xref: /openbmc/linux/mm/hugetlb.c (revision f79e4d5f)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28 
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlb.h>
32 
33 #include <linux/io.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include <linux/page_owner.h>
39 #include "internal.h"
40 
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44 /*
45  * Minimum page order among possible hugepage sizes, set to a proper value
46  * at boot time.
47  */
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
49 
50 __initdata LIST_HEAD(huge_boot_pages);
51 
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
57 
58 /*
59  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60  * free_huge_pages, and surplus_huge_pages.
61  */
62 DEFINE_SPINLOCK(hugetlb_lock);
63 
64 /*
65  * Serializes faults on the same logical page.  This is used to
66  * prevent spurious OOMs when the hugepage pool is fully utilized.
67  */
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70 
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
73 
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 {
76 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
77 
78 	spin_unlock(&spool->lock);
79 
80 	/* If no pages are used, and no other handles to the subpool
81 	 * remain, give up any reservations mased on minimum size and
82 	 * free the subpool */
83 	if (free) {
84 		if (spool->min_hpages != -1)
85 			hugetlb_acct_memory(spool->hstate,
86 						-spool->min_hpages);
87 		kfree(spool);
88 	}
89 }
90 
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 						long min_hpages)
93 {
94 	struct hugepage_subpool *spool;
95 
96 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 	if (!spool)
98 		return NULL;
99 
100 	spin_lock_init(&spool->lock);
101 	spool->count = 1;
102 	spool->max_hpages = max_hpages;
103 	spool->hstate = h;
104 	spool->min_hpages = min_hpages;
105 
106 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 		kfree(spool);
108 		return NULL;
109 	}
110 	spool->rsv_hpages = min_hpages;
111 
112 	return spool;
113 }
114 
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 {
117 	spin_lock(&spool->lock);
118 	BUG_ON(!spool->count);
119 	spool->count--;
120 	unlock_or_release_subpool(spool);
121 }
122 
123 /*
124  * Subpool accounting for allocating and reserving pages.
125  * Return -ENOMEM if there are not enough resources to satisfy the
126  * the request.  Otherwise, return the number of pages by which the
127  * global pools must be adjusted (upward).  The returned value may
128  * only be different than the passed value (delta) in the case where
129  * a subpool minimum size must be manitained.
130  */
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 				      long delta)
133 {
134 	long ret = delta;
135 
136 	if (!spool)
137 		return ret;
138 
139 	spin_lock(&spool->lock);
140 
141 	if (spool->max_hpages != -1) {		/* maximum size accounting */
142 		if ((spool->used_hpages + delta) <= spool->max_hpages)
143 			spool->used_hpages += delta;
144 		else {
145 			ret = -ENOMEM;
146 			goto unlock_ret;
147 		}
148 	}
149 
150 	/* minimum size accounting */
151 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 		if (delta > spool->rsv_hpages) {
153 			/*
154 			 * Asking for more reserves than those already taken on
155 			 * behalf of subpool.  Return difference.
156 			 */
157 			ret = delta - spool->rsv_hpages;
158 			spool->rsv_hpages = 0;
159 		} else {
160 			ret = 0;	/* reserves already accounted for */
161 			spool->rsv_hpages -= delta;
162 		}
163 	}
164 
165 unlock_ret:
166 	spin_unlock(&spool->lock);
167 	return ret;
168 }
169 
170 /*
171  * Subpool accounting for freeing and unreserving pages.
172  * Return the number of global page reservations that must be dropped.
173  * The return value may only be different than the passed value (delta)
174  * in the case where a subpool minimum size must be maintained.
175  */
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 				       long delta)
178 {
179 	long ret = delta;
180 
181 	if (!spool)
182 		return delta;
183 
184 	spin_lock(&spool->lock);
185 
186 	if (spool->max_hpages != -1)		/* maximum size accounting */
187 		spool->used_hpages -= delta;
188 
189 	 /* minimum size accounting */
190 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 		if (spool->rsv_hpages + delta <= spool->min_hpages)
192 			ret = 0;
193 		else
194 			ret = spool->rsv_hpages + delta - spool->min_hpages;
195 
196 		spool->rsv_hpages += delta;
197 		if (spool->rsv_hpages > spool->min_hpages)
198 			spool->rsv_hpages = spool->min_hpages;
199 	}
200 
201 	/*
202 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 	 * quota reference, free it now.
204 	 */
205 	unlock_or_release_subpool(spool);
206 
207 	return ret;
208 }
209 
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 {
212 	return HUGETLBFS_SB(inode->i_sb)->spool;
213 }
214 
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 {
217 	return subpool_inode(file_inode(vma->vm_file));
218 }
219 
220 /*
221  * Region tracking -- allows tracking of reservations and instantiated pages
222  *                    across the pages in a mapping.
223  *
224  * The region data structures are embedded into a resv_map and protected
225  * by a resv_map's lock.  The set of regions within the resv_map represent
226  * reservations for huge pages, or huge pages that have already been
227  * instantiated within the map.  The from and to elements are huge page
228  * indicies into the associated mapping.  from indicates the starting index
229  * of the region.  to represents the first index past the end of  the region.
230  *
231  * For example, a file region structure with from == 0 and to == 4 represents
232  * four huge pages in a mapping.  It is important to note that the to element
233  * represents the first element past the end of the region. This is used in
234  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235  *
236  * Interval notation of the form [from, to) will be used to indicate that
237  * the endpoint from is inclusive and to is exclusive.
238  */
239 struct file_region {
240 	struct list_head link;
241 	long from;
242 	long to;
243 };
244 
245 /*
246  * Add the huge page range represented by [f, t) to the reserve
247  * map.  In the normal case, existing regions will be expanded
248  * to accommodate the specified range.  Sufficient regions should
249  * exist for expansion due to the previous call to region_chg
250  * with the same range.  However, it is possible that region_del
251  * could have been called after region_chg and modifed the map
252  * in such a way that no region exists to be expanded.  In this
253  * case, pull a region descriptor from the cache associated with
254  * the map and use that for the new range.
255  *
256  * Return the number of new huge pages added to the map.  This
257  * number is greater than or equal to zero.
258  */
259 static long region_add(struct resv_map *resv, long f, long t)
260 {
261 	struct list_head *head = &resv->regions;
262 	struct file_region *rg, *nrg, *trg;
263 	long add = 0;
264 
265 	spin_lock(&resv->lock);
266 	/* Locate the region we are either in or before. */
267 	list_for_each_entry(rg, head, link)
268 		if (f <= rg->to)
269 			break;
270 
271 	/*
272 	 * If no region exists which can be expanded to include the
273 	 * specified range, the list must have been modified by an
274 	 * interleving call to region_del().  Pull a region descriptor
275 	 * from the cache and use it for this range.
276 	 */
277 	if (&rg->link == head || t < rg->from) {
278 		VM_BUG_ON(resv->region_cache_count <= 0);
279 
280 		resv->region_cache_count--;
281 		nrg = list_first_entry(&resv->region_cache, struct file_region,
282 					link);
283 		list_del(&nrg->link);
284 
285 		nrg->from = f;
286 		nrg->to = t;
287 		list_add(&nrg->link, rg->link.prev);
288 
289 		add += t - f;
290 		goto out_locked;
291 	}
292 
293 	/* Round our left edge to the current segment if it encloses us. */
294 	if (f > rg->from)
295 		f = rg->from;
296 
297 	/* Check for and consume any regions we now overlap with. */
298 	nrg = rg;
299 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 		if (&rg->link == head)
301 			break;
302 		if (rg->from > t)
303 			break;
304 
305 		/* If this area reaches higher then extend our area to
306 		 * include it completely.  If this is not the first area
307 		 * which we intend to reuse, free it. */
308 		if (rg->to > t)
309 			t = rg->to;
310 		if (rg != nrg) {
311 			/* Decrement return value by the deleted range.
312 			 * Another range will span this area so that by
313 			 * end of routine add will be >= zero
314 			 */
315 			add -= (rg->to - rg->from);
316 			list_del(&rg->link);
317 			kfree(rg);
318 		}
319 	}
320 
321 	add += (nrg->from - f);		/* Added to beginning of region */
322 	nrg->from = f;
323 	add += t - nrg->to;		/* Added to end of region */
324 	nrg->to = t;
325 
326 out_locked:
327 	resv->adds_in_progress--;
328 	spin_unlock(&resv->lock);
329 	VM_BUG_ON(add < 0);
330 	return add;
331 }
332 
333 /*
334  * Examine the existing reserve map and determine how many
335  * huge pages in the specified range [f, t) are NOT currently
336  * represented.  This routine is called before a subsequent
337  * call to region_add that will actually modify the reserve
338  * map to add the specified range [f, t).  region_chg does
339  * not change the number of huge pages represented by the
340  * map.  However, if the existing regions in the map can not
341  * be expanded to represent the new range, a new file_region
342  * structure is added to the map as a placeholder.  This is
343  * so that the subsequent region_add call will have all the
344  * regions it needs and will not fail.
345  *
346  * Upon entry, region_chg will also examine the cache of region descriptors
347  * associated with the map.  If there are not enough descriptors cached, one
348  * will be allocated for the in progress add operation.
349  *
350  * Returns the number of huge pages that need to be added to the existing
351  * reservation map for the range [f, t).  This number is greater or equal to
352  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
353  * is needed and can not be allocated.
354  */
355 static long region_chg(struct resv_map *resv, long f, long t)
356 {
357 	struct list_head *head = &resv->regions;
358 	struct file_region *rg, *nrg = NULL;
359 	long chg = 0;
360 
361 retry:
362 	spin_lock(&resv->lock);
363 retry_locked:
364 	resv->adds_in_progress++;
365 
366 	/*
367 	 * Check for sufficient descriptors in the cache to accommodate
368 	 * the number of in progress add operations.
369 	 */
370 	if (resv->adds_in_progress > resv->region_cache_count) {
371 		struct file_region *trg;
372 
373 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 		/* Must drop lock to allocate a new descriptor. */
375 		resv->adds_in_progress--;
376 		spin_unlock(&resv->lock);
377 
378 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 		if (!trg) {
380 			kfree(nrg);
381 			return -ENOMEM;
382 		}
383 
384 		spin_lock(&resv->lock);
385 		list_add(&trg->link, &resv->region_cache);
386 		resv->region_cache_count++;
387 		goto retry_locked;
388 	}
389 
390 	/* Locate the region we are before or in. */
391 	list_for_each_entry(rg, head, link)
392 		if (f <= rg->to)
393 			break;
394 
395 	/* If we are below the current region then a new region is required.
396 	 * Subtle, allocate a new region at the position but make it zero
397 	 * size such that we can guarantee to record the reservation. */
398 	if (&rg->link == head || t < rg->from) {
399 		if (!nrg) {
400 			resv->adds_in_progress--;
401 			spin_unlock(&resv->lock);
402 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 			if (!nrg)
404 				return -ENOMEM;
405 
406 			nrg->from = f;
407 			nrg->to   = f;
408 			INIT_LIST_HEAD(&nrg->link);
409 			goto retry;
410 		}
411 
412 		list_add(&nrg->link, rg->link.prev);
413 		chg = t - f;
414 		goto out_nrg;
415 	}
416 
417 	/* Round our left edge to the current segment if it encloses us. */
418 	if (f > rg->from)
419 		f = rg->from;
420 	chg = t - f;
421 
422 	/* Check for and consume any regions we now overlap with. */
423 	list_for_each_entry(rg, rg->link.prev, link) {
424 		if (&rg->link == head)
425 			break;
426 		if (rg->from > t)
427 			goto out;
428 
429 		/* We overlap with this area, if it extends further than
430 		 * us then we must extend ourselves.  Account for its
431 		 * existing reservation. */
432 		if (rg->to > t) {
433 			chg += rg->to - t;
434 			t = rg->to;
435 		}
436 		chg -= rg->to - rg->from;
437 	}
438 
439 out:
440 	spin_unlock(&resv->lock);
441 	/*  We already know we raced and no longer need the new region */
442 	kfree(nrg);
443 	return chg;
444 out_nrg:
445 	spin_unlock(&resv->lock);
446 	return chg;
447 }
448 
449 /*
450  * Abort the in progress add operation.  The adds_in_progress field
451  * of the resv_map keeps track of the operations in progress between
452  * calls to region_chg and region_add.  Operations are sometimes
453  * aborted after the call to region_chg.  In such cases, region_abort
454  * is called to decrement the adds_in_progress counter.
455  *
456  * NOTE: The range arguments [f, t) are not needed or used in this
457  * routine.  They are kept to make reading the calling code easier as
458  * arguments will match the associated region_chg call.
459  */
460 static void region_abort(struct resv_map *resv, long f, long t)
461 {
462 	spin_lock(&resv->lock);
463 	VM_BUG_ON(!resv->region_cache_count);
464 	resv->adds_in_progress--;
465 	spin_unlock(&resv->lock);
466 }
467 
468 /*
469  * Delete the specified range [f, t) from the reserve map.  If the
470  * t parameter is LONG_MAX, this indicates that ALL regions after f
471  * should be deleted.  Locate the regions which intersect [f, t)
472  * and either trim, delete or split the existing regions.
473  *
474  * Returns the number of huge pages deleted from the reserve map.
475  * In the normal case, the return value is zero or more.  In the
476  * case where a region must be split, a new region descriptor must
477  * be allocated.  If the allocation fails, -ENOMEM will be returned.
478  * NOTE: If the parameter t == LONG_MAX, then we will never split
479  * a region and possibly return -ENOMEM.  Callers specifying
480  * t == LONG_MAX do not need to check for -ENOMEM error.
481  */
482 static long region_del(struct resv_map *resv, long f, long t)
483 {
484 	struct list_head *head = &resv->regions;
485 	struct file_region *rg, *trg;
486 	struct file_region *nrg = NULL;
487 	long del = 0;
488 
489 retry:
490 	spin_lock(&resv->lock);
491 	list_for_each_entry_safe(rg, trg, head, link) {
492 		/*
493 		 * Skip regions before the range to be deleted.  file_region
494 		 * ranges are normally of the form [from, to).  However, there
495 		 * may be a "placeholder" entry in the map which is of the form
496 		 * (from, to) with from == to.  Check for placeholder entries
497 		 * at the beginning of the range to be deleted.
498 		 */
499 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500 			continue;
501 
502 		if (rg->from >= t)
503 			break;
504 
505 		if (f > rg->from && t < rg->to) { /* Must split region */
506 			/*
507 			 * Check for an entry in the cache before dropping
508 			 * lock and attempting allocation.
509 			 */
510 			if (!nrg &&
511 			    resv->region_cache_count > resv->adds_in_progress) {
512 				nrg = list_first_entry(&resv->region_cache,
513 							struct file_region,
514 							link);
515 				list_del(&nrg->link);
516 				resv->region_cache_count--;
517 			}
518 
519 			if (!nrg) {
520 				spin_unlock(&resv->lock);
521 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 				if (!nrg)
523 					return -ENOMEM;
524 				goto retry;
525 			}
526 
527 			del += t - f;
528 
529 			/* New entry for end of split region */
530 			nrg->from = t;
531 			nrg->to = rg->to;
532 			INIT_LIST_HEAD(&nrg->link);
533 
534 			/* Original entry is trimmed */
535 			rg->to = f;
536 
537 			list_add(&nrg->link, &rg->link);
538 			nrg = NULL;
539 			break;
540 		}
541 
542 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 			del += rg->to - rg->from;
544 			list_del(&rg->link);
545 			kfree(rg);
546 			continue;
547 		}
548 
549 		if (f <= rg->from) {	/* Trim beginning of region */
550 			del += t - rg->from;
551 			rg->from = t;
552 		} else {		/* Trim end of region */
553 			del += rg->to - f;
554 			rg->to = f;
555 		}
556 	}
557 
558 	spin_unlock(&resv->lock);
559 	kfree(nrg);
560 	return del;
561 }
562 
563 /*
564  * A rare out of memory error was encountered which prevented removal of
565  * the reserve map region for a page.  The huge page itself was free'ed
566  * and removed from the page cache.  This routine will adjust the subpool
567  * usage count, and the global reserve count if needed.  By incrementing
568  * these counts, the reserve map entry which could not be deleted will
569  * appear as a "reserved" entry instead of simply dangling with incorrect
570  * counts.
571  */
572 void hugetlb_fix_reserve_counts(struct inode *inode)
573 {
574 	struct hugepage_subpool *spool = subpool_inode(inode);
575 	long rsv_adjust;
576 
577 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 	if (rsv_adjust) {
579 		struct hstate *h = hstate_inode(inode);
580 
581 		hugetlb_acct_memory(h, 1);
582 	}
583 }
584 
585 /*
586  * Count and return the number of huge pages in the reserve map
587  * that intersect with the range [f, t).
588  */
589 static long region_count(struct resv_map *resv, long f, long t)
590 {
591 	struct list_head *head = &resv->regions;
592 	struct file_region *rg;
593 	long chg = 0;
594 
595 	spin_lock(&resv->lock);
596 	/* Locate each segment we overlap with, and count that overlap. */
597 	list_for_each_entry(rg, head, link) {
598 		long seg_from;
599 		long seg_to;
600 
601 		if (rg->to <= f)
602 			continue;
603 		if (rg->from >= t)
604 			break;
605 
606 		seg_from = max(rg->from, f);
607 		seg_to = min(rg->to, t);
608 
609 		chg += seg_to - seg_from;
610 	}
611 	spin_unlock(&resv->lock);
612 
613 	return chg;
614 }
615 
616 /*
617  * Convert the address within this vma to the page offset within
618  * the mapping, in pagecache page units; huge pages here.
619  */
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621 			struct vm_area_struct *vma, unsigned long address)
622 {
623 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 			(vma->vm_pgoff >> huge_page_order(h));
625 }
626 
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 				     unsigned long address)
629 {
630 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 }
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633 
634 /*
635  * Return the size of the pages allocated when backing a VMA. In the majority
636  * cases this will be same size as used by the page table entries.
637  */
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 {
640 	if (vma->vm_ops && vma->vm_ops->pagesize)
641 		return vma->vm_ops->pagesize(vma);
642 	return PAGE_SIZE;
643 }
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
645 
646 /*
647  * Return the page size being used by the MMU to back a VMA. In the majority
648  * of cases, the page size used by the kernel matches the MMU size. On
649  * architectures where it differs, an architecture-specific 'strong'
650  * version of this symbol is required.
651  */
652 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
653 {
654 	return vma_kernel_pagesize(vma);
655 }
656 
657 /*
658  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
659  * bits of the reservation map pointer, which are always clear due to
660  * alignment.
661  */
662 #define HPAGE_RESV_OWNER    (1UL << 0)
663 #define HPAGE_RESV_UNMAPPED (1UL << 1)
664 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
665 
666 /*
667  * These helpers are used to track how many pages are reserved for
668  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
669  * is guaranteed to have their future faults succeed.
670  *
671  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
672  * the reserve counters are updated with the hugetlb_lock held. It is safe
673  * to reset the VMA at fork() time as it is not in use yet and there is no
674  * chance of the global counters getting corrupted as a result of the values.
675  *
676  * The private mapping reservation is represented in a subtly different
677  * manner to a shared mapping.  A shared mapping has a region map associated
678  * with the underlying file, this region map represents the backing file
679  * pages which have ever had a reservation assigned which this persists even
680  * after the page is instantiated.  A private mapping has a region map
681  * associated with the original mmap which is attached to all VMAs which
682  * reference it, this region map represents those offsets which have consumed
683  * reservation ie. where pages have been instantiated.
684  */
685 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
686 {
687 	return (unsigned long)vma->vm_private_data;
688 }
689 
690 static void set_vma_private_data(struct vm_area_struct *vma,
691 							unsigned long value)
692 {
693 	vma->vm_private_data = (void *)value;
694 }
695 
696 struct resv_map *resv_map_alloc(void)
697 {
698 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
699 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
700 
701 	if (!resv_map || !rg) {
702 		kfree(resv_map);
703 		kfree(rg);
704 		return NULL;
705 	}
706 
707 	kref_init(&resv_map->refs);
708 	spin_lock_init(&resv_map->lock);
709 	INIT_LIST_HEAD(&resv_map->regions);
710 
711 	resv_map->adds_in_progress = 0;
712 
713 	INIT_LIST_HEAD(&resv_map->region_cache);
714 	list_add(&rg->link, &resv_map->region_cache);
715 	resv_map->region_cache_count = 1;
716 
717 	return resv_map;
718 }
719 
720 void resv_map_release(struct kref *ref)
721 {
722 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
723 	struct list_head *head = &resv_map->region_cache;
724 	struct file_region *rg, *trg;
725 
726 	/* Clear out any active regions before we release the map. */
727 	region_del(resv_map, 0, LONG_MAX);
728 
729 	/* ... and any entries left in the cache */
730 	list_for_each_entry_safe(rg, trg, head, link) {
731 		list_del(&rg->link);
732 		kfree(rg);
733 	}
734 
735 	VM_BUG_ON(resv_map->adds_in_progress);
736 
737 	kfree(resv_map);
738 }
739 
740 static inline struct resv_map *inode_resv_map(struct inode *inode)
741 {
742 	return inode->i_mapping->private_data;
743 }
744 
745 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
746 {
747 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
748 	if (vma->vm_flags & VM_MAYSHARE) {
749 		struct address_space *mapping = vma->vm_file->f_mapping;
750 		struct inode *inode = mapping->host;
751 
752 		return inode_resv_map(inode);
753 
754 	} else {
755 		return (struct resv_map *)(get_vma_private_data(vma) &
756 							~HPAGE_RESV_MASK);
757 	}
758 }
759 
760 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
761 {
762 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
763 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
764 
765 	set_vma_private_data(vma, (get_vma_private_data(vma) &
766 				HPAGE_RESV_MASK) | (unsigned long)map);
767 }
768 
769 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
770 {
771 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
773 
774 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
775 }
776 
777 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
778 {
779 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 
781 	return (get_vma_private_data(vma) & flag) != 0;
782 }
783 
784 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
785 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
786 {
787 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
788 	if (!(vma->vm_flags & VM_MAYSHARE))
789 		vma->vm_private_data = (void *)0;
790 }
791 
792 /* Returns true if the VMA has associated reserve pages */
793 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
794 {
795 	if (vma->vm_flags & VM_NORESERVE) {
796 		/*
797 		 * This address is already reserved by other process(chg == 0),
798 		 * so, we should decrement reserved count. Without decrementing,
799 		 * reserve count remains after releasing inode, because this
800 		 * allocated page will go into page cache and is regarded as
801 		 * coming from reserved pool in releasing step.  Currently, we
802 		 * don't have any other solution to deal with this situation
803 		 * properly, so add work-around here.
804 		 */
805 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
806 			return true;
807 		else
808 			return false;
809 	}
810 
811 	/* Shared mappings always use reserves */
812 	if (vma->vm_flags & VM_MAYSHARE) {
813 		/*
814 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
815 		 * be a region map for all pages.  The only situation where
816 		 * there is no region map is if a hole was punched via
817 		 * fallocate.  In this case, there really are no reverves to
818 		 * use.  This situation is indicated if chg != 0.
819 		 */
820 		if (chg)
821 			return false;
822 		else
823 			return true;
824 	}
825 
826 	/*
827 	 * Only the process that called mmap() has reserves for
828 	 * private mappings.
829 	 */
830 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
831 		/*
832 		 * Like the shared case above, a hole punch or truncate
833 		 * could have been performed on the private mapping.
834 		 * Examine the value of chg to determine if reserves
835 		 * actually exist or were previously consumed.
836 		 * Very Subtle - The value of chg comes from a previous
837 		 * call to vma_needs_reserves().  The reserve map for
838 		 * private mappings has different (opposite) semantics
839 		 * than that of shared mappings.  vma_needs_reserves()
840 		 * has already taken this difference in semantics into
841 		 * account.  Therefore, the meaning of chg is the same
842 		 * as in the shared case above.  Code could easily be
843 		 * combined, but keeping it separate draws attention to
844 		 * subtle differences.
845 		 */
846 		if (chg)
847 			return false;
848 		else
849 			return true;
850 	}
851 
852 	return false;
853 }
854 
855 static void enqueue_huge_page(struct hstate *h, struct page *page)
856 {
857 	int nid = page_to_nid(page);
858 	list_move(&page->lru, &h->hugepage_freelists[nid]);
859 	h->free_huge_pages++;
860 	h->free_huge_pages_node[nid]++;
861 }
862 
863 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
864 {
865 	struct page *page;
866 
867 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
868 		if (!PageHWPoison(page))
869 			break;
870 	/*
871 	 * if 'non-isolated free hugepage' not found on the list,
872 	 * the allocation fails.
873 	 */
874 	if (&h->hugepage_freelists[nid] == &page->lru)
875 		return NULL;
876 	list_move(&page->lru, &h->hugepage_activelist);
877 	set_page_refcounted(page);
878 	h->free_huge_pages--;
879 	h->free_huge_pages_node[nid]--;
880 	return page;
881 }
882 
883 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
884 		nodemask_t *nmask)
885 {
886 	unsigned int cpuset_mems_cookie;
887 	struct zonelist *zonelist;
888 	struct zone *zone;
889 	struct zoneref *z;
890 	int node = -1;
891 
892 	zonelist = node_zonelist(nid, gfp_mask);
893 
894 retry_cpuset:
895 	cpuset_mems_cookie = read_mems_allowed_begin();
896 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
897 		struct page *page;
898 
899 		if (!cpuset_zone_allowed(zone, gfp_mask))
900 			continue;
901 		/*
902 		 * no need to ask again on the same node. Pool is node rather than
903 		 * zone aware
904 		 */
905 		if (zone_to_nid(zone) == node)
906 			continue;
907 		node = zone_to_nid(zone);
908 
909 		page = dequeue_huge_page_node_exact(h, node);
910 		if (page)
911 			return page;
912 	}
913 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
914 		goto retry_cpuset;
915 
916 	return NULL;
917 }
918 
919 /* Movability of hugepages depends on migration support. */
920 static inline gfp_t htlb_alloc_mask(struct hstate *h)
921 {
922 	if (hugepage_migration_supported(h))
923 		return GFP_HIGHUSER_MOVABLE;
924 	else
925 		return GFP_HIGHUSER;
926 }
927 
928 static struct page *dequeue_huge_page_vma(struct hstate *h,
929 				struct vm_area_struct *vma,
930 				unsigned long address, int avoid_reserve,
931 				long chg)
932 {
933 	struct page *page;
934 	struct mempolicy *mpol;
935 	gfp_t gfp_mask;
936 	nodemask_t *nodemask;
937 	int nid;
938 
939 	/*
940 	 * A child process with MAP_PRIVATE mappings created by their parent
941 	 * have no page reserves. This check ensures that reservations are
942 	 * not "stolen". The child may still get SIGKILLed
943 	 */
944 	if (!vma_has_reserves(vma, chg) &&
945 			h->free_huge_pages - h->resv_huge_pages == 0)
946 		goto err;
947 
948 	/* If reserves cannot be used, ensure enough pages are in the pool */
949 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
950 		goto err;
951 
952 	gfp_mask = htlb_alloc_mask(h);
953 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
954 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
955 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
956 		SetPagePrivate(page);
957 		h->resv_huge_pages--;
958 	}
959 
960 	mpol_cond_put(mpol);
961 	return page;
962 
963 err:
964 	return NULL;
965 }
966 
967 /*
968  * common helper functions for hstate_next_node_to_{alloc|free}.
969  * We may have allocated or freed a huge page based on a different
970  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
971  * be outside of *nodes_allowed.  Ensure that we use an allowed
972  * node for alloc or free.
973  */
974 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
975 {
976 	nid = next_node_in(nid, *nodes_allowed);
977 	VM_BUG_ON(nid >= MAX_NUMNODES);
978 
979 	return nid;
980 }
981 
982 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
983 {
984 	if (!node_isset(nid, *nodes_allowed))
985 		nid = next_node_allowed(nid, nodes_allowed);
986 	return nid;
987 }
988 
989 /*
990  * returns the previously saved node ["this node"] from which to
991  * allocate a persistent huge page for the pool and advance the
992  * next node from which to allocate, handling wrap at end of node
993  * mask.
994  */
995 static int hstate_next_node_to_alloc(struct hstate *h,
996 					nodemask_t *nodes_allowed)
997 {
998 	int nid;
999 
1000 	VM_BUG_ON(!nodes_allowed);
1001 
1002 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1003 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1004 
1005 	return nid;
1006 }
1007 
1008 /*
1009  * helper for free_pool_huge_page() - return the previously saved
1010  * node ["this node"] from which to free a huge page.  Advance the
1011  * next node id whether or not we find a free huge page to free so
1012  * that the next attempt to free addresses the next node.
1013  */
1014 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1015 {
1016 	int nid;
1017 
1018 	VM_BUG_ON(!nodes_allowed);
1019 
1020 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1021 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1022 
1023 	return nid;
1024 }
1025 
1026 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1027 	for (nr_nodes = nodes_weight(*mask);				\
1028 		nr_nodes > 0 &&						\
1029 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1030 		nr_nodes--)
1031 
1032 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1033 	for (nr_nodes = nodes_weight(*mask);				\
1034 		nr_nodes > 0 &&						\
1035 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1036 		nr_nodes--)
1037 
1038 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1039 static void destroy_compound_gigantic_page(struct page *page,
1040 					unsigned int order)
1041 {
1042 	int i;
1043 	int nr_pages = 1 << order;
1044 	struct page *p = page + 1;
1045 
1046 	atomic_set(compound_mapcount_ptr(page), 0);
1047 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1048 		clear_compound_head(p);
1049 		set_page_refcounted(p);
1050 	}
1051 
1052 	set_compound_order(page, 0);
1053 	__ClearPageHead(page);
1054 }
1055 
1056 static void free_gigantic_page(struct page *page, unsigned int order)
1057 {
1058 	free_contig_range(page_to_pfn(page), 1 << order);
1059 }
1060 
1061 static int __alloc_gigantic_page(unsigned long start_pfn,
1062 				unsigned long nr_pages, gfp_t gfp_mask)
1063 {
1064 	unsigned long end_pfn = start_pfn + nr_pages;
1065 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1066 				  gfp_mask);
1067 }
1068 
1069 static bool pfn_range_valid_gigantic(struct zone *z,
1070 			unsigned long start_pfn, unsigned long nr_pages)
1071 {
1072 	unsigned long i, end_pfn = start_pfn + nr_pages;
1073 	struct page *page;
1074 
1075 	for (i = start_pfn; i < end_pfn; i++) {
1076 		if (!pfn_valid(i))
1077 			return false;
1078 
1079 		page = pfn_to_page(i);
1080 
1081 		if (page_zone(page) != z)
1082 			return false;
1083 
1084 		if (PageReserved(page))
1085 			return false;
1086 
1087 		if (page_count(page) > 0)
1088 			return false;
1089 
1090 		if (PageHuge(page))
1091 			return false;
1092 	}
1093 
1094 	return true;
1095 }
1096 
1097 static bool zone_spans_last_pfn(const struct zone *zone,
1098 			unsigned long start_pfn, unsigned long nr_pages)
1099 {
1100 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1101 	return zone_spans_pfn(zone, last_pfn);
1102 }
1103 
1104 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1105 		int nid, nodemask_t *nodemask)
1106 {
1107 	unsigned int order = huge_page_order(h);
1108 	unsigned long nr_pages = 1 << order;
1109 	unsigned long ret, pfn, flags;
1110 	struct zonelist *zonelist;
1111 	struct zone *zone;
1112 	struct zoneref *z;
1113 
1114 	zonelist = node_zonelist(nid, gfp_mask);
1115 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1116 		spin_lock_irqsave(&zone->lock, flags);
1117 
1118 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1119 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1120 			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1121 				/*
1122 				 * We release the zone lock here because
1123 				 * alloc_contig_range() will also lock the zone
1124 				 * at some point. If there's an allocation
1125 				 * spinning on this lock, it may win the race
1126 				 * and cause alloc_contig_range() to fail...
1127 				 */
1128 				spin_unlock_irqrestore(&zone->lock, flags);
1129 				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1130 				if (!ret)
1131 					return pfn_to_page(pfn);
1132 				spin_lock_irqsave(&zone->lock, flags);
1133 			}
1134 			pfn += nr_pages;
1135 		}
1136 
1137 		spin_unlock_irqrestore(&zone->lock, flags);
1138 	}
1139 
1140 	return NULL;
1141 }
1142 
1143 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1144 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1145 
1146 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1147 static inline bool gigantic_page_supported(void) { return false; }
1148 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149 		int nid, nodemask_t *nodemask) { return NULL; }
1150 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1151 static inline void destroy_compound_gigantic_page(struct page *page,
1152 						unsigned int order) { }
1153 #endif
1154 
1155 static void update_and_free_page(struct hstate *h, struct page *page)
1156 {
1157 	int i;
1158 
1159 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1160 		return;
1161 
1162 	h->nr_huge_pages--;
1163 	h->nr_huge_pages_node[page_to_nid(page)]--;
1164 	for (i = 0; i < pages_per_huge_page(h); i++) {
1165 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1166 				1 << PG_referenced | 1 << PG_dirty |
1167 				1 << PG_active | 1 << PG_private |
1168 				1 << PG_writeback);
1169 	}
1170 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1171 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1172 	set_page_refcounted(page);
1173 	if (hstate_is_gigantic(h)) {
1174 		destroy_compound_gigantic_page(page, huge_page_order(h));
1175 		free_gigantic_page(page, huge_page_order(h));
1176 	} else {
1177 		__free_pages(page, huge_page_order(h));
1178 	}
1179 }
1180 
1181 struct hstate *size_to_hstate(unsigned long size)
1182 {
1183 	struct hstate *h;
1184 
1185 	for_each_hstate(h) {
1186 		if (huge_page_size(h) == size)
1187 			return h;
1188 	}
1189 	return NULL;
1190 }
1191 
1192 /*
1193  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1194  * to hstate->hugepage_activelist.)
1195  *
1196  * This function can be called for tail pages, but never returns true for them.
1197  */
1198 bool page_huge_active(struct page *page)
1199 {
1200 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1201 	return PageHead(page) && PagePrivate(&page[1]);
1202 }
1203 
1204 /* never called for tail page */
1205 static void set_page_huge_active(struct page *page)
1206 {
1207 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1208 	SetPagePrivate(&page[1]);
1209 }
1210 
1211 static void clear_page_huge_active(struct page *page)
1212 {
1213 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214 	ClearPagePrivate(&page[1]);
1215 }
1216 
1217 /*
1218  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1219  * code
1220  */
1221 static inline bool PageHugeTemporary(struct page *page)
1222 {
1223 	if (!PageHuge(page))
1224 		return false;
1225 
1226 	return (unsigned long)page[2].mapping == -1U;
1227 }
1228 
1229 static inline void SetPageHugeTemporary(struct page *page)
1230 {
1231 	page[2].mapping = (void *)-1U;
1232 }
1233 
1234 static inline void ClearPageHugeTemporary(struct page *page)
1235 {
1236 	page[2].mapping = NULL;
1237 }
1238 
1239 void free_huge_page(struct page *page)
1240 {
1241 	/*
1242 	 * Can't pass hstate in here because it is called from the
1243 	 * compound page destructor.
1244 	 */
1245 	struct hstate *h = page_hstate(page);
1246 	int nid = page_to_nid(page);
1247 	struct hugepage_subpool *spool =
1248 		(struct hugepage_subpool *)page_private(page);
1249 	bool restore_reserve;
1250 
1251 	set_page_private(page, 0);
1252 	page->mapping = NULL;
1253 	VM_BUG_ON_PAGE(page_count(page), page);
1254 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1255 	restore_reserve = PagePrivate(page);
1256 	ClearPagePrivate(page);
1257 
1258 	/*
1259 	 * A return code of zero implies that the subpool will be under its
1260 	 * minimum size if the reservation is not restored after page is free.
1261 	 * Therefore, force restore_reserve operation.
1262 	 */
1263 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1264 		restore_reserve = true;
1265 
1266 	spin_lock(&hugetlb_lock);
1267 	clear_page_huge_active(page);
1268 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1269 				     pages_per_huge_page(h), page);
1270 	if (restore_reserve)
1271 		h->resv_huge_pages++;
1272 
1273 	if (PageHugeTemporary(page)) {
1274 		list_del(&page->lru);
1275 		ClearPageHugeTemporary(page);
1276 		update_and_free_page(h, page);
1277 	} else if (h->surplus_huge_pages_node[nid]) {
1278 		/* remove the page from active list */
1279 		list_del(&page->lru);
1280 		update_and_free_page(h, page);
1281 		h->surplus_huge_pages--;
1282 		h->surplus_huge_pages_node[nid]--;
1283 	} else {
1284 		arch_clear_hugepage_flags(page);
1285 		enqueue_huge_page(h, page);
1286 	}
1287 	spin_unlock(&hugetlb_lock);
1288 }
1289 
1290 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1291 {
1292 	INIT_LIST_HEAD(&page->lru);
1293 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1294 	spin_lock(&hugetlb_lock);
1295 	set_hugetlb_cgroup(page, NULL);
1296 	h->nr_huge_pages++;
1297 	h->nr_huge_pages_node[nid]++;
1298 	spin_unlock(&hugetlb_lock);
1299 }
1300 
1301 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1302 {
1303 	int i;
1304 	int nr_pages = 1 << order;
1305 	struct page *p = page + 1;
1306 
1307 	/* we rely on prep_new_huge_page to set the destructor */
1308 	set_compound_order(page, order);
1309 	__ClearPageReserved(page);
1310 	__SetPageHead(page);
1311 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1312 		/*
1313 		 * For gigantic hugepages allocated through bootmem at
1314 		 * boot, it's safer to be consistent with the not-gigantic
1315 		 * hugepages and clear the PG_reserved bit from all tail pages
1316 		 * too.  Otherwse drivers using get_user_pages() to access tail
1317 		 * pages may get the reference counting wrong if they see
1318 		 * PG_reserved set on a tail page (despite the head page not
1319 		 * having PG_reserved set).  Enforcing this consistency between
1320 		 * head and tail pages allows drivers to optimize away a check
1321 		 * on the head page when they need know if put_page() is needed
1322 		 * after get_user_pages().
1323 		 */
1324 		__ClearPageReserved(p);
1325 		set_page_count(p, 0);
1326 		set_compound_head(p, page);
1327 	}
1328 	atomic_set(compound_mapcount_ptr(page), -1);
1329 }
1330 
1331 /*
1332  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1333  * transparent huge pages.  See the PageTransHuge() documentation for more
1334  * details.
1335  */
1336 int PageHuge(struct page *page)
1337 {
1338 	if (!PageCompound(page))
1339 		return 0;
1340 
1341 	page = compound_head(page);
1342 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1343 }
1344 EXPORT_SYMBOL_GPL(PageHuge);
1345 
1346 /*
1347  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1348  * normal or transparent huge pages.
1349  */
1350 int PageHeadHuge(struct page *page_head)
1351 {
1352 	if (!PageHead(page_head))
1353 		return 0;
1354 
1355 	return get_compound_page_dtor(page_head) == free_huge_page;
1356 }
1357 
1358 pgoff_t __basepage_index(struct page *page)
1359 {
1360 	struct page *page_head = compound_head(page);
1361 	pgoff_t index = page_index(page_head);
1362 	unsigned long compound_idx;
1363 
1364 	if (!PageHuge(page_head))
1365 		return page_index(page);
1366 
1367 	if (compound_order(page_head) >= MAX_ORDER)
1368 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1369 	else
1370 		compound_idx = page - page_head;
1371 
1372 	return (index << compound_order(page_head)) + compound_idx;
1373 }
1374 
1375 static struct page *alloc_buddy_huge_page(struct hstate *h,
1376 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1377 {
1378 	int order = huge_page_order(h);
1379 	struct page *page;
1380 
1381 	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1382 	if (nid == NUMA_NO_NODE)
1383 		nid = numa_mem_id();
1384 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1385 	if (page)
1386 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1387 	else
1388 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1389 
1390 	return page;
1391 }
1392 
1393 /*
1394  * Common helper to allocate a fresh hugetlb page. All specific allocators
1395  * should use this function to get new hugetlb pages
1396  */
1397 static struct page *alloc_fresh_huge_page(struct hstate *h,
1398 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1399 {
1400 	struct page *page;
1401 
1402 	if (hstate_is_gigantic(h))
1403 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1404 	else
1405 		page = alloc_buddy_huge_page(h, gfp_mask,
1406 				nid, nmask);
1407 	if (!page)
1408 		return NULL;
1409 
1410 	if (hstate_is_gigantic(h))
1411 		prep_compound_gigantic_page(page, huge_page_order(h));
1412 	prep_new_huge_page(h, page, page_to_nid(page));
1413 
1414 	return page;
1415 }
1416 
1417 /*
1418  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1419  * manner.
1420  */
1421 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1422 {
1423 	struct page *page;
1424 	int nr_nodes, node;
1425 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1426 
1427 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1428 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1429 		if (page)
1430 			break;
1431 	}
1432 
1433 	if (!page)
1434 		return 0;
1435 
1436 	put_page(page); /* free it into the hugepage allocator */
1437 
1438 	return 1;
1439 }
1440 
1441 /*
1442  * Free huge page from pool from next node to free.
1443  * Attempt to keep persistent huge pages more or less
1444  * balanced over allowed nodes.
1445  * Called with hugetlb_lock locked.
1446  */
1447 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1448 							 bool acct_surplus)
1449 {
1450 	int nr_nodes, node;
1451 	int ret = 0;
1452 
1453 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1454 		/*
1455 		 * If we're returning unused surplus pages, only examine
1456 		 * nodes with surplus pages.
1457 		 */
1458 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1459 		    !list_empty(&h->hugepage_freelists[node])) {
1460 			struct page *page =
1461 				list_entry(h->hugepage_freelists[node].next,
1462 					  struct page, lru);
1463 			list_del(&page->lru);
1464 			h->free_huge_pages--;
1465 			h->free_huge_pages_node[node]--;
1466 			if (acct_surplus) {
1467 				h->surplus_huge_pages--;
1468 				h->surplus_huge_pages_node[node]--;
1469 			}
1470 			update_and_free_page(h, page);
1471 			ret = 1;
1472 			break;
1473 		}
1474 	}
1475 
1476 	return ret;
1477 }
1478 
1479 /*
1480  * Dissolve a given free hugepage into free buddy pages. This function does
1481  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1482  * number of free hugepages would be reduced below the number of reserved
1483  * hugepages.
1484  */
1485 int dissolve_free_huge_page(struct page *page)
1486 {
1487 	int rc = 0;
1488 
1489 	spin_lock(&hugetlb_lock);
1490 	if (PageHuge(page) && !page_count(page)) {
1491 		struct page *head = compound_head(page);
1492 		struct hstate *h = page_hstate(head);
1493 		int nid = page_to_nid(head);
1494 		if (h->free_huge_pages - h->resv_huge_pages == 0) {
1495 			rc = -EBUSY;
1496 			goto out;
1497 		}
1498 		/*
1499 		 * Move PageHWPoison flag from head page to the raw error page,
1500 		 * which makes any subpages rather than the error page reusable.
1501 		 */
1502 		if (PageHWPoison(head) && page != head) {
1503 			SetPageHWPoison(page);
1504 			ClearPageHWPoison(head);
1505 		}
1506 		list_del(&head->lru);
1507 		h->free_huge_pages--;
1508 		h->free_huge_pages_node[nid]--;
1509 		h->max_huge_pages--;
1510 		update_and_free_page(h, head);
1511 	}
1512 out:
1513 	spin_unlock(&hugetlb_lock);
1514 	return rc;
1515 }
1516 
1517 /*
1518  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1519  * make specified memory blocks removable from the system.
1520  * Note that this will dissolve a free gigantic hugepage completely, if any
1521  * part of it lies within the given range.
1522  * Also note that if dissolve_free_huge_page() returns with an error, all
1523  * free hugepages that were dissolved before that error are lost.
1524  */
1525 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1526 {
1527 	unsigned long pfn;
1528 	struct page *page;
1529 	int rc = 0;
1530 
1531 	if (!hugepages_supported())
1532 		return rc;
1533 
1534 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1535 		page = pfn_to_page(pfn);
1536 		if (PageHuge(page) && !page_count(page)) {
1537 			rc = dissolve_free_huge_page(page);
1538 			if (rc)
1539 				break;
1540 		}
1541 	}
1542 
1543 	return rc;
1544 }
1545 
1546 /*
1547  * Allocates a fresh surplus page from the page allocator.
1548  */
1549 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1550 		int nid, nodemask_t *nmask)
1551 {
1552 	struct page *page = NULL;
1553 
1554 	if (hstate_is_gigantic(h))
1555 		return NULL;
1556 
1557 	spin_lock(&hugetlb_lock);
1558 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1559 		goto out_unlock;
1560 	spin_unlock(&hugetlb_lock);
1561 
1562 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1563 	if (!page)
1564 		return NULL;
1565 
1566 	spin_lock(&hugetlb_lock);
1567 	/*
1568 	 * We could have raced with the pool size change.
1569 	 * Double check that and simply deallocate the new page
1570 	 * if we would end up overcommiting the surpluses. Abuse
1571 	 * temporary page to workaround the nasty free_huge_page
1572 	 * codeflow
1573 	 */
1574 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1575 		SetPageHugeTemporary(page);
1576 		put_page(page);
1577 		page = NULL;
1578 	} else {
1579 		h->surplus_huge_pages++;
1580 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1581 	}
1582 
1583 out_unlock:
1584 	spin_unlock(&hugetlb_lock);
1585 
1586 	return page;
1587 }
1588 
1589 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1590 		int nid, nodemask_t *nmask)
1591 {
1592 	struct page *page;
1593 
1594 	if (hstate_is_gigantic(h))
1595 		return NULL;
1596 
1597 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1598 	if (!page)
1599 		return NULL;
1600 
1601 	/*
1602 	 * We do not account these pages as surplus because they are only
1603 	 * temporary and will be released properly on the last reference
1604 	 */
1605 	SetPageHugeTemporary(page);
1606 
1607 	return page;
1608 }
1609 
1610 /*
1611  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1612  */
1613 static
1614 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1615 		struct vm_area_struct *vma, unsigned long addr)
1616 {
1617 	struct page *page;
1618 	struct mempolicy *mpol;
1619 	gfp_t gfp_mask = htlb_alloc_mask(h);
1620 	int nid;
1621 	nodemask_t *nodemask;
1622 
1623 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1624 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1625 	mpol_cond_put(mpol);
1626 
1627 	return page;
1628 }
1629 
1630 /* page migration callback function */
1631 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1632 {
1633 	gfp_t gfp_mask = htlb_alloc_mask(h);
1634 	struct page *page = NULL;
1635 
1636 	if (nid != NUMA_NO_NODE)
1637 		gfp_mask |= __GFP_THISNODE;
1638 
1639 	spin_lock(&hugetlb_lock);
1640 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1641 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1642 	spin_unlock(&hugetlb_lock);
1643 
1644 	if (!page)
1645 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1646 
1647 	return page;
1648 }
1649 
1650 /* page migration callback function */
1651 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1652 		nodemask_t *nmask)
1653 {
1654 	gfp_t gfp_mask = htlb_alloc_mask(h);
1655 
1656 	spin_lock(&hugetlb_lock);
1657 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1658 		struct page *page;
1659 
1660 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1661 		if (page) {
1662 			spin_unlock(&hugetlb_lock);
1663 			return page;
1664 		}
1665 	}
1666 	spin_unlock(&hugetlb_lock);
1667 
1668 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1669 }
1670 
1671 /* mempolicy aware migration callback */
1672 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1673 		unsigned long address)
1674 {
1675 	struct mempolicy *mpol;
1676 	nodemask_t *nodemask;
1677 	struct page *page;
1678 	gfp_t gfp_mask;
1679 	int node;
1680 
1681 	gfp_mask = htlb_alloc_mask(h);
1682 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1683 	page = alloc_huge_page_nodemask(h, node, nodemask);
1684 	mpol_cond_put(mpol);
1685 
1686 	return page;
1687 }
1688 
1689 /*
1690  * Increase the hugetlb pool such that it can accommodate a reservation
1691  * of size 'delta'.
1692  */
1693 static int gather_surplus_pages(struct hstate *h, int delta)
1694 {
1695 	struct list_head surplus_list;
1696 	struct page *page, *tmp;
1697 	int ret, i;
1698 	int needed, allocated;
1699 	bool alloc_ok = true;
1700 
1701 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1702 	if (needed <= 0) {
1703 		h->resv_huge_pages += delta;
1704 		return 0;
1705 	}
1706 
1707 	allocated = 0;
1708 	INIT_LIST_HEAD(&surplus_list);
1709 
1710 	ret = -ENOMEM;
1711 retry:
1712 	spin_unlock(&hugetlb_lock);
1713 	for (i = 0; i < needed; i++) {
1714 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1715 				NUMA_NO_NODE, NULL);
1716 		if (!page) {
1717 			alloc_ok = false;
1718 			break;
1719 		}
1720 		list_add(&page->lru, &surplus_list);
1721 		cond_resched();
1722 	}
1723 	allocated += i;
1724 
1725 	/*
1726 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1727 	 * because either resv_huge_pages or free_huge_pages may have changed.
1728 	 */
1729 	spin_lock(&hugetlb_lock);
1730 	needed = (h->resv_huge_pages + delta) -
1731 			(h->free_huge_pages + allocated);
1732 	if (needed > 0) {
1733 		if (alloc_ok)
1734 			goto retry;
1735 		/*
1736 		 * We were not able to allocate enough pages to
1737 		 * satisfy the entire reservation so we free what
1738 		 * we've allocated so far.
1739 		 */
1740 		goto free;
1741 	}
1742 	/*
1743 	 * The surplus_list now contains _at_least_ the number of extra pages
1744 	 * needed to accommodate the reservation.  Add the appropriate number
1745 	 * of pages to the hugetlb pool and free the extras back to the buddy
1746 	 * allocator.  Commit the entire reservation here to prevent another
1747 	 * process from stealing the pages as they are added to the pool but
1748 	 * before they are reserved.
1749 	 */
1750 	needed += allocated;
1751 	h->resv_huge_pages += delta;
1752 	ret = 0;
1753 
1754 	/* Free the needed pages to the hugetlb pool */
1755 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1756 		if ((--needed) < 0)
1757 			break;
1758 		/*
1759 		 * This page is now managed by the hugetlb allocator and has
1760 		 * no users -- drop the buddy allocator's reference.
1761 		 */
1762 		put_page_testzero(page);
1763 		VM_BUG_ON_PAGE(page_count(page), page);
1764 		enqueue_huge_page(h, page);
1765 	}
1766 free:
1767 	spin_unlock(&hugetlb_lock);
1768 
1769 	/* Free unnecessary surplus pages to the buddy allocator */
1770 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1771 		put_page(page);
1772 	spin_lock(&hugetlb_lock);
1773 
1774 	return ret;
1775 }
1776 
1777 /*
1778  * This routine has two main purposes:
1779  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1780  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1781  *    to the associated reservation map.
1782  * 2) Free any unused surplus pages that may have been allocated to satisfy
1783  *    the reservation.  As many as unused_resv_pages may be freed.
1784  *
1785  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1786  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1787  * we must make sure nobody else can claim pages we are in the process of
1788  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1789  * number of huge pages we plan to free when dropping the lock.
1790  */
1791 static void return_unused_surplus_pages(struct hstate *h,
1792 					unsigned long unused_resv_pages)
1793 {
1794 	unsigned long nr_pages;
1795 
1796 	/* Cannot return gigantic pages currently */
1797 	if (hstate_is_gigantic(h))
1798 		goto out;
1799 
1800 	/*
1801 	 * Part (or even all) of the reservation could have been backed
1802 	 * by pre-allocated pages. Only free surplus pages.
1803 	 */
1804 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1805 
1806 	/*
1807 	 * We want to release as many surplus pages as possible, spread
1808 	 * evenly across all nodes with memory. Iterate across these nodes
1809 	 * until we can no longer free unreserved surplus pages. This occurs
1810 	 * when the nodes with surplus pages have no free pages.
1811 	 * free_pool_huge_page() will balance the the freed pages across the
1812 	 * on-line nodes with memory and will handle the hstate accounting.
1813 	 *
1814 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1815 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1816 	 * to cover subsequent pages we may free.
1817 	 */
1818 	while (nr_pages--) {
1819 		h->resv_huge_pages--;
1820 		unused_resv_pages--;
1821 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1822 			goto out;
1823 		cond_resched_lock(&hugetlb_lock);
1824 	}
1825 
1826 out:
1827 	/* Fully uncommit the reservation */
1828 	h->resv_huge_pages -= unused_resv_pages;
1829 }
1830 
1831 
1832 /*
1833  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1834  * are used by the huge page allocation routines to manage reservations.
1835  *
1836  * vma_needs_reservation is called to determine if the huge page at addr
1837  * within the vma has an associated reservation.  If a reservation is
1838  * needed, the value 1 is returned.  The caller is then responsible for
1839  * managing the global reservation and subpool usage counts.  After
1840  * the huge page has been allocated, vma_commit_reservation is called
1841  * to add the page to the reservation map.  If the page allocation fails,
1842  * the reservation must be ended instead of committed.  vma_end_reservation
1843  * is called in such cases.
1844  *
1845  * In the normal case, vma_commit_reservation returns the same value
1846  * as the preceding vma_needs_reservation call.  The only time this
1847  * is not the case is if a reserve map was changed between calls.  It
1848  * is the responsibility of the caller to notice the difference and
1849  * take appropriate action.
1850  *
1851  * vma_add_reservation is used in error paths where a reservation must
1852  * be restored when a newly allocated huge page must be freed.  It is
1853  * to be called after calling vma_needs_reservation to determine if a
1854  * reservation exists.
1855  */
1856 enum vma_resv_mode {
1857 	VMA_NEEDS_RESV,
1858 	VMA_COMMIT_RESV,
1859 	VMA_END_RESV,
1860 	VMA_ADD_RESV,
1861 };
1862 static long __vma_reservation_common(struct hstate *h,
1863 				struct vm_area_struct *vma, unsigned long addr,
1864 				enum vma_resv_mode mode)
1865 {
1866 	struct resv_map *resv;
1867 	pgoff_t idx;
1868 	long ret;
1869 
1870 	resv = vma_resv_map(vma);
1871 	if (!resv)
1872 		return 1;
1873 
1874 	idx = vma_hugecache_offset(h, vma, addr);
1875 	switch (mode) {
1876 	case VMA_NEEDS_RESV:
1877 		ret = region_chg(resv, idx, idx + 1);
1878 		break;
1879 	case VMA_COMMIT_RESV:
1880 		ret = region_add(resv, idx, idx + 1);
1881 		break;
1882 	case VMA_END_RESV:
1883 		region_abort(resv, idx, idx + 1);
1884 		ret = 0;
1885 		break;
1886 	case VMA_ADD_RESV:
1887 		if (vma->vm_flags & VM_MAYSHARE)
1888 			ret = region_add(resv, idx, idx + 1);
1889 		else {
1890 			region_abort(resv, idx, idx + 1);
1891 			ret = region_del(resv, idx, idx + 1);
1892 		}
1893 		break;
1894 	default:
1895 		BUG();
1896 	}
1897 
1898 	if (vma->vm_flags & VM_MAYSHARE)
1899 		return ret;
1900 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1901 		/*
1902 		 * In most cases, reserves always exist for private mappings.
1903 		 * However, a file associated with mapping could have been
1904 		 * hole punched or truncated after reserves were consumed.
1905 		 * As subsequent fault on such a range will not use reserves.
1906 		 * Subtle - The reserve map for private mappings has the
1907 		 * opposite meaning than that of shared mappings.  If NO
1908 		 * entry is in the reserve map, it means a reservation exists.
1909 		 * If an entry exists in the reserve map, it means the
1910 		 * reservation has already been consumed.  As a result, the
1911 		 * return value of this routine is the opposite of the
1912 		 * value returned from reserve map manipulation routines above.
1913 		 */
1914 		if (ret)
1915 			return 0;
1916 		else
1917 			return 1;
1918 	}
1919 	else
1920 		return ret < 0 ? ret : 0;
1921 }
1922 
1923 static long vma_needs_reservation(struct hstate *h,
1924 			struct vm_area_struct *vma, unsigned long addr)
1925 {
1926 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1927 }
1928 
1929 static long vma_commit_reservation(struct hstate *h,
1930 			struct vm_area_struct *vma, unsigned long addr)
1931 {
1932 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1933 }
1934 
1935 static void vma_end_reservation(struct hstate *h,
1936 			struct vm_area_struct *vma, unsigned long addr)
1937 {
1938 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1939 }
1940 
1941 static long vma_add_reservation(struct hstate *h,
1942 			struct vm_area_struct *vma, unsigned long addr)
1943 {
1944 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1945 }
1946 
1947 /*
1948  * This routine is called to restore a reservation on error paths.  In the
1949  * specific error paths, a huge page was allocated (via alloc_huge_page)
1950  * and is about to be freed.  If a reservation for the page existed,
1951  * alloc_huge_page would have consumed the reservation and set PagePrivate
1952  * in the newly allocated page.  When the page is freed via free_huge_page,
1953  * the global reservation count will be incremented if PagePrivate is set.
1954  * However, free_huge_page can not adjust the reserve map.  Adjust the
1955  * reserve map here to be consistent with global reserve count adjustments
1956  * to be made by free_huge_page.
1957  */
1958 static void restore_reserve_on_error(struct hstate *h,
1959 			struct vm_area_struct *vma, unsigned long address,
1960 			struct page *page)
1961 {
1962 	if (unlikely(PagePrivate(page))) {
1963 		long rc = vma_needs_reservation(h, vma, address);
1964 
1965 		if (unlikely(rc < 0)) {
1966 			/*
1967 			 * Rare out of memory condition in reserve map
1968 			 * manipulation.  Clear PagePrivate so that
1969 			 * global reserve count will not be incremented
1970 			 * by free_huge_page.  This will make it appear
1971 			 * as though the reservation for this page was
1972 			 * consumed.  This may prevent the task from
1973 			 * faulting in the page at a later time.  This
1974 			 * is better than inconsistent global huge page
1975 			 * accounting of reserve counts.
1976 			 */
1977 			ClearPagePrivate(page);
1978 		} else if (rc) {
1979 			rc = vma_add_reservation(h, vma, address);
1980 			if (unlikely(rc < 0))
1981 				/*
1982 				 * See above comment about rare out of
1983 				 * memory condition.
1984 				 */
1985 				ClearPagePrivate(page);
1986 		} else
1987 			vma_end_reservation(h, vma, address);
1988 	}
1989 }
1990 
1991 struct page *alloc_huge_page(struct vm_area_struct *vma,
1992 				    unsigned long addr, int avoid_reserve)
1993 {
1994 	struct hugepage_subpool *spool = subpool_vma(vma);
1995 	struct hstate *h = hstate_vma(vma);
1996 	struct page *page;
1997 	long map_chg, map_commit;
1998 	long gbl_chg;
1999 	int ret, idx;
2000 	struct hugetlb_cgroup *h_cg;
2001 
2002 	idx = hstate_index(h);
2003 	/*
2004 	 * Examine the region/reserve map to determine if the process
2005 	 * has a reservation for the page to be allocated.  A return
2006 	 * code of zero indicates a reservation exists (no change).
2007 	 */
2008 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2009 	if (map_chg < 0)
2010 		return ERR_PTR(-ENOMEM);
2011 
2012 	/*
2013 	 * Processes that did not create the mapping will have no
2014 	 * reserves as indicated by the region/reserve map. Check
2015 	 * that the allocation will not exceed the subpool limit.
2016 	 * Allocations for MAP_NORESERVE mappings also need to be
2017 	 * checked against any subpool limit.
2018 	 */
2019 	if (map_chg || avoid_reserve) {
2020 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2021 		if (gbl_chg < 0) {
2022 			vma_end_reservation(h, vma, addr);
2023 			return ERR_PTR(-ENOSPC);
2024 		}
2025 
2026 		/*
2027 		 * Even though there was no reservation in the region/reserve
2028 		 * map, there could be reservations associated with the
2029 		 * subpool that can be used.  This would be indicated if the
2030 		 * return value of hugepage_subpool_get_pages() is zero.
2031 		 * However, if avoid_reserve is specified we still avoid even
2032 		 * the subpool reservations.
2033 		 */
2034 		if (avoid_reserve)
2035 			gbl_chg = 1;
2036 	}
2037 
2038 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2039 	if (ret)
2040 		goto out_subpool_put;
2041 
2042 	spin_lock(&hugetlb_lock);
2043 	/*
2044 	 * glb_chg is passed to indicate whether or not a page must be taken
2045 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2046 	 * a reservation exists for the allocation.
2047 	 */
2048 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2049 	if (!page) {
2050 		spin_unlock(&hugetlb_lock);
2051 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2052 		if (!page)
2053 			goto out_uncharge_cgroup;
2054 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2055 			SetPagePrivate(page);
2056 			h->resv_huge_pages--;
2057 		}
2058 		spin_lock(&hugetlb_lock);
2059 		list_move(&page->lru, &h->hugepage_activelist);
2060 		/* Fall through */
2061 	}
2062 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2063 	spin_unlock(&hugetlb_lock);
2064 
2065 	set_page_private(page, (unsigned long)spool);
2066 
2067 	map_commit = vma_commit_reservation(h, vma, addr);
2068 	if (unlikely(map_chg > map_commit)) {
2069 		/*
2070 		 * The page was added to the reservation map between
2071 		 * vma_needs_reservation and vma_commit_reservation.
2072 		 * This indicates a race with hugetlb_reserve_pages.
2073 		 * Adjust for the subpool count incremented above AND
2074 		 * in hugetlb_reserve_pages for the same page.  Also,
2075 		 * the reservation count added in hugetlb_reserve_pages
2076 		 * no longer applies.
2077 		 */
2078 		long rsv_adjust;
2079 
2080 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2081 		hugetlb_acct_memory(h, -rsv_adjust);
2082 	}
2083 	return page;
2084 
2085 out_uncharge_cgroup:
2086 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2087 out_subpool_put:
2088 	if (map_chg || avoid_reserve)
2089 		hugepage_subpool_put_pages(spool, 1);
2090 	vma_end_reservation(h, vma, addr);
2091 	return ERR_PTR(-ENOSPC);
2092 }
2093 
2094 int alloc_bootmem_huge_page(struct hstate *h)
2095 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2096 int __alloc_bootmem_huge_page(struct hstate *h)
2097 {
2098 	struct huge_bootmem_page *m;
2099 	int nr_nodes, node;
2100 
2101 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2102 		void *addr;
2103 
2104 		addr = memblock_virt_alloc_try_nid_nopanic(
2105 				huge_page_size(h), huge_page_size(h),
2106 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2107 		if (addr) {
2108 			/*
2109 			 * Use the beginning of the huge page to store the
2110 			 * huge_bootmem_page struct (until gather_bootmem
2111 			 * puts them into the mem_map).
2112 			 */
2113 			m = addr;
2114 			goto found;
2115 		}
2116 	}
2117 	return 0;
2118 
2119 found:
2120 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2121 	/* Put them into a private list first because mem_map is not up yet */
2122 	list_add(&m->list, &huge_boot_pages);
2123 	m->hstate = h;
2124 	return 1;
2125 }
2126 
2127 static void __init prep_compound_huge_page(struct page *page,
2128 		unsigned int order)
2129 {
2130 	if (unlikely(order > (MAX_ORDER - 1)))
2131 		prep_compound_gigantic_page(page, order);
2132 	else
2133 		prep_compound_page(page, order);
2134 }
2135 
2136 /* Put bootmem huge pages into the standard lists after mem_map is up */
2137 static void __init gather_bootmem_prealloc(void)
2138 {
2139 	struct huge_bootmem_page *m;
2140 
2141 	list_for_each_entry(m, &huge_boot_pages, list) {
2142 		struct hstate *h = m->hstate;
2143 		struct page *page;
2144 
2145 #ifdef CONFIG_HIGHMEM
2146 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2147 		memblock_free_late(__pa(m),
2148 				   sizeof(struct huge_bootmem_page));
2149 #else
2150 		page = virt_to_page(m);
2151 #endif
2152 		WARN_ON(page_count(page) != 1);
2153 		prep_compound_huge_page(page, h->order);
2154 		WARN_ON(PageReserved(page));
2155 		prep_new_huge_page(h, page, page_to_nid(page));
2156 		put_page(page); /* free it into the hugepage allocator */
2157 
2158 		/*
2159 		 * If we had gigantic hugepages allocated at boot time, we need
2160 		 * to restore the 'stolen' pages to totalram_pages in order to
2161 		 * fix confusing memory reports from free(1) and another
2162 		 * side-effects, like CommitLimit going negative.
2163 		 */
2164 		if (hstate_is_gigantic(h))
2165 			adjust_managed_page_count(page, 1 << h->order);
2166 		cond_resched();
2167 	}
2168 }
2169 
2170 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2171 {
2172 	unsigned long i;
2173 
2174 	for (i = 0; i < h->max_huge_pages; ++i) {
2175 		if (hstate_is_gigantic(h)) {
2176 			if (!alloc_bootmem_huge_page(h))
2177 				break;
2178 		} else if (!alloc_pool_huge_page(h,
2179 					 &node_states[N_MEMORY]))
2180 			break;
2181 		cond_resched();
2182 	}
2183 	if (i < h->max_huge_pages) {
2184 		char buf[32];
2185 
2186 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2187 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2188 			h->max_huge_pages, buf, i);
2189 		h->max_huge_pages = i;
2190 	}
2191 }
2192 
2193 static void __init hugetlb_init_hstates(void)
2194 {
2195 	struct hstate *h;
2196 
2197 	for_each_hstate(h) {
2198 		if (minimum_order > huge_page_order(h))
2199 			minimum_order = huge_page_order(h);
2200 
2201 		/* oversize hugepages were init'ed in early boot */
2202 		if (!hstate_is_gigantic(h))
2203 			hugetlb_hstate_alloc_pages(h);
2204 	}
2205 	VM_BUG_ON(minimum_order == UINT_MAX);
2206 }
2207 
2208 static void __init report_hugepages(void)
2209 {
2210 	struct hstate *h;
2211 
2212 	for_each_hstate(h) {
2213 		char buf[32];
2214 
2215 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2216 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2217 			buf, h->free_huge_pages);
2218 	}
2219 }
2220 
2221 #ifdef CONFIG_HIGHMEM
2222 static void try_to_free_low(struct hstate *h, unsigned long count,
2223 						nodemask_t *nodes_allowed)
2224 {
2225 	int i;
2226 
2227 	if (hstate_is_gigantic(h))
2228 		return;
2229 
2230 	for_each_node_mask(i, *nodes_allowed) {
2231 		struct page *page, *next;
2232 		struct list_head *freel = &h->hugepage_freelists[i];
2233 		list_for_each_entry_safe(page, next, freel, lru) {
2234 			if (count >= h->nr_huge_pages)
2235 				return;
2236 			if (PageHighMem(page))
2237 				continue;
2238 			list_del(&page->lru);
2239 			update_and_free_page(h, page);
2240 			h->free_huge_pages--;
2241 			h->free_huge_pages_node[page_to_nid(page)]--;
2242 		}
2243 	}
2244 }
2245 #else
2246 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2247 						nodemask_t *nodes_allowed)
2248 {
2249 }
2250 #endif
2251 
2252 /*
2253  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2254  * balanced by operating on them in a round-robin fashion.
2255  * Returns 1 if an adjustment was made.
2256  */
2257 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2258 				int delta)
2259 {
2260 	int nr_nodes, node;
2261 
2262 	VM_BUG_ON(delta != -1 && delta != 1);
2263 
2264 	if (delta < 0) {
2265 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2266 			if (h->surplus_huge_pages_node[node])
2267 				goto found;
2268 		}
2269 	} else {
2270 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2271 			if (h->surplus_huge_pages_node[node] <
2272 					h->nr_huge_pages_node[node])
2273 				goto found;
2274 		}
2275 	}
2276 	return 0;
2277 
2278 found:
2279 	h->surplus_huge_pages += delta;
2280 	h->surplus_huge_pages_node[node] += delta;
2281 	return 1;
2282 }
2283 
2284 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2285 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2286 						nodemask_t *nodes_allowed)
2287 {
2288 	unsigned long min_count, ret;
2289 
2290 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2291 		return h->max_huge_pages;
2292 
2293 	/*
2294 	 * Increase the pool size
2295 	 * First take pages out of surplus state.  Then make up the
2296 	 * remaining difference by allocating fresh huge pages.
2297 	 *
2298 	 * We might race with alloc_surplus_huge_page() here and be unable
2299 	 * to convert a surplus huge page to a normal huge page. That is
2300 	 * not critical, though, it just means the overall size of the
2301 	 * pool might be one hugepage larger than it needs to be, but
2302 	 * within all the constraints specified by the sysctls.
2303 	 */
2304 	spin_lock(&hugetlb_lock);
2305 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2306 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2307 			break;
2308 	}
2309 
2310 	while (count > persistent_huge_pages(h)) {
2311 		/*
2312 		 * If this allocation races such that we no longer need the
2313 		 * page, free_huge_page will handle it by freeing the page
2314 		 * and reducing the surplus.
2315 		 */
2316 		spin_unlock(&hugetlb_lock);
2317 
2318 		/* yield cpu to avoid soft lockup */
2319 		cond_resched();
2320 
2321 		ret = alloc_pool_huge_page(h, nodes_allowed);
2322 		spin_lock(&hugetlb_lock);
2323 		if (!ret)
2324 			goto out;
2325 
2326 		/* Bail for signals. Probably ctrl-c from user */
2327 		if (signal_pending(current))
2328 			goto out;
2329 	}
2330 
2331 	/*
2332 	 * Decrease the pool size
2333 	 * First return free pages to the buddy allocator (being careful
2334 	 * to keep enough around to satisfy reservations).  Then place
2335 	 * pages into surplus state as needed so the pool will shrink
2336 	 * to the desired size as pages become free.
2337 	 *
2338 	 * By placing pages into the surplus state independent of the
2339 	 * overcommit value, we are allowing the surplus pool size to
2340 	 * exceed overcommit. There are few sane options here. Since
2341 	 * alloc_surplus_huge_page() is checking the global counter,
2342 	 * though, we'll note that we're not allowed to exceed surplus
2343 	 * and won't grow the pool anywhere else. Not until one of the
2344 	 * sysctls are changed, or the surplus pages go out of use.
2345 	 */
2346 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2347 	min_count = max(count, min_count);
2348 	try_to_free_low(h, min_count, nodes_allowed);
2349 	while (min_count < persistent_huge_pages(h)) {
2350 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2351 			break;
2352 		cond_resched_lock(&hugetlb_lock);
2353 	}
2354 	while (count < persistent_huge_pages(h)) {
2355 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2356 			break;
2357 	}
2358 out:
2359 	ret = persistent_huge_pages(h);
2360 	spin_unlock(&hugetlb_lock);
2361 	return ret;
2362 }
2363 
2364 #define HSTATE_ATTR_RO(_name) \
2365 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2366 
2367 #define HSTATE_ATTR(_name) \
2368 	static struct kobj_attribute _name##_attr = \
2369 		__ATTR(_name, 0644, _name##_show, _name##_store)
2370 
2371 static struct kobject *hugepages_kobj;
2372 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2373 
2374 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2375 
2376 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2377 {
2378 	int i;
2379 
2380 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2381 		if (hstate_kobjs[i] == kobj) {
2382 			if (nidp)
2383 				*nidp = NUMA_NO_NODE;
2384 			return &hstates[i];
2385 		}
2386 
2387 	return kobj_to_node_hstate(kobj, nidp);
2388 }
2389 
2390 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2391 					struct kobj_attribute *attr, char *buf)
2392 {
2393 	struct hstate *h;
2394 	unsigned long nr_huge_pages;
2395 	int nid;
2396 
2397 	h = kobj_to_hstate(kobj, &nid);
2398 	if (nid == NUMA_NO_NODE)
2399 		nr_huge_pages = h->nr_huge_pages;
2400 	else
2401 		nr_huge_pages = h->nr_huge_pages_node[nid];
2402 
2403 	return sprintf(buf, "%lu\n", nr_huge_pages);
2404 }
2405 
2406 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2407 					   struct hstate *h, int nid,
2408 					   unsigned long count, size_t len)
2409 {
2410 	int err;
2411 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2412 
2413 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2414 		err = -EINVAL;
2415 		goto out;
2416 	}
2417 
2418 	if (nid == NUMA_NO_NODE) {
2419 		/*
2420 		 * global hstate attribute
2421 		 */
2422 		if (!(obey_mempolicy &&
2423 				init_nodemask_of_mempolicy(nodes_allowed))) {
2424 			NODEMASK_FREE(nodes_allowed);
2425 			nodes_allowed = &node_states[N_MEMORY];
2426 		}
2427 	} else if (nodes_allowed) {
2428 		/*
2429 		 * per node hstate attribute: adjust count to global,
2430 		 * but restrict alloc/free to the specified node.
2431 		 */
2432 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2433 		init_nodemask_of_node(nodes_allowed, nid);
2434 	} else
2435 		nodes_allowed = &node_states[N_MEMORY];
2436 
2437 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2438 
2439 	if (nodes_allowed != &node_states[N_MEMORY])
2440 		NODEMASK_FREE(nodes_allowed);
2441 
2442 	return len;
2443 out:
2444 	NODEMASK_FREE(nodes_allowed);
2445 	return err;
2446 }
2447 
2448 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2449 					 struct kobject *kobj, const char *buf,
2450 					 size_t len)
2451 {
2452 	struct hstate *h;
2453 	unsigned long count;
2454 	int nid;
2455 	int err;
2456 
2457 	err = kstrtoul(buf, 10, &count);
2458 	if (err)
2459 		return err;
2460 
2461 	h = kobj_to_hstate(kobj, &nid);
2462 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2463 }
2464 
2465 static ssize_t nr_hugepages_show(struct kobject *kobj,
2466 				       struct kobj_attribute *attr, char *buf)
2467 {
2468 	return nr_hugepages_show_common(kobj, attr, buf);
2469 }
2470 
2471 static ssize_t nr_hugepages_store(struct kobject *kobj,
2472 	       struct kobj_attribute *attr, const char *buf, size_t len)
2473 {
2474 	return nr_hugepages_store_common(false, kobj, buf, len);
2475 }
2476 HSTATE_ATTR(nr_hugepages);
2477 
2478 #ifdef CONFIG_NUMA
2479 
2480 /*
2481  * hstate attribute for optionally mempolicy-based constraint on persistent
2482  * huge page alloc/free.
2483  */
2484 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2485 				       struct kobj_attribute *attr, char *buf)
2486 {
2487 	return nr_hugepages_show_common(kobj, attr, buf);
2488 }
2489 
2490 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2491 	       struct kobj_attribute *attr, const char *buf, size_t len)
2492 {
2493 	return nr_hugepages_store_common(true, kobj, buf, len);
2494 }
2495 HSTATE_ATTR(nr_hugepages_mempolicy);
2496 #endif
2497 
2498 
2499 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2500 					struct kobj_attribute *attr, char *buf)
2501 {
2502 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2503 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2504 }
2505 
2506 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2507 		struct kobj_attribute *attr, const char *buf, size_t count)
2508 {
2509 	int err;
2510 	unsigned long input;
2511 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2512 
2513 	if (hstate_is_gigantic(h))
2514 		return -EINVAL;
2515 
2516 	err = kstrtoul(buf, 10, &input);
2517 	if (err)
2518 		return err;
2519 
2520 	spin_lock(&hugetlb_lock);
2521 	h->nr_overcommit_huge_pages = input;
2522 	spin_unlock(&hugetlb_lock);
2523 
2524 	return count;
2525 }
2526 HSTATE_ATTR(nr_overcommit_hugepages);
2527 
2528 static ssize_t free_hugepages_show(struct kobject *kobj,
2529 					struct kobj_attribute *attr, char *buf)
2530 {
2531 	struct hstate *h;
2532 	unsigned long free_huge_pages;
2533 	int nid;
2534 
2535 	h = kobj_to_hstate(kobj, &nid);
2536 	if (nid == NUMA_NO_NODE)
2537 		free_huge_pages = h->free_huge_pages;
2538 	else
2539 		free_huge_pages = h->free_huge_pages_node[nid];
2540 
2541 	return sprintf(buf, "%lu\n", free_huge_pages);
2542 }
2543 HSTATE_ATTR_RO(free_hugepages);
2544 
2545 static ssize_t resv_hugepages_show(struct kobject *kobj,
2546 					struct kobj_attribute *attr, char *buf)
2547 {
2548 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2549 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2550 }
2551 HSTATE_ATTR_RO(resv_hugepages);
2552 
2553 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2554 					struct kobj_attribute *attr, char *buf)
2555 {
2556 	struct hstate *h;
2557 	unsigned long surplus_huge_pages;
2558 	int nid;
2559 
2560 	h = kobj_to_hstate(kobj, &nid);
2561 	if (nid == NUMA_NO_NODE)
2562 		surplus_huge_pages = h->surplus_huge_pages;
2563 	else
2564 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2565 
2566 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2567 }
2568 HSTATE_ATTR_RO(surplus_hugepages);
2569 
2570 static struct attribute *hstate_attrs[] = {
2571 	&nr_hugepages_attr.attr,
2572 	&nr_overcommit_hugepages_attr.attr,
2573 	&free_hugepages_attr.attr,
2574 	&resv_hugepages_attr.attr,
2575 	&surplus_hugepages_attr.attr,
2576 #ifdef CONFIG_NUMA
2577 	&nr_hugepages_mempolicy_attr.attr,
2578 #endif
2579 	NULL,
2580 };
2581 
2582 static const struct attribute_group hstate_attr_group = {
2583 	.attrs = hstate_attrs,
2584 };
2585 
2586 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2587 				    struct kobject **hstate_kobjs,
2588 				    const struct attribute_group *hstate_attr_group)
2589 {
2590 	int retval;
2591 	int hi = hstate_index(h);
2592 
2593 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2594 	if (!hstate_kobjs[hi])
2595 		return -ENOMEM;
2596 
2597 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2598 	if (retval)
2599 		kobject_put(hstate_kobjs[hi]);
2600 
2601 	return retval;
2602 }
2603 
2604 static void __init hugetlb_sysfs_init(void)
2605 {
2606 	struct hstate *h;
2607 	int err;
2608 
2609 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2610 	if (!hugepages_kobj)
2611 		return;
2612 
2613 	for_each_hstate(h) {
2614 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2615 					 hstate_kobjs, &hstate_attr_group);
2616 		if (err)
2617 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2618 	}
2619 }
2620 
2621 #ifdef CONFIG_NUMA
2622 
2623 /*
2624  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2625  * with node devices in node_devices[] using a parallel array.  The array
2626  * index of a node device or _hstate == node id.
2627  * This is here to avoid any static dependency of the node device driver, in
2628  * the base kernel, on the hugetlb module.
2629  */
2630 struct node_hstate {
2631 	struct kobject		*hugepages_kobj;
2632 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2633 };
2634 static struct node_hstate node_hstates[MAX_NUMNODES];
2635 
2636 /*
2637  * A subset of global hstate attributes for node devices
2638  */
2639 static struct attribute *per_node_hstate_attrs[] = {
2640 	&nr_hugepages_attr.attr,
2641 	&free_hugepages_attr.attr,
2642 	&surplus_hugepages_attr.attr,
2643 	NULL,
2644 };
2645 
2646 static const struct attribute_group per_node_hstate_attr_group = {
2647 	.attrs = per_node_hstate_attrs,
2648 };
2649 
2650 /*
2651  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2652  * Returns node id via non-NULL nidp.
2653  */
2654 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2655 {
2656 	int nid;
2657 
2658 	for (nid = 0; nid < nr_node_ids; nid++) {
2659 		struct node_hstate *nhs = &node_hstates[nid];
2660 		int i;
2661 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2662 			if (nhs->hstate_kobjs[i] == kobj) {
2663 				if (nidp)
2664 					*nidp = nid;
2665 				return &hstates[i];
2666 			}
2667 	}
2668 
2669 	BUG();
2670 	return NULL;
2671 }
2672 
2673 /*
2674  * Unregister hstate attributes from a single node device.
2675  * No-op if no hstate attributes attached.
2676  */
2677 static void hugetlb_unregister_node(struct node *node)
2678 {
2679 	struct hstate *h;
2680 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2681 
2682 	if (!nhs->hugepages_kobj)
2683 		return;		/* no hstate attributes */
2684 
2685 	for_each_hstate(h) {
2686 		int idx = hstate_index(h);
2687 		if (nhs->hstate_kobjs[idx]) {
2688 			kobject_put(nhs->hstate_kobjs[idx]);
2689 			nhs->hstate_kobjs[idx] = NULL;
2690 		}
2691 	}
2692 
2693 	kobject_put(nhs->hugepages_kobj);
2694 	nhs->hugepages_kobj = NULL;
2695 }
2696 
2697 
2698 /*
2699  * Register hstate attributes for a single node device.
2700  * No-op if attributes already registered.
2701  */
2702 static void hugetlb_register_node(struct node *node)
2703 {
2704 	struct hstate *h;
2705 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2706 	int err;
2707 
2708 	if (nhs->hugepages_kobj)
2709 		return;		/* already allocated */
2710 
2711 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2712 							&node->dev.kobj);
2713 	if (!nhs->hugepages_kobj)
2714 		return;
2715 
2716 	for_each_hstate(h) {
2717 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2718 						nhs->hstate_kobjs,
2719 						&per_node_hstate_attr_group);
2720 		if (err) {
2721 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2722 				h->name, node->dev.id);
2723 			hugetlb_unregister_node(node);
2724 			break;
2725 		}
2726 	}
2727 }
2728 
2729 /*
2730  * hugetlb init time:  register hstate attributes for all registered node
2731  * devices of nodes that have memory.  All on-line nodes should have
2732  * registered their associated device by this time.
2733  */
2734 static void __init hugetlb_register_all_nodes(void)
2735 {
2736 	int nid;
2737 
2738 	for_each_node_state(nid, N_MEMORY) {
2739 		struct node *node = node_devices[nid];
2740 		if (node->dev.id == nid)
2741 			hugetlb_register_node(node);
2742 	}
2743 
2744 	/*
2745 	 * Let the node device driver know we're here so it can
2746 	 * [un]register hstate attributes on node hotplug.
2747 	 */
2748 	register_hugetlbfs_with_node(hugetlb_register_node,
2749 				     hugetlb_unregister_node);
2750 }
2751 #else	/* !CONFIG_NUMA */
2752 
2753 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2754 {
2755 	BUG();
2756 	if (nidp)
2757 		*nidp = -1;
2758 	return NULL;
2759 }
2760 
2761 static void hugetlb_register_all_nodes(void) { }
2762 
2763 #endif
2764 
2765 static int __init hugetlb_init(void)
2766 {
2767 	int i;
2768 
2769 	if (!hugepages_supported())
2770 		return 0;
2771 
2772 	if (!size_to_hstate(default_hstate_size)) {
2773 		if (default_hstate_size != 0) {
2774 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2775 			       default_hstate_size, HPAGE_SIZE);
2776 		}
2777 
2778 		default_hstate_size = HPAGE_SIZE;
2779 		if (!size_to_hstate(default_hstate_size))
2780 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2781 	}
2782 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2783 	if (default_hstate_max_huge_pages) {
2784 		if (!default_hstate.max_huge_pages)
2785 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2786 	}
2787 
2788 	hugetlb_init_hstates();
2789 	gather_bootmem_prealloc();
2790 	report_hugepages();
2791 
2792 	hugetlb_sysfs_init();
2793 	hugetlb_register_all_nodes();
2794 	hugetlb_cgroup_file_init();
2795 
2796 #ifdef CONFIG_SMP
2797 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2798 #else
2799 	num_fault_mutexes = 1;
2800 #endif
2801 	hugetlb_fault_mutex_table =
2802 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2803 			      GFP_KERNEL);
2804 	BUG_ON(!hugetlb_fault_mutex_table);
2805 
2806 	for (i = 0; i < num_fault_mutexes; i++)
2807 		mutex_init(&hugetlb_fault_mutex_table[i]);
2808 	return 0;
2809 }
2810 subsys_initcall(hugetlb_init);
2811 
2812 /* Should be called on processing a hugepagesz=... option */
2813 void __init hugetlb_bad_size(void)
2814 {
2815 	parsed_valid_hugepagesz = false;
2816 }
2817 
2818 void __init hugetlb_add_hstate(unsigned int order)
2819 {
2820 	struct hstate *h;
2821 	unsigned long i;
2822 
2823 	if (size_to_hstate(PAGE_SIZE << order)) {
2824 		pr_warn("hugepagesz= specified twice, ignoring\n");
2825 		return;
2826 	}
2827 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2828 	BUG_ON(order == 0);
2829 	h = &hstates[hugetlb_max_hstate++];
2830 	h->order = order;
2831 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2832 	h->nr_huge_pages = 0;
2833 	h->free_huge_pages = 0;
2834 	for (i = 0; i < MAX_NUMNODES; ++i)
2835 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2836 	INIT_LIST_HEAD(&h->hugepage_activelist);
2837 	h->next_nid_to_alloc = first_memory_node;
2838 	h->next_nid_to_free = first_memory_node;
2839 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2840 					huge_page_size(h)/1024);
2841 
2842 	parsed_hstate = h;
2843 }
2844 
2845 static int __init hugetlb_nrpages_setup(char *s)
2846 {
2847 	unsigned long *mhp;
2848 	static unsigned long *last_mhp;
2849 
2850 	if (!parsed_valid_hugepagesz) {
2851 		pr_warn("hugepages = %s preceded by "
2852 			"an unsupported hugepagesz, ignoring\n", s);
2853 		parsed_valid_hugepagesz = true;
2854 		return 1;
2855 	}
2856 	/*
2857 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2858 	 * so this hugepages= parameter goes to the "default hstate".
2859 	 */
2860 	else if (!hugetlb_max_hstate)
2861 		mhp = &default_hstate_max_huge_pages;
2862 	else
2863 		mhp = &parsed_hstate->max_huge_pages;
2864 
2865 	if (mhp == last_mhp) {
2866 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2867 		return 1;
2868 	}
2869 
2870 	if (sscanf(s, "%lu", mhp) <= 0)
2871 		*mhp = 0;
2872 
2873 	/*
2874 	 * Global state is always initialized later in hugetlb_init.
2875 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2876 	 * use the bootmem allocator.
2877 	 */
2878 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2879 		hugetlb_hstate_alloc_pages(parsed_hstate);
2880 
2881 	last_mhp = mhp;
2882 
2883 	return 1;
2884 }
2885 __setup("hugepages=", hugetlb_nrpages_setup);
2886 
2887 static int __init hugetlb_default_setup(char *s)
2888 {
2889 	default_hstate_size = memparse(s, &s);
2890 	return 1;
2891 }
2892 __setup("default_hugepagesz=", hugetlb_default_setup);
2893 
2894 static unsigned int cpuset_mems_nr(unsigned int *array)
2895 {
2896 	int node;
2897 	unsigned int nr = 0;
2898 
2899 	for_each_node_mask(node, cpuset_current_mems_allowed)
2900 		nr += array[node];
2901 
2902 	return nr;
2903 }
2904 
2905 #ifdef CONFIG_SYSCTL
2906 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2907 			 struct ctl_table *table, int write,
2908 			 void __user *buffer, size_t *length, loff_t *ppos)
2909 {
2910 	struct hstate *h = &default_hstate;
2911 	unsigned long tmp = h->max_huge_pages;
2912 	int ret;
2913 
2914 	if (!hugepages_supported())
2915 		return -EOPNOTSUPP;
2916 
2917 	table->data = &tmp;
2918 	table->maxlen = sizeof(unsigned long);
2919 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2920 	if (ret)
2921 		goto out;
2922 
2923 	if (write)
2924 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2925 						  NUMA_NO_NODE, tmp, *length);
2926 out:
2927 	return ret;
2928 }
2929 
2930 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2931 			  void __user *buffer, size_t *length, loff_t *ppos)
2932 {
2933 
2934 	return hugetlb_sysctl_handler_common(false, table, write,
2935 							buffer, length, ppos);
2936 }
2937 
2938 #ifdef CONFIG_NUMA
2939 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2940 			  void __user *buffer, size_t *length, loff_t *ppos)
2941 {
2942 	return hugetlb_sysctl_handler_common(true, table, write,
2943 							buffer, length, ppos);
2944 }
2945 #endif /* CONFIG_NUMA */
2946 
2947 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2948 			void __user *buffer,
2949 			size_t *length, loff_t *ppos)
2950 {
2951 	struct hstate *h = &default_hstate;
2952 	unsigned long tmp;
2953 	int ret;
2954 
2955 	if (!hugepages_supported())
2956 		return -EOPNOTSUPP;
2957 
2958 	tmp = h->nr_overcommit_huge_pages;
2959 
2960 	if (write && hstate_is_gigantic(h))
2961 		return -EINVAL;
2962 
2963 	table->data = &tmp;
2964 	table->maxlen = sizeof(unsigned long);
2965 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2966 	if (ret)
2967 		goto out;
2968 
2969 	if (write) {
2970 		spin_lock(&hugetlb_lock);
2971 		h->nr_overcommit_huge_pages = tmp;
2972 		spin_unlock(&hugetlb_lock);
2973 	}
2974 out:
2975 	return ret;
2976 }
2977 
2978 #endif /* CONFIG_SYSCTL */
2979 
2980 void hugetlb_report_meminfo(struct seq_file *m)
2981 {
2982 	struct hstate *h;
2983 	unsigned long total = 0;
2984 
2985 	if (!hugepages_supported())
2986 		return;
2987 
2988 	for_each_hstate(h) {
2989 		unsigned long count = h->nr_huge_pages;
2990 
2991 		total += (PAGE_SIZE << huge_page_order(h)) * count;
2992 
2993 		if (h == &default_hstate)
2994 			seq_printf(m,
2995 				   "HugePages_Total:   %5lu\n"
2996 				   "HugePages_Free:    %5lu\n"
2997 				   "HugePages_Rsvd:    %5lu\n"
2998 				   "HugePages_Surp:    %5lu\n"
2999 				   "Hugepagesize:   %8lu kB\n",
3000 				   count,
3001 				   h->free_huge_pages,
3002 				   h->resv_huge_pages,
3003 				   h->surplus_huge_pages,
3004 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3005 	}
3006 
3007 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3008 }
3009 
3010 int hugetlb_report_node_meminfo(int nid, char *buf)
3011 {
3012 	struct hstate *h = &default_hstate;
3013 	if (!hugepages_supported())
3014 		return 0;
3015 	return sprintf(buf,
3016 		"Node %d HugePages_Total: %5u\n"
3017 		"Node %d HugePages_Free:  %5u\n"
3018 		"Node %d HugePages_Surp:  %5u\n",
3019 		nid, h->nr_huge_pages_node[nid],
3020 		nid, h->free_huge_pages_node[nid],
3021 		nid, h->surplus_huge_pages_node[nid]);
3022 }
3023 
3024 void hugetlb_show_meminfo(void)
3025 {
3026 	struct hstate *h;
3027 	int nid;
3028 
3029 	if (!hugepages_supported())
3030 		return;
3031 
3032 	for_each_node_state(nid, N_MEMORY)
3033 		for_each_hstate(h)
3034 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3035 				nid,
3036 				h->nr_huge_pages_node[nid],
3037 				h->free_huge_pages_node[nid],
3038 				h->surplus_huge_pages_node[nid],
3039 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3040 }
3041 
3042 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3043 {
3044 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3045 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3046 }
3047 
3048 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3049 unsigned long hugetlb_total_pages(void)
3050 {
3051 	struct hstate *h;
3052 	unsigned long nr_total_pages = 0;
3053 
3054 	for_each_hstate(h)
3055 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3056 	return nr_total_pages;
3057 }
3058 
3059 static int hugetlb_acct_memory(struct hstate *h, long delta)
3060 {
3061 	int ret = -ENOMEM;
3062 
3063 	spin_lock(&hugetlb_lock);
3064 	/*
3065 	 * When cpuset is configured, it breaks the strict hugetlb page
3066 	 * reservation as the accounting is done on a global variable. Such
3067 	 * reservation is completely rubbish in the presence of cpuset because
3068 	 * the reservation is not checked against page availability for the
3069 	 * current cpuset. Application can still potentially OOM'ed by kernel
3070 	 * with lack of free htlb page in cpuset that the task is in.
3071 	 * Attempt to enforce strict accounting with cpuset is almost
3072 	 * impossible (or too ugly) because cpuset is too fluid that
3073 	 * task or memory node can be dynamically moved between cpusets.
3074 	 *
3075 	 * The change of semantics for shared hugetlb mapping with cpuset is
3076 	 * undesirable. However, in order to preserve some of the semantics,
3077 	 * we fall back to check against current free page availability as
3078 	 * a best attempt and hopefully to minimize the impact of changing
3079 	 * semantics that cpuset has.
3080 	 */
3081 	if (delta > 0) {
3082 		if (gather_surplus_pages(h, delta) < 0)
3083 			goto out;
3084 
3085 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3086 			return_unused_surplus_pages(h, delta);
3087 			goto out;
3088 		}
3089 	}
3090 
3091 	ret = 0;
3092 	if (delta < 0)
3093 		return_unused_surplus_pages(h, (unsigned long) -delta);
3094 
3095 out:
3096 	spin_unlock(&hugetlb_lock);
3097 	return ret;
3098 }
3099 
3100 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3101 {
3102 	struct resv_map *resv = vma_resv_map(vma);
3103 
3104 	/*
3105 	 * This new VMA should share its siblings reservation map if present.
3106 	 * The VMA will only ever have a valid reservation map pointer where
3107 	 * it is being copied for another still existing VMA.  As that VMA
3108 	 * has a reference to the reservation map it cannot disappear until
3109 	 * after this open call completes.  It is therefore safe to take a
3110 	 * new reference here without additional locking.
3111 	 */
3112 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3113 		kref_get(&resv->refs);
3114 }
3115 
3116 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3117 {
3118 	struct hstate *h = hstate_vma(vma);
3119 	struct resv_map *resv = vma_resv_map(vma);
3120 	struct hugepage_subpool *spool = subpool_vma(vma);
3121 	unsigned long reserve, start, end;
3122 	long gbl_reserve;
3123 
3124 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3125 		return;
3126 
3127 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3128 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3129 
3130 	reserve = (end - start) - region_count(resv, start, end);
3131 
3132 	kref_put(&resv->refs, resv_map_release);
3133 
3134 	if (reserve) {
3135 		/*
3136 		 * Decrement reserve counts.  The global reserve count may be
3137 		 * adjusted if the subpool has a minimum size.
3138 		 */
3139 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3140 		hugetlb_acct_memory(h, -gbl_reserve);
3141 	}
3142 }
3143 
3144 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3145 {
3146 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3147 		return -EINVAL;
3148 	return 0;
3149 }
3150 
3151 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3152 {
3153 	struct hstate *hstate = hstate_vma(vma);
3154 
3155 	return 1UL << huge_page_shift(hstate);
3156 }
3157 
3158 /*
3159  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3160  * handle_mm_fault() to try to instantiate regular-sized pages in the
3161  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3162  * this far.
3163  */
3164 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3165 {
3166 	BUG();
3167 	return 0;
3168 }
3169 
3170 /*
3171  * When a new function is introduced to vm_operations_struct and added
3172  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3173  * This is because under System V memory model, mappings created via
3174  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3175  * their original vm_ops are overwritten with shm_vm_ops.
3176  */
3177 const struct vm_operations_struct hugetlb_vm_ops = {
3178 	.fault = hugetlb_vm_op_fault,
3179 	.open = hugetlb_vm_op_open,
3180 	.close = hugetlb_vm_op_close,
3181 	.split = hugetlb_vm_op_split,
3182 	.pagesize = hugetlb_vm_op_pagesize,
3183 };
3184 
3185 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3186 				int writable)
3187 {
3188 	pte_t entry;
3189 
3190 	if (writable) {
3191 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3192 					 vma->vm_page_prot)));
3193 	} else {
3194 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3195 					   vma->vm_page_prot));
3196 	}
3197 	entry = pte_mkyoung(entry);
3198 	entry = pte_mkhuge(entry);
3199 	entry = arch_make_huge_pte(entry, vma, page, writable);
3200 
3201 	return entry;
3202 }
3203 
3204 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3205 				   unsigned long address, pte_t *ptep)
3206 {
3207 	pte_t entry;
3208 
3209 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3210 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3211 		update_mmu_cache(vma, address, ptep);
3212 }
3213 
3214 bool is_hugetlb_entry_migration(pte_t pte)
3215 {
3216 	swp_entry_t swp;
3217 
3218 	if (huge_pte_none(pte) || pte_present(pte))
3219 		return false;
3220 	swp = pte_to_swp_entry(pte);
3221 	if (non_swap_entry(swp) && is_migration_entry(swp))
3222 		return true;
3223 	else
3224 		return false;
3225 }
3226 
3227 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3228 {
3229 	swp_entry_t swp;
3230 
3231 	if (huge_pte_none(pte) || pte_present(pte))
3232 		return 0;
3233 	swp = pte_to_swp_entry(pte);
3234 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3235 		return 1;
3236 	else
3237 		return 0;
3238 }
3239 
3240 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3241 			    struct vm_area_struct *vma)
3242 {
3243 	pte_t *src_pte, *dst_pte, entry;
3244 	struct page *ptepage;
3245 	unsigned long addr;
3246 	int cow;
3247 	struct hstate *h = hstate_vma(vma);
3248 	unsigned long sz = huge_page_size(h);
3249 	unsigned long mmun_start;	/* For mmu_notifiers */
3250 	unsigned long mmun_end;		/* For mmu_notifiers */
3251 	int ret = 0;
3252 
3253 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3254 
3255 	mmun_start = vma->vm_start;
3256 	mmun_end = vma->vm_end;
3257 	if (cow)
3258 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3259 
3260 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3261 		spinlock_t *src_ptl, *dst_ptl;
3262 		src_pte = huge_pte_offset(src, addr, sz);
3263 		if (!src_pte)
3264 			continue;
3265 		dst_pte = huge_pte_alloc(dst, addr, sz);
3266 		if (!dst_pte) {
3267 			ret = -ENOMEM;
3268 			break;
3269 		}
3270 
3271 		/* If the pagetables are shared don't copy or take references */
3272 		if (dst_pte == src_pte)
3273 			continue;
3274 
3275 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3276 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3277 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3278 		entry = huge_ptep_get(src_pte);
3279 		if (huge_pte_none(entry)) { /* skip none entry */
3280 			;
3281 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3282 				    is_hugetlb_entry_hwpoisoned(entry))) {
3283 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3284 
3285 			if (is_write_migration_entry(swp_entry) && cow) {
3286 				/*
3287 				 * COW mappings require pages in both
3288 				 * parent and child to be set to read.
3289 				 */
3290 				make_migration_entry_read(&swp_entry);
3291 				entry = swp_entry_to_pte(swp_entry);
3292 				set_huge_swap_pte_at(src, addr, src_pte,
3293 						     entry, sz);
3294 			}
3295 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3296 		} else {
3297 			if (cow) {
3298 				/*
3299 				 * No need to notify as we are downgrading page
3300 				 * table protection not changing it to point
3301 				 * to a new page.
3302 				 *
3303 				 * See Documentation/vm/mmu_notifier.rst
3304 				 */
3305 				huge_ptep_set_wrprotect(src, addr, src_pte);
3306 			}
3307 			entry = huge_ptep_get(src_pte);
3308 			ptepage = pte_page(entry);
3309 			get_page(ptepage);
3310 			page_dup_rmap(ptepage, true);
3311 			set_huge_pte_at(dst, addr, dst_pte, entry);
3312 			hugetlb_count_add(pages_per_huge_page(h), dst);
3313 		}
3314 		spin_unlock(src_ptl);
3315 		spin_unlock(dst_ptl);
3316 	}
3317 
3318 	if (cow)
3319 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3320 
3321 	return ret;
3322 }
3323 
3324 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3325 			    unsigned long start, unsigned long end,
3326 			    struct page *ref_page)
3327 {
3328 	struct mm_struct *mm = vma->vm_mm;
3329 	unsigned long address;
3330 	pte_t *ptep;
3331 	pte_t pte;
3332 	spinlock_t *ptl;
3333 	struct page *page;
3334 	struct hstate *h = hstate_vma(vma);
3335 	unsigned long sz = huge_page_size(h);
3336 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3337 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3338 
3339 	WARN_ON(!is_vm_hugetlb_page(vma));
3340 	BUG_ON(start & ~huge_page_mask(h));
3341 	BUG_ON(end & ~huge_page_mask(h));
3342 
3343 	/*
3344 	 * This is a hugetlb vma, all the pte entries should point
3345 	 * to huge page.
3346 	 */
3347 	tlb_remove_check_page_size_change(tlb, sz);
3348 	tlb_start_vma(tlb, vma);
3349 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3350 	address = start;
3351 	for (; address < end; address += sz) {
3352 		ptep = huge_pte_offset(mm, address, sz);
3353 		if (!ptep)
3354 			continue;
3355 
3356 		ptl = huge_pte_lock(h, mm, ptep);
3357 		if (huge_pmd_unshare(mm, &address, ptep)) {
3358 			spin_unlock(ptl);
3359 			continue;
3360 		}
3361 
3362 		pte = huge_ptep_get(ptep);
3363 		if (huge_pte_none(pte)) {
3364 			spin_unlock(ptl);
3365 			continue;
3366 		}
3367 
3368 		/*
3369 		 * Migrating hugepage or HWPoisoned hugepage is already
3370 		 * unmapped and its refcount is dropped, so just clear pte here.
3371 		 */
3372 		if (unlikely(!pte_present(pte))) {
3373 			huge_pte_clear(mm, address, ptep, sz);
3374 			spin_unlock(ptl);
3375 			continue;
3376 		}
3377 
3378 		page = pte_page(pte);
3379 		/*
3380 		 * If a reference page is supplied, it is because a specific
3381 		 * page is being unmapped, not a range. Ensure the page we
3382 		 * are about to unmap is the actual page of interest.
3383 		 */
3384 		if (ref_page) {
3385 			if (page != ref_page) {
3386 				spin_unlock(ptl);
3387 				continue;
3388 			}
3389 			/*
3390 			 * Mark the VMA as having unmapped its page so that
3391 			 * future faults in this VMA will fail rather than
3392 			 * looking like data was lost
3393 			 */
3394 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3395 		}
3396 
3397 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3398 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3399 		if (huge_pte_dirty(pte))
3400 			set_page_dirty(page);
3401 
3402 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3403 		page_remove_rmap(page, true);
3404 
3405 		spin_unlock(ptl);
3406 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3407 		/*
3408 		 * Bail out after unmapping reference page if supplied
3409 		 */
3410 		if (ref_page)
3411 			break;
3412 	}
3413 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3414 	tlb_end_vma(tlb, vma);
3415 }
3416 
3417 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3418 			  struct vm_area_struct *vma, unsigned long start,
3419 			  unsigned long end, struct page *ref_page)
3420 {
3421 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3422 
3423 	/*
3424 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3425 	 * test will fail on a vma being torn down, and not grab a page table
3426 	 * on its way out.  We're lucky that the flag has such an appropriate
3427 	 * name, and can in fact be safely cleared here. We could clear it
3428 	 * before the __unmap_hugepage_range above, but all that's necessary
3429 	 * is to clear it before releasing the i_mmap_rwsem. This works
3430 	 * because in the context this is called, the VMA is about to be
3431 	 * destroyed and the i_mmap_rwsem is held.
3432 	 */
3433 	vma->vm_flags &= ~VM_MAYSHARE;
3434 }
3435 
3436 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3437 			  unsigned long end, struct page *ref_page)
3438 {
3439 	struct mm_struct *mm;
3440 	struct mmu_gather tlb;
3441 
3442 	mm = vma->vm_mm;
3443 
3444 	tlb_gather_mmu(&tlb, mm, start, end);
3445 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3446 	tlb_finish_mmu(&tlb, start, end);
3447 }
3448 
3449 /*
3450  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3451  * mappping it owns the reserve page for. The intention is to unmap the page
3452  * from other VMAs and let the children be SIGKILLed if they are faulting the
3453  * same region.
3454  */
3455 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3456 			      struct page *page, unsigned long address)
3457 {
3458 	struct hstate *h = hstate_vma(vma);
3459 	struct vm_area_struct *iter_vma;
3460 	struct address_space *mapping;
3461 	pgoff_t pgoff;
3462 
3463 	/*
3464 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3465 	 * from page cache lookup which is in HPAGE_SIZE units.
3466 	 */
3467 	address = address & huge_page_mask(h);
3468 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3469 			vma->vm_pgoff;
3470 	mapping = vma->vm_file->f_mapping;
3471 
3472 	/*
3473 	 * Take the mapping lock for the duration of the table walk. As
3474 	 * this mapping should be shared between all the VMAs,
3475 	 * __unmap_hugepage_range() is called as the lock is already held
3476 	 */
3477 	i_mmap_lock_write(mapping);
3478 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3479 		/* Do not unmap the current VMA */
3480 		if (iter_vma == vma)
3481 			continue;
3482 
3483 		/*
3484 		 * Shared VMAs have their own reserves and do not affect
3485 		 * MAP_PRIVATE accounting but it is possible that a shared
3486 		 * VMA is using the same page so check and skip such VMAs.
3487 		 */
3488 		if (iter_vma->vm_flags & VM_MAYSHARE)
3489 			continue;
3490 
3491 		/*
3492 		 * Unmap the page from other VMAs without their own reserves.
3493 		 * They get marked to be SIGKILLed if they fault in these
3494 		 * areas. This is because a future no-page fault on this VMA
3495 		 * could insert a zeroed page instead of the data existing
3496 		 * from the time of fork. This would look like data corruption
3497 		 */
3498 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3499 			unmap_hugepage_range(iter_vma, address,
3500 					     address + huge_page_size(h), page);
3501 	}
3502 	i_mmap_unlock_write(mapping);
3503 }
3504 
3505 /*
3506  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3507  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3508  * cannot race with other handlers or page migration.
3509  * Keep the pte_same checks anyway to make transition from the mutex easier.
3510  */
3511 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3512 		       unsigned long address, pte_t *ptep,
3513 		       struct page *pagecache_page, spinlock_t *ptl)
3514 {
3515 	pte_t pte;
3516 	struct hstate *h = hstate_vma(vma);
3517 	struct page *old_page, *new_page;
3518 	int ret = 0, outside_reserve = 0;
3519 	unsigned long mmun_start;	/* For mmu_notifiers */
3520 	unsigned long mmun_end;		/* For mmu_notifiers */
3521 
3522 	pte = huge_ptep_get(ptep);
3523 	old_page = pte_page(pte);
3524 
3525 retry_avoidcopy:
3526 	/* If no-one else is actually using this page, avoid the copy
3527 	 * and just make the page writable */
3528 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3529 		page_move_anon_rmap(old_page, vma);
3530 		set_huge_ptep_writable(vma, address, ptep);
3531 		return 0;
3532 	}
3533 
3534 	/*
3535 	 * If the process that created a MAP_PRIVATE mapping is about to
3536 	 * perform a COW due to a shared page count, attempt to satisfy
3537 	 * the allocation without using the existing reserves. The pagecache
3538 	 * page is used to determine if the reserve at this address was
3539 	 * consumed or not. If reserves were used, a partial faulted mapping
3540 	 * at the time of fork() could consume its reserves on COW instead
3541 	 * of the full address range.
3542 	 */
3543 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3544 			old_page != pagecache_page)
3545 		outside_reserve = 1;
3546 
3547 	get_page(old_page);
3548 
3549 	/*
3550 	 * Drop page table lock as buddy allocator may be called. It will
3551 	 * be acquired again before returning to the caller, as expected.
3552 	 */
3553 	spin_unlock(ptl);
3554 	new_page = alloc_huge_page(vma, address, outside_reserve);
3555 
3556 	if (IS_ERR(new_page)) {
3557 		/*
3558 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3559 		 * it is due to references held by a child and an insufficient
3560 		 * huge page pool. To guarantee the original mappers
3561 		 * reliability, unmap the page from child processes. The child
3562 		 * may get SIGKILLed if it later faults.
3563 		 */
3564 		if (outside_reserve) {
3565 			put_page(old_page);
3566 			BUG_ON(huge_pte_none(pte));
3567 			unmap_ref_private(mm, vma, old_page, address);
3568 			BUG_ON(huge_pte_none(pte));
3569 			spin_lock(ptl);
3570 			ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3571 					       huge_page_size(h));
3572 			if (likely(ptep &&
3573 				   pte_same(huge_ptep_get(ptep), pte)))
3574 				goto retry_avoidcopy;
3575 			/*
3576 			 * race occurs while re-acquiring page table
3577 			 * lock, and our job is done.
3578 			 */
3579 			return 0;
3580 		}
3581 
3582 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3583 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3584 		goto out_release_old;
3585 	}
3586 
3587 	/*
3588 	 * When the original hugepage is shared one, it does not have
3589 	 * anon_vma prepared.
3590 	 */
3591 	if (unlikely(anon_vma_prepare(vma))) {
3592 		ret = VM_FAULT_OOM;
3593 		goto out_release_all;
3594 	}
3595 
3596 	copy_user_huge_page(new_page, old_page, address, vma,
3597 			    pages_per_huge_page(h));
3598 	__SetPageUptodate(new_page);
3599 	set_page_huge_active(new_page);
3600 
3601 	mmun_start = address & huge_page_mask(h);
3602 	mmun_end = mmun_start + huge_page_size(h);
3603 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3604 
3605 	/*
3606 	 * Retake the page table lock to check for racing updates
3607 	 * before the page tables are altered
3608 	 */
3609 	spin_lock(ptl);
3610 	ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3611 			       huge_page_size(h));
3612 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3613 		ClearPagePrivate(new_page);
3614 
3615 		/* Break COW */
3616 		huge_ptep_clear_flush(vma, address, ptep);
3617 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3618 		set_huge_pte_at(mm, address, ptep,
3619 				make_huge_pte(vma, new_page, 1));
3620 		page_remove_rmap(old_page, true);
3621 		hugepage_add_new_anon_rmap(new_page, vma, address);
3622 		/* Make the old page be freed below */
3623 		new_page = old_page;
3624 	}
3625 	spin_unlock(ptl);
3626 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3627 out_release_all:
3628 	restore_reserve_on_error(h, vma, address, new_page);
3629 	put_page(new_page);
3630 out_release_old:
3631 	put_page(old_page);
3632 
3633 	spin_lock(ptl); /* Caller expects lock to be held */
3634 	return ret;
3635 }
3636 
3637 /* Return the pagecache page at a given address within a VMA */
3638 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3639 			struct vm_area_struct *vma, unsigned long address)
3640 {
3641 	struct address_space *mapping;
3642 	pgoff_t idx;
3643 
3644 	mapping = vma->vm_file->f_mapping;
3645 	idx = vma_hugecache_offset(h, vma, address);
3646 
3647 	return find_lock_page(mapping, idx);
3648 }
3649 
3650 /*
3651  * Return whether there is a pagecache page to back given address within VMA.
3652  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3653  */
3654 static bool hugetlbfs_pagecache_present(struct hstate *h,
3655 			struct vm_area_struct *vma, unsigned long address)
3656 {
3657 	struct address_space *mapping;
3658 	pgoff_t idx;
3659 	struct page *page;
3660 
3661 	mapping = vma->vm_file->f_mapping;
3662 	idx = vma_hugecache_offset(h, vma, address);
3663 
3664 	page = find_get_page(mapping, idx);
3665 	if (page)
3666 		put_page(page);
3667 	return page != NULL;
3668 }
3669 
3670 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3671 			   pgoff_t idx)
3672 {
3673 	struct inode *inode = mapping->host;
3674 	struct hstate *h = hstate_inode(inode);
3675 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3676 
3677 	if (err)
3678 		return err;
3679 	ClearPagePrivate(page);
3680 
3681 	spin_lock(&inode->i_lock);
3682 	inode->i_blocks += blocks_per_huge_page(h);
3683 	spin_unlock(&inode->i_lock);
3684 	return 0;
3685 }
3686 
3687 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3688 			   struct address_space *mapping, pgoff_t idx,
3689 			   unsigned long address, pte_t *ptep, unsigned int flags)
3690 {
3691 	struct hstate *h = hstate_vma(vma);
3692 	int ret = VM_FAULT_SIGBUS;
3693 	int anon_rmap = 0;
3694 	unsigned long size;
3695 	struct page *page;
3696 	pte_t new_pte;
3697 	spinlock_t *ptl;
3698 	unsigned long haddr = address & huge_page_mask(h);
3699 
3700 	/*
3701 	 * Currently, we are forced to kill the process in the event the
3702 	 * original mapper has unmapped pages from the child due to a failed
3703 	 * COW. Warn that such a situation has occurred as it may not be obvious
3704 	 */
3705 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3706 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3707 			   current->pid);
3708 		return ret;
3709 	}
3710 
3711 	/*
3712 	 * Use page lock to guard against racing truncation
3713 	 * before we get page_table_lock.
3714 	 */
3715 retry:
3716 	page = find_lock_page(mapping, idx);
3717 	if (!page) {
3718 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3719 		if (idx >= size)
3720 			goto out;
3721 
3722 		/*
3723 		 * Check for page in userfault range
3724 		 */
3725 		if (userfaultfd_missing(vma)) {
3726 			u32 hash;
3727 			struct vm_fault vmf = {
3728 				.vma = vma,
3729 				.address = haddr,
3730 				.flags = flags,
3731 				/*
3732 				 * Hard to debug if it ends up being
3733 				 * used by a callee that assumes
3734 				 * something about the other
3735 				 * uninitialized fields... same as in
3736 				 * memory.c
3737 				 */
3738 			};
3739 
3740 			/*
3741 			 * hugetlb_fault_mutex must be dropped before
3742 			 * handling userfault.  Reacquire after handling
3743 			 * fault to make calling code simpler.
3744 			 */
3745 			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3746 							idx, haddr);
3747 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3748 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3749 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3750 			goto out;
3751 		}
3752 
3753 		page = alloc_huge_page(vma, haddr, 0);
3754 		if (IS_ERR(page)) {
3755 			ret = PTR_ERR(page);
3756 			if (ret == -ENOMEM)
3757 				ret = VM_FAULT_OOM;
3758 			else
3759 				ret = VM_FAULT_SIGBUS;
3760 			goto out;
3761 		}
3762 		clear_huge_page(page, address, pages_per_huge_page(h));
3763 		__SetPageUptodate(page);
3764 		set_page_huge_active(page);
3765 
3766 		if (vma->vm_flags & VM_MAYSHARE) {
3767 			int err = huge_add_to_page_cache(page, mapping, idx);
3768 			if (err) {
3769 				put_page(page);
3770 				if (err == -EEXIST)
3771 					goto retry;
3772 				goto out;
3773 			}
3774 		} else {
3775 			lock_page(page);
3776 			if (unlikely(anon_vma_prepare(vma))) {
3777 				ret = VM_FAULT_OOM;
3778 				goto backout_unlocked;
3779 			}
3780 			anon_rmap = 1;
3781 		}
3782 	} else {
3783 		/*
3784 		 * If memory error occurs between mmap() and fault, some process
3785 		 * don't have hwpoisoned swap entry for errored virtual address.
3786 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3787 		 */
3788 		if (unlikely(PageHWPoison(page))) {
3789 			ret = VM_FAULT_HWPOISON |
3790 				VM_FAULT_SET_HINDEX(hstate_index(h));
3791 			goto backout_unlocked;
3792 		}
3793 	}
3794 
3795 	/*
3796 	 * If we are going to COW a private mapping later, we examine the
3797 	 * pending reservations for this page now. This will ensure that
3798 	 * any allocations necessary to record that reservation occur outside
3799 	 * the spinlock.
3800 	 */
3801 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3802 		if (vma_needs_reservation(h, vma, haddr) < 0) {
3803 			ret = VM_FAULT_OOM;
3804 			goto backout_unlocked;
3805 		}
3806 		/* Just decrements count, does not deallocate */
3807 		vma_end_reservation(h, vma, haddr);
3808 	}
3809 
3810 	ptl = huge_pte_lock(h, mm, ptep);
3811 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3812 	if (idx >= size)
3813 		goto backout;
3814 
3815 	ret = 0;
3816 	if (!huge_pte_none(huge_ptep_get(ptep)))
3817 		goto backout;
3818 
3819 	if (anon_rmap) {
3820 		ClearPagePrivate(page);
3821 		hugepage_add_new_anon_rmap(page, vma, haddr);
3822 	} else
3823 		page_dup_rmap(page, true);
3824 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3825 				&& (vma->vm_flags & VM_SHARED)));
3826 	set_huge_pte_at(mm, haddr, ptep, new_pte);
3827 
3828 	hugetlb_count_add(pages_per_huge_page(h), mm);
3829 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3830 		/* Optimization, do the COW without a second fault */
3831 		ret = hugetlb_cow(mm, vma, haddr, ptep, page, ptl);
3832 	}
3833 
3834 	spin_unlock(ptl);
3835 	unlock_page(page);
3836 out:
3837 	return ret;
3838 
3839 backout:
3840 	spin_unlock(ptl);
3841 backout_unlocked:
3842 	unlock_page(page);
3843 	restore_reserve_on_error(h, vma, haddr, page);
3844 	put_page(page);
3845 	goto out;
3846 }
3847 
3848 #ifdef CONFIG_SMP
3849 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3850 			    struct vm_area_struct *vma,
3851 			    struct address_space *mapping,
3852 			    pgoff_t idx, unsigned long address)
3853 {
3854 	unsigned long key[2];
3855 	u32 hash;
3856 
3857 	if (vma->vm_flags & VM_SHARED) {
3858 		key[0] = (unsigned long) mapping;
3859 		key[1] = idx;
3860 	} else {
3861 		key[0] = (unsigned long) mm;
3862 		key[1] = address >> huge_page_shift(h);
3863 	}
3864 
3865 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3866 
3867 	return hash & (num_fault_mutexes - 1);
3868 }
3869 #else
3870 /*
3871  * For uniprocesor systems we always use a single mutex, so just
3872  * return 0 and avoid the hashing overhead.
3873  */
3874 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3875 			    struct vm_area_struct *vma,
3876 			    struct address_space *mapping,
3877 			    pgoff_t idx, unsigned long address)
3878 {
3879 	return 0;
3880 }
3881 #endif
3882 
3883 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3884 			unsigned long address, unsigned int flags)
3885 {
3886 	pte_t *ptep, entry;
3887 	spinlock_t *ptl;
3888 	int ret;
3889 	u32 hash;
3890 	pgoff_t idx;
3891 	struct page *page = NULL;
3892 	struct page *pagecache_page = NULL;
3893 	struct hstate *h = hstate_vma(vma);
3894 	struct address_space *mapping;
3895 	int need_wait_lock = 0;
3896 	unsigned long haddr = address & huge_page_mask(h);
3897 
3898 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3899 	if (ptep) {
3900 		entry = huge_ptep_get(ptep);
3901 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3902 			migration_entry_wait_huge(vma, mm, ptep);
3903 			return 0;
3904 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3905 			return VM_FAULT_HWPOISON_LARGE |
3906 				VM_FAULT_SET_HINDEX(hstate_index(h));
3907 	} else {
3908 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3909 		if (!ptep)
3910 			return VM_FAULT_OOM;
3911 	}
3912 
3913 	mapping = vma->vm_file->f_mapping;
3914 	idx = vma_hugecache_offset(h, vma, haddr);
3915 
3916 	/*
3917 	 * Serialize hugepage allocation and instantiation, so that we don't
3918 	 * get spurious allocation failures if two CPUs race to instantiate
3919 	 * the same page in the page cache.
3920 	 */
3921 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
3922 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3923 
3924 	entry = huge_ptep_get(ptep);
3925 	if (huge_pte_none(entry)) {
3926 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3927 		goto out_mutex;
3928 	}
3929 
3930 	ret = 0;
3931 
3932 	/*
3933 	 * entry could be a migration/hwpoison entry at this point, so this
3934 	 * check prevents the kernel from going below assuming that we have
3935 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3936 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3937 	 * handle it.
3938 	 */
3939 	if (!pte_present(entry))
3940 		goto out_mutex;
3941 
3942 	/*
3943 	 * If we are going to COW the mapping later, we examine the pending
3944 	 * reservations for this page now. This will ensure that any
3945 	 * allocations necessary to record that reservation occur outside the
3946 	 * spinlock. For private mappings, we also lookup the pagecache
3947 	 * page now as it is used to determine if a reservation has been
3948 	 * consumed.
3949 	 */
3950 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3951 		if (vma_needs_reservation(h, vma, haddr) < 0) {
3952 			ret = VM_FAULT_OOM;
3953 			goto out_mutex;
3954 		}
3955 		/* Just decrements count, does not deallocate */
3956 		vma_end_reservation(h, vma, haddr);
3957 
3958 		if (!(vma->vm_flags & VM_MAYSHARE))
3959 			pagecache_page = hugetlbfs_pagecache_page(h,
3960 								vma, haddr);
3961 	}
3962 
3963 	ptl = huge_pte_lock(h, mm, ptep);
3964 
3965 	/* Check for a racing update before calling hugetlb_cow */
3966 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3967 		goto out_ptl;
3968 
3969 	/*
3970 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3971 	 * pagecache_page, so here we need take the former one
3972 	 * when page != pagecache_page or !pagecache_page.
3973 	 */
3974 	page = pte_page(entry);
3975 	if (page != pagecache_page)
3976 		if (!trylock_page(page)) {
3977 			need_wait_lock = 1;
3978 			goto out_ptl;
3979 		}
3980 
3981 	get_page(page);
3982 
3983 	if (flags & FAULT_FLAG_WRITE) {
3984 		if (!huge_pte_write(entry)) {
3985 			ret = hugetlb_cow(mm, vma, haddr, ptep,
3986 					  pagecache_page, ptl);
3987 			goto out_put_page;
3988 		}
3989 		entry = huge_pte_mkdirty(entry);
3990 	}
3991 	entry = pte_mkyoung(entry);
3992 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
3993 						flags & FAULT_FLAG_WRITE))
3994 		update_mmu_cache(vma, haddr, ptep);
3995 out_put_page:
3996 	if (page != pagecache_page)
3997 		unlock_page(page);
3998 	put_page(page);
3999 out_ptl:
4000 	spin_unlock(ptl);
4001 
4002 	if (pagecache_page) {
4003 		unlock_page(pagecache_page);
4004 		put_page(pagecache_page);
4005 	}
4006 out_mutex:
4007 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4008 	/*
4009 	 * Generally it's safe to hold refcount during waiting page lock. But
4010 	 * here we just wait to defer the next page fault to avoid busy loop and
4011 	 * the page is not used after unlocked before returning from the current
4012 	 * page fault. So we are safe from accessing freed page, even if we wait
4013 	 * here without taking refcount.
4014 	 */
4015 	if (need_wait_lock)
4016 		wait_on_page_locked(page);
4017 	return ret;
4018 }
4019 
4020 /*
4021  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4022  * modifications for huge pages.
4023  */
4024 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4025 			    pte_t *dst_pte,
4026 			    struct vm_area_struct *dst_vma,
4027 			    unsigned long dst_addr,
4028 			    unsigned long src_addr,
4029 			    struct page **pagep)
4030 {
4031 	struct address_space *mapping;
4032 	pgoff_t idx;
4033 	unsigned long size;
4034 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4035 	struct hstate *h = hstate_vma(dst_vma);
4036 	pte_t _dst_pte;
4037 	spinlock_t *ptl;
4038 	int ret;
4039 	struct page *page;
4040 
4041 	if (!*pagep) {
4042 		ret = -ENOMEM;
4043 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4044 		if (IS_ERR(page))
4045 			goto out;
4046 
4047 		ret = copy_huge_page_from_user(page,
4048 						(const void __user *) src_addr,
4049 						pages_per_huge_page(h), false);
4050 
4051 		/* fallback to copy_from_user outside mmap_sem */
4052 		if (unlikely(ret)) {
4053 			ret = -EFAULT;
4054 			*pagep = page;
4055 			/* don't free the page */
4056 			goto out;
4057 		}
4058 	} else {
4059 		page = *pagep;
4060 		*pagep = NULL;
4061 	}
4062 
4063 	/*
4064 	 * The memory barrier inside __SetPageUptodate makes sure that
4065 	 * preceding stores to the page contents become visible before
4066 	 * the set_pte_at() write.
4067 	 */
4068 	__SetPageUptodate(page);
4069 	set_page_huge_active(page);
4070 
4071 	mapping = dst_vma->vm_file->f_mapping;
4072 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4073 
4074 	/*
4075 	 * If shared, add to page cache
4076 	 */
4077 	if (vm_shared) {
4078 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4079 		ret = -EFAULT;
4080 		if (idx >= size)
4081 			goto out_release_nounlock;
4082 
4083 		/*
4084 		 * Serialization between remove_inode_hugepages() and
4085 		 * huge_add_to_page_cache() below happens through the
4086 		 * hugetlb_fault_mutex_table that here must be hold by
4087 		 * the caller.
4088 		 */
4089 		ret = huge_add_to_page_cache(page, mapping, idx);
4090 		if (ret)
4091 			goto out_release_nounlock;
4092 	}
4093 
4094 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4095 	spin_lock(ptl);
4096 
4097 	/*
4098 	 * Recheck the i_size after holding PT lock to make sure not
4099 	 * to leave any page mapped (as page_mapped()) beyond the end
4100 	 * of the i_size (remove_inode_hugepages() is strict about
4101 	 * enforcing that). If we bail out here, we'll also leave a
4102 	 * page in the radix tree in the vm_shared case beyond the end
4103 	 * of the i_size, but remove_inode_hugepages() will take care
4104 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4105 	 */
4106 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4107 	ret = -EFAULT;
4108 	if (idx >= size)
4109 		goto out_release_unlock;
4110 
4111 	ret = -EEXIST;
4112 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4113 		goto out_release_unlock;
4114 
4115 	if (vm_shared) {
4116 		page_dup_rmap(page, true);
4117 	} else {
4118 		ClearPagePrivate(page);
4119 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4120 	}
4121 
4122 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4123 	if (dst_vma->vm_flags & VM_WRITE)
4124 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4125 	_dst_pte = pte_mkyoung(_dst_pte);
4126 
4127 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4128 
4129 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4130 					dst_vma->vm_flags & VM_WRITE);
4131 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4132 
4133 	/* No need to invalidate - it was non-present before */
4134 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4135 
4136 	spin_unlock(ptl);
4137 	if (vm_shared)
4138 		unlock_page(page);
4139 	ret = 0;
4140 out:
4141 	return ret;
4142 out_release_unlock:
4143 	spin_unlock(ptl);
4144 	if (vm_shared)
4145 		unlock_page(page);
4146 out_release_nounlock:
4147 	put_page(page);
4148 	goto out;
4149 }
4150 
4151 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4152 			 struct page **pages, struct vm_area_struct **vmas,
4153 			 unsigned long *position, unsigned long *nr_pages,
4154 			 long i, unsigned int flags, int *nonblocking)
4155 {
4156 	unsigned long pfn_offset;
4157 	unsigned long vaddr = *position;
4158 	unsigned long remainder = *nr_pages;
4159 	struct hstate *h = hstate_vma(vma);
4160 	int err = -EFAULT;
4161 
4162 	while (vaddr < vma->vm_end && remainder) {
4163 		pte_t *pte;
4164 		spinlock_t *ptl = NULL;
4165 		int absent;
4166 		struct page *page;
4167 
4168 		/*
4169 		 * If we have a pending SIGKILL, don't keep faulting pages and
4170 		 * potentially allocating memory.
4171 		 */
4172 		if (unlikely(fatal_signal_pending(current))) {
4173 			remainder = 0;
4174 			break;
4175 		}
4176 
4177 		/*
4178 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4179 		 * each hugepage.  We have to make sure we get the
4180 		 * first, for the page indexing below to work.
4181 		 *
4182 		 * Note that page table lock is not held when pte is null.
4183 		 */
4184 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4185 				      huge_page_size(h));
4186 		if (pte)
4187 			ptl = huge_pte_lock(h, mm, pte);
4188 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4189 
4190 		/*
4191 		 * When coredumping, it suits get_dump_page if we just return
4192 		 * an error where there's an empty slot with no huge pagecache
4193 		 * to back it.  This way, we avoid allocating a hugepage, and
4194 		 * the sparse dumpfile avoids allocating disk blocks, but its
4195 		 * huge holes still show up with zeroes where they need to be.
4196 		 */
4197 		if (absent && (flags & FOLL_DUMP) &&
4198 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4199 			if (pte)
4200 				spin_unlock(ptl);
4201 			remainder = 0;
4202 			break;
4203 		}
4204 
4205 		/*
4206 		 * We need call hugetlb_fault for both hugepages under migration
4207 		 * (in which case hugetlb_fault waits for the migration,) and
4208 		 * hwpoisoned hugepages (in which case we need to prevent the
4209 		 * caller from accessing to them.) In order to do this, we use
4210 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4211 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4212 		 * both cases, and because we can't follow correct pages
4213 		 * directly from any kind of swap entries.
4214 		 */
4215 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4216 		    ((flags & FOLL_WRITE) &&
4217 		      !huge_pte_write(huge_ptep_get(pte)))) {
4218 			int ret;
4219 			unsigned int fault_flags = 0;
4220 
4221 			if (pte)
4222 				spin_unlock(ptl);
4223 			if (flags & FOLL_WRITE)
4224 				fault_flags |= FAULT_FLAG_WRITE;
4225 			if (nonblocking)
4226 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4227 			if (flags & FOLL_NOWAIT)
4228 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4229 					FAULT_FLAG_RETRY_NOWAIT;
4230 			if (flags & FOLL_TRIED) {
4231 				VM_WARN_ON_ONCE(fault_flags &
4232 						FAULT_FLAG_ALLOW_RETRY);
4233 				fault_flags |= FAULT_FLAG_TRIED;
4234 			}
4235 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4236 			if (ret & VM_FAULT_ERROR) {
4237 				err = vm_fault_to_errno(ret, flags);
4238 				remainder = 0;
4239 				break;
4240 			}
4241 			if (ret & VM_FAULT_RETRY) {
4242 				if (nonblocking)
4243 					*nonblocking = 0;
4244 				*nr_pages = 0;
4245 				/*
4246 				 * VM_FAULT_RETRY must not return an
4247 				 * error, it will return zero
4248 				 * instead.
4249 				 *
4250 				 * No need to update "position" as the
4251 				 * caller will not check it after
4252 				 * *nr_pages is set to 0.
4253 				 */
4254 				return i;
4255 			}
4256 			continue;
4257 		}
4258 
4259 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4260 		page = pte_page(huge_ptep_get(pte));
4261 same_page:
4262 		if (pages) {
4263 			pages[i] = mem_map_offset(page, pfn_offset);
4264 			get_page(pages[i]);
4265 		}
4266 
4267 		if (vmas)
4268 			vmas[i] = vma;
4269 
4270 		vaddr += PAGE_SIZE;
4271 		++pfn_offset;
4272 		--remainder;
4273 		++i;
4274 		if (vaddr < vma->vm_end && remainder &&
4275 				pfn_offset < pages_per_huge_page(h)) {
4276 			/*
4277 			 * We use pfn_offset to avoid touching the pageframes
4278 			 * of this compound page.
4279 			 */
4280 			goto same_page;
4281 		}
4282 		spin_unlock(ptl);
4283 	}
4284 	*nr_pages = remainder;
4285 	/*
4286 	 * setting position is actually required only if remainder is
4287 	 * not zero but it's faster not to add a "if (remainder)"
4288 	 * branch.
4289 	 */
4290 	*position = vaddr;
4291 
4292 	return i ? i : err;
4293 }
4294 
4295 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4296 /*
4297  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4298  * implement this.
4299  */
4300 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4301 #endif
4302 
4303 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4304 		unsigned long address, unsigned long end, pgprot_t newprot)
4305 {
4306 	struct mm_struct *mm = vma->vm_mm;
4307 	unsigned long start = address;
4308 	pte_t *ptep;
4309 	pte_t pte;
4310 	struct hstate *h = hstate_vma(vma);
4311 	unsigned long pages = 0;
4312 
4313 	BUG_ON(address >= end);
4314 	flush_cache_range(vma, address, end);
4315 
4316 	mmu_notifier_invalidate_range_start(mm, start, end);
4317 	i_mmap_lock_write(vma->vm_file->f_mapping);
4318 	for (; address < end; address += huge_page_size(h)) {
4319 		spinlock_t *ptl;
4320 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4321 		if (!ptep)
4322 			continue;
4323 		ptl = huge_pte_lock(h, mm, ptep);
4324 		if (huge_pmd_unshare(mm, &address, ptep)) {
4325 			pages++;
4326 			spin_unlock(ptl);
4327 			continue;
4328 		}
4329 		pte = huge_ptep_get(ptep);
4330 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4331 			spin_unlock(ptl);
4332 			continue;
4333 		}
4334 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4335 			swp_entry_t entry = pte_to_swp_entry(pte);
4336 
4337 			if (is_write_migration_entry(entry)) {
4338 				pte_t newpte;
4339 
4340 				make_migration_entry_read(&entry);
4341 				newpte = swp_entry_to_pte(entry);
4342 				set_huge_swap_pte_at(mm, address, ptep,
4343 						     newpte, huge_page_size(h));
4344 				pages++;
4345 			}
4346 			spin_unlock(ptl);
4347 			continue;
4348 		}
4349 		if (!huge_pte_none(pte)) {
4350 			pte = huge_ptep_get_and_clear(mm, address, ptep);
4351 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4352 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4353 			set_huge_pte_at(mm, address, ptep, pte);
4354 			pages++;
4355 		}
4356 		spin_unlock(ptl);
4357 	}
4358 	/*
4359 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4360 	 * may have cleared our pud entry and done put_page on the page table:
4361 	 * once we release i_mmap_rwsem, another task can do the final put_page
4362 	 * and that page table be reused and filled with junk.
4363 	 */
4364 	flush_hugetlb_tlb_range(vma, start, end);
4365 	/*
4366 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4367 	 * page table protection not changing it to point to a new page.
4368 	 *
4369 	 * See Documentation/vm/mmu_notifier.rst
4370 	 */
4371 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4372 	mmu_notifier_invalidate_range_end(mm, start, end);
4373 
4374 	return pages << h->order;
4375 }
4376 
4377 int hugetlb_reserve_pages(struct inode *inode,
4378 					long from, long to,
4379 					struct vm_area_struct *vma,
4380 					vm_flags_t vm_flags)
4381 {
4382 	long ret, chg;
4383 	struct hstate *h = hstate_inode(inode);
4384 	struct hugepage_subpool *spool = subpool_inode(inode);
4385 	struct resv_map *resv_map;
4386 	long gbl_reserve;
4387 
4388 	/* This should never happen */
4389 	if (from > to) {
4390 		VM_WARN(1, "%s called with a negative range\n", __func__);
4391 		return -EINVAL;
4392 	}
4393 
4394 	/*
4395 	 * Only apply hugepage reservation if asked. At fault time, an
4396 	 * attempt will be made for VM_NORESERVE to allocate a page
4397 	 * without using reserves
4398 	 */
4399 	if (vm_flags & VM_NORESERVE)
4400 		return 0;
4401 
4402 	/*
4403 	 * Shared mappings base their reservation on the number of pages that
4404 	 * are already allocated on behalf of the file. Private mappings need
4405 	 * to reserve the full area even if read-only as mprotect() may be
4406 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4407 	 */
4408 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4409 		resv_map = inode_resv_map(inode);
4410 
4411 		chg = region_chg(resv_map, from, to);
4412 
4413 	} else {
4414 		resv_map = resv_map_alloc();
4415 		if (!resv_map)
4416 			return -ENOMEM;
4417 
4418 		chg = to - from;
4419 
4420 		set_vma_resv_map(vma, resv_map);
4421 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4422 	}
4423 
4424 	if (chg < 0) {
4425 		ret = chg;
4426 		goto out_err;
4427 	}
4428 
4429 	/*
4430 	 * There must be enough pages in the subpool for the mapping. If
4431 	 * the subpool has a minimum size, there may be some global
4432 	 * reservations already in place (gbl_reserve).
4433 	 */
4434 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4435 	if (gbl_reserve < 0) {
4436 		ret = -ENOSPC;
4437 		goto out_err;
4438 	}
4439 
4440 	/*
4441 	 * Check enough hugepages are available for the reservation.
4442 	 * Hand the pages back to the subpool if there are not
4443 	 */
4444 	ret = hugetlb_acct_memory(h, gbl_reserve);
4445 	if (ret < 0) {
4446 		/* put back original number of pages, chg */
4447 		(void)hugepage_subpool_put_pages(spool, chg);
4448 		goto out_err;
4449 	}
4450 
4451 	/*
4452 	 * Account for the reservations made. Shared mappings record regions
4453 	 * that have reservations as they are shared by multiple VMAs.
4454 	 * When the last VMA disappears, the region map says how much
4455 	 * the reservation was and the page cache tells how much of
4456 	 * the reservation was consumed. Private mappings are per-VMA and
4457 	 * only the consumed reservations are tracked. When the VMA
4458 	 * disappears, the original reservation is the VMA size and the
4459 	 * consumed reservations are stored in the map. Hence, nothing
4460 	 * else has to be done for private mappings here
4461 	 */
4462 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4463 		long add = region_add(resv_map, from, to);
4464 
4465 		if (unlikely(chg > add)) {
4466 			/*
4467 			 * pages in this range were added to the reserve
4468 			 * map between region_chg and region_add.  This
4469 			 * indicates a race with alloc_huge_page.  Adjust
4470 			 * the subpool and reserve counts modified above
4471 			 * based on the difference.
4472 			 */
4473 			long rsv_adjust;
4474 
4475 			rsv_adjust = hugepage_subpool_put_pages(spool,
4476 								chg - add);
4477 			hugetlb_acct_memory(h, -rsv_adjust);
4478 		}
4479 	}
4480 	return 0;
4481 out_err:
4482 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4483 		/* Don't call region_abort if region_chg failed */
4484 		if (chg >= 0)
4485 			region_abort(resv_map, from, to);
4486 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4487 		kref_put(&resv_map->refs, resv_map_release);
4488 	return ret;
4489 }
4490 
4491 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4492 								long freed)
4493 {
4494 	struct hstate *h = hstate_inode(inode);
4495 	struct resv_map *resv_map = inode_resv_map(inode);
4496 	long chg = 0;
4497 	struct hugepage_subpool *spool = subpool_inode(inode);
4498 	long gbl_reserve;
4499 
4500 	if (resv_map) {
4501 		chg = region_del(resv_map, start, end);
4502 		/*
4503 		 * region_del() can fail in the rare case where a region
4504 		 * must be split and another region descriptor can not be
4505 		 * allocated.  If end == LONG_MAX, it will not fail.
4506 		 */
4507 		if (chg < 0)
4508 			return chg;
4509 	}
4510 
4511 	spin_lock(&inode->i_lock);
4512 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4513 	spin_unlock(&inode->i_lock);
4514 
4515 	/*
4516 	 * If the subpool has a minimum size, the number of global
4517 	 * reservations to be released may be adjusted.
4518 	 */
4519 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4520 	hugetlb_acct_memory(h, -gbl_reserve);
4521 
4522 	return 0;
4523 }
4524 
4525 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4526 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4527 				struct vm_area_struct *vma,
4528 				unsigned long addr, pgoff_t idx)
4529 {
4530 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4531 				svma->vm_start;
4532 	unsigned long sbase = saddr & PUD_MASK;
4533 	unsigned long s_end = sbase + PUD_SIZE;
4534 
4535 	/* Allow segments to share if only one is marked locked */
4536 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4537 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4538 
4539 	/*
4540 	 * match the virtual addresses, permission and the alignment of the
4541 	 * page table page.
4542 	 */
4543 	if (pmd_index(addr) != pmd_index(saddr) ||
4544 	    vm_flags != svm_flags ||
4545 	    sbase < svma->vm_start || svma->vm_end < s_end)
4546 		return 0;
4547 
4548 	return saddr;
4549 }
4550 
4551 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4552 {
4553 	unsigned long base = addr & PUD_MASK;
4554 	unsigned long end = base + PUD_SIZE;
4555 
4556 	/*
4557 	 * check on proper vm_flags and page table alignment
4558 	 */
4559 	if (vma->vm_flags & VM_MAYSHARE &&
4560 	    vma->vm_start <= base && end <= vma->vm_end)
4561 		return true;
4562 	return false;
4563 }
4564 
4565 /*
4566  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4567  * and returns the corresponding pte. While this is not necessary for the
4568  * !shared pmd case because we can allocate the pmd later as well, it makes the
4569  * code much cleaner. pmd allocation is essential for the shared case because
4570  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4571  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4572  * bad pmd for sharing.
4573  */
4574 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4575 {
4576 	struct vm_area_struct *vma = find_vma(mm, addr);
4577 	struct address_space *mapping = vma->vm_file->f_mapping;
4578 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4579 			vma->vm_pgoff;
4580 	struct vm_area_struct *svma;
4581 	unsigned long saddr;
4582 	pte_t *spte = NULL;
4583 	pte_t *pte;
4584 	spinlock_t *ptl;
4585 
4586 	if (!vma_shareable(vma, addr))
4587 		return (pte_t *)pmd_alloc(mm, pud, addr);
4588 
4589 	i_mmap_lock_write(mapping);
4590 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4591 		if (svma == vma)
4592 			continue;
4593 
4594 		saddr = page_table_shareable(svma, vma, addr, idx);
4595 		if (saddr) {
4596 			spte = huge_pte_offset(svma->vm_mm, saddr,
4597 					       vma_mmu_pagesize(svma));
4598 			if (spte) {
4599 				get_page(virt_to_page(spte));
4600 				break;
4601 			}
4602 		}
4603 	}
4604 
4605 	if (!spte)
4606 		goto out;
4607 
4608 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4609 	if (pud_none(*pud)) {
4610 		pud_populate(mm, pud,
4611 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4612 		mm_inc_nr_pmds(mm);
4613 	} else {
4614 		put_page(virt_to_page(spte));
4615 	}
4616 	spin_unlock(ptl);
4617 out:
4618 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4619 	i_mmap_unlock_write(mapping);
4620 	return pte;
4621 }
4622 
4623 /*
4624  * unmap huge page backed by shared pte.
4625  *
4626  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4627  * indicated by page_count > 1, unmap is achieved by clearing pud and
4628  * decrementing the ref count. If count == 1, the pte page is not shared.
4629  *
4630  * called with page table lock held.
4631  *
4632  * returns: 1 successfully unmapped a shared pte page
4633  *	    0 the underlying pte page is not shared, or it is the last user
4634  */
4635 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4636 {
4637 	pgd_t *pgd = pgd_offset(mm, *addr);
4638 	p4d_t *p4d = p4d_offset(pgd, *addr);
4639 	pud_t *pud = pud_offset(p4d, *addr);
4640 
4641 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4642 	if (page_count(virt_to_page(ptep)) == 1)
4643 		return 0;
4644 
4645 	pud_clear(pud);
4646 	put_page(virt_to_page(ptep));
4647 	mm_dec_nr_pmds(mm);
4648 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4649 	return 1;
4650 }
4651 #define want_pmd_share()	(1)
4652 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4653 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4654 {
4655 	return NULL;
4656 }
4657 
4658 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4659 {
4660 	return 0;
4661 }
4662 #define want_pmd_share()	(0)
4663 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4664 
4665 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4666 pte_t *huge_pte_alloc(struct mm_struct *mm,
4667 			unsigned long addr, unsigned long sz)
4668 {
4669 	pgd_t *pgd;
4670 	p4d_t *p4d;
4671 	pud_t *pud;
4672 	pte_t *pte = NULL;
4673 
4674 	pgd = pgd_offset(mm, addr);
4675 	p4d = p4d_alloc(mm, pgd, addr);
4676 	if (!p4d)
4677 		return NULL;
4678 	pud = pud_alloc(mm, p4d, addr);
4679 	if (pud) {
4680 		if (sz == PUD_SIZE) {
4681 			pte = (pte_t *)pud;
4682 		} else {
4683 			BUG_ON(sz != PMD_SIZE);
4684 			if (want_pmd_share() && pud_none(*pud))
4685 				pte = huge_pmd_share(mm, addr, pud);
4686 			else
4687 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4688 		}
4689 	}
4690 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4691 
4692 	return pte;
4693 }
4694 
4695 /*
4696  * huge_pte_offset() - Walk the page table to resolve the hugepage
4697  * entry at address @addr
4698  *
4699  * Return: Pointer to page table or swap entry (PUD or PMD) for
4700  * address @addr, or NULL if a p*d_none() entry is encountered and the
4701  * size @sz doesn't match the hugepage size at this level of the page
4702  * table.
4703  */
4704 pte_t *huge_pte_offset(struct mm_struct *mm,
4705 		       unsigned long addr, unsigned long sz)
4706 {
4707 	pgd_t *pgd;
4708 	p4d_t *p4d;
4709 	pud_t *pud;
4710 	pmd_t *pmd;
4711 
4712 	pgd = pgd_offset(mm, addr);
4713 	if (!pgd_present(*pgd))
4714 		return NULL;
4715 	p4d = p4d_offset(pgd, addr);
4716 	if (!p4d_present(*p4d))
4717 		return NULL;
4718 
4719 	pud = pud_offset(p4d, addr);
4720 	if (sz != PUD_SIZE && pud_none(*pud))
4721 		return NULL;
4722 	/* hugepage or swap? */
4723 	if (pud_huge(*pud) || !pud_present(*pud))
4724 		return (pte_t *)pud;
4725 
4726 	pmd = pmd_offset(pud, addr);
4727 	if (sz != PMD_SIZE && pmd_none(*pmd))
4728 		return NULL;
4729 	/* hugepage or swap? */
4730 	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4731 		return (pte_t *)pmd;
4732 
4733 	return NULL;
4734 }
4735 
4736 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4737 
4738 /*
4739  * These functions are overwritable if your architecture needs its own
4740  * behavior.
4741  */
4742 struct page * __weak
4743 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4744 			      int write)
4745 {
4746 	return ERR_PTR(-EINVAL);
4747 }
4748 
4749 struct page * __weak
4750 follow_huge_pd(struct vm_area_struct *vma,
4751 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
4752 {
4753 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4754 	return NULL;
4755 }
4756 
4757 struct page * __weak
4758 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4759 		pmd_t *pmd, int flags)
4760 {
4761 	struct page *page = NULL;
4762 	spinlock_t *ptl;
4763 	pte_t pte;
4764 retry:
4765 	ptl = pmd_lockptr(mm, pmd);
4766 	spin_lock(ptl);
4767 	/*
4768 	 * make sure that the address range covered by this pmd is not
4769 	 * unmapped from other threads.
4770 	 */
4771 	if (!pmd_huge(*pmd))
4772 		goto out;
4773 	pte = huge_ptep_get((pte_t *)pmd);
4774 	if (pte_present(pte)) {
4775 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4776 		if (flags & FOLL_GET)
4777 			get_page(page);
4778 	} else {
4779 		if (is_hugetlb_entry_migration(pte)) {
4780 			spin_unlock(ptl);
4781 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4782 			goto retry;
4783 		}
4784 		/*
4785 		 * hwpoisoned entry is treated as no_page_table in
4786 		 * follow_page_mask().
4787 		 */
4788 	}
4789 out:
4790 	spin_unlock(ptl);
4791 	return page;
4792 }
4793 
4794 struct page * __weak
4795 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4796 		pud_t *pud, int flags)
4797 {
4798 	if (flags & FOLL_GET)
4799 		return NULL;
4800 
4801 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4802 }
4803 
4804 struct page * __weak
4805 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4806 {
4807 	if (flags & FOLL_GET)
4808 		return NULL;
4809 
4810 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4811 }
4812 
4813 bool isolate_huge_page(struct page *page, struct list_head *list)
4814 {
4815 	bool ret = true;
4816 
4817 	VM_BUG_ON_PAGE(!PageHead(page), page);
4818 	spin_lock(&hugetlb_lock);
4819 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4820 		ret = false;
4821 		goto unlock;
4822 	}
4823 	clear_page_huge_active(page);
4824 	list_move_tail(&page->lru, list);
4825 unlock:
4826 	spin_unlock(&hugetlb_lock);
4827 	return ret;
4828 }
4829 
4830 void putback_active_hugepage(struct page *page)
4831 {
4832 	VM_BUG_ON_PAGE(!PageHead(page), page);
4833 	spin_lock(&hugetlb_lock);
4834 	set_page_huge_active(page);
4835 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4836 	spin_unlock(&hugetlb_lock);
4837 	put_page(page);
4838 }
4839 
4840 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4841 {
4842 	struct hstate *h = page_hstate(oldpage);
4843 
4844 	hugetlb_cgroup_migrate(oldpage, newpage);
4845 	set_page_owner_migrate_reason(newpage, reason);
4846 
4847 	/*
4848 	 * transfer temporary state of the new huge page. This is
4849 	 * reverse to other transitions because the newpage is going to
4850 	 * be final while the old one will be freed so it takes over
4851 	 * the temporary status.
4852 	 *
4853 	 * Also note that we have to transfer the per-node surplus state
4854 	 * here as well otherwise the global surplus count will not match
4855 	 * the per-node's.
4856 	 */
4857 	if (PageHugeTemporary(newpage)) {
4858 		int old_nid = page_to_nid(oldpage);
4859 		int new_nid = page_to_nid(newpage);
4860 
4861 		SetPageHugeTemporary(oldpage);
4862 		ClearPageHugeTemporary(newpage);
4863 
4864 		spin_lock(&hugetlb_lock);
4865 		if (h->surplus_huge_pages_node[old_nid]) {
4866 			h->surplus_huge_pages_node[old_nid]--;
4867 			h->surplus_huge_pages_node[new_nid]++;
4868 		}
4869 		spin_unlock(&hugetlb_lock);
4870 	}
4871 }
4872