for all registered node 4161 * devices of nodes that have memory. All on-line nodes should have 4162 * registered their associated device by this time. 4163 */ 4164 static void __init hugetlb_register_all_nodes(void) 4165 { 4166 int nid; 4167 4168 for_each_online_node(nid) 4169 hugetlb_register_node(node_devices[nid]); 4170 } 4171 #else /* !CONFIG_NUMA */ 4172 4173 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4174 { 4175 BUG(); 4176 if (nidp) 4177 *nidp = -1; 4178 return NULL; 4179 } 4180 4181 static void hugetlb_register_all_nodes(void) { } 4182 4183 #endif 4184 4185 #ifdef CONFIG_CMA 4186 static void __init hugetlb_cma_check(void); 4187 #else 4188 static inline __init void hugetlb_cma_check(void) 4189 { 4190 } 4191 #endif 4192 4193 static void __init hugetlb_sysfs_init(void) 4194 { 4195 struct hstate *h; 4196 int err; 4197 4198 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4199 if (!hugepages_kobj) 4200 return; 4201 4202 for_each_hstate(h) { 4203 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4204 hstate_kobjs, &hstate_attr_group); 4205 if (err) 4206 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4207 } 4208 4209 #ifdef CONFIG_NUMA 4210 hugetlb_sysfs_initialized = true; 4211 #endif 4212 hugetlb_register_all_nodes(); 4213 } 4214 4215 #ifdef CONFIG_SYSCTL 4216 static void hugetlb_sysctl_init(void); 4217 #else 4218 static inline void hugetlb_sysctl_init(void) { } 4219 #endif 4220 4221 static int __init hugetlb_init(void) 4222 { 4223 int i; 4224 4225 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4226 __NR_HPAGEFLAGS); 4227 4228 if (!hugepages_supported()) { 4229 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4230 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4231 return 0; 4232 } 4233 4234 /* 4235 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4236 * architectures depend on setup being done here. 4237 */ 4238 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4239 if (!parsed_default_hugepagesz) { 4240 /* 4241 * If we did not parse a default huge page size, set 4242 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4243 * number of huge pages for this default size was implicitly 4244 * specified, set that here as well. 4245 * Note that the implicit setting will overwrite an explicit 4246 * setting. A warning will be printed in this case. 4247 */ 4248 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4249 if (default_hstate_max_huge_pages) { 4250 if (default_hstate.max_huge_pages) { 4251 char buf[32]; 4252 4253 string_get_size(huge_page_size(&default_hstate), 4254 1, STRING_UNITS_2, buf, 32); 4255 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4256 default_hstate.max_huge_pages, buf); 4257 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4258 default_hstate_max_huge_pages); 4259 } 4260 default_hstate.max_huge_pages = 4261 default_hstate_max_huge_pages; 4262 4263 for_each_online_node(i) 4264 default_hstate.max_huge_pages_node[i] = 4265 default_hugepages_in_node[i]; 4266 } 4267 } 4268 4269 hugetlb_cma_check(); 4270 hugetlb_init_hstates(); 4271 gather_bootmem_prealloc(); 4272 report_hugepages(); 4273 4274 hugetlb_sysfs_init(); 4275 hugetlb_cgroup_file_init(); 4276 hugetlb_sysctl_init(); 4277 4278 #ifdef CONFIG_SMP 4279 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4280 #else 4281 num_fault_mutexes = 1; 4282 #endif 4283 hugetlb_fault_mutex_table = 4284 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4285 GFP_KERNEL); 4286 BUG_ON(!hugetlb_fault_mutex_table); 4287 4288 for (i = 0; i < num_fault_mutexes; i++) 4289 mutex_init(&hugetlb_fault_mutex_table[i]); 4290 return 0; 4291 } 4292 subsys_initcall(hugetlb_init); 4293 4294 /* Overwritten by architectures with more huge page sizes */ 4295 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4296 { 4297 return size == HPAGE_SIZE; 4298 } 4299 4300 void __init hugetlb_add_hstate(unsigned int order) 4301 { 4302 struct hstate *h; 4303 unsigned long i; 4304 4305 if (size_to_hstate(PAGE_SIZE << order)) { 4306 return; 4307 } 4308 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4309 BUG_ON(order == 0); 4310 h = &hstates[hugetlb_max_hstate++]; 4311 mutex_init(&h->resize_lock); 4312 h->order = order; 4313 h->mask = ~(huge_page_size(h) - 1); 4314 for (i = 0; i < MAX_NUMNODES; ++i) 4315 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4316 INIT_LIST_HEAD(&h->hugepage_activelist); 4317 h->next_nid_to_alloc = first_memory_node; 4318 h->next_nid_to_free = first_memory_node; 4319 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4320 huge_page_size(h)/SZ_1K); 4321 4322 parsed_hstate = h; 4323 } 4324 4325 bool __init __weak hugetlb_node_alloc_supported(void) 4326 { 4327 return true; 4328 } 4329 4330 static void __init hugepages_clear_pages_in_node(void) 4331 { 4332 if (!hugetlb_max_hstate) { 4333 default_hstate_max_huge_pages = 0; 4334 memset(default_hugepages_in_node, 0, 4335 sizeof(default_hugepages_in_node)); 4336 } else { 4337 parsed_hstate->max_huge_pages = 0; 4338 memset(parsed_hstate->max_huge_pages_node, 0, 4339 sizeof(parsed_hstate->max_huge_pages_node)); 4340 } 4341 } 4342 4343 /* 4344 * hugepages command line processing 4345 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4346 * specification. If not, ignore the hugepages value. hugepages can also 4347 * be the first huge page command line option in which case it implicitly 4348 * specifies the number of huge pages for the default size. 4349 */ 4350 static int __init hugepages_setup(char *s) 4351 { 4352 unsigned long *mhp; 4353 static unsigned long *last_mhp; 4354 int node = NUMA_NO_NODE; 4355 int count; 4356 unsigned long tmp; 4357 char *p = s; 4358 4359 if (!parsed_valid_hugepagesz) { 4360 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4361 parsed_valid_hugepagesz = true; 4362 return 1; 4363 } 4364 4365 /* 4366 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4367 * yet, so this hugepages= parameter goes to the "default hstate". 4368 * Otherwise, it goes with the previously parsed hugepagesz or 4369 * default_hugepagesz. 4370 */ 4371 else if (!hugetlb_max_hstate) 4372 mhp = &default_hstate_max_huge_pages; 4373 else 4374 mhp = &parsed_hstate->max_huge_pages; 4375 4376 if (mhp == last_mhp) { 4377 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4378 return 1; 4379 } 4380 4381 while (*p) { 4382 count = 0; 4383 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4384 goto invalid; 4385 /* Parameter is node format */ 4386 if (p[count] == ':') { 4387 if (!hugetlb_node_alloc_supported()) { 4388 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4389 return 1; 4390 } 4391 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4392 goto invalid; 4393 node = array_index_nospec(tmp, MAX_NUMNODES); 4394 p += count + 1; 4395 /* Parse hugepages */ 4396 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4397 goto invalid; 4398 if (!hugetlb_max_hstate) 4399 default_hugepages_in_node[node] = tmp; 4400 else 4401 parsed_hstate->max_huge_pages_node[node] = tmp; 4402 *mhp += tmp; 4403 /* Go to parse next node*/ 4404 if (p[count] == ',') 4405 p += count + 1; 4406 else 4407 break; 4408 } else { 4409 if (p != s) 4410 goto invalid; 4411 *mhp = tmp; 4412 break; 4413 } 4414 } 4415 4416 /* 4417 * Global state is always initialized later in hugetlb_init. 4418 * But we need to allocate gigantic hstates here early to still 4419 * use the bootmem allocator. 4420 */ 4421 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4422 hugetlb_hstate_alloc_pages(parsed_hstate); 4423 4424 last_mhp = mhp; 4425 4426 return 1; 4427 4428 invalid: 4429 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4430 hugepages_clear_pages_in_node(); 4431 return 1; 4432 } 4433 __setup("hugepages=", hugepages_setup); 4434 4435 /* 4436 * hugepagesz command line processing 4437 * A specific huge page size can only be specified once with hugepagesz. 4438 * hugepagesz is followed by hugepages on the command line. The global 4439 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4440 * hugepagesz argument was valid. 4441 */ 4442 static int __init hugepagesz_setup(char *s) 4443 { 4444 unsigned long size; 4445 struct hstate *h; 4446 4447 parsed_valid_hugepagesz = false; 4448 size = (unsigned long)memparse(s, NULL); 4449 4450 if (!arch_hugetlb_valid_size(size)) { 4451 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4452 return 1; 4453 } 4454 4455 h = size_to_hstate(size); 4456 if (h) { 4457 /* 4458 * hstate for this size already exists. This is normally 4459 * an error, but is allowed if the existing hstate is the 4460 * default hstate. More specifically, it is only allowed if 4461 * the number of huge pages for the default hstate was not 4462 * previously specified. 4463 */ 4464 if (!parsed_default_hugepagesz || h != &default_hstate || 4465 default_hstate.max_huge_pages) { 4466 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4467 return 1; 4468 } 4469 4470 /* 4471 * No need to call hugetlb_add_hstate() as hstate already 4472 * exists. But, do set parsed_hstate so that a following 4473 * hugepages= parameter will be applied to this hstate. 4474 */ 4475 parsed_hstate = h; 4476 parsed_valid_hugepagesz = true; 4477 return 1; 4478 } 4479 4480 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4481 parsed_valid_hugepagesz = true; 4482 return 1; 4483 } 4484 __setup("hugepagesz=", hugepagesz_setup); 4485 4486 /* 4487 * default_hugepagesz command line input 4488 * Only one instance of default_hugepagesz allowed on command line. 4489 */ 4490 static int __init default_hugepagesz_setup(char *s) 4491 { 4492 unsigned long size; 4493 int i; 4494 4495 parsed_valid_hugepagesz = false; 4496 if (parsed_default_hugepagesz) { 4497 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4498 return 1; 4499 } 4500 4501 size = (unsigned long)memparse(s, NULL); 4502 4503 if (!arch_hugetlb_valid_size(size)) { 4504 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4505 return 1; 4506 } 4507 4508 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4509 parsed_valid_hugepagesz = true; 4510 parsed_default_hugepagesz = true; 4511 default_hstate_idx = hstate_index(size_to_hstate(size)); 4512 4513 /* 4514 * The number of default huge pages (for this size) could have been 4515 * specified as the first hugetlb parameter: hugepages=X. If so, 4516 * then default_hstate_max_huge_pages is set. If the default huge 4517 * page size is gigantic (> MAX_ORDER), then the pages must be 4518 * allocated here from bootmem allocator. 4519 */ 4520 if (default_hstate_max_huge_pages) { 4521 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4522 for_each_online_node(i) 4523 default_hstate.max_huge_pages_node[i] = 4524 default_hugepages_in_node[i]; 4525 if (hstate_is_gigantic(&default_hstate)) 4526 hugetlb_hstate_alloc_pages(&default_hstate); 4527 default_hstate_max_huge_pages = 0; 4528 } 4529 4530 return 1; 4531 } 4532 __setup("default_hugepagesz=", default_hugepagesz_setup); 4533 4534 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4535 { 4536 #ifdef CONFIG_NUMA 4537 struct mempolicy *mpol = get_task_policy(current); 4538 4539 /* 4540 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4541 * (from policy_nodemask) specifically for hugetlb case 4542 */ 4543 if (mpol->mode == MPOL_BIND && 4544 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4545 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4546 return &mpol->nodes; 4547 #endif 4548 return NULL; 4549 } 4550 4551 static unsigned int allowed_mems_nr(struct hstate *h) 4552 { 4553 int node; 4554 unsigned int nr = 0; 4555 nodemask_t *mbind_nodemask; 4556 unsigned int *array = h->free_huge_pages_node; 4557 gfp_t gfp_mask = htlb_alloc_mask(h); 4558 4559 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4560 for_each_node_mask(node, cpuset_current_mems_allowed) { 4561 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4562 nr += array[node]; 4563 } 4564 4565 return nr; 4566 } 4567 4568 #ifdef CONFIG_SYSCTL 4569 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4570 void *buffer, size_t *length, 4571 loff_t *ppos, unsigned long *out) 4572 { 4573 struct ctl_table dup_table; 4574 4575 /* 4576 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4577 * can duplicate the @table and alter the duplicate of it. 4578 */ 4579 dup_table = *table; 4580 dup_table.data = out; 4581 4582 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4583 } 4584 4585 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4586 struct ctl_table *table, int write, 4587 void *buffer, size_t *length, loff_t *ppos) 4588 { 4589 struct hstate *h = &default_hstate; 4590 unsigned long tmp = h->max_huge_pages; 4591 int ret; 4592 4593 if (!hugepages_supported()) 4594 return -EOPNOTSUPP; 4595 4596 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4597 &tmp); 4598 if (ret) 4599 goto out; 4600 4601 if (write) 4602 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4603 NUMA_NO_NODE, tmp, *length); 4604 out: 4605 return ret; 4606 } 4607 4608 static int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4609 void *buffer, size_t *length, loff_t *ppos) 4610 { 4611 4612 return hugetlb_sysctl_handler_common(false, table, write, 4613 buffer, length, ppos); 4614 } 4615 4616 #ifdef CONFIG_NUMA 4617 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4618 void *buffer, size_t *length, loff_t *ppos) 4619 { 4620 return hugetlb_sysctl_handler_common(true, table, write, 4621 buffer, length, ppos); 4622 } 4623 #endif /* CONFIG_NUMA */ 4624 4625 static int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4626 void *buffer, size_t *length, loff_t *ppos) 4627 { 4628 struct hstate *h = &default_hstate; 4629 unsigned long tmp; 4630 int ret; 4631 4632 if (!hugepages_supported()) 4633 return -EOPNOTSUPP; 4634 4635 tmp = h->nr_overcommit_huge_pages; 4636 4637 if (write && hstate_is_gigantic(h)) 4638 return -EINVAL; 4639 4640 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4641 &tmp); 4642 if (ret) 4643 goto out; 4644 4645 if (write) { 4646 spin_lock_irq(&hugetlb_lock); 4647 h->nr_overcommit_huge_pages = tmp; 4648 spin_unlock_irq(&hugetlb_lock); 4649 } 4650 out: 4651 return ret; 4652 } 4653 4654 static struct ctl_table hugetlb_table[] = { 4655 { 4656 .procname = "nr_hugepages", 4657 .data = NULL, 4658 .maxlen = sizeof(unsigned long), 4659 .mode = 0644, 4660 .proc_handler = hugetlb_sysctl_handler, 4661 }, 4662 #ifdef CONFIG_NUMA 4663 { 4664 .procname = "nr_hugepages_mempolicy", 4665 .data = NULL, 4666 .maxlen = sizeof(unsigned long), 4667 .mode = 0644, 4668 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 4669 }, 4670 #endif 4671 { 4672 .procname = "hugetlb_shm_group", 4673 .data = &sysctl_hugetlb_shm_group, 4674 .maxlen = sizeof(gid_t), 4675 .mode = 0644, 4676 .proc_handler = proc_dointvec, 4677 }, 4678 { 4679 .procname = "nr_overcommit_hugepages", 4680 .data = NULL, 4681 .maxlen = sizeof(unsigned long), 4682 .mode = 0644, 4683 .proc_handler = hugetlb_overcommit_handler, 4684 }, 4685 { } 4686 }; 4687 4688 static void hugetlb_sysctl_init(void) 4689 { 4690 register_sysctl_init("vm", hugetlb_table); 4691 } 4692 #endif /* CONFIG_SYSCTL */ 4693 4694 void hugetlb_report_meminfo(struct seq_file *m) 4695 { 4696 struct hstate *h; 4697 unsigned long total = 0; 4698 4699 if (!hugepages_supported()) 4700 return; 4701 4702 for_each_hstate(h) { 4703 unsigned long count = h->nr_huge_pages; 4704 4705 total += huge_page_size(h) * count; 4706 4707 if (h == &default_hstate) 4708 seq_printf(m, 4709 "HugePages_Total: %5lu\n" 4710 "HugePages_Free: %5lu\n" 4711 "HugePages_Rsvd: %5lu\n" 4712 "HugePages_Surp: %5lu\n" 4713 "Hugepagesize: %8lu kB\n", 4714 count, 4715 h->free_huge_pages, 4716 h->resv_huge_pages, 4717 h->surplus_huge_pages, 4718 huge_page_size(h) / SZ_1K); 4719 } 4720 4721 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4722 } 4723 4724 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4725 { 4726 struct hstate *h = &default_hstate; 4727 4728 if (!hugepages_supported()) 4729 return 0; 4730 4731 return sysfs_emit_at(buf, len, 4732 "Node %d HugePages_Total: %5u\n" 4733 "Node %d HugePages_Free: %5u\n" 4734 "Node %d HugePages_Surp: %5u\n", 4735 nid, h->nr_huge_pages_node[nid], 4736 nid, h->free_huge_pages_node[nid], 4737 nid, h->surplus_huge_pages_node[nid]); 4738 } 4739 4740 void hugetlb_show_meminfo_node(int nid) 4741 { 4742 struct hstate *h; 4743 4744 if (!hugepages_supported()) 4745 return; 4746 4747 for_each_hstate(h) 4748 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4749 nid, 4750 h->nr_huge_pages_node[nid], 4751 h->free_huge_pages_node[nid], 4752 h->surplus_huge_pages_node[nid], 4753 huge_page_size(h) / SZ_1K); 4754 } 4755 4756 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4757 { 4758 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4759 K(atomic_long_read(&mm->hugetlb_usage))); 4760 } 4761 4762 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4763 unsigned long hugetlb_total_pages(void) 4764 { 4765 struct hstate *h; 4766 unsigned long nr_total_pages = 0; 4767 4768 for_each_hstate(h) 4769 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4770 return nr_total_pages; 4771 } 4772 4773 static int hugetlb_acct_memory(struct hstate *h, long delta) 4774 { 4775 int ret = -ENOMEM; 4776 4777 if (!delta) 4778 return 0; 4779 4780 spin_lock_irq(&hugetlb_lock); 4781 /* 4782 * When cpuset is configured, it breaks the strict hugetlb page 4783 * reservation as the accounting is done on a global variable. Such 4784 * reservation is completely rubbish in the presence of cpuset because 4785 * the reservation is not checked against page availability for the 4786 * current cpuset. Application can still potentially OOM'ed by kernel 4787 * with lack of free htlb page in cpuset that the task is in. 4788 * Attempt to enforce strict accounting with cpuset is almost 4789 * impossible (or too ugly) because cpuset is too fluid that 4790 * task or memory node can be dynamically moved between cpusets. 4791 * 4792 * The change of semantics for shared hugetlb mapping with cpuset is 4793 * undesirable. However, in order to preserve some of the semantics, 4794 * we fall back to check against current free page availability as 4795 * a best attempt and hopefully to minimize the impact of changing 4796 * semantics that cpuset has. 4797 * 4798 * Apart from cpuset, we also have memory policy mechanism that 4799 * also determines from which node the kernel will allocate memory 4800 * in a NUMA system. So similar to cpuset, we also should consider 4801 * the memory policy of the current task. Similar to the description 4802 * above. 4803 */ 4804 if (delta > 0) { 4805 if (gather_surplus_pages(h, delta) < 0) 4806 goto out; 4807 4808 if (delta > allowed_mems_nr(h)) { 4809 return_unused_surplus_pages(h, delta); 4810 goto out; 4811 } 4812 } 4813 4814 ret = 0; 4815 if (delta < 0) 4816 return_unused_surplus_pages(h, (unsigned long) -delta); 4817 4818 out: 4819 spin_unlock_irq(&hugetlb_lock); 4820 return ret; 4821 } 4822 4823 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4824 { 4825 struct resv_map *resv = vma_resv_map(vma); 4826 4827 /* 4828 * HPAGE_RESV_OWNER indicates a private mapping. 4829 * This new VMA should share its siblings reservation map if present. 4830 * The VMA will only ever have a valid reservation map pointer where 4831 * it is being copied for another still existing VMA. As that VMA 4832 * has a reference to the reservation map it cannot disappear until 4833 * after this open call completes. It is therefore safe to take a 4834 * new reference here without additional locking. 4835 */ 4836 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4837 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4838 kref_get(&resv->refs); 4839 } 4840 4841 /* 4842 * vma_lock structure for sharable mappings is vma specific. 4843 * Clear old pointer (if copied via vm_area_dup) and allocate 4844 * new structure. Before clearing, make sure vma_lock is not 4845 * for this vma. 4846 */ 4847 if (vma->vm_flags & VM_MAYSHARE) { 4848 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 4849 4850 if (vma_lock) { 4851 if (vma_lock->vma != vma) { 4852 vma->vm_private_data = NULL; 4853 hugetlb_vma_lock_alloc(vma); 4854 } else 4855 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 4856 } else 4857 hugetlb_vma_lock_alloc(vma); 4858 } 4859 } 4860 4861 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4862 { 4863 struct hstate *h = hstate_vma(vma); 4864 struct resv_map *resv; 4865 struct hugepage_subpool *spool = subpool_vma(vma); 4866 unsigned long reserve, start, end; 4867 long gbl_reserve; 4868 4869 hugetlb_vma_lock_free(vma); 4870 4871 resv = vma_resv_map(vma); 4872 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4873 return; 4874 4875 start = vma_hugecache_offset(h, vma, vma->vm_start); 4876 end = vma_hugecache_offset(h, vma, vma->vm_end); 4877 4878 reserve = (end - start) - region_count(resv, start, end); 4879 hugetlb_cgroup_uncharge_counter(resv, start, end); 4880 if (reserve) { 4881 /* 4882 * Decrement reserve counts. The global reserve count may be 4883 * adjusted if the subpool has a minimum size. 4884 */ 4885 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4886 hugetlb_acct_memory(h, -gbl_reserve); 4887 } 4888 4889 kref_put(&resv->refs, resv_map_release); 4890 } 4891 4892 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4893 { 4894 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4895 return -EINVAL; 4896 4897 /* 4898 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 4899 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 4900 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 4901 */ 4902 if (addr & ~PUD_MASK) { 4903 /* 4904 * hugetlb_vm_op_split is called right before we attempt to 4905 * split the VMA. We will need to unshare PMDs in the old and 4906 * new VMAs, so let's unshare before we split. 4907 */ 4908 unsigned long floor = addr & PUD_MASK; 4909 unsigned long ceil = floor + PUD_SIZE; 4910 4911 if (floor >= vma->vm_start && ceil <= vma->vm_end) 4912 hugetlb_unshare_pmds(vma, floor, ceil); 4913 } 4914 4915 return 0; 4916 } 4917 4918 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4919 { 4920 return huge_page_size(hstate_vma(vma)); 4921 } 4922 4923 /* 4924 * We cannot handle pagefaults against hugetlb pages at all. They cause 4925 * handle_mm_fault() to try to instantiate regular-sized pages in the 4926 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4927 * this far. 4928 */ 4929 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4930 { 4931 BUG(); 4932 return 0; 4933 } 4934 4935 /* 4936 * When a new function is introduced to vm_operations_struct and added 4937 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4938 * This is because under System V memory model, mappings created via 4939 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4940 * their original vm_ops are overwritten with shm_vm_ops. 4941 */ 4942 const struct vm_operations_struct hugetlb_vm_ops = { 4943 .fault = hugetlb_vm_op_fault, 4944 .open = hugetlb_vm_op_open, 4945 .close = hugetlb_vm_op_close, 4946 .may_split = hugetlb_vm_op_split, 4947 .pagesize = hugetlb_vm_op_pagesize, 4948 }; 4949 4950 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4951 int writable) 4952 { 4953 pte_t entry; 4954 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4955 4956 if (writable) { 4957 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4958 vma->vm_page_prot))); 4959 } else { 4960 entry = huge_pte_wrprotect(mk_huge_pte(page, 4961 vma->vm_page_prot)); 4962 } 4963 entry = pte_mkyoung(entry); 4964 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4965 4966 return entry; 4967 } 4968 4969 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4970 unsigned long address, pte_t *ptep) 4971 { 4972 pte_t entry; 4973 4974 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4975 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4976 update_mmu_cache(vma, address, ptep); 4977 } 4978 4979 bool is_hugetlb_entry_migration(pte_t pte) 4980 { 4981 swp_entry_t swp; 4982 4983 if (huge_pte_none(pte) || pte_present(pte)) 4984 return false; 4985 swp = pte_to_swp_entry(pte); 4986 if (is_migration_entry(swp)) 4987 return true; 4988 else 4989 return false; 4990 } 4991 4992 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4993 { 4994 swp_entry_t swp; 4995 4996 if (huge_pte_none(pte) || pte_present(pte)) 4997 return false; 4998 swp = pte_to_swp_entry(pte); 4999 if (is_hwpoison_entry(swp)) 5000 return true; 5001 else 5002 return false; 5003 } 5004 5005 static void 5006 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5007 struct folio *new_folio, pte_t old, unsigned long sz) 5008 { 5009 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5010 5011 __folio_mark_uptodate(new_folio); 5012 hugepage_add_new_anon_rmap(new_folio, vma, addr); 5013 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5014 newpte = huge_pte_mkuffd_wp(newpte); 5015 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5016 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5017 folio_set_hugetlb_migratable(new_folio); 5018 } 5019 5020 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5021 struct vm_area_struct *dst_vma, 5022 struct vm_area_struct *src_vma) 5023 { 5024 pte_t *src_pte, *dst_pte, entry; 5025 struct folio *pte_folio; 5026 unsigned long addr; 5027 bool cow = is_cow_mapping(src_vma->vm_flags); 5028 struct hstate *h = hstate_vma(src_vma); 5029 unsigned long sz = huge_page_size(h); 5030 unsigned long npages = pages_per_huge_page(h); 5031 struct mmu_notifier_range range; 5032 unsigned long last_addr_mask; 5033 int ret = 0; 5034 5035 if (cow) { 5036 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5037 src_vma->vm_start, 5038 src_vma->vm_end); 5039 mmu_notifier_invalidate_range_start(&range); 5040 vma_assert_write_locked(src_vma); 5041 raw_write_seqcount_begin(&src->write_protect_seq); 5042 } else { 5043 /* 5044 * For shared mappings the vma lock must be held before 5045 * calling hugetlb_walk() in the src vma. Otherwise, the 5046 * returned ptep could go away if part of a shared pmd and 5047 * another thread calls huge_pmd_unshare. 5048 */ 5049 hugetlb_vma_lock_read(src_vma); 5050 } 5051 5052 last_addr_mask = hugetlb_mask_last_page(h); 5053 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5054 spinlock_t *src_ptl, *dst_ptl; 5055 src_pte = hugetlb_walk(src_vma, addr, sz); 5056 if (!src_pte) { 5057 addr |= last_addr_mask; 5058 continue; 5059 } 5060 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5061 if (!dst_pte) { 5062 ret = -ENOMEM; 5063 break; 5064 } 5065 5066 /* 5067 * If the pagetables are shared don't copy or take references. 5068 * 5069 * dst_pte == src_pte is the common case of src/dest sharing. 5070 * However, src could have 'unshared' and dst shares with 5071 * another vma. So page_count of ptep page is checked instead 5072 * to reliably determine whether pte is shared. 5073 */ 5074 if (page_count(virt_to_page(dst_pte)) > 1) { 5075 addr |= last_addr_mask; 5076 continue; 5077 } 5078 5079 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5080 src_ptl = huge_pte_lockptr(h, src, src_pte); 5081 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5082 entry = huge_ptep_get(src_pte); 5083 again: 5084 if (huge_pte_none(entry)) { 5085 /* 5086 * Skip if src entry none. 5087 */ 5088 ; 5089 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5090 if (!userfaultfd_wp(dst_vma)) 5091 entry = huge_pte_clear_uffd_wp(entry); 5092 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5093 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5094 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5095 bool uffd_wp = pte_swp_uffd_wp(entry); 5096 5097 if (!is_readable_migration_entry(swp_entry) && cow) { 5098 /* 5099 * COW mappings require pages in both 5100 * parent and child to be set to read. 5101 */ 5102 swp_entry = make_readable_migration_entry( 5103 swp_offset(swp_entry)); 5104 entry = swp_entry_to_pte(swp_entry); 5105 if (userfaultfd_wp(src_vma) && uffd_wp) 5106 entry = pte_swp_mkuffd_wp(entry); 5107 set_huge_pte_at(src, addr, src_pte, entry, sz); 5108 } 5109 if (!userfaultfd_wp(dst_vma)) 5110 entry = huge_pte_clear_uffd_wp(entry); 5111 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5112 } else if (unlikely(is_pte_marker(entry))) { 5113 pte_marker marker = copy_pte_marker( 5114 pte_to_swp_entry(entry), dst_vma); 5115 5116 if (marker) 5117 set_huge_pte_at(dst, addr, dst_pte, 5118 make_pte_marker(marker), sz); 5119 } else { 5120 entry = huge_ptep_get(src_pte); 5121 pte_folio = page_folio(pte_page(entry)); 5122 folio_get(pte_folio); 5123 5124 /* 5125 * Failing to duplicate the anon rmap is a rare case 5126 * where we see pinned hugetlb pages while they're 5127 * prone to COW. We need to do the COW earlier during 5128 * fork. 5129 * 5130 * When pre-allocating the page or copying data, we 5131 * need to be without the pgtable locks since we could 5132 * sleep during the process. 5133 */ 5134 if (!folio_test_anon(pte_folio)) { 5135 page_dup_file_rmap(&pte_folio->page, true); 5136 } else if (page_try_dup_anon_rmap(&pte_folio->page, 5137 true, src_vma)) { 5138 pte_t src_pte_old = entry; 5139 struct folio *new_folio; 5140 5141 spin_unlock(src_ptl); 5142 spin_unlock(dst_ptl); 5143 /* Do not use reserve as it's private owned */ 5144 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5145 if (IS_ERR(new_folio)) { 5146 folio_put(pte_folio); 5147 ret = PTR_ERR(new_folio); 5148 break; 5149 } 5150 ret = copy_user_large_folio(new_folio, 5151 pte_folio, 5152 addr, dst_vma); 5153 folio_put(pte_folio); 5154 if (ret) { 5155 folio_put(new_folio); 5156 break; 5157 } 5158 5159 /* Install the new hugetlb folio if src pte stable */ 5160 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5161 src_ptl = huge_pte_lockptr(h, src, src_pte); 5162 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5163 entry = huge_ptep_get(src_pte); 5164 if (!pte_same(src_pte_old, entry)) { 5165 restore_reserve_on_error(h, dst_vma, addr, 5166 new_folio); 5167 folio_put(new_folio); 5168 /* huge_ptep of dst_pte won't change as in child */ 5169 goto again; 5170 } 5171 hugetlb_install_folio(dst_vma, dst_pte, addr, 5172 new_folio, src_pte_old, sz); 5173 spin_unlock(src_ptl); 5174 spin_unlock(dst_ptl); 5175 continue; 5176 } 5177 5178 if (cow) { 5179 /* 5180 * No need to notify as we are downgrading page 5181 * table protection not changing it to point 5182 * to a new page. 5183 * 5184 * See Documentation/mm/mmu_notifier.rst 5185 */ 5186 huge_ptep_set_wrprotect(src, addr, src_pte); 5187 entry = huge_pte_wrprotect(entry); 5188 } 5189 5190 if (!userfaultfd_wp(dst_vma)) 5191 entry = huge_pte_clear_uffd_wp(entry); 5192 5193 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5194 hugetlb_count_add(npages, dst); 5195 } 5196 spin_unlock(src_ptl); 5197 spin_unlock(dst_ptl); 5198 } 5199 5200 if (cow) { 5201 raw_write_seqcount_end(&src->write_protect_seq); 5202 mmu_notifier_invalidate_range_end(&range); 5203 } else { 5204 hugetlb_vma_unlock_read(src_vma); 5205 } 5206 5207 return ret; 5208 } 5209 5210 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5211 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5212 unsigned long sz) 5213 { 5214 struct hstate *h = hstate_vma(vma); 5215 struct mm_struct *mm = vma->vm_mm; 5216 spinlock_t *src_ptl, *dst_ptl; 5217 pte_t pte; 5218 5219 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5220 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5221 5222 /* 5223 * We don't have to worry about the ordering of src and dst ptlocks 5224 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5225 */ 5226 if (src_ptl != dst_ptl) 5227 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5228 5229 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5230 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5231 5232 if (src_ptl != dst_ptl) 5233 spin_unlock(src_ptl); 5234 spin_unlock(dst_ptl); 5235 } 5236 5237 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5238 struct vm_area_struct *new_vma, 5239 unsigned long old_addr, unsigned long new_addr, 5240 unsigned long len) 5241 { 5242 struct hstate *h = hstate_vma(vma); 5243 struct address_space *mapping = vma->vm_file->f_mapping; 5244 unsigned long sz = huge_page_size(h); 5245 struct mm_struct *mm = vma->vm_mm; 5246 unsigned long old_end = old_addr + len; 5247 unsigned long last_addr_mask; 5248 pte_t *src_pte, *dst_pte; 5249 struct mmu_notifier_range range; 5250 bool shared_pmd = false; 5251 5252 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5253 old_end); 5254 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5255 /* 5256 * In case of shared PMDs, we should cover the maximum possible 5257 * range. 5258 */ 5259 flush_cache_range(vma, range.start, range.end); 5260 5261 mmu_notifier_invalidate_range_start(&range); 5262 last_addr_mask = hugetlb_mask_last_page(h); 5263 /* Prevent race with file truncation */ 5264 hugetlb_vma_lock_write(vma); 5265 i_mmap_lock_write(mapping); 5266 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5267 src_pte = hugetlb_walk(vma, old_addr, sz); 5268 if (!src_pte) { 5269 old_addr |= last_addr_mask; 5270 new_addr |= last_addr_mask; 5271 continue; 5272 } 5273 if (huge_pte_none(huge_ptep_get(src_pte))) 5274 continue; 5275 5276 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5277 shared_pmd = true; 5278 old_addr |= last_addr_mask; 5279 new_addr |= last_addr_mask; 5280 continue; 5281 } 5282 5283 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5284 if (!dst_pte) 5285 break; 5286 5287 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5288 } 5289 5290 if (shared_pmd) 5291 flush_hugetlb_tlb_range(vma, range.start, range.end); 5292 else 5293 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5294 mmu_notifier_invalidate_range_end(&range); 5295 i_mmap_unlock_write(mapping); 5296 hugetlb_vma_unlock_write(vma); 5297 5298 return len + old_addr - old_end; 5299 } 5300 5301 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5302 unsigned long start, unsigned long end, 5303 struct page *ref_page, zap_flags_t zap_flags) 5304 { 5305 struct mm_struct *mm = vma->vm_mm; 5306 unsigned long address; 5307 pte_t *ptep; 5308 pte_t pte; 5309 spinlock_t *ptl; 5310 struct page *page; 5311 struct hstate *h = hstate_vma(vma); 5312 unsigned long sz = huge_page_size(h); 5313 unsigned long last_addr_mask; 5314 bool force_flush = false; 5315 5316 WARN_ON(!is_vm_hugetlb_page(vma)); 5317 BUG_ON(start & ~huge_page_mask(h)); 5318 BUG_ON(end & ~huge_page_mask(h)); 5319 5320 /* 5321 * This is a hugetlb vma, all the pte entries should point 5322 * to huge page. 5323 */ 5324 tlb_change_page_size(tlb, sz); 5325 tlb_start_vma(tlb, vma); 5326 5327 last_addr_mask = hugetlb_mask_last_page(h); 5328 address = start; 5329 for (; address < end; address += sz) { 5330 ptep = hugetlb_walk(vma, address, sz); 5331 if (!ptep) { 5332 address |= last_addr_mask; 5333 continue; 5334 } 5335 5336 ptl = huge_pte_lock(h, mm, ptep); 5337 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5338 spin_unlock(ptl); 5339 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5340 force_flush = true; 5341 address |= last_addr_mask; 5342 continue; 5343 } 5344 5345 pte = huge_ptep_get(ptep); 5346 if (huge_pte_none(pte)) { 5347 spin_unlock(ptl); 5348 continue; 5349 } 5350 5351 /* 5352 * Migrating hugepage or HWPoisoned hugepage is already 5353 * unmapped and its refcount is dropped, so just clear pte here. 5354 */ 5355 if (unlikely(!pte_present(pte))) { 5356 /* 5357 * If the pte was wr-protected by uffd-wp in any of the 5358 * swap forms, meanwhile the caller does not want to 5359 * drop the uffd-wp bit in this zap, then replace the 5360 * pte with a marker. 5361 */ 5362 if (pte_swp_uffd_wp_any(pte) && 5363 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5364 set_huge_pte_at(mm, address, ptep, 5365 make_pte_marker(PTE_MARKER_UFFD_WP), 5366 sz); 5367 else 5368 huge_pte_clear(mm, address, ptep, sz); 5369 spin_unlock(ptl); 5370 continue; 5371 } 5372 5373 page = pte_page(pte); 5374 /* 5375 * If a reference page is supplied, it is because a specific 5376 * page is being unmapped, not a range. Ensure the page we 5377 * are about to unmap is the actual page of interest. 5378 */ 5379 if (ref_page) { 5380 if (page != ref_page) { 5381 spin_unlock(ptl); 5382 continue; 5383 } 5384 /* 5385 * Mark the VMA as having unmapped its page so that 5386 * future faults in this VMA will fail rather than 5387 * looking like data was lost 5388 */ 5389 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5390 } 5391 5392 pte = huge_ptep_get_and_clear(mm, address, ptep); 5393 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5394 if (huge_pte_dirty(pte)) 5395 set_page_dirty(page); 5396 /* Leave a uffd-wp pte marker if needed */ 5397 if (huge_pte_uffd_wp(pte) && 5398 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5399 set_huge_pte_at(mm, address, ptep, 5400 make_pte_marker(PTE_MARKER_UFFD_WP), 5401 sz); 5402 hugetlb_count_sub(pages_per_huge_page(h), mm); 5403 page_remove_rmap(page, vma, true); 5404 5405 spin_unlock(ptl); 5406 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5407 /* 5408 * Bail out after unmapping reference page if supplied 5409 */ 5410 if (ref_page) 5411 break; 5412 } 5413 tlb_end_vma(tlb, vma); 5414 5415 /* 5416 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5417 * could defer the flush until now, since by holding i_mmap_rwsem we 5418 * guaranteed that the last refernece would not be dropped. But we must 5419 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5420 * dropped and the last reference to the shared PMDs page might be 5421 * dropped as well. 5422 * 5423 * In theory we could defer the freeing of the PMD pages as well, but 5424 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5425 * detect sharing, so we cannot defer the release of the page either. 5426 * Instead, do flush now. 5427 */ 5428 if (force_flush) 5429 tlb_flush_mmu_tlbonly(tlb); 5430 } 5431 5432 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5433 unsigned long *start, unsigned long *end) 5434 { 5435 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5436 return; 5437 5438 adjust_range_if_pmd_sharing_possible(vma, start, end); 5439 hugetlb_vma_lock_write(vma); 5440 if (vma->vm_file) 5441 i_mmap_lock_write(vma->vm_file->f_mapping); 5442 } 5443 5444 void __hugetlb_zap_end(struct vm_area_struct *vma, 5445 struct zap_details *details) 5446 { 5447 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5448 5449 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5450 return; 5451 5452 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5453 /* 5454 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5455 * When the vma_lock is freed, this makes the vma ineligible 5456 * for pmd sharing. And, i_mmap_rwsem is required to set up 5457 * pmd sharing. This is important as page tables for this 5458 * unmapped range will be asynchrously deleted. If the page 5459 * tables are shared, there will be issues when accessed by 5460 * someone else. 5461 */ 5462 __hugetlb_vma_unlock_write_free(vma); 5463 } else { 5464 hugetlb_vma_unlock_write(vma); 5465 } 5466 5467 if (vma->vm_file) 5468 i_mmap_unlock_write(vma->vm_file->f_mapping); 5469 } 5470 5471 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5472 unsigned long end, struct page *ref_page, 5473 zap_flags_t zap_flags) 5474 { 5475 struct mmu_notifier_range range; 5476 struct mmu_gather tlb; 5477 5478 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5479 start, end); 5480 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5481 mmu_notifier_invalidate_range_start(&range); 5482 tlb_gather_mmu(&tlb, vma->vm_mm); 5483 5484 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5485 5486 mmu_notifier_invalidate_range_end(&range); 5487 tlb_finish_mmu(&tlb); 5488 } 5489 5490 /* 5491 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5492 * mapping it owns the reserve page for. The intention is to unmap the page 5493 * from other VMAs and let the children be SIGKILLed if they are faulting the 5494 * same region. 5495 */ 5496 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5497 struct page *page, unsigned long address) 5498 { 5499 struct hstate *h = hstate_vma(vma); 5500 struct vm_area_struct *iter_vma; 5501 struct address_space *mapping; 5502 pgoff_t pgoff; 5503 5504 /* 5505 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5506 * from page cache lookup which is in HPAGE_SIZE units. 5507 */ 5508 address = address & huge_page_mask(h); 5509 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5510 vma->vm_pgoff; 5511 mapping = vma->vm_file->f_mapping; 5512 5513 /* 5514 * Take the mapping lock for the duration of the table walk. As 5515 * this mapping should be shared between all the VMAs, 5516 * __unmap_hugepage_range() is called as the lock is already held 5517 */ 5518 i_mmap_lock_write(mapping); 5519 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5520 /* Do not unmap the current VMA */ 5521 if (iter_vma == vma) 5522 continue; 5523 5524 /* 5525 * Shared VMAs have their own reserves and do not affect 5526 * MAP_PRIVATE accounting but it is possible that a shared 5527 * VMA is using the same page so check and skip such VMAs. 5528 */ 5529 if (iter_vma->vm_flags & VM_MAYSHARE) 5530 continue; 5531 5532 /* 5533 * Unmap the page from other VMAs without their own reserves. 5534 * They get marked to be SIGKILLed if they fault in these 5535 * areas. This is because a future no-page fault on this VMA 5536 * could insert a zeroed page instead of the data existing 5537 * from the time of fork. This would look like data corruption 5538 */ 5539 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5540 unmap_hugepage_range(iter_vma, address, 5541 address + huge_page_size(h), page, 0); 5542 } 5543 i_mmap_unlock_write(mapping); 5544 } 5545 5546 /* 5547 * hugetlb_wp() should be called with page lock of the original hugepage held. 5548 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5549 * cannot race with other handlers or page migration. 5550 * Keep the pte_same checks anyway to make transition from the mutex easier. 5551 */ 5552 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5553 unsigned long address, pte_t *ptep, unsigned int flags, 5554 struct folio *pagecache_folio, spinlock_t *ptl) 5555 { 5556 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5557 pte_t pte = huge_ptep_get(ptep); 5558 struct hstate *h = hstate_vma(vma); 5559 struct folio *old_folio; 5560 struct folio *new_folio; 5561 int outside_reserve = 0; 5562 vm_fault_t ret = 0; 5563 unsigned long haddr = address & huge_page_mask(h); 5564 struct mmu_notifier_range range; 5565 5566 /* 5567 * Never handle CoW for uffd-wp protected pages. It should be only 5568 * handled when the uffd-wp protection is removed. 5569 * 5570 * Note that only the CoW optimization path (in hugetlb_no_page()) 5571 * can trigger this, because hugetlb_fault() will always resolve 5572 * uffd-wp bit first. 5573 */ 5574 if (!unshare && huge_pte_uffd_wp(pte)) 5575 return 0; 5576 5577 /* 5578 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5579 * PTE mapped R/O such as maybe_mkwrite() would do. 5580 */ 5581 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5582 return VM_FAULT_SIGSEGV; 5583 5584 /* Let's take out MAP_SHARED mappings first. */ 5585 if (vma->vm_flags & VM_MAYSHARE) { 5586 set_huge_ptep_writable(vma, haddr, ptep); 5587 return 0; 5588 } 5589 5590 old_folio = page_folio(pte_page(pte)); 5591 5592 delayacct_wpcopy_start(); 5593 5594 retry_avoidcopy: 5595 /* 5596 * If no-one else is actually using this page, we're the exclusive 5597 * owner and can reuse this page. 5598 */ 5599 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5600 if (!PageAnonExclusive(&old_folio->page)) 5601 page_move_anon_rmap(&old_folio->page, vma); 5602 if (likely(!unshare)) 5603 set_huge_ptep_writable(vma, haddr, ptep); 5604 5605 delayacct_wpcopy_end(); 5606 return 0; 5607 } 5608 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5609 PageAnonExclusive(&old_folio->page), &old_folio->page); 5610 5611 /* 5612 * If the process that created a MAP_PRIVATE mapping is about to 5613 * perform a COW due to a shared page count, attempt to satisfy 5614 * the allocation without using the existing reserves. The pagecache 5615 * page is used to determine if the reserve at this address was 5616 * consumed or not. If reserves were used, a partial faulted mapping 5617 * at the time of fork() could consume its reserves on COW instead 5618 * of the full address range. 5619 */ 5620 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5621 old_folio != pagecache_folio) 5622 outside_reserve = 1; 5623 5624 folio_get(old_folio); 5625 5626 /* 5627 * Drop page table lock as buddy allocator may be called. It will 5628 * be acquired again before returning to the caller, as expected. 5629 */ 5630 spin_unlock(ptl); 5631 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve); 5632 5633 if (IS_ERR(new_folio)) { 5634 /* 5635 * If a process owning a MAP_PRIVATE mapping fails to COW, 5636 * it is due to references held by a child and an insufficient 5637 * huge page pool. To guarantee the original mappers 5638 * reliability, unmap the page from child processes. The child 5639 * may get SIGKILLed if it later faults. 5640 */ 5641 if (outside_reserve) { 5642 struct address_space *mapping = vma->vm_file->f_mapping; 5643 pgoff_t idx; 5644 u32 hash; 5645 5646 folio_put(old_folio); 5647 /* 5648 * Drop hugetlb_fault_mutex and vma_lock before 5649 * unmapping. unmapping needs to hold vma_lock 5650 * in write mode. Dropping vma_lock in read mode 5651 * here is OK as COW mappings do not interact with 5652 * PMD sharing. 5653 * 5654 * Reacquire both after unmap operation. 5655 */ 5656 idx = vma_hugecache_offset(h, vma, haddr); 5657 hash = hugetlb_fault_mutex_hash(mapping, idx); 5658 hugetlb_vma_unlock_read(vma); 5659 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5660 5661 unmap_ref_private(mm, vma, &old_folio->page, haddr); 5662 5663 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5664 hugetlb_vma_lock_read(vma); 5665 spin_lock(ptl); 5666 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5667 if (likely(ptep && 5668 pte_same(huge_ptep_get(ptep), pte))) 5669 goto retry_avoidcopy; 5670 /* 5671 * race occurs while re-acquiring page table 5672 * lock, and our job is done. 5673 */ 5674 delayacct_wpcopy_end(); 5675 return 0; 5676 } 5677 5678 ret = vmf_error(PTR_ERR(new_folio)); 5679 goto out_release_old; 5680 } 5681 5682 /* 5683 * When the original hugepage is shared one, it does not have 5684 * anon_vma prepared. 5685 */ 5686 if (unlikely(anon_vma_prepare(vma))) { 5687 ret = VM_FAULT_OOM; 5688 goto out_release_all; 5689 } 5690 5691 if (copy_user_large_folio(new_folio, old_folio, address, vma)) { 5692 ret = VM_FAULT_HWPOISON_LARGE; 5693 goto out_release_all; 5694 } 5695 __folio_mark_uptodate(new_folio); 5696 5697 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr, 5698 haddr + huge_page_size(h)); 5699 mmu_notifier_invalidate_range_start(&range); 5700 5701 /* 5702 * Retake the page table lock to check for racing updates 5703 * before the page tables are altered 5704 */ 5705 spin_lock(ptl); 5706 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5707 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5708 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 5709 5710 /* Break COW or unshare */ 5711 huge_ptep_clear_flush(vma, haddr, ptep); 5712 page_remove_rmap(&old_folio->page, vma, true); 5713 hugepage_add_new_anon_rmap(new_folio, vma, haddr); 5714 if (huge_pte_uffd_wp(pte)) 5715 newpte = huge_pte_mkuffd_wp(newpte); 5716 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h)); 5717 folio_set_hugetlb_migratable(new_folio); 5718 /* Make the old page be freed below */ 5719 new_folio = old_folio; 5720 } 5721 spin_unlock(ptl); 5722 mmu_notifier_invalidate_range_end(&range); 5723 out_release_all: 5724 /* 5725 * No restore in case of successful pagetable update (Break COW or 5726 * unshare) 5727 */ 5728 if (new_folio != old_folio) 5729 restore_reserve_on_error(h, vma, haddr, new_folio); 5730 folio_put(new_folio); 5731 out_release_old: 5732 folio_put(old_folio); 5733 5734 spin_lock(ptl); /* Caller expects lock to be held */ 5735 5736 delayacct_wpcopy_end(); 5737 return ret; 5738 } 5739 5740 /* 5741 * Return whether there is a pagecache page to back given address within VMA. 5742 */ 5743 static bool hugetlbfs_pagecache_present(struct hstate *h, 5744 struct vm_area_struct *vma, unsigned long address) 5745 { 5746 struct address_space *mapping = vma->vm_file->f_mapping; 5747 pgoff_t idx = vma_hugecache_offset(h, vma, address); 5748 struct folio *folio; 5749 5750 folio = filemap_get_folio(mapping, idx); 5751 if (IS_ERR(folio)) 5752 return false; 5753 folio_put(folio); 5754 return true; 5755 } 5756 5757 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 5758 pgoff_t idx) 5759 { 5760 struct inode *inode = mapping->host; 5761 struct hstate *h = hstate_inode(inode); 5762 int err; 5763 5764 __folio_set_locked(folio); 5765 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5766 5767 if (unlikely(err)) { 5768 __folio_clear_locked(folio); 5769 return err; 5770 } 5771 folio_clear_hugetlb_restore_reserve(folio); 5772 5773 /* 5774 * mark folio dirty so that it will not be removed from cache/file 5775 * by non-hugetlbfs specific code paths. 5776 */ 5777 folio_mark_dirty(folio); 5778 5779 spin_lock(&inode->i_lock); 5780 inode->i_blocks += blocks_per_huge_page(h); 5781 spin_unlock(&inode->i_lock); 5782 return 0; 5783 } 5784 5785 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5786 struct address_space *mapping, 5787 pgoff_t idx, 5788 unsigned int flags, 5789 unsigned long haddr, 5790 unsigned long addr, 5791 unsigned long reason) 5792 { 5793 u32 hash; 5794 struct vm_fault vmf = { 5795 .vma = vma, 5796 .address = haddr, 5797 .real_address = addr, 5798 .flags = flags, 5799 5800 /* 5801 * Hard to debug if it ends up being 5802 * used by a callee that assumes 5803 * something about the other 5804 * uninitialized fields... same as in 5805 * memory.c 5806 */ 5807 }; 5808 5809 /* 5810 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5811 * userfault. Also mmap_lock could be dropped due to handling 5812 * userfault, any vma operation should be careful from here. 5813 */ 5814 hugetlb_vma_unlock_read(vma); 5815 hash = hugetlb_fault_mutex_hash(mapping, idx); 5816 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5817 return handle_userfault(&vmf, reason); 5818 } 5819 5820 /* 5821 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5822 * false if pte changed or is changing. 5823 */ 5824 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 5825 pte_t *ptep, pte_t old_pte) 5826 { 5827 spinlock_t *ptl; 5828 bool same; 5829 5830 ptl = huge_pte_lock(h, mm, ptep); 5831 same = pte_same(huge_ptep_get(ptep), old_pte); 5832 spin_unlock(ptl); 5833 5834 return same; 5835 } 5836 5837 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5838 struct vm_area_struct *vma, 5839 struct address_space *mapping, pgoff_t idx, 5840 unsigned long address, pte_t *ptep, 5841 pte_t old_pte, unsigned int flags) 5842 { 5843 struct hstate *h = hstate_vma(vma); 5844 vm_fault_t ret = VM_FAULT_SIGBUS; 5845 int anon_rmap = 0; 5846 unsigned long size; 5847 struct folio *folio; 5848 pte_t new_pte; 5849 spinlock_t *ptl; 5850 unsigned long haddr = address & huge_page_mask(h); 5851 bool new_folio, new_pagecache_folio = false; 5852 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 5853 5854 /* 5855 * Currently, we are forced to kill the process in the event the 5856 * original mapper has unmapped pages from the child due to a failed 5857 * COW/unsharing. Warn that such a situation has occurred as it may not 5858 * be obvious. 5859 */ 5860 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5861 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5862 current->pid); 5863 goto out; 5864 } 5865 5866 /* 5867 * Use page lock to guard against racing truncation 5868 * before we get page_table_lock. 5869 */ 5870 new_folio = false; 5871 folio = filemap_lock_folio(mapping, idx); 5872 if (IS_ERR(folio)) { 5873 size = i_size_read(mapping->host) >> huge_page_shift(h); 5874 if (idx >= size) 5875 goto out; 5876 /* Check for page in userfault range */ 5877 if (userfaultfd_missing(vma)) { 5878 /* 5879 * Since hugetlb_no_page() was examining pte 5880 * without pgtable lock, we need to re-test under 5881 * lock because the pte may not be stable and could 5882 * have changed from under us. Try to detect 5883 * either changed or during-changing ptes and retry 5884 * properly when needed. 5885 * 5886 * Note that userfaultfd is actually fine with 5887 * false positives (e.g. caused by pte changed), 5888 * but not wrong logical events (e.g. caused by 5889 * reading a pte during changing). The latter can 5890 * confuse the userspace, so the strictness is very 5891 * much preferred. E.g., MISSING event should 5892 * never happen on the page after UFFDIO_COPY has 5893 * correctly installed the page and returned. 5894 */ 5895 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5896 ret = 0; 5897 goto out; 5898 } 5899 5900 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5901 haddr, address, 5902 VM_UFFD_MISSING); 5903 } 5904 5905 folio = alloc_hugetlb_folio(vma, haddr, 0); 5906 if (IS_ERR(folio)) { 5907 /* 5908 * Returning error will result in faulting task being 5909 * sent SIGBUS. The hugetlb fault mutex prevents two 5910 * tasks from racing to fault in the same page which 5911 * could result in false unable to allocate errors. 5912 * Page migration does not take the fault mutex, but 5913 * does a clear then write of pte's under page table 5914 * lock. Page fault code could race with migration, 5915 * notice the clear pte and try to allocate a page 5916 * here. Before returning error, get ptl and make 5917 * sure there really is no pte entry. 5918 */ 5919 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 5920 ret = vmf_error(PTR_ERR(folio)); 5921 else 5922 ret = 0; 5923 goto out; 5924 } 5925 clear_huge_page(&folio->page, address, pages_per_huge_page(h)); 5926 __folio_mark_uptodate(folio); 5927 new_folio = true; 5928 5929 if (vma->vm_flags & VM_MAYSHARE) { 5930 int err = hugetlb_add_to_page_cache(folio, mapping, idx); 5931 if (err) { 5932 /* 5933 * err can't be -EEXIST which implies someone 5934 * else consumed the reservation since hugetlb 5935 * fault mutex is held when add a hugetlb page 5936 * to the page cache. So it's safe to call 5937 * restore_reserve_on_error() here. 5938 */ 5939 restore_reserve_on_error(h, vma, haddr, folio); 5940 folio_put(folio); 5941 goto out; 5942 } 5943 new_pagecache_folio = true; 5944 } else { 5945 folio_lock(folio); 5946 if (unlikely(anon_vma_prepare(vma))) { 5947 ret = VM_FAULT_OOM; 5948 goto backout_unlocked; 5949 } 5950 anon_rmap = 1; 5951 } 5952 } else { 5953 /* 5954 * If memory error occurs between mmap() and fault, some process 5955 * don't have hwpoisoned swap entry for errored virtual address. 5956 * So we need to block hugepage fault by PG_hwpoison bit check. 5957 */ 5958 if (unlikely(folio_test_hwpoison(folio))) { 5959 ret = VM_FAULT_HWPOISON_LARGE | 5960 VM_FAULT_SET_HINDEX(hstate_index(h)); 5961 goto backout_unlocked; 5962 } 5963 5964 /* Check for page in userfault range. */ 5965 if (userfaultfd_minor(vma)) { 5966 folio_unlock(folio); 5967 folio_put(folio); 5968 /* See comment in userfaultfd_missing() block above */ 5969 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5970 ret = 0; 5971 goto out; 5972 } 5973 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5974 haddr, address, 5975 VM_UFFD_MINOR); 5976 } 5977 } 5978 5979 /* 5980 * If we are going to COW a private mapping later, we examine the 5981 * pending reservations for this page now. This will ensure that 5982 * any allocations necessary to record that reservation occur outside 5983 * the spinlock. 5984 */ 5985 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5986 if (vma_needs_reservation(h, vma, haddr) < 0) { 5987 ret = VM_FAULT_OOM; 5988 goto backout_unlocked; 5989 } 5990 /* Just decrements count, does not deallocate */ 5991 vma_end_reservation(h, vma, haddr); 5992 } 5993 5994 ptl = huge_pte_lock(h, mm, ptep); 5995 ret = 0; 5996 /* If pte changed from under us, retry */ 5997 if (!pte_same(huge_ptep_get(ptep), old_pte)) 5998 goto backout; 5999 6000 if (anon_rmap) 6001 hugepage_add_new_anon_rmap(folio, vma, haddr); 6002 else 6003 page_dup_file_rmap(&folio->page, true); 6004 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 6005 && (vma->vm_flags & VM_SHARED))); 6006 /* 6007 * If this pte was previously wr-protected, keep it wr-protected even 6008 * if populated. 6009 */ 6010 if (unlikely(pte_marker_uffd_wp(old_pte))) 6011 new_pte = huge_pte_mkuffd_wp(new_pte); 6012 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h)); 6013 6014 hugetlb_count_add(pages_per_huge_page(h), mm); 6015 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6016 /* Optimization, do the COW without a second fault */ 6017 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl); 6018 } 6019 6020 spin_unlock(ptl); 6021 6022 /* 6023 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6024 * found in the pagecache may not have hugetlb_migratable if they have 6025 * been isolated for migration. 6026 */ 6027 if (new_folio) 6028 folio_set_hugetlb_migratable(folio); 6029 6030 folio_unlock(folio); 6031 out: 6032 hugetlb_vma_unlock_read(vma); 6033 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6034 return ret; 6035 6036 backout: 6037 spin_unlock(ptl); 6038 backout_unlocked: 6039 if (new_folio && !new_pagecache_folio) 6040 restore_reserve_on_error(h, vma, haddr, folio); 6041 6042 folio_unlock(folio); 6043 folio_put(folio); 6044 goto out; 6045 } 6046 6047 #ifdef CONFIG_SMP 6048 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6049 { 6050 unsigned long key[2]; 6051 u32 hash; 6052 6053 key[0] = (unsigned long) mapping; 6054 key[1] = idx; 6055 6056 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6057 6058 return hash & (num_fault_mutexes - 1); 6059 } 6060 #else 6061 /* 6062 * For uniprocessor systems we always use a single mutex, so just 6063 * return 0 and avoid the hashing overhead. 6064 */ 6065 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6066 { 6067 return 0; 6068 } 6069 #endif 6070 6071 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6072 unsigned long address, unsigned int flags) 6073 { 6074 pte_t *ptep, entry; 6075 spinlock_t *ptl; 6076 vm_fault_t ret; 6077 u32 hash; 6078 pgoff_t idx; 6079 struct folio *folio = NULL; 6080 struct folio *pagecache_folio = NULL; 6081 struct hstate *h = hstate_vma(vma); 6082 struct address_space *mapping; 6083 int need_wait_lock = 0; 6084 unsigned long haddr = address & huge_page_mask(h); 6085 6086 /* TODO: Handle faults under the VMA lock */ 6087 if (flags & FAULT_FLAG_VMA_LOCK) { 6088 vma_end_read(vma); 6089 return VM_FAULT_RETRY; 6090 } 6091 6092 /* 6093 * Serialize hugepage allocation and instantiation, so that we don't 6094 * get spurious allocation failures if two CPUs race to instantiate 6095 * the same page in the page cache. 6096 */ 6097 mapping = vma->vm_file->f_mapping; 6098 idx = vma_hugecache_offset(h, vma, haddr); 6099 hash = hugetlb_fault_mutex_hash(mapping, idx); 6100 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6101 6102 /* 6103 * Acquire vma lock before calling huge_pte_alloc and hold 6104 * until finished with ptep. This prevents huge_pmd_unshare from 6105 * being called elsewhere and making the ptep no longer valid. 6106 */ 6107 hugetlb_vma_lock_read(vma); 6108 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 6109 if (!ptep) { 6110 hugetlb_vma_unlock_read(vma); 6111 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6112 return VM_FAULT_OOM; 6113 } 6114 6115 entry = huge_ptep_get(ptep); 6116 if (huge_pte_none_mostly(entry)) { 6117 if (is_pte_marker(entry)) { 6118 pte_marker marker = 6119 pte_marker_get(pte_to_swp_entry(entry)); 6120 6121 if (marker & PTE_MARKER_POISONED) { 6122 ret = VM_FAULT_HWPOISON_LARGE; 6123 goto out_mutex; 6124 } 6125 } 6126 6127 /* 6128 * Other PTE markers should be handled the same way as none PTE. 6129 * 6130 * hugetlb_no_page will drop vma lock and hugetlb fault 6131 * mutex internally, which make us return immediately. 6132 */ 6133 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 6134 entry, flags); 6135 } 6136 6137 ret = 0; 6138 6139 /* 6140 * entry could be a migration/hwpoison entry at this point, so this 6141 * check prevents the kernel from going below assuming that we have 6142 * an active hugepage in pagecache. This goto expects the 2nd page 6143 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 6144 * properly handle it. 6145 */ 6146 if (!pte_present(entry)) { 6147 if (unlikely(is_hugetlb_entry_migration(entry))) { 6148 /* 6149 * Release the hugetlb fault lock now, but retain 6150 * the vma lock, because it is needed to guard the 6151 * huge_pte_lockptr() later in 6152 * migration_entry_wait_huge(). The vma lock will 6153 * be released there. 6154 */ 6155 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6156 migration_entry_wait_huge(vma, ptep); 6157 return 0; 6158 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 6159 ret = VM_FAULT_HWPOISON_LARGE | 6160 VM_FAULT_SET_HINDEX(hstate_index(h)); 6161 goto out_mutex; 6162 } 6163 6164 /* 6165 * If we are going to COW/unshare the mapping later, we examine the 6166 * pending reservations for this page now. This will ensure that any 6167 * allocations necessary to record that reservation occur outside the 6168 * spinlock. Also lookup the pagecache page now as it is used to 6169 * determine if a reservation has been consumed. 6170 */ 6171 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6172 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 6173 if (vma_needs_reservation(h, vma, haddr) < 0) { 6174 ret = VM_FAULT_OOM; 6175 goto out_mutex; 6176 } 6177 /* Just decrements count, does not deallocate */ 6178 vma_end_reservation(h, vma, haddr); 6179 6180 pagecache_folio = filemap_lock_folio(mapping, idx); 6181 if (IS_ERR(pagecache_folio)) 6182 pagecache_folio = NULL; 6183 } 6184 6185 ptl = huge_pte_lock(h, mm, ptep); 6186 6187 /* Check for a racing update before calling hugetlb_wp() */ 6188 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 6189 goto out_ptl; 6190 6191 /* Handle userfault-wp first, before trying to lock more pages */ 6192 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 6193 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 6194 struct vm_fault vmf = { 6195 .vma = vma, 6196 .address = haddr, 6197 .real_address = address, 6198 .flags = flags, 6199 }; 6200 6201 spin_unlock(ptl); 6202 if (pagecache_folio) { 6203 folio_unlock(pagecache_folio); 6204 folio_put(pagecache_folio); 6205 } 6206 hugetlb_vma_unlock_read(vma); 6207 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6208 return handle_userfault(&vmf, VM_UFFD_WP); 6209 } 6210 6211 /* 6212 * hugetlb_wp() requires page locks of pte_page(entry) and 6213 * pagecache_folio, so here we need take the former one 6214 * when folio != pagecache_folio or !pagecache_folio. 6215 */ 6216 folio = page_folio(pte_page(entry)); 6217 if (folio != pagecache_folio) 6218 if (!folio_trylock(folio)) { 6219 need_wait_lock = 1; 6220 goto out_ptl; 6221 } 6222 6223 folio_get(folio); 6224 6225 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6226 if (!huge_pte_write(entry)) { 6227 ret = hugetlb_wp(mm, vma, address, ptep, flags, 6228 pagecache_folio, ptl); 6229 goto out_put_page; 6230 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6231 entry = huge_pte_mkdirty(entry); 6232 } 6233 } 6234 entry = pte_mkyoung(entry); 6235 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 6236 flags & FAULT_FLAG_WRITE)) 6237 update_mmu_cache(vma, haddr, ptep); 6238 out_put_page: 6239 if (folio != pagecache_folio) 6240 folio_unlock(folio); 6241 folio_put(folio); 6242 out_ptl: 6243 spin_unlock(ptl); 6244 6245 if (pagecache_folio) { 6246 folio_unlock(pagecache_folio); 6247 folio_put(pagecache_folio); 6248 } 6249 out_mutex: 6250 hugetlb_vma_unlock_read(vma); 6251 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6252 /* 6253 * Generally it's safe to hold refcount during waiting page lock. But 6254 * here we just wait to defer the next page fault to avoid busy loop and 6255 * the page is not used after unlocked before returning from the current 6256 * page fault. So we are safe from accessing freed page, even if we wait 6257 * here without taking refcount. 6258 */ 6259 if (need_wait_lock) 6260 folio_wait_locked(folio); 6261 return ret; 6262 } 6263 6264 #ifdef CONFIG_USERFAULTFD 6265 /* 6266 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6267 * with modifications for hugetlb pages. 6268 */ 6269 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6270 struct vm_area_struct *dst_vma, 6271 unsigned long dst_addr, 6272 unsigned long src_addr, 6273 uffd_flags_t flags, 6274 struct folio **foliop) 6275 { 6276 struct mm_struct *dst_mm = dst_vma->vm_mm; 6277 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6278 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6279 struct hstate *h = hstate_vma(dst_vma); 6280 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6281 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6282 unsigned long size; 6283 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6284 pte_t _dst_pte; 6285 spinlock_t *ptl; 6286 int ret = -ENOMEM; 6287 struct folio *folio; 6288 int writable; 6289 bool folio_in_pagecache = false; 6290 6291 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6292 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6293 6294 /* Don't overwrite any existing PTEs (even markers) */ 6295 if (!huge_pte_none(huge_ptep_get(dst_pte))) { 6296 spin_unlock(ptl); 6297 return -EEXIST; 6298 } 6299 6300 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6301 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, 6302 huge_page_size(h)); 6303 6304 /* No need to invalidate - it was non-present before */ 6305 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6306 6307 spin_unlock(ptl); 6308 return 0; 6309 } 6310 6311 if (is_continue) { 6312 ret = -EFAULT; 6313 folio = filemap_lock_folio(mapping, idx); 6314 if (IS_ERR(folio)) 6315 goto out; 6316 folio_in_pagecache = true; 6317 } else if (!*foliop) { 6318 /* If a folio already exists, then it's UFFDIO_COPY for 6319 * a non-missing case. Return -EEXIST. 6320 */ 6321 if (vm_shared && 6322 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6323 ret = -EEXIST; 6324 goto out; 6325 } 6326 6327 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6328 if (IS_ERR(folio)) { 6329 ret = -ENOMEM; 6330 goto out; 6331 } 6332 6333 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6334 false); 6335 6336 /* fallback to copy_from_user outside mmap_lock */ 6337 if (unlikely(ret)) { 6338 ret = -ENOENT; 6339 /* Free the allocated folio which may have 6340 * consumed a reservation. 6341 */ 6342 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6343 folio_put(folio); 6344 6345 /* Allocate a temporary folio to hold the copied 6346 * contents. 6347 */ 6348 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6349 if (!folio) { 6350 ret = -ENOMEM; 6351 goto out; 6352 } 6353 *foliop = folio; 6354 /* Set the outparam foliop and return to the caller to 6355 * copy the contents outside the lock. Don't free the 6356 * folio. 6357 */ 6358 goto out; 6359 } 6360 } else { 6361 if (vm_shared && 6362 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6363 folio_put(*foliop); 6364 ret = -EEXIST; 6365 *foliop = NULL; 6366 goto out; 6367 } 6368 6369 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6370 if (IS_ERR(folio)) { 6371 folio_put(*foliop); 6372 ret = -ENOMEM; 6373 *foliop = NULL; 6374 goto out; 6375 } 6376 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6377 folio_put(*foliop); 6378 *foliop = NULL; 6379 if (ret) { 6380 folio_put(folio); 6381 goto out; 6382 } 6383 } 6384 6385 /* 6386 * The memory barrier inside __folio_mark_uptodate makes sure that 6387 * preceding stores to the page contents become visible before 6388 * the set_pte_at() write. 6389 */ 6390 __folio_mark_uptodate(folio); 6391 6392 /* Add shared, newly allocated pages to the page cache. */ 6393 if (vm_shared && !is_continue) { 6394 size = i_size_read(mapping->host) >> huge_page_shift(h); 6395 ret = -EFAULT; 6396 if (idx >= size) 6397 goto out_release_nounlock; 6398 6399 /* 6400 * Serialization between remove_inode_hugepages() and 6401 * hugetlb_add_to_page_cache() below happens through the 6402 * hugetlb_fault_mutex_table that here must be hold by 6403 * the caller. 6404 */ 6405 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6406 if (ret) 6407 goto out_release_nounlock; 6408 folio_in_pagecache = true; 6409 } 6410 6411 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6412 6413 ret = -EIO; 6414 if (folio_test_hwpoison(folio)) 6415 goto out_release_unlock; 6416 6417 /* 6418 * We allow to overwrite a pte marker: consider when both MISSING|WP 6419 * registered, we firstly wr-protect a none pte which has no page cache 6420 * page backing it, then access the page. 6421 */ 6422 ret = -EEXIST; 6423 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6424 goto out_release_unlock; 6425 6426 if (folio_in_pagecache) 6427 page_dup_file_rmap(&folio->page, true); 6428 else 6429 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr); 6430 6431 /* 6432 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6433 * with wp flag set, don't set pte write bit. 6434 */ 6435 if (wp_enabled || (is_continue && !vm_shared)) 6436 writable = 0; 6437 else 6438 writable = dst_vma->vm_flags & VM_WRITE; 6439 6440 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6441 /* 6442 * Always mark UFFDIO_COPY page dirty; note that this may not be 6443 * extremely important for hugetlbfs for now since swapping is not 6444 * supported, but we should still be clear in that this page cannot be 6445 * thrown away at will, even if write bit not set. 6446 */ 6447 _dst_pte = huge_pte_mkdirty(_dst_pte); 6448 _dst_pte = pte_mkyoung(_dst_pte); 6449 6450 if (wp_enabled) 6451 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6452 6453 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h)); 6454 6455 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6456 6457 /* No need to invalidate - it was non-present before */ 6458 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6459 6460 spin_unlock(ptl); 6461 if (!is_continue) 6462 folio_set_hugetlb_migratable(folio); 6463 if (vm_shared || is_continue) 6464 folio_unlock(folio); 6465 ret = 0; 6466 out: 6467 return ret; 6468 out_release_unlock: 6469 spin_unlock(ptl); 6470 if (vm_shared || is_continue) 6471 folio_unlock(folio); 6472 out_release_nounlock: 6473 if (!folio_in_pagecache) 6474 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6475 folio_put(folio); 6476 goto out; 6477 } 6478 #endif /* CONFIG_USERFAULTFD */ 6479 6480 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 6481 unsigned long address, unsigned int flags, 6482 unsigned int *page_mask) 6483 { 6484 struct hstate *h = hstate_vma(vma); 6485 struct mm_struct *mm = vma->vm_mm; 6486 unsigned long haddr = address & huge_page_mask(h); 6487 struct page *page = NULL; 6488 spinlock_t *ptl; 6489 pte_t *pte, entry; 6490 int ret; 6491 6492 hugetlb_vma_lock_read(vma); 6493 pte = hugetlb_walk(vma, haddr, huge_page_size(h)); 6494 if (!pte) 6495 goto out_unlock; 6496 6497 ptl = huge_pte_lock(h, mm, pte); 6498 entry = huge_ptep_get(pte); 6499 if (pte_present(entry)) { 6500 page = pte_page(entry); 6501 6502 if (!huge_pte_write(entry)) { 6503 if (flags & FOLL_WRITE) { 6504 page = NULL; 6505 goto out; 6506 } 6507 6508 if (gup_must_unshare(vma, flags, page)) { 6509 /* Tell the caller to do unsharing */ 6510 page = ERR_PTR(-EMLINK); 6511 goto out; 6512 } 6513 } 6514 6515 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT)); 6516 6517 /* 6518 * Note that page may be a sub-page, and with vmemmap 6519 * optimizations the page struct may be read only. 6520 * try_grab_page() will increase the ref count on the 6521 * head page, so this will be OK. 6522 * 6523 * try_grab_page() should always be able to get the page here, 6524 * because we hold the ptl lock and have verified pte_present(). 6525 */ 6526 ret = try_grab_page(page, flags); 6527 6528 if (WARN_ON_ONCE(ret)) { 6529 page = ERR_PTR(ret); 6530 goto out; 6531 } 6532 6533 *page_mask = (1U << huge_page_order(h)) - 1; 6534 } 6535 out: 6536 spin_unlock(ptl); 6537 out_unlock: 6538 hugetlb_vma_unlock_read(vma); 6539 6540 /* 6541 * Fixup retval for dump requests: if pagecache doesn't exist, 6542 * don't try to allocate a new page but just skip it. 6543 */ 6544 if (!page && (flags & FOLL_DUMP) && 6545 !hugetlbfs_pagecache_present(h, vma, address)) 6546 page = ERR_PTR(-EFAULT); 6547 6548 return page; 6549 } 6550 6551 long hugetlb_change_protection(struct vm_area_struct *vma, 6552 unsigned long address, unsigned long end, 6553 pgprot_t newprot, unsigned long cp_flags) 6554 { 6555 struct mm_struct *mm = vma->vm_mm; 6556 unsigned long start = address; 6557 pte_t *ptep; 6558 pte_t pte; 6559 struct hstate *h = hstate_vma(vma); 6560 long pages = 0, psize = huge_page_size(h); 6561 bool shared_pmd = false; 6562 struct mmu_notifier_range range; 6563 unsigned long last_addr_mask; 6564 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6565 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6566 6567 /* 6568 * In the case of shared PMDs, the area to flush could be beyond 6569 * start/end. Set range.start/range.end to cover the maximum possible 6570 * range if PMD sharing is possible. 6571 */ 6572 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6573 0, mm, start, end); 6574 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6575 6576 BUG_ON(address >= end); 6577 flush_cache_range(vma, range.start, range.end); 6578 6579 mmu_notifier_invalidate_range_start(&range); 6580 hugetlb_vma_lock_write(vma); 6581 i_mmap_lock_write(vma->vm_file->f_mapping); 6582 last_addr_mask = hugetlb_mask_last_page(h); 6583 for (; address < end; address += psize) { 6584 spinlock_t *ptl; 6585 ptep = hugetlb_walk(vma, address, psize); 6586 if (!ptep) { 6587 if (!uffd_wp) { 6588 address |= last_addr_mask; 6589 continue; 6590 } 6591 /* 6592 * Userfaultfd wr-protect requires pgtable 6593 * pre-allocations to install pte markers. 6594 */ 6595 ptep = huge_pte_alloc(mm, vma, address, psize); 6596 if (!ptep) { 6597 pages = -ENOMEM; 6598 break; 6599 } 6600 } 6601 ptl = huge_pte_lock(h, mm, ptep); 6602 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6603 /* 6604 * When uffd-wp is enabled on the vma, unshare 6605 * shouldn't happen at all. Warn about it if it 6606 * happened due to some reason. 6607 */ 6608 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6609 pages++; 6610 spin_unlock(ptl); 6611 shared_pmd = true; 6612 address |= last_addr_mask; 6613 continue; 6614 } 6615 pte = huge_ptep_get(ptep); 6616 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6617 /* Nothing to do. */ 6618 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6619 swp_entry_t entry = pte_to_swp_entry(pte); 6620 struct page *page = pfn_swap_entry_to_page(entry); 6621 pte_t newpte = pte; 6622 6623 if (is_writable_migration_entry(entry)) { 6624 if (PageAnon(page)) 6625 entry = make_readable_exclusive_migration_entry( 6626 swp_offset(entry)); 6627 else 6628 entry = make_readable_migration_entry( 6629 swp_offset(entry)); 6630 newpte = swp_entry_to_pte(entry); 6631 pages++; 6632 } 6633 6634 if (uffd_wp) 6635 newpte = pte_swp_mkuffd_wp(newpte); 6636 else if (uffd_wp_resolve) 6637 newpte = pte_swp_clear_uffd_wp(newpte); 6638 if (!pte_same(pte, newpte)) 6639 set_huge_pte_at(mm, address, ptep, newpte, psize); 6640 } else if (unlikely(is_pte_marker(pte))) { 6641 /* 6642 * Do nothing on a poison marker; page is 6643 * corrupted, permissons do not apply. Here 6644 * pte_marker_uffd_wp()==true implies !poison 6645 * because they're mutual exclusive. 6646 */ 6647 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 6648 /* Safe to modify directly (non-present->none). */ 6649 huge_pte_clear(mm, address, ptep, psize); 6650 } else if (!huge_pte_none(pte)) { 6651 pte_t old_pte; 6652 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6653 6654 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6655 pte = huge_pte_modify(old_pte, newprot); 6656 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6657 if (uffd_wp) 6658 pte = huge_pte_mkuffd_wp(pte); 6659 else if (uffd_wp_resolve) 6660 pte = huge_pte_clear_uffd_wp(pte); 6661 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6662 pages++; 6663 } else { 6664 /* None pte */ 6665 if (unlikely(uffd_wp)) 6666 /* Safe to modify directly (none->non-present). */ 6667 set_huge_pte_at(mm, address, ptep, 6668 make_pte_marker(PTE_MARKER_UFFD_WP), 6669 psize); 6670 } 6671 spin_unlock(ptl); 6672 } 6673 /* 6674 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6675 * may have cleared our pud entry and done put_page on the page table: 6676 * once we release i_mmap_rwsem, another task can do the final put_page 6677 * and that page table be reused and filled with junk. If we actually 6678 * did unshare a page of pmds, flush the range corresponding to the pud. 6679 */ 6680 if (shared_pmd) 6681 flush_hugetlb_tlb_range(vma, range.start, range.end); 6682 else 6683 flush_hugetlb_tlb_range(vma, start, end); 6684 /* 6685 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 6686 * downgrading page table protection not changing it to point to a new 6687 * page. 6688 * 6689 * See Documentation/mm/mmu_notifier.rst 6690 */ 6691 i_mmap_unlock_write(vma->vm_file->f_mapping); 6692 hugetlb_vma_unlock_write(vma); 6693 mmu_notifier_invalidate_range_end(&range); 6694 6695 return pages > 0 ? (pages << h->order) : pages; 6696 } 6697 6698 /* Return true if reservation was successful, false otherwise. */ 6699 bool hugetlb_reserve_pages(struct inode *inode, 6700 long from, long to, 6701 struct vm_area_struct *vma, 6702 vm_flags_t vm_flags) 6703 { 6704 long chg = -1, add = -1; 6705 struct hstate *h = hstate_inode(inode); 6706 struct hugepage_subpool *spool = subpool_inode(inode); 6707 struct resv_map *resv_map; 6708 struct hugetlb_cgroup *h_cg = NULL; 6709 long gbl_reserve, regions_needed = 0; 6710 6711 /* This should never happen */ 6712 if (from > to) { 6713 VM_WARN(1, "%s called with a negative range\n", __func__); 6714 return false; 6715 } 6716 6717 /* 6718 * vma specific semaphore used for pmd sharing and fault/truncation 6719 * synchronization 6720 */ 6721 hugetlb_vma_lock_alloc(vma); 6722 6723 /* 6724 * Only apply hugepage reservation if asked. At fault time, an 6725 * attempt will be made for VM_NORESERVE to allocate a page 6726 * without using reserves 6727 */ 6728 if (vm_flags & VM_NORESERVE) 6729 return true; 6730 6731 /* 6732 * Shared mappings base their reservation on the number of pages that 6733 * are already allocated on behalf of the file. Private mappings need 6734 * to reserve the full area even if read-only as mprotect() may be 6735 * called to make the mapping read-write. Assume !vma is a shm mapping 6736 */ 6737 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6738 /* 6739 * resv_map can not be NULL as hugetlb_reserve_pages is only 6740 * called for inodes for which resv_maps were created (see 6741 * hugetlbfs_get_inode). 6742 */ 6743 resv_map = inode_resv_map(inode); 6744 6745 chg = region_chg(resv_map, from, to, ®ions_needed); 6746 } else { 6747 /* Private mapping. */ 6748 resv_map = resv_map_alloc(); 6749 if (!resv_map) 6750 goto out_err; 6751 6752 chg = to - from; 6753 6754 set_vma_resv_map(vma, resv_map); 6755 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6756 } 6757 6758 if (chg < 0) 6759 goto out_err; 6760 6761 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6762 chg * pages_per_huge_page(h), &h_cg) < 0) 6763 goto out_err; 6764 6765 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6766 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6767 * of the resv_map. 6768 */ 6769 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6770 } 6771 6772 /* 6773 * There must be enough pages in the subpool for the mapping. If 6774 * the subpool has a minimum size, there may be some global 6775 * reservations already in place (gbl_reserve). 6776 */ 6777 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6778 if (gbl_reserve < 0) 6779 goto out_uncharge_cgroup; 6780 6781 /* 6782 * Check enough hugepages are available for the reservation. 6783 * Hand the pages back to the subpool if there are not 6784 */ 6785 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6786 goto out_put_pages; 6787 6788 /* 6789 * Account for the reservations made. Shared mappings record regions 6790 * that have reservations as they are shared by multiple VMAs. 6791 * When the last VMA disappears, the region map says how much 6792 * the reservation was and the page cache tells how much of 6793 * the reservation was consumed. Private mappings are per-VMA and 6794 * only the consumed reservations are tracked. When the VMA 6795 * disappears, the original reservation is the VMA size and the 6796 * consumed reservations are stored in the map. Hence, nothing 6797 * else has to be done for private mappings here 6798 */ 6799 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6800 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6801 6802 if (unlikely(add < 0)) { 6803 hugetlb_acct_memory(h, -gbl_reserve); 6804 goto out_put_pages; 6805 } else if (unlikely(chg > add)) { 6806 /* 6807 * pages in this range were added to the reserve 6808 * map between region_chg and region_add. This 6809 * indicates a race with alloc_hugetlb_folio. Adjust 6810 * the subpool and reserve counts modified above 6811 * based on the difference. 6812 */ 6813 long rsv_adjust; 6814 6815 /* 6816 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6817 * reference to h_cg->css. See comment below for detail. 6818 */ 6819 hugetlb_cgroup_uncharge_cgroup_rsvd( 6820 hstate_index(h), 6821 (chg - add) * pages_per_huge_page(h), h_cg); 6822 6823 rsv_adjust = hugepage_subpool_put_pages(spool, 6824 chg - add); 6825 hugetlb_acct_memory(h, -rsv_adjust); 6826 } else if (h_cg) { 6827 /* 6828 * The file_regions will hold their own reference to 6829 * h_cg->css. So we should release the reference held 6830 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6831 * done. 6832 */ 6833 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6834 } 6835 } 6836 return true; 6837 6838 out_put_pages: 6839 /* put back original number of pages, chg */ 6840 (void)hugepage_subpool_put_pages(spool, chg); 6841 out_uncharge_cgroup: 6842 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6843 chg * pages_per_huge_page(h), h_cg); 6844 out_err: 6845 hugetlb_vma_lock_free(vma); 6846 if (!vma || vma->vm_flags & VM_MAYSHARE) 6847 /* Only call region_abort if the region_chg succeeded but the 6848 * region_add failed or didn't run. 6849 */ 6850 if (chg >= 0 && add < 0) 6851 region_abort(resv_map, from, to, regions_needed); 6852 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 6853 kref_put(&resv_map->refs, resv_map_release); 6854 set_vma_resv_map(vma, NULL); 6855 } 6856 return false; 6857 } 6858 6859 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6860 long freed) 6861 { 6862 struct hstate *h = hstate_inode(inode); 6863 struct resv_map *resv_map = inode_resv_map(inode); 6864 long chg = 0; 6865 struct hugepage_subpool *spool = subpool_inode(inode); 6866 long gbl_reserve; 6867 6868 /* 6869 * Since this routine can be called in the evict inode path for all 6870 * hugetlbfs inodes, resv_map could be NULL. 6871 */ 6872 if (resv_map) { 6873 chg = region_del(resv_map, start, end); 6874 /* 6875 * region_del() can fail in the rare case where a region 6876 * must be split and another region descriptor can not be 6877 * allocated. If end == LONG_MAX, it will not fail. 6878 */ 6879 if (chg < 0) 6880 return chg; 6881 } 6882 6883 spin_lock(&inode->i_lock); 6884 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6885 spin_unlock(&inode->i_lock); 6886 6887 /* 6888 * If the subpool has a minimum size, the number of global 6889 * reservations to be released may be adjusted. 6890 * 6891 * Note that !resv_map implies freed == 0. So (chg - freed) 6892 * won't go negative. 6893 */ 6894 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6895 hugetlb_acct_memory(h, -gbl_reserve); 6896 6897 return 0; 6898 } 6899 6900 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6901 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6902 struct vm_area_struct *vma, 6903 unsigned long addr, pgoff_t idx) 6904 { 6905 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6906 svma->vm_start; 6907 unsigned long sbase = saddr & PUD_MASK; 6908 unsigned long s_end = sbase + PUD_SIZE; 6909 6910 /* Allow segments to share if only one is marked locked */ 6911 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 6912 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 6913 6914 /* 6915 * match the virtual addresses, permission and the alignment of the 6916 * page table page. 6917 * 6918 * Also, vma_lock (vm_private_data) is required for sharing. 6919 */ 6920 if (pmd_index(addr) != pmd_index(saddr) || 6921 vm_flags != svm_flags || 6922 !range_in_vma(svma, sbase, s_end) || 6923 !svma->vm_private_data) 6924 return 0; 6925 6926 return saddr; 6927 } 6928 6929 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6930 { 6931 unsigned long start = addr & PUD_MASK; 6932 unsigned long end = start + PUD_SIZE; 6933 6934 #ifdef CONFIG_USERFAULTFD 6935 if (uffd_disable_huge_pmd_share(vma)) 6936 return false; 6937 #endif 6938 /* 6939 * check on proper vm_flags and page table alignment 6940 */ 6941 if (!(vma->vm_flags & VM_MAYSHARE)) 6942 return false; 6943 if (!vma->vm_private_data) /* vma lock required for sharing */ 6944 return false; 6945 if (!range_in_vma(vma, start, end)) 6946 return false; 6947 return true; 6948 } 6949 6950 /* 6951 * Determine if start,end range within vma could be mapped by shared pmd. 6952 * If yes, adjust start and end to cover range associated with possible 6953 * shared pmd mappings. 6954 */ 6955 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6956 unsigned long *start, unsigned long *end) 6957 { 6958 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6959 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6960 6961 /* 6962 * vma needs to span at least one aligned PUD size, and the range 6963 * must be at least partially within in. 6964 */ 6965 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6966 (*end <= v_start) || (*start >= v_end)) 6967 return; 6968 6969 /* Extend the range to be PUD aligned for a worst case scenario */ 6970 if (*start > v_start) 6971 *start = ALIGN_DOWN(*start, PUD_SIZE); 6972 6973 if (*end < v_end) 6974 *end = ALIGN(*end, PUD_SIZE); 6975 } 6976 6977 /* 6978 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6979 * and returns the corresponding pte. While this is not necessary for the 6980 * !shared pmd case because we can allocate the pmd later as well, it makes the 6981 * code much cleaner. pmd allocation is essential for the shared case because 6982 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 6983 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 6984 * bad pmd for sharing. 6985 */ 6986 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6987 unsigned long addr, pud_t *pud) 6988 { 6989 struct address_space *mapping = vma->vm_file->f_mapping; 6990 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 6991 vma->vm_pgoff; 6992 struct vm_area_struct *svma; 6993 unsigned long saddr; 6994 pte_t *spte = NULL; 6995 pte_t *pte; 6996 6997 i_mmap_lock_read(mapping); 6998 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 6999 if (svma == vma) 7000 continue; 7001 7002 saddr = page_table_shareable(svma, vma, addr, idx); 7003 if (saddr) { 7004 spte = hugetlb_walk(svma, saddr, 7005 vma_mmu_pagesize(svma)); 7006 if (spte) { 7007 get_page(virt_to_page(spte)); 7008 break; 7009 } 7010 } 7011 } 7012 7013 if (!spte) 7014 goto out; 7015 7016 spin_lock(&mm->page_table_lock); 7017 if (pud_none(*pud)) { 7018 pud_populate(mm, pud, 7019 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7020 mm_inc_nr_pmds(mm); 7021 } else { 7022 put_page(virt_to_page(spte)); 7023 } 7024 spin_unlock(&mm->page_table_lock); 7025 out: 7026 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7027 i_mmap_unlock_read(mapping); 7028 return pte; 7029 } 7030 7031 /* 7032 * unmap huge page backed by shared pte. 7033 * 7034 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7035 * indicated by page_count > 1, unmap is achieved by clearing pud and 7036 * decrementing the ref count. If count == 1, the pte page is not shared. 7037 * 7038 * Called with page table lock held. 7039 * 7040 * returns: 1 successfully unmapped a shared pte page 7041 * 0 the underlying pte page is not shared, or it is the last user 7042 */ 7043 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7044 unsigned long addr, pte_t *ptep) 7045 { 7046 pgd_t *pgd = pgd_offset(mm, addr); 7047 p4d_t *p4d = p4d_offset(pgd, addr); 7048 pud_t *pud = pud_offset(p4d, addr); 7049 7050 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7051 hugetlb_vma_assert_locked(vma); 7052 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7053 if (page_count(virt_to_page(ptep)) == 1) 7054 return 0; 7055 7056 pud_clear(pud); 7057 put_page(virt_to_page(ptep)); 7058 mm_dec_nr_pmds(mm); 7059 return 1; 7060 } 7061 7062 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7063 7064 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7065 unsigned long addr, pud_t *pud) 7066 { 7067 return NULL; 7068 } 7069 7070 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7071 unsigned long addr, pte_t *ptep) 7072 { 7073 return 0; 7074 } 7075 7076 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7077 unsigned long *start, unsigned long *end) 7078 { 7079 } 7080 7081 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7082 { 7083 return false; 7084 } 7085 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7086 7087 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7088 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7089 unsigned long addr, unsigned long sz) 7090 { 7091 pgd_t *pgd; 7092 p4d_t *p4d; 7093 pud_t *pud; 7094 pte_t *pte = NULL; 7095 7096 pgd = pgd_offset(mm, addr); 7097 p4d = p4d_alloc(mm, pgd, addr); 7098 if (!p4d) 7099 return NULL; 7100 pud = pud_alloc(mm, p4d, addr); 7101 if (pud) { 7102 if (sz == PUD_SIZE) { 7103 pte = (pte_t *)pud; 7104 } else { 7105 BUG_ON(sz != PMD_SIZE); 7106 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7107 pte = huge_pmd_share(mm, vma, addr, pud); 7108 else 7109 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7110 } 7111 } 7112 7113 if (pte) { 7114 pte_t pteval = ptep_get_lockless(pte); 7115 7116 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7117 } 7118 7119 return pte; 7120 } 7121 7122 /* 7123 * huge_pte_offset() - Walk the page table to resolve the hugepage 7124 * entry at address @addr 7125 * 7126 * Return: Pointer to page table entry (PUD or PMD) for 7127 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7128 * size @sz doesn't match the hugepage size at this level of the page 7129 * table. 7130 */ 7131 pte_t *huge_pte_offset(struct mm_struct *mm, 7132 unsigned long addr, unsigned long sz) 7133 { 7134 pgd_t *pgd; 7135 p4d_t *p4d; 7136 pud_t *pud; 7137 pmd_t *pmd; 7138 7139 pgd = pgd_offset(mm, addr); 7140 if (!pgd_present(*pgd)) 7141 return NULL; 7142 p4d = p4d_offset(pgd, addr); 7143 if (!p4d_present(*p4d)) 7144 return NULL; 7145 7146 pud = pud_offset(p4d, addr); 7147 if (sz == PUD_SIZE) 7148 /* must be pud huge, non-present or none */ 7149 return (pte_t *)pud; 7150 if (!pud_present(*pud)) 7151 return NULL; 7152 /* must have a valid entry and size to go further */ 7153 7154 pmd = pmd_offset(pud, addr); 7155 /* must be pmd huge, non-present or none */ 7156 return (pte_t *)pmd; 7157 } 7158 7159 /* 7160 * Return a mask that can be used to update an address to the last huge 7161 * page in a page table page mapping size. Used to skip non-present 7162 * page table entries when linearly scanning address ranges. Architectures 7163 * with unique huge page to page table relationships can define their own 7164 * version of this routine. 7165 */ 7166 unsigned long hugetlb_mask_last_page(struct hstate *h) 7167 { 7168 unsigned long hp_size = huge_page_size(h); 7169 7170 if (hp_size == PUD_SIZE) 7171 return P4D_SIZE - PUD_SIZE; 7172 else if (hp_size == PMD_SIZE) 7173 return PUD_SIZE - PMD_SIZE; 7174 else 7175 return 0UL; 7176 } 7177 7178 #else 7179 7180 /* See description above. Architectures can provide their own version. */ 7181 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7182 { 7183 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7184 if (huge_page_size(h) == PMD_SIZE) 7185 return PUD_SIZE - PMD_SIZE; 7186 #endif 7187 return 0UL; 7188 } 7189 7190 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7191 7192 /* 7193 * These functions are overwritable if your architecture needs its own 7194 * behavior. 7195 */ 7196 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7197 { 7198 bool ret = true; 7199 7200 spin_lock_irq(&hugetlb_lock); 7201 if (!folio_test_hugetlb(folio) || 7202 !folio_test_hugetlb_migratable(folio) || 7203 !folio_try_get(folio)) { 7204 ret = false; 7205 goto unlock; 7206 } 7207 folio_clear_hugetlb_migratable(folio); 7208 list_move_tail(&folio->lru, list); 7209 unlock: 7210 spin_unlock_irq(&hugetlb_lock); 7211 return ret; 7212 } 7213 7214 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7215 { 7216 int ret = 0; 7217 7218 *hugetlb = false; 7219 spin_lock_irq(&hugetlb_lock); 7220 if (folio_test_hugetlb(folio)) { 7221 *hugetlb = true; 7222 if (folio_test_hugetlb_freed(folio)) 7223 ret = 0; 7224 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7225 ret = folio_try_get(folio); 7226 else 7227 ret = -EBUSY; 7228 } 7229 spin_unlock_irq(&hugetlb_lock); 7230 return ret; 7231 } 7232 7233 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7234 bool *migratable_cleared) 7235 { 7236 int ret; 7237 7238 spin_lock_irq(&hugetlb_lock); 7239 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7240 spin_unlock_irq(&hugetlb_lock); 7241 return ret; 7242 } 7243 7244 void folio_putback_active_hugetlb(struct folio *folio) 7245 { 7246 spin_lock_irq(&hugetlb_lock); 7247 folio_set_hugetlb_migratable(folio); 7248 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7249 spin_unlock_irq(&hugetlb_lock); 7250 folio_put(folio); 7251 } 7252 7253 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7254 { 7255 struct hstate *h = folio_hstate(old_folio); 7256 7257 hugetlb_cgroup_migrate(old_folio, new_folio); 7258 set_page_owner_migrate_reason(&new_folio->page, reason); 7259 7260 /* 7261 * transfer temporary state of the new hugetlb folio. This is 7262 * reverse to other transitions because the newpage is going to 7263 * be final while the old one will be freed so it takes over 7264 * the temporary status. 7265 * 7266 * Also note that we have to transfer the per-node surplus state 7267 * here as well otherwise the global surplus count will not match 7268 * the per-node's. 7269 */ 7270 if (folio_test_hugetlb_temporary(new_folio)) { 7271 int old_nid = folio_nid(old_folio); 7272 int new_nid = folio_nid(new_folio); 7273 7274 folio_set_hugetlb_temporary(old_folio); 7275 folio_clear_hugetlb_temporary(new_folio); 7276 7277 7278 /* 7279 * There is no need to transfer the per-node surplus state 7280 * when we do not cross the node. 7281 */ 7282 if (new_nid == old_nid) 7283 return; 7284 spin_lock_irq(&hugetlb_lock); 7285 if (h->surplus_huge_pages_node[old_nid]) { 7286 h->surplus_huge_pages_node[old_nid]--; 7287 h->surplus_huge_pages_node[new_nid]++; 7288 } 7289 spin_unlock_irq(&hugetlb_lock); 7290 } 7291 } 7292 7293 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7294 unsigned long start, 7295 unsigned long end) 7296 { 7297 struct hstate *h = hstate_vma(vma); 7298 unsigned long sz = huge_page_size(h); 7299 struct mm_struct *mm = vma->vm_mm; 7300 struct mmu_notifier_range range; 7301 unsigned long address; 7302 spinlock_t *ptl; 7303 pte_t *ptep; 7304 7305 if (!(vma->vm_flags & VM_MAYSHARE)) 7306 return; 7307 7308 if (start >= end) 7309 return; 7310 7311 flush_cache_range(vma, start, end); 7312 /* 7313 * No need to call adjust_range_if_pmd_sharing_possible(), because 7314 * we have already done the PUD_SIZE alignment. 7315 */ 7316 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7317 start, end); 7318 mmu_notifier_invalidate_range_start(&range); 7319 hugetlb_vma_lock_write(vma); 7320 i_mmap_lock_write(vma->vm_file->f_mapping); 7321 for (address = start; address < end; address += PUD_SIZE) { 7322 ptep = hugetlb_walk(vma, address, sz); 7323 if (!ptep) 7324 continue; 7325 ptl = huge_pte_lock(h, mm, ptep); 7326 huge_pmd_unshare(mm, vma, address, ptep); 7327 spin_unlock(ptl); 7328 } 7329 flush_hugetlb_tlb_range(vma, start, end); 7330 i_mmap_unlock_write(vma->vm_file->f_mapping); 7331 hugetlb_vma_unlock_write(vma); 7332 /* 7333 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7334 * Documentation/mm/mmu_notifier.rst. 7335 */ 7336 mmu_notifier_invalidate_range_end(&range); 7337 } 7338 7339 /* 7340 * This function will unconditionally remove all the shared pmd pgtable entries 7341 * within the specific vma for a hugetlbfs memory range. 7342 */ 7343 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7344 { 7345 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7346 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7347 } 7348 7349 #ifdef CONFIG_CMA 7350 static bool cma_reserve_called __initdata; 7351 7352 static int __init cmdline_parse_hugetlb_cma(char *p) 7353 { 7354 int nid, count = 0; 7355 unsigned long tmp; 7356 char *s = p; 7357 7358 while (*s) { 7359 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7360 break; 7361 7362 if (s[count] == ':') { 7363 if (tmp >= MAX_NUMNODES) 7364 break; 7365 nid = array_index_nospec(tmp, MAX_NUMNODES); 7366 7367 s += count + 1; 7368 tmp = memparse(s, &s); 7369 hugetlb_cma_size_in_node[nid] = tmp; 7370 hugetlb_cma_size += tmp; 7371 7372 /* 7373 * Skip the separator if have one, otherwise 7374 * break the parsing. 7375 */ 7376 if (*s == ',') 7377 s++; 7378 else 7379 break; 7380 } else { 7381 hugetlb_cma_size = memparse(p, &p); 7382 break; 7383 } 7384 } 7385 7386 return 0; 7387 } 7388 7389 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7390 7391 void __init hugetlb_cma_reserve(int order) 7392 { 7393 unsigned long size, reserved, per_node; 7394 bool node_specific_cma_alloc = false; 7395 int nid; 7396 7397 cma_reserve_called = true; 7398 7399 if (!hugetlb_cma_size) 7400 return; 7401 7402 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7403 if (hugetlb_cma_size_in_node[nid] == 0) 7404 continue; 7405 7406 if (!node_online(nid)) { 7407 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7408 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7409 hugetlb_cma_size_in_node[nid] = 0; 7410 continue; 7411 } 7412 7413 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7414 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7415 nid, (PAGE_SIZE << order) / SZ_1M); 7416 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7417 hugetlb_cma_size_in_node[nid] = 0; 7418 } else { 7419 node_specific_cma_alloc = true; 7420 } 7421 } 7422 7423 /* Validate the CMA size again in case some invalid nodes specified. */ 7424 if (!hugetlb_cma_size) 7425 return; 7426 7427 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7428 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7429 (PAGE_SIZE << order) / SZ_1M); 7430 hugetlb_cma_size = 0; 7431 return; 7432 } 7433 7434 if (!node_specific_cma_alloc) { 7435 /* 7436 * If 3 GB area is requested on a machine with 4 numa nodes, 7437 * let's allocate 1 GB on first three nodes and ignore the last one. 7438 */ 7439 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7440 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7441 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7442 } 7443 7444 reserved = 0; 7445 for_each_online_node(nid) { 7446 int res; 7447 char name[CMA_MAX_NAME]; 7448 7449 if (node_specific_cma_alloc) { 7450 if (hugetlb_cma_size_in_node[nid] == 0) 7451 continue; 7452 7453 size = hugetlb_cma_size_in_node[nid]; 7454 } else { 7455 size = min(per_node, hugetlb_cma_size - reserved); 7456 } 7457 7458 size = round_up(size, PAGE_SIZE << order); 7459 7460 snprintf(name, sizeof(name), "hugetlb%d", nid); 7461 /* 7462 * Note that 'order per bit' is based on smallest size that 7463 * may be returned to CMA allocator in the case of 7464 * huge page demotion. 7465 */ 7466 res = cma_declare_contiguous_nid(0, size, 0, 7467 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7468 0, false, name, 7469 &hugetlb_cma[nid], nid); 7470 if (res) { 7471 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7472 res, nid); 7473 continue; 7474 } 7475 7476 reserved += size; 7477 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7478 size / SZ_1M, nid); 7479 7480 if (reserved >= hugetlb_cma_size) 7481 break; 7482 } 7483 7484 if (!reserved) 7485 /* 7486 * hugetlb_cma_size is used to determine if allocations from 7487 * cma are possible. Set to zero if no cma regions are set up. 7488 */ 7489 hugetlb_cma_size = 0; 7490 } 7491 7492 static void __init hugetlb_cma_check(void) 7493 { 7494 if (!hugetlb_cma_size || cma_reserve_called) 7495 return; 7496 7497 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7498 } 7499 7500 #endif /* CONFIG_CMA */ 7501