xref: /openbmc/linux/mm/hugetlb.c (revision fd589a8f)
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
25 
26 #include <linux/hugetlb.h>
27 #include "internal.h"
28 
29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
32 
33 static int max_hstate;
34 unsigned int default_hstate_idx;
35 struct hstate hstates[HUGE_MAX_HSTATE];
36 
37 __initdata LIST_HEAD(huge_boot_pages);
38 
39 /* for command line parsing */
40 static struct hstate * __initdata parsed_hstate;
41 static unsigned long __initdata default_hstate_max_huge_pages;
42 static unsigned long __initdata default_hstate_size;
43 
44 #define for_each_hstate(h) \
45 	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46 
47 /*
48  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49  */
50 static DEFINE_SPINLOCK(hugetlb_lock);
51 
52 /*
53  * Region tracking -- allows tracking of reservations and instantiated pages
54  *                    across the pages in a mapping.
55  *
56  * The region data structures are protected by a combination of the mmap_sem
57  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
58  * must either hold the mmap_sem for write, or the mmap_sem for read and
59  * the hugetlb_instantiation mutex:
60  *
61  * 	down_write(&mm->mmap_sem);
62  * or
63  * 	down_read(&mm->mmap_sem);
64  * 	mutex_lock(&hugetlb_instantiation_mutex);
65  */
66 struct file_region {
67 	struct list_head link;
68 	long from;
69 	long to;
70 };
71 
72 static long region_add(struct list_head *head, long f, long t)
73 {
74 	struct file_region *rg, *nrg, *trg;
75 
76 	/* Locate the region we are either in or before. */
77 	list_for_each_entry(rg, head, link)
78 		if (f <= rg->to)
79 			break;
80 
81 	/* Round our left edge to the current segment if it encloses us. */
82 	if (f > rg->from)
83 		f = rg->from;
84 
85 	/* Check for and consume any regions we now overlap with. */
86 	nrg = rg;
87 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88 		if (&rg->link == head)
89 			break;
90 		if (rg->from > t)
91 			break;
92 
93 		/* If this area reaches higher then extend our area to
94 		 * include it completely.  If this is not the first area
95 		 * which we intend to reuse, free it. */
96 		if (rg->to > t)
97 			t = rg->to;
98 		if (rg != nrg) {
99 			list_del(&rg->link);
100 			kfree(rg);
101 		}
102 	}
103 	nrg->from = f;
104 	nrg->to = t;
105 	return 0;
106 }
107 
108 static long region_chg(struct list_head *head, long f, long t)
109 {
110 	struct file_region *rg, *nrg;
111 	long chg = 0;
112 
113 	/* Locate the region we are before or in. */
114 	list_for_each_entry(rg, head, link)
115 		if (f <= rg->to)
116 			break;
117 
118 	/* If we are below the current region then a new region is required.
119 	 * Subtle, allocate a new region at the position but make it zero
120 	 * size such that we can guarantee to record the reservation. */
121 	if (&rg->link == head || t < rg->from) {
122 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123 		if (!nrg)
124 			return -ENOMEM;
125 		nrg->from = f;
126 		nrg->to   = f;
127 		INIT_LIST_HEAD(&nrg->link);
128 		list_add(&nrg->link, rg->link.prev);
129 
130 		return t - f;
131 	}
132 
133 	/* Round our left edge to the current segment if it encloses us. */
134 	if (f > rg->from)
135 		f = rg->from;
136 	chg = t - f;
137 
138 	/* Check for and consume any regions we now overlap with. */
139 	list_for_each_entry(rg, rg->link.prev, link) {
140 		if (&rg->link == head)
141 			break;
142 		if (rg->from > t)
143 			return chg;
144 
145 		/* We overlap with this area, if it extends futher than
146 		 * us then we must extend ourselves.  Account for its
147 		 * existing reservation. */
148 		if (rg->to > t) {
149 			chg += rg->to - t;
150 			t = rg->to;
151 		}
152 		chg -= rg->to - rg->from;
153 	}
154 	return chg;
155 }
156 
157 static long region_truncate(struct list_head *head, long end)
158 {
159 	struct file_region *rg, *trg;
160 	long chg = 0;
161 
162 	/* Locate the region we are either in or before. */
163 	list_for_each_entry(rg, head, link)
164 		if (end <= rg->to)
165 			break;
166 	if (&rg->link == head)
167 		return 0;
168 
169 	/* If we are in the middle of a region then adjust it. */
170 	if (end > rg->from) {
171 		chg = rg->to - end;
172 		rg->to = end;
173 		rg = list_entry(rg->link.next, typeof(*rg), link);
174 	}
175 
176 	/* Drop any remaining regions. */
177 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178 		if (&rg->link == head)
179 			break;
180 		chg += rg->to - rg->from;
181 		list_del(&rg->link);
182 		kfree(rg);
183 	}
184 	return chg;
185 }
186 
187 static long region_count(struct list_head *head, long f, long t)
188 {
189 	struct file_region *rg;
190 	long chg = 0;
191 
192 	/* Locate each segment we overlap with, and count that overlap. */
193 	list_for_each_entry(rg, head, link) {
194 		int seg_from;
195 		int seg_to;
196 
197 		if (rg->to <= f)
198 			continue;
199 		if (rg->from >= t)
200 			break;
201 
202 		seg_from = max(rg->from, f);
203 		seg_to = min(rg->to, t);
204 
205 		chg += seg_to - seg_from;
206 	}
207 
208 	return chg;
209 }
210 
211 /*
212  * Convert the address within this vma to the page offset within
213  * the mapping, in pagecache page units; huge pages here.
214  */
215 static pgoff_t vma_hugecache_offset(struct hstate *h,
216 			struct vm_area_struct *vma, unsigned long address)
217 {
218 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
219 			(vma->vm_pgoff >> huge_page_order(h));
220 }
221 
222 /*
223  * Return the size of the pages allocated when backing a VMA. In the majority
224  * cases this will be same size as used by the page table entries.
225  */
226 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
227 {
228 	struct hstate *hstate;
229 
230 	if (!is_vm_hugetlb_page(vma))
231 		return PAGE_SIZE;
232 
233 	hstate = hstate_vma(vma);
234 
235 	return 1UL << (hstate->order + PAGE_SHIFT);
236 }
237 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
238 
239 /*
240  * Return the page size being used by the MMU to back a VMA. In the majority
241  * of cases, the page size used by the kernel matches the MMU size. On
242  * architectures where it differs, an architecture-specific version of this
243  * function is required.
244  */
245 #ifndef vma_mmu_pagesize
246 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
247 {
248 	return vma_kernel_pagesize(vma);
249 }
250 #endif
251 
252 /*
253  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
254  * bits of the reservation map pointer, which are always clear due to
255  * alignment.
256  */
257 #define HPAGE_RESV_OWNER    (1UL << 0)
258 #define HPAGE_RESV_UNMAPPED (1UL << 1)
259 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
260 
261 /*
262  * These helpers are used to track how many pages are reserved for
263  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
264  * is guaranteed to have their future faults succeed.
265  *
266  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
267  * the reserve counters are updated with the hugetlb_lock held. It is safe
268  * to reset the VMA at fork() time as it is not in use yet and there is no
269  * chance of the global counters getting corrupted as a result of the values.
270  *
271  * The private mapping reservation is represented in a subtly different
272  * manner to a shared mapping.  A shared mapping has a region map associated
273  * with the underlying file, this region map represents the backing file
274  * pages which have ever had a reservation assigned which this persists even
275  * after the page is instantiated.  A private mapping has a region map
276  * associated with the original mmap which is attached to all VMAs which
277  * reference it, this region map represents those offsets which have consumed
278  * reservation ie. where pages have been instantiated.
279  */
280 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
281 {
282 	return (unsigned long)vma->vm_private_data;
283 }
284 
285 static void set_vma_private_data(struct vm_area_struct *vma,
286 							unsigned long value)
287 {
288 	vma->vm_private_data = (void *)value;
289 }
290 
291 struct resv_map {
292 	struct kref refs;
293 	struct list_head regions;
294 };
295 
296 static struct resv_map *resv_map_alloc(void)
297 {
298 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
299 	if (!resv_map)
300 		return NULL;
301 
302 	kref_init(&resv_map->refs);
303 	INIT_LIST_HEAD(&resv_map->regions);
304 
305 	return resv_map;
306 }
307 
308 static void resv_map_release(struct kref *ref)
309 {
310 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
311 
312 	/* Clear out any active regions before we release the map. */
313 	region_truncate(&resv_map->regions, 0);
314 	kfree(resv_map);
315 }
316 
317 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
318 {
319 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
320 	if (!(vma->vm_flags & VM_MAYSHARE))
321 		return (struct resv_map *)(get_vma_private_data(vma) &
322 							~HPAGE_RESV_MASK);
323 	return NULL;
324 }
325 
326 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
327 {
328 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
329 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
330 
331 	set_vma_private_data(vma, (get_vma_private_data(vma) &
332 				HPAGE_RESV_MASK) | (unsigned long)map);
333 }
334 
335 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
336 {
337 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
338 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
339 
340 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
341 }
342 
343 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
344 {
345 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
346 
347 	return (get_vma_private_data(vma) & flag) != 0;
348 }
349 
350 /* Decrement the reserved pages in the hugepage pool by one */
351 static void decrement_hugepage_resv_vma(struct hstate *h,
352 			struct vm_area_struct *vma)
353 {
354 	if (vma->vm_flags & VM_NORESERVE)
355 		return;
356 
357 	if (vma->vm_flags & VM_MAYSHARE) {
358 		/* Shared mappings always use reserves */
359 		h->resv_huge_pages--;
360 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
361 		/*
362 		 * Only the process that called mmap() has reserves for
363 		 * private mappings.
364 		 */
365 		h->resv_huge_pages--;
366 	}
367 }
368 
369 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
370 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
371 {
372 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
373 	if (!(vma->vm_flags & VM_MAYSHARE))
374 		vma->vm_private_data = (void *)0;
375 }
376 
377 /* Returns true if the VMA has associated reserve pages */
378 static int vma_has_reserves(struct vm_area_struct *vma)
379 {
380 	if (vma->vm_flags & VM_MAYSHARE)
381 		return 1;
382 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
383 		return 1;
384 	return 0;
385 }
386 
387 static void clear_gigantic_page(struct page *page,
388 			unsigned long addr, unsigned long sz)
389 {
390 	int i;
391 	struct page *p = page;
392 
393 	might_sleep();
394 	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
395 		cond_resched();
396 		clear_user_highpage(p, addr + i * PAGE_SIZE);
397 	}
398 }
399 static void clear_huge_page(struct page *page,
400 			unsigned long addr, unsigned long sz)
401 {
402 	int i;
403 
404 	if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
405 		clear_gigantic_page(page, addr, sz);
406 		return;
407 	}
408 
409 	might_sleep();
410 	for (i = 0; i < sz/PAGE_SIZE; i++) {
411 		cond_resched();
412 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
413 	}
414 }
415 
416 static void copy_gigantic_page(struct page *dst, struct page *src,
417 			   unsigned long addr, struct vm_area_struct *vma)
418 {
419 	int i;
420 	struct hstate *h = hstate_vma(vma);
421 	struct page *dst_base = dst;
422 	struct page *src_base = src;
423 	might_sleep();
424 	for (i = 0; i < pages_per_huge_page(h); ) {
425 		cond_resched();
426 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
427 
428 		i++;
429 		dst = mem_map_next(dst, dst_base, i);
430 		src = mem_map_next(src, src_base, i);
431 	}
432 }
433 static void copy_huge_page(struct page *dst, struct page *src,
434 			   unsigned long addr, struct vm_area_struct *vma)
435 {
436 	int i;
437 	struct hstate *h = hstate_vma(vma);
438 
439 	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
440 		copy_gigantic_page(dst, src, addr, vma);
441 		return;
442 	}
443 
444 	might_sleep();
445 	for (i = 0; i < pages_per_huge_page(h); i++) {
446 		cond_resched();
447 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
448 	}
449 }
450 
451 static void enqueue_huge_page(struct hstate *h, struct page *page)
452 {
453 	int nid = page_to_nid(page);
454 	list_add(&page->lru, &h->hugepage_freelists[nid]);
455 	h->free_huge_pages++;
456 	h->free_huge_pages_node[nid]++;
457 }
458 
459 static struct page *dequeue_huge_page(struct hstate *h)
460 {
461 	int nid;
462 	struct page *page = NULL;
463 
464 	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
465 		if (!list_empty(&h->hugepage_freelists[nid])) {
466 			page = list_entry(h->hugepage_freelists[nid].next,
467 					  struct page, lru);
468 			list_del(&page->lru);
469 			h->free_huge_pages--;
470 			h->free_huge_pages_node[nid]--;
471 			break;
472 		}
473 	}
474 	return page;
475 }
476 
477 static struct page *dequeue_huge_page_vma(struct hstate *h,
478 				struct vm_area_struct *vma,
479 				unsigned long address, int avoid_reserve)
480 {
481 	int nid;
482 	struct page *page = NULL;
483 	struct mempolicy *mpol;
484 	nodemask_t *nodemask;
485 	struct zonelist *zonelist = huge_zonelist(vma, address,
486 					htlb_alloc_mask, &mpol, &nodemask);
487 	struct zone *zone;
488 	struct zoneref *z;
489 
490 	/*
491 	 * A child process with MAP_PRIVATE mappings created by their parent
492 	 * have no page reserves. This check ensures that reservations are
493 	 * not "stolen". The child may still get SIGKILLed
494 	 */
495 	if (!vma_has_reserves(vma) &&
496 			h->free_huge_pages - h->resv_huge_pages == 0)
497 		return NULL;
498 
499 	/* If reserves cannot be used, ensure enough pages are in the pool */
500 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
501 		return NULL;
502 
503 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
504 						MAX_NR_ZONES - 1, nodemask) {
505 		nid = zone_to_nid(zone);
506 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
507 		    !list_empty(&h->hugepage_freelists[nid])) {
508 			page = list_entry(h->hugepage_freelists[nid].next,
509 					  struct page, lru);
510 			list_del(&page->lru);
511 			h->free_huge_pages--;
512 			h->free_huge_pages_node[nid]--;
513 
514 			if (!avoid_reserve)
515 				decrement_hugepage_resv_vma(h, vma);
516 
517 			break;
518 		}
519 	}
520 	mpol_cond_put(mpol);
521 	return page;
522 }
523 
524 static void update_and_free_page(struct hstate *h, struct page *page)
525 {
526 	int i;
527 
528 	VM_BUG_ON(h->order >= MAX_ORDER);
529 
530 	h->nr_huge_pages--;
531 	h->nr_huge_pages_node[page_to_nid(page)]--;
532 	for (i = 0; i < pages_per_huge_page(h); i++) {
533 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
534 				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
535 				1 << PG_private | 1<< PG_writeback);
536 	}
537 	set_compound_page_dtor(page, NULL);
538 	set_page_refcounted(page);
539 	arch_release_hugepage(page);
540 	__free_pages(page, huge_page_order(h));
541 }
542 
543 struct hstate *size_to_hstate(unsigned long size)
544 {
545 	struct hstate *h;
546 
547 	for_each_hstate(h) {
548 		if (huge_page_size(h) == size)
549 			return h;
550 	}
551 	return NULL;
552 }
553 
554 static void free_huge_page(struct page *page)
555 {
556 	/*
557 	 * Can't pass hstate in here because it is called from the
558 	 * compound page destructor.
559 	 */
560 	struct hstate *h = page_hstate(page);
561 	int nid = page_to_nid(page);
562 	struct address_space *mapping;
563 
564 	mapping = (struct address_space *) page_private(page);
565 	set_page_private(page, 0);
566 	BUG_ON(page_count(page));
567 	INIT_LIST_HEAD(&page->lru);
568 
569 	spin_lock(&hugetlb_lock);
570 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
571 		update_and_free_page(h, page);
572 		h->surplus_huge_pages--;
573 		h->surplus_huge_pages_node[nid]--;
574 	} else {
575 		enqueue_huge_page(h, page);
576 	}
577 	spin_unlock(&hugetlb_lock);
578 	if (mapping)
579 		hugetlb_put_quota(mapping, 1);
580 }
581 
582 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
583 {
584 	set_compound_page_dtor(page, free_huge_page);
585 	spin_lock(&hugetlb_lock);
586 	h->nr_huge_pages++;
587 	h->nr_huge_pages_node[nid]++;
588 	spin_unlock(&hugetlb_lock);
589 	put_page(page); /* free it into the hugepage allocator */
590 }
591 
592 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
593 {
594 	int i;
595 	int nr_pages = 1 << order;
596 	struct page *p = page + 1;
597 
598 	/* we rely on prep_new_huge_page to set the destructor */
599 	set_compound_order(page, order);
600 	__SetPageHead(page);
601 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
602 		__SetPageTail(p);
603 		p->first_page = page;
604 	}
605 }
606 
607 int PageHuge(struct page *page)
608 {
609 	compound_page_dtor *dtor;
610 
611 	if (!PageCompound(page))
612 		return 0;
613 
614 	page = compound_head(page);
615 	dtor = get_compound_page_dtor(page);
616 
617 	return dtor == free_huge_page;
618 }
619 
620 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
621 {
622 	struct page *page;
623 
624 	if (h->order >= MAX_ORDER)
625 		return NULL;
626 
627 	page = alloc_pages_exact_node(nid,
628 		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
629 						__GFP_REPEAT|__GFP_NOWARN,
630 		huge_page_order(h));
631 	if (page) {
632 		if (arch_prepare_hugepage(page)) {
633 			__free_pages(page, huge_page_order(h));
634 			return NULL;
635 		}
636 		prep_new_huge_page(h, page, nid);
637 	}
638 
639 	return page;
640 }
641 
642 /*
643  * Use a helper variable to find the next node and then
644  * copy it back to hugetlb_next_nid afterwards:
645  * otherwise there's a window in which a racer might
646  * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
647  * But we don't need to use a spin_lock here: it really
648  * doesn't matter if occasionally a racer chooses the
649  * same nid as we do.  Move nid forward in the mask even
650  * if we just successfully allocated a hugepage so that
651  * the next caller gets hugepages on the next node.
652  */
653 static int hstate_next_node(struct hstate *h)
654 {
655 	int next_nid;
656 	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
657 	if (next_nid == MAX_NUMNODES)
658 		next_nid = first_node(node_online_map);
659 	h->hugetlb_next_nid = next_nid;
660 	return next_nid;
661 }
662 
663 static int alloc_fresh_huge_page(struct hstate *h)
664 {
665 	struct page *page;
666 	int start_nid;
667 	int next_nid;
668 	int ret = 0;
669 
670 	start_nid = h->hugetlb_next_nid;
671 
672 	do {
673 		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
674 		if (page)
675 			ret = 1;
676 		next_nid = hstate_next_node(h);
677 	} while (!page && h->hugetlb_next_nid != start_nid);
678 
679 	if (ret)
680 		count_vm_event(HTLB_BUDDY_PGALLOC);
681 	else
682 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
683 
684 	return ret;
685 }
686 
687 static struct page *alloc_buddy_huge_page(struct hstate *h,
688 			struct vm_area_struct *vma, unsigned long address)
689 {
690 	struct page *page;
691 	unsigned int nid;
692 
693 	if (h->order >= MAX_ORDER)
694 		return NULL;
695 
696 	/*
697 	 * Assume we will successfully allocate the surplus page to
698 	 * prevent racing processes from causing the surplus to exceed
699 	 * overcommit
700 	 *
701 	 * This however introduces a different race, where a process B
702 	 * tries to grow the static hugepage pool while alloc_pages() is
703 	 * called by process A. B will only examine the per-node
704 	 * counters in determining if surplus huge pages can be
705 	 * converted to normal huge pages in adjust_pool_surplus(). A
706 	 * won't be able to increment the per-node counter, until the
707 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
708 	 * no more huge pages can be converted from surplus to normal
709 	 * state (and doesn't try to convert again). Thus, we have a
710 	 * case where a surplus huge page exists, the pool is grown, and
711 	 * the surplus huge page still exists after, even though it
712 	 * should just have been converted to a normal huge page. This
713 	 * does not leak memory, though, as the hugepage will be freed
714 	 * once it is out of use. It also does not allow the counters to
715 	 * go out of whack in adjust_pool_surplus() as we don't modify
716 	 * the node values until we've gotten the hugepage and only the
717 	 * per-node value is checked there.
718 	 */
719 	spin_lock(&hugetlb_lock);
720 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
721 		spin_unlock(&hugetlb_lock);
722 		return NULL;
723 	} else {
724 		h->nr_huge_pages++;
725 		h->surplus_huge_pages++;
726 	}
727 	spin_unlock(&hugetlb_lock);
728 
729 	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
730 					__GFP_REPEAT|__GFP_NOWARN,
731 					huge_page_order(h));
732 
733 	if (page && arch_prepare_hugepage(page)) {
734 		__free_pages(page, huge_page_order(h));
735 		return NULL;
736 	}
737 
738 	spin_lock(&hugetlb_lock);
739 	if (page) {
740 		/*
741 		 * This page is now managed by the hugetlb allocator and has
742 		 * no users -- drop the buddy allocator's reference.
743 		 */
744 		put_page_testzero(page);
745 		VM_BUG_ON(page_count(page));
746 		nid = page_to_nid(page);
747 		set_compound_page_dtor(page, free_huge_page);
748 		/*
749 		 * We incremented the global counters already
750 		 */
751 		h->nr_huge_pages_node[nid]++;
752 		h->surplus_huge_pages_node[nid]++;
753 		__count_vm_event(HTLB_BUDDY_PGALLOC);
754 	} else {
755 		h->nr_huge_pages--;
756 		h->surplus_huge_pages--;
757 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
758 	}
759 	spin_unlock(&hugetlb_lock);
760 
761 	return page;
762 }
763 
764 /*
765  * Increase the hugetlb pool such that it can accomodate a reservation
766  * of size 'delta'.
767  */
768 static int gather_surplus_pages(struct hstate *h, int delta)
769 {
770 	struct list_head surplus_list;
771 	struct page *page, *tmp;
772 	int ret, i;
773 	int needed, allocated;
774 
775 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
776 	if (needed <= 0) {
777 		h->resv_huge_pages += delta;
778 		return 0;
779 	}
780 
781 	allocated = 0;
782 	INIT_LIST_HEAD(&surplus_list);
783 
784 	ret = -ENOMEM;
785 retry:
786 	spin_unlock(&hugetlb_lock);
787 	for (i = 0; i < needed; i++) {
788 		page = alloc_buddy_huge_page(h, NULL, 0);
789 		if (!page) {
790 			/*
791 			 * We were not able to allocate enough pages to
792 			 * satisfy the entire reservation so we free what
793 			 * we've allocated so far.
794 			 */
795 			spin_lock(&hugetlb_lock);
796 			needed = 0;
797 			goto free;
798 		}
799 
800 		list_add(&page->lru, &surplus_list);
801 	}
802 	allocated += needed;
803 
804 	/*
805 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
806 	 * because either resv_huge_pages or free_huge_pages may have changed.
807 	 */
808 	spin_lock(&hugetlb_lock);
809 	needed = (h->resv_huge_pages + delta) -
810 			(h->free_huge_pages + allocated);
811 	if (needed > 0)
812 		goto retry;
813 
814 	/*
815 	 * The surplus_list now contains _at_least_ the number of extra pages
816 	 * needed to accomodate the reservation.  Add the appropriate number
817 	 * of pages to the hugetlb pool and free the extras back to the buddy
818 	 * allocator.  Commit the entire reservation here to prevent another
819 	 * process from stealing the pages as they are added to the pool but
820 	 * before they are reserved.
821 	 */
822 	needed += allocated;
823 	h->resv_huge_pages += delta;
824 	ret = 0;
825 free:
826 	/* Free the needed pages to the hugetlb pool */
827 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
828 		if ((--needed) < 0)
829 			break;
830 		list_del(&page->lru);
831 		enqueue_huge_page(h, page);
832 	}
833 
834 	/* Free unnecessary surplus pages to the buddy allocator */
835 	if (!list_empty(&surplus_list)) {
836 		spin_unlock(&hugetlb_lock);
837 		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
838 			list_del(&page->lru);
839 			/*
840 			 * The page has a reference count of zero already, so
841 			 * call free_huge_page directly instead of using
842 			 * put_page.  This must be done with hugetlb_lock
843 			 * unlocked which is safe because free_huge_page takes
844 			 * hugetlb_lock before deciding how to free the page.
845 			 */
846 			free_huge_page(page);
847 		}
848 		spin_lock(&hugetlb_lock);
849 	}
850 
851 	return ret;
852 }
853 
854 /*
855  * When releasing a hugetlb pool reservation, any surplus pages that were
856  * allocated to satisfy the reservation must be explicitly freed if they were
857  * never used.
858  */
859 static void return_unused_surplus_pages(struct hstate *h,
860 					unsigned long unused_resv_pages)
861 {
862 	static int nid = -1;
863 	struct page *page;
864 	unsigned long nr_pages;
865 
866 	/*
867 	 * We want to release as many surplus pages as possible, spread
868 	 * evenly across all nodes. Iterate across all nodes until we
869 	 * can no longer free unreserved surplus pages. This occurs when
870 	 * the nodes with surplus pages have no free pages.
871 	 */
872 	unsigned long remaining_iterations = nr_online_nodes;
873 
874 	/* Uncommit the reservation */
875 	h->resv_huge_pages -= unused_resv_pages;
876 
877 	/* Cannot return gigantic pages currently */
878 	if (h->order >= MAX_ORDER)
879 		return;
880 
881 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
882 
883 	while (remaining_iterations-- && nr_pages) {
884 		nid = next_node(nid, node_online_map);
885 		if (nid == MAX_NUMNODES)
886 			nid = first_node(node_online_map);
887 
888 		if (!h->surplus_huge_pages_node[nid])
889 			continue;
890 
891 		if (!list_empty(&h->hugepage_freelists[nid])) {
892 			page = list_entry(h->hugepage_freelists[nid].next,
893 					  struct page, lru);
894 			list_del(&page->lru);
895 			update_and_free_page(h, page);
896 			h->free_huge_pages--;
897 			h->free_huge_pages_node[nid]--;
898 			h->surplus_huge_pages--;
899 			h->surplus_huge_pages_node[nid]--;
900 			nr_pages--;
901 			remaining_iterations = nr_online_nodes;
902 		}
903 	}
904 }
905 
906 /*
907  * Determine if the huge page at addr within the vma has an associated
908  * reservation.  Where it does not we will need to logically increase
909  * reservation and actually increase quota before an allocation can occur.
910  * Where any new reservation would be required the reservation change is
911  * prepared, but not committed.  Once the page has been quota'd allocated
912  * an instantiated the change should be committed via vma_commit_reservation.
913  * No action is required on failure.
914  */
915 static long vma_needs_reservation(struct hstate *h,
916 			struct vm_area_struct *vma, unsigned long addr)
917 {
918 	struct address_space *mapping = vma->vm_file->f_mapping;
919 	struct inode *inode = mapping->host;
920 
921 	if (vma->vm_flags & VM_MAYSHARE) {
922 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
923 		return region_chg(&inode->i_mapping->private_list,
924 							idx, idx + 1);
925 
926 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
927 		return 1;
928 
929 	} else  {
930 		long err;
931 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
932 		struct resv_map *reservations = vma_resv_map(vma);
933 
934 		err = region_chg(&reservations->regions, idx, idx + 1);
935 		if (err < 0)
936 			return err;
937 		return 0;
938 	}
939 }
940 static void vma_commit_reservation(struct hstate *h,
941 			struct vm_area_struct *vma, unsigned long addr)
942 {
943 	struct address_space *mapping = vma->vm_file->f_mapping;
944 	struct inode *inode = mapping->host;
945 
946 	if (vma->vm_flags & VM_MAYSHARE) {
947 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
948 		region_add(&inode->i_mapping->private_list, idx, idx + 1);
949 
950 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
951 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
952 		struct resv_map *reservations = vma_resv_map(vma);
953 
954 		/* Mark this page used in the map. */
955 		region_add(&reservations->regions, idx, idx + 1);
956 	}
957 }
958 
959 static struct page *alloc_huge_page(struct vm_area_struct *vma,
960 				    unsigned long addr, int avoid_reserve)
961 {
962 	struct hstate *h = hstate_vma(vma);
963 	struct page *page;
964 	struct address_space *mapping = vma->vm_file->f_mapping;
965 	struct inode *inode = mapping->host;
966 	long chg;
967 
968 	/*
969 	 * Processes that did not create the mapping will have no reserves and
970 	 * will not have accounted against quota. Check that the quota can be
971 	 * made before satisfying the allocation
972 	 * MAP_NORESERVE mappings may also need pages and quota allocated
973 	 * if no reserve mapping overlaps.
974 	 */
975 	chg = vma_needs_reservation(h, vma, addr);
976 	if (chg < 0)
977 		return ERR_PTR(chg);
978 	if (chg)
979 		if (hugetlb_get_quota(inode->i_mapping, chg))
980 			return ERR_PTR(-ENOSPC);
981 
982 	spin_lock(&hugetlb_lock);
983 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
984 	spin_unlock(&hugetlb_lock);
985 
986 	if (!page) {
987 		page = alloc_buddy_huge_page(h, vma, addr);
988 		if (!page) {
989 			hugetlb_put_quota(inode->i_mapping, chg);
990 			return ERR_PTR(-VM_FAULT_OOM);
991 		}
992 	}
993 
994 	set_page_refcounted(page);
995 	set_page_private(page, (unsigned long) mapping);
996 
997 	vma_commit_reservation(h, vma, addr);
998 
999 	return page;
1000 }
1001 
1002 int __weak alloc_bootmem_huge_page(struct hstate *h)
1003 {
1004 	struct huge_bootmem_page *m;
1005 	int nr_nodes = nodes_weight(node_online_map);
1006 
1007 	while (nr_nodes) {
1008 		void *addr;
1009 
1010 		addr = __alloc_bootmem_node_nopanic(
1011 				NODE_DATA(h->hugetlb_next_nid),
1012 				huge_page_size(h), huge_page_size(h), 0);
1013 
1014 		if (addr) {
1015 			/*
1016 			 * Use the beginning of the huge page to store the
1017 			 * huge_bootmem_page struct (until gather_bootmem
1018 			 * puts them into the mem_map).
1019 			 */
1020 			m = addr;
1021 			goto found;
1022 		}
1023 		hstate_next_node(h);
1024 		nr_nodes--;
1025 	}
1026 	return 0;
1027 
1028 found:
1029 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1030 	/* Put them into a private list first because mem_map is not up yet */
1031 	list_add(&m->list, &huge_boot_pages);
1032 	m->hstate = h;
1033 	return 1;
1034 }
1035 
1036 static void prep_compound_huge_page(struct page *page, int order)
1037 {
1038 	if (unlikely(order > (MAX_ORDER - 1)))
1039 		prep_compound_gigantic_page(page, order);
1040 	else
1041 		prep_compound_page(page, order);
1042 }
1043 
1044 /* Put bootmem huge pages into the standard lists after mem_map is up */
1045 static void __init gather_bootmem_prealloc(void)
1046 {
1047 	struct huge_bootmem_page *m;
1048 
1049 	list_for_each_entry(m, &huge_boot_pages, list) {
1050 		struct page *page = virt_to_page(m);
1051 		struct hstate *h = m->hstate;
1052 		__ClearPageReserved(page);
1053 		WARN_ON(page_count(page) != 1);
1054 		prep_compound_huge_page(page, h->order);
1055 		prep_new_huge_page(h, page, page_to_nid(page));
1056 	}
1057 }
1058 
1059 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1060 {
1061 	unsigned long i;
1062 
1063 	for (i = 0; i < h->max_huge_pages; ++i) {
1064 		if (h->order >= MAX_ORDER) {
1065 			if (!alloc_bootmem_huge_page(h))
1066 				break;
1067 		} else if (!alloc_fresh_huge_page(h))
1068 			break;
1069 	}
1070 	h->max_huge_pages = i;
1071 }
1072 
1073 static void __init hugetlb_init_hstates(void)
1074 {
1075 	struct hstate *h;
1076 
1077 	for_each_hstate(h) {
1078 		/* oversize hugepages were init'ed in early boot */
1079 		if (h->order < MAX_ORDER)
1080 			hugetlb_hstate_alloc_pages(h);
1081 	}
1082 }
1083 
1084 static char * __init memfmt(char *buf, unsigned long n)
1085 {
1086 	if (n >= (1UL << 30))
1087 		sprintf(buf, "%lu GB", n >> 30);
1088 	else if (n >= (1UL << 20))
1089 		sprintf(buf, "%lu MB", n >> 20);
1090 	else
1091 		sprintf(buf, "%lu KB", n >> 10);
1092 	return buf;
1093 }
1094 
1095 static void __init report_hugepages(void)
1096 {
1097 	struct hstate *h;
1098 
1099 	for_each_hstate(h) {
1100 		char buf[32];
1101 		printk(KERN_INFO "HugeTLB registered %s page size, "
1102 				 "pre-allocated %ld pages\n",
1103 			memfmt(buf, huge_page_size(h)),
1104 			h->free_huge_pages);
1105 	}
1106 }
1107 
1108 #ifdef CONFIG_HIGHMEM
1109 static void try_to_free_low(struct hstate *h, unsigned long count)
1110 {
1111 	int i;
1112 
1113 	if (h->order >= MAX_ORDER)
1114 		return;
1115 
1116 	for (i = 0; i < MAX_NUMNODES; ++i) {
1117 		struct page *page, *next;
1118 		struct list_head *freel = &h->hugepage_freelists[i];
1119 		list_for_each_entry_safe(page, next, freel, lru) {
1120 			if (count >= h->nr_huge_pages)
1121 				return;
1122 			if (PageHighMem(page))
1123 				continue;
1124 			list_del(&page->lru);
1125 			update_and_free_page(h, page);
1126 			h->free_huge_pages--;
1127 			h->free_huge_pages_node[page_to_nid(page)]--;
1128 		}
1129 	}
1130 }
1131 #else
1132 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1133 {
1134 }
1135 #endif
1136 
1137 /*
1138  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1139  * balanced by operating on them in a round-robin fashion.
1140  * Returns 1 if an adjustment was made.
1141  */
1142 static int adjust_pool_surplus(struct hstate *h, int delta)
1143 {
1144 	static int prev_nid;
1145 	int nid = prev_nid;
1146 	int ret = 0;
1147 
1148 	VM_BUG_ON(delta != -1 && delta != 1);
1149 	do {
1150 		nid = next_node(nid, node_online_map);
1151 		if (nid == MAX_NUMNODES)
1152 			nid = first_node(node_online_map);
1153 
1154 		/* To shrink on this node, there must be a surplus page */
1155 		if (delta < 0 && !h->surplus_huge_pages_node[nid])
1156 			continue;
1157 		/* Surplus cannot exceed the total number of pages */
1158 		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
1159 						h->nr_huge_pages_node[nid])
1160 			continue;
1161 
1162 		h->surplus_huge_pages += delta;
1163 		h->surplus_huge_pages_node[nid] += delta;
1164 		ret = 1;
1165 		break;
1166 	} while (nid != prev_nid);
1167 
1168 	prev_nid = nid;
1169 	return ret;
1170 }
1171 
1172 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1173 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1174 {
1175 	unsigned long min_count, ret;
1176 
1177 	if (h->order >= MAX_ORDER)
1178 		return h->max_huge_pages;
1179 
1180 	/*
1181 	 * Increase the pool size
1182 	 * First take pages out of surplus state.  Then make up the
1183 	 * remaining difference by allocating fresh huge pages.
1184 	 *
1185 	 * We might race with alloc_buddy_huge_page() here and be unable
1186 	 * to convert a surplus huge page to a normal huge page. That is
1187 	 * not critical, though, it just means the overall size of the
1188 	 * pool might be one hugepage larger than it needs to be, but
1189 	 * within all the constraints specified by the sysctls.
1190 	 */
1191 	spin_lock(&hugetlb_lock);
1192 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1193 		if (!adjust_pool_surplus(h, -1))
1194 			break;
1195 	}
1196 
1197 	while (count > persistent_huge_pages(h)) {
1198 		/*
1199 		 * If this allocation races such that we no longer need the
1200 		 * page, free_huge_page will handle it by freeing the page
1201 		 * and reducing the surplus.
1202 		 */
1203 		spin_unlock(&hugetlb_lock);
1204 		ret = alloc_fresh_huge_page(h);
1205 		spin_lock(&hugetlb_lock);
1206 		if (!ret)
1207 			goto out;
1208 
1209 	}
1210 
1211 	/*
1212 	 * Decrease the pool size
1213 	 * First return free pages to the buddy allocator (being careful
1214 	 * to keep enough around to satisfy reservations).  Then place
1215 	 * pages into surplus state as needed so the pool will shrink
1216 	 * to the desired size as pages become free.
1217 	 *
1218 	 * By placing pages into the surplus state independent of the
1219 	 * overcommit value, we are allowing the surplus pool size to
1220 	 * exceed overcommit. There are few sane options here. Since
1221 	 * alloc_buddy_huge_page() is checking the global counter,
1222 	 * though, we'll note that we're not allowed to exceed surplus
1223 	 * and won't grow the pool anywhere else. Not until one of the
1224 	 * sysctls are changed, or the surplus pages go out of use.
1225 	 */
1226 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1227 	min_count = max(count, min_count);
1228 	try_to_free_low(h, min_count);
1229 	while (min_count < persistent_huge_pages(h)) {
1230 		struct page *page = dequeue_huge_page(h);
1231 		if (!page)
1232 			break;
1233 		update_and_free_page(h, page);
1234 	}
1235 	while (count < persistent_huge_pages(h)) {
1236 		if (!adjust_pool_surplus(h, 1))
1237 			break;
1238 	}
1239 out:
1240 	ret = persistent_huge_pages(h);
1241 	spin_unlock(&hugetlb_lock);
1242 	return ret;
1243 }
1244 
1245 #define HSTATE_ATTR_RO(_name) \
1246 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1247 
1248 #define HSTATE_ATTR(_name) \
1249 	static struct kobj_attribute _name##_attr = \
1250 		__ATTR(_name, 0644, _name##_show, _name##_store)
1251 
1252 static struct kobject *hugepages_kobj;
1253 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1254 
1255 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1256 {
1257 	int i;
1258 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1259 		if (hstate_kobjs[i] == kobj)
1260 			return &hstates[i];
1261 	BUG();
1262 	return NULL;
1263 }
1264 
1265 static ssize_t nr_hugepages_show(struct kobject *kobj,
1266 					struct kobj_attribute *attr, char *buf)
1267 {
1268 	struct hstate *h = kobj_to_hstate(kobj);
1269 	return sprintf(buf, "%lu\n", h->nr_huge_pages);
1270 }
1271 static ssize_t nr_hugepages_store(struct kobject *kobj,
1272 		struct kobj_attribute *attr, const char *buf, size_t count)
1273 {
1274 	int err;
1275 	unsigned long input;
1276 	struct hstate *h = kobj_to_hstate(kobj);
1277 
1278 	err = strict_strtoul(buf, 10, &input);
1279 	if (err)
1280 		return 0;
1281 
1282 	h->max_huge_pages = set_max_huge_pages(h, input);
1283 
1284 	return count;
1285 }
1286 HSTATE_ATTR(nr_hugepages);
1287 
1288 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1289 					struct kobj_attribute *attr, char *buf)
1290 {
1291 	struct hstate *h = kobj_to_hstate(kobj);
1292 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1293 }
1294 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1295 		struct kobj_attribute *attr, const char *buf, size_t count)
1296 {
1297 	int err;
1298 	unsigned long input;
1299 	struct hstate *h = kobj_to_hstate(kobj);
1300 
1301 	err = strict_strtoul(buf, 10, &input);
1302 	if (err)
1303 		return 0;
1304 
1305 	spin_lock(&hugetlb_lock);
1306 	h->nr_overcommit_huge_pages = input;
1307 	spin_unlock(&hugetlb_lock);
1308 
1309 	return count;
1310 }
1311 HSTATE_ATTR(nr_overcommit_hugepages);
1312 
1313 static ssize_t free_hugepages_show(struct kobject *kobj,
1314 					struct kobj_attribute *attr, char *buf)
1315 {
1316 	struct hstate *h = kobj_to_hstate(kobj);
1317 	return sprintf(buf, "%lu\n", h->free_huge_pages);
1318 }
1319 HSTATE_ATTR_RO(free_hugepages);
1320 
1321 static ssize_t resv_hugepages_show(struct kobject *kobj,
1322 					struct kobj_attribute *attr, char *buf)
1323 {
1324 	struct hstate *h = kobj_to_hstate(kobj);
1325 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1326 }
1327 HSTATE_ATTR_RO(resv_hugepages);
1328 
1329 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1330 					struct kobj_attribute *attr, char *buf)
1331 {
1332 	struct hstate *h = kobj_to_hstate(kobj);
1333 	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1334 }
1335 HSTATE_ATTR_RO(surplus_hugepages);
1336 
1337 static struct attribute *hstate_attrs[] = {
1338 	&nr_hugepages_attr.attr,
1339 	&nr_overcommit_hugepages_attr.attr,
1340 	&free_hugepages_attr.attr,
1341 	&resv_hugepages_attr.attr,
1342 	&surplus_hugepages_attr.attr,
1343 	NULL,
1344 };
1345 
1346 static struct attribute_group hstate_attr_group = {
1347 	.attrs = hstate_attrs,
1348 };
1349 
1350 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1351 {
1352 	int retval;
1353 
1354 	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1355 							hugepages_kobj);
1356 	if (!hstate_kobjs[h - hstates])
1357 		return -ENOMEM;
1358 
1359 	retval = sysfs_create_group(hstate_kobjs[h - hstates],
1360 							&hstate_attr_group);
1361 	if (retval)
1362 		kobject_put(hstate_kobjs[h - hstates]);
1363 
1364 	return retval;
1365 }
1366 
1367 static void __init hugetlb_sysfs_init(void)
1368 {
1369 	struct hstate *h;
1370 	int err;
1371 
1372 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1373 	if (!hugepages_kobj)
1374 		return;
1375 
1376 	for_each_hstate(h) {
1377 		err = hugetlb_sysfs_add_hstate(h);
1378 		if (err)
1379 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1380 								h->name);
1381 	}
1382 }
1383 
1384 static void __exit hugetlb_exit(void)
1385 {
1386 	struct hstate *h;
1387 
1388 	for_each_hstate(h) {
1389 		kobject_put(hstate_kobjs[h - hstates]);
1390 	}
1391 
1392 	kobject_put(hugepages_kobj);
1393 }
1394 module_exit(hugetlb_exit);
1395 
1396 static int __init hugetlb_init(void)
1397 {
1398 	/* Some platform decide whether they support huge pages at boot
1399 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1400 	 * there is no such support
1401 	 */
1402 	if (HPAGE_SHIFT == 0)
1403 		return 0;
1404 
1405 	if (!size_to_hstate(default_hstate_size)) {
1406 		default_hstate_size = HPAGE_SIZE;
1407 		if (!size_to_hstate(default_hstate_size))
1408 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1409 	}
1410 	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1411 	if (default_hstate_max_huge_pages)
1412 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1413 
1414 	hugetlb_init_hstates();
1415 
1416 	gather_bootmem_prealloc();
1417 
1418 	report_hugepages();
1419 
1420 	hugetlb_sysfs_init();
1421 
1422 	return 0;
1423 }
1424 module_init(hugetlb_init);
1425 
1426 /* Should be called on processing a hugepagesz=... option */
1427 void __init hugetlb_add_hstate(unsigned order)
1428 {
1429 	struct hstate *h;
1430 	unsigned long i;
1431 
1432 	if (size_to_hstate(PAGE_SIZE << order)) {
1433 		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1434 		return;
1435 	}
1436 	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1437 	BUG_ON(order == 0);
1438 	h = &hstates[max_hstate++];
1439 	h->order = order;
1440 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1441 	h->nr_huge_pages = 0;
1442 	h->free_huge_pages = 0;
1443 	for (i = 0; i < MAX_NUMNODES; ++i)
1444 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1445 	h->hugetlb_next_nid = first_node(node_online_map);
1446 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1447 					huge_page_size(h)/1024);
1448 
1449 	parsed_hstate = h;
1450 }
1451 
1452 static int __init hugetlb_nrpages_setup(char *s)
1453 {
1454 	unsigned long *mhp;
1455 	static unsigned long *last_mhp;
1456 
1457 	/*
1458 	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1459 	 * so this hugepages= parameter goes to the "default hstate".
1460 	 */
1461 	if (!max_hstate)
1462 		mhp = &default_hstate_max_huge_pages;
1463 	else
1464 		mhp = &parsed_hstate->max_huge_pages;
1465 
1466 	if (mhp == last_mhp) {
1467 		printk(KERN_WARNING "hugepages= specified twice without "
1468 			"interleaving hugepagesz=, ignoring\n");
1469 		return 1;
1470 	}
1471 
1472 	if (sscanf(s, "%lu", mhp) <= 0)
1473 		*mhp = 0;
1474 
1475 	/*
1476 	 * Global state is always initialized later in hugetlb_init.
1477 	 * But we need to allocate >= MAX_ORDER hstates here early to still
1478 	 * use the bootmem allocator.
1479 	 */
1480 	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1481 		hugetlb_hstate_alloc_pages(parsed_hstate);
1482 
1483 	last_mhp = mhp;
1484 
1485 	return 1;
1486 }
1487 __setup("hugepages=", hugetlb_nrpages_setup);
1488 
1489 static int __init hugetlb_default_setup(char *s)
1490 {
1491 	default_hstate_size = memparse(s, &s);
1492 	return 1;
1493 }
1494 __setup("default_hugepagesz=", hugetlb_default_setup);
1495 
1496 static unsigned int cpuset_mems_nr(unsigned int *array)
1497 {
1498 	int node;
1499 	unsigned int nr = 0;
1500 
1501 	for_each_node_mask(node, cpuset_current_mems_allowed)
1502 		nr += array[node];
1503 
1504 	return nr;
1505 }
1506 
1507 #ifdef CONFIG_SYSCTL
1508 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1509 			   struct file *file, void __user *buffer,
1510 			   size_t *length, loff_t *ppos)
1511 {
1512 	struct hstate *h = &default_hstate;
1513 	unsigned long tmp;
1514 
1515 	if (!write)
1516 		tmp = h->max_huge_pages;
1517 
1518 	table->data = &tmp;
1519 	table->maxlen = sizeof(unsigned long);
1520 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1521 
1522 	if (write)
1523 		h->max_huge_pages = set_max_huge_pages(h, tmp);
1524 
1525 	return 0;
1526 }
1527 
1528 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1529 			struct file *file, void __user *buffer,
1530 			size_t *length, loff_t *ppos)
1531 {
1532 	proc_dointvec(table, write, file, buffer, length, ppos);
1533 	if (hugepages_treat_as_movable)
1534 		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1535 	else
1536 		htlb_alloc_mask = GFP_HIGHUSER;
1537 	return 0;
1538 }
1539 
1540 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1541 			struct file *file, void __user *buffer,
1542 			size_t *length, loff_t *ppos)
1543 {
1544 	struct hstate *h = &default_hstate;
1545 	unsigned long tmp;
1546 
1547 	if (!write)
1548 		tmp = h->nr_overcommit_huge_pages;
1549 
1550 	table->data = &tmp;
1551 	table->maxlen = sizeof(unsigned long);
1552 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1553 
1554 	if (write) {
1555 		spin_lock(&hugetlb_lock);
1556 		h->nr_overcommit_huge_pages = tmp;
1557 		spin_unlock(&hugetlb_lock);
1558 	}
1559 
1560 	return 0;
1561 }
1562 
1563 #endif /* CONFIG_SYSCTL */
1564 
1565 void hugetlb_report_meminfo(struct seq_file *m)
1566 {
1567 	struct hstate *h = &default_hstate;
1568 	seq_printf(m,
1569 			"HugePages_Total:   %5lu\n"
1570 			"HugePages_Free:    %5lu\n"
1571 			"HugePages_Rsvd:    %5lu\n"
1572 			"HugePages_Surp:    %5lu\n"
1573 			"Hugepagesize:   %8lu kB\n",
1574 			h->nr_huge_pages,
1575 			h->free_huge_pages,
1576 			h->resv_huge_pages,
1577 			h->surplus_huge_pages,
1578 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1579 }
1580 
1581 int hugetlb_report_node_meminfo(int nid, char *buf)
1582 {
1583 	struct hstate *h = &default_hstate;
1584 	return sprintf(buf,
1585 		"Node %d HugePages_Total: %5u\n"
1586 		"Node %d HugePages_Free:  %5u\n"
1587 		"Node %d HugePages_Surp:  %5u\n",
1588 		nid, h->nr_huge_pages_node[nid],
1589 		nid, h->free_huge_pages_node[nid],
1590 		nid, h->surplus_huge_pages_node[nid]);
1591 }
1592 
1593 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1594 unsigned long hugetlb_total_pages(void)
1595 {
1596 	struct hstate *h = &default_hstate;
1597 	return h->nr_huge_pages * pages_per_huge_page(h);
1598 }
1599 
1600 static int hugetlb_acct_memory(struct hstate *h, long delta)
1601 {
1602 	int ret = -ENOMEM;
1603 
1604 	spin_lock(&hugetlb_lock);
1605 	/*
1606 	 * When cpuset is configured, it breaks the strict hugetlb page
1607 	 * reservation as the accounting is done on a global variable. Such
1608 	 * reservation is completely rubbish in the presence of cpuset because
1609 	 * the reservation is not checked against page availability for the
1610 	 * current cpuset. Application can still potentially OOM'ed by kernel
1611 	 * with lack of free htlb page in cpuset that the task is in.
1612 	 * Attempt to enforce strict accounting with cpuset is almost
1613 	 * impossible (or too ugly) because cpuset is too fluid that
1614 	 * task or memory node can be dynamically moved between cpusets.
1615 	 *
1616 	 * The change of semantics for shared hugetlb mapping with cpuset is
1617 	 * undesirable. However, in order to preserve some of the semantics,
1618 	 * we fall back to check against current free page availability as
1619 	 * a best attempt and hopefully to minimize the impact of changing
1620 	 * semantics that cpuset has.
1621 	 */
1622 	if (delta > 0) {
1623 		if (gather_surplus_pages(h, delta) < 0)
1624 			goto out;
1625 
1626 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1627 			return_unused_surplus_pages(h, delta);
1628 			goto out;
1629 		}
1630 	}
1631 
1632 	ret = 0;
1633 	if (delta < 0)
1634 		return_unused_surplus_pages(h, (unsigned long) -delta);
1635 
1636 out:
1637 	spin_unlock(&hugetlb_lock);
1638 	return ret;
1639 }
1640 
1641 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1642 {
1643 	struct resv_map *reservations = vma_resv_map(vma);
1644 
1645 	/*
1646 	 * This new VMA should share its siblings reservation map if present.
1647 	 * The VMA will only ever have a valid reservation map pointer where
1648 	 * it is being copied for another still existing VMA.  As that VMA
1649 	 * has a reference to the reservation map it cannot dissappear until
1650 	 * after this open call completes.  It is therefore safe to take a
1651 	 * new reference here without additional locking.
1652 	 */
1653 	if (reservations)
1654 		kref_get(&reservations->refs);
1655 }
1656 
1657 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1658 {
1659 	struct hstate *h = hstate_vma(vma);
1660 	struct resv_map *reservations = vma_resv_map(vma);
1661 	unsigned long reserve;
1662 	unsigned long start;
1663 	unsigned long end;
1664 
1665 	if (reservations) {
1666 		start = vma_hugecache_offset(h, vma, vma->vm_start);
1667 		end = vma_hugecache_offset(h, vma, vma->vm_end);
1668 
1669 		reserve = (end - start) -
1670 			region_count(&reservations->regions, start, end);
1671 
1672 		kref_put(&reservations->refs, resv_map_release);
1673 
1674 		if (reserve) {
1675 			hugetlb_acct_memory(h, -reserve);
1676 			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1677 		}
1678 	}
1679 }
1680 
1681 /*
1682  * We cannot handle pagefaults against hugetlb pages at all.  They cause
1683  * handle_mm_fault() to try to instantiate regular-sized pages in the
1684  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1685  * this far.
1686  */
1687 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1688 {
1689 	BUG();
1690 	return 0;
1691 }
1692 
1693 struct vm_operations_struct hugetlb_vm_ops = {
1694 	.fault = hugetlb_vm_op_fault,
1695 	.open = hugetlb_vm_op_open,
1696 	.close = hugetlb_vm_op_close,
1697 };
1698 
1699 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1700 				int writable)
1701 {
1702 	pte_t entry;
1703 
1704 	if (writable) {
1705 		entry =
1706 		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1707 	} else {
1708 		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1709 	}
1710 	entry = pte_mkyoung(entry);
1711 	entry = pte_mkhuge(entry);
1712 
1713 	return entry;
1714 }
1715 
1716 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1717 				   unsigned long address, pte_t *ptep)
1718 {
1719 	pte_t entry;
1720 
1721 	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1722 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1723 		update_mmu_cache(vma, address, entry);
1724 	}
1725 }
1726 
1727 
1728 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1729 			    struct vm_area_struct *vma)
1730 {
1731 	pte_t *src_pte, *dst_pte, entry;
1732 	struct page *ptepage;
1733 	unsigned long addr;
1734 	int cow;
1735 	struct hstate *h = hstate_vma(vma);
1736 	unsigned long sz = huge_page_size(h);
1737 
1738 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1739 
1740 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1741 		src_pte = huge_pte_offset(src, addr);
1742 		if (!src_pte)
1743 			continue;
1744 		dst_pte = huge_pte_alloc(dst, addr, sz);
1745 		if (!dst_pte)
1746 			goto nomem;
1747 
1748 		/* If the pagetables are shared don't copy or take references */
1749 		if (dst_pte == src_pte)
1750 			continue;
1751 
1752 		spin_lock(&dst->page_table_lock);
1753 		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1754 		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1755 			if (cow)
1756 				huge_ptep_set_wrprotect(src, addr, src_pte);
1757 			entry = huge_ptep_get(src_pte);
1758 			ptepage = pte_page(entry);
1759 			get_page(ptepage);
1760 			set_huge_pte_at(dst, addr, dst_pte, entry);
1761 		}
1762 		spin_unlock(&src->page_table_lock);
1763 		spin_unlock(&dst->page_table_lock);
1764 	}
1765 	return 0;
1766 
1767 nomem:
1768 	return -ENOMEM;
1769 }
1770 
1771 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1772 			    unsigned long end, struct page *ref_page)
1773 {
1774 	struct mm_struct *mm = vma->vm_mm;
1775 	unsigned long address;
1776 	pte_t *ptep;
1777 	pte_t pte;
1778 	struct page *page;
1779 	struct page *tmp;
1780 	struct hstate *h = hstate_vma(vma);
1781 	unsigned long sz = huge_page_size(h);
1782 
1783 	/*
1784 	 * A page gathering list, protected by per file i_mmap_lock. The
1785 	 * lock is used to avoid list corruption from multiple unmapping
1786 	 * of the same page since we are using page->lru.
1787 	 */
1788 	LIST_HEAD(page_list);
1789 
1790 	WARN_ON(!is_vm_hugetlb_page(vma));
1791 	BUG_ON(start & ~huge_page_mask(h));
1792 	BUG_ON(end & ~huge_page_mask(h));
1793 
1794 	mmu_notifier_invalidate_range_start(mm, start, end);
1795 	spin_lock(&mm->page_table_lock);
1796 	for (address = start; address < end; address += sz) {
1797 		ptep = huge_pte_offset(mm, address);
1798 		if (!ptep)
1799 			continue;
1800 
1801 		if (huge_pmd_unshare(mm, &address, ptep))
1802 			continue;
1803 
1804 		/*
1805 		 * If a reference page is supplied, it is because a specific
1806 		 * page is being unmapped, not a range. Ensure the page we
1807 		 * are about to unmap is the actual page of interest.
1808 		 */
1809 		if (ref_page) {
1810 			pte = huge_ptep_get(ptep);
1811 			if (huge_pte_none(pte))
1812 				continue;
1813 			page = pte_page(pte);
1814 			if (page != ref_page)
1815 				continue;
1816 
1817 			/*
1818 			 * Mark the VMA as having unmapped its page so that
1819 			 * future faults in this VMA will fail rather than
1820 			 * looking like data was lost
1821 			 */
1822 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1823 		}
1824 
1825 		pte = huge_ptep_get_and_clear(mm, address, ptep);
1826 		if (huge_pte_none(pte))
1827 			continue;
1828 
1829 		page = pte_page(pte);
1830 		if (pte_dirty(pte))
1831 			set_page_dirty(page);
1832 		list_add(&page->lru, &page_list);
1833 	}
1834 	spin_unlock(&mm->page_table_lock);
1835 	flush_tlb_range(vma, start, end);
1836 	mmu_notifier_invalidate_range_end(mm, start, end);
1837 	list_for_each_entry_safe(page, tmp, &page_list, lru) {
1838 		list_del(&page->lru);
1839 		put_page(page);
1840 	}
1841 }
1842 
1843 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1844 			  unsigned long end, struct page *ref_page)
1845 {
1846 	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1847 	__unmap_hugepage_range(vma, start, end, ref_page);
1848 	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1849 }
1850 
1851 /*
1852  * This is called when the original mapper is failing to COW a MAP_PRIVATE
1853  * mappping it owns the reserve page for. The intention is to unmap the page
1854  * from other VMAs and let the children be SIGKILLed if they are faulting the
1855  * same region.
1856  */
1857 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1858 				struct page *page, unsigned long address)
1859 {
1860 	struct hstate *h = hstate_vma(vma);
1861 	struct vm_area_struct *iter_vma;
1862 	struct address_space *mapping;
1863 	struct prio_tree_iter iter;
1864 	pgoff_t pgoff;
1865 
1866 	/*
1867 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1868 	 * from page cache lookup which is in HPAGE_SIZE units.
1869 	 */
1870 	address = address & huge_page_mask(h);
1871 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1872 		+ (vma->vm_pgoff >> PAGE_SHIFT);
1873 	mapping = (struct address_space *)page_private(page);
1874 
1875 	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1876 		/* Do not unmap the current VMA */
1877 		if (iter_vma == vma)
1878 			continue;
1879 
1880 		/*
1881 		 * Unmap the page from other VMAs without their own reserves.
1882 		 * They get marked to be SIGKILLed if they fault in these
1883 		 * areas. This is because a future no-page fault on this VMA
1884 		 * could insert a zeroed page instead of the data existing
1885 		 * from the time of fork. This would look like data corruption
1886 		 */
1887 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1888 			unmap_hugepage_range(iter_vma,
1889 				address, address + huge_page_size(h),
1890 				page);
1891 	}
1892 
1893 	return 1;
1894 }
1895 
1896 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1897 			unsigned long address, pte_t *ptep, pte_t pte,
1898 			struct page *pagecache_page)
1899 {
1900 	struct hstate *h = hstate_vma(vma);
1901 	struct page *old_page, *new_page;
1902 	int avoidcopy;
1903 	int outside_reserve = 0;
1904 
1905 	old_page = pte_page(pte);
1906 
1907 retry_avoidcopy:
1908 	/* If no-one else is actually using this page, avoid the copy
1909 	 * and just make the page writable */
1910 	avoidcopy = (page_count(old_page) == 1);
1911 	if (avoidcopy) {
1912 		set_huge_ptep_writable(vma, address, ptep);
1913 		return 0;
1914 	}
1915 
1916 	/*
1917 	 * If the process that created a MAP_PRIVATE mapping is about to
1918 	 * perform a COW due to a shared page count, attempt to satisfy
1919 	 * the allocation without using the existing reserves. The pagecache
1920 	 * page is used to determine if the reserve at this address was
1921 	 * consumed or not. If reserves were used, a partial faulted mapping
1922 	 * at the time of fork() could consume its reserves on COW instead
1923 	 * of the full address range.
1924 	 */
1925 	if (!(vma->vm_flags & VM_MAYSHARE) &&
1926 			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1927 			old_page != pagecache_page)
1928 		outside_reserve = 1;
1929 
1930 	page_cache_get(old_page);
1931 	new_page = alloc_huge_page(vma, address, outside_reserve);
1932 
1933 	if (IS_ERR(new_page)) {
1934 		page_cache_release(old_page);
1935 
1936 		/*
1937 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
1938 		 * it is due to references held by a child and an insufficient
1939 		 * huge page pool. To guarantee the original mappers
1940 		 * reliability, unmap the page from child processes. The child
1941 		 * may get SIGKILLed if it later faults.
1942 		 */
1943 		if (outside_reserve) {
1944 			BUG_ON(huge_pte_none(pte));
1945 			if (unmap_ref_private(mm, vma, old_page, address)) {
1946 				BUG_ON(page_count(old_page) != 1);
1947 				BUG_ON(huge_pte_none(pte));
1948 				goto retry_avoidcopy;
1949 			}
1950 			WARN_ON_ONCE(1);
1951 		}
1952 
1953 		return -PTR_ERR(new_page);
1954 	}
1955 
1956 	spin_unlock(&mm->page_table_lock);
1957 	copy_huge_page(new_page, old_page, address, vma);
1958 	__SetPageUptodate(new_page);
1959 	spin_lock(&mm->page_table_lock);
1960 
1961 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1962 	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1963 		/* Break COW */
1964 		huge_ptep_clear_flush(vma, address, ptep);
1965 		set_huge_pte_at(mm, address, ptep,
1966 				make_huge_pte(vma, new_page, 1));
1967 		/* Make the old page be freed below */
1968 		new_page = old_page;
1969 	}
1970 	page_cache_release(new_page);
1971 	page_cache_release(old_page);
1972 	return 0;
1973 }
1974 
1975 /* Return the pagecache page at a given address within a VMA */
1976 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1977 			struct vm_area_struct *vma, unsigned long address)
1978 {
1979 	struct address_space *mapping;
1980 	pgoff_t idx;
1981 
1982 	mapping = vma->vm_file->f_mapping;
1983 	idx = vma_hugecache_offset(h, vma, address);
1984 
1985 	return find_lock_page(mapping, idx);
1986 }
1987 
1988 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1989 			unsigned long address, pte_t *ptep, unsigned int flags)
1990 {
1991 	struct hstate *h = hstate_vma(vma);
1992 	int ret = VM_FAULT_SIGBUS;
1993 	pgoff_t idx;
1994 	unsigned long size;
1995 	struct page *page;
1996 	struct address_space *mapping;
1997 	pte_t new_pte;
1998 
1999 	/*
2000 	 * Currently, we are forced to kill the process in the event the
2001 	 * original mapper has unmapped pages from the child due to a failed
2002 	 * COW. Warn that such a situation has occured as it may not be obvious
2003 	 */
2004 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2005 		printk(KERN_WARNING
2006 			"PID %d killed due to inadequate hugepage pool\n",
2007 			current->pid);
2008 		return ret;
2009 	}
2010 
2011 	mapping = vma->vm_file->f_mapping;
2012 	idx = vma_hugecache_offset(h, vma, address);
2013 
2014 	/*
2015 	 * Use page lock to guard against racing truncation
2016 	 * before we get page_table_lock.
2017 	 */
2018 retry:
2019 	page = find_lock_page(mapping, idx);
2020 	if (!page) {
2021 		size = i_size_read(mapping->host) >> huge_page_shift(h);
2022 		if (idx >= size)
2023 			goto out;
2024 		page = alloc_huge_page(vma, address, 0);
2025 		if (IS_ERR(page)) {
2026 			ret = -PTR_ERR(page);
2027 			goto out;
2028 		}
2029 		clear_huge_page(page, address, huge_page_size(h));
2030 		__SetPageUptodate(page);
2031 
2032 		if (vma->vm_flags & VM_MAYSHARE) {
2033 			int err;
2034 			struct inode *inode = mapping->host;
2035 
2036 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2037 			if (err) {
2038 				put_page(page);
2039 				if (err == -EEXIST)
2040 					goto retry;
2041 				goto out;
2042 			}
2043 
2044 			spin_lock(&inode->i_lock);
2045 			inode->i_blocks += blocks_per_huge_page(h);
2046 			spin_unlock(&inode->i_lock);
2047 		} else
2048 			lock_page(page);
2049 	}
2050 
2051 	/*
2052 	 * If we are going to COW a private mapping later, we examine the
2053 	 * pending reservations for this page now. This will ensure that
2054 	 * any allocations necessary to record that reservation occur outside
2055 	 * the spinlock.
2056 	 */
2057 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2058 		if (vma_needs_reservation(h, vma, address) < 0) {
2059 			ret = VM_FAULT_OOM;
2060 			goto backout_unlocked;
2061 		}
2062 
2063 	spin_lock(&mm->page_table_lock);
2064 	size = i_size_read(mapping->host) >> huge_page_shift(h);
2065 	if (idx >= size)
2066 		goto backout;
2067 
2068 	ret = 0;
2069 	if (!huge_pte_none(huge_ptep_get(ptep)))
2070 		goto backout;
2071 
2072 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2073 				&& (vma->vm_flags & VM_SHARED)));
2074 	set_huge_pte_at(mm, address, ptep, new_pte);
2075 
2076 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2077 		/* Optimization, do the COW without a second fault */
2078 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2079 	}
2080 
2081 	spin_unlock(&mm->page_table_lock);
2082 	unlock_page(page);
2083 out:
2084 	return ret;
2085 
2086 backout:
2087 	spin_unlock(&mm->page_table_lock);
2088 backout_unlocked:
2089 	unlock_page(page);
2090 	put_page(page);
2091 	goto out;
2092 }
2093 
2094 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2095 			unsigned long address, unsigned int flags)
2096 {
2097 	pte_t *ptep;
2098 	pte_t entry;
2099 	int ret;
2100 	struct page *pagecache_page = NULL;
2101 	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2102 	struct hstate *h = hstate_vma(vma);
2103 
2104 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2105 	if (!ptep)
2106 		return VM_FAULT_OOM;
2107 
2108 	/*
2109 	 * Serialize hugepage allocation and instantiation, so that we don't
2110 	 * get spurious allocation failures if two CPUs race to instantiate
2111 	 * the same page in the page cache.
2112 	 */
2113 	mutex_lock(&hugetlb_instantiation_mutex);
2114 	entry = huge_ptep_get(ptep);
2115 	if (huge_pte_none(entry)) {
2116 		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2117 		goto out_mutex;
2118 	}
2119 
2120 	ret = 0;
2121 
2122 	/*
2123 	 * If we are going to COW the mapping later, we examine the pending
2124 	 * reservations for this page now. This will ensure that any
2125 	 * allocations necessary to record that reservation occur outside the
2126 	 * spinlock. For private mappings, we also lookup the pagecache
2127 	 * page now as it is used to determine if a reservation has been
2128 	 * consumed.
2129 	 */
2130 	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2131 		if (vma_needs_reservation(h, vma, address) < 0) {
2132 			ret = VM_FAULT_OOM;
2133 			goto out_mutex;
2134 		}
2135 
2136 		if (!(vma->vm_flags & VM_MAYSHARE))
2137 			pagecache_page = hugetlbfs_pagecache_page(h,
2138 								vma, address);
2139 	}
2140 
2141 	spin_lock(&mm->page_table_lock);
2142 	/* Check for a racing update before calling hugetlb_cow */
2143 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2144 		goto out_page_table_lock;
2145 
2146 
2147 	if (flags & FAULT_FLAG_WRITE) {
2148 		if (!pte_write(entry)) {
2149 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2150 							pagecache_page);
2151 			goto out_page_table_lock;
2152 		}
2153 		entry = pte_mkdirty(entry);
2154 	}
2155 	entry = pte_mkyoung(entry);
2156 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2157 						flags & FAULT_FLAG_WRITE))
2158 		update_mmu_cache(vma, address, entry);
2159 
2160 out_page_table_lock:
2161 	spin_unlock(&mm->page_table_lock);
2162 
2163 	if (pagecache_page) {
2164 		unlock_page(pagecache_page);
2165 		put_page(pagecache_page);
2166 	}
2167 
2168 out_mutex:
2169 	mutex_unlock(&hugetlb_instantiation_mutex);
2170 
2171 	return ret;
2172 }
2173 
2174 /* Can be overriden by architectures */
2175 __attribute__((weak)) struct page *
2176 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2177 	       pud_t *pud, int write)
2178 {
2179 	BUG();
2180 	return NULL;
2181 }
2182 
2183 static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2184 {
2185 	if (!ptep || write || shared)
2186 		return 0;
2187 	else
2188 		return huge_pte_none(huge_ptep_get(ptep));
2189 }
2190 
2191 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2192 			struct page **pages, struct vm_area_struct **vmas,
2193 			unsigned long *position, int *length, int i,
2194 			int write)
2195 {
2196 	unsigned long pfn_offset;
2197 	unsigned long vaddr = *position;
2198 	int remainder = *length;
2199 	struct hstate *h = hstate_vma(vma);
2200 	int zeropage_ok = 0;
2201 	int shared = vma->vm_flags & VM_SHARED;
2202 
2203 	spin_lock(&mm->page_table_lock);
2204 	while (vaddr < vma->vm_end && remainder) {
2205 		pte_t *pte;
2206 		struct page *page;
2207 
2208 		/*
2209 		 * Some archs (sparc64, sh*) have multiple pte_ts to
2210 		 * each hugepage.  We have to make * sure we get the
2211 		 * first, for the page indexing below to work.
2212 		 */
2213 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2214 		if (huge_zeropage_ok(pte, write, shared))
2215 			zeropage_ok = 1;
2216 
2217 		if (!pte ||
2218 		    (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2219 		    (write && !pte_write(huge_ptep_get(pte)))) {
2220 			int ret;
2221 
2222 			spin_unlock(&mm->page_table_lock);
2223 			ret = hugetlb_fault(mm, vma, vaddr, write);
2224 			spin_lock(&mm->page_table_lock);
2225 			if (!(ret & VM_FAULT_ERROR))
2226 				continue;
2227 
2228 			remainder = 0;
2229 			if (!i)
2230 				i = -EFAULT;
2231 			break;
2232 		}
2233 
2234 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2235 		page = pte_page(huge_ptep_get(pte));
2236 same_page:
2237 		if (pages) {
2238 			if (zeropage_ok)
2239 				pages[i] = ZERO_PAGE(0);
2240 			else
2241 				pages[i] = mem_map_offset(page, pfn_offset);
2242 			get_page(pages[i]);
2243 		}
2244 
2245 		if (vmas)
2246 			vmas[i] = vma;
2247 
2248 		vaddr += PAGE_SIZE;
2249 		++pfn_offset;
2250 		--remainder;
2251 		++i;
2252 		if (vaddr < vma->vm_end && remainder &&
2253 				pfn_offset < pages_per_huge_page(h)) {
2254 			/*
2255 			 * We use pfn_offset to avoid touching the pageframes
2256 			 * of this compound page.
2257 			 */
2258 			goto same_page;
2259 		}
2260 	}
2261 	spin_unlock(&mm->page_table_lock);
2262 	*length = remainder;
2263 	*position = vaddr;
2264 
2265 	return i;
2266 }
2267 
2268 void hugetlb_change_protection(struct vm_area_struct *vma,
2269 		unsigned long address, unsigned long end, pgprot_t newprot)
2270 {
2271 	struct mm_struct *mm = vma->vm_mm;
2272 	unsigned long start = address;
2273 	pte_t *ptep;
2274 	pte_t pte;
2275 	struct hstate *h = hstate_vma(vma);
2276 
2277 	BUG_ON(address >= end);
2278 	flush_cache_range(vma, address, end);
2279 
2280 	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2281 	spin_lock(&mm->page_table_lock);
2282 	for (; address < end; address += huge_page_size(h)) {
2283 		ptep = huge_pte_offset(mm, address);
2284 		if (!ptep)
2285 			continue;
2286 		if (huge_pmd_unshare(mm, &address, ptep))
2287 			continue;
2288 		if (!huge_pte_none(huge_ptep_get(ptep))) {
2289 			pte = huge_ptep_get_and_clear(mm, address, ptep);
2290 			pte = pte_mkhuge(pte_modify(pte, newprot));
2291 			set_huge_pte_at(mm, address, ptep, pte);
2292 		}
2293 	}
2294 	spin_unlock(&mm->page_table_lock);
2295 	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2296 
2297 	flush_tlb_range(vma, start, end);
2298 }
2299 
2300 int hugetlb_reserve_pages(struct inode *inode,
2301 					long from, long to,
2302 					struct vm_area_struct *vma,
2303 					int acctflag)
2304 {
2305 	long ret, chg;
2306 	struct hstate *h = hstate_inode(inode);
2307 
2308 	/*
2309 	 * Only apply hugepage reservation if asked. At fault time, an
2310 	 * attempt will be made for VM_NORESERVE to allocate a page
2311 	 * and filesystem quota without using reserves
2312 	 */
2313 	if (acctflag & VM_NORESERVE)
2314 		return 0;
2315 
2316 	/*
2317 	 * Shared mappings base their reservation on the number of pages that
2318 	 * are already allocated on behalf of the file. Private mappings need
2319 	 * to reserve the full area even if read-only as mprotect() may be
2320 	 * called to make the mapping read-write. Assume !vma is a shm mapping
2321 	 */
2322 	if (!vma || vma->vm_flags & VM_MAYSHARE)
2323 		chg = region_chg(&inode->i_mapping->private_list, from, to);
2324 	else {
2325 		struct resv_map *resv_map = resv_map_alloc();
2326 		if (!resv_map)
2327 			return -ENOMEM;
2328 
2329 		chg = to - from;
2330 
2331 		set_vma_resv_map(vma, resv_map);
2332 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2333 	}
2334 
2335 	if (chg < 0)
2336 		return chg;
2337 
2338 	/* There must be enough filesystem quota for the mapping */
2339 	if (hugetlb_get_quota(inode->i_mapping, chg))
2340 		return -ENOSPC;
2341 
2342 	/*
2343 	 * Check enough hugepages are available for the reservation.
2344 	 * Hand back the quota if there are not
2345 	 */
2346 	ret = hugetlb_acct_memory(h, chg);
2347 	if (ret < 0) {
2348 		hugetlb_put_quota(inode->i_mapping, chg);
2349 		return ret;
2350 	}
2351 
2352 	/*
2353 	 * Account for the reservations made. Shared mappings record regions
2354 	 * that have reservations as they are shared by multiple VMAs.
2355 	 * When the last VMA disappears, the region map says how much
2356 	 * the reservation was and the page cache tells how much of
2357 	 * the reservation was consumed. Private mappings are per-VMA and
2358 	 * only the consumed reservations are tracked. When the VMA
2359 	 * disappears, the original reservation is the VMA size and the
2360 	 * consumed reservations are stored in the map. Hence, nothing
2361 	 * else has to be done for private mappings here
2362 	 */
2363 	if (!vma || vma->vm_flags & VM_MAYSHARE)
2364 		region_add(&inode->i_mapping->private_list, from, to);
2365 	return 0;
2366 }
2367 
2368 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2369 {
2370 	struct hstate *h = hstate_inode(inode);
2371 	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2372 
2373 	spin_lock(&inode->i_lock);
2374 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2375 	spin_unlock(&inode->i_lock);
2376 
2377 	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2378 	hugetlb_acct_memory(h, -(chg - freed));
2379 }
2380