1 /* 2 * Generic hugetlb support. 3 * (C) William Irwin, April 2004 4 */ 5 #include <linux/gfp.h> 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/module.h> 9 #include <linux/mm.h> 10 #include <linux/seq_file.h> 11 #include <linux/sysctl.h> 12 #include <linux/highmem.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/nodemask.h> 15 #include <linux/pagemap.h> 16 #include <linux/mempolicy.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/bootmem.h> 20 #include <linux/sysfs.h> 21 22 #include <asm/page.h> 23 #include <asm/pgtable.h> 24 #include <asm/io.h> 25 26 #include <linux/hugetlb.h> 27 #include "internal.h" 28 29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER; 31 unsigned long hugepages_treat_as_movable; 32 33 static int max_hstate; 34 unsigned int default_hstate_idx; 35 struct hstate hstates[HUGE_MAX_HSTATE]; 36 37 __initdata LIST_HEAD(huge_boot_pages); 38 39 /* for command line parsing */ 40 static struct hstate * __initdata parsed_hstate; 41 static unsigned long __initdata default_hstate_max_huge_pages; 42 static unsigned long __initdata default_hstate_size; 43 44 #define for_each_hstate(h) \ 45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) 46 47 /* 48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages 49 */ 50 static DEFINE_SPINLOCK(hugetlb_lock); 51 52 /* 53 * Region tracking -- allows tracking of reservations and instantiated pages 54 * across the pages in a mapping. 55 * 56 * The region data structures are protected by a combination of the mmap_sem 57 * and the hugetlb_instantion_mutex. To access or modify a region the caller 58 * must either hold the mmap_sem for write, or the mmap_sem for read and 59 * the hugetlb_instantiation mutex: 60 * 61 * down_write(&mm->mmap_sem); 62 * or 63 * down_read(&mm->mmap_sem); 64 * mutex_lock(&hugetlb_instantiation_mutex); 65 */ 66 struct file_region { 67 struct list_head link; 68 long from; 69 long to; 70 }; 71 72 static long region_add(struct list_head *head, long f, long t) 73 { 74 struct file_region *rg, *nrg, *trg; 75 76 /* Locate the region we are either in or before. */ 77 list_for_each_entry(rg, head, link) 78 if (f <= rg->to) 79 break; 80 81 /* Round our left edge to the current segment if it encloses us. */ 82 if (f > rg->from) 83 f = rg->from; 84 85 /* Check for and consume any regions we now overlap with. */ 86 nrg = rg; 87 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 88 if (&rg->link == head) 89 break; 90 if (rg->from > t) 91 break; 92 93 /* If this area reaches higher then extend our area to 94 * include it completely. If this is not the first area 95 * which we intend to reuse, free it. */ 96 if (rg->to > t) 97 t = rg->to; 98 if (rg != nrg) { 99 list_del(&rg->link); 100 kfree(rg); 101 } 102 } 103 nrg->from = f; 104 nrg->to = t; 105 return 0; 106 } 107 108 static long region_chg(struct list_head *head, long f, long t) 109 { 110 struct file_region *rg, *nrg; 111 long chg = 0; 112 113 /* Locate the region we are before or in. */ 114 list_for_each_entry(rg, head, link) 115 if (f <= rg->to) 116 break; 117 118 /* If we are below the current region then a new region is required. 119 * Subtle, allocate a new region at the position but make it zero 120 * size such that we can guarantee to record the reservation. */ 121 if (&rg->link == head || t < rg->from) { 122 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 123 if (!nrg) 124 return -ENOMEM; 125 nrg->from = f; 126 nrg->to = f; 127 INIT_LIST_HEAD(&nrg->link); 128 list_add(&nrg->link, rg->link.prev); 129 130 return t - f; 131 } 132 133 /* Round our left edge to the current segment if it encloses us. */ 134 if (f > rg->from) 135 f = rg->from; 136 chg = t - f; 137 138 /* Check for and consume any regions we now overlap with. */ 139 list_for_each_entry(rg, rg->link.prev, link) { 140 if (&rg->link == head) 141 break; 142 if (rg->from > t) 143 return chg; 144 145 /* We overlap with this area, if it extends futher than 146 * us then we must extend ourselves. Account for its 147 * existing reservation. */ 148 if (rg->to > t) { 149 chg += rg->to - t; 150 t = rg->to; 151 } 152 chg -= rg->to - rg->from; 153 } 154 return chg; 155 } 156 157 static long region_truncate(struct list_head *head, long end) 158 { 159 struct file_region *rg, *trg; 160 long chg = 0; 161 162 /* Locate the region we are either in or before. */ 163 list_for_each_entry(rg, head, link) 164 if (end <= rg->to) 165 break; 166 if (&rg->link == head) 167 return 0; 168 169 /* If we are in the middle of a region then adjust it. */ 170 if (end > rg->from) { 171 chg = rg->to - end; 172 rg->to = end; 173 rg = list_entry(rg->link.next, typeof(*rg), link); 174 } 175 176 /* Drop any remaining regions. */ 177 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 178 if (&rg->link == head) 179 break; 180 chg += rg->to - rg->from; 181 list_del(&rg->link); 182 kfree(rg); 183 } 184 return chg; 185 } 186 187 static long region_count(struct list_head *head, long f, long t) 188 { 189 struct file_region *rg; 190 long chg = 0; 191 192 /* Locate each segment we overlap with, and count that overlap. */ 193 list_for_each_entry(rg, head, link) { 194 int seg_from; 195 int seg_to; 196 197 if (rg->to <= f) 198 continue; 199 if (rg->from >= t) 200 break; 201 202 seg_from = max(rg->from, f); 203 seg_to = min(rg->to, t); 204 205 chg += seg_to - seg_from; 206 } 207 208 return chg; 209 } 210 211 /* 212 * Convert the address within this vma to the page offset within 213 * the mapping, in pagecache page units; huge pages here. 214 */ 215 static pgoff_t vma_hugecache_offset(struct hstate *h, 216 struct vm_area_struct *vma, unsigned long address) 217 { 218 return ((address - vma->vm_start) >> huge_page_shift(h)) + 219 (vma->vm_pgoff >> huge_page_order(h)); 220 } 221 222 /* 223 * Return the size of the pages allocated when backing a VMA. In the majority 224 * cases this will be same size as used by the page table entries. 225 */ 226 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 227 { 228 struct hstate *hstate; 229 230 if (!is_vm_hugetlb_page(vma)) 231 return PAGE_SIZE; 232 233 hstate = hstate_vma(vma); 234 235 return 1UL << (hstate->order + PAGE_SHIFT); 236 } 237 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 238 239 /* 240 * Return the page size being used by the MMU to back a VMA. In the majority 241 * of cases, the page size used by the kernel matches the MMU size. On 242 * architectures where it differs, an architecture-specific version of this 243 * function is required. 244 */ 245 #ifndef vma_mmu_pagesize 246 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 247 { 248 return vma_kernel_pagesize(vma); 249 } 250 #endif 251 252 /* 253 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 254 * bits of the reservation map pointer, which are always clear due to 255 * alignment. 256 */ 257 #define HPAGE_RESV_OWNER (1UL << 0) 258 #define HPAGE_RESV_UNMAPPED (1UL << 1) 259 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 260 261 /* 262 * These helpers are used to track how many pages are reserved for 263 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 264 * is guaranteed to have their future faults succeed. 265 * 266 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 267 * the reserve counters are updated with the hugetlb_lock held. It is safe 268 * to reset the VMA at fork() time as it is not in use yet and there is no 269 * chance of the global counters getting corrupted as a result of the values. 270 * 271 * The private mapping reservation is represented in a subtly different 272 * manner to a shared mapping. A shared mapping has a region map associated 273 * with the underlying file, this region map represents the backing file 274 * pages which have ever had a reservation assigned which this persists even 275 * after the page is instantiated. A private mapping has a region map 276 * associated with the original mmap which is attached to all VMAs which 277 * reference it, this region map represents those offsets which have consumed 278 * reservation ie. where pages have been instantiated. 279 */ 280 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 281 { 282 return (unsigned long)vma->vm_private_data; 283 } 284 285 static void set_vma_private_data(struct vm_area_struct *vma, 286 unsigned long value) 287 { 288 vma->vm_private_data = (void *)value; 289 } 290 291 struct resv_map { 292 struct kref refs; 293 struct list_head regions; 294 }; 295 296 static struct resv_map *resv_map_alloc(void) 297 { 298 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 299 if (!resv_map) 300 return NULL; 301 302 kref_init(&resv_map->refs); 303 INIT_LIST_HEAD(&resv_map->regions); 304 305 return resv_map; 306 } 307 308 static void resv_map_release(struct kref *ref) 309 { 310 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 311 312 /* Clear out any active regions before we release the map. */ 313 region_truncate(&resv_map->regions, 0); 314 kfree(resv_map); 315 } 316 317 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 318 { 319 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 320 if (!(vma->vm_flags & VM_MAYSHARE)) 321 return (struct resv_map *)(get_vma_private_data(vma) & 322 ~HPAGE_RESV_MASK); 323 return NULL; 324 } 325 326 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 327 { 328 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 329 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 330 331 set_vma_private_data(vma, (get_vma_private_data(vma) & 332 HPAGE_RESV_MASK) | (unsigned long)map); 333 } 334 335 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 336 { 337 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 338 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 339 340 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 341 } 342 343 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 344 { 345 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 346 347 return (get_vma_private_data(vma) & flag) != 0; 348 } 349 350 /* Decrement the reserved pages in the hugepage pool by one */ 351 static void decrement_hugepage_resv_vma(struct hstate *h, 352 struct vm_area_struct *vma) 353 { 354 if (vma->vm_flags & VM_NORESERVE) 355 return; 356 357 if (vma->vm_flags & VM_MAYSHARE) { 358 /* Shared mappings always use reserves */ 359 h->resv_huge_pages--; 360 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 361 /* 362 * Only the process that called mmap() has reserves for 363 * private mappings. 364 */ 365 h->resv_huge_pages--; 366 } 367 } 368 369 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 370 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 371 { 372 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 373 if (!(vma->vm_flags & VM_MAYSHARE)) 374 vma->vm_private_data = (void *)0; 375 } 376 377 /* Returns true if the VMA has associated reserve pages */ 378 static int vma_has_reserves(struct vm_area_struct *vma) 379 { 380 if (vma->vm_flags & VM_MAYSHARE) 381 return 1; 382 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 383 return 1; 384 return 0; 385 } 386 387 static void clear_gigantic_page(struct page *page, 388 unsigned long addr, unsigned long sz) 389 { 390 int i; 391 struct page *p = page; 392 393 might_sleep(); 394 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) { 395 cond_resched(); 396 clear_user_highpage(p, addr + i * PAGE_SIZE); 397 } 398 } 399 static void clear_huge_page(struct page *page, 400 unsigned long addr, unsigned long sz) 401 { 402 int i; 403 404 if (unlikely(sz > MAX_ORDER_NR_PAGES)) { 405 clear_gigantic_page(page, addr, sz); 406 return; 407 } 408 409 might_sleep(); 410 for (i = 0; i < sz/PAGE_SIZE; i++) { 411 cond_resched(); 412 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 413 } 414 } 415 416 static void copy_gigantic_page(struct page *dst, struct page *src, 417 unsigned long addr, struct vm_area_struct *vma) 418 { 419 int i; 420 struct hstate *h = hstate_vma(vma); 421 struct page *dst_base = dst; 422 struct page *src_base = src; 423 might_sleep(); 424 for (i = 0; i < pages_per_huge_page(h); ) { 425 cond_resched(); 426 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 427 428 i++; 429 dst = mem_map_next(dst, dst_base, i); 430 src = mem_map_next(src, src_base, i); 431 } 432 } 433 static void copy_huge_page(struct page *dst, struct page *src, 434 unsigned long addr, struct vm_area_struct *vma) 435 { 436 int i; 437 struct hstate *h = hstate_vma(vma); 438 439 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { 440 copy_gigantic_page(dst, src, addr, vma); 441 return; 442 } 443 444 might_sleep(); 445 for (i = 0; i < pages_per_huge_page(h); i++) { 446 cond_resched(); 447 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 448 } 449 } 450 451 static void enqueue_huge_page(struct hstate *h, struct page *page) 452 { 453 int nid = page_to_nid(page); 454 list_add(&page->lru, &h->hugepage_freelists[nid]); 455 h->free_huge_pages++; 456 h->free_huge_pages_node[nid]++; 457 } 458 459 static struct page *dequeue_huge_page(struct hstate *h) 460 { 461 int nid; 462 struct page *page = NULL; 463 464 for (nid = 0; nid < MAX_NUMNODES; ++nid) { 465 if (!list_empty(&h->hugepage_freelists[nid])) { 466 page = list_entry(h->hugepage_freelists[nid].next, 467 struct page, lru); 468 list_del(&page->lru); 469 h->free_huge_pages--; 470 h->free_huge_pages_node[nid]--; 471 break; 472 } 473 } 474 return page; 475 } 476 477 static struct page *dequeue_huge_page_vma(struct hstate *h, 478 struct vm_area_struct *vma, 479 unsigned long address, int avoid_reserve) 480 { 481 int nid; 482 struct page *page = NULL; 483 struct mempolicy *mpol; 484 nodemask_t *nodemask; 485 struct zonelist *zonelist = huge_zonelist(vma, address, 486 htlb_alloc_mask, &mpol, &nodemask); 487 struct zone *zone; 488 struct zoneref *z; 489 490 /* 491 * A child process with MAP_PRIVATE mappings created by their parent 492 * have no page reserves. This check ensures that reservations are 493 * not "stolen". The child may still get SIGKILLed 494 */ 495 if (!vma_has_reserves(vma) && 496 h->free_huge_pages - h->resv_huge_pages == 0) 497 return NULL; 498 499 /* If reserves cannot be used, ensure enough pages are in the pool */ 500 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 501 return NULL; 502 503 for_each_zone_zonelist_nodemask(zone, z, zonelist, 504 MAX_NR_ZONES - 1, nodemask) { 505 nid = zone_to_nid(zone); 506 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && 507 !list_empty(&h->hugepage_freelists[nid])) { 508 page = list_entry(h->hugepage_freelists[nid].next, 509 struct page, lru); 510 list_del(&page->lru); 511 h->free_huge_pages--; 512 h->free_huge_pages_node[nid]--; 513 514 if (!avoid_reserve) 515 decrement_hugepage_resv_vma(h, vma); 516 517 break; 518 } 519 } 520 mpol_cond_put(mpol); 521 return page; 522 } 523 524 static void update_and_free_page(struct hstate *h, struct page *page) 525 { 526 int i; 527 528 VM_BUG_ON(h->order >= MAX_ORDER); 529 530 h->nr_huge_pages--; 531 h->nr_huge_pages_node[page_to_nid(page)]--; 532 for (i = 0; i < pages_per_huge_page(h); i++) { 533 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 534 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | 535 1 << PG_private | 1<< PG_writeback); 536 } 537 set_compound_page_dtor(page, NULL); 538 set_page_refcounted(page); 539 arch_release_hugepage(page); 540 __free_pages(page, huge_page_order(h)); 541 } 542 543 struct hstate *size_to_hstate(unsigned long size) 544 { 545 struct hstate *h; 546 547 for_each_hstate(h) { 548 if (huge_page_size(h) == size) 549 return h; 550 } 551 return NULL; 552 } 553 554 static void free_huge_page(struct page *page) 555 { 556 /* 557 * Can't pass hstate in here because it is called from the 558 * compound page destructor. 559 */ 560 struct hstate *h = page_hstate(page); 561 int nid = page_to_nid(page); 562 struct address_space *mapping; 563 564 mapping = (struct address_space *) page_private(page); 565 set_page_private(page, 0); 566 BUG_ON(page_count(page)); 567 INIT_LIST_HEAD(&page->lru); 568 569 spin_lock(&hugetlb_lock); 570 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { 571 update_and_free_page(h, page); 572 h->surplus_huge_pages--; 573 h->surplus_huge_pages_node[nid]--; 574 } else { 575 enqueue_huge_page(h, page); 576 } 577 spin_unlock(&hugetlb_lock); 578 if (mapping) 579 hugetlb_put_quota(mapping, 1); 580 } 581 582 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 583 { 584 set_compound_page_dtor(page, free_huge_page); 585 spin_lock(&hugetlb_lock); 586 h->nr_huge_pages++; 587 h->nr_huge_pages_node[nid]++; 588 spin_unlock(&hugetlb_lock); 589 put_page(page); /* free it into the hugepage allocator */ 590 } 591 592 static void prep_compound_gigantic_page(struct page *page, unsigned long order) 593 { 594 int i; 595 int nr_pages = 1 << order; 596 struct page *p = page + 1; 597 598 /* we rely on prep_new_huge_page to set the destructor */ 599 set_compound_order(page, order); 600 __SetPageHead(page); 601 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 602 __SetPageTail(p); 603 p->first_page = page; 604 } 605 } 606 607 int PageHuge(struct page *page) 608 { 609 compound_page_dtor *dtor; 610 611 if (!PageCompound(page)) 612 return 0; 613 614 page = compound_head(page); 615 dtor = get_compound_page_dtor(page); 616 617 return dtor == free_huge_page; 618 } 619 620 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 621 { 622 struct page *page; 623 624 if (h->order >= MAX_ORDER) 625 return NULL; 626 627 page = alloc_pages_exact_node(nid, 628 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| 629 __GFP_REPEAT|__GFP_NOWARN, 630 huge_page_order(h)); 631 if (page) { 632 if (arch_prepare_hugepage(page)) { 633 __free_pages(page, huge_page_order(h)); 634 return NULL; 635 } 636 prep_new_huge_page(h, page, nid); 637 } 638 639 return page; 640 } 641 642 /* 643 * Use a helper variable to find the next node and then 644 * copy it back to hugetlb_next_nid afterwards: 645 * otherwise there's a window in which a racer might 646 * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node. 647 * But we don't need to use a spin_lock here: it really 648 * doesn't matter if occasionally a racer chooses the 649 * same nid as we do. Move nid forward in the mask even 650 * if we just successfully allocated a hugepage so that 651 * the next caller gets hugepages on the next node. 652 */ 653 static int hstate_next_node(struct hstate *h) 654 { 655 int next_nid; 656 next_nid = next_node(h->hugetlb_next_nid, node_online_map); 657 if (next_nid == MAX_NUMNODES) 658 next_nid = first_node(node_online_map); 659 h->hugetlb_next_nid = next_nid; 660 return next_nid; 661 } 662 663 static int alloc_fresh_huge_page(struct hstate *h) 664 { 665 struct page *page; 666 int start_nid; 667 int next_nid; 668 int ret = 0; 669 670 start_nid = h->hugetlb_next_nid; 671 672 do { 673 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid); 674 if (page) 675 ret = 1; 676 next_nid = hstate_next_node(h); 677 } while (!page && h->hugetlb_next_nid != start_nid); 678 679 if (ret) 680 count_vm_event(HTLB_BUDDY_PGALLOC); 681 else 682 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 683 684 return ret; 685 } 686 687 static struct page *alloc_buddy_huge_page(struct hstate *h, 688 struct vm_area_struct *vma, unsigned long address) 689 { 690 struct page *page; 691 unsigned int nid; 692 693 if (h->order >= MAX_ORDER) 694 return NULL; 695 696 /* 697 * Assume we will successfully allocate the surplus page to 698 * prevent racing processes from causing the surplus to exceed 699 * overcommit 700 * 701 * This however introduces a different race, where a process B 702 * tries to grow the static hugepage pool while alloc_pages() is 703 * called by process A. B will only examine the per-node 704 * counters in determining if surplus huge pages can be 705 * converted to normal huge pages in adjust_pool_surplus(). A 706 * won't be able to increment the per-node counter, until the 707 * lock is dropped by B, but B doesn't drop hugetlb_lock until 708 * no more huge pages can be converted from surplus to normal 709 * state (and doesn't try to convert again). Thus, we have a 710 * case where a surplus huge page exists, the pool is grown, and 711 * the surplus huge page still exists after, even though it 712 * should just have been converted to a normal huge page. This 713 * does not leak memory, though, as the hugepage will be freed 714 * once it is out of use. It also does not allow the counters to 715 * go out of whack in adjust_pool_surplus() as we don't modify 716 * the node values until we've gotten the hugepage and only the 717 * per-node value is checked there. 718 */ 719 spin_lock(&hugetlb_lock); 720 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 721 spin_unlock(&hugetlb_lock); 722 return NULL; 723 } else { 724 h->nr_huge_pages++; 725 h->surplus_huge_pages++; 726 } 727 spin_unlock(&hugetlb_lock); 728 729 page = alloc_pages(htlb_alloc_mask|__GFP_COMP| 730 __GFP_REPEAT|__GFP_NOWARN, 731 huge_page_order(h)); 732 733 if (page && arch_prepare_hugepage(page)) { 734 __free_pages(page, huge_page_order(h)); 735 return NULL; 736 } 737 738 spin_lock(&hugetlb_lock); 739 if (page) { 740 /* 741 * This page is now managed by the hugetlb allocator and has 742 * no users -- drop the buddy allocator's reference. 743 */ 744 put_page_testzero(page); 745 VM_BUG_ON(page_count(page)); 746 nid = page_to_nid(page); 747 set_compound_page_dtor(page, free_huge_page); 748 /* 749 * We incremented the global counters already 750 */ 751 h->nr_huge_pages_node[nid]++; 752 h->surplus_huge_pages_node[nid]++; 753 __count_vm_event(HTLB_BUDDY_PGALLOC); 754 } else { 755 h->nr_huge_pages--; 756 h->surplus_huge_pages--; 757 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 758 } 759 spin_unlock(&hugetlb_lock); 760 761 return page; 762 } 763 764 /* 765 * Increase the hugetlb pool such that it can accomodate a reservation 766 * of size 'delta'. 767 */ 768 static int gather_surplus_pages(struct hstate *h, int delta) 769 { 770 struct list_head surplus_list; 771 struct page *page, *tmp; 772 int ret, i; 773 int needed, allocated; 774 775 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 776 if (needed <= 0) { 777 h->resv_huge_pages += delta; 778 return 0; 779 } 780 781 allocated = 0; 782 INIT_LIST_HEAD(&surplus_list); 783 784 ret = -ENOMEM; 785 retry: 786 spin_unlock(&hugetlb_lock); 787 for (i = 0; i < needed; i++) { 788 page = alloc_buddy_huge_page(h, NULL, 0); 789 if (!page) { 790 /* 791 * We were not able to allocate enough pages to 792 * satisfy the entire reservation so we free what 793 * we've allocated so far. 794 */ 795 spin_lock(&hugetlb_lock); 796 needed = 0; 797 goto free; 798 } 799 800 list_add(&page->lru, &surplus_list); 801 } 802 allocated += needed; 803 804 /* 805 * After retaking hugetlb_lock, we need to recalculate 'needed' 806 * because either resv_huge_pages or free_huge_pages may have changed. 807 */ 808 spin_lock(&hugetlb_lock); 809 needed = (h->resv_huge_pages + delta) - 810 (h->free_huge_pages + allocated); 811 if (needed > 0) 812 goto retry; 813 814 /* 815 * The surplus_list now contains _at_least_ the number of extra pages 816 * needed to accomodate the reservation. Add the appropriate number 817 * of pages to the hugetlb pool and free the extras back to the buddy 818 * allocator. Commit the entire reservation here to prevent another 819 * process from stealing the pages as they are added to the pool but 820 * before they are reserved. 821 */ 822 needed += allocated; 823 h->resv_huge_pages += delta; 824 ret = 0; 825 free: 826 /* Free the needed pages to the hugetlb pool */ 827 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 828 if ((--needed) < 0) 829 break; 830 list_del(&page->lru); 831 enqueue_huge_page(h, page); 832 } 833 834 /* Free unnecessary surplus pages to the buddy allocator */ 835 if (!list_empty(&surplus_list)) { 836 spin_unlock(&hugetlb_lock); 837 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 838 list_del(&page->lru); 839 /* 840 * The page has a reference count of zero already, so 841 * call free_huge_page directly instead of using 842 * put_page. This must be done with hugetlb_lock 843 * unlocked which is safe because free_huge_page takes 844 * hugetlb_lock before deciding how to free the page. 845 */ 846 free_huge_page(page); 847 } 848 spin_lock(&hugetlb_lock); 849 } 850 851 return ret; 852 } 853 854 /* 855 * When releasing a hugetlb pool reservation, any surplus pages that were 856 * allocated to satisfy the reservation must be explicitly freed if they were 857 * never used. 858 */ 859 static void return_unused_surplus_pages(struct hstate *h, 860 unsigned long unused_resv_pages) 861 { 862 static int nid = -1; 863 struct page *page; 864 unsigned long nr_pages; 865 866 /* 867 * We want to release as many surplus pages as possible, spread 868 * evenly across all nodes. Iterate across all nodes until we 869 * can no longer free unreserved surplus pages. This occurs when 870 * the nodes with surplus pages have no free pages. 871 */ 872 unsigned long remaining_iterations = nr_online_nodes; 873 874 /* Uncommit the reservation */ 875 h->resv_huge_pages -= unused_resv_pages; 876 877 /* Cannot return gigantic pages currently */ 878 if (h->order >= MAX_ORDER) 879 return; 880 881 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 882 883 while (remaining_iterations-- && nr_pages) { 884 nid = next_node(nid, node_online_map); 885 if (nid == MAX_NUMNODES) 886 nid = first_node(node_online_map); 887 888 if (!h->surplus_huge_pages_node[nid]) 889 continue; 890 891 if (!list_empty(&h->hugepage_freelists[nid])) { 892 page = list_entry(h->hugepage_freelists[nid].next, 893 struct page, lru); 894 list_del(&page->lru); 895 update_and_free_page(h, page); 896 h->free_huge_pages--; 897 h->free_huge_pages_node[nid]--; 898 h->surplus_huge_pages--; 899 h->surplus_huge_pages_node[nid]--; 900 nr_pages--; 901 remaining_iterations = nr_online_nodes; 902 } 903 } 904 } 905 906 /* 907 * Determine if the huge page at addr within the vma has an associated 908 * reservation. Where it does not we will need to logically increase 909 * reservation and actually increase quota before an allocation can occur. 910 * Where any new reservation would be required the reservation change is 911 * prepared, but not committed. Once the page has been quota'd allocated 912 * an instantiated the change should be committed via vma_commit_reservation. 913 * No action is required on failure. 914 */ 915 static long vma_needs_reservation(struct hstate *h, 916 struct vm_area_struct *vma, unsigned long addr) 917 { 918 struct address_space *mapping = vma->vm_file->f_mapping; 919 struct inode *inode = mapping->host; 920 921 if (vma->vm_flags & VM_MAYSHARE) { 922 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 923 return region_chg(&inode->i_mapping->private_list, 924 idx, idx + 1); 925 926 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 927 return 1; 928 929 } else { 930 long err; 931 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 932 struct resv_map *reservations = vma_resv_map(vma); 933 934 err = region_chg(&reservations->regions, idx, idx + 1); 935 if (err < 0) 936 return err; 937 return 0; 938 } 939 } 940 static void vma_commit_reservation(struct hstate *h, 941 struct vm_area_struct *vma, unsigned long addr) 942 { 943 struct address_space *mapping = vma->vm_file->f_mapping; 944 struct inode *inode = mapping->host; 945 946 if (vma->vm_flags & VM_MAYSHARE) { 947 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 948 region_add(&inode->i_mapping->private_list, idx, idx + 1); 949 950 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 951 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 952 struct resv_map *reservations = vma_resv_map(vma); 953 954 /* Mark this page used in the map. */ 955 region_add(&reservations->regions, idx, idx + 1); 956 } 957 } 958 959 static struct page *alloc_huge_page(struct vm_area_struct *vma, 960 unsigned long addr, int avoid_reserve) 961 { 962 struct hstate *h = hstate_vma(vma); 963 struct page *page; 964 struct address_space *mapping = vma->vm_file->f_mapping; 965 struct inode *inode = mapping->host; 966 long chg; 967 968 /* 969 * Processes that did not create the mapping will have no reserves and 970 * will not have accounted against quota. Check that the quota can be 971 * made before satisfying the allocation 972 * MAP_NORESERVE mappings may also need pages and quota allocated 973 * if no reserve mapping overlaps. 974 */ 975 chg = vma_needs_reservation(h, vma, addr); 976 if (chg < 0) 977 return ERR_PTR(chg); 978 if (chg) 979 if (hugetlb_get_quota(inode->i_mapping, chg)) 980 return ERR_PTR(-ENOSPC); 981 982 spin_lock(&hugetlb_lock); 983 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); 984 spin_unlock(&hugetlb_lock); 985 986 if (!page) { 987 page = alloc_buddy_huge_page(h, vma, addr); 988 if (!page) { 989 hugetlb_put_quota(inode->i_mapping, chg); 990 return ERR_PTR(-VM_FAULT_OOM); 991 } 992 } 993 994 set_page_refcounted(page); 995 set_page_private(page, (unsigned long) mapping); 996 997 vma_commit_reservation(h, vma, addr); 998 999 return page; 1000 } 1001 1002 int __weak alloc_bootmem_huge_page(struct hstate *h) 1003 { 1004 struct huge_bootmem_page *m; 1005 int nr_nodes = nodes_weight(node_online_map); 1006 1007 while (nr_nodes) { 1008 void *addr; 1009 1010 addr = __alloc_bootmem_node_nopanic( 1011 NODE_DATA(h->hugetlb_next_nid), 1012 huge_page_size(h), huge_page_size(h), 0); 1013 1014 if (addr) { 1015 /* 1016 * Use the beginning of the huge page to store the 1017 * huge_bootmem_page struct (until gather_bootmem 1018 * puts them into the mem_map). 1019 */ 1020 m = addr; 1021 goto found; 1022 } 1023 hstate_next_node(h); 1024 nr_nodes--; 1025 } 1026 return 0; 1027 1028 found: 1029 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); 1030 /* Put them into a private list first because mem_map is not up yet */ 1031 list_add(&m->list, &huge_boot_pages); 1032 m->hstate = h; 1033 return 1; 1034 } 1035 1036 static void prep_compound_huge_page(struct page *page, int order) 1037 { 1038 if (unlikely(order > (MAX_ORDER - 1))) 1039 prep_compound_gigantic_page(page, order); 1040 else 1041 prep_compound_page(page, order); 1042 } 1043 1044 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1045 static void __init gather_bootmem_prealloc(void) 1046 { 1047 struct huge_bootmem_page *m; 1048 1049 list_for_each_entry(m, &huge_boot_pages, list) { 1050 struct page *page = virt_to_page(m); 1051 struct hstate *h = m->hstate; 1052 __ClearPageReserved(page); 1053 WARN_ON(page_count(page) != 1); 1054 prep_compound_huge_page(page, h->order); 1055 prep_new_huge_page(h, page, page_to_nid(page)); 1056 } 1057 } 1058 1059 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 1060 { 1061 unsigned long i; 1062 1063 for (i = 0; i < h->max_huge_pages; ++i) { 1064 if (h->order >= MAX_ORDER) { 1065 if (!alloc_bootmem_huge_page(h)) 1066 break; 1067 } else if (!alloc_fresh_huge_page(h)) 1068 break; 1069 } 1070 h->max_huge_pages = i; 1071 } 1072 1073 static void __init hugetlb_init_hstates(void) 1074 { 1075 struct hstate *h; 1076 1077 for_each_hstate(h) { 1078 /* oversize hugepages were init'ed in early boot */ 1079 if (h->order < MAX_ORDER) 1080 hugetlb_hstate_alloc_pages(h); 1081 } 1082 } 1083 1084 static char * __init memfmt(char *buf, unsigned long n) 1085 { 1086 if (n >= (1UL << 30)) 1087 sprintf(buf, "%lu GB", n >> 30); 1088 else if (n >= (1UL << 20)) 1089 sprintf(buf, "%lu MB", n >> 20); 1090 else 1091 sprintf(buf, "%lu KB", n >> 10); 1092 return buf; 1093 } 1094 1095 static void __init report_hugepages(void) 1096 { 1097 struct hstate *h; 1098 1099 for_each_hstate(h) { 1100 char buf[32]; 1101 printk(KERN_INFO "HugeTLB registered %s page size, " 1102 "pre-allocated %ld pages\n", 1103 memfmt(buf, huge_page_size(h)), 1104 h->free_huge_pages); 1105 } 1106 } 1107 1108 #ifdef CONFIG_HIGHMEM 1109 static void try_to_free_low(struct hstate *h, unsigned long count) 1110 { 1111 int i; 1112 1113 if (h->order >= MAX_ORDER) 1114 return; 1115 1116 for (i = 0; i < MAX_NUMNODES; ++i) { 1117 struct page *page, *next; 1118 struct list_head *freel = &h->hugepage_freelists[i]; 1119 list_for_each_entry_safe(page, next, freel, lru) { 1120 if (count >= h->nr_huge_pages) 1121 return; 1122 if (PageHighMem(page)) 1123 continue; 1124 list_del(&page->lru); 1125 update_and_free_page(h, page); 1126 h->free_huge_pages--; 1127 h->free_huge_pages_node[page_to_nid(page)]--; 1128 } 1129 } 1130 } 1131 #else 1132 static inline void try_to_free_low(struct hstate *h, unsigned long count) 1133 { 1134 } 1135 #endif 1136 1137 /* 1138 * Increment or decrement surplus_huge_pages. Keep node-specific counters 1139 * balanced by operating on them in a round-robin fashion. 1140 * Returns 1 if an adjustment was made. 1141 */ 1142 static int adjust_pool_surplus(struct hstate *h, int delta) 1143 { 1144 static int prev_nid; 1145 int nid = prev_nid; 1146 int ret = 0; 1147 1148 VM_BUG_ON(delta != -1 && delta != 1); 1149 do { 1150 nid = next_node(nid, node_online_map); 1151 if (nid == MAX_NUMNODES) 1152 nid = first_node(node_online_map); 1153 1154 /* To shrink on this node, there must be a surplus page */ 1155 if (delta < 0 && !h->surplus_huge_pages_node[nid]) 1156 continue; 1157 /* Surplus cannot exceed the total number of pages */ 1158 if (delta > 0 && h->surplus_huge_pages_node[nid] >= 1159 h->nr_huge_pages_node[nid]) 1160 continue; 1161 1162 h->surplus_huge_pages += delta; 1163 h->surplus_huge_pages_node[nid] += delta; 1164 ret = 1; 1165 break; 1166 } while (nid != prev_nid); 1167 1168 prev_nid = nid; 1169 return ret; 1170 } 1171 1172 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 1173 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count) 1174 { 1175 unsigned long min_count, ret; 1176 1177 if (h->order >= MAX_ORDER) 1178 return h->max_huge_pages; 1179 1180 /* 1181 * Increase the pool size 1182 * First take pages out of surplus state. Then make up the 1183 * remaining difference by allocating fresh huge pages. 1184 * 1185 * We might race with alloc_buddy_huge_page() here and be unable 1186 * to convert a surplus huge page to a normal huge page. That is 1187 * not critical, though, it just means the overall size of the 1188 * pool might be one hugepage larger than it needs to be, but 1189 * within all the constraints specified by the sysctls. 1190 */ 1191 spin_lock(&hugetlb_lock); 1192 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 1193 if (!adjust_pool_surplus(h, -1)) 1194 break; 1195 } 1196 1197 while (count > persistent_huge_pages(h)) { 1198 /* 1199 * If this allocation races such that we no longer need the 1200 * page, free_huge_page will handle it by freeing the page 1201 * and reducing the surplus. 1202 */ 1203 spin_unlock(&hugetlb_lock); 1204 ret = alloc_fresh_huge_page(h); 1205 spin_lock(&hugetlb_lock); 1206 if (!ret) 1207 goto out; 1208 1209 } 1210 1211 /* 1212 * Decrease the pool size 1213 * First return free pages to the buddy allocator (being careful 1214 * to keep enough around to satisfy reservations). Then place 1215 * pages into surplus state as needed so the pool will shrink 1216 * to the desired size as pages become free. 1217 * 1218 * By placing pages into the surplus state independent of the 1219 * overcommit value, we are allowing the surplus pool size to 1220 * exceed overcommit. There are few sane options here. Since 1221 * alloc_buddy_huge_page() is checking the global counter, 1222 * though, we'll note that we're not allowed to exceed surplus 1223 * and won't grow the pool anywhere else. Not until one of the 1224 * sysctls are changed, or the surplus pages go out of use. 1225 */ 1226 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 1227 min_count = max(count, min_count); 1228 try_to_free_low(h, min_count); 1229 while (min_count < persistent_huge_pages(h)) { 1230 struct page *page = dequeue_huge_page(h); 1231 if (!page) 1232 break; 1233 update_and_free_page(h, page); 1234 } 1235 while (count < persistent_huge_pages(h)) { 1236 if (!adjust_pool_surplus(h, 1)) 1237 break; 1238 } 1239 out: 1240 ret = persistent_huge_pages(h); 1241 spin_unlock(&hugetlb_lock); 1242 return ret; 1243 } 1244 1245 #define HSTATE_ATTR_RO(_name) \ 1246 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1247 1248 #define HSTATE_ATTR(_name) \ 1249 static struct kobj_attribute _name##_attr = \ 1250 __ATTR(_name, 0644, _name##_show, _name##_store) 1251 1252 static struct kobject *hugepages_kobj; 1253 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1254 1255 static struct hstate *kobj_to_hstate(struct kobject *kobj) 1256 { 1257 int i; 1258 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1259 if (hstate_kobjs[i] == kobj) 1260 return &hstates[i]; 1261 BUG(); 1262 return NULL; 1263 } 1264 1265 static ssize_t nr_hugepages_show(struct kobject *kobj, 1266 struct kobj_attribute *attr, char *buf) 1267 { 1268 struct hstate *h = kobj_to_hstate(kobj); 1269 return sprintf(buf, "%lu\n", h->nr_huge_pages); 1270 } 1271 static ssize_t nr_hugepages_store(struct kobject *kobj, 1272 struct kobj_attribute *attr, const char *buf, size_t count) 1273 { 1274 int err; 1275 unsigned long input; 1276 struct hstate *h = kobj_to_hstate(kobj); 1277 1278 err = strict_strtoul(buf, 10, &input); 1279 if (err) 1280 return 0; 1281 1282 h->max_huge_pages = set_max_huge_pages(h, input); 1283 1284 return count; 1285 } 1286 HSTATE_ATTR(nr_hugepages); 1287 1288 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 1289 struct kobj_attribute *attr, char *buf) 1290 { 1291 struct hstate *h = kobj_to_hstate(kobj); 1292 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 1293 } 1294 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 1295 struct kobj_attribute *attr, const char *buf, size_t count) 1296 { 1297 int err; 1298 unsigned long input; 1299 struct hstate *h = kobj_to_hstate(kobj); 1300 1301 err = strict_strtoul(buf, 10, &input); 1302 if (err) 1303 return 0; 1304 1305 spin_lock(&hugetlb_lock); 1306 h->nr_overcommit_huge_pages = input; 1307 spin_unlock(&hugetlb_lock); 1308 1309 return count; 1310 } 1311 HSTATE_ATTR(nr_overcommit_hugepages); 1312 1313 static ssize_t free_hugepages_show(struct kobject *kobj, 1314 struct kobj_attribute *attr, char *buf) 1315 { 1316 struct hstate *h = kobj_to_hstate(kobj); 1317 return sprintf(buf, "%lu\n", h->free_huge_pages); 1318 } 1319 HSTATE_ATTR_RO(free_hugepages); 1320 1321 static ssize_t resv_hugepages_show(struct kobject *kobj, 1322 struct kobj_attribute *attr, char *buf) 1323 { 1324 struct hstate *h = kobj_to_hstate(kobj); 1325 return sprintf(buf, "%lu\n", h->resv_huge_pages); 1326 } 1327 HSTATE_ATTR_RO(resv_hugepages); 1328 1329 static ssize_t surplus_hugepages_show(struct kobject *kobj, 1330 struct kobj_attribute *attr, char *buf) 1331 { 1332 struct hstate *h = kobj_to_hstate(kobj); 1333 return sprintf(buf, "%lu\n", h->surplus_huge_pages); 1334 } 1335 HSTATE_ATTR_RO(surplus_hugepages); 1336 1337 static struct attribute *hstate_attrs[] = { 1338 &nr_hugepages_attr.attr, 1339 &nr_overcommit_hugepages_attr.attr, 1340 &free_hugepages_attr.attr, 1341 &resv_hugepages_attr.attr, 1342 &surplus_hugepages_attr.attr, 1343 NULL, 1344 }; 1345 1346 static struct attribute_group hstate_attr_group = { 1347 .attrs = hstate_attrs, 1348 }; 1349 1350 static int __init hugetlb_sysfs_add_hstate(struct hstate *h) 1351 { 1352 int retval; 1353 1354 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name, 1355 hugepages_kobj); 1356 if (!hstate_kobjs[h - hstates]) 1357 return -ENOMEM; 1358 1359 retval = sysfs_create_group(hstate_kobjs[h - hstates], 1360 &hstate_attr_group); 1361 if (retval) 1362 kobject_put(hstate_kobjs[h - hstates]); 1363 1364 return retval; 1365 } 1366 1367 static void __init hugetlb_sysfs_init(void) 1368 { 1369 struct hstate *h; 1370 int err; 1371 1372 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 1373 if (!hugepages_kobj) 1374 return; 1375 1376 for_each_hstate(h) { 1377 err = hugetlb_sysfs_add_hstate(h); 1378 if (err) 1379 printk(KERN_ERR "Hugetlb: Unable to add hstate %s", 1380 h->name); 1381 } 1382 } 1383 1384 static void __exit hugetlb_exit(void) 1385 { 1386 struct hstate *h; 1387 1388 for_each_hstate(h) { 1389 kobject_put(hstate_kobjs[h - hstates]); 1390 } 1391 1392 kobject_put(hugepages_kobj); 1393 } 1394 module_exit(hugetlb_exit); 1395 1396 static int __init hugetlb_init(void) 1397 { 1398 /* Some platform decide whether they support huge pages at boot 1399 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when 1400 * there is no such support 1401 */ 1402 if (HPAGE_SHIFT == 0) 1403 return 0; 1404 1405 if (!size_to_hstate(default_hstate_size)) { 1406 default_hstate_size = HPAGE_SIZE; 1407 if (!size_to_hstate(default_hstate_size)) 1408 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 1409 } 1410 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; 1411 if (default_hstate_max_huge_pages) 1412 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 1413 1414 hugetlb_init_hstates(); 1415 1416 gather_bootmem_prealloc(); 1417 1418 report_hugepages(); 1419 1420 hugetlb_sysfs_init(); 1421 1422 return 0; 1423 } 1424 module_init(hugetlb_init); 1425 1426 /* Should be called on processing a hugepagesz=... option */ 1427 void __init hugetlb_add_hstate(unsigned order) 1428 { 1429 struct hstate *h; 1430 unsigned long i; 1431 1432 if (size_to_hstate(PAGE_SIZE << order)) { 1433 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); 1434 return; 1435 } 1436 BUG_ON(max_hstate >= HUGE_MAX_HSTATE); 1437 BUG_ON(order == 0); 1438 h = &hstates[max_hstate++]; 1439 h->order = order; 1440 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 1441 h->nr_huge_pages = 0; 1442 h->free_huge_pages = 0; 1443 for (i = 0; i < MAX_NUMNODES; ++i) 1444 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 1445 h->hugetlb_next_nid = first_node(node_online_map); 1446 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 1447 huge_page_size(h)/1024); 1448 1449 parsed_hstate = h; 1450 } 1451 1452 static int __init hugetlb_nrpages_setup(char *s) 1453 { 1454 unsigned long *mhp; 1455 static unsigned long *last_mhp; 1456 1457 /* 1458 * !max_hstate means we haven't parsed a hugepagesz= parameter yet, 1459 * so this hugepages= parameter goes to the "default hstate". 1460 */ 1461 if (!max_hstate) 1462 mhp = &default_hstate_max_huge_pages; 1463 else 1464 mhp = &parsed_hstate->max_huge_pages; 1465 1466 if (mhp == last_mhp) { 1467 printk(KERN_WARNING "hugepages= specified twice without " 1468 "interleaving hugepagesz=, ignoring\n"); 1469 return 1; 1470 } 1471 1472 if (sscanf(s, "%lu", mhp) <= 0) 1473 *mhp = 0; 1474 1475 /* 1476 * Global state is always initialized later in hugetlb_init. 1477 * But we need to allocate >= MAX_ORDER hstates here early to still 1478 * use the bootmem allocator. 1479 */ 1480 if (max_hstate && parsed_hstate->order >= MAX_ORDER) 1481 hugetlb_hstate_alloc_pages(parsed_hstate); 1482 1483 last_mhp = mhp; 1484 1485 return 1; 1486 } 1487 __setup("hugepages=", hugetlb_nrpages_setup); 1488 1489 static int __init hugetlb_default_setup(char *s) 1490 { 1491 default_hstate_size = memparse(s, &s); 1492 return 1; 1493 } 1494 __setup("default_hugepagesz=", hugetlb_default_setup); 1495 1496 static unsigned int cpuset_mems_nr(unsigned int *array) 1497 { 1498 int node; 1499 unsigned int nr = 0; 1500 1501 for_each_node_mask(node, cpuset_current_mems_allowed) 1502 nr += array[node]; 1503 1504 return nr; 1505 } 1506 1507 #ifdef CONFIG_SYSCTL 1508 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 1509 struct file *file, void __user *buffer, 1510 size_t *length, loff_t *ppos) 1511 { 1512 struct hstate *h = &default_hstate; 1513 unsigned long tmp; 1514 1515 if (!write) 1516 tmp = h->max_huge_pages; 1517 1518 table->data = &tmp; 1519 table->maxlen = sizeof(unsigned long); 1520 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 1521 1522 if (write) 1523 h->max_huge_pages = set_max_huge_pages(h, tmp); 1524 1525 return 0; 1526 } 1527 1528 int hugetlb_treat_movable_handler(struct ctl_table *table, int write, 1529 struct file *file, void __user *buffer, 1530 size_t *length, loff_t *ppos) 1531 { 1532 proc_dointvec(table, write, file, buffer, length, ppos); 1533 if (hugepages_treat_as_movable) 1534 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; 1535 else 1536 htlb_alloc_mask = GFP_HIGHUSER; 1537 return 0; 1538 } 1539 1540 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 1541 struct file *file, void __user *buffer, 1542 size_t *length, loff_t *ppos) 1543 { 1544 struct hstate *h = &default_hstate; 1545 unsigned long tmp; 1546 1547 if (!write) 1548 tmp = h->nr_overcommit_huge_pages; 1549 1550 table->data = &tmp; 1551 table->maxlen = sizeof(unsigned long); 1552 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 1553 1554 if (write) { 1555 spin_lock(&hugetlb_lock); 1556 h->nr_overcommit_huge_pages = tmp; 1557 spin_unlock(&hugetlb_lock); 1558 } 1559 1560 return 0; 1561 } 1562 1563 #endif /* CONFIG_SYSCTL */ 1564 1565 void hugetlb_report_meminfo(struct seq_file *m) 1566 { 1567 struct hstate *h = &default_hstate; 1568 seq_printf(m, 1569 "HugePages_Total: %5lu\n" 1570 "HugePages_Free: %5lu\n" 1571 "HugePages_Rsvd: %5lu\n" 1572 "HugePages_Surp: %5lu\n" 1573 "Hugepagesize: %8lu kB\n", 1574 h->nr_huge_pages, 1575 h->free_huge_pages, 1576 h->resv_huge_pages, 1577 h->surplus_huge_pages, 1578 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 1579 } 1580 1581 int hugetlb_report_node_meminfo(int nid, char *buf) 1582 { 1583 struct hstate *h = &default_hstate; 1584 return sprintf(buf, 1585 "Node %d HugePages_Total: %5u\n" 1586 "Node %d HugePages_Free: %5u\n" 1587 "Node %d HugePages_Surp: %5u\n", 1588 nid, h->nr_huge_pages_node[nid], 1589 nid, h->free_huge_pages_node[nid], 1590 nid, h->surplus_huge_pages_node[nid]); 1591 } 1592 1593 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 1594 unsigned long hugetlb_total_pages(void) 1595 { 1596 struct hstate *h = &default_hstate; 1597 return h->nr_huge_pages * pages_per_huge_page(h); 1598 } 1599 1600 static int hugetlb_acct_memory(struct hstate *h, long delta) 1601 { 1602 int ret = -ENOMEM; 1603 1604 spin_lock(&hugetlb_lock); 1605 /* 1606 * When cpuset is configured, it breaks the strict hugetlb page 1607 * reservation as the accounting is done on a global variable. Such 1608 * reservation is completely rubbish in the presence of cpuset because 1609 * the reservation is not checked against page availability for the 1610 * current cpuset. Application can still potentially OOM'ed by kernel 1611 * with lack of free htlb page in cpuset that the task is in. 1612 * Attempt to enforce strict accounting with cpuset is almost 1613 * impossible (or too ugly) because cpuset is too fluid that 1614 * task or memory node can be dynamically moved between cpusets. 1615 * 1616 * The change of semantics for shared hugetlb mapping with cpuset is 1617 * undesirable. However, in order to preserve some of the semantics, 1618 * we fall back to check against current free page availability as 1619 * a best attempt and hopefully to minimize the impact of changing 1620 * semantics that cpuset has. 1621 */ 1622 if (delta > 0) { 1623 if (gather_surplus_pages(h, delta) < 0) 1624 goto out; 1625 1626 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 1627 return_unused_surplus_pages(h, delta); 1628 goto out; 1629 } 1630 } 1631 1632 ret = 0; 1633 if (delta < 0) 1634 return_unused_surplus_pages(h, (unsigned long) -delta); 1635 1636 out: 1637 spin_unlock(&hugetlb_lock); 1638 return ret; 1639 } 1640 1641 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 1642 { 1643 struct resv_map *reservations = vma_resv_map(vma); 1644 1645 /* 1646 * This new VMA should share its siblings reservation map if present. 1647 * The VMA will only ever have a valid reservation map pointer where 1648 * it is being copied for another still existing VMA. As that VMA 1649 * has a reference to the reservation map it cannot dissappear until 1650 * after this open call completes. It is therefore safe to take a 1651 * new reference here without additional locking. 1652 */ 1653 if (reservations) 1654 kref_get(&reservations->refs); 1655 } 1656 1657 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 1658 { 1659 struct hstate *h = hstate_vma(vma); 1660 struct resv_map *reservations = vma_resv_map(vma); 1661 unsigned long reserve; 1662 unsigned long start; 1663 unsigned long end; 1664 1665 if (reservations) { 1666 start = vma_hugecache_offset(h, vma, vma->vm_start); 1667 end = vma_hugecache_offset(h, vma, vma->vm_end); 1668 1669 reserve = (end - start) - 1670 region_count(&reservations->regions, start, end); 1671 1672 kref_put(&reservations->refs, resv_map_release); 1673 1674 if (reserve) { 1675 hugetlb_acct_memory(h, -reserve); 1676 hugetlb_put_quota(vma->vm_file->f_mapping, reserve); 1677 } 1678 } 1679 } 1680 1681 /* 1682 * We cannot handle pagefaults against hugetlb pages at all. They cause 1683 * handle_mm_fault() to try to instantiate regular-sized pages in the 1684 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 1685 * this far. 1686 */ 1687 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1688 { 1689 BUG(); 1690 return 0; 1691 } 1692 1693 struct vm_operations_struct hugetlb_vm_ops = { 1694 .fault = hugetlb_vm_op_fault, 1695 .open = hugetlb_vm_op_open, 1696 .close = hugetlb_vm_op_close, 1697 }; 1698 1699 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 1700 int writable) 1701 { 1702 pte_t entry; 1703 1704 if (writable) { 1705 entry = 1706 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); 1707 } else { 1708 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot)); 1709 } 1710 entry = pte_mkyoung(entry); 1711 entry = pte_mkhuge(entry); 1712 1713 return entry; 1714 } 1715 1716 static void set_huge_ptep_writable(struct vm_area_struct *vma, 1717 unsigned long address, pte_t *ptep) 1718 { 1719 pte_t entry; 1720 1721 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep))); 1722 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) { 1723 update_mmu_cache(vma, address, entry); 1724 } 1725 } 1726 1727 1728 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 1729 struct vm_area_struct *vma) 1730 { 1731 pte_t *src_pte, *dst_pte, entry; 1732 struct page *ptepage; 1733 unsigned long addr; 1734 int cow; 1735 struct hstate *h = hstate_vma(vma); 1736 unsigned long sz = huge_page_size(h); 1737 1738 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1739 1740 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 1741 src_pte = huge_pte_offset(src, addr); 1742 if (!src_pte) 1743 continue; 1744 dst_pte = huge_pte_alloc(dst, addr, sz); 1745 if (!dst_pte) 1746 goto nomem; 1747 1748 /* If the pagetables are shared don't copy or take references */ 1749 if (dst_pte == src_pte) 1750 continue; 1751 1752 spin_lock(&dst->page_table_lock); 1753 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); 1754 if (!huge_pte_none(huge_ptep_get(src_pte))) { 1755 if (cow) 1756 huge_ptep_set_wrprotect(src, addr, src_pte); 1757 entry = huge_ptep_get(src_pte); 1758 ptepage = pte_page(entry); 1759 get_page(ptepage); 1760 set_huge_pte_at(dst, addr, dst_pte, entry); 1761 } 1762 spin_unlock(&src->page_table_lock); 1763 spin_unlock(&dst->page_table_lock); 1764 } 1765 return 0; 1766 1767 nomem: 1768 return -ENOMEM; 1769 } 1770 1771 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 1772 unsigned long end, struct page *ref_page) 1773 { 1774 struct mm_struct *mm = vma->vm_mm; 1775 unsigned long address; 1776 pte_t *ptep; 1777 pte_t pte; 1778 struct page *page; 1779 struct page *tmp; 1780 struct hstate *h = hstate_vma(vma); 1781 unsigned long sz = huge_page_size(h); 1782 1783 /* 1784 * A page gathering list, protected by per file i_mmap_lock. The 1785 * lock is used to avoid list corruption from multiple unmapping 1786 * of the same page since we are using page->lru. 1787 */ 1788 LIST_HEAD(page_list); 1789 1790 WARN_ON(!is_vm_hugetlb_page(vma)); 1791 BUG_ON(start & ~huge_page_mask(h)); 1792 BUG_ON(end & ~huge_page_mask(h)); 1793 1794 mmu_notifier_invalidate_range_start(mm, start, end); 1795 spin_lock(&mm->page_table_lock); 1796 for (address = start; address < end; address += sz) { 1797 ptep = huge_pte_offset(mm, address); 1798 if (!ptep) 1799 continue; 1800 1801 if (huge_pmd_unshare(mm, &address, ptep)) 1802 continue; 1803 1804 /* 1805 * If a reference page is supplied, it is because a specific 1806 * page is being unmapped, not a range. Ensure the page we 1807 * are about to unmap is the actual page of interest. 1808 */ 1809 if (ref_page) { 1810 pte = huge_ptep_get(ptep); 1811 if (huge_pte_none(pte)) 1812 continue; 1813 page = pte_page(pte); 1814 if (page != ref_page) 1815 continue; 1816 1817 /* 1818 * Mark the VMA as having unmapped its page so that 1819 * future faults in this VMA will fail rather than 1820 * looking like data was lost 1821 */ 1822 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 1823 } 1824 1825 pte = huge_ptep_get_and_clear(mm, address, ptep); 1826 if (huge_pte_none(pte)) 1827 continue; 1828 1829 page = pte_page(pte); 1830 if (pte_dirty(pte)) 1831 set_page_dirty(page); 1832 list_add(&page->lru, &page_list); 1833 } 1834 spin_unlock(&mm->page_table_lock); 1835 flush_tlb_range(vma, start, end); 1836 mmu_notifier_invalidate_range_end(mm, start, end); 1837 list_for_each_entry_safe(page, tmp, &page_list, lru) { 1838 list_del(&page->lru); 1839 put_page(page); 1840 } 1841 } 1842 1843 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 1844 unsigned long end, struct page *ref_page) 1845 { 1846 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 1847 __unmap_hugepage_range(vma, start, end, ref_page); 1848 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 1849 } 1850 1851 /* 1852 * This is called when the original mapper is failing to COW a MAP_PRIVATE 1853 * mappping it owns the reserve page for. The intention is to unmap the page 1854 * from other VMAs and let the children be SIGKILLed if they are faulting the 1855 * same region. 1856 */ 1857 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 1858 struct page *page, unsigned long address) 1859 { 1860 struct hstate *h = hstate_vma(vma); 1861 struct vm_area_struct *iter_vma; 1862 struct address_space *mapping; 1863 struct prio_tree_iter iter; 1864 pgoff_t pgoff; 1865 1866 /* 1867 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 1868 * from page cache lookup which is in HPAGE_SIZE units. 1869 */ 1870 address = address & huge_page_mask(h); 1871 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) 1872 + (vma->vm_pgoff >> PAGE_SHIFT); 1873 mapping = (struct address_space *)page_private(page); 1874 1875 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1876 /* Do not unmap the current VMA */ 1877 if (iter_vma == vma) 1878 continue; 1879 1880 /* 1881 * Unmap the page from other VMAs without their own reserves. 1882 * They get marked to be SIGKILLed if they fault in these 1883 * areas. This is because a future no-page fault on this VMA 1884 * could insert a zeroed page instead of the data existing 1885 * from the time of fork. This would look like data corruption 1886 */ 1887 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 1888 unmap_hugepage_range(iter_vma, 1889 address, address + huge_page_size(h), 1890 page); 1891 } 1892 1893 return 1; 1894 } 1895 1896 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 1897 unsigned long address, pte_t *ptep, pte_t pte, 1898 struct page *pagecache_page) 1899 { 1900 struct hstate *h = hstate_vma(vma); 1901 struct page *old_page, *new_page; 1902 int avoidcopy; 1903 int outside_reserve = 0; 1904 1905 old_page = pte_page(pte); 1906 1907 retry_avoidcopy: 1908 /* If no-one else is actually using this page, avoid the copy 1909 * and just make the page writable */ 1910 avoidcopy = (page_count(old_page) == 1); 1911 if (avoidcopy) { 1912 set_huge_ptep_writable(vma, address, ptep); 1913 return 0; 1914 } 1915 1916 /* 1917 * If the process that created a MAP_PRIVATE mapping is about to 1918 * perform a COW due to a shared page count, attempt to satisfy 1919 * the allocation without using the existing reserves. The pagecache 1920 * page is used to determine if the reserve at this address was 1921 * consumed or not. If reserves were used, a partial faulted mapping 1922 * at the time of fork() could consume its reserves on COW instead 1923 * of the full address range. 1924 */ 1925 if (!(vma->vm_flags & VM_MAYSHARE) && 1926 is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 1927 old_page != pagecache_page) 1928 outside_reserve = 1; 1929 1930 page_cache_get(old_page); 1931 new_page = alloc_huge_page(vma, address, outside_reserve); 1932 1933 if (IS_ERR(new_page)) { 1934 page_cache_release(old_page); 1935 1936 /* 1937 * If a process owning a MAP_PRIVATE mapping fails to COW, 1938 * it is due to references held by a child and an insufficient 1939 * huge page pool. To guarantee the original mappers 1940 * reliability, unmap the page from child processes. The child 1941 * may get SIGKILLed if it later faults. 1942 */ 1943 if (outside_reserve) { 1944 BUG_ON(huge_pte_none(pte)); 1945 if (unmap_ref_private(mm, vma, old_page, address)) { 1946 BUG_ON(page_count(old_page) != 1); 1947 BUG_ON(huge_pte_none(pte)); 1948 goto retry_avoidcopy; 1949 } 1950 WARN_ON_ONCE(1); 1951 } 1952 1953 return -PTR_ERR(new_page); 1954 } 1955 1956 spin_unlock(&mm->page_table_lock); 1957 copy_huge_page(new_page, old_page, address, vma); 1958 __SetPageUptodate(new_page); 1959 spin_lock(&mm->page_table_lock); 1960 1961 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 1962 if (likely(pte_same(huge_ptep_get(ptep), pte))) { 1963 /* Break COW */ 1964 huge_ptep_clear_flush(vma, address, ptep); 1965 set_huge_pte_at(mm, address, ptep, 1966 make_huge_pte(vma, new_page, 1)); 1967 /* Make the old page be freed below */ 1968 new_page = old_page; 1969 } 1970 page_cache_release(new_page); 1971 page_cache_release(old_page); 1972 return 0; 1973 } 1974 1975 /* Return the pagecache page at a given address within a VMA */ 1976 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 1977 struct vm_area_struct *vma, unsigned long address) 1978 { 1979 struct address_space *mapping; 1980 pgoff_t idx; 1981 1982 mapping = vma->vm_file->f_mapping; 1983 idx = vma_hugecache_offset(h, vma, address); 1984 1985 return find_lock_page(mapping, idx); 1986 } 1987 1988 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 1989 unsigned long address, pte_t *ptep, unsigned int flags) 1990 { 1991 struct hstate *h = hstate_vma(vma); 1992 int ret = VM_FAULT_SIGBUS; 1993 pgoff_t idx; 1994 unsigned long size; 1995 struct page *page; 1996 struct address_space *mapping; 1997 pte_t new_pte; 1998 1999 /* 2000 * Currently, we are forced to kill the process in the event the 2001 * original mapper has unmapped pages from the child due to a failed 2002 * COW. Warn that such a situation has occured as it may not be obvious 2003 */ 2004 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 2005 printk(KERN_WARNING 2006 "PID %d killed due to inadequate hugepage pool\n", 2007 current->pid); 2008 return ret; 2009 } 2010 2011 mapping = vma->vm_file->f_mapping; 2012 idx = vma_hugecache_offset(h, vma, address); 2013 2014 /* 2015 * Use page lock to guard against racing truncation 2016 * before we get page_table_lock. 2017 */ 2018 retry: 2019 page = find_lock_page(mapping, idx); 2020 if (!page) { 2021 size = i_size_read(mapping->host) >> huge_page_shift(h); 2022 if (idx >= size) 2023 goto out; 2024 page = alloc_huge_page(vma, address, 0); 2025 if (IS_ERR(page)) { 2026 ret = -PTR_ERR(page); 2027 goto out; 2028 } 2029 clear_huge_page(page, address, huge_page_size(h)); 2030 __SetPageUptodate(page); 2031 2032 if (vma->vm_flags & VM_MAYSHARE) { 2033 int err; 2034 struct inode *inode = mapping->host; 2035 2036 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 2037 if (err) { 2038 put_page(page); 2039 if (err == -EEXIST) 2040 goto retry; 2041 goto out; 2042 } 2043 2044 spin_lock(&inode->i_lock); 2045 inode->i_blocks += blocks_per_huge_page(h); 2046 spin_unlock(&inode->i_lock); 2047 } else 2048 lock_page(page); 2049 } 2050 2051 /* 2052 * If we are going to COW a private mapping later, we examine the 2053 * pending reservations for this page now. This will ensure that 2054 * any allocations necessary to record that reservation occur outside 2055 * the spinlock. 2056 */ 2057 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 2058 if (vma_needs_reservation(h, vma, address) < 0) { 2059 ret = VM_FAULT_OOM; 2060 goto backout_unlocked; 2061 } 2062 2063 spin_lock(&mm->page_table_lock); 2064 size = i_size_read(mapping->host) >> huge_page_shift(h); 2065 if (idx >= size) 2066 goto backout; 2067 2068 ret = 0; 2069 if (!huge_pte_none(huge_ptep_get(ptep))) 2070 goto backout; 2071 2072 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 2073 && (vma->vm_flags & VM_SHARED))); 2074 set_huge_pte_at(mm, address, ptep, new_pte); 2075 2076 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 2077 /* Optimization, do the COW without a second fault */ 2078 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); 2079 } 2080 2081 spin_unlock(&mm->page_table_lock); 2082 unlock_page(page); 2083 out: 2084 return ret; 2085 2086 backout: 2087 spin_unlock(&mm->page_table_lock); 2088 backout_unlocked: 2089 unlock_page(page); 2090 put_page(page); 2091 goto out; 2092 } 2093 2094 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2095 unsigned long address, unsigned int flags) 2096 { 2097 pte_t *ptep; 2098 pte_t entry; 2099 int ret; 2100 struct page *pagecache_page = NULL; 2101 static DEFINE_MUTEX(hugetlb_instantiation_mutex); 2102 struct hstate *h = hstate_vma(vma); 2103 2104 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 2105 if (!ptep) 2106 return VM_FAULT_OOM; 2107 2108 /* 2109 * Serialize hugepage allocation and instantiation, so that we don't 2110 * get spurious allocation failures if two CPUs race to instantiate 2111 * the same page in the page cache. 2112 */ 2113 mutex_lock(&hugetlb_instantiation_mutex); 2114 entry = huge_ptep_get(ptep); 2115 if (huge_pte_none(entry)) { 2116 ret = hugetlb_no_page(mm, vma, address, ptep, flags); 2117 goto out_mutex; 2118 } 2119 2120 ret = 0; 2121 2122 /* 2123 * If we are going to COW the mapping later, we examine the pending 2124 * reservations for this page now. This will ensure that any 2125 * allocations necessary to record that reservation occur outside the 2126 * spinlock. For private mappings, we also lookup the pagecache 2127 * page now as it is used to determine if a reservation has been 2128 * consumed. 2129 */ 2130 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) { 2131 if (vma_needs_reservation(h, vma, address) < 0) { 2132 ret = VM_FAULT_OOM; 2133 goto out_mutex; 2134 } 2135 2136 if (!(vma->vm_flags & VM_MAYSHARE)) 2137 pagecache_page = hugetlbfs_pagecache_page(h, 2138 vma, address); 2139 } 2140 2141 spin_lock(&mm->page_table_lock); 2142 /* Check for a racing update before calling hugetlb_cow */ 2143 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 2144 goto out_page_table_lock; 2145 2146 2147 if (flags & FAULT_FLAG_WRITE) { 2148 if (!pte_write(entry)) { 2149 ret = hugetlb_cow(mm, vma, address, ptep, entry, 2150 pagecache_page); 2151 goto out_page_table_lock; 2152 } 2153 entry = pte_mkdirty(entry); 2154 } 2155 entry = pte_mkyoung(entry); 2156 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 2157 flags & FAULT_FLAG_WRITE)) 2158 update_mmu_cache(vma, address, entry); 2159 2160 out_page_table_lock: 2161 spin_unlock(&mm->page_table_lock); 2162 2163 if (pagecache_page) { 2164 unlock_page(pagecache_page); 2165 put_page(pagecache_page); 2166 } 2167 2168 out_mutex: 2169 mutex_unlock(&hugetlb_instantiation_mutex); 2170 2171 return ret; 2172 } 2173 2174 /* Can be overriden by architectures */ 2175 __attribute__((weak)) struct page * 2176 follow_huge_pud(struct mm_struct *mm, unsigned long address, 2177 pud_t *pud, int write) 2178 { 2179 BUG(); 2180 return NULL; 2181 } 2182 2183 static int huge_zeropage_ok(pte_t *ptep, int write, int shared) 2184 { 2185 if (!ptep || write || shared) 2186 return 0; 2187 else 2188 return huge_pte_none(huge_ptep_get(ptep)); 2189 } 2190 2191 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 2192 struct page **pages, struct vm_area_struct **vmas, 2193 unsigned long *position, int *length, int i, 2194 int write) 2195 { 2196 unsigned long pfn_offset; 2197 unsigned long vaddr = *position; 2198 int remainder = *length; 2199 struct hstate *h = hstate_vma(vma); 2200 int zeropage_ok = 0; 2201 int shared = vma->vm_flags & VM_SHARED; 2202 2203 spin_lock(&mm->page_table_lock); 2204 while (vaddr < vma->vm_end && remainder) { 2205 pte_t *pte; 2206 struct page *page; 2207 2208 /* 2209 * Some archs (sparc64, sh*) have multiple pte_ts to 2210 * each hugepage. We have to make * sure we get the 2211 * first, for the page indexing below to work. 2212 */ 2213 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 2214 if (huge_zeropage_ok(pte, write, shared)) 2215 zeropage_ok = 1; 2216 2217 if (!pte || 2218 (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) || 2219 (write && !pte_write(huge_ptep_get(pte)))) { 2220 int ret; 2221 2222 spin_unlock(&mm->page_table_lock); 2223 ret = hugetlb_fault(mm, vma, vaddr, write); 2224 spin_lock(&mm->page_table_lock); 2225 if (!(ret & VM_FAULT_ERROR)) 2226 continue; 2227 2228 remainder = 0; 2229 if (!i) 2230 i = -EFAULT; 2231 break; 2232 } 2233 2234 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 2235 page = pte_page(huge_ptep_get(pte)); 2236 same_page: 2237 if (pages) { 2238 if (zeropage_ok) 2239 pages[i] = ZERO_PAGE(0); 2240 else 2241 pages[i] = mem_map_offset(page, pfn_offset); 2242 get_page(pages[i]); 2243 } 2244 2245 if (vmas) 2246 vmas[i] = vma; 2247 2248 vaddr += PAGE_SIZE; 2249 ++pfn_offset; 2250 --remainder; 2251 ++i; 2252 if (vaddr < vma->vm_end && remainder && 2253 pfn_offset < pages_per_huge_page(h)) { 2254 /* 2255 * We use pfn_offset to avoid touching the pageframes 2256 * of this compound page. 2257 */ 2258 goto same_page; 2259 } 2260 } 2261 spin_unlock(&mm->page_table_lock); 2262 *length = remainder; 2263 *position = vaddr; 2264 2265 return i; 2266 } 2267 2268 void hugetlb_change_protection(struct vm_area_struct *vma, 2269 unsigned long address, unsigned long end, pgprot_t newprot) 2270 { 2271 struct mm_struct *mm = vma->vm_mm; 2272 unsigned long start = address; 2273 pte_t *ptep; 2274 pte_t pte; 2275 struct hstate *h = hstate_vma(vma); 2276 2277 BUG_ON(address >= end); 2278 flush_cache_range(vma, address, end); 2279 2280 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 2281 spin_lock(&mm->page_table_lock); 2282 for (; address < end; address += huge_page_size(h)) { 2283 ptep = huge_pte_offset(mm, address); 2284 if (!ptep) 2285 continue; 2286 if (huge_pmd_unshare(mm, &address, ptep)) 2287 continue; 2288 if (!huge_pte_none(huge_ptep_get(ptep))) { 2289 pte = huge_ptep_get_and_clear(mm, address, ptep); 2290 pte = pte_mkhuge(pte_modify(pte, newprot)); 2291 set_huge_pte_at(mm, address, ptep, pte); 2292 } 2293 } 2294 spin_unlock(&mm->page_table_lock); 2295 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 2296 2297 flush_tlb_range(vma, start, end); 2298 } 2299 2300 int hugetlb_reserve_pages(struct inode *inode, 2301 long from, long to, 2302 struct vm_area_struct *vma, 2303 int acctflag) 2304 { 2305 long ret, chg; 2306 struct hstate *h = hstate_inode(inode); 2307 2308 /* 2309 * Only apply hugepage reservation if asked. At fault time, an 2310 * attempt will be made for VM_NORESERVE to allocate a page 2311 * and filesystem quota without using reserves 2312 */ 2313 if (acctflag & VM_NORESERVE) 2314 return 0; 2315 2316 /* 2317 * Shared mappings base their reservation on the number of pages that 2318 * are already allocated on behalf of the file. Private mappings need 2319 * to reserve the full area even if read-only as mprotect() may be 2320 * called to make the mapping read-write. Assume !vma is a shm mapping 2321 */ 2322 if (!vma || vma->vm_flags & VM_MAYSHARE) 2323 chg = region_chg(&inode->i_mapping->private_list, from, to); 2324 else { 2325 struct resv_map *resv_map = resv_map_alloc(); 2326 if (!resv_map) 2327 return -ENOMEM; 2328 2329 chg = to - from; 2330 2331 set_vma_resv_map(vma, resv_map); 2332 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 2333 } 2334 2335 if (chg < 0) 2336 return chg; 2337 2338 /* There must be enough filesystem quota for the mapping */ 2339 if (hugetlb_get_quota(inode->i_mapping, chg)) 2340 return -ENOSPC; 2341 2342 /* 2343 * Check enough hugepages are available for the reservation. 2344 * Hand back the quota if there are not 2345 */ 2346 ret = hugetlb_acct_memory(h, chg); 2347 if (ret < 0) { 2348 hugetlb_put_quota(inode->i_mapping, chg); 2349 return ret; 2350 } 2351 2352 /* 2353 * Account for the reservations made. Shared mappings record regions 2354 * that have reservations as they are shared by multiple VMAs. 2355 * When the last VMA disappears, the region map says how much 2356 * the reservation was and the page cache tells how much of 2357 * the reservation was consumed. Private mappings are per-VMA and 2358 * only the consumed reservations are tracked. When the VMA 2359 * disappears, the original reservation is the VMA size and the 2360 * consumed reservations are stored in the map. Hence, nothing 2361 * else has to be done for private mappings here 2362 */ 2363 if (!vma || vma->vm_flags & VM_MAYSHARE) 2364 region_add(&inode->i_mapping->private_list, from, to); 2365 return 0; 2366 } 2367 2368 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 2369 { 2370 struct hstate *h = hstate_inode(inode); 2371 long chg = region_truncate(&inode->i_mapping->private_list, offset); 2372 2373 spin_lock(&inode->i_lock); 2374 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 2375 spin_unlock(&inode->i_lock); 2376 2377 hugetlb_put_quota(inode->i_mapping, (chg - freed)); 2378 hugetlb_acct_memory(h, -(chg - freed)); 2379 } 2380