xref: /openbmc/linux/mm/hugetlb.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37 
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/page_owner.h>
43 #include "internal.h"
44 
45 int hugetlb_max_hstate __read_mostly;
46 unsigned int default_hstate_idx;
47 struct hstate hstates[HUGE_MAX_HSTATE];
48 
49 #ifdef CONFIG_CMA
50 static struct cma *hugetlb_cma[MAX_NUMNODES];
51 #endif
52 static unsigned long hugetlb_cma_size __initdata;
53 
54 /*
55  * Minimum page order among possible hugepage sizes, set to a proper value
56  * at boot time.
57  */
58 static unsigned int minimum_order __read_mostly = UINT_MAX;
59 
60 __initdata LIST_HEAD(huge_boot_pages);
61 
62 /* for command line parsing */
63 static struct hstate * __initdata parsed_hstate;
64 static unsigned long __initdata default_hstate_max_huge_pages;
65 static bool __initdata parsed_valid_hugepagesz = true;
66 static bool __initdata parsed_default_hugepagesz;
67 
68 /*
69  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
70  * free_huge_pages, and surplus_huge_pages.
71  */
72 DEFINE_SPINLOCK(hugetlb_lock);
73 
74 /*
75  * Serializes faults on the same logical page.  This is used to
76  * prevent spurious OOMs when the hugepage pool is fully utilized.
77  */
78 static int num_fault_mutexes;
79 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
80 
81 /* Forward declaration */
82 static int hugetlb_acct_memory(struct hstate *h, long delta);
83 
84 static inline bool subpool_is_free(struct hugepage_subpool *spool)
85 {
86 	if (spool->count)
87 		return false;
88 	if (spool->max_hpages != -1)
89 		return spool->used_hpages == 0;
90 	if (spool->min_hpages != -1)
91 		return spool->rsv_hpages == spool->min_hpages;
92 
93 	return true;
94 }
95 
96 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
97 						unsigned long irq_flags)
98 {
99 	spin_unlock_irqrestore(&spool->lock, irq_flags);
100 
101 	/* If no pages are used, and no other handles to the subpool
102 	 * remain, give up any reservations based on minimum size and
103 	 * free the subpool */
104 	if (subpool_is_free(spool)) {
105 		if (spool->min_hpages != -1)
106 			hugetlb_acct_memory(spool->hstate,
107 						-spool->min_hpages);
108 		kfree(spool);
109 	}
110 }
111 
112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113 						long min_hpages)
114 {
115 	struct hugepage_subpool *spool;
116 
117 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
118 	if (!spool)
119 		return NULL;
120 
121 	spin_lock_init(&spool->lock);
122 	spool->count = 1;
123 	spool->max_hpages = max_hpages;
124 	spool->hstate = h;
125 	spool->min_hpages = min_hpages;
126 
127 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128 		kfree(spool);
129 		return NULL;
130 	}
131 	spool->rsv_hpages = min_hpages;
132 
133 	return spool;
134 }
135 
136 void hugepage_put_subpool(struct hugepage_subpool *spool)
137 {
138 	unsigned long flags;
139 
140 	spin_lock_irqsave(&spool->lock, flags);
141 	BUG_ON(!spool->count);
142 	spool->count--;
143 	unlock_or_release_subpool(spool, flags);
144 }
145 
146 /*
147  * Subpool accounting for allocating and reserving pages.
148  * Return -ENOMEM if there are not enough resources to satisfy the
149  * request.  Otherwise, return the number of pages by which the
150  * global pools must be adjusted (upward).  The returned value may
151  * only be different than the passed value (delta) in the case where
152  * a subpool minimum size must be maintained.
153  */
154 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
155 				      long delta)
156 {
157 	long ret = delta;
158 
159 	if (!spool)
160 		return ret;
161 
162 	spin_lock_irq(&spool->lock);
163 
164 	if (spool->max_hpages != -1) {		/* maximum size accounting */
165 		if ((spool->used_hpages + delta) <= spool->max_hpages)
166 			spool->used_hpages += delta;
167 		else {
168 			ret = -ENOMEM;
169 			goto unlock_ret;
170 		}
171 	}
172 
173 	/* minimum size accounting */
174 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
175 		if (delta > spool->rsv_hpages) {
176 			/*
177 			 * Asking for more reserves than those already taken on
178 			 * behalf of subpool.  Return difference.
179 			 */
180 			ret = delta - spool->rsv_hpages;
181 			spool->rsv_hpages = 0;
182 		} else {
183 			ret = 0;	/* reserves already accounted for */
184 			spool->rsv_hpages -= delta;
185 		}
186 	}
187 
188 unlock_ret:
189 	spin_unlock_irq(&spool->lock);
190 	return ret;
191 }
192 
193 /*
194  * Subpool accounting for freeing and unreserving pages.
195  * Return the number of global page reservations that must be dropped.
196  * The return value may only be different than the passed value (delta)
197  * in the case where a subpool minimum size must be maintained.
198  */
199 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
200 				       long delta)
201 {
202 	long ret = delta;
203 	unsigned long flags;
204 
205 	if (!spool)
206 		return delta;
207 
208 	spin_lock_irqsave(&spool->lock, flags);
209 
210 	if (spool->max_hpages != -1)		/* maximum size accounting */
211 		spool->used_hpages -= delta;
212 
213 	 /* minimum size accounting */
214 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
215 		if (spool->rsv_hpages + delta <= spool->min_hpages)
216 			ret = 0;
217 		else
218 			ret = spool->rsv_hpages + delta - spool->min_hpages;
219 
220 		spool->rsv_hpages += delta;
221 		if (spool->rsv_hpages > spool->min_hpages)
222 			spool->rsv_hpages = spool->min_hpages;
223 	}
224 
225 	/*
226 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
227 	 * quota reference, free it now.
228 	 */
229 	unlock_or_release_subpool(spool, flags);
230 
231 	return ret;
232 }
233 
234 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
235 {
236 	return HUGETLBFS_SB(inode->i_sb)->spool;
237 }
238 
239 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
240 {
241 	return subpool_inode(file_inode(vma->vm_file));
242 }
243 
244 /* Helper that removes a struct file_region from the resv_map cache and returns
245  * it for use.
246  */
247 static struct file_region *
248 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
249 {
250 	struct file_region *nrg = NULL;
251 
252 	VM_BUG_ON(resv->region_cache_count <= 0);
253 
254 	resv->region_cache_count--;
255 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
256 	list_del(&nrg->link);
257 
258 	nrg->from = from;
259 	nrg->to = to;
260 
261 	return nrg;
262 }
263 
264 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
265 					      struct file_region *rg)
266 {
267 #ifdef CONFIG_CGROUP_HUGETLB
268 	nrg->reservation_counter = rg->reservation_counter;
269 	nrg->css = rg->css;
270 	if (rg->css)
271 		css_get(rg->css);
272 #endif
273 }
274 
275 /* Helper that records hugetlb_cgroup uncharge info. */
276 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
277 						struct hstate *h,
278 						struct resv_map *resv,
279 						struct file_region *nrg)
280 {
281 #ifdef CONFIG_CGROUP_HUGETLB
282 	if (h_cg) {
283 		nrg->reservation_counter =
284 			&h_cg->rsvd_hugepage[hstate_index(h)];
285 		nrg->css = &h_cg->css;
286 		/*
287 		 * The caller will hold exactly one h_cg->css reference for the
288 		 * whole contiguous reservation region. But this area might be
289 		 * scattered when there are already some file_regions reside in
290 		 * it. As a result, many file_regions may share only one css
291 		 * reference. In order to ensure that one file_region must hold
292 		 * exactly one h_cg->css reference, we should do css_get for
293 		 * each file_region and leave the reference held by caller
294 		 * untouched.
295 		 */
296 		css_get(&h_cg->css);
297 		if (!resv->pages_per_hpage)
298 			resv->pages_per_hpage = pages_per_huge_page(h);
299 		/* pages_per_hpage should be the same for all entries in
300 		 * a resv_map.
301 		 */
302 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
303 	} else {
304 		nrg->reservation_counter = NULL;
305 		nrg->css = NULL;
306 	}
307 #endif
308 }
309 
310 static void put_uncharge_info(struct file_region *rg)
311 {
312 #ifdef CONFIG_CGROUP_HUGETLB
313 	if (rg->css)
314 		css_put(rg->css);
315 #endif
316 }
317 
318 static bool has_same_uncharge_info(struct file_region *rg,
319 				   struct file_region *org)
320 {
321 #ifdef CONFIG_CGROUP_HUGETLB
322 	return rg && org &&
323 	       rg->reservation_counter == org->reservation_counter &&
324 	       rg->css == org->css;
325 
326 #else
327 	return true;
328 #endif
329 }
330 
331 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
332 {
333 	struct file_region *nrg = NULL, *prg = NULL;
334 
335 	prg = list_prev_entry(rg, link);
336 	if (&prg->link != &resv->regions && prg->to == rg->from &&
337 	    has_same_uncharge_info(prg, rg)) {
338 		prg->to = rg->to;
339 
340 		list_del(&rg->link);
341 		put_uncharge_info(rg);
342 		kfree(rg);
343 
344 		rg = prg;
345 	}
346 
347 	nrg = list_next_entry(rg, link);
348 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
349 	    has_same_uncharge_info(nrg, rg)) {
350 		nrg->from = rg->from;
351 
352 		list_del(&rg->link);
353 		put_uncharge_info(rg);
354 		kfree(rg);
355 	}
356 }
357 
358 static inline long
359 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
360 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
361 		     long *regions_needed)
362 {
363 	struct file_region *nrg;
364 
365 	if (!regions_needed) {
366 		nrg = get_file_region_entry_from_cache(map, from, to);
367 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
368 		list_add(&nrg->link, rg->link.prev);
369 		coalesce_file_region(map, nrg);
370 	} else
371 		*regions_needed += 1;
372 
373 	return to - from;
374 }
375 
376 /*
377  * Must be called with resv->lock held.
378  *
379  * Calling this with regions_needed != NULL will count the number of pages
380  * to be added but will not modify the linked list. And regions_needed will
381  * indicate the number of file_regions needed in the cache to carry out to add
382  * the regions for this range.
383  */
384 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
385 				     struct hugetlb_cgroup *h_cg,
386 				     struct hstate *h, long *regions_needed)
387 {
388 	long add = 0;
389 	struct list_head *head = &resv->regions;
390 	long last_accounted_offset = f;
391 	struct file_region *rg = NULL, *trg = NULL;
392 
393 	if (regions_needed)
394 		*regions_needed = 0;
395 
396 	/* In this loop, we essentially handle an entry for the range
397 	 * [last_accounted_offset, rg->from), at every iteration, with some
398 	 * bounds checking.
399 	 */
400 	list_for_each_entry_safe(rg, trg, head, link) {
401 		/* Skip irrelevant regions that start before our range. */
402 		if (rg->from < f) {
403 			/* If this region ends after the last accounted offset,
404 			 * then we need to update last_accounted_offset.
405 			 */
406 			if (rg->to > last_accounted_offset)
407 				last_accounted_offset = rg->to;
408 			continue;
409 		}
410 
411 		/* When we find a region that starts beyond our range, we've
412 		 * finished.
413 		 */
414 		if (rg->from >= t)
415 			break;
416 
417 		/* Add an entry for last_accounted_offset -> rg->from, and
418 		 * update last_accounted_offset.
419 		 */
420 		if (rg->from > last_accounted_offset)
421 			add += hugetlb_resv_map_add(resv, rg,
422 						    last_accounted_offset,
423 						    rg->from, h, h_cg,
424 						    regions_needed);
425 
426 		last_accounted_offset = rg->to;
427 	}
428 
429 	/* Handle the case where our range extends beyond
430 	 * last_accounted_offset.
431 	 */
432 	if (last_accounted_offset < t)
433 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
434 					    t, h, h_cg, regions_needed);
435 
436 	VM_BUG_ON(add < 0);
437 	return add;
438 }
439 
440 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
441  */
442 static int allocate_file_region_entries(struct resv_map *resv,
443 					int regions_needed)
444 	__must_hold(&resv->lock)
445 {
446 	struct list_head allocated_regions;
447 	int to_allocate = 0, i = 0;
448 	struct file_region *trg = NULL, *rg = NULL;
449 
450 	VM_BUG_ON(regions_needed < 0);
451 
452 	INIT_LIST_HEAD(&allocated_regions);
453 
454 	/*
455 	 * Check for sufficient descriptors in the cache to accommodate
456 	 * the number of in progress add operations plus regions_needed.
457 	 *
458 	 * This is a while loop because when we drop the lock, some other call
459 	 * to region_add or region_del may have consumed some region_entries,
460 	 * so we keep looping here until we finally have enough entries for
461 	 * (adds_in_progress + regions_needed).
462 	 */
463 	while (resv->region_cache_count <
464 	       (resv->adds_in_progress + regions_needed)) {
465 		to_allocate = resv->adds_in_progress + regions_needed -
466 			      resv->region_cache_count;
467 
468 		/* At this point, we should have enough entries in the cache
469 		 * for all the existing adds_in_progress. We should only be
470 		 * needing to allocate for regions_needed.
471 		 */
472 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
473 
474 		spin_unlock(&resv->lock);
475 		for (i = 0; i < to_allocate; i++) {
476 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
477 			if (!trg)
478 				goto out_of_memory;
479 			list_add(&trg->link, &allocated_regions);
480 		}
481 
482 		spin_lock(&resv->lock);
483 
484 		list_splice(&allocated_regions, &resv->region_cache);
485 		resv->region_cache_count += to_allocate;
486 	}
487 
488 	return 0;
489 
490 out_of_memory:
491 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
492 		list_del(&rg->link);
493 		kfree(rg);
494 	}
495 	return -ENOMEM;
496 }
497 
498 /*
499  * Add the huge page range represented by [f, t) to the reserve
500  * map.  Regions will be taken from the cache to fill in this range.
501  * Sufficient regions should exist in the cache due to the previous
502  * call to region_chg with the same range, but in some cases the cache will not
503  * have sufficient entries due to races with other code doing region_add or
504  * region_del.  The extra needed entries will be allocated.
505  *
506  * regions_needed is the out value provided by a previous call to region_chg.
507  *
508  * Return the number of new huge pages added to the map.  This number is greater
509  * than or equal to zero.  If file_region entries needed to be allocated for
510  * this operation and we were not able to allocate, it returns -ENOMEM.
511  * region_add of regions of length 1 never allocate file_regions and cannot
512  * fail; region_chg will always allocate at least 1 entry and a region_add for
513  * 1 page will only require at most 1 entry.
514  */
515 static long region_add(struct resv_map *resv, long f, long t,
516 		       long in_regions_needed, struct hstate *h,
517 		       struct hugetlb_cgroup *h_cg)
518 {
519 	long add = 0, actual_regions_needed = 0;
520 
521 	spin_lock(&resv->lock);
522 retry:
523 
524 	/* Count how many regions are actually needed to execute this add. */
525 	add_reservation_in_range(resv, f, t, NULL, NULL,
526 				 &actual_regions_needed);
527 
528 	/*
529 	 * Check for sufficient descriptors in the cache to accommodate
530 	 * this add operation. Note that actual_regions_needed may be greater
531 	 * than in_regions_needed, as the resv_map may have been modified since
532 	 * the region_chg call. In this case, we need to make sure that we
533 	 * allocate extra entries, such that we have enough for all the
534 	 * existing adds_in_progress, plus the excess needed for this
535 	 * operation.
536 	 */
537 	if (actual_regions_needed > in_regions_needed &&
538 	    resv->region_cache_count <
539 		    resv->adds_in_progress +
540 			    (actual_regions_needed - in_regions_needed)) {
541 		/* region_add operation of range 1 should never need to
542 		 * allocate file_region entries.
543 		 */
544 		VM_BUG_ON(t - f <= 1);
545 
546 		if (allocate_file_region_entries(
547 			    resv, actual_regions_needed - in_regions_needed)) {
548 			return -ENOMEM;
549 		}
550 
551 		goto retry;
552 	}
553 
554 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
555 
556 	resv->adds_in_progress -= in_regions_needed;
557 
558 	spin_unlock(&resv->lock);
559 	return add;
560 }
561 
562 /*
563  * Examine the existing reserve map and determine how many
564  * huge pages in the specified range [f, t) are NOT currently
565  * represented.  This routine is called before a subsequent
566  * call to region_add that will actually modify the reserve
567  * map to add the specified range [f, t).  region_chg does
568  * not change the number of huge pages represented by the
569  * map.  A number of new file_region structures is added to the cache as a
570  * placeholder, for the subsequent region_add call to use. At least 1
571  * file_region structure is added.
572  *
573  * out_regions_needed is the number of regions added to the
574  * resv->adds_in_progress.  This value needs to be provided to a follow up call
575  * to region_add or region_abort for proper accounting.
576  *
577  * Returns the number of huge pages that need to be added to the existing
578  * reservation map for the range [f, t).  This number is greater or equal to
579  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
580  * is needed and can not be allocated.
581  */
582 static long region_chg(struct resv_map *resv, long f, long t,
583 		       long *out_regions_needed)
584 {
585 	long chg = 0;
586 
587 	spin_lock(&resv->lock);
588 
589 	/* Count how many hugepages in this range are NOT represented. */
590 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
591 				       out_regions_needed);
592 
593 	if (*out_regions_needed == 0)
594 		*out_regions_needed = 1;
595 
596 	if (allocate_file_region_entries(resv, *out_regions_needed))
597 		return -ENOMEM;
598 
599 	resv->adds_in_progress += *out_regions_needed;
600 
601 	spin_unlock(&resv->lock);
602 	return chg;
603 }
604 
605 /*
606  * Abort the in progress add operation.  The adds_in_progress field
607  * of the resv_map keeps track of the operations in progress between
608  * calls to region_chg and region_add.  Operations are sometimes
609  * aborted after the call to region_chg.  In such cases, region_abort
610  * is called to decrement the adds_in_progress counter. regions_needed
611  * is the value returned by the region_chg call, it is used to decrement
612  * the adds_in_progress counter.
613  *
614  * NOTE: The range arguments [f, t) are not needed or used in this
615  * routine.  They are kept to make reading the calling code easier as
616  * arguments will match the associated region_chg call.
617  */
618 static void region_abort(struct resv_map *resv, long f, long t,
619 			 long regions_needed)
620 {
621 	spin_lock(&resv->lock);
622 	VM_BUG_ON(!resv->region_cache_count);
623 	resv->adds_in_progress -= regions_needed;
624 	spin_unlock(&resv->lock);
625 }
626 
627 /*
628  * Delete the specified range [f, t) from the reserve map.  If the
629  * t parameter is LONG_MAX, this indicates that ALL regions after f
630  * should be deleted.  Locate the regions which intersect [f, t)
631  * and either trim, delete or split the existing regions.
632  *
633  * Returns the number of huge pages deleted from the reserve map.
634  * In the normal case, the return value is zero or more.  In the
635  * case where a region must be split, a new region descriptor must
636  * be allocated.  If the allocation fails, -ENOMEM will be returned.
637  * NOTE: If the parameter t == LONG_MAX, then we will never split
638  * a region and possibly return -ENOMEM.  Callers specifying
639  * t == LONG_MAX do not need to check for -ENOMEM error.
640  */
641 static long region_del(struct resv_map *resv, long f, long t)
642 {
643 	struct list_head *head = &resv->regions;
644 	struct file_region *rg, *trg;
645 	struct file_region *nrg = NULL;
646 	long del = 0;
647 
648 retry:
649 	spin_lock(&resv->lock);
650 	list_for_each_entry_safe(rg, trg, head, link) {
651 		/*
652 		 * Skip regions before the range to be deleted.  file_region
653 		 * ranges are normally of the form [from, to).  However, there
654 		 * may be a "placeholder" entry in the map which is of the form
655 		 * (from, to) with from == to.  Check for placeholder entries
656 		 * at the beginning of the range to be deleted.
657 		 */
658 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
659 			continue;
660 
661 		if (rg->from >= t)
662 			break;
663 
664 		if (f > rg->from && t < rg->to) { /* Must split region */
665 			/*
666 			 * Check for an entry in the cache before dropping
667 			 * lock and attempting allocation.
668 			 */
669 			if (!nrg &&
670 			    resv->region_cache_count > resv->adds_in_progress) {
671 				nrg = list_first_entry(&resv->region_cache,
672 							struct file_region,
673 							link);
674 				list_del(&nrg->link);
675 				resv->region_cache_count--;
676 			}
677 
678 			if (!nrg) {
679 				spin_unlock(&resv->lock);
680 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
681 				if (!nrg)
682 					return -ENOMEM;
683 				goto retry;
684 			}
685 
686 			del += t - f;
687 			hugetlb_cgroup_uncharge_file_region(
688 				resv, rg, t - f, false);
689 
690 			/* New entry for end of split region */
691 			nrg->from = t;
692 			nrg->to = rg->to;
693 
694 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
695 
696 			INIT_LIST_HEAD(&nrg->link);
697 
698 			/* Original entry is trimmed */
699 			rg->to = f;
700 
701 			list_add(&nrg->link, &rg->link);
702 			nrg = NULL;
703 			break;
704 		}
705 
706 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
707 			del += rg->to - rg->from;
708 			hugetlb_cgroup_uncharge_file_region(resv, rg,
709 							    rg->to - rg->from, true);
710 			list_del(&rg->link);
711 			kfree(rg);
712 			continue;
713 		}
714 
715 		if (f <= rg->from) {	/* Trim beginning of region */
716 			hugetlb_cgroup_uncharge_file_region(resv, rg,
717 							    t - rg->from, false);
718 
719 			del += t - rg->from;
720 			rg->from = t;
721 		} else {		/* Trim end of region */
722 			hugetlb_cgroup_uncharge_file_region(resv, rg,
723 							    rg->to - f, false);
724 
725 			del += rg->to - f;
726 			rg->to = f;
727 		}
728 	}
729 
730 	spin_unlock(&resv->lock);
731 	kfree(nrg);
732 	return del;
733 }
734 
735 /*
736  * A rare out of memory error was encountered which prevented removal of
737  * the reserve map region for a page.  The huge page itself was free'ed
738  * and removed from the page cache.  This routine will adjust the subpool
739  * usage count, and the global reserve count if needed.  By incrementing
740  * these counts, the reserve map entry which could not be deleted will
741  * appear as a "reserved" entry instead of simply dangling with incorrect
742  * counts.
743  */
744 void hugetlb_fix_reserve_counts(struct inode *inode)
745 {
746 	struct hugepage_subpool *spool = subpool_inode(inode);
747 	long rsv_adjust;
748 	bool reserved = false;
749 
750 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
751 	if (rsv_adjust > 0) {
752 		struct hstate *h = hstate_inode(inode);
753 
754 		if (!hugetlb_acct_memory(h, 1))
755 			reserved = true;
756 	} else if (!rsv_adjust) {
757 		reserved = true;
758 	}
759 
760 	if (!reserved)
761 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
762 }
763 
764 /*
765  * Count and return the number of huge pages in the reserve map
766  * that intersect with the range [f, t).
767  */
768 static long region_count(struct resv_map *resv, long f, long t)
769 {
770 	struct list_head *head = &resv->regions;
771 	struct file_region *rg;
772 	long chg = 0;
773 
774 	spin_lock(&resv->lock);
775 	/* Locate each segment we overlap with, and count that overlap. */
776 	list_for_each_entry(rg, head, link) {
777 		long seg_from;
778 		long seg_to;
779 
780 		if (rg->to <= f)
781 			continue;
782 		if (rg->from >= t)
783 			break;
784 
785 		seg_from = max(rg->from, f);
786 		seg_to = min(rg->to, t);
787 
788 		chg += seg_to - seg_from;
789 	}
790 	spin_unlock(&resv->lock);
791 
792 	return chg;
793 }
794 
795 /*
796  * Convert the address within this vma to the page offset within
797  * the mapping, in pagecache page units; huge pages here.
798  */
799 static pgoff_t vma_hugecache_offset(struct hstate *h,
800 			struct vm_area_struct *vma, unsigned long address)
801 {
802 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
803 			(vma->vm_pgoff >> huge_page_order(h));
804 }
805 
806 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
807 				     unsigned long address)
808 {
809 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
810 }
811 EXPORT_SYMBOL_GPL(linear_hugepage_index);
812 
813 /*
814  * Return the size of the pages allocated when backing a VMA. In the majority
815  * cases this will be same size as used by the page table entries.
816  */
817 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
818 {
819 	if (vma->vm_ops && vma->vm_ops->pagesize)
820 		return vma->vm_ops->pagesize(vma);
821 	return PAGE_SIZE;
822 }
823 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
824 
825 /*
826  * Return the page size being used by the MMU to back a VMA. In the majority
827  * of cases, the page size used by the kernel matches the MMU size. On
828  * architectures where it differs, an architecture-specific 'strong'
829  * version of this symbol is required.
830  */
831 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
832 {
833 	return vma_kernel_pagesize(vma);
834 }
835 
836 /*
837  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
838  * bits of the reservation map pointer, which are always clear due to
839  * alignment.
840  */
841 #define HPAGE_RESV_OWNER    (1UL << 0)
842 #define HPAGE_RESV_UNMAPPED (1UL << 1)
843 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
844 
845 /*
846  * These helpers are used to track how many pages are reserved for
847  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
848  * is guaranteed to have their future faults succeed.
849  *
850  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
851  * the reserve counters are updated with the hugetlb_lock held. It is safe
852  * to reset the VMA at fork() time as it is not in use yet and there is no
853  * chance of the global counters getting corrupted as a result of the values.
854  *
855  * The private mapping reservation is represented in a subtly different
856  * manner to a shared mapping.  A shared mapping has a region map associated
857  * with the underlying file, this region map represents the backing file
858  * pages which have ever had a reservation assigned which this persists even
859  * after the page is instantiated.  A private mapping has a region map
860  * associated with the original mmap which is attached to all VMAs which
861  * reference it, this region map represents those offsets which have consumed
862  * reservation ie. where pages have been instantiated.
863  */
864 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
865 {
866 	return (unsigned long)vma->vm_private_data;
867 }
868 
869 static void set_vma_private_data(struct vm_area_struct *vma,
870 							unsigned long value)
871 {
872 	vma->vm_private_data = (void *)value;
873 }
874 
875 static void
876 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
877 					  struct hugetlb_cgroup *h_cg,
878 					  struct hstate *h)
879 {
880 #ifdef CONFIG_CGROUP_HUGETLB
881 	if (!h_cg || !h) {
882 		resv_map->reservation_counter = NULL;
883 		resv_map->pages_per_hpage = 0;
884 		resv_map->css = NULL;
885 	} else {
886 		resv_map->reservation_counter =
887 			&h_cg->rsvd_hugepage[hstate_index(h)];
888 		resv_map->pages_per_hpage = pages_per_huge_page(h);
889 		resv_map->css = &h_cg->css;
890 	}
891 #endif
892 }
893 
894 struct resv_map *resv_map_alloc(void)
895 {
896 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
897 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
898 
899 	if (!resv_map || !rg) {
900 		kfree(resv_map);
901 		kfree(rg);
902 		return NULL;
903 	}
904 
905 	kref_init(&resv_map->refs);
906 	spin_lock_init(&resv_map->lock);
907 	INIT_LIST_HEAD(&resv_map->regions);
908 
909 	resv_map->adds_in_progress = 0;
910 	/*
911 	 * Initialize these to 0. On shared mappings, 0's here indicate these
912 	 * fields don't do cgroup accounting. On private mappings, these will be
913 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
914 	 * reservations are to be un-charged from here.
915 	 */
916 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
917 
918 	INIT_LIST_HEAD(&resv_map->region_cache);
919 	list_add(&rg->link, &resv_map->region_cache);
920 	resv_map->region_cache_count = 1;
921 
922 	return resv_map;
923 }
924 
925 void resv_map_release(struct kref *ref)
926 {
927 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
928 	struct list_head *head = &resv_map->region_cache;
929 	struct file_region *rg, *trg;
930 
931 	/* Clear out any active regions before we release the map. */
932 	region_del(resv_map, 0, LONG_MAX);
933 
934 	/* ... and any entries left in the cache */
935 	list_for_each_entry_safe(rg, trg, head, link) {
936 		list_del(&rg->link);
937 		kfree(rg);
938 	}
939 
940 	VM_BUG_ON(resv_map->adds_in_progress);
941 
942 	kfree(resv_map);
943 }
944 
945 static inline struct resv_map *inode_resv_map(struct inode *inode)
946 {
947 	/*
948 	 * At inode evict time, i_mapping may not point to the original
949 	 * address space within the inode.  This original address space
950 	 * contains the pointer to the resv_map.  So, always use the
951 	 * address space embedded within the inode.
952 	 * The VERY common case is inode->mapping == &inode->i_data but,
953 	 * this may not be true for device special inodes.
954 	 */
955 	return (struct resv_map *)(&inode->i_data)->private_data;
956 }
957 
958 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
959 {
960 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
961 	if (vma->vm_flags & VM_MAYSHARE) {
962 		struct address_space *mapping = vma->vm_file->f_mapping;
963 		struct inode *inode = mapping->host;
964 
965 		return inode_resv_map(inode);
966 
967 	} else {
968 		return (struct resv_map *)(get_vma_private_data(vma) &
969 							~HPAGE_RESV_MASK);
970 	}
971 }
972 
973 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
974 {
975 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
977 
978 	set_vma_private_data(vma, (get_vma_private_data(vma) &
979 				HPAGE_RESV_MASK) | (unsigned long)map);
980 }
981 
982 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
983 {
984 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
985 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
986 
987 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
988 }
989 
990 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
991 {
992 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
993 
994 	return (get_vma_private_data(vma) & flag) != 0;
995 }
996 
997 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
998 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
999 {
1000 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1001 	if (!(vma->vm_flags & VM_MAYSHARE))
1002 		vma->vm_private_data = (void *)0;
1003 }
1004 
1005 /* Returns true if the VMA has associated reserve pages */
1006 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1007 {
1008 	if (vma->vm_flags & VM_NORESERVE) {
1009 		/*
1010 		 * This address is already reserved by other process(chg == 0),
1011 		 * so, we should decrement reserved count. Without decrementing,
1012 		 * reserve count remains after releasing inode, because this
1013 		 * allocated page will go into page cache and is regarded as
1014 		 * coming from reserved pool in releasing step.  Currently, we
1015 		 * don't have any other solution to deal with this situation
1016 		 * properly, so add work-around here.
1017 		 */
1018 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1019 			return true;
1020 		else
1021 			return false;
1022 	}
1023 
1024 	/* Shared mappings always use reserves */
1025 	if (vma->vm_flags & VM_MAYSHARE) {
1026 		/*
1027 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1028 		 * be a region map for all pages.  The only situation where
1029 		 * there is no region map is if a hole was punched via
1030 		 * fallocate.  In this case, there really are no reserves to
1031 		 * use.  This situation is indicated if chg != 0.
1032 		 */
1033 		if (chg)
1034 			return false;
1035 		else
1036 			return true;
1037 	}
1038 
1039 	/*
1040 	 * Only the process that called mmap() has reserves for
1041 	 * private mappings.
1042 	 */
1043 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1044 		/*
1045 		 * Like the shared case above, a hole punch or truncate
1046 		 * could have been performed on the private mapping.
1047 		 * Examine the value of chg to determine if reserves
1048 		 * actually exist or were previously consumed.
1049 		 * Very Subtle - The value of chg comes from a previous
1050 		 * call to vma_needs_reserves().  The reserve map for
1051 		 * private mappings has different (opposite) semantics
1052 		 * than that of shared mappings.  vma_needs_reserves()
1053 		 * has already taken this difference in semantics into
1054 		 * account.  Therefore, the meaning of chg is the same
1055 		 * as in the shared case above.  Code could easily be
1056 		 * combined, but keeping it separate draws attention to
1057 		 * subtle differences.
1058 		 */
1059 		if (chg)
1060 			return false;
1061 		else
1062 			return true;
1063 	}
1064 
1065 	return false;
1066 }
1067 
1068 static void enqueue_huge_page(struct hstate *h, struct page *page)
1069 {
1070 	int nid = page_to_nid(page);
1071 
1072 	lockdep_assert_held(&hugetlb_lock);
1073 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1074 	h->free_huge_pages++;
1075 	h->free_huge_pages_node[nid]++;
1076 	SetHPageFreed(page);
1077 }
1078 
1079 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1080 {
1081 	struct page *page;
1082 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1083 
1084 	lockdep_assert_held(&hugetlb_lock);
1085 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1086 		if (pin && !is_pinnable_page(page))
1087 			continue;
1088 
1089 		if (PageHWPoison(page))
1090 			continue;
1091 
1092 		list_move(&page->lru, &h->hugepage_activelist);
1093 		set_page_refcounted(page);
1094 		ClearHPageFreed(page);
1095 		h->free_huge_pages--;
1096 		h->free_huge_pages_node[nid]--;
1097 		return page;
1098 	}
1099 
1100 	return NULL;
1101 }
1102 
1103 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1104 		nodemask_t *nmask)
1105 {
1106 	unsigned int cpuset_mems_cookie;
1107 	struct zonelist *zonelist;
1108 	struct zone *zone;
1109 	struct zoneref *z;
1110 	int node = NUMA_NO_NODE;
1111 
1112 	zonelist = node_zonelist(nid, gfp_mask);
1113 
1114 retry_cpuset:
1115 	cpuset_mems_cookie = read_mems_allowed_begin();
1116 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1117 		struct page *page;
1118 
1119 		if (!cpuset_zone_allowed(zone, gfp_mask))
1120 			continue;
1121 		/*
1122 		 * no need to ask again on the same node. Pool is node rather than
1123 		 * zone aware
1124 		 */
1125 		if (zone_to_nid(zone) == node)
1126 			continue;
1127 		node = zone_to_nid(zone);
1128 
1129 		page = dequeue_huge_page_node_exact(h, node);
1130 		if (page)
1131 			return page;
1132 	}
1133 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1134 		goto retry_cpuset;
1135 
1136 	return NULL;
1137 }
1138 
1139 static struct page *dequeue_huge_page_vma(struct hstate *h,
1140 				struct vm_area_struct *vma,
1141 				unsigned long address, int avoid_reserve,
1142 				long chg)
1143 {
1144 	struct page *page;
1145 	struct mempolicy *mpol;
1146 	gfp_t gfp_mask;
1147 	nodemask_t *nodemask;
1148 	int nid;
1149 
1150 	/*
1151 	 * A child process with MAP_PRIVATE mappings created by their parent
1152 	 * have no page reserves. This check ensures that reservations are
1153 	 * not "stolen". The child may still get SIGKILLed
1154 	 */
1155 	if (!vma_has_reserves(vma, chg) &&
1156 			h->free_huge_pages - h->resv_huge_pages == 0)
1157 		goto err;
1158 
1159 	/* If reserves cannot be used, ensure enough pages are in the pool */
1160 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1161 		goto err;
1162 
1163 	gfp_mask = htlb_alloc_mask(h);
1164 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1165 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1166 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1167 		SetHPageRestoreReserve(page);
1168 		h->resv_huge_pages--;
1169 	}
1170 
1171 	mpol_cond_put(mpol);
1172 	return page;
1173 
1174 err:
1175 	return NULL;
1176 }
1177 
1178 /*
1179  * common helper functions for hstate_next_node_to_{alloc|free}.
1180  * We may have allocated or freed a huge page based on a different
1181  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1182  * be outside of *nodes_allowed.  Ensure that we use an allowed
1183  * node for alloc or free.
1184  */
1185 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1186 {
1187 	nid = next_node_in(nid, *nodes_allowed);
1188 	VM_BUG_ON(nid >= MAX_NUMNODES);
1189 
1190 	return nid;
1191 }
1192 
1193 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1194 {
1195 	if (!node_isset(nid, *nodes_allowed))
1196 		nid = next_node_allowed(nid, nodes_allowed);
1197 	return nid;
1198 }
1199 
1200 /*
1201  * returns the previously saved node ["this node"] from which to
1202  * allocate a persistent huge page for the pool and advance the
1203  * next node from which to allocate, handling wrap at end of node
1204  * mask.
1205  */
1206 static int hstate_next_node_to_alloc(struct hstate *h,
1207 					nodemask_t *nodes_allowed)
1208 {
1209 	int nid;
1210 
1211 	VM_BUG_ON(!nodes_allowed);
1212 
1213 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1214 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1215 
1216 	return nid;
1217 }
1218 
1219 /*
1220  * helper for remove_pool_huge_page() - return the previously saved
1221  * node ["this node"] from which to free a huge page.  Advance the
1222  * next node id whether or not we find a free huge page to free so
1223  * that the next attempt to free addresses the next node.
1224  */
1225 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1226 {
1227 	int nid;
1228 
1229 	VM_BUG_ON(!nodes_allowed);
1230 
1231 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1232 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1233 
1234 	return nid;
1235 }
1236 
1237 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1238 	for (nr_nodes = nodes_weight(*mask);				\
1239 		nr_nodes > 0 &&						\
1240 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1241 		nr_nodes--)
1242 
1243 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1244 	for (nr_nodes = nodes_weight(*mask);				\
1245 		nr_nodes > 0 &&						\
1246 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1247 		nr_nodes--)
1248 
1249 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1250 static void destroy_compound_gigantic_page(struct page *page,
1251 					unsigned int order)
1252 {
1253 	int i;
1254 	int nr_pages = 1 << order;
1255 	struct page *p = page + 1;
1256 
1257 	atomic_set(compound_mapcount_ptr(page), 0);
1258 	atomic_set(compound_pincount_ptr(page), 0);
1259 
1260 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1261 		clear_compound_head(p);
1262 		set_page_refcounted(p);
1263 	}
1264 
1265 	set_compound_order(page, 0);
1266 	page[1].compound_nr = 0;
1267 	__ClearPageHead(page);
1268 }
1269 
1270 static void free_gigantic_page(struct page *page, unsigned int order)
1271 {
1272 	/*
1273 	 * If the page isn't allocated using the cma allocator,
1274 	 * cma_release() returns false.
1275 	 */
1276 #ifdef CONFIG_CMA
1277 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1278 		return;
1279 #endif
1280 
1281 	free_contig_range(page_to_pfn(page), 1 << order);
1282 }
1283 
1284 #ifdef CONFIG_CONTIG_ALLOC
1285 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1286 		int nid, nodemask_t *nodemask)
1287 {
1288 	unsigned long nr_pages = pages_per_huge_page(h);
1289 	if (nid == NUMA_NO_NODE)
1290 		nid = numa_mem_id();
1291 
1292 #ifdef CONFIG_CMA
1293 	{
1294 		struct page *page;
1295 		int node;
1296 
1297 		if (hugetlb_cma[nid]) {
1298 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1299 					huge_page_order(h), true);
1300 			if (page)
1301 				return page;
1302 		}
1303 
1304 		if (!(gfp_mask & __GFP_THISNODE)) {
1305 			for_each_node_mask(node, *nodemask) {
1306 				if (node == nid || !hugetlb_cma[node])
1307 					continue;
1308 
1309 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1310 						huge_page_order(h), true);
1311 				if (page)
1312 					return page;
1313 			}
1314 		}
1315 	}
1316 #endif
1317 
1318 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1319 }
1320 
1321 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1322 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1323 #else /* !CONFIG_CONTIG_ALLOC */
1324 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1325 					int nid, nodemask_t *nodemask)
1326 {
1327 	return NULL;
1328 }
1329 #endif /* CONFIG_CONTIG_ALLOC */
1330 
1331 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1332 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1333 					int nid, nodemask_t *nodemask)
1334 {
1335 	return NULL;
1336 }
1337 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1338 static inline void destroy_compound_gigantic_page(struct page *page,
1339 						unsigned int order) { }
1340 #endif
1341 
1342 /*
1343  * Remove hugetlb page from lists, and update dtor so that page appears
1344  * as just a compound page.  A reference is held on the page.
1345  *
1346  * Must be called with hugetlb lock held.
1347  */
1348 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1349 							bool adjust_surplus)
1350 {
1351 	int nid = page_to_nid(page);
1352 
1353 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1354 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1355 
1356 	lockdep_assert_held(&hugetlb_lock);
1357 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1358 		return;
1359 
1360 	list_del(&page->lru);
1361 
1362 	if (HPageFreed(page)) {
1363 		h->free_huge_pages--;
1364 		h->free_huge_pages_node[nid]--;
1365 	}
1366 	if (adjust_surplus) {
1367 		h->surplus_huge_pages--;
1368 		h->surplus_huge_pages_node[nid]--;
1369 	}
1370 
1371 	set_page_refcounted(page);
1372 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1373 
1374 	h->nr_huge_pages--;
1375 	h->nr_huge_pages_node[nid]--;
1376 }
1377 
1378 static void update_and_free_page(struct hstate *h, struct page *page)
1379 {
1380 	int i;
1381 	struct page *subpage = page;
1382 
1383 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1384 		return;
1385 
1386 	for (i = 0; i < pages_per_huge_page(h);
1387 	     i++, subpage = mem_map_next(subpage, page, i)) {
1388 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1389 				1 << PG_referenced | 1 << PG_dirty |
1390 				1 << PG_active | 1 << PG_private |
1391 				1 << PG_writeback);
1392 	}
1393 	if (hstate_is_gigantic(h)) {
1394 		destroy_compound_gigantic_page(page, huge_page_order(h));
1395 		free_gigantic_page(page, huge_page_order(h));
1396 	} else {
1397 		__free_pages(page, huge_page_order(h));
1398 	}
1399 }
1400 
1401 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1402 {
1403 	struct page *page, *t_page;
1404 
1405 	list_for_each_entry_safe(page, t_page, list, lru) {
1406 		update_and_free_page(h, page);
1407 		cond_resched();
1408 	}
1409 }
1410 
1411 struct hstate *size_to_hstate(unsigned long size)
1412 {
1413 	struct hstate *h;
1414 
1415 	for_each_hstate(h) {
1416 		if (huge_page_size(h) == size)
1417 			return h;
1418 	}
1419 	return NULL;
1420 }
1421 
1422 void free_huge_page(struct page *page)
1423 {
1424 	/*
1425 	 * Can't pass hstate in here because it is called from the
1426 	 * compound page destructor.
1427 	 */
1428 	struct hstate *h = page_hstate(page);
1429 	int nid = page_to_nid(page);
1430 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1431 	bool restore_reserve;
1432 	unsigned long flags;
1433 
1434 	VM_BUG_ON_PAGE(page_count(page), page);
1435 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1436 
1437 	hugetlb_set_page_subpool(page, NULL);
1438 	page->mapping = NULL;
1439 	restore_reserve = HPageRestoreReserve(page);
1440 	ClearHPageRestoreReserve(page);
1441 
1442 	/*
1443 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1444 	 * reservation.  If the page was associated with a subpool, there
1445 	 * would have been a page reserved in the subpool before allocation
1446 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1447 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1448 	 * remove the reserved page from the subpool.
1449 	 */
1450 	if (!restore_reserve) {
1451 		/*
1452 		 * A return code of zero implies that the subpool will be
1453 		 * under its minimum size if the reservation is not restored
1454 		 * after page is free.  Therefore, force restore_reserve
1455 		 * operation.
1456 		 */
1457 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1458 			restore_reserve = true;
1459 	}
1460 
1461 	spin_lock_irqsave(&hugetlb_lock, flags);
1462 	ClearHPageMigratable(page);
1463 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1464 				     pages_per_huge_page(h), page);
1465 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1466 					  pages_per_huge_page(h), page);
1467 	if (restore_reserve)
1468 		h->resv_huge_pages++;
1469 
1470 	if (HPageTemporary(page)) {
1471 		remove_hugetlb_page(h, page, false);
1472 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1473 		update_and_free_page(h, page);
1474 	} else if (h->surplus_huge_pages_node[nid]) {
1475 		/* remove the page from active list */
1476 		remove_hugetlb_page(h, page, true);
1477 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1478 		update_and_free_page(h, page);
1479 	} else {
1480 		arch_clear_hugepage_flags(page);
1481 		enqueue_huge_page(h, page);
1482 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1483 	}
1484 }
1485 
1486 /*
1487  * Must be called with the hugetlb lock held
1488  */
1489 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1490 {
1491 	lockdep_assert_held(&hugetlb_lock);
1492 	h->nr_huge_pages++;
1493 	h->nr_huge_pages_node[nid]++;
1494 }
1495 
1496 static void __prep_new_huge_page(struct page *page)
1497 {
1498 	INIT_LIST_HEAD(&page->lru);
1499 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1500 	hugetlb_set_page_subpool(page, NULL);
1501 	set_hugetlb_cgroup(page, NULL);
1502 	set_hugetlb_cgroup_rsvd(page, NULL);
1503 }
1504 
1505 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1506 {
1507 	__prep_new_huge_page(page);
1508 	spin_lock_irq(&hugetlb_lock);
1509 	__prep_account_new_huge_page(h, nid);
1510 	spin_unlock_irq(&hugetlb_lock);
1511 }
1512 
1513 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1514 {
1515 	int i;
1516 	int nr_pages = 1 << order;
1517 	struct page *p = page + 1;
1518 
1519 	/* we rely on prep_new_huge_page to set the destructor */
1520 	set_compound_order(page, order);
1521 	__ClearPageReserved(page);
1522 	__SetPageHead(page);
1523 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1524 		/*
1525 		 * For gigantic hugepages allocated through bootmem at
1526 		 * boot, it's safer to be consistent with the not-gigantic
1527 		 * hugepages and clear the PG_reserved bit from all tail pages
1528 		 * too.  Otherwise drivers using get_user_pages() to access tail
1529 		 * pages may get the reference counting wrong if they see
1530 		 * PG_reserved set on a tail page (despite the head page not
1531 		 * having PG_reserved set).  Enforcing this consistency between
1532 		 * head and tail pages allows drivers to optimize away a check
1533 		 * on the head page when they need know if put_page() is needed
1534 		 * after get_user_pages().
1535 		 */
1536 		__ClearPageReserved(p);
1537 		set_page_count(p, 0);
1538 		set_compound_head(p, page);
1539 	}
1540 	atomic_set(compound_mapcount_ptr(page), -1);
1541 	atomic_set(compound_pincount_ptr(page), 0);
1542 }
1543 
1544 /*
1545  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1546  * transparent huge pages.  See the PageTransHuge() documentation for more
1547  * details.
1548  */
1549 int PageHuge(struct page *page)
1550 {
1551 	if (!PageCompound(page))
1552 		return 0;
1553 
1554 	page = compound_head(page);
1555 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1556 }
1557 EXPORT_SYMBOL_GPL(PageHuge);
1558 
1559 /*
1560  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1561  * normal or transparent huge pages.
1562  */
1563 int PageHeadHuge(struct page *page_head)
1564 {
1565 	if (!PageHead(page_head))
1566 		return 0;
1567 
1568 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1569 }
1570 
1571 /*
1572  * Find and lock address space (mapping) in write mode.
1573  *
1574  * Upon entry, the page is locked which means that page_mapping() is
1575  * stable.  Due to locking order, we can only trylock_write.  If we can
1576  * not get the lock, simply return NULL to caller.
1577  */
1578 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1579 {
1580 	struct address_space *mapping = page_mapping(hpage);
1581 
1582 	if (!mapping)
1583 		return mapping;
1584 
1585 	if (i_mmap_trylock_write(mapping))
1586 		return mapping;
1587 
1588 	return NULL;
1589 }
1590 
1591 pgoff_t __basepage_index(struct page *page)
1592 {
1593 	struct page *page_head = compound_head(page);
1594 	pgoff_t index = page_index(page_head);
1595 	unsigned long compound_idx;
1596 
1597 	if (!PageHuge(page_head))
1598 		return page_index(page);
1599 
1600 	if (compound_order(page_head) >= MAX_ORDER)
1601 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1602 	else
1603 		compound_idx = page - page_head;
1604 
1605 	return (index << compound_order(page_head)) + compound_idx;
1606 }
1607 
1608 static struct page *alloc_buddy_huge_page(struct hstate *h,
1609 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1610 		nodemask_t *node_alloc_noretry)
1611 {
1612 	int order = huge_page_order(h);
1613 	struct page *page;
1614 	bool alloc_try_hard = true;
1615 
1616 	/*
1617 	 * By default we always try hard to allocate the page with
1618 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1619 	 * a loop (to adjust global huge page counts) and previous allocation
1620 	 * failed, do not continue to try hard on the same node.  Use the
1621 	 * node_alloc_noretry bitmap to manage this state information.
1622 	 */
1623 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1624 		alloc_try_hard = false;
1625 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1626 	if (alloc_try_hard)
1627 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1628 	if (nid == NUMA_NO_NODE)
1629 		nid = numa_mem_id();
1630 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1631 	if (page)
1632 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1633 	else
1634 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1635 
1636 	/*
1637 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1638 	 * indicates an overall state change.  Clear bit so that we resume
1639 	 * normal 'try hard' allocations.
1640 	 */
1641 	if (node_alloc_noretry && page && !alloc_try_hard)
1642 		node_clear(nid, *node_alloc_noretry);
1643 
1644 	/*
1645 	 * If we tried hard to get a page but failed, set bit so that
1646 	 * subsequent attempts will not try as hard until there is an
1647 	 * overall state change.
1648 	 */
1649 	if (node_alloc_noretry && !page && alloc_try_hard)
1650 		node_set(nid, *node_alloc_noretry);
1651 
1652 	return page;
1653 }
1654 
1655 /*
1656  * Common helper to allocate a fresh hugetlb page. All specific allocators
1657  * should use this function to get new hugetlb pages
1658  */
1659 static struct page *alloc_fresh_huge_page(struct hstate *h,
1660 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1661 		nodemask_t *node_alloc_noretry)
1662 {
1663 	struct page *page;
1664 
1665 	if (hstate_is_gigantic(h))
1666 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1667 	else
1668 		page = alloc_buddy_huge_page(h, gfp_mask,
1669 				nid, nmask, node_alloc_noretry);
1670 	if (!page)
1671 		return NULL;
1672 
1673 	if (hstate_is_gigantic(h))
1674 		prep_compound_gigantic_page(page, huge_page_order(h));
1675 	prep_new_huge_page(h, page, page_to_nid(page));
1676 
1677 	return page;
1678 }
1679 
1680 /*
1681  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1682  * manner.
1683  */
1684 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1685 				nodemask_t *node_alloc_noretry)
1686 {
1687 	struct page *page;
1688 	int nr_nodes, node;
1689 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1690 
1691 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1692 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1693 						node_alloc_noretry);
1694 		if (page)
1695 			break;
1696 	}
1697 
1698 	if (!page)
1699 		return 0;
1700 
1701 	put_page(page); /* free it into the hugepage allocator */
1702 
1703 	return 1;
1704 }
1705 
1706 /*
1707  * Remove huge page from pool from next node to free.  Attempt to keep
1708  * persistent huge pages more or less balanced over allowed nodes.
1709  * This routine only 'removes' the hugetlb page.  The caller must make
1710  * an additional call to free the page to low level allocators.
1711  * Called with hugetlb_lock locked.
1712  */
1713 static struct page *remove_pool_huge_page(struct hstate *h,
1714 						nodemask_t *nodes_allowed,
1715 						 bool acct_surplus)
1716 {
1717 	int nr_nodes, node;
1718 	struct page *page = NULL;
1719 
1720 	lockdep_assert_held(&hugetlb_lock);
1721 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1722 		/*
1723 		 * If we're returning unused surplus pages, only examine
1724 		 * nodes with surplus pages.
1725 		 */
1726 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1727 		    !list_empty(&h->hugepage_freelists[node])) {
1728 			page = list_entry(h->hugepage_freelists[node].next,
1729 					  struct page, lru);
1730 			remove_hugetlb_page(h, page, acct_surplus);
1731 			break;
1732 		}
1733 	}
1734 
1735 	return page;
1736 }
1737 
1738 /*
1739  * Dissolve a given free hugepage into free buddy pages. This function does
1740  * nothing for in-use hugepages and non-hugepages.
1741  * This function returns values like below:
1742  *
1743  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1744  *          (allocated or reserved.)
1745  *       0: successfully dissolved free hugepages or the page is not a
1746  *          hugepage (considered as already dissolved)
1747  */
1748 int dissolve_free_huge_page(struct page *page)
1749 {
1750 	int rc = -EBUSY;
1751 
1752 retry:
1753 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1754 	if (!PageHuge(page))
1755 		return 0;
1756 
1757 	spin_lock_irq(&hugetlb_lock);
1758 	if (!PageHuge(page)) {
1759 		rc = 0;
1760 		goto out;
1761 	}
1762 
1763 	if (!page_count(page)) {
1764 		struct page *head = compound_head(page);
1765 		struct hstate *h = page_hstate(head);
1766 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1767 			goto out;
1768 
1769 		/*
1770 		 * We should make sure that the page is already on the free list
1771 		 * when it is dissolved.
1772 		 */
1773 		if (unlikely(!HPageFreed(head))) {
1774 			spin_unlock_irq(&hugetlb_lock);
1775 			cond_resched();
1776 
1777 			/*
1778 			 * Theoretically, we should return -EBUSY when we
1779 			 * encounter this race. In fact, we have a chance
1780 			 * to successfully dissolve the page if we do a
1781 			 * retry. Because the race window is quite small.
1782 			 * If we seize this opportunity, it is an optimization
1783 			 * for increasing the success rate of dissolving page.
1784 			 */
1785 			goto retry;
1786 		}
1787 
1788 		/*
1789 		 * Move PageHWPoison flag from head page to the raw error page,
1790 		 * which makes any subpages rather than the error page reusable.
1791 		 */
1792 		if (PageHWPoison(head) && page != head) {
1793 			SetPageHWPoison(page);
1794 			ClearPageHWPoison(head);
1795 		}
1796 		remove_hugetlb_page(h, page, false);
1797 		h->max_huge_pages--;
1798 		spin_unlock_irq(&hugetlb_lock);
1799 		update_and_free_page(h, head);
1800 		return 0;
1801 	}
1802 out:
1803 	spin_unlock_irq(&hugetlb_lock);
1804 	return rc;
1805 }
1806 
1807 /*
1808  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1809  * make specified memory blocks removable from the system.
1810  * Note that this will dissolve a free gigantic hugepage completely, if any
1811  * part of it lies within the given range.
1812  * Also note that if dissolve_free_huge_page() returns with an error, all
1813  * free hugepages that were dissolved before that error are lost.
1814  */
1815 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1816 {
1817 	unsigned long pfn;
1818 	struct page *page;
1819 	int rc = 0;
1820 
1821 	if (!hugepages_supported())
1822 		return rc;
1823 
1824 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1825 		page = pfn_to_page(pfn);
1826 		rc = dissolve_free_huge_page(page);
1827 		if (rc)
1828 			break;
1829 	}
1830 
1831 	return rc;
1832 }
1833 
1834 /*
1835  * Allocates a fresh surplus page from the page allocator.
1836  */
1837 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1838 		int nid, nodemask_t *nmask)
1839 {
1840 	struct page *page = NULL;
1841 
1842 	if (hstate_is_gigantic(h))
1843 		return NULL;
1844 
1845 	spin_lock_irq(&hugetlb_lock);
1846 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1847 		goto out_unlock;
1848 	spin_unlock_irq(&hugetlb_lock);
1849 
1850 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1851 	if (!page)
1852 		return NULL;
1853 
1854 	spin_lock_irq(&hugetlb_lock);
1855 	/*
1856 	 * We could have raced with the pool size change.
1857 	 * Double check that and simply deallocate the new page
1858 	 * if we would end up overcommiting the surpluses. Abuse
1859 	 * temporary page to workaround the nasty free_huge_page
1860 	 * codeflow
1861 	 */
1862 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1863 		SetHPageTemporary(page);
1864 		spin_unlock_irq(&hugetlb_lock);
1865 		put_page(page);
1866 		return NULL;
1867 	} else {
1868 		h->surplus_huge_pages++;
1869 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1870 	}
1871 
1872 out_unlock:
1873 	spin_unlock_irq(&hugetlb_lock);
1874 
1875 	return page;
1876 }
1877 
1878 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1879 				     int nid, nodemask_t *nmask)
1880 {
1881 	struct page *page;
1882 
1883 	if (hstate_is_gigantic(h))
1884 		return NULL;
1885 
1886 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1887 	if (!page)
1888 		return NULL;
1889 
1890 	/*
1891 	 * We do not account these pages as surplus because they are only
1892 	 * temporary and will be released properly on the last reference
1893 	 */
1894 	SetHPageTemporary(page);
1895 
1896 	return page;
1897 }
1898 
1899 /*
1900  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1901  */
1902 static
1903 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1904 		struct vm_area_struct *vma, unsigned long addr)
1905 {
1906 	struct page *page;
1907 	struct mempolicy *mpol;
1908 	gfp_t gfp_mask = htlb_alloc_mask(h);
1909 	int nid;
1910 	nodemask_t *nodemask;
1911 
1912 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1913 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1914 	mpol_cond_put(mpol);
1915 
1916 	return page;
1917 }
1918 
1919 /* page migration callback function */
1920 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1921 		nodemask_t *nmask, gfp_t gfp_mask)
1922 {
1923 	spin_lock_irq(&hugetlb_lock);
1924 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1925 		struct page *page;
1926 
1927 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1928 		if (page) {
1929 			spin_unlock_irq(&hugetlb_lock);
1930 			return page;
1931 		}
1932 	}
1933 	spin_unlock_irq(&hugetlb_lock);
1934 
1935 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1936 }
1937 
1938 /* mempolicy aware migration callback */
1939 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1940 		unsigned long address)
1941 {
1942 	struct mempolicy *mpol;
1943 	nodemask_t *nodemask;
1944 	struct page *page;
1945 	gfp_t gfp_mask;
1946 	int node;
1947 
1948 	gfp_mask = htlb_alloc_mask(h);
1949 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1950 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1951 	mpol_cond_put(mpol);
1952 
1953 	return page;
1954 }
1955 
1956 /*
1957  * Increase the hugetlb pool such that it can accommodate a reservation
1958  * of size 'delta'.
1959  */
1960 static int gather_surplus_pages(struct hstate *h, long delta)
1961 	__must_hold(&hugetlb_lock)
1962 {
1963 	struct list_head surplus_list;
1964 	struct page *page, *tmp;
1965 	int ret;
1966 	long i;
1967 	long needed, allocated;
1968 	bool alloc_ok = true;
1969 
1970 	lockdep_assert_held(&hugetlb_lock);
1971 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1972 	if (needed <= 0) {
1973 		h->resv_huge_pages += delta;
1974 		return 0;
1975 	}
1976 
1977 	allocated = 0;
1978 	INIT_LIST_HEAD(&surplus_list);
1979 
1980 	ret = -ENOMEM;
1981 retry:
1982 	spin_unlock_irq(&hugetlb_lock);
1983 	for (i = 0; i < needed; i++) {
1984 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1985 				NUMA_NO_NODE, NULL);
1986 		if (!page) {
1987 			alloc_ok = false;
1988 			break;
1989 		}
1990 		list_add(&page->lru, &surplus_list);
1991 		cond_resched();
1992 	}
1993 	allocated += i;
1994 
1995 	/*
1996 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1997 	 * because either resv_huge_pages or free_huge_pages may have changed.
1998 	 */
1999 	spin_lock_irq(&hugetlb_lock);
2000 	needed = (h->resv_huge_pages + delta) -
2001 			(h->free_huge_pages + allocated);
2002 	if (needed > 0) {
2003 		if (alloc_ok)
2004 			goto retry;
2005 		/*
2006 		 * We were not able to allocate enough pages to
2007 		 * satisfy the entire reservation so we free what
2008 		 * we've allocated so far.
2009 		 */
2010 		goto free;
2011 	}
2012 	/*
2013 	 * The surplus_list now contains _at_least_ the number of extra pages
2014 	 * needed to accommodate the reservation.  Add the appropriate number
2015 	 * of pages to the hugetlb pool and free the extras back to the buddy
2016 	 * allocator.  Commit the entire reservation here to prevent another
2017 	 * process from stealing the pages as they are added to the pool but
2018 	 * before they are reserved.
2019 	 */
2020 	needed += allocated;
2021 	h->resv_huge_pages += delta;
2022 	ret = 0;
2023 
2024 	/* Free the needed pages to the hugetlb pool */
2025 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2026 		int zeroed;
2027 
2028 		if ((--needed) < 0)
2029 			break;
2030 		/*
2031 		 * This page is now managed by the hugetlb allocator and has
2032 		 * no users -- drop the buddy allocator's reference.
2033 		 */
2034 		zeroed = put_page_testzero(page);
2035 		VM_BUG_ON_PAGE(!zeroed, page);
2036 		enqueue_huge_page(h, page);
2037 	}
2038 free:
2039 	spin_unlock_irq(&hugetlb_lock);
2040 
2041 	/* Free unnecessary surplus pages to the buddy allocator */
2042 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2043 		put_page(page);
2044 	spin_lock_irq(&hugetlb_lock);
2045 
2046 	return ret;
2047 }
2048 
2049 /*
2050  * This routine has two main purposes:
2051  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2052  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2053  *    to the associated reservation map.
2054  * 2) Free any unused surplus pages that may have been allocated to satisfy
2055  *    the reservation.  As many as unused_resv_pages may be freed.
2056  */
2057 static void return_unused_surplus_pages(struct hstate *h,
2058 					unsigned long unused_resv_pages)
2059 {
2060 	unsigned long nr_pages;
2061 	struct page *page;
2062 	LIST_HEAD(page_list);
2063 
2064 	lockdep_assert_held(&hugetlb_lock);
2065 	/* Uncommit the reservation */
2066 	h->resv_huge_pages -= unused_resv_pages;
2067 
2068 	/* Cannot return gigantic pages currently */
2069 	if (hstate_is_gigantic(h))
2070 		goto out;
2071 
2072 	/*
2073 	 * Part (or even all) of the reservation could have been backed
2074 	 * by pre-allocated pages. Only free surplus pages.
2075 	 */
2076 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2077 
2078 	/*
2079 	 * We want to release as many surplus pages as possible, spread
2080 	 * evenly across all nodes with memory. Iterate across these nodes
2081 	 * until we can no longer free unreserved surplus pages. This occurs
2082 	 * when the nodes with surplus pages have no free pages.
2083 	 * remove_pool_huge_page() will balance the freed pages across the
2084 	 * on-line nodes with memory and will handle the hstate accounting.
2085 	 */
2086 	while (nr_pages--) {
2087 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2088 		if (!page)
2089 			goto out;
2090 
2091 		list_add(&page->lru, &page_list);
2092 	}
2093 
2094 out:
2095 	spin_unlock_irq(&hugetlb_lock);
2096 	update_and_free_pages_bulk(h, &page_list);
2097 	spin_lock_irq(&hugetlb_lock);
2098 }
2099 
2100 
2101 /*
2102  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2103  * are used by the huge page allocation routines to manage reservations.
2104  *
2105  * vma_needs_reservation is called to determine if the huge page at addr
2106  * within the vma has an associated reservation.  If a reservation is
2107  * needed, the value 1 is returned.  The caller is then responsible for
2108  * managing the global reservation and subpool usage counts.  After
2109  * the huge page has been allocated, vma_commit_reservation is called
2110  * to add the page to the reservation map.  If the page allocation fails,
2111  * the reservation must be ended instead of committed.  vma_end_reservation
2112  * is called in such cases.
2113  *
2114  * In the normal case, vma_commit_reservation returns the same value
2115  * as the preceding vma_needs_reservation call.  The only time this
2116  * is not the case is if a reserve map was changed between calls.  It
2117  * is the responsibility of the caller to notice the difference and
2118  * take appropriate action.
2119  *
2120  * vma_add_reservation is used in error paths where a reservation must
2121  * be restored when a newly allocated huge page must be freed.  It is
2122  * to be called after calling vma_needs_reservation to determine if a
2123  * reservation exists.
2124  */
2125 enum vma_resv_mode {
2126 	VMA_NEEDS_RESV,
2127 	VMA_COMMIT_RESV,
2128 	VMA_END_RESV,
2129 	VMA_ADD_RESV,
2130 };
2131 static long __vma_reservation_common(struct hstate *h,
2132 				struct vm_area_struct *vma, unsigned long addr,
2133 				enum vma_resv_mode mode)
2134 {
2135 	struct resv_map *resv;
2136 	pgoff_t idx;
2137 	long ret;
2138 	long dummy_out_regions_needed;
2139 
2140 	resv = vma_resv_map(vma);
2141 	if (!resv)
2142 		return 1;
2143 
2144 	idx = vma_hugecache_offset(h, vma, addr);
2145 	switch (mode) {
2146 	case VMA_NEEDS_RESV:
2147 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2148 		/* We assume that vma_reservation_* routines always operate on
2149 		 * 1 page, and that adding to resv map a 1 page entry can only
2150 		 * ever require 1 region.
2151 		 */
2152 		VM_BUG_ON(dummy_out_regions_needed != 1);
2153 		break;
2154 	case VMA_COMMIT_RESV:
2155 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2156 		/* region_add calls of range 1 should never fail. */
2157 		VM_BUG_ON(ret < 0);
2158 		break;
2159 	case VMA_END_RESV:
2160 		region_abort(resv, idx, idx + 1, 1);
2161 		ret = 0;
2162 		break;
2163 	case VMA_ADD_RESV:
2164 		if (vma->vm_flags & VM_MAYSHARE) {
2165 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2166 			/* region_add calls of range 1 should never fail. */
2167 			VM_BUG_ON(ret < 0);
2168 		} else {
2169 			region_abort(resv, idx, idx + 1, 1);
2170 			ret = region_del(resv, idx, idx + 1);
2171 		}
2172 		break;
2173 	default:
2174 		BUG();
2175 	}
2176 
2177 	if (vma->vm_flags & VM_MAYSHARE)
2178 		return ret;
2179 	/*
2180 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2181 	 *
2182 	 * In most cases, reserves always exist for private mappings.
2183 	 * However, a file associated with mapping could have been
2184 	 * hole punched or truncated after reserves were consumed.
2185 	 * As subsequent fault on such a range will not use reserves.
2186 	 * Subtle - The reserve map for private mappings has the
2187 	 * opposite meaning than that of shared mappings.  If NO
2188 	 * entry is in the reserve map, it means a reservation exists.
2189 	 * If an entry exists in the reserve map, it means the
2190 	 * reservation has already been consumed.  As a result, the
2191 	 * return value of this routine is the opposite of the
2192 	 * value returned from reserve map manipulation routines above.
2193 	 */
2194 	if (ret > 0)
2195 		return 0;
2196 	if (ret == 0)
2197 		return 1;
2198 	return ret;
2199 }
2200 
2201 static long vma_needs_reservation(struct hstate *h,
2202 			struct vm_area_struct *vma, unsigned long addr)
2203 {
2204 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2205 }
2206 
2207 static long vma_commit_reservation(struct hstate *h,
2208 			struct vm_area_struct *vma, unsigned long addr)
2209 {
2210 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2211 }
2212 
2213 static void vma_end_reservation(struct hstate *h,
2214 			struct vm_area_struct *vma, unsigned long addr)
2215 {
2216 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2217 }
2218 
2219 static long vma_add_reservation(struct hstate *h,
2220 			struct vm_area_struct *vma, unsigned long addr)
2221 {
2222 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2223 }
2224 
2225 /*
2226  * This routine is called to restore a reservation on error paths.  In the
2227  * specific error paths, a huge page was allocated (via alloc_huge_page)
2228  * and is about to be freed.  If a reservation for the page existed,
2229  * alloc_huge_page would have consumed the reservation and set
2230  * HPageRestoreReserve in the newly allocated page.  When the page is freed
2231  * via free_huge_page, the global reservation count will be incremented if
2232  * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
2233  * reserve map.  Adjust the reserve map here to be consistent with global
2234  * reserve count adjustments to be made by free_huge_page.
2235  */
2236 static void restore_reserve_on_error(struct hstate *h,
2237 			struct vm_area_struct *vma, unsigned long address,
2238 			struct page *page)
2239 {
2240 	if (unlikely(HPageRestoreReserve(page))) {
2241 		long rc = vma_needs_reservation(h, vma, address);
2242 
2243 		if (unlikely(rc < 0)) {
2244 			/*
2245 			 * Rare out of memory condition in reserve map
2246 			 * manipulation.  Clear HPageRestoreReserve so that
2247 			 * global reserve count will not be incremented
2248 			 * by free_huge_page.  This will make it appear
2249 			 * as though the reservation for this page was
2250 			 * consumed.  This may prevent the task from
2251 			 * faulting in the page at a later time.  This
2252 			 * is better than inconsistent global huge page
2253 			 * accounting of reserve counts.
2254 			 */
2255 			ClearHPageRestoreReserve(page);
2256 		} else if (rc) {
2257 			rc = vma_add_reservation(h, vma, address);
2258 			if (unlikely(rc < 0))
2259 				/*
2260 				 * See above comment about rare out of
2261 				 * memory condition.
2262 				 */
2263 				ClearHPageRestoreReserve(page);
2264 		} else
2265 			vma_end_reservation(h, vma, address);
2266 	}
2267 }
2268 
2269 /*
2270  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2271  * @h: struct hstate old page belongs to
2272  * @old_page: Old page to dissolve
2273  * @list: List to isolate the page in case we need to
2274  * Returns 0 on success, otherwise negated error.
2275  */
2276 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2277 					struct list_head *list)
2278 {
2279 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2280 	int nid = page_to_nid(old_page);
2281 	struct page *new_page;
2282 	int ret = 0;
2283 
2284 	/*
2285 	 * Before dissolving the page, we need to allocate a new one for the
2286 	 * pool to remain stable. Using alloc_buddy_huge_page() allows us to
2287 	 * not having to deal with prep_new_huge_page() and avoids dealing of any
2288 	 * counters. This simplifies and let us do the whole thing under the
2289 	 * lock.
2290 	 */
2291 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2292 	if (!new_page)
2293 		return -ENOMEM;
2294 
2295 retry:
2296 	spin_lock_irq(&hugetlb_lock);
2297 	if (!PageHuge(old_page)) {
2298 		/*
2299 		 * Freed from under us. Drop new_page too.
2300 		 */
2301 		goto free_new;
2302 	} else if (page_count(old_page)) {
2303 		/*
2304 		 * Someone has grabbed the page, try to isolate it here.
2305 		 * Fail with -EBUSY if not possible.
2306 		 */
2307 		spin_unlock_irq(&hugetlb_lock);
2308 		if (!isolate_huge_page(old_page, list))
2309 			ret = -EBUSY;
2310 		spin_lock_irq(&hugetlb_lock);
2311 		goto free_new;
2312 	} else if (!HPageFreed(old_page)) {
2313 		/*
2314 		 * Page's refcount is 0 but it has not been enqueued in the
2315 		 * freelist yet. Race window is small, so we can succeed here if
2316 		 * we retry.
2317 		 */
2318 		spin_unlock_irq(&hugetlb_lock);
2319 		cond_resched();
2320 		goto retry;
2321 	} else {
2322 		/*
2323 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2324 		 * the freelist and decrease the counters. These will be
2325 		 * incremented again when calling __prep_account_new_huge_page()
2326 		 * and enqueue_huge_page() for new_page. The counters will remain
2327 		 * stable since this happens under the lock.
2328 		 */
2329 		remove_hugetlb_page(h, old_page, false);
2330 
2331 		/*
2332 		 * new_page needs to be initialized with the standard hugetlb
2333 		 * state. This is normally done by prep_new_huge_page() but
2334 		 * that takes hugetlb_lock which is already held so we need to
2335 		 * open code it here.
2336 		 * Reference count trick is needed because allocator gives us
2337 		 * referenced page but the pool requires pages with 0 refcount.
2338 		 */
2339 		__prep_new_huge_page(new_page);
2340 		__prep_account_new_huge_page(h, nid);
2341 		page_ref_dec(new_page);
2342 		enqueue_huge_page(h, new_page);
2343 
2344 		/*
2345 		 * Pages have been replaced, we can safely free the old one.
2346 		 */
2347 		spin_unlock_irq(&hugetlb_lock);
2348 		update_and_free_page(h, old_page);
2349 	}
2350 
2351 	return ret;
2352 
2353 free_new:
2354 	spin_unlock_irq(&hugetlb_lock);
2355 	__free_pages(new_page, huge_page_order(h));
2356 
2357 	return ret;
2358 }
2359 
2360 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2361 {
2362 	struct hstate *h;
2363 	struct page *head;
2364 	int ret = -EBUSY;
2365 
2366 	/*
2367 	 * The page might have been dissolved from under our feet, so make sure
2368 	 * to carefully check the state under the lock.
2369 	 * Return success when racing as if we dissolved the page ourselves.
2370 	 */
2371 	spin_lock_irq(&hugetlb_lock);
2372 	if (PageHuge(page)) {
2373 		head = compound_head(page);
2374 		h = page_hstate(head);
2375 	} else {
2376 		spin_unlock_irq(&hugetlb_lock);
2377 		return 0;
2378 	}
2379 	spin_unlock_irq(&hugetlb_lock);
2380 
2381 	/*
2382 	 * Fence off gigantic pages as there is a cyclic dependency between
2383 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2384 	 * of bailing out right away without further retrying.
2385 	 */
2386 	if (hstate_is_gigantic(h))
2387 		return -ENOMEM;
2388 
2389 	if (page_count(head) && isolate_huge_page(head, list))
2390 		ret = 0;
2391 	else if (!page_count(head))
2392 		ret = alloc_and_dissolve_huge_page(h, head, list);
2393 
2394 	return ret;
2395 }
2396 
2397 struct page *alloc_huge_page(struct vm_area_struct *vma,
2398 				    unsigned long addr, int avoid_reserve)
2399 {
2400 	struct hugepage_subpool *spool = subpool_vma(vma);
2401 	struct hstate *h = hstate_vma(vma);
2402 	struct page *page;
2403 	long map_chg, map_commit;
2404 	long gbl_chg;
2405 	int ret, idx;
2406 	struct hugetlb_cgroup *h_cg;
2407 	bool deferred_reserve;
2408 
2409 	idx = hstate_index(h);
2410 	/*
2411 	 * Examine the region/reserve map to determine if the process
2412 	 * has a reservation for the page to be allocated.  A return
2413 	 * code of zero indicates a reservation exists (no change).
2414 	 */
2415 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2416 	if (map_chg < 0)
2417 		return ERR_PTR(-ENOMEM);
2418 
2419 	/*
2420 	 * Processes that did not create the mapping will have no
2421 	 * reserves as indicated by the region/reserve map. Check
2422 	 * that the allocation will not exceed the subpool limit.
2423 	 * Allocations for MAP_NORESERVE mappings also need to be
2424 	 * checked against any subpool limit.
2425 	 */
2426 	if (map_chg || avoid_reserve) {
2427 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2428 		if (gbl_chg < 0) {
2429 			vma_end_reservation(h, vma, addr);
2430 			return ERR_PTR(-ENOSPC);
2431 		}
2432 
2433 		/*
2434 		 * Even though there was no reservation in the region/reserve
2435 		 * map, there could be reservations associated with the
2436 		 * subpool that can be used.  This would be indicated if the
2437 		 * return value of hugepage_subpool_get_pages() is zero.
2438 		 * However, if avoid_reserve is specified we still avoid even
2439 		 * the subpool reservations.
2440 		 */
2441 		if (avoid_reserve)
2442 			gbl_chg = 1;
2443 	}
2444 
2445 	/* If this allocation is not consuming a reservation, charge it now.
2446 	 */
2447 	deferred_reserve = map_chg || avoid_reserve;
2448 	if (deferred_reserve) {
2449 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2450 			idx, pages_per_huge_page(h), &h_cg);
2451 		if (ret)
2452 			goto out_subpool_put;
2453 	}
2454 
2455 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2456 	if (ret)
2457 		goto out_uncharge_cgroup_reservation;
2458 
2459 	spin_lock_irq(&hugetlb_lock);
2460 	/*
2461 	 * glb_chg is passed to indicate whether or not a page must be taken
2462 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2463 	 * a reservation exists for the allocation.
2464 	 */
2465 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2466 	if (!page) {
2467 		spin_unlock_irq(&hugetlb_lock);
2468 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2469 		if (!page)
2470 			goto out_uncharge_cgroup;
2471 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2472 			SetHPageRestoreReserve(page);
2473 			h->resv_huge_pages--;
2474 		}
2475 		spin_lock_irq(&hugetlb_lock);
2476 		list_add(&page->lru, &h->hugepage_activelist);
2477 		/* Fall through */
2478 	}
2479 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2480 	/* If allocation is not consuming a reservation, also store the
2481 	 * hugetlb_cgroup pointer on the page.
2482 	 */
2483 	if (deferred_reserve) {
2484 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2485 						  h_cg, page);
2486 	}
2487 
2488 	spin_unlock_irq(&hugetlb_lock);
2489 
2490 	hugetlb_set_page_subpool(page, spool);
2491 
2492 	map_commit = vma_commit_reservation(h, vma, addr);
2493 	if (unlikely(map_chg > map_commit)) {
2494 		/*
2495 		 * The page was added to the reservation map between
2496 		 * vma_needs_reservation and vma_commit_reservation.
2497 		 * This indicates a race with hugetlb_reserve_pages.
2498 		 * Adjust for the subpool count incremented above AND
2499 		 * in hugetlb_reserve_pages for the same page.  Also,
2500 		 * the reservation count added in hugetlb_reserve_pages
2501 		 * no longer applies.
2502 		 */
2503 		long rsv_adjust;
2504 
2505 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2506 		hugetlb_acct_memory(h, -rsv_adjust);
2507 		if (deferred_reserve)
2508 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2509 					pages_per_huge_page(h), page);
2510 	}
2511 	return page;
2512 
2513 out_uncharge_cgroup:
2514 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2515 out_uncharge_cgroup_reservation:
2516 	if (deferred_reserve)
2517 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2518 						    h_cg);
2519 out_subpool_put:
2520 	if (map_chg || avoid_reserve)
2521 		hugepage_subpool_put_pages(spool, 1);
2522 	vma_end_reservation(h, vma, addr);
2523 	return ERR_PTR(-ENOSPC);
2524 }
2525 
2526 int alloc_bootmem_huge_page(struct hstate *h)
2527 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2528 int __alloc_bootmem_huge_page(struct hstate *h)
2529 {
2530 	struct huge_bootmem_page *m;
2531 	int nr_nodes, node;
2532 
2533 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2534 		void *addr;
2535 
2536 		addr = memblock_alloc_try_nid_raw(
2537 				huge_page_size(h), huge_page_size(h),
2538 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2539 		if (addr) {
2540 			/*
2541 			 * Use the beginning of the huge page to store the
2542 			 * huge_bootmem_page struct (until gather_bootmem
2543 			 * puts them into the mem_map).
2544 			 */
2545 			m = addr;
2546 			goto found;
2547 		}
2548 	}
2549 	return 0;
2550 
2551 found:
2552 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2553 	/* Put them into a private list first because mem_map is not up yet */
2554 	INIT_LIST_HEAD(&m->list);
2555 	list_add(&m->list, &huge_boot_pages);
2556 	m->hstate = h;
2557 	return 1;
2558 }
2559 
2560 static void __init prep_compound_huge_page(struct page *page,
2561 		unsigned int order)
2562 {
2563 	if (unlikely(order > (MAX_ORDER - 1)))
2564 		prep_compound_gigantic_page(page, order);
2565 	else
2566 		prep_compound_page(page, order);
2567 }
2568 
2569 /* Put bootmem huge pages into the standard lists after mem_map is up */
2570 static void __init gather_bootmem_prealloc(void)
2571 {
2572 	struct huge_bootmem_page *m;
2573 
2574 	list_for_each_entry(m, &huge_boot_pages, list) {
2575 		struct page *page = virt_to_page(m);
2576 		struct hstate *h = m->hstate;
2577 
2578 		WARN_ON(page_count(page) != 1);
2579 		prep_compound_huge_page(page, huge_page_order(h));
2580 		WARN_ON(PageReserved(page));
2581 		prep_new_huge_page(h, page, page_to_nid(page));
2582 		put_page(page); /* free it into the hugepage allocator */
2583 
2584 		/*
2585 		 * If we had gigantic hugepages allocated at boot time, we need
2586 		 * to restore the 'stolen' pages to totalram_pages in order to
2587 		 * fix confusing memory reports from free(1) and another
2588 		 * side-effects, like CommitLimit going negative.
2589 		 */
2590 		if (hstate_is_gigantic(h))
2591 			adjust_managed_page_count(page, pages_per_huge_page(h));
2592 		cond_resched();
2593 	}
2594 }
2595 
2596 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2597 {
2598 	unsigned long i;
2599 	nodemask_t *node_alloc_noretry;
2600 
2601 	if (!hstate_is_gigantic(h)) {
2602 		/*
2603 		 * Bit mask controlling how hard we retry per-node allocations.
2604 		 * Ignore errors as lower level routines can deal with
2605 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2606 		 * time, we are likely in bigger trouble.
2607 		 */
2608 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2609 						GFP_KERNEL);
2610 	} else {
2611 		/* allocations done at boot time */
2612 		node_alloc_noretry = NULL;
2613 	}
2614 
2615 	/* bit mask controlling how hard we retry per-node allocations */
2616 	if (node_alloc_noretry)
2617 		nodes_clear(*node_alloc_noretry);
2618 
2619 	for (i = 0; i < h->max_huge_pages; ++i) {
2620 		if (hstate_is_gigantic(h)) {
2621 			if (hugetlb_cma_size) {
2622 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2623 				goto free;
2624 			}
2625 			if (!alloc_bootmem_huge_page(h))
2626 				break;
2627 		} else if (!alloc_pool_huge_page(h,
2628 					 &node_states[N_MEMORY],
2629 					 node_alloc_noretry))
2630 			break;
2631 		cond_resched();
2632 	}
2633 	if (i < h->max_huge_pages) {
2634 		char buf[32];
2635 
2636 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2637 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2638 			h->max_huge_pages, buf, i);
2639 		h->max_huge_pages = i;
2640 	}
2641 free:
2642 	kfree(node_alloc_noretry);
2643 }
2644 
2645 static void __init hugetlb_init_hstates(void)
2646 {
2647 	struct hstate *h;
2648 
2649 	for_each_hstate(h) {
2650 		if (minimum_order > huge_page_order(h))
2651 			minimum_order = huge_page_order(h);
2652 
2653 		/* oversize hugepages were init'ed in early boot */
2654 		if (!hstate_is_gigantic(h))
2655 			hugetlb_hstate_alloc_pages(h);
2656 	}
2657 	VM_BUG_ON(minimum_order == UINT_MAX);
2658 }
2659 
2660 static void __init report_hugepages(void)
2661 {
2662 	struct hstate *h;
2663 
2664 	for_each_hstate(h) {
2665 		char buf[32];
2666 
2667 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2668 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2669 			buf, h->free_huge_pages);
2670 	}
2671 }
2672 
2673 #ifdef CONFIG_HIGHMEM
2674 static void try_to_free_low(struct hstate *h, unsigned long count,
2675 						nodemask_t *nodes_allowed)
2676 {
2677 	int i;
2678 	LIST_HEAD(page_list);
2679 
2680 	lockdep_assert_held(&hugetlb_lock);
2681 	if (hstate_is_gigantic(h))
2682 		return;
2683 
2684 	/*
2685 	 * Collect pages to be freed on a list, and free after dropping lock
2686 	 */
2687 	for_each_node_mask(i, *nodes_allowed) {
2688 		struct page *page, *next;
2689 		struct list_head *freel = &h->hugepage_freelists[i];
2690 		list_for_each_entry_safe(page, next, freel, lru) {
2691 			if (count >= h->nr_huge_pages)
2692 				goto out;
2693 			if (PageHighMem(page))
2694 				continue;
2695 			remove_hugetlb_page(h, page, false);
2696 			list_add(&page->lru, &page_list);
2697 		}
2698 	}
2699 
2700 out:
2701 	spin_unlock_irq(&hugetlb_lock);
2702 	update_and_free_pages_bulk(h, &page_list);
2703 	spin_lock_irq(&hugetlb_lock);
2704 }
2705 #else
2706 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2707 						nodemask_t *nodes_allowed)
2708 {
2709 }
2710 #endif
2711 
2712 /*
2713  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2714  * balanced by operating on them in a round-robin fashion.
2715  * Returns 1 if an adjustment was made.
2716  */
2717 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2718 				int delta)
2719 {
2720 	int nr_nodes, node;
2721 
2722 	lockdep_assert_held(&hugetlb_lock);
2723 	VM_BUG_ON(delta != -1 && delta != 1);
2724 
2725 	if (delta < 0) {
2726 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2727 			if (h->surplus_huge_pages_node[node])
2728 				goto found;
2729 		}
2730 	} else {
2731 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2732 			if (h->surplus_huge_pages_node[node] <
2733 					h->nr_huge_pages_node[node])
2734 				goto found;
2735 		}
2736 	}
2737 	return 0;
2738 
2739 found:
2740 	h->surplus_huge_pages += delta;
2741 	h->surplus_huge_pages_node[node] += delta;
2742 	return 1;
2743 }
2744 
2745 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2746 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2747 			      nodemask_t *nodes_allowed)
2748 {
2749 	unsigned long min_count, ret;
2750 	struct page *page;
2751 	LIST_HEAD(page_list);
2752 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2753 
2754 	/*
2755 	 * Bit mask controlling how hard we retry per-node allocations.
2756 	 * If we can not allocate the bit mask, do not attempt to allocate
2757 	 * the requested huge pages.
2758 	 */
2759 	if (node_alloc_noretry)
2760 		nodes_clear(*node_alloc_noretry);
2761 	else
2762 		return -ENOMEM;
2763 
2764 	/*
2765 	 * resize_lock mutex prevents concurrent adjustments to number of
2766 	 * pages in hstate via the proc/sysfs interfaces.
2767 	 */
2768 	mutex_lock(&h->resize_lock);
2769 	spin_lock_irq(&hugetlb_lock);
2770 
2771 	/*
2772 	 * Check for a node specific request.
2773 	 * Changing node specific huge page count may require a corresponding
2774 	 * change to the global count.  In any case, the passed node mask
2775 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2776 	 */
2777 	if (nid != NUMA_NO_NODE) {
2778 		unsigned long old_count = count;
2779 
2780 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2781 		/*
2782 		 * User may have specified a large count value which caused the
2783 		 * above calculation to overflow.  In this case, they wanted
2784 		 * to allocate as many huge pages as possible.  Set count to
2785 		 * largest possible value to align with their intention.
2786 		 */
2787 		if (count < old_count)
2788 			count = ULONG_MAX;
2789 	}
2790 
2791 	/*
2792 	 * Gigantic pages runtime allocation depend on the capability for large
2793 	 * page range allocation.
2794 	 * If the system does not provide this feature, return an error when
2795 	 * the user tries to allocate gigantic pages but let the user free the
2796 	 * boottime allocated gigantic pages.
2797 	 */
2798 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2799 		if (count > persistent_huge_pages(h)) {
2800 			spin_unlock_irq(&hugetlb_lock);
2801 			mutex_unlock(&h->resize_lock);
2802 			NODEMASK_FREE(node_alloc_noretry);
2803 			return -EINVAL;
2804 		}
2805 		/* Fall through to decrease pool */
2806 	}
2807 
2808 	/*
2809 	 * Increase the pool size
2810 	 * First take pages out of surplus state.  Then make up the
2811 	 * remaining difference by allocating fresh huge pages.
2812 	 *
2813 	 * We might race with alloc_surplus_huge_page() here and be unable
2814 	 * to convert a surplus huge page to a normal huge page. That is
2815 	 * not critical, though, it just means the overall size of the
2816 	 * pool might be one hugepage larger than it needs to be, but
2817 	 * within all the constraints specified by the sysctls.
2818 	 */
2819 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2820 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2821 			break;
2822 	}
2823 
2824 	while (count > persistent_huge_pages(h)) {
2825 		/*
2826 		 * If this allocation races such that we no longer need the
2827 		 * page, free_huge_page will handle it by freeing the page
2828 		 * and reducing the surplus.
2829 		 */
2830 		spin_unlock_irq(&hugetlb_lock);
2831 
2832 		/* yield cpu to avoid soft lockup */
2833 		cond_resched();
2834 
2835 		ret = alloc_pool_huge_page(h, nodes_allowed,
2836 						node_alloc_noretry);
2837 		spin_lock_irq(&hugetlb_lock);
2838 		if (!ret)
2839 			goto out;
2840 
2841 		/* Bail for signals. Probably ctrl-c from user */
2842 		if (signal_pending(current))
2843 			goto out;
2844 	}
2845 
2846 	/*
2847 	 * Decrease the pool size
2848 	 * First return free pages to the buddy allocator (being careful
2849 	 * to keep enough around to satisfy reservations).  Then place
2850 	 * pages into surplus state as needed so the pool will shrink
2851 	 * to the desired size as pages become free.
2852 	 *
2853 	 * By placing pages into the surplus state independent of the
2854 	 * overcommit value, we are allowing the surplus pool size to
2855 	 * exceed overcommit. There are few sane options here. Since
2856 	 * alloc_surplus_huge_page() is checking the global counter,
2857 	 * though, we'll note that we're not allowed to exceed surplus
2858 	 * and won't grow the pool anywhere else. Not until one of the
2859 	 * sysctls are changed, or the surplus pages go out of use.
2860 	 */
2861 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2862 	min_count = max(count, min_count);
2863 	try_to_free_low(h, min_count, nodes_allowed);
2864 
2865 	/*
2866 	 * Collect pages to be removed on list without dropping lock
2867 	 */
2868 	while (min_count < persistent_huge_pages(h)) {
2869 		page = remove_pool_huge_page(h, nodes_allowed, 0);
2870 		if (!page)
2871 			break;
2872 
2873 		list_add(&page->lru, &page_list);
2874 	}
2875 	/* free the pages after dropping lock */
2876 	spin_unlock_irq(&hugetlb_lock);
2877 	update_and_free_pages_bulk(h, &page_list);
2878 	spin_lock_irq(&hugetlb_lock);
2879 
2880 	while (count < persistent_huge_pages(h)) {
2881 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2882 			break;
2883 	}
2884 out:
2885 	h->max_huge_pages = persistent_huge_pages(h);
2886 	spin_unlock_irq(&hugetlb_lock);
2887 	mutex_unlock(&h->resize_lock);
2888 
2889 	NODEMASK_FREE(node_alloc_noretry);
2890 
2891 	return 0;
2892 }
2893 
2894 #define HSTATE_ATTR_RO(_name) \
2895 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2896 
2897 #define HSTATE_ATTR(_name) \
2898 	static struct kobj_attribute _name##_attr = \
2899 		__ATTR(_name, 0644, _name##_show, _name##_store)
2900 
2901 static struct kobject *hugepages_kobj;
2902 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2903 
2904 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2905 
2906 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2907 {
2908 	int i;
2909 
2910 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2911 		if (hstate_kobjs[i] == kobj) {
2912 			if (nidp)
2913 				*nidp = NUMA_NO_NODE;
2914 			return &hstates[i];
2915 		}
2916 
2917 	return kobj_to_node_hstate(kobj, nidp);
2918 }
2919 
2920 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2921 					struct kobj_attribute *attr, char *buf)
2922 {
2923 	struct hstate *h;
2924 	unsigned long nr_huge_pages;
2925 	int nid;
2926 
2927 	h = kobj_to_hstate(kobj, &nid);
2928 	if (nid == NUMA_NO_NODE)
2929 		nr_huge_pages = h->nr_huge_pages;
2930 	else
2931 		nr_huge_pages = h->nr_huge_pages_node[nid];
2932 
2933 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2934 }
2935 
2936 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2937 					   struct hstate *h, int nid,
2938 					   unsigned long count, size_t len)
2939 {
2940 	int err;
2941 	nodemask_t nodes_allowed, *n_mask;
2942 
2943 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2944 		return -EINVAL;
2945 
2946 	if (nid == NUMA_NO_NODE) {
2947 		/*
2948 		 * global hstate attribute
2949 		 */
2950 		if (!(obey_mempolicy &&
2951 				init_nodemask_of_mempolicy(&nodes_allowed)))
2952 			n_mask = &node_states[N_MEMORY];
2953 		else
2954 			n_mask = &nodes_allowed;
2955 	} else {
2956 		/*
2957 		 * Node specific request.  count adjustment happens in
2958 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2959 		 */
2960 		init_nodemask_of_node(&nodes_allowed, nid);
2961 		n_mask = &nodes_allowed;
2962 	}
2963 
2964 	err = set_max_huge_pages(h, count, nid, n_mask);
2965 
2966 	return err ? err : len;
2967 }
2968 
2969 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2970 					 struct kobject *kobj, const char *buf,
2971 					 size_t len)
2972 {
2973 	struct hstate *h;
2974 	unsigned long count;
2975 	int nid;
2976 	int err;
2977 
2978 	err = kstrtoul(buf, 10, &count);
2979 	if (err)
2980 		return err;
2981 
2982 	h = kobj_to_hstate(kobj, &nid);
2983 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2984 }
2985 
2986 static ssize_t nr_hugepages_show(struct kobject *kobj,
2987 				       struct kobj_attribute *attr, char *buf)
2988 {
2989 	return nr_hugepages_show_common(kobj, attr, buf);
2990 }
2991 
2992 static ssize_t nr_hugepages_store(struct kobject *kobj,
2993 	       struct kobj_attribute *attr, const char *buf, size_t len)
2994 {
2995 	return nr_hugepages_store_common(false, kobj, buf, len);
2996 }
2997 HSTATE_ATTR(nr_hugepages);
2998 
2999 #ifdef CONFIG_NUMA
3000 
3001 /*
3002  * hstate attribute for optionally mempolicy-based constraint on persistent
3003  * huge page alloc/free.
3004  */
3005 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3006 					   struct kobj_attribute *attr,
3007 					   char *buf)
3008 {
3009 	return nr_hugepages_show_common(kobj, attr, buf);
3010 }
3011 
3012 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3013 	       struct kobj_attribute *attr, const char *buf, size_t len)
3014 {
3015 	return nr_hugepages_store_common(true, kobj, buf, len);
3016 }
3017 HSTATE_ATTR(nr_hugepages_mempolicy);
3018 #endif
3019 
3020 
3021 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3022 					struct kobj_attribute *attr, char *buf)
3023 {
3024 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3025 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3026 }
3027 
3028 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3029 		struct kobj_attribute *attr, const char *buf, size_t count)
3030 {
3031 	int err;
3032 	unsigned long input;
3033 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3034 
3035 	if (hstate_is_gigantic(h))
3036 		return -EINVAL;
3037 
3038 	err = kstrtoul(buf, 10, &input);
3039 	if (err)
3040 		return err;
3041 
3042 	spin_lock_irq(&hugetlb_lock);
3043 	h->nr_overcommit_huge_pages = input;
3044 	spin_unlock_irq(&hugetlb_lock);
3045 
3046 	return count;
3047 }
3048 HSTATE_ATTR(nr_overcommit_hugepages);
3049 
3050 static ssize_t free_hugepages_show(struct kobject *kobj,
3051 					struct kobj_attribute *attr, char *buf)
3052 {
3053 	struct hstate *h;
3054 	unsigned long free_huge_pages;
3055 	int nid;
3056 
3057 	h = kobj_to_hstate(kobj, &nid);
3058 	if (nid == NUMA_NO_NODE)
3059 		free_huge_pages = h->free_huge_pages;
3060 	else
3061 		free_huge_pages = h->free_huge_pages_node[nid];
3062 
3063 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3064 }
3065 HSTATE_ATTR_RO(free_hugepages);
3066 
3067 static ssize_t resv_hugepages_show(struct kobject *kobj,
3068 					struct kobj_attribute *attr, char *buf)
3069 {
3070 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3071 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3072 }
3073 HSTATE_ATTR_RO(resv_hugepages);
3074 
3075 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3076 					struct kobj_attribute *attr, char *buf)
3077 {
3078 	struct hstate *h;
3079 	unsigned long surplus_huge_pages;
3080 	int nid;
3081 
3082 	h = kobj_to_hstate(kobj, &nid);
3083 	if (nid == NUMA_NO_NODE)
3084 		surplus_huge_pages = h->surplus_huge_pages;
3085 	else
3086 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3087 
3088 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3089 }
3090 HSTATE_ATTR_RO(surplus_hugepages);
3091 
3092 static struct attribute *hstate_attrs[] = {
3093 	&nr_hugepages_attr.attr,
3094 	&nr_overcommit_hugepages_attr.attr,
3095 	&free_hugepages_attr.attr,
3096 	&resv_hugepages_attr.attr,
3097 	&surplus_hugepages_attr.attr,
3098 #ifdef CONFIG_NUMA
3099 	&nr_hugepages_mempolicy_attr.attr,
3100 #endif
3101 	NULL,
3102 };
3103 
3104 static const struct attribute_group hstate_attr_group = {
3105 	.attrs = hstate_attrs,
3106 };
3107 
3108 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3109 				    struct kobject **hstate_kobjs,
3110 				    const struct attribute_group *hstate_attr_group)
3111 {
3112 	int retval;
3113 	int hi = hstate_index(h);
3114 
3115 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3116 	if (!hstate_kobjs[hi])
3117 		return -ENOMEM;
3118 
3119 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3120 	if (retval) {
3121 		kobject_put(hstate_kobjs[hi]);
3122 		hstate_kobjs[hi] = NULL;
3123 	}
3124 
3125 	return retval;
3126 }
3127 
3128 static void __init hugetlb_sysfs_init(void)
3129 {
3130 	struct hstate *h;
3131 	int err;
3132 
3133 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3134 	if (!hugepages_kobj)
3135 		return;
3136 
3137 	for_each_hstate(h) {
3138 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3139 					 hstate_kobjs, &hstate_attr_group);
3140 		if (err)
3141 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3142 	}
3143 }
3144 
3145 #ifdef CONFIG_NUMA
3146 
3147 /*
3148  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3149  * with node devices in node_devices[] using a parallel array.  The array
3150  * index of a node device or _hstate == node id.
3151  * This is here to avoid any static dependency of the node device driver, in
3152  * the base kernel, on the hugetlb module.
3153  */
3154 struct node_hstate {
3155 	struct kobject		*hugepages_kobj;
3156 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3157 };
3158 static struct node_hstate node_hstates[MAX_NUMNODES];
3159 
3160 /*
3161  * A subset of global hstate attributes for node devices
3162  */
3163 static struct attribute *per_node_hstate_attrs[] = {
3164 	&nr_hugepages_attr.attr,
3165 	&free_hugepages_attr.attr,
3166 	&surplus_hugepages_attr.attr,
3167 	NULL,
3168 };
3169 
3170 static const struct attribute_group per_node_hstate_attr_group = {
3171 	.attrs = per_node_hstate_attrs,
3172 };
3173 
3174 /*
3175  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3176  * Returns node id via non-NULL nidp.
3177  */
3178 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3179 {
3180 	int nid;
3181 
3182 	for (nid = 0; nid < nr_node_ids; nid++) {
3183 		struct node_hstate *nhs = &node_hstates[nid];
3184 		int i;
3185 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3186 			if (nhs->hstate_kobjs[i] == kobj) {
3187 				if (nidp)
3188 					*nidp = nid;
3189 				return &hstates[i];
3190 			}
3191 	}
3192 
3193 	BUG();
3194 	return NULL;
3195 }
3196 
3197 /*
3198  * Unregister hstate attributes from a single node device.
3199  * No-op if no hstate attributes attached.
3200  */
3201 static void hugetlb_unregister_node(struct node *node)
3202 {
3203 	struct hstate *h;
3204 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3205 
3206 	if (!nhs->hugepages_kobj)
3207 		return;		/* no hstate attributes */
3208 
3209 	for_each_hstate(h) {
3210 		int idx = hstate_index(h);
3211 		if (nhs->hstate_kobjs[idx]) {
3212 			kobject_put(nhs->hstate_kobjs[idx]);
3213 			nhs->hstate_kobjs[idx] = NULL;
3214 		}
3215 	}
3216 
3217 	kobject_put(nhs->hugepages_kobj);
3218 	nhs->hugepages_kobj = NULL;
3219 }
3220 
3221 
3222 /*
3223  * Register hstate attributes for a single node device.
3224  * No-op if attributes already registered.
3225  */
3226 static void hugetlb_register_node(struct node *node)
3227 {
3228 	struct hstate *h;
3229 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3230 	int err;
3231 
3232 	if (nhs->hugepages_kobj)
3233 		return;		/* already allocated */
3234 
3235 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3236 							&node->dev.kobj);
3237 	if (!nhs->hugepages_kobj)
3238 		return;
3239 
3240 	for_each_hstate(h) {
3241 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3242 						nhs->hstate_kobjs,
3243 						&per_node_hstate_attr_group);
3244 		if (err) {
3245 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3246 				h->name, node->dev.id);
3247 			hugetlb_unregister_node(node);
3248 			break;
3249 		}
3250 	}
3251 }
3252 
3253 /*
3254  * hugetlb init time:  register hstate attributes for all registered node
3255  * devices of nodes that have memory.  All on-line nodes should have
3256  * registered their associated device by this time.
3257  */
3258 static void __init hugetlb_register_all_nodes(void)
3259 {
3260 	int nid;
3261 
3262 	for_each_node_state(nid, N_MEMORY) {
3263 		struct node *node = node_devices[nid];
3264 		if (node->dev.id == nid)
3265 			hugetlb_register_node(node);
3266 	}
3267 
3268 	/*
3269 	 * Let the node device driver know we're here so it can
3270 	 * [un]register hstate attributes on node hotplug.
3271 	 */
3272 	register_hugetlbfs_with_node(hugetlb_register_node,
3273 				     hugetlb_unregister_node);
3274 }
3275 #else	/* !CONFIG_NUMA */
3276 
3277 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3278 {
3279 	BUG();
3280 	if (nidp)
3281 		*nidp = -1;
3282 	return NULL;
3283 }
3284 
3285 static void hugetlb_register_all_nodes(void) { }
3286 
3287 #endif
3288 
3289 static int __init hugetlb_init(void)
3290 {
3291 	int i;
3292 
3293 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3294 			__NR_HPAGEFLAGS);
3295 
3296 	if (!hugepages_supported()) {
3297 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3298 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3299 		return 0;
3300 	}
3301 
3302 	/*
3303 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3304 	 * architectures depend on setup being done here.
3305 	 */
3306 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3307 	if (!parsed_default_hugepagesz) {
3308 		/*
3309 		 * If we did not parse a default huge page size, set
3310 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3311 		 * number of huge pages for this default size was implicitly
3312 		 * specified, set that here as well.
3313 		 * Note that the implicit setting will overwrite an explicit
3314 		 * setting.  A warning will be printed in this case.
3315 		 */
3316 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3317 		if (default_hstate_max_huge_pages) {
3318 			if (default_hstate.max_huge_pages) {
3319 				char buf[32];
3320 
3321 				string_get_size(huge_page_size(&default_hstate),
3322 					1, STRING_UNITS_2, buf, 32);
3323 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3324 					default_hstate.max_huge_pages, buf);
3325 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3326 					default_hstate_max_huge_pages);
3327 			}
3328 			default_hstate.max_huge_pages =
3329 				default_hstate_max_huge_pages;
3330 		}
3331 	}
3332 
3333 	hugetlb_cma_check();
3334 	hugetlb_init_hstates();
3335 	gather_bootmem_prealloc();
3336 	report_hugepages();
3337 
3338 	hugetlb_sysfs_init();
3339 	hugetlb_register_all_nodes();
3340 	hugetlb_cgroup_file_init();
3341 
3342 #ifdef CONFIG_SMP
3343 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3344 #else
3345 	num_fault_mutexes = 1;
3346 #endif
3347 	hugetlb_fault_mutex_table =
3348 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3349 			      GFP_KERNEL);
3350 	BUG_ON(!hugetlb_fault_mutex_table);
3351 
3352 	for (i = 0; i < num_fault_mutexes; i++)
3353 		mutex_init(&hugetlb_fault_mutex_table[i]);
3354 	return 0;
3355 }
3356 subsys_initcall(hugetlb_init);
3357 
3358 /* Overwritten by architectures with more huge page sizes */
3359 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3360 {
3361 	return size == HPAGE_SIZE;
3362 }
3363 
3364 void __init hugetlb_add_hstate(unsigned int order)
3365 {
3366 	struct hstate *h;
3367 	unsigned long i;
3368 
3369 	if (size_to_hstate(PAGE_SIZE << order)) {
3370 		return;
3371 	}
3372 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3373 	BUG_ON(order == 0);
3374 	h = &hstates[hugetlb_max_hstate++];
3375 	mutex_init(&h->resize_lock);
3376 	h->order = order;
3377 	h->mask = ~(huge_page_size(h) - 1);
3378 	for (i = 0; i < MAX_NUMNODES; ++i)
3379 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3380 	INIT_LIST_HEAD(&h->hugepage_activelist);
3381 	h->next_nid_to_alloc = first_memory_node;
3382 	h->next_nid_to_free = first_memory_node;
3383 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3384 					huge_page_size(h)/1024);
3385 
3386 	parsed_hstate = h;
3387 }
3388 
3389 /*
3390  * hugepages command line processing
3391  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3392  * specification.  If not, ignore the hugepages value.  hugepages can also
3393  * be the first huge page command line  option in which case it implicitly
3394  * specifies the number of huge pages for the default size.
3395  */
3396 static int __init hugepages_setup(char *s)
3397 {
3398 	unsigned long *mhp;
3399 	static unsigned long *last_mhp;
3400 
3401 	if (!parsed_valid_hugepagesz) {
3402 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3403 		parsed_valid_hugepagesz = true;
3404 		return 0;
3405 	}
3406 
3407 	/*
3408 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3409 	 * yet, so this hugepages= parameter goes to the "default hstate".
3410 	 * Otherwise, it goes with the previously parsed hugepagesz or
3411 	 * default_hugepagesz.
3412 	 */
3413 	else if (!hugetlb_max_hstate)
3414 		mhp = &default_hstate_max_huge_pages;
3415 	else
3416 		mhp = &parsed_hstate->max_huge_pages;
3417 
3418 	if (mhp == last_mhp) {
3419 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3420 		return 0;
3421 	}
3422 
3423 	if (sscanf(s, "%lu", mhp) <= 0)
3424 		*mhp = 0;
3425 
3426 	/*
3427 	 * Global state is always initialized later in hugetlb_init.
3428 	 * But we need to allocate gigantic hstates here early to still
3429 	 * use the bootmem allocator.
3430 	 */
3431 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3432 		hugetlb_hstate_alloc_pages(parsed_hstate);
3433 
3434 	last_mhp = mhp;
3435 
3436 	return 1;
3437 }
3438 __setup("hugepages=", hugepages_setup);
3439 
3440 /*
3441  * hugepagesz command line processing
3442  * A specific huge page size can only be specified once with hugepagesz.
3443  * hugepagesz is followed by hugepages on the command line.  The global
3444  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3445  * hugepagesz argument was valid.
3446  */
3447 static int __init hugepagesz_setup(char *s)
3448 {
3449 	unsigned long size;
3450 	struct hstate *h;
3451 
3452 	parsed_valid_hugepagesz = false;
3453 	size = (unsigned long)memparse(s, NULL);
3454 
3455 	if (!arch_hugetlb_valid_size(size)) {
3456 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3457 		return 0;
3458 	}
3459 
3460 	h = size_to_hstate(size);
3461 	if (h) {
3462 		/*
3463 		 * hstate for this size already exists.  This is normally
3464 		 * an error, but is allowed if the existing hstate is the
3465 		 * default hstate.  More specifically, it is only allowed if
3466 		 * the number of huge pages for the default hstate was not
3467 		 * previously specified.
3468 		 */
3469 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3470 		    default_hstate.max_huge_pages) {
3471 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3472 			return 0;
3473 		}
3474 
3475 		/*
3476 		 * No need to call hugetlb_add_hstate() as hstate already
3477 		 * exists.  But, do set parsed_hstate so that a following
3478 		 * hugepages= parameter will be applied to this hstate.
3479 		 */
3480 		parsed_hstate = h;
3481 		parsed_valid_hugepagesz = true;
3482 		return 1;
3483 	}
3484 
3485 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3486 	parsed_valid_hugepagesz = true;
3487 	return 1;
3488 }
3489 __setup("hugepagesz=", hugepagesz_setup);
3490 
3491 /*
3492  * default_hugepagesz command line input
3493  * Only one instance of default_hugepagesz allowed on command line.
3494  */
3495 static int __init default_hugepagesz_setup(char *s)
3496 {
3497 	unsigned long size;
3498 
3499 	parsed_valid_hugepagesz = false;
3500 	if (parsed_default_hugepagesz) {
3501 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3502 		return 0;
3503 	}
3504 
3505 	size = (unsigned long)memparse(s, NULL);
3506 
3507 	if (!arch_hugetlb_valid_size(size)) {
3508 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3509 		return 0;
3510 	}
3511 
3512 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3513 	parsed_valid_hugepagesz = true;
3514 	parsed_default_hugepagesz = true;
3515 	default_hstate_idx = hstate_index(size_to_hstate(size));
3516 
3517 	/*
3518 	 * The number of default huge pages (for this size) could have been
3519 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3520 	 * then default_hstate_max_huge_pages is set.  If the default huge
3521 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3522 	 * allocated here from bootmem allocator.
3523 	 */
3524 	if (default_hstate_max_huge_pages) {
3525 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3526 		if (hstate_is_gigantic(&default_hstate))
3527 			hugetlb_hstate_alloc_pages(&default_hstate);
3528 		default_hstate_max_huge_pages = 0;
3529 	}
3530 
3531 	return 1;
3532 }
3533 __setup("default_hugepagesz=", default_hugepagesz_setup);
3534 
3535 static unsigned int allowed_mems_nr(struct hstate *h)
3536 {
3537 	int node;
3538 	unsigned int nr = 0;
3539 	nodemask_t *mpol_allowed;
3540 	unsigned int *array = h->free_huge_pages_node;
3541 	gfp_t gfp_mask = htlb_alloc_mask(h);
3542 
3543 	mpol_allowed = policy_nodemask_current(gfp_mask);
3544 
3545 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3546 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
3547 			nr += array[node];
3548 	}
3549 
3550 	return nr;
3551 }
3552 
3553 #ifdef CONFIG_SYSCTL
3554 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3555 					  void *buffer, size_t *length,
3556 					  loff_t *ppos, unsigned long *out)
3557 {
3558 	struct ctl_table dup_table;
3559 
3560 	/*
3561 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3562 	 * can duplicate the @table and alter the duplicate of it.
3563 	 */
3564 	dup_table = *table;
3565 	dup_table.data = out;
3566 
3567 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3568 }
3569 
3570 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3571 			 struct ctl_table *table, int write,
3572 			 void *buffer, size_t *length, loff_t *ppos)
3573 {
3574 	struct hstate *h = &default_hstate;
3575 	unsigned long tmp = h->max_huge_pages;
3576 	int ret;
3577 
3578 	if (!hugepages_supported())
3579 		return -EOPNOTSUPP;
3580 
3581 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3582 					     &tmp);
3583 	if (ret)
3584 		goto out;
3585 
3586 	if (write)
3587 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3588 						  NUMA_NO_NODE, tmp, *length);
3589 out:
3590 	return ret;
3591 }
3592 
3593 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3594 			  void *buffer, size_t *length, loff_t *ppos)
3595 {
3596 
3597 	return hugetlb_sysctl_handler_common(false, table, write,
3598 							buffer, length, ppos);
3599 }
3600 
3601 #ifdef CONFIG_NUMA
3602 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3603 			  void *buffer, size_t *length, loff_t *ppos)
3604 {
3605 	return hugetlb_sysctl_handler_common(true, table, write,
3606 							buffer, length, ppos);
3607 }
3608 #endif /* CONFIG_NUMA */
3609 
3610 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3611 		void *buffer, size_t *length, loff_t *ppos)
3612 {
3613 	struct hstate *h = &default_hstate;
3614 	unsigned long tmp;
3615 	int ret;
3616 
3617 	if (!hugepages_supported())
3618 		return -EOPNOTSUPP;
3619 
3620 	tmp = h->nr_overcommit_huge_pages;
3621 
3622 	if (write && hstate_is_gigantic(h))
3623 		return -EINVAL;
3624 
3625 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3626 					     &tmp);
3627 	if (ret)
3628 		goto out;
3629 
3630 	if (write) {
3631 		spin_lock_irq(&hugetlb_lock);
3632 		h->nr_overcommit_huge_pages = tmp;
3633 		spin_unlock_irq(&hugetlb_lock);
3634 	}
3635 out:
3636 	return ret;
3637 }
3638 
3639 #endif /* CONFIG_SYSCTL */
3640 
3641 void hugetlb_report_meminfo(struct seq_file *m)
3642 {
3643 	struct hstate *h;
3644 	unsigned long total = 0;
3645 
3646 	if (!hugepages_supported())
3647 		return;
3648 
3649 	for_each_hstate(h) {
3650 		unsigned long count = h->nr_huge_pages;
3651 
3652 		total += huge_page_size(h) * count;
3653 
3654 		if (h == &default_hstate)
3655 			seq_printf(m,
3656 				   "HugePages_Total:   %5lu\n"
3657 				   "HugePages_Free:    %5lu\n"
3658 				   "HugePages_Rsvd:    %5lu\n"
3659 				   "HugePages_Surp:    %5lu\n"
3660 				   "Hugepagesize:   %8lu kB\n",
3661 				   count,
3662 				   h->free_huge_pages,
3663 				   h->resv_huge_pages,
3664 				   h->surplus_huge_pages,
3665 				   huge_page_size(h) / SZ_1K);
3666 	}
3667 
3668 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3669 }
3670 
3671 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3672 {
3673 	struct hstate *h = &default_hstate;
3674 
3675 	if (!hugepages_supported())
3676 		return 0;
3677 
3678 	return sysfs_emit_at(buf, len,
3679 			     "Node %d HugePages_Total: %5u\n"
3680 			     "Node %d HugePages_Free:  %5u\n"
3681 			     "Node %d HugePages_Surp:  %5u\n",
3682 			     nid, h->nr_huge_pages_node[nid],
3683 			     nid, h->free_huge_pages_node[nid],
3684 			     nid, h->surplus_huge_pages_node[nid]);
3685 }
3686 
3687 void hugetlb_show_meminfo(void)
3688 {
3689 	struct hstate *h;
3690 	int nid;
3691 
3692 	if (!hugepages_supported())
3693 		return;
3694 
3695 	for_each_node_state(nid, N_MEMORY)
3696 		for_each_hstate(h)
3697 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3698 				nid,
3699 				h->nr_huge_pages_node[nid],
3700 				h->free_huge_pages_node[nid],
3701 				h->surplus_huge_pages_node[nid],
3702 				huge_page_size(h) / SZ_1K);
3703 }
3704 
3705 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3706 {
3707 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3708 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3709 }
3710 
3711 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3712 unsigned long hugetlb_total_pages(void)
3713 {
3714 	struct hstate *h;
3715 	unsigned long nr_total_pages = 0;
3716 
3717 	for_each_hstate(h)
3718 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3719 	return nr_total_pages;
3720 }
3721 
3722 static int hugetlb_acct_memory(struct hstate *h, long delta)
3723 {
3724 	int ret = -ENOMEM;
3725 
3726 	if (!delta)
3727 		return 0;
3728 
3729 	spin_lock_irq(&hugetlb_lock);
3730 	/*
3731 	 * When cpuset is configured, it breaks the strict hugetlb page
3732 	 * reservation as the accounting is done on a global variable. Such
3733 	 * reservation is completely rubbish in the presence of cpuset because
3734 	 * the reservation is not checked against page availability for the
3735 	 * current cpuset. Application can still potentially OOM'ed by kernel
3736 	 * with lack of free htlb page in cpuset that the task is in.
3737 	 * Attempt to enforce strict accounting with cpuset is almost
3738 	 * impossible (or too ugly) because cpuset is too fluid that
3739 	 * task or memory node can be dynamically moved between cpusets.
3740 	 *
3741 	 * The change of semantics for shared hugetlb mapping with cpuset is
3742 	 * undesirable. However, in order to preserve some of the semantics,
3743 	 * we fall back to check against current free page availability as
3744 	 * a best attempt and hopefully to minimize the impact of changing
3745 	 * semantics that cpuset has.
3746 	 *
3747 	 * Apart from cpuset, we also have memory policy mechanism that
3748 	 * also determines from which node the kernel will allocate memory
3749 	 * in a NUMA system. So similar to cpuset, we also should consider
3750 	 * the memory policy of the current task. Similar to the description
3751 	 * above.
3752 	 */
3753 	if (delta > 0) {
3754 		if (gather_surplus_pages(h, delta) < 0)
3755 			goto out;
3756 
3757 		if (delta > allowed_mems_nr(h)) {
3758 			return_unused_surplus_pages(h, delta);
3759 			goto out;
3760 		}
3761 	}
3762 
3763 	ret = 0;
3764 	if (delta < 0)
3765 		return_unused_surplus_pages(h, (unsigned long) -delta);
3766 
3767 out:
3768 	spin_unlock_irq(&hugetlb_lock);
3769 	return ret;
3770 }
3771 
3772 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3773 {
3774 	struct resv_map *resv = vma_resv_map(vma);
3775 
3776 	/*
3777 	 * This new VMA should share its siblings reservation map if present.
3778 	 * The VMA will only ever have a valid reservation map pointer where
3779 	 * it is being copied for another still existing VMA.  As that VMA
3780 	 * has a reference to the reservation map it cannot disappear until
3781 	 * after this open call completes.  It is therefore safe to take a
3782 	 * new reference here without additional locking.
3783 	 */
3784 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3785 		kref_get(&resv->refs);
3786 }
3787 
3788 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3789 {
3790 	struct hstate *h = hstate_vma(vma);
3791 	struct resv_map *resv = vma_resv_map(vma);
3792 	struct hugepage_subpool *spool = subpool_vma(vma);
3793 	unsigned long reserve, start, end;
3794 	long gbl_reserve;
3795 
3796 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3797 		return;
3798 
3799 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3800 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3801 
3802 	reserve = (end - start) - region_count(resv, start, end);
3803 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3804 	if (reserve) {
3805 		/*
3806 		 * Decrement reserve counts.  The global reserve count may be
3807 		 * adjusted if the subpool has a minimum size.
3808 		 */
3809 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3810 		hugetlb_acct_memory(h, -gbl_reserve);
3811 	}
3812 
3813 	kref_put(&resv->refs, resv_map_release);
3814 }
3815 
3816 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3817 {
3818 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3819 		return -EINVAL;
3820 	return 0;
3821 }
3822 
3823 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3824 {
3825 	return huge_page_size(hstate_vma(vma));
3826 }
3827 
3828 /*
3829  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3830  * handle_mm_fault() to try to instantiate regular-sized pages in the
3831  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3832  * this far.
3833  */
3834 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3835 {
3836 	BUG();
3837 	return 0;
3838 }
3839 
3840 /*
3841  * When a new function is introduced to vm_operations_struct and added
3842  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3843  * This is because under System V memory model, mappings created via
3844  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3845  * their original vm_ops are overwritten with shm_vm_ops.
3846  */
3847 const struct vm_operations_struct hugetlb_vm_ops = {
3848 	.fault = hugetlb_vm_op_fault,
3849 	.open = hugetlb_vm_op_open,
3850 	.close = hugetlb_vm_op_close,
3851 	.may_split = hugetlb_vm_op_split,
3852 	.pagesize = hugetlb_vm_op_pagesize,
3853 };
3854 
3855 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3856 				int writable)
3857 {
3858 	pte_t entry;
3859 
3860 	if (writable) {
3861 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3862 					 vma->vm_page_prot)));
3863 	} else {
3864 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3865 					   vma->vm_page_prot));
3866 	}
3867 	entry = pte_mkyoung(entry);
3868 	entry = pte_mkhuge(entry);
3869 	entry = arch_make_huge_pte(entry, vma, page, writable);
3870 
3871 	return entry;
3872 }
3873 
3874 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3875 				   unsigned long address, pte_t *ptep)
3876 {
3877 	pte_t entry;
3878 
3879 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3880 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3881 		update_mmu_cache(vma, address, ptep);
3882 }
3883 
3884 bool is_hugetlb_entry_migration(pte_t pte)
3885 {
3886 	swp_entry_t swp;
3887 
3888 	if (huge_pte_none(pte) || pte_present(pte))
3889 		return false;
3890 	swp = pte_to_swp_entry(pte);
3891 	if (is_migration_entry(swp))
3892 		return true;
3893 	else
3894 		return false;
3895 }
3896 
3897 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3898 {
3899 	swp_entry_t swp;
3900 
3901 	if (huge_pte_none(pte) || pte_present(pte))
3902 		return false;
3903 	swp = pte_to_swp_entry(pte);
3904 	if (is_hwpoison_entry(swp))
3905 		return true;
3906 	else
3907 		return false;
3908 }
3909 
3910 static void
3911 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3912 		     struct page *new_page)
3913 {
3914 	__SetPageUptodate(new_page);
3915 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3916 	hugepage_add_new_anon_rmap(new_page, vma, addr);
3917 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3918 	ClearHPageRestoreReserve(new_page);
3919 	SetHPageMigratable(new_page);
3920 }
3921 
3922 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3923 			    struct vm_area_struct *vma)
3924 {
3925 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3926 	struct page *ptepage;
3927 	unsigned long addr;
3928 	bool cow = is_cow_mapping(vma->vm_flags);
3929 	struct hstate *h = hstate_vma(vma);
3930 	unsigned long sz = huge_page_size(h);
3931 	unsigned long npages = pages_per_huge_page(h);
3932 	struct address_space *mapping = vma->vm_file->f_mapping;
3933 	struct mmu_notifier_range range;
3934 	int ret = 0;
3935 
3936 	if (cow) {
3937 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3938 					vma->vm_start,
3939 					vma->vm_end);
3940 		mmu_notifier_invalidate_range_start(&range);
3941 	} else {
3942 		/*
3943 		 * For shared mappings i_mmap_rwsem must be held to call
3944 		 * huge_pte_alloc, otherwise the returned ptep could go
3945 		 * away if part of a shared pmd and another thread calls
3946 		 * huge_pmd_unshare.
3947 		 */
3948 		i_mmap_lock_read(mapping);
3949 	}
3950 
3951 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3952 		spinlock_t *src_ptl, *dst_ptl;
3953 		src_pte = huge_pte_offset(src, addr, sz);
3954 		if (!src_pte)
3955 			continue;
3956 		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
3957 		if (!dst_pte) {
3958 			ret = -ENOMEM;
3959 			break;
3960 		}
3961 
3962 		/*
3963 		 * If the pagetables are shared don't copy or take references.
3964 		 * dst_pte == src_pte is the common case of src/dest sharing.
3965 		 *
3966 		 * However, src could have 'unshared' and dst shares with
3967 		 * another vma.  If dst_pte !none, this implies sharing.
3968 		 * Check here before taking page table lock, and once again
3969 		 * after taking the lock below.
3970 		 */
3971 		dst_entry = huge_ptep_get(dst_pte);
3972 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3973 			continue;
3974 
3975 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3976 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3977 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3978 		entry = huge_ptep_get(src_pte);
3979 		dst_entry = huge_ptep_get(dst_pte);
3980 again:
3981 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3982 			/*
3983 			 * Skip if src entry none.  Also, skip in the
3984 			 * unlikely case dst entry !none as this implies
3985 			 * sharing with another vma.
3986 			 */
3987 			;
3988 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3989 				    is_hugetlb_entry_hwpoisoned(entry))) {
3990 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3991 
3992 			if (is_write_migration_entry(swp_entry) && cow) {
3993 				/*
3994 				 * COW mappings require pages in both
3995 				 * parent and child to be set to read.
3996 				 */
3997 				make_migration_entry_read(&swp_entry);
3998 				entry = swp_entry_to_pte(swp_entry);
3999 				set_huge_swap_pte_at(src, addr, src_pte,
4000 						     entry, sz);
4001 			}
4002 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4003 		} else {
4004 			entry = huge_ptep_get(src_pte);
4005 			ptepage = pte_page(entry);
4006 			get_page(ptepage);
4007 
4008 			/*
4009 			 * This is a rare case where we see pinned hugetlb
4010 			 * pages while they're prone to COW.  We need to do the
4011 			 * COW earlier during fork.
4012 			 *
4013 			 * When pre-allocating the page or copying data, we
4014 			 * need to be without the pgtable locks since we could
4015 			 * sleep during the process.
4016 			 */
4017 			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4018 				pte_t src_pte_old = entry;
4019 				struct page *new;
4020 
4021 				spin_unlock(src_ptl);
4022 				spin_unlock(dst_ptl);
4023 				/* Do not use reserve as it's private owned */
4024 				new = alloc_huge_page(vma, addr, 1);
4025 				if (IS_ERR(new)) {
4026 					put_page(ptepage);
4027 					ret = PTR_ERR(new);
4028 					break;
4029 				}
4030 				copy_user_huge_page(new, ptepage, addr, vma,
4031 						    npages);
4032 				put_page(ptepage);
4033 
4034 				/* Install the new huge page if src pte stable */
4035 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4036 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4037 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4038 				entry = huge_ptep_get(src_pte);
4039 				if (!pte_same(src_pte_old, entry)) {
4040 					put_page(new);
4041 					/* dst_entry won't change as in child */
4042 					goto again;
4043 				}
4044 				hugetlb_install_page(vma, dst_pte, addr, new);
4045 				spin_unlock(src_ptl);
4046 				spin_unlock(dst_ptl);
4047 				continue;
4048 			}
4049 
4050 			if (cow) {
4051 				/*
4052 				 * No need to notify as we are downgrading page
4053 				 * table protection not changing it to point
4054 				 * to a new page.
4055 				 *
4056 				 * See Documentation/vm/mmu_notifier.rst
4057 				 */
4058 				huge_ptep_set_wrprotect(src, addr, src_pte);
4059 				entry = huge_pte_wrprotect(entry);
4060 			}
4061 
4062 			page_dup_rmap(ptepage, true);
4063 			set_huge_pte_at(dst, addr, dst_pte, entry);
4064 			hugetlb_count_add(npages, dst);
4065 		}
4066 		spin_unlock(src_ptl);
4067 		spin_unlock(dst_ptl);
4068 	}
4069 
4070 	if (cow)
4071 		mmu_notifier_invalidate_range_end(&range);
4072 	else
4073 		i_mmap_unlock_read(mapping);
4074 
4075 	return ret;
4076 }
4077 
4078 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4079 			    unsigned long start, unsigned long end,
4080 			    struct page *ref_page)
4081 {
4082 	struct mm_struct *mm = vma->vm_mm;
4083 	unsigned long address;
4084 	pte_t *ptep;
4085 	pte_t pte;
4086 	spinlock_t *ptl;
4087 	struct page *page;
4088 	struct hstate *h = hstate_vma(vma);
4089 	unsigned long sz = huge_page_size(h);
4090 	struct mmu_notifier_range range;
4091 
4092 	WARN_ON(!is_vm_hugetlb_page(vma));
4093 	BUG_ON(start & ~huge_page_mask(h));
4094 	BUG_ON(end & ~huge_page_mask(h));
4095 
4096 	/*
4097 	 * This is a hugetlb vma, all the pte entries should point
4098 	 * to huge page.
4099 	 */
4100 	tlb_change_page_size(tlb, sz);
4101 	tlb_start_vma(tlb, vma);
4102 
4103 	/*
4104 	 * If sharing possible, alert mmu notifiers of worst case.
4105 	 */
4106 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4107 				end);
4108 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4109 	mmu_notifier_invalidate_range_start(&range);
4110 	address = start;
4111 	for (; address < end; address += sz) {
4112 		ptep = huge_pte_offset(mm, address, sz);
4113 		if (!ptep)
4114 			continue;
4115 
4116 		ptl = huge_pte_lock(h, mm, ptep);
4117 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4118 			spin_unlock(ptl);
4119 			/*
4120 			 * We just unmapped a page of PMDs by clearing a PUD.
4121 			 * The caller's TLB flush range should cover this area.
4122 			 */
4123 			continue;
4124 		}
4125 
4126 		pte = huge_ptep_get(ptep);
4127 		if (huge_pte_none(pte)) {
4128 			spin_unlock(ptl);
4129 			continue;
4130 		}
4131 
4132 		/*
4133 		 * Migrating hugepage or HWPoisoned hugepage is already
4134 		 * unmapped and its refcount is dropped, so just clear pte here.
4135 		 */
4136 		if (unlikely(!pte_present(pte))) {
4137 			huge_pte_clear(mm, address, ptep, sz);
4138 			spin_unlock(ptl);
4139 			continue;
4140 		}
4141 
4142 		page = pte_page(pte);
4143 		/*
4144 		 * If a reference page is supplied, it is because a specific
4145 		 * page is being unmapped, not a range. Ensure the page we
4146 		 * are about to unmap is the actual page of interest.
4147 		 */
4148 		if (ref_page) {
4149 			if (page != ref_page) {
4150 				spin_unlock(ptl);
4151 				continue;
4152 			}
4153 			/*
4154 			 * Mark the VMA as having unmapped its page so that
4155 			 * future faults in this VMA will fail rather than
4156 			 * looking like data was lost
4157 			 */
4158 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4159 		}
4160 
4161 		pte = huge_ptep_get_and_clear(mm, address, ptep);
4162 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4163 		if (huge_pte_dirty(pte))
4164 			set_page_dirty(page);
4165 
4166 		hugetlb_count_sub(pages_per_huge_page(h), mm);
4167 		page_remove_rmap(page, true);
4168 
4169 		spin_unlock(ptl);
4170 		tlb_remove_page_size(tlb, page, huge_page_size(h));
4171 		/*
4172 		 * Bail out after unmapping reference page if supplied
4173 		 */
4174 		if (ref_page)
4175 			break;
4176 	}
4177 	mmu_notifier_invalidate_range_end(&range);
4178 	tlb_end_vma(tlb, vma);
4179 }
4180 
4181 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4182 			  struct vm_area_struct *vma, unsigned long start,
4183 			  unsigned long end, struct page *ref_page)
4184 {
4185 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4186 
4187 	/*
4188 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4189 	 * test will fail on a vma being torn down, and not grab a page table
4190 	 * on its way out.  We're lucky that the flag has such an appropriate
4191 	 * name, and can in fact be safely cleared here. We could clear it
4192 	 * before the __unmap_hugepage_range above, but all that's necessary
4193 	 * is to clear it before releasing the i_mmap_rwsem. This works
4194 	 * because in the context this is called, the VMA is about to be
4195 	 * destroyed and the i_mmap_rwsem is held.
4196 	 */
4197 	vma->vm_flags &= ~VM_MAYSHARE;
4198 }
4199 
4200 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4201 			  unsigned long end, struct page *ref_page)
4202 {
4203 	struct mmu_gather tlb;
4204 
4205 	tlb_gather_mmu(&tlb, vma->vm_mm);
4206 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4207 	tlb_finish_mmu(&tlb);
4208 }
4209 
4210 /*
4211  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4212  * mapping it owns the reserve page for. The intention is to unmap the page
4213  * from other VMAs and let the children be SIGKILLed if they are faulting the
4214  * same region.
4215  */
4216 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4217 			      struct page *page, unsigned long address)
4218 {
4219 	struct hstate *h = hstate_vma(vma);
4220 	struct vm_area_struct *iter_vma;
4221 	struct address_space *mapping;
4222 	pgoff_t pgoff;
4223 
4224 	/*
4225 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4226 	 * from page cache lookup which is in HPAGE_SIZE units.
4227 	 */
4228 	address = address & huge_page_mask(h);
4229 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4230 			vma->vm_pgoff;
4231 	mapping = vma->vm_file->f_mapping;
4232 
4233 	/*
4234 	 * Take the mapping lock for the duration of the table walk. As
4235 	 * this mapping should be shared between all the VMAs,
4236 	 * __unmap_hugepage_range() is called as the lock is already held
4237 	 */
4238 	i_mmap_lock_write(mapping);
4239 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4240 		/* Do not unmap the current VMA */
4241 		if (iter_vma == vma)
4242 			continue;
4243 
4244 		/*
4245 		 * Shared VMAs have their own reserves and do not affect
4246 		 * MAP_PRIVATE accounting but it is possible that a shared
4247 		 * VMA is using the same page so check and skip such VMAs.
4248 		 */
4249 		if (iter_vma->vm_flags & VM_MAYSHARE)
4250 			continue;
4251 
4252 		/*
4253 		 * Unmap the page from other VMAs without their own reserves.
4254 		 * They get marked to be SIGKILLed if they fault in these
4255 		 * areas. This is because a future no-page fault on this VMA
4256 		 * could insert a zeroed page instead of the data existing
4257 		 * from the time of fork. This would look like data corruption
4258 		 */
4259 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4260 			unmap_hugepage_range(iter_vma, address,
4261 					     address + huge_page_size(h), page);
4262 	}
4263 	i_mmap_unlock_write(mapping);
4264 }
4265 
4266 /*
4267  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4268  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4269  * cannot race with other handlers or page migration.
4270  * Keep the pte_same checks anyway to make transition from the mutex easier.
4271  */
4272 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4273 		       unsigned long address, pte_t *ptep,
4274 		       struct page *pagecache_page, spinlock_t *ptl)
4275 {
4276 	pte_t pte;
4277 	struct hstate *h = hstate_vma(vma);
4278 	struct page *old_page, *new_page;
4279 	int outside_reserve = 0;
4280 	vm_fault_t ret = 0;
4281 	unsigned long haddr = address & huge_page_mask(h);
4282 	struct mmu_notifier_range range;
4283 
4284 	pte = huge_ptep_get(ptep);
4285 	old_page = pte_page(pte);
4286 
4287 retry_avoidcopy:
4288 	/* If no-one else is actually using this page, avoid the copy
4289 	 * and just make the page writable */
4290 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4291 		page_move_anon_rmap(old_page, vma);
4292 		set_huge_ptep_writable(vma, haddr, ptep);
4293 		return 0;
4294 	}
4295 
4296 	/*
4297 	 * If the process that created a MAP_PRIVATE mapping is about to
4298 	 * perform a COW due to a shared page count, attempt to satisfy
4299 	 * the allocation without using the existing reserves. The pagecache
4300 	 * page is used to determine if the reserve at this address was
4301 	 * consumed or not. If reserves were used, a partial faulted mapping
4302 	 * at the time of fork() could consume its reserves on COW instead
4303 	 * of the full address range.
4304 	 */
4305 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4306 			old_page != pagecache_page)
4307 		outside_reserve = 1;
4308 
4309 	get_page(old_page);
4310 
4311 	/*
4312 	 * Drop page table lock as buddy allocator may be called. It will
4313 	 * be acquired again before returning to the caller, as expected.
4314 	 */
4315 	spin_unlock(ptl);
4316 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4317 
4318 	if (IS_ERR(new_page)) {
4319 		/*
4320 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4321 		 * it is due to references held by a child and an insufficient
4322 		 * huge page pool. To guarantee the original mappers
4323 		 * reliability, unmap the page from child processes. The child
4324 		 * may get SIGKILLed if it later faults.
4325 		 */
4326 		if (outside_reserve) {
4327 			struct address_space *mapping = vma->vm_file->f_mapping;
4328 			pgoff_t idx;
4329 			u32 hash;
4330 
4331 			put_page(old_page);
4332 			BUG_ON(huge_pte_none(pte));
4333 			/*
4334 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4335 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
4336 			 * in write mode.  Dropping i_mmap_rwsem in read mode
4337 			 * here is OK as COW mappings do not interact with
4338 			 * PMD sharing.
4339 			 *
4340 			 * Reacquire both after unmap operation.
4341 			 */
4342 			idx = vma_hugecache_offset(h, vma, haddr);
4343 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4344 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4345 			i_mmap_unlock_read(mapping);
4346 
4347 			unmap_ref_private(mm, vma, old_page, haddr);
4348 
4349 			i_mmap_lock_read(mapping);
4350 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4351 			spin_lock(ptl);
4352 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4353 			if (likely(ptep &&
4354 				   pte_same(huge_ptep_get(ptep), pte)))
4355 				goto retry_avoidcopy;
4356 			/*
4357 			 * race occurs while re-acquiring page table
4358 			 * lock, and our job is done.
4359 			 */
4360 			return 0;
4361 		}
4362 
4363 		ret = vmf_error(PTR_ERR(new_page));
4364 		goto out_release_old;
4365 	}
4366 
4367 	/*
4368 	 * When the original hugepage is shared one, it does not have
4369 	 * anon_vma prepared.
4370 	 */
4371 	if (unlikely(anon_vma_prepare(vma))) {
4372 		ret = VM_FAULT_OOM;
4373 		goto out_release_all;
4374 	}
4375 
4376 	copy_user_huge_page(new_page, old_page, address, vma,
4377 			    pages_per_huge_page(h));
4378 	__SetPageUptodate(new_page);
4379 
4380 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4381 				haddr + huge_page_size(h));
4382 	mmu_notifier_invalidate_range_start(&range);
4383 
4384 	/*
4385 	 * Retake the page table lock to check for racing updates
4386 	 * before the page tables are altered
4387 	 */
4388 	spin_lock(ptl);
4389 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4390 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4391 		ClearHPageRestoreReserve(new_page);
4392 
4393 		/* Break COW */
4394 		huge_ptep_clear_flush(vma, haddr, ptep);
4395 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4396 		set_huge_pte_at(mm, haddr, ptep,
4397 				make_huge_pte(vma, new_page, 1));
4398 		page_remove_rmap(old_page, true);
4399 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4400 		SetHPageMigratable(new_page);
4401 		/* Make the old page be freed below */
4402 		new_page = old_page;
4403 	}
4404 	spin_unlock(ptl);
4405 	mmu_notifier_invalidate_range_end(&range);
4406 out_release_all:
4407 	restore_reserve_on_error(h, vma, haddr, new_page);
4408 	put_page(new_page);
4409 out_release_old:
4410 	put_page(old_page);
4411 
4412 	spin_lock(ptl); /* Caller expects lock to be held */
4413 	return ret;
4414 }
4415 
4416 /* Return the pagecache page at a given address within a VMA */
4417 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4418 			struct vm_area_struct *vma, unsigned long address)
4419 {
4420 	struct address_space *mapping;
4421 	pgoff_t idx;
4422 
4423 	mapping = vma->vm_file->f_mapping;
4424 	idx = vma_hugecache_offset(h, vma, address);
4425 
4426 	return find_lock_page(mapping, idx);
4427 }
4428 
4429 /*
4430  * Return whether there is a pagecache page to back given address within VMA.
4431  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4432  */
4433 static bool hugetlbfs_pagecache_present(struct hstate *h,
4434 			struct vm_area_struct *vma, unsigned long address)
4435 {
4436 	struct address_space *mapping;
4437 	pgoff_t idx;
4438 	struct page *page;
4439 
4440 	mapping = vma->vm_file->f_mapping;
4441 	idx = vma_hugecache_offset(h, vma, address);
4442 
4443 	page = find_get_page(mapping, idx);
4444 	if (page)
4445 		put_page(page);
4446 	return page != NULL;
4447 }
4448 
4449 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4450 			   pgoff_t idx)
4451 {
4452 	struct inode *inode = mapping->host;
4453 	struct hstate *h = hstate_inode(inode);
4454 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4455 
4456 	if (err)
4457 		return err;
4458 	ClearHPageRestoreReserve(page);
4459 
4460 	/*
4461 	 * set page dirty so that it will not be removed from cache/file
4462 	 * by non-hugetlbfs specific code paths.
4463 	 */
4464 	set_page_dirty(page);
4465 
4466 	spin_lock(&inode->i_lock);
4467 	inode->i_blocks += blocks_per_huge_page(h);
4468 	spin_unlock(&inode->i_lock);
4469 	return 0;
4470 }
4471 
4472 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4473 						  struct address_space *mapping,
4474 						  pgoff_t idx,
4475 						  unsigned int flags,
4476 						  unsigned long haddr,
4477 						  unsigned long reason)
4478 {
4479 	vm_fault_t ret;
4480 	u32 hash;
4481 	struct vm_fault vmf = {
4482 		.vma = vma,
4483 		.address = haddr,
4484 		.flags = flags,
4485 
4486 		/*
4487 		 * Hard to debug if it ends up being
4488 		 * used by a callee that assumes
4489 		 * something about the other
4490 		 * uninitialized fields... same as in
4491 		 * memory.c
4492 		 */
4493 	};
4494 
4495 	/*
4496 	 * hugetlb_fault_mutex and i_mmap_rwsem must be
4497 	 * dropped before handling userfault.  Reacquire
4498 	 * after handling fault to make calling code simpler.
4499 	 */
4500 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4501 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4502 	i_mmap_unlock_read(mapping);
4503 	ret = handle_userfault(&vmf, reason);
4504 	i_mmap_lock_read(mapping);
4505 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4506 
4507 	return ret;
4508 }
4509 
4510 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4511 			struct vm_area_struct *vma,
4512 			struct address_space *mapping, pgoff_t idx,
4513 			unsigned long address, pte_t *ptep, unsigned int flags)
4514 {
4515 	struct hstate *h = hstate_vma(vma);
4516 	vm_fault_t ret = VM_FAULT_SIGBUS;
4517 	int anon_rmap = 0;
4518 	unsigned long size;
4519 	struct page *page;
4520 	pte_t new_pte;
4521 	spinlock_t *ptl;
4522 	unsigned long haddr = address & huge_page_mask(h);
4523 	bool new_page = false;
4524 
4525 	/*
4526 	 * Currently, we are forced to kill the process in the event the
4527 	 * original mapper has unmapped pages from the child due to a failed
4528 	 * COW. Warn that such a situation has occurred as it may not be obvious
4529 	 */
4530 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4531 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4532 			   current->pid);
4533 		return ret;
4534 	}
4535 
4536 	/*
4537 	 * We can not race with truncation due to holding i_mmap_rwsem.
4538 	 * i_size is modified when holding i_mmap_rwsem, so check here
4539 	 * once for faults beyond end of file.
4540 	 */
4541 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4542 	if (idx >= size)
4543 		goto out;
4544 
4545 retry:
4546 	page = find_lock_page(mapping, idx);
4547 	if (!page) {
4548 		/* Check for page in userfault range */
4549 		if (userfaultfd_missing(vma)) {
4550 			ret = hugetlb_handle_userfault(vma, mapping, idx,
4551 						       flags, haddr,
4552 						       VM_UFFD_MISSING);
4553 			goto out;
4554 		}
4555 
4556 		page = alloc_huge_page(vma, haddr, 0);
4557 		if (IS_ERR(page)) {
4558 			/*
4559 			 * Returning error will result in faulting task being
4560 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4561 			 * tasks from racing to fault in the same page which
4562 			 * could result in false unable to allocate errors.
4563 			 * Page migration does not take the fault mutex, but
4564 			 * does a clear then write of pte's under page table
4565 			 * lock.  Page fault code could race with migration,
4566 			 * notice the clear pte and try to allocate a page
4567 			 * here.  Before returning error, get ptl and make
4568 			 * sure there really is no pte entry.
4569 			 */
4570 			ptl = huge_pte_lock(h, mm, ptep);
4571 			ret = 0;
4572 			if (huge_pte_none(huge_ptep_get(ptep)))
4573 				ret = vmf_error(PTR_ERR(page));
4574 			spin_unlock(ptl);
4575 			goto out;
4576 		}
4577 		clear_huge_page(page, address, pages_per_huge_page(h));
4578 		__SetPageUptodate(page);
4579 		new_page = true;
4580 
4581 		if (vma->vm_flags & VM_MAYSHARE) {
4582 			int err = huge_add_to_page_cache(page, mapping, idx);
4583 			if (err) {
4584 				put_page(page);
4585 				if (err == -EEXIST)
4586 					goto retry;
4587 				goto out;
4588 			}
4589 		} else {
4590 			lock_page(page);
4591 			if (unlikely(anon_vma_prepare(vma))) {
4592 				ret = VM_FAULT_OOM;
4593 				goto backout_unlocked;
4594 			}
4595 			anon_rmap = 1;
4596 		}
4597 	} else {
4598 		/*
4599 		 * If memory error occurs between mmap() and fault, some process
4600 		 * don't have hwpoisoned swap entry for errored virtual address.
4601 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4602 		 */
4603 		if (unlikely(PageHWPoison(page))) {
4604 			ret = VM_FAULT_HWPOISON_LARGE |
4605 				VM_FAULT_SET_HINDEX(hstate_index(h));
4606 			goto backout_unlocked;
4607 		}
4608 
4609 		/* Check for page in userfault range. */
4610 		if (userfaultfd_minor(vma)) {
4611 			unlock_page(page);
4612 			put_page(page);
4613 			ret = hugetlb_handle_userfault(vma, mapping, idx,
4614 						       flags, haddr,
4615 						       VM_UFFD_MINOR);
4616 			goto out;
4617 		}
4618 	}
4619 
4620 	/*
4621 	 * If we are going to COW a private mapping later, we examine the
4622 	 * pending reservations for this page now. This will ensure that
4623 	 * any allocations necessary to record that reservation occur outside
4624 	 * the spinlock.
4625 	 */
4626 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4627 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4628 			ret = VM_FAULT_OOM;
4629 			goto backout_unlocked;
4630 		}
4631 		/* Just decrements count, does not deallocate */
4632 		vma_end_reservation(h, vma, haddr);
4633 	}
4634 
4635 	ptl = huge_pte_lock(h, mm, ptep);
4636 	ret = 0;
4637 	if (!huge_pte_none(huge_ptep_get(ptep)))
4638 		goto backout;
4639 
4640 	if (anon_rmap) {
4641 		ClearHPageRestoreReserve(page);
4642 		hugepage_add_new_anon_rmap(page, vma, haddr);
4643 	} else
4644 		page_dup_rmap(page, true);
4645 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4646 				&& (vma->vm_flags & VM_SHARED)));
4647 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4648 
4649 	hugetlb_count_add(pages_per_huge_page(h), mm);
4650 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4651 		/* Optimization, do the COW without a second fault */
4652 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4653 	}
4654 
4655 	spin_unlock(ptl);
4656 
4657 	/*
4658 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
4659 	 * found in the pagecache may not have HPageMigratableset if they have
4660 	 * been isolated for migration.
4661 	 */
4662 	if (new_page)
4663 		SetHPageMigratable(page);
4664 
4665 	unlock_page(page);
4666 out:
4667 	return ret;
4668 
4669 backout:
4670 	spin_unlock(ptl);
4671 backout_unlocked:
4672 	unlock_page(page);
4673 	restore_reserve_on_error(h, vma, haddr, page);
4674 	put_page(page);
4675 	goto out;
4676 }
4677 
4678 #ifdef CONFIG_SMP
4679 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4680 {
4681 	unsigned long key[2];
4682 	u32 hash;
4683 
4684 	key[0] = (unsigned long) mapping;
4685 	key[1] = idx;
4686 
4687 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4688 
4689 	return hash & (num_fault_mutexes - 1);
4690 }
4691 #else
4692 /*
4693  * For uniprocessor systems we always use a single mutex, so just
4694  * return 0 and avoid the hashing overhead.
4695  */
4696 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4697 {
4698 	return 0;
4699 }
4700 #endif
4701 
4702 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4703 			unsigned long address, unsigned int flags)
4704 {
4705 	pte_t *ptep, entry;
4706 	spinlock_t *ptl;
4707 	vm_fault_t ret;
4708 	u32 hash;
4709 	pgoff_t idx;
4710 	struct page *page = NULL;
4711 	struct page *pagecache_page = NULL;
4712 	struct hstate *h = hstate_vma(vma);
4713 	struct address_space *mapping;
4714 	int need_wait_lock = 0;
4715 	unsigned long haddr = address & huge_page_mask(h);
4716 
4717 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4718 	if (ptep) {
4719 		/*
4720 		 * Since we hold no locks, ptep could be stale.  That is
4721 		 * OK as we are only making decisions based on content and
4722 		 * not actually modifying content here.
4723 		 */
4724 		entry = huge_ptep_get(ptep);
4725 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4726 			migration_entry_wait_huge(vma, mm, ptep);
4727 			return 0;
4728 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4729 			return VM_FAULT_HWPOISON_LARGE |
4730 				VM_FAULT_SET_HINDEX(hstate_index(h));
4731 	}
4732 
4733 	/*
4734 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4735 	 * until finished with ptep.  This serves two purposes:
4736 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4737 	 *    and making the ptep no longer valid.
4738 	 * 2) It synchronizes us with i_size modifications during truncation.
4739 	 *
4740 	 * ptep could have already be assigned via huge_pte_offset.  That
4741 	 * is OK, as huge_pte_alloc will return the same value unless
4742 	 * something has changed.
4743 	 */
4744 	mapping = vma->vm_file->f_mapping;
4745 	i_mmap_lock_read(mapping);
4746 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4747 	if (!ptep) {
4748 		i_mmap_unlock_read(mapping);
4749 		return VM_FAULT_OOM;
4750 	}
4751 
4752 	/*
4753 	 * Serialize hugepage allocation and instantiation, so that we don't
4754 	 * get spurious allocation failures if two CPUs race to instantiate
4755 	 * the same page in the page cache.
4756 	 */
4757 	idx = vma_hugecache_offset(h, vma, haddr);
4758 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4759 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4760 
4761 	entry = huge_ptep_get(ptep);
4762 	if (huge_pte_none(entry)) {
4763 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4764 		goto out_mutex;
4765 	}
4766 
4767 	ret = 0;
4768 
4769 	/*
4770 	 * entry could be a migration/hwpoison entry at this point, so this
4771 	 * check prevents the kernel from going below assuming that we have
4772 	 * an active hugepage in pagecache. This goto expects the 2nd page
4773 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4774 	 * properly handle it.
4775 	 */
4776 	if (!pte_present(entry))
4777 		goto out_mutex;
4778 
4779 	/*
4780 	 * If we are going to COW the mapping later, we examine the pending
4781 	 * reservations for this page now. This will ensure that any
4782 	 * allocations necessary to record that reservation occur outside the
4783 	 * spinlock. For private mappings, we also lookup the pagecache
4784 	 * page now as it is used to determine if a reservation has been
4785 	 * consumed.
4786 	 */
4787 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4788 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4789 			ret = VM_FAULT_OOM;
4790 			goto out_mutex;
4791 		}
4792 		/* Just decrements count, does not deallocate */
4793 		vma_end_reservation(h, vma, haddr);
4794 
4795 		if (!(vma->vm_flags & VM_MAYSHARE))
4796 			pagecache_page = hugetlbfs_pagecache_page(h,
4797 								vma, haddr);
4798 	}
4799 
4800 	ptl = huge_pte_lock(h, mm, ptep);
4801 
4802 	/* Check for a racing update before calling hugetlb_cow */
4803 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4804 		goto out_ptl;
4805 
4806 	/*
4807 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4808 	 * pagecache_page, so here we need take the former one
4809 	 * when page != pagecache_page or !pagecache_page.
4810 	 */
4811 	page = pte_page(entry);
4812 	if (page != pagecache_page)
4813 		if (!trylock_page(page)) {
4814 			need_wait_lock = 1;
4815 			goto out_ptl;
4816 		}
4817 
4818 	get_page(page);
4819 
4820 	if (flags & FAULT_FLAG_WRITE) {
4821 		if (!huge_pte_write(entry)) {
4822 			ret = hugetlb_cow(mm, vma, address, ptep,
4823 					  pagecache_page, ptl);
4824 			goto out_put_page;
4825 		}
4826 		entry = huge_pte_mkdirty(entry);
4827 	}
4828 	entry = pte_mkyoung(entry);
4829 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4830 						flags & FAULT_FLAG_WRITE))
4831 		update_mmu_cache(vma, haddr, ptep);
4832 out_put_page:
4833 	if (page != pagecache_page)
4834 		unlock_page(page);
4835 	put_page(page);
4836 out_ptl:
4837 	spin_unlock(ptl);
4838 
4839 	if (pagecache_page) {
4840 		unlock_page(pagecache_page);
4841 		put_page(pagecache_page);
4842 	}
4843 out_mutex:
4844 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4845 	i_mmap_unlock_read(mapping);
4846 	/*
4847 	 * Generally it's safe to hold refcount during waiting page lock. But
4848 	 * here we just wait to defer the next page fault to avoid busy loop and
4849 	 * the page is not used after unlocked before returning from the current
4850 	 * page fault. So we are safe from accessing freed page, even if we wait
4851 	 * here without taking refcount.
4852 	 */
4853 	if (need_wait_lock)
4854 		wait_on_page_locked(page);
4855 	return ret;
4856 }
4857 
4858 #ifdef CONFIG_USERFAULTFD
4859 /*
4860  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4861  * modifications for huge pages.
4862  */
4863 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4864 			    pte_t *dst_pte,
4865 			    struct vm_area_struct *dst_vma,
4866 			    unsigned long dst_addr,
4867 			    unsigned long src_addr,
4868 			    enum mcopy_atomic_mode mode,
4869 			    struct page **pagep)
4870 {
4871 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
4872 	struct address_space *mapping;
4873 	pgoff_t idx;
4874 	unsigned long size;
4875 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4876 	struct hstate *h = hstate_vma(dst_vma);
4877 	pte_t _dst_pte;
4878 	spinlock_t *ptl;
4879 	int ret;
4880 	struct page *page;
4881 	int writable;
4882 
4883 	mapping = dst_vma->vm_file->f_mapping;
4884 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4885 
4886 	if (is_continue) {
4887 		ret = -EFAULT;
4888 		page = find_lock_page(mapping, idx);
4889 		if (!page)
4890 			goto out;
4891 	} else if (!*pagep) {
4892 		ret = -ENOMEM;
4893 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4894 		if (IS_ERR(page))
4895 			goto out;
4896 
4897 		ret = copy_huge_page_from_user(page,
4898 						(const void __user *) src_addr,
4899 						pages_per_huge_page(h), false);
4900 
4901 		/* fallback to copy_from_user outside mmap_lock */
4902 		if (unlikely(ret)) {
4903 			ret = -ENOENT;
4904 			*pagep = page;
4905 			/* don't free the page */
4906 			goto out;
4907 		}
4908 	} else {
4909 		page = *pagep;
4910 		*pagep = NULL;
4911 	}
4912 
4913 	/*
4914 	 * The memory barrier inside __SetPageUptodate makes sure that
4915 	 * preceding stores to the page contents become visible before
4916 	 * the set_pte_at() write.
4917 	 */
4918 	__SetPageUptodate(page);
4919 
4920 	/* Add shared, newly allocated pages to the page cache. */
4921 	if (vm_shared && !is_continue) {
4922 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4923 		ret = -EFAULT;
4924 		if (idx >= size)
4925 			goto out_release_nounlock;
4926 
4927 		/*
4928 		 * Serialization between remove_inode_hugepages() and
4929 		 * huge_add_to_page_cache() below happens through the
4930 		 * hugetlb_fault_mutex_table that here must be hold by
4931 		 * the caller.
4932 		 */
4933 		ret = huge_add_to_page_cache(page, mapping, idx);
4934 		if (ret)
4935 			goto out_release_nounlock;
4936 	}
4937 
4938 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4939 	spin_lock(ptl);
4940 
4941 	/*
4942 	 * Recheck the i_size after holding PT lock to make sure not
4943 	 * to leave any page mapped (as page_mapped()) beyond the end
4944 	 * of the i_size (remove_inode_hugepages() is strict about
4945 	 * enforcing that). If we bail out here, we'll also leave a
4946 	 * page in the radix tree in the vm_shared case beyond the end
4947 	 * of the i_size, but remove_inode_hugepages() will take care
4948 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4949 	 */
4950 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4951 	ret = -EFAULT;
4952 	if (idx >= size)
4953 		goto out_release_unlock;
4954 
4955 	ret = -EEXIST;
4956 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4957 		goto out_release_unlock;
4958 
4959 	if (vm_shared) {
4960 		page_dup_rmap(page, true);
4961 	} else {
4962 		ClearHPageRestoreReserve(page);
4963 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4964 	}
4965 
4966 	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
4967 	if (is_continue && !vm_shared)
4968 		writable = 0;
4969 	else
4970 		writable = dst_vma->vm_flags & VM_WRITE;
4971 
4972 	_dst_pte = make_huge_pte(dst_vma, page, writable);
4973 	if (writable)
4974 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4975 	_dst_pte = pte_mkyoung(_dst_pte);
4976 
4977 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4978 
4979 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4980 					dst_vma->vm_flags & VM_WRITE);
4981 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4982 
4983 	/* No need to invalidate - it was non-present before */
4984 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4985 
4986 	spin_unlock(ptl);
4987 	if (!is_continue)
4988 		SetHPageMigratable(page);
4989 	if (vm_shared || is_continue)
4990 		unlock_page(page);
4991 	ret = 0;
4992 out:
4993 	return ret;
4994 out_release_unlock:
4995 	spin_unlock(ptl);
4996 	if (vm_shared || is_continue)
4997 		unlock_page(page);
4998 out_release_nounlock:
4999 	put_page(page);
5000 	goto out;
5001 }
5002 #endif /* CONFIG_USERFAULTFD */
5003 
5004 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5005 				 int refs, struct page **pages,
5006 				 struct vm_area_struct **vmas)
5007 {
5008 	int nr;
5009 
5010 	for (nr = 0; nr < refs; nr++) {
5011 		if (likely(pages))
5012 			pages[nr] = mem_map_offset(page, nr);
5013 		if (vmas)
5014 			vmas[nr] = vma;
5015 	}
5016 }
5017 
5018 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5019 			 struct page **pages, struct vm_area_struct **vmas,
5020 			 unsigned long *position, unsigned long *nr_pages,
5021 			 long i, unsigned int flags, int *locked)
5022 {
5023 	unsigned long pfn_offset;
5024 	unsigned long vaddr = *position;
5025 	unsigned long remainder = *nr_pages;
5026 	struct hstate *h = hstate_vma(vma);
5027 	int err = -EFAULT, refs;
5028 
5029 	while (vaddr < vma->vm_end && remainder) {
5030 		pte_t *pte;
5031 		spinlock_t *ptl = NULL;
5032 		int absent;
5033 		struct page *page;
5034 
5035 		/*
5036 		 * If we have a pending SIGKILL, don't keep faulting pages and
5037 		 * potentially allocating memory.
5038 		 */
5039 		if (fatal_signal_pending(current)) {
5040 			remainder = 0;
5041 			break;
5042 		}
5043 
5044 		/*
5045 		 * Some archs (sparc64, sh*) have multiple pte_ts to
5046 		 * each hugepage.  We have to make sure we get the
5047 		 * first, for the page indexing below to work.
5048 		 *
5049 		 * Note that page table lock is not held when pte is null.
5050 		 */
5051 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5052 				      huge_page_size(h));
5053 		if (pte)
5054 			ptl = huge_pte_lock(h, mm, pte);
5055 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
5056 
5057 		/*
5058 		 * When coredumping, it suits get_dump_page if we just return
5059 		 * an error where there's an empty slot with no huge pagecache
5060 		 * to back it.  This way, we avoid allocating a hugepage, and
5061 		 * the sparse dumpfile avoids allocating disk blocks, but its
5062 		 * huge holes still show up with zeroes where they need to be.
5063 		 */
5064 		if (absent && (flags & FOLL_DUMP) &&
5065 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5066 			if (pte)
5067 				spin_unlock(ptl);
5068 			remainder = 0;
5069 			break;
5070 		}
5071 
5072 		/*
5073 		 * We need call hugetlb_fault for both hugepages under migration
5074 		 * (in which case hugetlb_fault waits for the migration,) and
5075 		 * hwpoisoned hugepages (in which case we need to prevent the
5076 		 * caller from accessing to them.) In order to do this, we use
5077 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
5078 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5079 		 * both cases, and because we can't follow correct pages
5080 		 * directly from any kind of swap entries.
5081 		 */
5082 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5083 		    ((flags & FOLL_WRITE) &&
5084 		      !huge_pte_write(huge_ptep_get(pte)))) {
5085 			vm_fault_t ret;
5086 			unsigned int fault_flags = 0;
5087 
5088 			if (pte)
5089 				spin_unlock(ptl);
5090 			if (flags & FOLL_WRITE)
5091 				fault_flags |= FAULT_FLAG_WRITE;
5092 			if (locked)
5093 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5094 					FAULT_FLAG_KILLABLE;
5095 			if (flags & FOLL_NOWAIT)
5096 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5097 					FAULT_FLAG_RETRY_NOWAIT;
5098 			if (flags & FOLL_TRIED) {
5099 				/*
5100 				 * Note: FAULT_FLAG_ALLOW_RETRY and
5101 				 * FAULT_FLAG_TRIED can co-exist
5102 				 */
5103 				fault_flags |= FAULT_FLAG_TRIED;
5104 			}
5105 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5106 			if (ret & VM_FAULT_ERROR) {
5107 				err = vm_fault_to_errno(ret, flags);
5108 				remainder = 0;
5109 				break;
5110 			}
5111 			if (ret & VM_FAULT_RETRY) {
5112 				if (locked &&
5113 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5114 					*locked = 0;
5115 				*nr_pages = 0;
5116 				/*
5117 				 * VM_FAULT_RETRY must not return an
5118 				 * error, it will return zero
5119 				 * instead.
5120 				 *
5121 				 * No need to update "position" as the
5122 				 * caller will not check it after
5123 				 * *nr_pages is set to 0.
5124 				 */
5125 				return i;
5126 			}
5127 			continue;
5128 		}
5129 
5130 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5131 		page = pte_page(huge_ptep_get(pte));
5132 
5133 		/*
5134 		 * If subpage information not requested, update counters
5135 		 * and skip the same_page loop below.
5136 		 */
5137 		if (!pages && !vmas && !pfn_offset &&
5138 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
5139 		    (remainder >= pages_per_huge_page(h))) {
5140 			vaddr += huge_page_size(h);
5141 			remainder -= pages_per_huge_page(h);
5142 			i += pages_per_huge_page(h);
5143 			spin_unlock(ptl);
5144 			continue;
5145 		}
5146 
5147 		refs = min3(pages_per_huge_page(h) - pfn_offset,
5148 			    (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
5149 
5150 		if (pages || vmas)
5151 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
5152 					     vma, refs,
5153 					     likely(pages) ? pages + i : NULL,
5154 					     vmas ? vmas + i : NULL);
5155 
5156 		if (pages) {
5157 			/*
5158 			 * try_grab_compound_head() should always succeed here,
5159 			 * because: a) we hold the ptl lock, and b) we've just
5160 			 * checked that the huge page is present in the page
5161 			 * tables. If the huge page is present, then the tail
5162 			 * pages must also be present. The ptl prevents the
5163 			 * head page and tail pages from being rearranged in
5164 			 * any way. So this page must be available at this
5165 			 * point, unless the page refcount overflowed:
5166 			 */
5167 			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5168 								 refs,
5169 								 flags))) {
5170 				spin_unlock(ptl);
5171 				remainder = 0;
5172 				err = -ENOMEM;
5173 				break;
5174 			}
5175 		}
5176 
5177 		vaddr += (refs << PAGE_SHIFT);
5178 		remainder -= refs;
5179 		i += refs;
5180 
5181 		spin_unlock(ptl);
5182 	}
5183 	*nr_pages = remainder;
5184 	/*
5185 	 * setting position is actually required only if remainder is
5186 	 * not zero but it's faster not to add a "if (remainder)"
5187 	 * branch.
5188 	 */
5189 	*position = vaddr;
5190 
5191 	return i ? i : err;
5192 }
5193 
5194 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5195 		unsigned long address, unsigned long end, pgprot_t newprot)
5196 {
5197 	struct mm_struct *mm = vma->vm_mm;
5198 	unsigned long start = address;
5199 	pte_t *ptep;
5200 	pte_t pte;
5201 	struct hstate *h = hstate_vma(vma);
5202 	unsigned long pages = 0;
5203 	bool shared_pmd = false;
5204 	struct mmu_notifier_range range;
5205 
5206 	/*
5207 	 * In the case of shared PMDs, the area to flush could be beyond
5208 	 * start/end.  Set range.start/range.end to cover the maximum possible
5209 	 * range if PMD sharing is possible.
5210 	 */
5211 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5212 				0, vma, mm, start, end);
5213 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5214 
5215 	BUG_ON(address >= end);
5216 	flush_cache_range(vma, range.start, range.end);
5217 
5218 	mmu_notifier_invalidate_range_start(&range);
5219 	i_mmap_lock_write(vma->vm_file->f_mapping);
5220 	for (; address < end; address += huge_page_size(h)) {
5221 		spinlock_t *ptl;
5222 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5223 		if (!ptep)
5224 			continue;
5225 		ptl = huge_pte_lock(h, mm, ptep);
5226 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5227 			pages++;
5228 			spin_unlock(ptl);
5229 			shared_pmd = true;
5230 			continue;
5231 		}
5232 		pte = huge_ptep_get(ptep);
5233 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5234 			spin_unlock(ptl);
5235 			continue;
5236 		}
5237 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5238 			swp_entry_t entry = pte_to_swp_entry(pte);
5239 
5240 			if (is_write_migration_entry(entry)) {
5241 				pte_t newpte;
5242 
5243 				make_migration_entry_read(&entry);
5244 				newpte = swp_entry_to_pte(entry);
5245 				set_huge_swap_pte_at(mm, address, ptep,
5246 						     newpte, huge_page_size(h));
5247 				pages++;
5248 			}
5249 			spin_unlock(ptl);
5250 			continue;
5251 		}
5252 		if (!huge_pte_none(pte)) {
5253 			pte_t old_pte;
5254 
5255 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5256 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5257 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5258 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5259 			pages++;
5260 		}
5261 		spin_unlock(ptl);
5262 	}
5263 	/*
5264 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5265 	 * may have cleared our pud entry and done put_page on the page table:
5266 	 * once we release i_mmap_rwsem, another task can do the final put_page
5267 	 * and that page table be reused and filled with junk.  If we actually
5268 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5269 	 */
5270 	if (shared_pmd)
5271 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5272 	else
5273 		flush_hugetlb_tlb_range(vma, start, end);
5274 	/*
5275 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5276 	 * page table protection not changing it to point to a new page.
5277 	 *
5278 	 * See Documentation/vm/mmu_notifier.rst
5279 	 */
5280 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5281 	mmu_notifier_invalidate_range_end(&range);
5282 
5283 	return pages << h->order;
5284 }
5285 
5286 /* Return true if reservation was successful, false otherwise.  */
5287 bool hugetlb_reserve_pages(struct inode *inode,
5288 					long from, long to,
5289 					struct vm_area_struct *vma,
5290 					vm_flags_t vm_flags)
5291 {
5292 	long chg, add = -1;
5293 	struct hstate *h = hstate_inode(inode);
5294 	struct hugepage_subpool *spool = subpool_inode(inode);
5295 	struct resv_map *resv_map;
5296 	struct hugetlb_cgroup *h_cg = NULL;
5297 	long gbl_reserve, regions_needed = 0;
5298 
5299 	/* This should never happen */
5300 	if (from > to) {
5301 		VM_WARN(1, "%s called with a negative range\n", __func__);
5302 		return false;
5303 	}
5304 
5305 	/*
5306 	 * Only apply hugepage reservation if asked. At fault time, an
5307 	 * attempt will be made for VM_NORESERVE to allocate a page
5308 	 * without using reserves
5309 	 */
5310 	if (vm_flags & VM_NORESERVE)
5311 		return true;
5312 
5313 	/*
5314 	 * Shared mappings base their reservation on the number of pages that
5315 	 * are already allocated on behalf of the file. Private mappings need
5316 	 * to reserve the full area even if read-only as mprotect() may be
5317 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5318 	 */
5319 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5320 		/*
5321 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5322 		 * called for inodes for which resv_maps were created (see
5323 		 * hugetlbfs_get_inode).
5324 		 */
5325 		resv_map = inode_resv_map(inode);
5326 
5327 		chg = region_chg(resv_map, from, to, &regions_needed);
5328 
5329 	} else {
5330 		/* Private mapping. */
5331 		resv_map = resv_map_alloc();
5332 		if (!resv_map)
5333 			return false;
5334 
5335 		chg = to - from;
5336 
5337 		set_vma_resv_map(vma, resv_map);
5338 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5339 	}
5340 
5341 	if (chg < 0)
5342 		goto out_err;
5343 
5344 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5345 				chg * pages_per_huge_page(h), &h_cg) < 0)
5346 		goto out_err;
5347 
5348 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5349 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5350 		 * of the resv_map.
5351 		 */
5352 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5353 	}
5354 
5355 	/*
5356 	 * There must be enough pages in the subpool for the mapping. If
5357 	 * the subpool has a minimum size, there may be some global
5358 	 * reservations already in place (gbl_reserve).
5359 	 */
5360 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5361 	if (gbl_reserve < 0)
5362 		goto out_uncharge_cgroup;
5363 
5364 	/*
5365 	 * Check enough hugepages are available for the reservation.
5366 	 * Hand the pages back to the subpool if there are not
5367 	 */
5368 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5369 		goto out_put_pages;
5370 
5371 	/*
5372 	 * Account for the reservations made. Shared mappings record regions
5373 	 * that have reservations as they are shared by multiple VMAs.
5374 	 * When the last VMA disappears, the region map says how much
5375 	 * the reservation was and the page cache tells how much of
5376 	 * the reservation was consumed. Private mappings are per-VMA and
5377 	 * only the consumed reservations are tracked. When the VMA
5378 	 * disappears, the original reservation is the VMA size and the
5379 	 * consumed reservations are stored in the map. Hence, nothing
5380 	 * else has to be done for private mappings here
5381 	 */
5382 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5383 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5384 
5385 		if (unlikely(add < 0)) {
5386 			hugetlb_acct_memory(h, -gbl_reserve);
5387 			goto out_put_pages;
5388 		} else if (unlikely(chg > add)) {
5389 			/*
5390 			 * pages in this range were added to the reserve
5391 			 * map between region_chg and region_add.  This
5392 			 * indicates a race with alloc_huge_page.  Adjust
5393 			 * the subpool and reserve counts modified above
5394 			 * based on the difference.
5395 			 */
5396 			long rsv_adjust;
5397 
5398 			/*
5399 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5400 			 * reference to h_cg->css. See comment below for detail.
5401 			 */
5402 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5403 				hstate_index(h),
5404 				(chg - add) * pages_per_huge_page(h), h_cg);
5405 
5406 			rsv_adjust = hugepage_subpool_put_pages(spool,
5407 								chg - add);
5408 			hugetlb_acct_memory(h, -rsv_adjust);
5409 		} else if (h_cg) {
5410 			/*
5411 			 * The file_regions will hold their own reference to
5412 			 * h_cg->css. So we should release the reference held
5413 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5414 			 * done.
5415 			 */
5416 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5417 		}
5418 	}
5419 	return true;
5420 
5421 out_put_pages:
5422 	/* put back original number of pages, chg */
5423 	(void)hugepage_subpool_put_pages(spool, chg);
5424 out_uncharge_cgroup:
5425 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5426 					    chg * pages_per_huge_page(h), h_cg);
5427 out_err:
5428 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5429 		/* Only call region_abort if the region_chg succeeded but the
5430 		 * region_add failed or didn't run.
5431 		 */
5432 		if (chg >= 0 && add < 0)
5433 			region_abort(resv_map, from, to, regions_needed);
5434 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5435 		kref_put(&resv_map->refs, resv_map_release);
5436 	return false;
5437 }
5438 
5439 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5440 								long freed)
5441 {
5442 	struct hstate *h = hstate_inode(inode);
5443 	struct resv_map *resv_map = inode_resv_map(inode);
5444 	long chg = 0;
5445 	struct hugepage_subpool *spool = subpool_inode(inode);
5446 	long gbl_reserve;
5447 
5448 	/*
5449 	 * Since this routine can be called in the evict inode path for all
5450 	 * hugetlbfs inodes, resv_map could be NULL.
5451 	 */
5452 	if (resv_map) {
5453 		chg = region_del(resv_map, start, end);
5454 		/*
5455 		 * region_del() can fail in the rare case where a region
5456 		 * must be split and another region descriptor can not be
5457 		 * allocated.  If end == LONG_MAX, it will not fail.
5458 		 */
5459 		if (chg < 0)
5460 			return chg;
5461 	}
5462 
5463 	spin_lock(&inode->i_lock);
5464 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5465 	spin_unlock(&inode->i_lock);
5466 
5467 	/*
5468 	 * If the subpool has a minimum size, the number of global
5469 	 * reservations to be released may be adjusted.
5470 	 *
5471 	 * Note that !resv_map implies freed == 0. So (chg - freed)
5472 	 * won't go negative.
5473 	 */
5474 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5475 	hugetlb_acct_memory(h, -gbl_reserve);
5476 
5477 	return 0;
5478 }
5479 
5480 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5481 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5482 				struct vm_area_struct *vma,
5483 				unsigned long addr, pgoff_t idx)
5484 {
5485 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5486 				svma->vm_start;
5487 	unsigned long sbase = saddr & PUD_MASK;
5488 	unsigned long s_end = sbase + PUD_SIZE;
5489 
5490 	/* Allow segments to share if only one is marked locked */
5491 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5492 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5493 
5494 	/*
5495 	 * match the virtual addresses, permission and the alignment of the
5496 	 * page table page.
5497 	 */
5498 	if (pmd_index(addr) != pmd_index(saddr) ||
5499 	    vm_flags != svm_flags ||
5500 	    !range_in_vma(svma, sbase, s_end))
5501 		return 0;
5502 
5503 	return saddr;
5504 }
5505 
5506 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5507 {
5508 	unsigned long base = addr & PUD_MASK;
5509 	unsigned long end = base + PUD_SIZE;
5510 
5511 	/*
5512 	 * check on proper vm_flags and page table alignment
5513 	 */
5514 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5515 		return true;
5516 	return false;
5517 }
5518 
5519 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5520 {
5521 #ifdef CONFIG_USERFAULTFD
5522 	if (uffd_disable_huge_pmd_share(vma))
5523 		return false;
5524 #endif
5525 	return vma_shareable(vma, addr);
5526 }
5527 
5528 /*
5529  * Determine if start,end range within vma could be mapped by shared pmd.
5530  * If yes, adjust start and end to cover range associated with possible
5531  * shared pmd mappings.
5532  */
5533 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5534 				unsigned long *start, unsigned long *end)
5535 {
5536 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5537 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5538 
5539 	/*
5540 	 * vma needs to span at least one aligned PUD size, and the range
5541 	 * must be at least partially within in.
5542 	 */
5543 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5544 		(*end <= v_start) || (*start >= v_end))
5545 		return;
5546 
5547 	/* Extend the range to be PUD aligned for a worst case scenario */
5548 	if (*start > v_start)
5549 		*start = ALIGN_DOWN(*start, PUD_SIZE);
5550 
5551 	if (*end < v_end)
5552 		*end = ALIGN(*end, PUD_SIZE);
5553 }
5554 
5555 /*
5556  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5557  * and returns the corresponding pte. While this is not necessary for the
5558  * !shared pmd case because we can allocate the pmd later as well, it makes the
5559  * code much cleaner.
5560  *
5561  * This routine must be called with i_mmap_rwsem held in at least read mode if
5562  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5563  * table entries associated with the address space.  This is important as we
5564  * are setting up sharing based on existing page table entries (mappings).
5565  *
5566  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5567  * huge_pte_alloc know that sharing is not possible and do not take
5568  * i_mmap_rwsem as a performance optimization.  This is handled by the
5569  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5570  * only required for subsequent processing.
5571  */
5572 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5573 		      unsigned long addr, pud_t *pud)
5574 {
5575 	struct address_space *mapping = vma->vm_file->f_mapping;
5576 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5577 			vma->vm_pgoff;
5578 	struct vm_area_struct *svma;
5579 	unsigned long saddr;
5580 	pte_t *spte = NULL;
5581 	pte_t *pte;
5582 	spinlock_t *ptl;
5583 
5584 	i_mmap_assert_locked(mapping);
5585 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5586 		if (svma == vma)
5587 			continue;
5588 
5589 		saddr = page_table_shareable(svma, vma, addr, idx);
5590 		if (saddr) {
5591 			spte = huge_pte_offset(svma->vm_mm, saddr,
5592 					       vma_mmu_pagesize(svma));
5593 			if (spte) {
5594 				get_page(virt_to_page(spte));
5595 				break;
5596 			}
5597 		}
5598 	}
5599 
5600 	if (!spte)
5601 		goto out;
5602 
5603 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5604 	if (pud_none(*pud)) {
5605 		pud_populate(mm, pud,
5606 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5607 		mm_inc_nr_pmds(mm);
5608 	} else {
5609 		put_page(virt_to_page(spte));
5610 	}
5611 	spin_unlock(ptl);
5612 out:
5613 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5614 	return pte;
5615 }
5616 
5617 /*
5618  * unmap huge page backed by shared pte.
5619  *
5620  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5621  * indicated by page_count > 1, unmap is achieved by clearing pud and
5622  * decrementing the ref count. If count == 1, the pte page is not shared.
5623  *
5624  * Called with page table lock held and i_mmap_rwsem held in write mode.
5625  *
5626  * returns: 1 successfully unmapped a shared pte page
5627  *	    0 the underlying pte page is not shared, or it is the last user
5628  */
5629 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5630 					unsigned long *addr, pte_t *ptep)
5631 {
5632 	pgd_t *pgd = pgd_offset(mm, *addr);
5633 	p4d_t *p4d = p4d_offset(pgd, *addr);
5634 	pud_t *pud = pud_offset(p4d, *addr);
5635 
5636 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5637 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5638 	if (page_count(virt_to_page(ptep)) == 1)
5639 		return 0;
5640 
5641 	pud_clear(pud);
5642 	put_page(virt_to_page(ptep));
5643 	mm_dec_nr_pmds(mm);
5644 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5645 	return 1;
5646 }
5647 
5648 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5649 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5650 		      unsigned long addr, pud_t *pud)
5651 {
5652 	return NULL;
5653 }
5654 
5655 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5656 				unsigned long *addr, pte_t *ptep)
5657 {
5658 	return 0;
5659 }
5660 
5661 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5662 				unsigned long *start, unsigned long *end)
5663 {
5664 }
5665 
5666 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5667 {
5668 	return false;
5669 }
5670 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5671 
5672 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5673 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5674 			unsigned long addr, unsigned long sz)
5675 {
5676 	pgd_t *pgd;
5677 	p4d_t *p4d;
5678 	pud_t *pud;
5679 	pte_t *pte = NULL;
5680 
5681 	pgd = pgd_offset(mm, addr);
5682 	p4d = p4d_alloc(mm, pgd, addr);
5683 	if (!p4d)
5684 		return NULL;
5685 	pud = pud_alloc(mm, p4d, addr);
5686 	if (pud) {
5687 		if (sz == PUD_SIZE) {
5688 			pte = (pte_t *)pud;
5689 		} else {
5690 			BUG_ON(sz != PMD_SIZE);
5691 			if (want_pmd_share(vma, addr) && pud_none(*pud))
5692 				pte = huge_pmd_share(mm, vma, addr, pud);
5693 			else
5694 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5695 		}
5696 	}
5697 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5698 
5699 	return pte;
5700 }
5701 
5702 /*
5703  * huge_pte_offset() - Walk the page table to resolve the hugepage
5704  * entry at address @addr
5705  *
5706  * Return: Pointer to page table entry (PUD or PMD) for
5707  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5708  * size @sz doesn't match the hugepage size at this level of the page
5709  * table.
5710  */
5711 pte_t *huge_pte_offset(struct mm_struct *mm,
5712 		       unsigned long addr, unsigned long sz)
5713 {
5714 	pgd_t *pgd;
5715 	p4d_t *p4d;
5716 	pud_t *pud;
5717 	pmd_t *pmd;
5718 
5719 	pgd = pgd_offset(mm, addr);
5720 	if (!pgd_present(*pgd))
5721 		return NULL;
5722 	p4d = p4d_offset(pgd, addr);
5723 	if (!p4d_present(*p4d))
5724 		return NULL;
5725 
5726 	pud = pud_offset(p4d, addr);
5727 	if (sz == PUD_SIZE)
5728 		/* must be pud huge, non-present or none */
5729 		return (pte_t *)pud;
5730 	if (!pud_present(*pud))
5731 		return NULL;
5732 	/* must have a valid entry and size to go further */
5733 
5734 	pmd = pmd_offset(pud, addr);
5735 	/* must be pmd huge, non-present or none */
5736 	return (pte_t *)pmd;
5737 }
5738 
5739 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5740 
5741 /*
5742  * These functions are overwritable if your architecture needs its own
5743  * behavior.
5744  */
5745 struct page * __weak
5746 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5747 			      int write)
5748 {
5749 	return ERR_PTR(-EINVAL);
5750 }
5751 
5752 struct page * __weak
5753 follow_huge_pd(struct vm_area_struct *vma,
5754 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5755 {
5756 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5757 	return NULL;
5758 }
5759 
5760 struct page * __weak
5761 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5762 		pmd_t *pmd, int flags)
5763 {
5764 	struct page *page = NULL;
5765 	spinlock_t *ptl;
5766 	pte_t pte;
5767 
5768 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5769 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5770 			 (FOLL_PIN | FOLL_GET)))
5771 		return NULL;
5772 
5773 retry:
5774 	ptl = pmd_lockptr(mm, pmd);
5775 	spin_lock(ptl);
5776 	/*
5777 	 * make sure that the address range covered by this pmd is not
5778 	 * unmapped from other threads.
5779 	 */
5780 	if (!pmd_huge(*pmd))
5781 		goto out;
5782 	pte = huge_ptep_get((pte_t *)pmd);
5783 	if (pte_present(pte)) {
5784 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5785 		/*
5786 		 * try_grab_page() should always succeed here, because: a) we
5787 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5788 		 * huge pmd (head) page is present in the page tables. The ptl
5789 		 * prevents the head page and tail pages from being rearranged
5790 		 * in any way. So this page must be available at this point,
5791 		 * unless the page refcount overflowed:
5792 		 */
5793 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5794 			page = NULL;
5795 			goto out;
5796 		}
5797 	} else {
5798 		if (is_hugetlb_entry_migration(pte)) {
5799 			spin_unlock(ptl);
5800 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5801 			goto retry;
5802 		}
5803 		/*
5804 		 * hwpoisoned entry is treated as no_page_table in
5805 		 * follow_page_mask().
5806 		 */
5807 	}
5808 out:
5809 	spin_unlock(ptl);
5810 	return page;
5811 }
5812 
5813 struct page * __weak
5814 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5815 		pud_t *pud, int flags)
5816 {
5817 	if (flags & (FOLL_GET | FOLL_PIN))
5818 		return NULL;
5819 
5820 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5821 }
5822 
5823 struct page * __weak
5824 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5825 {
5826 	if (flags & (FOLL_GET | FOLL_PIN))
5827 		return NULL;
5828 
5829 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5830 }
5831 
5832 bool isolate_huge_page(struct page *page, struct list_head *list)
5833 {
5834 	bool ret = true;
5835 
5836 	spin_lock_irq(&hugetlb_lock);
5837 	if (!PageHeadHuge(page) ||
5838 	    !HPageMigratable(page) ||
5839 	    !get_page_unless_zero(page)) {
5840 		ret = false;
5841 		goto unlock;
5842 	}
5843 	ClearHPageMigratable(page);
5844 	list_move_tail(&page->lru, list);
5845 unlock:
5846 	spin_unlock_irq(&hugetlb_lock);
5847 	return ret;
5848 }
5849 
5850 void putback_active_hugepage(struct page *page)
5851 {
5852 	spin_lock_irq(&hugetlb_lock);
5853 	SetHPageMigratable(page);
5854 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5855 	spin_unlock_irq(&hugetlb_lock);
5856 	put_page(page);
5857 }
5858 
5859 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5860 {
5861 	struct hstate *h = page_hstate(oldpage);
5862 
5863 	hugetlb_cgroup_migrate(oldpage, newpage);
5864 	set_page_owner_migrate_reason(newpage, reason);
5865 
5866 	/*
5867 	 * transfer temporary state of the new huge page. This is
5868 	 * reverse to other transitions because the newpage is going to
5869 	 * be final while the old one will be freed so it takes over
5870 	 * the temporary status.
5871 	 *
5872 	 * Also note that we have to transfer the per-node surplus state
5873 	 * here as well otherwise the global surplus count will not match
5874 	 * the per-node's.
5875 	 */
5876 	if (HPageTemporary(newpage)) {
5877 		int old_nid = page_to_nid(oldpage);
5878 		int new_nid = page_to_nid(newpage);
5879 
5880 		SetHPageTemporary(oldpage);
5881 		ClearHPageTemporary(newpage);
5882 
5883 		/*
5884 		 * There is no need to transfer the per-node surplus state
5885 		 * when we do not cross the node.
5886 		 */
5887 		if (new_nid == old_nid)
5888 			return;
5889 		spin_lock_irq(&hugetlb_lock);
5890 		if (h->surplus_huge_pages_node[old_nid]) {
5891 			h->surplus_huge_pages_node[old_nid]--;
5892 			h->surplus_huge_pages_node[new_nid]++;
5893 		}
5894 		spin_unlock_irq(&hugetlb_lock);
5895 	}
5896 }
5897 
5898 /*
5899  * This function will unconditionally remove all the shared pmd pgtable entries
5900  * within the specific vma for a hugetlbfs memory range.
5901  */
5902 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5903 {
5904 	struct hstate *h = hstate_vma(vma);
5905 	unsigned long sz = huge_page_size(h);
5906 	struct mm_struct *mm = vma->vm_mm;
5907 	struct mmu_notifier_range range;
5908 	unsigned long address, start, end;
5909 	spinlock_t *ptl;
5910 	pte_t *ptep;
5911 
5912 	if (!(vma->vm_flags & VM_MAYSHARE))
5913 		return;
5914 
5915 	start = ALIGN(vma->vm_start, PUD_SIZE);
5916 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5917 
5918 	if (start >= end)
5919 		return;
5920 
5921 	/*
5922 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
5923 	 * we have already done the PUD_SIZE alignment.
5924 	 */
5925 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5926 				start, end);
5927 	mmu_notifier_invalidate_range_start(&range);
5928 	i_mmap_lock_write(vma->vm_file->f_mapping);
5929 	for (address = start; address < end; address += PUD_SIZE) {
5930 		unsigned long tmp = address;
5931 
5932 		ptep = huge_pte_offset(mm, address, sz);
5933 		if (!ptep)
5934 			continue;
5935 		ptl = huge_pte_lock(h, mm, ptep);
5936 		/* We don't want 'address' to be changed */
5937 		huge_pmd_unshare(mm, vma, &tmp, ptep);
5938 		spin_unlock(ptl);
5939 	}
5940 	flush_hugetlb_tlb_range(vma, start, end);
5941 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5942 	/*
5943 	 * No need to call mmu_notifier_invalidate_range(), see
5944 	 * Documentation/vm/mmu_notifier.rst.
5945 	 */
5946 	mmu_notifier_invalidate_range_end(&range);
5947 }
5948 
5949 #ifdef CONFIG_CMA
5950 static bool cma_reserve_called __initdata;
5951 
5952 static int __init cmdline_parse_hugetlb_cma(char *p)
5953 {
5954 	hugetlb_cma_size = memparse(p, &p);
5955 	return 0;
5956 }
5957 
5958 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5959 
5960 void __init hugetlb_cma_reserve(int order)
5961 {
5962 	unsigned long size, reserved, per_node;
5963 	int nid;
5964 
5965 	cma_reserve_called = true;
5966 
5967 	if (!hugetlb_cma_size)
5968 		return;
5969 
5970 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5971 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5972 			(PAGE_SIZE << order) / SZ_1M);
5973 		return;
5974 	}
5975 
5976 	/*
5977 	 * If 3 GB area is requested on a machine with 4 numa nodes,
5978 	 * let's allocate 1 GB on first three nodes and ignore the last one.
5979 	 */
5980 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5981 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5982 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5983 
5984 	reserved = 0;
5985 	for_each_node_state(nid, N_ONLINE) {
5986 		int res;
5987 		char name[CMA_MAX_NAME];
5988 
5989 		size = min(per_node, hugetlb_cma_size - reserved);
5990 		size = round_up(size, PAGE_SIZE << order);
5991 
5992 		snprintf(name, sizeof(name), "hugetlb%d", nid);
5993 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5994 						 0, false, name,
5995 						 &hugetlb_cma[nid], nid);
5996 		if (res) {
5997 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5998 				res, nid);
5999 			continue;
6000 		}
6001 
6002 		reserved += size;
6003 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6004 			size / SZ_1M, nid);
6005 
6006 		if (reserved >= hugetlb_cma_size)
6007 			break;
6008 	}
6009 }
6010 
6011 void __init hugetlb_cma_check(void)
6012 {
6013 	if (!hugetlb_cma_size || cma_reserve_called)
6014 		return;
6015 
6016 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6017 }
6018 
6019 #endif /* CONFIG_CMA */
6020