xref: /openbmc/linux/mm/hugetlb.c (revision f2bb566f5c977ff010baaa9e5e14d9a75b06e5f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41 
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49 
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53 
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_page(struct page *page, unsigned int order)
58 {
59 	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
60 				1 << order);
61 }
62 #else
63 static bool hugetlb_cma_page(struct page *page, unsigned int order)
64 {
65 	return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69 
70 __initdata LIST_HEAD(huge_boot_pages);
71 
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78 
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84 
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91 
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
99 {
100 	if (spool->count)
101 		return false;
102 	if (spool->max_hpages != -1)
103 		return spool->used_hpages == 0;
104 	if (spool->min_hpages != -1)
105 		return spool->rsv_hpages == spool->min_hpages;
106 
107 	return true;
108 }
109 
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111 						unsigned long irq_flags)
112 {
113 	spin_unlock_irqrestore(&spool->lock, irq_flags);
114 
115 	/* If no pages are used, and no other handles to the subpool
116 	 * remain, give up any reservations based on minimum size and
117 	 * free the subpool */
118 	if (subpool_is_free(spool)) {
119 		if (spool->min_hpages != -1)
120 			hugetlb_acct_memory(spool->hstate,
121 						-spool->min_hpages);
122 		kfree(spool);
123 	}
124 }
125 
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127 						long min_hpages)
128 {
129 	struct hugepage_subpool *spool;
130 
131 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
132 	if (!spool)
133 		return NULL;
134 
135 	spin_lock_init(&spool->lock);
136 	spool->count = 1;
137 	spool->max_hpages = max_hpages;
138 	spool->hstate = h;
139 	spool->min_hpages = min_hpages;
140 
141 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142 		kfree(spool);
143 		return NULL;
144 	}
145 	spool->rsv_hpages = min_hpages;
146 
147 	return spool;
148 }
149 
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
151 {
152 	unsigned long flags;
153 
154 	spin_lock_irqsave(&spool->lock, flags);
155 	BUG_ON(!spool->count);
156 	spool->count--;
157 	unlock_or_release_subpool(spool, flags);
158 }
159 
160 /*
161  * Subpool accounting for allocating and reserving pages.
162  * Return -ENOMEM if there are not enough resources to satisfy the
163  * request.  Otherwise, return the number of pages by which the
164  * global pools must be adjusted (upward).  The returned value may
165  * only be different than the passed value (delta) in the case where
166  * a subpool minimum size must be maintained.
167  */
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
169 				      long delta)
170 {
171 	long ret = delta;
172 
173 	if (!spool)
174 		return ret;
175 
176 	spin_lock_irq(&spool->lock);
177 
178 	if (spool->max_hpages != -1) {		/* maximum size accounting */
179 		if ((spool->used_hpages + delta) <= spool->max_hpages)
180 			spool->used_hpages += delta;
181 		else {
182 			ret = -ENOMEM;
183 			goto unlock_ret;
184 		}
185 	}
186 
187 	/* minimum size accounting */
188 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
189 		if (delta > spool->rsv_hpages) {
190 			/*
191 			 * Asking for more reserves than those already taken on
192 			 * behalf of subpool.  Return difference.
193 			 */
194 			ret = delta - spool->rsv_hpages;
195 			spool->rsv_hpages = 0;
196 		} else {
197 			ret = 0;	/* reserves already accounted for */
198 			spool->rsv_hpages -= delta;
199 		}
200 	}
201 
202 unlock_ret:
203 	spin_unlock_irq(&spool->lock);
204 	return ret;
205 }
206 
207 /*
208  * Subpool accounting for freeing and unreserving pages.
209  * Return the number of global page reservations that must be dropped.
210  * The return value may only be different than the passed value (delta)
211  * in the case where a subpool minimum size must be maintained.
212  */
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
214 				       long delta)
215 {
216 	long ret = delta;
217 	unsigned long flags;
218 
219 	if (!spool)
220 		return delta;
221 
222 	spin_lock_irqsave(&spool->lock, flags);
223 
224 	if (spool->max_hpages != -1)		/* maximum size accounting */
225 		spool->used_hpages -= delta;
226 
227 	 /* minimum size accounting */
228 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229 		if (spool->rsv_hpages + delta <= spool->min_hpages)
230 			ret = 0;
231 		else
232 			ret = spool->rsv_hpages + delta - spool->min_hpages;
233 
234 		spool->rsv_hpages += delta;
235 		if (spool->rsv_hpages > spool->min_hpages)
236 			spool->rsv_hpages = spool->min_hpages;
237 	}
238 
239 	/*
240 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
241 	 * quota reference, free it now.
242 	 */
243 	unlock_or_release_subpool(spool, flags);
244 
245 	return ret;
246 }
247 
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249 {
250 	return HUGETLBFS_SB(inode->i_sb)->spool;
251 }
252 
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254 {
255 	return subpool_inode(file_inode(vma->vm_file));
256 }
257 
258 /* Helper that removes a struct file_region from the resv_map cache and returns
259  * it for use.
260  */
261 static struct file_region *
262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
263 {
264 	struct file_region *nrg;
265 
266 	VM_BUG_ON(resv->region_cache_count <= 0);
267 
268 	resv->region_cache_count--;
269 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
270 	list_del(&nrg->link);
271 
272 	nrg->from = from;
273 	nrg->to = to;
274 
275 	return nrg;
276 }
277 
278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279 					      struct file_region *rg)
280 {
281 #ifdef CONFIG_CGROUP_HUGETLB
282 	nrg->reservation_counter = rg->reservation_counter;
283 	nrg->css = rg->css;
284 	if (rg->css)
285 		css_get(rg->css);
286 #endif
287 }
288 
289 /* Helper that records hugetlb_cgroup uncharge info. */
290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
291 						struct hstate *h,
292 						struct resv_map *resv,
293 						struct file_region *nrg)
294 {
295 #ifdef CONFIG_CGROUP_HUGETLB
296 	if (h_cg) {
297 		nrg->reservation_counter =
298 			&h_cg->rsvd_hugepage[hstate_index(h)];
299 		nrg->css = &h_cg->css;
300 		/*
301 		 * The caller will hold exactly one h_cg->css reference for the
302 		 * whole contiguous reservation region. But this area might be
303 		 * scattered when there are already some file_regions reside in
304 		 * it. As a result, many file_regions may share only one css
305 		 * reference. In order to ensure that one file_region must hold
306 		 * exactly one h_cg->css reference, we should do css_get for
307 		 * each file_region and leave the reference held by caller
308 		 * untouched.
309 		 */
310 		css_get(&h_cg->css);
311 		if (!resv->pages_per_hpage)
312 			resv->pages_per_hpage = pages_per_huge_page(h);
313 		/* pages_per_hpage should be the same for all entries in
314 		 * a resv_map.
315 		 */
316 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
317 	} else {
318 		nrg->reservation_counter = NULL;
319 		nrg->css = NULL;
320 	}
321 #endif
322 }
323 
324 static void put_uncharge_info(struct file_region *rg)
325 {
326 #ifdef CONFIG_CGROUP_HUGETLB
327 	if (rg->css)
328 		css_put(rg->css);
329 #endif
330 }
331 
332 static bool has_same_uncharge_info(struct file_region *rg,
333 				   struct file_region *org)
334 {
335 #ifdef CONFIG_CGROUP_HUGETLB
336 	return rg->reservation_counter == org->reservation_counter &&
337 	       rg->css == org->css;
338 
339 #else
340 	return true;
341 #endif
342 }
343 
344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
345 {
346 	struct file_region *nrg, *prg;
347 
348 	prg = list_prev_entry(rg, link);
349 	if (&prg->link != &resv->regions && prg->to == rg->from &&
350 	    has_same_uncharge_info(prg, rg)) {
351 		prg->to = rg->to;
352 
353 		list_del(&rg->link);
354 		put_uncharge_info(rg);
355 		kfree(rg);
356 
357 		rg = prg;
358 	}
359 
360 	nrg = list_next_entry(rg, link);
361 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362 	    has_same_uncharge_info(nrg, rg)) {
363 		nrg->from = rg->from;
364 
365 		list_del(&rg->link);
366 		put_uncharge_info(rg);
367 		kfree(rg);
368 	}
369 }
370 
371 static inline long
372 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
373 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
374 		     long *regions_needed)
375 {
376 	struct file_region *nrg;
377 
378 	if (!regions_needed) {
379 		nrg = get_file_region_entry_from_cache(map, from, to);
380 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381 		list_add(&nrg->link, rg);
382 		coalesce_file_region(map, nrg);
383 	} else
384 		*regions_needed += 1;
385 
386 	return to - from;
387 }
388 
389 /*
390  * Must be called with resv->lock held.
391  *
392  * Calling this with regions_needed != NULL will count the number of pages
393  * to be added but will not modify the linked list. And regions_needed will
394  * indicate the number of file_regions needed in the cache to carry out to add
395  * the regions for this range.
396  */
397 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
398 				     struct hugetlb_cgroup *h_cg,
399 				     struct hstate *h, long *regions_needed)
400 {
401 	long add = 0;
402 	struct list_head *head = &resv->regions;
403 	long last_accounted_offset = f;
404 	struct file_region *iter, *trg = NULL;
405 	struct list_head *rg = NULL;
406 
407 	if (regions_needed)
408 		*regions_needed = 0;
409 
410 	/* In this loop, we essentially handle an entry for the range
411 	 * [last_accounted_offset, iter->from), at every iteration, with some
412 	 * bounds checking.
413 	 */
414 	list_for_each_entry_safe(iter, trg, head, link) {
415 		/* Skip irrelevant regions that start before our range. */
416 		if (iter->from < f) {
417 			/* If this region ends after the last accounted offset,
418 			 * then we need to update last_accounted_offset.
419 			 */
420 			if (iter->to > last_accounted_offset)
421 				last_accounted_offset = iter->to;
422 			continue;
423 		}
424 
425 		/* When we find a region that starts beyond our range, we've
426 		 * finished.
427 		 */
428 		if (iter->from >= t) {
429 			rg = iter->link.prev;
430 			break;
431 		}
432 
433 		/* Add an entry for last_accounted_offset -> iter->from, and
434 		 * update last_accounted_offset.
435 		 */
436 		if (iter->from > last_accounted_offset)
437 			add += hugetlb_resv_map_add(resv, iter->link.prev,
438 						    last_accounted_offset,
439 						    iter->from, h, h_cg,
440 						    regions_needed);
441 
442 		last_accounted_offset = iter->to;
443 	}
444 
445 	/* Handle the case where our range extends beyond
446 	 * last_accounted_offset.
447 	 */
448 	if (!rg)
449 		rg = head->prev;
450 	if (last_accounted_offset < t)
451 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
452 					    t, h, h_cg, regions_needed);
453 
454 	return add;
455 }
456 
457 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
458  */
459 static int allocate_file_region_entries(struct resv_map *resv,
460 					int regions_needed)
461 	__must_hold(&resv->lock)
462 {
463 	LIST_HEAD(allocated_regions);
464 	int to_allocate = 0, i = 0;
465 	struct file_region *trg = NULL, *rg = NULL;
466 
467 	VM_BUG_ON(regions_needed < 0);
468 
469 	/*
470 	 * Check for sufficient descriptors in the cache to accommodate
471 	 * the number of in progress add operations plus regions_needed.
472 	 *
473 	 * This is a while loop because when we drop the lock, some other call
474 	 * to region_add or region_del may have consumed some region_entries,
475 	 * so we keep looping here until we finally have enough entries for
476 	 * (adds_in_progress + regions_needed).
477 	 */
478 	while (resv->region_cache_count <
479 	       (resv->adds_in_progress + regions_needed)) {
480 		to_allocate = resv->adds_in_progress + regions_needed -
481 			      resv->region_cache_count;
482 
483 		/* At this point, we should have enough entries in the cache
484 		 * for all the existing adds_in_progress. We should only be
485 		 * needing to allocate for regions_needed.
486 		 */
487 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
488 
489 		spin_unlock(&resv->lock);
490 		for (i = 0; i < to_allocate; i++) {
491 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
492 			if (!trg)
493 				goto out_of_memory;
494 			list_add(&trg->link, &allocated_regions);
495 		}
496 
497 		spin_lock(&resv->lock);
498 
499 		list_splice(&allocated_regions, &resv->region_cache);
500 		resv->region_cache_count += to_allocate;
501 	}
502 
503 	return 0;
504 
505 out_of_memory:
506 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
507 		list_del(&rg->link);
508 		kfree(rg);
509 	}
510 	return -ENOMEM;
511 }
512 
513 /*
514  * Add the huge page range represented by [f, t) to the reserve
515  * map.  Regions will be taken from the cache to fill in this range.
516  * Sufficient regions should exist in the cache due to the previous
517  * call to region_chg with the same range, but in some cases the cache will not
518  * have sufficient entries due to races with other code doing region_add or
519  * region_del.  The extra needed entries will be allocated.
520  *
521  * regions_needed is the out value provided by a previous call to region_chg.
522  *
523  * Return the number of new huge pages added to the map.  This number is greater
524  * than or equal to zero.  If file_region entries needed to be allocated for
525  * this operation and we were not able to allocate, it returns -ENOMEM.
526  * region_add of regions of length 1 never allocate file_regions and cannot
527  * fail; region_chg will always allocate at least 1 entry and a region_add for
528  * 1 page will only require at most 1 entry.
529  */
530 static long region_add(struct resv_map *resv, long f, long t,
531 		       long in_regions_needed, struct hstate *h,
532 		       struct hugetlb_cgroup *h_cg)
533 {
534 	long add = 0, actual_regions_needed = 0;
535 
536 	spin_lock(&resv->lock);
537 retry:
538 
539 	/* Count how many regions are actually needed to execute this add. */
540 	add_reservation_in_range(resv, f, t, NULL, NULL,
541 				 &actual_regions_needed);
542 
543 	/*
544 	 * Check for sufficient descriptors in the cache to accommodate
545 	 * this add operation. Note that actual_regions_needed may be greater
546 	 * than in_regions_needed, as the resv_map may have been modified since
547 	 * the region_chg call. In this case, we need to make sure that we
548 	 * allocate extra entries, such that we have enough for all the
549 	 * existing adds_in_progress, plus the excess needed for this
550 	 * operation.
551 	 */
552 	if (actual_regions_needed > in_regions_needed &&
553 	    resv->region_cache_count <
554 		    resv->adds_in_progress +
555 			    (actual_regions_needed - in_regions_needed)) {
556 		/* region_add operation of range 1 should never need to
557 		 * allocate file_region entries.
558 		 */
559 		VM_BUG_ON(t - f <= 1);
560 
561 		if (allocate_file_region_entries(
562 			    resv, actual_regions_needed - in_regions_needed)) {
563 			return -ENOMEM;
564 		}
565 
566 		goto retry;
567 	}
568 
569 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
570 
571 	resv->adds_in_progress -= in_regions_needed;
572 
573 	spin_unlock(&resv->lock);
574 	return add;
575 }
576 
577 /*
578  * Examine the existing reserve map and determine how many
579  * huge pages in the specified range [f, t) are NOT currently
580  * represented.  This routine is called before a subsequent
581  * call to region_add that will actually modify the reserve
582  * map to add the specified range [f, t).  region_chg does
583  * not change the number of huge pages represented by the
584  * map.  A number of new file_region structures is added to the cache as a
585  * placeholder, for the subsequent region_add call to use. At least 1
586  * file_region structure is added.
587  *
588  * out_regions_needed is the number of regions added to the
589  * resv->adds_in_progress.  This value needs to be provided to a follow up call
590  * to region_add or region_abort for proper accounting.
591  *
592  * Returns the number of huge pages that need to be added to the existing
593  * reservation map for the range [f, t).  This number is greater or equal to
594  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
595  * is needed and can not be allocated.
596  */
597 static long region_chg(struct resv_map *resv, long f, long t,
598 		       long *out_regions_needed)
599 {
600 	long chg = 0;
601 
602 	spin_lock(&resv->lock);
603 
604 	/* Count how many hugepages in this range are NOT represented. */
605 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
606 				       out_regions_needed);
607 
608 	if (*out_regions_needed == 0)
609 		*out_regions_needed = 1;
610 
611 	if (allocate_file_region_entries(resv, *out_regions_needed))
612 		return -ENOMEM;
613 
614 	resv->adds_in_progress += *out_regions_needed;
615 
616 	spin_unlock(&resv->lock);
617 	return chg;
618 }
619 
620 /*
621  * Abort the in progress add operation.  The adds_in_progress field
622  * of the resv_map keeps track of the operations in progress between
623  * calls to region_chg and region_add.  Operations are sometimes
624  * aborted after the call to region_chg.  In such cases, region_abort
625  * is called to decrement the adds_in_progress counter. regions_needed
626  * is the value returned by the region_chg call, it is used to decrement
627  * the adds_in_progress counter.
628  *
629  * NOTE: The range arguments [f, t) are not needed or used in this
630  * routine.  They are kept to make reading the calling code easier as
631  * arguments will match the associated region_chg call.
632  */
633 static void region_abort(struct resv_map *resv, long f, long t,
634 			 long regions_needed)
635 {
636 	spin_lock(&resv->lock);
637 	VM_BUG_ON(!resv->region_cache_count);
638 	resv->adds_in_progress -= regions_needed;
639 	spin_unlock(&resv->lock);
640 }
641 
642 /*
643  * Delete the specified range [f, t) from the reserve map.  If the
644  * t parameter is LONG_MAX, this indicates that ALL regions after f
645  * should be deleted.  Locate the regions which intersect [f, t)
646  * and either trim, delete or split the existing regions.
647  *
648  * Returns the number of huge pages deleted from the reserve map.
649  * In the normal case, the return value is zero or more.  In the
650  * case where a region must be split, a new region descriptor must
651  * be allocated.  If the allocation fails, -ENOMEM will be returned.
652  * NOTE: If the parameter t == LONG_MAX, then we will never split
653  * a region and possibly return -ENOMEM.  Callers specifying
654  * t == LONG_MAX do not need to check for -ENOMEM error.
655  */
656 static long region_del(struct resv_map *resv, long f, long t)
657 {
658 	struct list_head *head = &resv->regions;
659 	struct file_region *rg, *trg;
660 	struct file_region *nrg = NULL;
661 	long del = 0;
662 
663 retry:
664 	spin_lock(&resv->lock);
665 	list_for_each_entry_safe(rg, trg, head, link) {
666 		/*
667 		 * Skip regions before the range to be deleted.  file_region
668 		 * ranges are normally of the form [from, to).  However, there
669 		 * may be a "placeholder" entry in the map which is of the form
670 		 * (from, to) with from == to.  Check for placeholder entries
671 		 * at the beginning of the range to be deleted.
672 		 */
673 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
674 			continue;
675 
676 		if (rg->from >= t)
677 			break;
678 
679 		if (f > rg->from && t < rg->to) { /* Must split region */
680 			/*
681 			 * Check for an entry in the cache before dropping
682 			 * lock and attempting allocation.
683 			 */
684 			if (!nrg &&
685 			    resv->region_cache_count > resv->adds_in_progress) {
686 				nrg = list_first_entry(&resv->region_cache,
687 							struct file_region,
688 							link);
689 				list_del(&nrg->link);
690 				resv->region_cache_count--;
691 			}
692 
693 			if (!nrg) {
694 				spin_unlock(&resv->lock);
695 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
696 				if (!nrg)
697 					return -ENOMEM;
698 				goto retry;
699 			}
700 
701 			del += t - f;
702 			hugetlb_cgroup_uncharge_file_region(
703 				resv, rg, t - f, false);
704 
705 			/* New entry for end of split region */
706 			nrg->from = t;
707 			nrg->to = rg->to;
708 
709 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
710 
711 			INIT_LIST_HEAD(&nrg->link);
712 
713 			/* Original entry is trimmed */
714 			rg->to = f;
715 
716 			list_add(&nrg->link, &rg->link);
717 			nrg = NULL;
718 			break;
719 		}
720 
721 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
722 			del += rg->to - rg->from;
723 			hugetlb_cgroup_uncharge_file_region(resv, rg,
724 							    rg->to - rg->from, true);
725 			list_del(&rg->link);
726 			kfree(rg);
727 			continue;
728 		}
729 
730 		if (f <= rg->from) {	/* Trim beginning of region */
731 			hugetlb_cgroup_uncharge_file_region(resv, rg,
732 							    t - rg->from, false);
733 
734 			del += t - rg->from;
735 			rg->from = t;
736 		} else {		/* Trim end of region */
737 			hugetlb_cgroup_uncharge_file_region(resv, rg,
738 							    rg->to - f, false);
739 
740 			del += rg->to - f;
741 			rg->to = f;
742 		}
743 	}
744 
745 	spin_unlock(&resv->lock);
746 	kfree(nrg);
747 	return del;
748 }
749 
750 /*
751  * A rare out of memory error was encountered which prevented removal of
752  * the reserve map region for a page.  The huge page itself was free'ed
753  * and removed from the page cache.  This routine will adjust the subpool
754  * usage count, and the global reserve count if needed.  By incrementing
755  * these counts, the reserve map entry which could not be deleted will
756  * appear as a "reserved" entry instead of simply dangling with incorrect
757  * counts.
758  */
759 void hugetlb_fix_reserve_counts(struct inode *inode)
760 {
761 	struct hugepage_subpool *spool = subpool_inode(inode);
762 	long rsv_adjust;
763 	bool reserved = false;
764 
765 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
766 	if (rsv_adjust > 0) {
767 		struct hstate *h = hstate_inode(inode);
768 
769 		if (!hugetlb_acct_memory(h, 1))
770 			reserved = true;
771 	} else if (!rsv_adjust) {
772 		reserved = true;
773 	}
774 
775 	if (!reserved)
776 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
777 }
778 
779 /*
780  * Count and return the number of huge pages in the reserve map
781  * that intersect with the range [f, t).
782  */
783 static long region_count(struct resv_map *resv, long f, long t)
784 {
785 	struct list_head *head = &resv->regions;
786 	struct file_region *rg;
787 	long chg = 0;
788 
789 	spin_lock(&resv->lock);
790 	/* Locate each segment we overlap with, and count that overlap. */
791 	list_for_each_entry(rg, head, link) {
792 		long seg_from;
793 		long seg_to;
794 
795 		if (rg->to <= f)
796 			continue;
797 		if (rg->from >= t)
798 			break;
799 
800 		seg_from = max(rg->from, f);
801 		seg_to = min(rg->to, t);
802 
803 		chg += seg_to - seg_from;
804 	}
805 	spin_unlock(&resv->lock);
806 
807 	return chg;
808 }
809 
810 /*
811  * Convert the address within this vma to the page offset within
812  * the mapping, in pagecache page units; huge pages here.
813  */
814 static pgoff_t vma_hugecache_offset(struct hstate *h,
815 			struct vm_area_struct *vma, unsigned long address)
816 {
817 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
818 			(vma->vm_pgoff >> huge_page_order(h));
819 }
820 
821 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
822 				     unsigned long address)
823 {
824 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
825 }
826 EXPORT_SYMBOL_GPL(linear_hugepage_index);
827 
828 /*
829  * Return the size of the pages allocated when backing a VMA. In the majority
830  * cases this will be same size as used by the page table entries.
831  */
832 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
833 {
834 	if (vma->vm_ops && vma->vm_ops->pagesize)
835 		return vma->vm_ops->pagesize(vma);
836 	return PAGE_SIZE;
837 }
838 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
839 
840 /*
841  * Return the page size being used by the MMU to back a VMA. In the majority
842  * of cases, the page size used by the kernel matches the MMU size. On
843  * architectures where it differs, an architecture-specific 'strong'
844  * version of this symbol is required.
845  */
846 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
847 {
848 	return vma_kernel_pagesize(vma);
849 }
850 
851 /*
852  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
853  * bits of the reservation map pointer, which are always clear due to
854  * alignment.
855  */
856 #define HPAGE_RESV_OWNER    (1UL << 0)
857 #define HPAGE_RESV_UNMAPPED (1UL << 1)
858 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
859 
860 /*
861  * These helpers are used to track how many pages are reserved for
862  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
863  * is guaranteed to have their future faults succeed.
864  *
865  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
866  * the reserve counters are updated with the hugetlb_lock held. It is safe
867  * to reset the VMA at fork() time as it is not in use yet and there is no
868  * chance of the global counters getting corrupted as a result of the values.
869  *
870  * The private mapping reservation is represented in a subtly different
871  * manner to a shared mapping.  A shared mapping has a region map associated
872  * with the underlying file, this region map represents the backing file
873  * pages which have ever had a reservation assigned which this persists even
874  * after the page is instantiated.  A private mapping has a region map
875  * associated with the original mmap which is attached to all VMAs which
876  * reference it, this region map represents those offsets which have consumed
877  * reservation ie. where pages have been instantiated.
878  */
879 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
880 {
881 	return (unsigned long)vma->vm_private_data;
882 }
883 
884 static void set_vma_private_data(struct vm_area_struct *vma,
885 							unsigned long value)
886 {
887 	vma->vm_private_data = (void *)value;
888 }
889 
890 static void
891 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
892 					  struct hugetlb_cgroup *h_cg,
893 					  struct hstate *h)
894 {
895 #ifdef CONFIG_CGROUP_HUGETLB
896 	if (!h_cg || !h) {
897 		resv_map->reservation_counter = NULL;
898 		resv_map->pages_per_hpage = 0;
899 		resv_map->css = NULL;
900 	} else {
901 		resv_map->reservation_counter =
902 			&h_cg->rsvd_hugepage[hstate_index(h)];
903 		resv_map->pages_per_hpage = pages_per_huge_page(h);
904 		resv_map->css = &h_cg->css;
905 	}
906 #endif
907 }
908 
909 struct resv_map *resv_map_alloc(void)
910 {
911 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
912 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
913 
914 	if (!resv_map || !rg) {
915 		kfree(resv_map);
916 		kfree(rg);
917 		return NULL;
918 	}
919 
920 	kref_init(&resv_map->refs);
921 	spin_lock_init(&resv_map->lock);
922 	INIT_LIST_HEAD(&resv_map->regions);
923 
924 	resv_map->adds_in_progress = 0;
925 	/*
926 	 * Initialize these to 0. On shared mappings, 0's here indicate these
927 	 * fields don't do cgroup accounting. On private mappings, these will be
928 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
929 	 * reservations are to be un-charged from here.
930 	 */
931 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
932 
933 	INIT_LIST_HEAD(&resv_map->region_cache);
934 	list_add(&rg->link, &resv_map->region_cache);
935 	resv_map->region_cache_count = 1;
936 
937 	return resv_map;
938 }
939 
940 void resv_map_release(struct kref *ref)
941 {
942 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
943 	struct list_head *head = &resv_map->region_cache;
944 	struct file_region *rg, *trg;
945 
946 	/* Clear out any active regions before we release the map. */
947 	region_del(resv_map, 0, LONG_MAX);
948 
949 	/* ... and any entries left in the cache */
950 	list_for_each_entry_safe(rg, trg, head, link) {
951 		list_del(&rg->link);
952 		kfree(rg);
953 	}
954 
955 	VM_BUG_ON(resv_map->adds_in_progress);
956 
957 	kfree(resv_map);
958 }
959 
960 static inline struct resv_map *inode_resv_map(struct inode *inode)
961 {
962 	/*
963 	 * At inode evict time, i_mapping may not point to the original
964 	 * address space within the inode.  This original address space
965 	 * contains the pointer to the resv_map.  So, always use the
966 	 * address space embedded within the inode.
967 	 * The VERY common case is inode->mapping == &inode->i_data but,
968 	 * this may not be true for device special inodes.
969 	 */
970 	return (struct resv_map *)(&inode->i_data)->private_data;
971 }
972 
973 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
974 {
975 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976 	if (vma->vm_flags & VM_MAYSHARE) {
977 		struct address_space *mapping = vma->vm_file->f_mapping;
978 		struct inode *inode = mapping->host;
979 
980 		return inode_resv_map(inode);
981 
982 	} else {
983 		return (struct resv_map *)(get_vma_private_data(vma) &
984 							~HPAGE_RESV_MASK);
985 	}
986 }
987 
988 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
989 {
990 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
991 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
992 
993 	set_vma_private_data(vma, (get_vma_private_data(vma) &
994 				HPAGE_RESV_MASK) | (unsigned long)map);
995 }
996 
997 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
998 {
999 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1000 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1001 
1002 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1003 }
1004 
1005 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1006 {
1007 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1008 
1009 	return (get_vma_private_data(vma) & flag) != 0;
1010 }
1011 
1012 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1013 {
1014 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1015 	/*
1016 	 * Clear vm_private_data
1017 	 * - For shared mappings this is a per-vma semaphore that may be
1018 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1019 	 *   Before clearing, make sure pointer is not associated with vma
1020 	 *   as this will leak the structure.  This is the case when called
1021 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1022 	 *   been called to allocate a new structure.
1023 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1024 	 *   not apply to children.  Faults generated by the children are
1025 	 *   not guaranteed to succeed, even if read-only.
1026 	 */
1027 	if (vma->vm_flags & VM_MAYSHARE) {
1028 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1029 
1030 		if (vma_lock && vma_lock->vma != vma)
1031 			vma->vm_private_data = NULL;
1032 	} else
1033 		vma->vm_private_data = NULL;
1034 }
1035 
1036 /*
1037  * Reset and decrement one ref on hugepage private reservation.
1038  * Called with mm->mmap_sem writer semaphore held.
1039  * This function should be only used by move_vma() and operate on
1040  * same sized vma. It should never come here with last ref on the
1041  * reservation.
1042  */
1043 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1044 {
1045 	/*
1046 	 * Clear the old hugetlb private page reservation.
1047 	 * It has already been transferred to new_vma.
1048 	 *
1049 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1050 	 * which copies vma into new_vma and unmaps vma. After the copy
1051 	 * operation both new_vma and vma share a reference to the resv_map
1052 	 * struct, and at that point vma is about to be unmapped. We don't
1053 	 * want to return the reservation to the pool at unmap of vma because
1054 	 * the reservation still lives on in new_vma, so simply decrement the
1055 	 * ref here and remove the resv_map reference from this vma.
1056 	 */
1057 	struct resv_map *reservations = vma_resv_map(vma);
1058 
1059 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1060 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1061 		kref_put(&reservations->refs, resv_map_release);
1062 	}
1063 
1064 	hugetlb_dup_vma_private(vma);
1065 }
1066 
1067 /* Returns true if the VMA has associated reserve pages */
1068 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1069 {
1070 	if (vma->vm_flags & VM_NORESERVE) {
1071 		/*
1072 		 * This address is already reserved by other process(chg == 0),
1073 		 * so, we should decrement reserved count. Without decrementing,
1074 		 * reserve count remains after releasing inode, because this
1075 		 * allocated page will go into page cache and is regarded as
1076 		 * coming from reserved pool in releasing step.  Currently, we
1077 		 * don't have any other solution to deal with this situation
1078 		 * properly, so add work-around here.
1079 		 */
1080 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1081 			return true;
1082 		else
1083 			return false;
1084 	}
1085 
1086 	/* Shared mappings always use reserves */
1087 	if (vma->vm_flags & VM_MAYSHARE) {
1088 		/*
1089 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1090 		 * be a region map for all pages.  The only situation where
1091 		 * there is no region map is if a hole was punched via
1092 		 * fallocate.  In this case, there really are no reserves to
1093 		 * use.  This situation is indicated if chg != 0.
1094 		 */
1095 		if (chg)
1096 			return false;
1097 		else
1098 			return true;
1099 	}
1100 
1101 	/*
1102 	 * Only the process that called mmap() has reserves for
1103 	 * private mappings.
1104 	 */
1105 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1106 		/*
1107 		 * Like the shared case above, a hole punch or truncate
1108 		 * could have been performed on the private mapping.
1109 		 * Examine the value of chg to determine if reserves
1110 		 * actually exist or were previously consumed.
1111 		 * Very Subtle - The value of chg comes from a previous
1112 		 * call to vma_needs_reserves().  The reserve map for
1113 		 * private mappings has different (opposite) semantics
1114 		 * than that of shared mappings.  vma_needs_reserves()
1115 		 * has already taken this difference in semantics into
1116 		 * account.  Therefore, the meaning of chg is the same
1117 		 * as in the shared case above.  Code could easily be
1118 		 * combined, but keeping it separate draws attention to
1119 		 * subtle differences.
1120 		 */
1121 		if (chg)
1122 			return false;
1123 		else
1124 			return true;
1125 	}
1126 
1127 	return false;
1128 }
1129 
1130 static void enqueue_huge_page(struct hstate *h, struct page *page)
1131 {
1132 	int nid = page_to_nid(page);
1133 
1134 	lockdep_assert_held(&hugetlb_lock);
1135 	VM_BUG_ON_PAGE(page_count(page), page);
1136 
1137 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1138 	h->free_huge_pages++;
1139 	h->free_huge_pages_node[nid]++;
1140 	SetHPageFreed(page);
1141 }
1142 
1143 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1144 {
1145 	struct page *page;
1146 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1147 
1148 	lockdep_assert_held(&hugetlb_lock);
1149 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1150 		if (pin && !is_longterm_pinnable_page(page))
1151 			continue;
1152 
1153 		if (PageHWPoison(page))
1154 			continue;
1155 
1156 		list_move(&page->lru, &h->hugepage_activelist);
1157 		set_page_refcounted(page);
1158 		ClearHPageFreed(page);
1159 		h->free_huge_pages--;
1160 		h->free_huge_pages_node[nid]--;
1161 		return page;
1162 	}
1163 
1164 	return NULL;
1165 }
1166 
1167 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1168 		nodemask_t *nmask)
1169 {
1170 	unsigned int cpuset_mems_cookie;
1171 	struct zonelist *zonelist;
1172 	struct zone *zone;
1173 	struct zoneref *z;
1174 	int node = NUMA_NO_NODE;
1175 
1176 	zonelist = node_zonelist(nid, gfp_mask);
1177 
1178 retry_cpuset:
1179 	cpuset_mems_cookie = read_mems_allowed_begin();
1180 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1181 		struct page *page;
1182 
1183 		if (!cpuset_zone_allowed(zone, gfp_mask))
1184 			continue;
1185 		/*
1186 		 * no need to ask again on the same node. Pool is node rather than
1187 		 * zone aware
1188 		 */
1189 		if (zone_to_nid(zone) == node)
1190 			continue;
1191 		node = zone_to_nid(zone);
1192 
1193 		page = dequeue_huge_page_node_exact(h, node);
1194 		if (page)
1195 			return page;
1196 	}
1197 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1198 		goto retry_cpuset;
1199 
1200 	return NULL;
1201 }
1202 
1203 static unsigned long available_huge_pages(struct hstate *h)
1204 {
1205 	return h->free_huge_pages - h->resv_huge_pages;
1206 }
1207 
1208 static struct page *dequeue_huge_page_vma(struct hstate *h,
1209 				struct vm_area_struct *vma,
1210 				unsigned long address, int avoid_reserve,
1211 				long chg)
1212 {
1213 	struct page *page = NULL;
1214 	struct mempolicy *mpol;
1215 	gfp_t gfp_mask;
1216 	nodemask_t *nodemask;
1217 	int nid;
1218 
1219 	/*
1220 	 * A child process with MAP_PRIVATE mappings created by their parent
1221 	 * have no page reserves. This check ensures that reservations are
1222 	 * not "stolen". The child may still get SIGKILLed
1223 	 */
1224 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1225 		goto err;
1226 
1227 	/* If reserves cannot be used, ensure enough pages are in the pool */
1228 	if (avoid_reserve && !available_huge_pages(h))
1229 		goto err;
1230 
1231 	gfp_mask = htlb_alloc_mask(h);
1232 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1233 
1234 	if (mpol_is_preferred_many(mpol)) {
1235 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1236 
1237 		/* Fallback to all nodes if page==NULL */
1238 		nodemask = NULL;
1239 	}
1240 
1241 	if (!page)
1242 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1243 
1244 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1245 		SetHPageRestoreReserve(page);
1246 		h->resv_huge_pages--;
1247 	}
1248 
1249 	mpol_cond_put(mpol);
1250 	return page;
1251 
1252 err:
1253 	return NULL;
1254 }
1255 
1256 /*
1257  * common helper functions for hstate_next_node_to_{alloc|free}.
1258  * We may have allocated or freed a huge page based on a different
1259  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1260  * be outside of *nodes_allowed.  Ensure that we use an allowed
1261  * node for alloc or free.
1262  */
1263 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1264 {
1265 	nid = next_node_in(nid, *nodes_allowed);
1266 	VM_BUG_ON(nid >= MAX_NUMNODES);
1267 
1268 	return nid;
1269 }
1270 
1271 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1272 {
1273 	if (!node_isset(nid, *nodes_allowed))
1274 		nid = next_node_allowed(nid, nodes_allowed);
1275 	return nid;
1276 }
1277 
1278 /*
1279  * returns the previously saved node ["this node"] from which to
1280  * allocate a persistent huge page for the pool and advance the
1281  * next node from which to allocate, handling wrap at end of node
1282  * mask.
1283  */
1284 static int hstate_next_node_to_alloc(struct hstate *h,
1285 					nodemask_t *nodes_allowed)
1286 {
1287 	int nid;
1288 
1289 	VM_BUG_ON(!nodes_allowed);
1290 
1291 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1292 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1293 
1294 	return nid;
1295 }
1296 
1297 /*
1298  * helper for remove_pool_huge_page() - return the previously saved
1299  * node ["this node"] from which to free a huge page.  Advance the
1300  * next node id whether or not we find a free huge page to free so
1301  * that the next attempt to free addresses the next node.
1302  */
1303 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1304 {
1305 	int nid;
1306 
1307 	VM_BUG_ON(!nodes_allowed);
1308 
1309 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1310 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1311 
1312 	return nid;
1313 }
1314 
1315 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1316 	for (nr_nodes = nodes_weight(*mask);				\
1317 		nr_nodes > 0 &&						\
1318 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1319 		nr_nodes--)
1320 
1321 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1322 	for (nr_nodes = nodes_weight(*mask);				\
1323 		nr_nodes > 0 &&						\
1324 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1325 		nr_nodes--)
1326 
1327 /* used to demote non-gigantic_huge pages as well */
1328 static void __destroy_compound_gigantic_page(struct page *page,
1329 					unsigned int order, bool demote)
1330 {
1331 	int i;
1332 	int nr_pages = 1 << order;
1333 	struct page *p;
1334 
1335 	atomic_set(compound_mapcount_ptr(page), 0);
1336 	atomic_set(compound_pincount_ptr(page), 0);
1337 
1338 	for (i = 1; i < nr_pages; i++) {
1339 		p = nth_page(page, i);
1340 		p->mapping = NULL;
1341 		clear_compound_head(p);
1342 		if (!demote)
1343 			set_page_refcounted(p);
1344 	}
1345 
1346 	set_compound_order(page, 0);
1347 #ifdef CONFIG_64BIT
1348 	page[1].compound_nr = 0;
1349 #endif
1350 	__ClearPageHead(page);
1351 }
1352 
1353 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1354 					unsigned int order)
1355 {
1356 	__destroy_compound_gigantic_page(page, order, true);
1357 }
1358 
1359 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1360 static void destroy_compound_gigantic_page(struct page *page,
1361 					unsigned int order)
1362 {
1363 	__destroy_compound_gigantic_page(page, order, false);
1364 }
1365 
1366 static void free_gigantic_page(struct page *page, unsigned int order)
1367 {
1368 	/*
1369 	 * If the page isn't allocated using the cma allocator,
1370 	 * cma_release() returns false.
1371 	 */
1372 #ifdef CONFIG_CMA
1373 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1374 		return;
1375 #endif
1376 
1377 	free_contig_range(page_to_pfn(page), 1 << order);
1378 }
1379 
1380 #ifdef CONFIG_CONTIG_ALLOC
1381 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1382 		int nid, nodemask_t *nodemask)
1383 {
1384 	unsigned long nr_pages = pages_per_huge_page(h);
1385 	if (nid == NUMA_NO_NODE)
1386 		nid = numa_mem_id();
1387 
1388 #ifdef CONFIG_CMA
1389 	{
1390 		struct page *page;
1391 		int node;
1392 
1393 		if (hugetlb_cma[nid]) {
1394 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1395 					huge_page_order(h), true);
1396 			if (page)
1397 				return page;
1398 		}
1399 
1400 		if (!(gfp_mask & __GFP_THISNODE)) {
1401 			for_each_node_mask(node, *nodemask) {
1402 				if (node == nid || !hugetlb_cma[node])
1403 					continue;
1404 
1405 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1406 						huge_page_order(h), true);
1407 				if (page)
1408 					return page;
1409 			}
1410 		}
1411 	}
1412 #endif
1413 
1414 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1415 }
1416 
1417 #else /* !CONFIG_CONTIG_ALLOC */
1418 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1419 					int nid, nodemask_t *nodemask)
1420 {
1421 	return NULL;
1422 }
1423 #endif /* CONFIG_CONTIG_ALLOC */
1424 
1425 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1426 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1427 					int nid, nodemask_t *nodemask)
1428 {
1429 	return NULL;
1430 }
1431 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1432 static inline void destroy_compound_gigantic_page(struct page *page,
1433 						unsigned int order) { }
1434 #endif
1435 
1436 /*
1437  * Remove hugetlb page from lists, and update dtor so that page appears
1438  * as just a compound page.
1439  *
1440  * A reference is held on the page, except in the case of demote.
1441  *
1442  * Must be called with hugetlb lock held.
1443  */
1444 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1445 							bool adjust_surplus,
1446 							bool demote)
1447 {
1448 	int nid = page_to_nid(page);
1449 
1450 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1451 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1452 
1453 	lockdep_assert_held(&hugetlb_lock);
1454 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1455 		return;
1456 
1457 	list_del(&page->lru);
1458 
1459 	if (HPageFreed(page)) {
1460 		h->free_huge_pages--;
1461 		h->free_huge_pages_node[nid]--;
1462 	}
1463 	if (adjust_surplus) {
1464 		h->surplus_huge_pages--;
1465 		h->surplus_huge_pages_node[nid]--;
1466 	}
1467 
1468 	/*
1469 	 * Very subtle
1470 	 *
1471 	 * For non-gigantic pages set the destructor to the normal compound
1472 	 * page dtor.  This is needed in case someone takes an additional
1473 	 * temporary ref to the page, and freeing is delayed until they drop
1474 	 * their reference.
1475 	 *
1476 	 * For gigantic pages set the destructor to the null dtor.  This
1477 	 * destructor will never be called.  Before freeing the gigantic
1478 	 * page destroy_compound_gigantic_page will turn the compound page
1479 	 * into a simple group of pages.  After this the destructor does not
1480 	 * apply.
1481 	 *
1482 	 * This handles the case where more than one ref is held when and
1483 	 * after update_and_free_page is called.
1484 	 *
1485 	 * In the case of demote we do not ref count the page as it will soon
1486 	 * be turned into a page of smaller size.
1487 	 */
1488 	if (!demote)
1489 		set_page_refcounted(page);
1490 	if (hstate_is_gigantic(h))
1491 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1492 	else
1493 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1494 
1495 	h->nr_huge_pages--;
1496 	h->nr_huge_pages_node[nid]--;
1497 }
1498 
1499 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1500 							bool adjust_surplus)
1501 {
1502 	__remove_hugetlb_page(h, page, adjust_surplus, false);
1503 }
1504 
1505 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1506 							bool adjust_surplus)
1507 {
1508 	__remove_hugetlb_page(h, page, adjust_surplus, true);
1509 }
1510 
1511 static void add_hugetlb_page(struct hstate *h, struct page *page,
1512 			     bool adjust_surplus)
1513 {
1514 	int zeroed;
1515 	int nid = page_to_nid(page);
1516 
1517 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1518 
1519 	lockdep_assert_held(&hugetlb_lock);
1520 
1521 	INIT_LIST_HEAD(&page->lru);
1522 	h->nr_huge_pages++;
1523 	h->nr_huge_pages_node[nid]++;
1524 
1525 	if (adjust_surplus) {
1526 		h->surplus_huge_pages++;
1527 		h->surplus_huge_pages_node[nid]++;
1528 	}
1529 
1530 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1531 	set_page_private(page, 0);
1532 	/*
1533 	 * We have to set HPageVmemmapOptimized again as above
1534 	 * set_page_private(page, 0) cleared it.
1535 	 */
1536 	SetHPageVmemmapOptimized(page);
1537 
1538 	/*
1539 	 * This page is about to be managed by the hugetlb allocator and
1540 	 * should have no users.  Drop our reference, and check for others
1541 	 * just in case.
1542 	 */
1543 	zeroed = put_page_testzero(page);
1544 	if (!zeroed)
1545 		/*
1546 		 * It is VERY unlikely soneone else has taken a ref on
1547 		 * the page.  In this case, we simply return as the
1548 		 * hugetlb destructor (free_huge_page) will be called
1549 		 * when this other ref is dropped.
1550 		 */
1551 		return;
1552 
1553 	arch_clear_hugepage_flags(page);
1554 	enqueue_huge_page(h, page);
1555 }
1556 
1557 static void __update_and_free_page(struct hstate *h, struct page *page)
1558 {
1559 	int i;
1560 	struct page *subpage;
1561 
1562 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1563 		return;
1564 
1565 	/*
1566 	 * If we don't know which subpages are hwpoisoned, we can't free
1567 	 * the hugepage, so it's leaked intentionally.
1568 	 */
1569 	if (HPageRawHwpUnreliable(page))
1570 		return;
1571 
1572 	if (hugetlb_vmemmap_restore(h, page)) {
1573 		spin_lock_irq(&hugetlb_lock);
1574 		/*
1575 		 * If we cannot allocate vmemmap pages, just refuse to free the
1576 		 * page and put the page back on the hugetlb free list and treat
1577 		 * as a surplus page.
1578 		 */
1579 		add_hugetlb_page(h, page, true);
1580 		spin_unlock_irq(&hugetlb_lock);
1581 		return;
1582 	}
1583 
1584 	/*
1585 	 * Move PageHWPoison flag from head page to the raw error pages,
1586 	 * which makes any healthy subpages reusable.
1587 	 */
1588 	if (unlikely(PageHWPoison(page)))
1589 		hugetlb_clear_page_hwpoison(page);
1590 
1591 	for (i = 0; i < pages_per_huge_page(h); i++) {
1592 		subpage = nth_page(page, i);
1593 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1594 				1 << PG_referenced | 1 << PG_dirty |
1595 				1 << PG_active | 1 << PG_private |
1596 				1 << PG_writeback);
1597 	}
1598 
1599 	/*
1600 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1601 	 * need to be given back to CMA in free_gigantic_page.
1602 	 */
1603 	if (hstate_is_gigantic(h) ||
1604 	    hugetlb_cma_page(page, huge_page_order(h))) {
1605 		destroy_compound_gigantic_page(page, huge_page_order(h));
1606 		free_gigantic_page(page, huge_page_order(h));
1607 	} else {
1608 		__free_pages(page, huge_page_order(h));
1609 	}
1610 }
1611 
1612 /*
1613  * As update_and_free_page() can be called under any context, so we cannot
1614  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1615  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1616  * the vmemmap pages.
1617  *
1618  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1619  * freed and frees them one-by-one. As the page->mapping pointer is going
1620  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1621  * structure of a lockless linked list of huge pages to be freed.
1622  */
1623 static LLIST_HEAD(hpage_freelist);
1624 
1625 static void free_hpage_workfn(struct work_struct *work)
1626 {
1627 	struct llist_node *node;
1628 
1629 	node = llist_del_all(&hpage_freelist);
1630 
1631 	while (node) {
1632 		struct page *page;
1633 		struct hstate *h;
1634 
1635 		page = container_of((struct address_space **)node,
1636 				     struct page, mapping);
1637 		node = node->next;
1638 		page->mapping = NULL;
1639 		/*
1640 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1641 		 * is going to trigger because a previous call to
1642 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1643 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1644 		 */
1645 		h = size_to_hstate(page_size(page));
1646 
1647 		__update_and_free_page(h, page);
1648 
1649 		cond_resched();
1650 	}
1651 }
1652 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1653 
1654 static inline void flush_free_hpage_work(struct hstate *h)
1655 {
1656 	if (hugetlb_vmemmap_optimizable(h))
1657 		flush_work(&free_hpage_work);
1658 }
1659 
1660 static void update_and_free_page(struct hstate *h, struct page *page,
1661 				 bool atomic)
1662 {
1663 	if (!HPageVmemmapOptimized(page) || !atomic) {
1664 		__update_and_free_page(h, page);
1665 		return;
1666 	}
1667 
1668 	/*
1669 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1670 	 *
1671 	 * Only call schedule_work() if hpage_freelist is previously
1672 	 * empty. Otherwise, schedule_work() had been called but the workfn
1673 	 * hasn't retrieved the list yet.
1674 	 */
1675 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1676 		schedule_work(&free_hpage_work);
1677 }
1678 
1679 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1680 {
1681 	struct page *page, *t_page;
1682 
1683 	list_for_each_entry_safe(page, t_page, list, lru) {
1684 		update_and_free_page(h, page, false);
1685 		cond_resched();
1686 	}
1687 }
1688 
1689 struct hstate *size_to_hstate(unsigned long size)
1690 {
1691 	struct hstate *h;
1692 
1693 	for_each_hstate(h) {
1694 		if (huge_page_size(h) == size)
1695 			return h;
1696 	}
1697 	return NULL;
1698 }
1699 
1700 void free_huge_page(struct page *page)
1701 {
1702 	/*
1703 	 * Can't pass hstate in here because it is called from the
1704 	 * compound page destructor.
1705 	 */
1706 	struct hstate *h = page_hstate(page);
1707 	int nid = page_to_nid(page);
1708 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1709 	bool restore_reserve;
1710 	unsigned long flags;
1711 
1712 	VM_BUG_ON_PAGE(page_count(page), page);
1713 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1714 
1715 	hugetlb_set_page_subpool(page, NULL);
1716 	if (PageAnon(page))
1717 		__ClearPageAnonExclusive(page);
1718 	page->mapping = NULL;
1719 	restore_reserve = HPageRestoreReserve(page);
1720 	ClearHPageRestoreReserve(page);
1721 
1722 	/*
1723 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1724 	 * reservation.  If the page was associated with a subpool, there
1725 	 * would have been a page reserved in the subpool before allocation
1726 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1727 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1728 	 * remove the reserved page from the subpool.
1729 	 */
1730 	if (!restore_reserve) {
1731 		/*
1732 		 * A return code of zero implies that the subpool will be
1733 		 * under its minimum size if the reservation is not restored
1734 		 * after page is free.  Therefore, force restore_reserve
1735 		 * operation.
1736 		 */
1737 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1738 			restore_reserve = true;
1739 	}
1740 
1741 	spin_lock_irqsave(&hugetlb_lock, flags);
1742 	ClearHPageMigratable(page);
1743 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1744 				     pages_per_huge_page(h), page);
1745 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1746 					  pages_per_huge_page(h), page);
1747 	if (restore_reserve)
1748 		h->resv_huge_pages++;
1749 
1750 	if (HPageTemporary(page)) {
1751 		remove_hugetlb_page(h, page, false);
1752 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1753 		update_and_free_page(h, page, true);
1754 	} else if (h->surplus_huge_pages_node[nid]) {
1755 		/* remove the page from active list */
1756 		remove_hugetlb_page(h, page, true);
1757 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1758 		update_and_free_page(h, page, true);
1759 	} else {
1760 		arch_clear_hugepage_flags(page);
1761 		enqueue_huge_page(h, page);
1762 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1763 	}
1764 }
1765 
1766 /*
1767  * Must be called with the hugetlb lock held
1768  */
1769 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1770 {
1771 	lockdep_assert_held(&hugetlb_lock);
1772 	h->nr_huge_pages++;
1773 	h->nr_huge_pages_node[nid]++;
1774 }
1775 
1776 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1777 {
1778 	hugetlb_vmemmap_optimize(h, page);
1779 	INIT_LIST_HEAD(&page->lru);
1780 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1781 	hugetlb_set_page_subpool(page, NULL);
1782 	set_hugetlb_cgroup(page, NULL);
1783 	set_hugetlb_cgroup_rsvd(page, NULL);
1784 }
1785 
1786 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1787 {
1788 	__prep_new_huge_page(h, page);
1789 	spin_lock_irq(&hugetlb_lock);
1790 	__prep_account_new_huge_page(h, nid);
1791 	spin_unlock_irq(&hugetlb_lock);
1792 }
1793 
1794 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1795 								bool demote)
1796 {
1797 	int i, j;
1798 	int nr_pages = 1 << order;
1799 	struct page *p;
1800 
1801 	/* we rely on prep_new_huge_page to set the destructor */
1802 	set_compound_order(page, order);
1803 	__ClearPageReserved(page);
1804 	__SetPageHead(page);
1805 	for (i = 0; i < nr_pages; i++) {
1806 		p = nth_page(page, i);
1807 
1808 		/*
1809 		 * For gigantic hugepages allocated through bootmem at
1810 		 * boot, it's safer to be consistent with the not-gigantic
1811 		 * hugepages and clear the PG_reserved bit from all tail pages
1812 		 * too.  Otherwise drivers using get_user_pages() to access tail
1813 		 * pages may get the reference counting wrong if they see
1814 		 * PG_reserved set on a tail page (despite the head page not
1815 		 * having PG_reserved set).  Enforcing this consistency between
1816 		 * head and tail pages allows drivers to optimize away a check
1817 		 * on the head page when they need know if put_page() is needed
1818 		 * after get_user_pages().
1819 		 */
1820 		if (i != 0)	/* head page cleared above */
1821 			__ClearPageReserved(p);
1822 		/*
1823 		 * Subtle and very unlikely
1824 		 *
1825 		 * Gigantic 'page allocators' such as memblock or cma will
1826 		 * return a set of pages with each page ref counted.  We need
1827 		 * to turn this set of pages into a compound page with tail
1828 		 * page ref counts set to zero.  Code such as speculative page
1829 		 * cache adding could take a ref on a 'to be' tail page.
1830 		 * We need to respect any increased ref count, and only set
1831 		 * the ref count to zero if count is currently 1.  If count
1832 		 * is not 1, we return an error.  An error return indicates
1833 		 * the set of pages can not be converted to a gigantic page.
1834 		 * The caller who allocated the pages should then discard the
1835 		 * pages using the appropriate free interface.
1836 		 *
1837 		 * In the case of demote, the ref count will be zero.
1838 		 */
1839 		if (!demote) {
1840 			if (!page_ref_freeze(p, 1)) {
1841 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1842 				goto out_error;
1843 			}
1844 		} else {
1845 			VM_BUG_ON_PAGE(page_count(p), p);
1846 		}
1847 		if (i != 0)
1848 			set_compound_head(p, page);
1849 	}
1850 	atomic_set(compound_mapcount_ptr(page), -1);
1851 	atomic_set(compound_pincount_ptr(page), 0);
1852 	return true;
1853 
1854 out_error:
1855 	/* undo page modifications made above */
1856 	for (j = 0; j < i; j++) {
1857 		p = nth_page(page, j);
1858 		if (j != 0)
1859 			clear_compound_head(p);
1860 		set_page_refcounted(p);
1861 	}
1862 	/* need to clear PG_reserved on remaining tail pages  */
1863 	for (; j < nr_pages; j++) {
1864 		p = nth_page(page, j);
1865 		__ClearPageReserved(p);
1866 	}
1867 	set_compound_order(page, 0);
1868 #ifdef CONFIG_64BIT
1869 	page[1].compound_nr = 0;
1870 #endif
1871 	__ClearPageHead(page);
1872 	return false;
1873 }
1874 
1875 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1876 {
1877 	return __prep_compound_gigantic_page(page, order, false);
1878 }
1879 
1880 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1881 							unsigned int order)
1882 {
1883 	return __prep_compound_gigantic_page(page, order, true);
1884 }
1885 
1886 /*
1887  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1888  * transparent huge pages.  See the PageTransHuge() documentation for more
1889  * details.
1890  */
1891 int PageHuge(struct page *page)
1892 {
1893 	if (!PageCompound(page))
1894 		return 0;
1895 
1896 	page = compound_head(page);
1897 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1898 }
1899 EXPORT_SYMBOL_GPL(PageHuge);
1900 
1901 /*
1902  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1903  * normal or transparent huge pages.
1904  */
1905 int PageHeadHuge(struct page *page_head)
1906 {
1907 	if (!PageHead(page_head))
1908 		return 0;
1909 
1910 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1911 }
1912 EXPORT_SYMBOL_GPL(PageHeadHuge);
1913 
1914 /*
1915  * Find and lock address space (mapping) in write mode.
1916  *
1917  * Upon entry, the page is locked which means that page_mapping() is
1918  * stable.  Due to locking order, we can only trylock_write.  If we can
1919  * not get the lock, simply return NULL to caller.
1920  */
1921 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1922 {
1923 	struct address_space *mapping = page_mapping(hpage);
1924 
1925 	if (!mapping)
1926 		return mapping;
1927 
1928 	if (i_mmap_trylock_write(mapping))
1929 		return mapping;
1930 
1931 	return NULL;
1932 }
1933 
1934 pgoff_t hugetlb_basepage_index(struct page *page)
1935 {
1936 	struct page *page_head = compound_head(page);
1937 	pgoff_t index = page_index(page_head);
1938 	unsigned long compound_idx;
1939 
1940 	if (compound_order(page_head) >= MAX_ORDER)
1941 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1942 	else
1943 		compound_idx = page - page_head;
1944 
1945 	return (index << compound_order(page_head)) + compound_idx;
1946 }
1947 
1948 static struct page *alloc_buddy_huge_page(struct hstate *h,
1949 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1950 		nodemask_t *node_alloc_noretry)
1951 {
1952 	int order = huge_page_order(h);
1953 	struct page *page;
1954 	bool alloc_try_hard = true;
1955 	bool retry = true;
1956 
1957 	/*
1958 	 * By default we always try hard to allocate the page with
1959 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1960 	 * a loop (to adjust global huge page counts) and previous allocation
1961 	 * failed, do not continue to try hard on the same node.  Use the
1962 	 * node_alloc_noretry bitmap to manage this state information.
1963 	 */
1964 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1965 		alloc_try_hard = false;
1966 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1967 	if (alloc_try_hard)
1968 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1969 	if (nid == NUMA_NO_NODE)
1970 		nid = numa_mem_id();
1971 retry:
1972 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1973 
1974 	/* Freeze head page */
1975 	if (page && !page_ref_freeze(page, 1)) {
1976 		__free_pages(page, order);
1977 		if (retry) {	/* retry once */
1978 			retry = false;
1979 			goto retry;
1980 		}
1981 		/* WOW!  twice in a row. */
1982 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
1983 		page = NULL;
1984 	}
1985 
1986 	if (page)
1987 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1988 	else
1989 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1990 
1991 	/*
1992 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1993 	 * indicates an overall state change.  Clear bit so that we resume
1994 	 * normal 'try hard' allocations.
1995 	 */
1996 	if (node_alloc_noretry && page && !alloc_try_hard)
1997 		node_clear(nid, *node_alloc_noretry);
1998 
1999 	/*
2000 	 * If we tried hard to get a page but failed, set bit so that
2001 	 * subsequent attempts will not try as hard until there is an
2002 	 * overall state change.
2003 	 */
2004 	if (node_alloc_noretry && !page && alloc_try_hard)
2005 		node_set(nid, *node_alloc_noretry);
2006 
2007 	return page;
2008 }
2009 
2010 /*
2011  * Common helper to allocate a fresh hugetlb page. All specific allocators
2012  * should use this function to get new hugetlb pages
2013  *
2014  * Note that returned page is 'frozen':  ref count of head page and all tail
2015  * pages is zero.
2016  */
2017 static struct page *alloc_fresh_huge_page(struct hstate *h,
2018 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2019 		nodemask_t *node_alloc_noretry)
2020 {
2021 	struct page *page;
2022 	bool retry = false;
2023 
2024 retry:
2025 	if (hstate_is_gigantic(h))
2026 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
2027 	else
2028 		page = alloc_buddy_huge_page(h, gfp_mask,
2029 				nid, nmask, node_alloc_noretry);
2030 	if (!page)
2031 		return NULL;
2032 
2033 	if (hstate_is_gigantic(h)) {
2034 		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
2035 			/*
2036 			 * Rare failure to convert pages to compound page.
2037 			 * Free pages and try again - ONCE!
2038 			 */
2039 			free_gigantic_page(page, huge_page_order(h));
2040 			if (!retry) {
2041 				retry = true;
2042 				goto retry;
2043 			}
2044 			return NULL;
2045 		}
2046 	}
2047 	prep_new_huge_page(h, page, page_to_nid(page));
2048 
2049 	return page;
2050 }
2051 
2052 /*
2053  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2054  * manner.
2055  */
2056 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2057 				nodemask_t *node_alloc_noretry)
2058 {
2059 	struct page *page;
2060 	int nr_nodes, node;
2061 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2062 
2063 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2064 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2065 						node_alloc_noretry);
2066 		if (page)
2067 			break;
2068 	}
2069 
2070 	if (!page)
2071 		return 0;
2072 
2073 	free_huge_page(page); /* free it into the hugepage allocator */
2074 
2075 	return 1;
2076 }
2077 
2078 /*
2079  * Remove huge page from pool from next node to free.  Attempt to keep
2080  * persistent huge pages more or less balanced over allowed nodes.
2081  * This routine only 'removes' the hugetlb page.  The caller must make
2082  * an additional call to free the page to low level allocators.
2083  * Called with hugetlb_lock locked.
2084  */
2085 static struct page *remove_pool_huge_page(struct hstate *h,
2086 						nodemask_t *nodes_allowed,
2087 						 bool acct_surplus)
2088 {
2089 	int nr_nodes, node;
2090 	struct page *page = NULL;
2091 
2092 	lockdep_assert_held(&hugetlb_lock);
2093 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2094 		/*
2095 		 * If we're returning unused surplus pages, only examine
2096 		 * nodes with surplus pages.
2097 		 */
2098 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2099 		    !list_empty(&h->hugepage_freelists[node])) {
2100 			page = list_entry(h->hugepage_freelists[node].next,
2101 					  struct page, lru);
2102 			remove_hugetlb_page(h, page, acct_surplus);
2103 			break;
2104 		}
2105 	}
2106 
2107 	return page;
2108 }
2109 
2110 /*
2111  * Dissolve a given free hugepage into free buddy pages. This function does
2112  * nothing for in-use hugepages and non-hugepages.
2113  * This function returns values like below:
2114  *
2115  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2116  *           when the system is under memory pressure and the feature of
2117  *           freeing unused vmemmap pages associated with each hugetlb page
2118  *           is enabled.
2119  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2120  *           (allocated or reserved.)
2121  *       0:  successfully dissolved free hugepages or the page is not a
2122  *           hugepage (considered as already dissolved)
2123  */
2124 int dissolve_free_huge_page(struct page *page)
2125 {
2126 	int rc = -EBUSY;
2127 
2128 retry:
2129 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2130 	if (!PageHuge(page))
2131 		return 0;
2132 
2133 	spin_lock_irq(&hugetlb_lock);
2134 	if (!PageHuge(page)) {
2135 		rc = 0;
2136 		goto out;
2137 	}
2138 
2139 	if (!page_count(page)) {
2140 		struct page *head = compound_head(page);
2141 		struct hstate *h = page_hstate(head);
2142 		if (!available_huge_pages(h))
2143 			goto out;
2144 
2145 		/*
2146 		 * We should make sure that the page is already on the free list
2147 		 * when it is dissolved.
2148 		 */
2149 		if (unlikely(!HPageFreed(head))) {
2150 			spin_unlock_irq(&hugetlb_lock);
2151 			cond_resched();
2152 
2153 			/*
2154 			 * Theoretically, we should return -EBUSY when we
2155 			 * encounter this race. In fact, we have a chance
2156 			 * to successfully dissolve the page if we do a
2157 			 * retry. Because the race window is quite small.
2158 			 * If we seize this opportunity, it is an optimization
2159 			 * for increasing the success rate of dissolving page.
2160 			 */
2161 			goto retry;
2162 		}
2163 
2164 		remove_hugetlb_page(h, head, false);
2165 		h->max_huge_pages--;
2166 		spin_unlock_irq(&hugetlb_lock);
2167 
2168 		/*
2169 		 * Normally update_and_free_page will allocate required vmemmmap
2170 		 * before freeing the page.  update_and_free_page will fail to
2171 		 * free the page if it can not allocate required vmemmap.  We
2172 		 * need to adjust max_huge_pages if the page is not freed.
2173 		 * Attempt to allocate vmemmmap here so that we can take
2174 		 * appropriate action on failure.
2175 		 */
2176 		rc = hugetlb_vmemmap_restore(h, head);
2177 		if (!rc) {
2178 			update_and_free_page(h, head, false);
2179 		} else {
2180 			spin_lock_irq(&hugetlb_lock);
2181 			add_hugetlb_page(h, head, false);
2182 			h->max_huge_pages++;
2183 			spin_unlock_irq(&hugetlb_lock);
2184 		}
2185 
2186 		return rc;
2187 	}
2188 out:
2189 	spin_unlock_irq(&hugetlb_lock);
2190 	return rc;
2191 }
2192 
2193 /*
2194  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2195  * make specified memory blocks removable from the system.
2196  * Note that this will dissolve a free gigantic hugepage completely, if any
2197  * part of it lies within the given range.
2198  * Also note that if dissolve_free_huge_page() returns with an error, all
2199  * free hugepages that were dissolved before that error are lost.
2200  */
2201 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2202 {
2203 	unsigned long pfn;
2204 	struct page *page;
2205 	int rc = 0;
2206 	unsigned int order;
2207 	struct hstate *h;
2208 
2209 	if (!hugepages_supported())
2210 		return rc;
2211 
2212 	order = huge_page_order(&default_hstate);
2213 	for_each_hstate(h)
2214 		order = min(order, huge_page_order(h));
2215 
2216 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2217 		page = pfn_to_page(pfn);
2218 		rc = dissolve_free_huge_page(page);
2219 		if (rc)
2220 			break;
2221 	}
2222 
2223 	return rc;
2224 }
2225 
2226 /*
2227  * Allocates a fresh surplus page from the page allocator.
2228  */
2229 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2230 						int nid, nodemask_t *nmask)
2231 {
2232 	struct page *page = NULL;
2233 
2234 	if (hstate_is_gigantic(h))
2235 		return NULL;
2236 
2237 	spin_lock_irq(&hugetlb_lock);
2238 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2239 		goto out_unlock;
2240 	spin_unlock_irq(&hugetlb_lock);
2241 
2242 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2243 	if (!page)
2244 		return NULL;
2245 
2246 	spin_lock_irq(&hugetlb_lock);
2247 	/*
2248 	 * We could have raced with the pool size change.
2249 	 * Double check that and simply deallocate the new page
2250 	 * if we would end up overcommiting the surpluses. Abuse
2251 	 * temporary page to workaround the nasty free_huge_page
2252 	 * codeflow
2253 	 */
2254 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2255 		SetHPageTemporary(page);
2256 		spin_unlock_irq(&hugetlb_lock);
2257 		free_huge_page(page);
2258 		return NULL;
2259 	}
2260 
2261 	h->surplus_huge_pages++;
2262 	h->surplus_huge_pages_node[page_to_nid(page)]++;
2263 
2264 out_unlock:
2265 	spin_unlock_irq(&hugetlb_lock);
2266 
2267 	return page;
2268 }
2269 
2270 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2271 				     int nid, nodemask_t *nmask)
2272 {
2273 	struct page *page;
2274 
2275 	if (hstate_is_gigantic(h))
2276 		return NULL;
2277 
2278 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2279 	if (!page)
2280 		return NULL;
2281 
2282 	/* fresh huge pages are frozen */
2283 	set_page_refcounted(page);
2284 
2285 	/*
2286 	 * We do not account these pages as surplus because they are only
2287 	 * temporary and will be released properly on the last reference
2288 	 */
2289 	SetHPageTemporary(page);
2290 
2291 	return page;
2292 }
2293 
2294 /*
2295  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2296  */
2297 static
2298 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2299 		struct vm_area_struct *vma, unsigned long addr)
2300 {
2301 	struct page *page = NULL;
2302 	struct mempolicy *mpol;
2303 	gfp_t gfp_mask = htlb_alloc_mask(h);
2304 	int nid;
2305 	nodemask_t *nodemask;
2306 
2307 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2308 	if (mpol_is_preferred_many(mpol)) {
2309 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2310 
2311 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2312 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2313 
2314 		/* Fallback to all nodes if page==NULL */
2315 		nodemask = NULL;
2316 	}
2317 
2318 	if (!page)
2319 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2320 	mpol_cond_put(mpol);
2321 	return page;
2322 }
2323 
2324 /* page migration callback function */
2325 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2326 		nodemask_t *nmask, gfp_t gfp_mask)
2327 {
2328 	spin_lock_irq(&hugetlb_lock);
2329 	if (available_huge_pages(h)) {
2330 		struct page *page;
2331 
2332 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2333 		if (page) {
2334 			spin_unlock_irq(&hugetlb_lock);
2335 			return page;
2336 		}
2337 	}
2338 	spin_unlock_irq(&hugetlb_lock);
2339 
2340 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2341 }
2342 
2343 /* mempolicy aware migration callback */
2344 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2345 		unsigned long address)
2346 {
2347 	struct mempolicy *mpol;
2348 	nodemask_t *nodemask;
2349 	struct page *page;
2350 	gfp_t gfp_mask;
2351 	int node;
2352 
2353 	gfp_mask = htlb_alloc_mask(h);
2354 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2355 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2356 	mpol_cond_put(mpol);
2357 
2358 	return page;
2359 }
2360 
2361 /*
2362  * Increase the hugetlb pool such that it can accommodate a reservation
2363  * of size 'delta'.
2364  */
2365 static int gather_surplus_pages(struct hstate *h, long delta)
2366 	__must_hold(&hugetlb_lock)
2367 {
2368 	LIST_HEAD(surplus_list);
2369 	struct page *page, *tmp;
2370 	int ret;
2371 	long i;
2372 	long needed, allocated;
2373 	bool alloc_ok = true;
2374 
2375 	lockdep_assert_held(&hugetlb_lock);
2376 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2377 	if (needed <= 0) {
2378 		h->resv_huge_pages += delta;
2379 		return 0;
2380 	}
2381 
2382 	allocated = 0;
2383 
2384 	ret = -ENOMEM;
2385 retry:
2386 	spin_unlock_irq(&hugetlb_lock);
2387 	for (i = 0; i < needed; i++) {
2388 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2389 				NUMA_NO_NODE, NULL);
2390 		if (!page) {
2391 			alloc_ok = false;
2392 			break;
2393 		}
2394 		list_add(&page->lru, &surplus_list);
2395 		cond_resched();
2396 	}
2397 	allocated += i;
2398 
2399 	/*
2400 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2401 	 * because either resv_huge_pages or free_huge_pages may have changed.
2402 	 */
2403 	spin_lock_irq(&hugetlb_lock);
2404 	needed = (h->resv_huge_pages + delta) -
2405 			(h->free_huge_pages + allocated);
2406 	if (needed > 0) {
2407 		if (alloc_ok)
2408 			goto retry;
2409 		/*
2410 		 * We were not able to allocate enough pages to
2411 		 * satisfy the entire reservation so we free what
2412 		 * we've allocated so far.
2413 		 */
2414 		goto free;
2415 	}
2416 	/*
2417 	 * The surplus_list now contains _at_least_ the number of extra pages
2418 	 * needed to accommodate the reservation.  Add the appropriate number
2419 	 * of pages to the hugetlb pool and free the extras back to the buddy
2420 	 * allocator.  Commit the entire reservation here to prevent another
2421 	 * process from stealing the pages as they are added to the pool but
2422 	 * before they are reserved.
2423 	 */
2424 	needed += allocated;
2425 	h->resv_huge_pages += delta;
2426 	ret = 0;
2427 
2428 	/* Free the needed pages to the hugetlb pool */
2429 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2430 		if ((--needed) < 0)
2431 			break;
2432 		/* Add the page to the hugetlb allocator */
2433 		enqueue_huge_page(h, page);
2434 	}
2435 free:
2436 	spin_unlock_irq(&hugetlb_lock);
2437 
2438 	/*
2439 	 * Free unnecessary surplus pages to the buddy allocator.
2440 	 * Pages have no ref count, call free_huge_page directly.
2441 	 */
2442 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2443 		free_huge_page(page);
2444 	spin_lock_irq(&hugetlb_lock);
2445 
2446 	return ret;
2447 }
2448 
2449 /*
2450  * This routine has two main purposes:
2451  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2452  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2453  *    to the associated reservation map.
2454  * 2) Free any unused surplus pages that may have been allocated to satisfy
2455  *    the reservation.  As many as unused_resv_pages may be freed.
2456  */
2457 static void return_unused_surplus_pages(struct hstate *h,
2458 					unsigned long unused_resv_pages)
2459 {
2460 	unsigned long nr_pages;
2461 	struct page *page;
2462 	LIST_HEAD(page_list);
2463 
2464 	lockdep_assert_held(&hugetlb_lock);
2465 	/* Uncommit the reservation */
2466 	h->resv_huge_pages -= unused_resv_pages;
2467 
2468 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2469 		goto out;
2470 
2471 	/*
2472 	 * Part (or even all) of the reservation could have been backed
2473 	 * by pre-allocated pages. Only free surplus pages.
2474 	 */
2475 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2476 
2477 	/*
2478 	 * We want to release as many surplus pages as possible, spread
2479 	 * evenly across all nodes with memory. Iterate across these nodes
2480 	 * until we can no longer free unreserved surplus pages. This occurs
2481 	 * when the nodes with surplus pages have no free pages.
2482 	 * remove_pool_huge_page() will balance the freed pages across the
2483 	 * on-line nodes with memory and will handle the hstate accounting.
2484 	 */
2485 	while (nr_pages--) {
2486 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2487 		if (!page)
2488 			goto out;
2489 
2490 		list_add(&page->lru, &page_list);
2491 	}
2492 
2493 out:
2494 	spin_unlock_irq(&hugetlb_lock);
2495 	update_and_free_pages_bulk(h, &page_list);
2496 	spin_lock_irq(&hugetlb_lock);
2497 }
2498 
2499 
2500 /*
2501  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2502  * are used by the huge page allocation routines to manage reservations.
2503  *
2504  * vma_needs_reservation is called to determine if the huge page at addr
2505  * within the vma has an associated reservation.  If a reservation is
2506  * needed, the value 1 is returned.  The caller is then responsible for
2507  * managing the global reservation and subpool usage counts.  After
2508  * the huge page has been allocated, vma_commit_reservation is called
2509  * to add the page to the reservation map.  If the page allocation fails,
2510  * the reservation must be ended instead of committed.  vma_end_reservation
2511  * is called in such cases.
2512  *
2513  * In the normal case, vma_commit_reservation returns the same value
2514  * as the preceding vma_needs_reservation call.  The only time this
2515  * is not the case is if a reserve map was changed between calls.  It
2516  * is the responsibility of the caller to notice the difference and
2517  * take appropriate action.
2518  *
2519  * vma_add_reservation is used in error paths where a reservation must
2520  * be restored when a newly allocated huge page must be freed.  It is
2521  * to be called after calling vma_needs_reservation to determine if a
2522  * reservation exists.
2523  *
2524  * vma_del_reservation is used in error paths where an entry in the reserve
2525  * map was created during huge page allocation and must be removed.  It is to
2526  * be called after calling vma_needs_reservation to determine if a reservation
2527  * exists.
2528  */
2529 enum vma_resv_mode {
2530 	VMA_NEEDS_RESV,
2531 	VMA_COMMIT_RESV,
2532 	VMA_END_RESV,
2533 	VMA_ADD_RESV,
2534 	VMA_DEL_RESV,
2535 };
2536 static long __vma_reservation_common(struct hstate *h,
2537 				struct vm_area_struct *vma, unsigned long addr,
2538 				enum vma_resv_mode mode)
2539 {
2540 	struct resv_map *resv;
2541 	pgoff_t idx;
2542 	long ret;
2543 	long dummy_out_regions_needed;
2544 
2545 	resv = vma_resv_map(vma);
2546 	if (!resv)
2547 		return 1;
2548 
2549 	idx = vma_hugecache_offset(h, vma, addr);
2550 	switch (mode) {
2551 	case VMA_NEEDS_RESV:
2552 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2553 		/* We assume that vma_reservation_* routines always operate on
2554 		 * 1 page, and that adding to resv map a 1 page entry can only
2555 		 * ever require 1 region.
2556 		 */
2557 		VM_BUG_ON(dummy_out_regions_needed != 1);
2558 		break;
2559 	case VMA_COMMIT_RESV:
2560 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2561 		/* region_add calls of range 1 should never fail. */
2562 		VM_BUG_ON(ret < 0);
2563 		break;
2564 	case VMA_END_RESV:
2565 		region_abort(resv, idx, idx + 1, 1);
2566 		ret = 0;
2567 		break;
2568 	case VMA_ADD_RESV:
2569 		if (vma->vm_flags & VM_MAYSHARE) {
2570 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2571 			/* region_add calls of range 1 should never fail. */
2572 			VM_BUG_ON(ret < 0);
2573 		} else {
2574 			region_abort(resv, idx, idx + 1, 1);
2575 			ret = region_del(resv, idx, idx + 1);
2576 		}
2577 		break;
2578 	case VMA_DEL_RESV:
2579 		if (vma->vm_flags & VM_MAYSHARE) {
2580 			region_abort(resv, idx, idx + 1, 1);
2581 			ret = region_del(resv, idx, idx + 1);
2582 		} else {
2583 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2584 			/* region_add calls of range 1 should never fail. */
2585 			VM_BUG_ON(ret < 0);
2586 		}
2587 		break;
2588 	default:
2589 		BUG();
2590 	}
2591 
2592 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2593 		return ret;
2594 	/*
2595 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2596 	 *
2597 	 * In most cases, reserves always exist for private mappings.
2598 	 * However, a file associated with mapping could have been
2599 	 * hole punched or truncated after reserves were consumed.
2600 	 * As subsequent fault on such a range will not use reserves.
2601 	 * Subtle - The reserve map for private mappings has the
2602 	 * opposite meaning than that of shared mappings.  If NO
2603 	 * entry is in the reserve map, it means a reservation exists.
2604 	 * If an entry exists in the reserve map, it means the
2605 	 * reservation has already been consumed.  As a result, the
2606 	 * return value of this routine is the opposite of the
2607 	 * value returned from reserve map manipulation routines above.
2608 	 */
2609 	if (ret > 0)
2610 		return 0;
2611 	if (ret == 0)
2612 		return 1;
2613 	return ret;
2614 }
2615 
2616 static long vma_needs_reservation(struct hstate *h,
2617 			struct vm_area_struct *vma, unsigned long addr)
2618 {
2619 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2620 }
2621 
2622 static long vma_commit_reservation(struct hstate *h,
2623 			struct vm_area_struct *vma, unsigned long addr)
2624 {
2625 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2626 }
2627 
2628 static void vma_end_reservation(struct hstate *h,
2629 			struct vm_area_struct *vma, unsigned long addr)
2630 {
2631 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2632 }
2633 
2634 static long vma_add_reservation(struct hstate *h,
2635 			struct vm_area_struct *vma, unsigned long addr)
2636 {
2637 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2638 }
2639 
2640 static long vma_del_reservation(struct hstate *h,
2641 			struct vm_area_struct *vma, unsigned long addr)
2642 {
2643 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2644 }
2645 
2646 /*
2647  * This routine is called to restore reservation information on error paths.
2648  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2649  * the hugetlb mutex should remain held when calling this routine.
2650  *
2651  * It handles two specific cases:
2652  * 1) A reservation was in place and the page consumed the reservation.
2653  *    HPageRestoreReserve is set in the page.
2654  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2655  *    not set.  However, alloc_huge_page always updates the reserve map.
2656  *
2657  * In case 1, free_huge_page later in the error path will increment the
2658  * global reserve count.  But, free_huge_page does not have enough context
2659  * to adjust the reservation map.  This case deals primarily with private
2660  * mappings.  Adjust the reserve map here to be consistent with global
2661  * reserve count adjustments to be made by free_huge_page.  Make sure the
2662  * reserve map indicates there is a reservation present.
2663  *
2664  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2665  */
2666 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2667 			unsigned long address, struct page *page)
2668 {
2669 	long rc = vma_needs_reservation(h, vma, address);
2670 
2671 	if (HPageRestoreReserve(page)) {
2672 		if (unlikely(rc < 0))
2673 			/*
2674 			 * Rare out of memory condition in reserve map
2675 			 * manipulation.  Clear HPageRestoreReserve so that
2676 			 * global reserve count will not be incremented
2677 			 * by free_huge_page.  This will make it appear
2678 			 * as though the reservation for this page was
2679 			 * consumed.  This may prevent the task from
2680 			 * faulting in the page at a later time.  This
2681 			 * is better than inconsistent global huge page
2682 			 * accounting of reserve counts.
2683 			 */
2684 			ClearHPageRestoreReserve(page);
2685 		else if (rc)
2686 			(void)vma_add_reservation(h, vma, address);
2687 		else
2688 			vma_end_reservation(h, vma, address);
2689 	} else {
2690 		if (!rc) {
2691 			/*
2692 			 * This indicates there is an entry in the reserve map
2693 			 * not added by alloc_huge_page.  We know it was added
2694 			 * before the alloc_huge_page call, otherwise
2695 			 * HPageRestoreReserve would be set on the page.
2696 			 * Remove the entry so that a subsequent allocation
2697 			 * does not consume a reservation.
2698 			 */
2699 			rc = vma_del_reservation(h, vma, address);
2700 			if (rc < 0)
2701 				/*
2702 				 * VERY rare out of memory condition.  Since
2703 				 * we can not delete the entry, set
2704 				 * HPageRestoreReserve so that the reserve
2705 				 * count will be incremented when the page
2706 				 * is freed.  This reserve will be consumed
2707 				 * on a subsequent allocation.
2708 				 */
2709 				SetHPageRestoreReserve(page);
2710 		} else if (rc < 0) {
2711 			/*
2712 			 * Rare out of memory condition from
2713 			 * vma_needs_reservation call.  Memory allocation is
2714 			 * only attempted if a new entry is needed.  Therefore,
2715 			 * this implies there is not an entry in the
2716 			 * reserve map.
2717 			 *
2718 			 * For shared mappings, no entry in the map indicates
2719 			 * no reservation.  We are done.
2720 			 */
2721 			if (!(vma->vm_flags & VM_MAYSHARE))
2722 				/*
2723 				 * For private mappings, no entry indicates
2724 				 * a reservation is present.  Since we can
2725 				 * not add an entry, set SetHPageRestoreReserve
2726 				 * on the page so reserve count will be
2727 				 * incremented when freed.  This reserve will
2728 				 * be consumed on a subsequent allocation.
2729 				 */
2730 				SetHPageRestoreReserve(page);
2731 		} else
2732 			/*
2733 			 * No reservation present, do nothing
2734 			 */
2735 			 vma_end_reservation(h, vma, address);
2736 	}
2737 }
2738 
2739 /*
2740  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2741  * @h: struct hstate old page belongs to
2742  * @old_page: Old page to dissolve
2743  * @list: List to isolate the page in case we need to
2744  * Returns 0 on success, otherwise negated error.
2745  */
2746 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2747 					struct list_head *list)
2748 {
2749 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2750 	int nid = page_to_nid(old_page);
2751 	struct page *new_page;
2752 	int ret = 0;
2753 
2754 	/*
2755 	 * Before dissolving the page, we need to allocate a new one for the
2756 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2757 	 * by doing everything but actually updating counters and adding to
2758 	 * the pool.  This simplifies and let us do most of the processing
2759 	 * under the lock.
2760 	 */
2761 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2762 	if (!new_page)
2763 		return -ENOMEM;
2764 	__prep_new_huge_page(h, new_page);
2765 
2766 retry:
2767 	spin_lock_irq(&hugetlb_lock);
2768 	if (!PageHuge(old_page)) {
2769 		/*
2770 		 * Freed from under us. Drop new_page too.
2771 		 */
2772 		goto free_new;
2773 	} else if (page_count(old_page)) {
2774 		/*
2775 		 * Someone has grabbed the page, try to isolate it here.
2776 		 * Fail with -EBUSY if not possible.
2777 		 */
2778 		spin_unlock_irq(&hugetlb_lock);
2779 		ret = isolate_hugetlb(old_page, list);
2780 		spin_lock_irq(&hugetlb_lock);
2781 		goto free_new;
2782 	} else if (!HPageFreed(old_page)) {
2783 		/*
2784 		 * Page's refcount is 0 but it has not been enqueued in the
2785 		 * freelist yet. Race window is small, so we can succeed here if
2786 		 * we retry.
2787 		 */
2788 		spin_unlock_irq(&hugetlb_lock);
2789 		cond_resched();
2790 		goto retry;
2791 	} else {
2792 		/*
2793 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2794 		 * the freelist and decrease the counters. These will be
2795 		 * incremented again when calling __prep_account_new_huge_page()
2796 		 * and enqueue_huge_page() for new_page. The counters will remain
2797 		 * stable since this happens under the lock.
2798 		 */
2799 		remove_hugetlb_page(h, old_page, false);
2800 
2801 		/*
2802 		 * Ref count on new page is already zero as it was dropped
2803 		 * earlier.  It can be directly added to the pool free list.
2804 		 */
2805 		__prep_account_new_huge_page(h, nid);
2806 		enqueue_huge_page(h, new_page);
2807 
2808 		/*
2809 		 * Pages have been replaced, we can safely free the old one.
2810 		 */
2811 		spin_unlock_irq(&hugetlb_lock);
2812 		update_and_free_page(h, old_page, false);
2813 	}
2814 
2815 	return ret;
2816 
2817 free_new:
2818 	spin_unlock_irq(&hugetlb_lock);
2819 	/* Page has a zero ref count, but needs a ref to be freed */
2820 	set_page_refcounted(new_page);
2821 	update_and_free_page(h, new_page, false);
2822 
2823 	return ret;
2824 }
2825 
2826 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2827 {
2828 	struct hstate *h;
2829 	struct page *head;
2830 	int ret = -EBUSY;
2831 
2832 	/*
2833 	 * The page might have been dissolved from under our feet, so make sure
2834 	 * to carefully check the state under the lock.
2835 	 * Return success when racing as if we dissolved the page ourselves.
2836 	 */
2837 	spin_lock_irq(&hugetlb_lock);
2838 	if (PageHuge(page)) {
2839 		head = compound_head(page);
2840 		h = page_hstate(head);
2841 	} else {
2842 		spin_unlock_irq(&hugetlb_lock);
2843 		return 0;
2844 	}
2845 	spin_unlock_irq(&hugetlb_lock);
2846 
2847 	/*
2848 	 * Fence off gigantic pages as there is a cyclic dependency between
2849 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2850 	 * of bailing out right away without further retrying.
2851 	 */
2852 	if (hstate_is_gigantic(h))
2853 		return -ENOMEM;
2854 
2855 	if (page_count(head) && !isolate_hugetlb(head, list))
2856 		ret = 0;
2857 	else if (!page_count(head))
2858 		ret = alloc_and_dissolve_huge_page(h, head, list);
2859 
2860 	return ret;
2861 }
2862 
2863 struct page *alloc_huge_page(struct vm_area_struct *vma,
2864 				    unsigned long addr, int avoid_reserve)
2865 {
2866 	struct hugepage_subpool *spool = subpool_vma(vma);
2867 	struct hstate *h = hstate_vma(vma);
2868 	struct page *page;
2869 	long map_chg, map_commit;
2870 	long gbl_chg;
2871 	int ret, idx;
2872 	struct hugetlb_cgroup *h_cg;
2873 	bool deferred_reserve;
2874 
2875 	idx = hstate_index(h);
2876 	/*
2877 	 * Examine the region/reserve map to determine if the process
2878 	 * has a reservation for the page to be allocated.  A return
2879 	 * code of zero indicates a reservation exists (no change).
2880 	 */
2881 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2882 	if (map_chg < 0)
2883 		return ERR_PTR(-ENOMEM);
2884 
2885 	/*
2886 	 * Processes that did not create the mapping will have no
2887 	 * reserves as indicated by the region/reserve map. Check
2888 	 * that the allocation will not exceed the subpool limit.
2889 	 * Allocations for MAP_NORESERVE mappings also need to be
2890 	 * checked against any subpool limit.
2891 	 */
2892 	if (map_chg || avoid_reserve) {
2893 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2894 		if (gbl_chg < 0) {
2895 			vma_end_reservation(h, vma, addr);
2896 			return ERR_PTR(-ENOSPC);
2897 		}
2898 
2899 		/*
2900 		 * Even though there was no reservation in the region/reserve
2901 		 * map, there could be reservations associated with the
2902 		 * subpool that can be used.  This would be indicated if the
2903 		 * return value of hugepage_subpool_get_pages() is zero.
2904 		 * However, if avoid_reserve is specified we still avoid even
2905 		 * the subpool reservations.
2906 		 */
2907 		if (avoid_reserve)
2908 			gbl_chg = 1;
2909 	}
2910 
2911 	/* If this allocation is not consuming a reservation, charge it now.
2912 	 */
2913 	deferred_reserve = map_chg || avoid_reserve;
2914 	if (deferred_reserve) {
2915 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2916 			idx, pages_per_huge_page(h), &h_cg);
2917 		if (ret)
2918 			goto out_subpool_put;
2919 	}
2920 
2921 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2922 	if (ret)
2923 		goto out_uncharge_cgroup_reservation;
2924 
2925 	spin_lock_irq(&hugetlb_lock);
2926 	/*
2927 	 * glb_chg is passed to indicate whether or not a page must be taken
2928 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2929 	 * a reservation exists for the allocation.
2930 	 */
2931 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2932 	if (!page) {
2933 		spin_unlock_irq(&hugetlb_lock);
2934 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2935 		if (!page)
2936 			goto out_uncharge_cgroup;
2937 		spin_lock_irq(&hugetlb_lock);
2938 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2939 			SetHPageRestoreReserve(page);
2940 			h->resv_huge_pages--;
2941 		}
2942 		list_add(&page->lru, &h->hugepage_activelist);
2943 		set_page_refcounted(page);
2944 		/* Fall through */
2945 	}
2946 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2947 	/* If allocation is not consuming a reservation, also store the
2948 	 * hugetlb_cgroup pointer on the page.
2949 	 */
2950 	if (deferred_reserve) {
2951 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2952 						  h_cg, page);
2953 	}
2954 
2955 	spin_unlock_irq(&hugetlb_lock);
2956 
2957 	hugetlb_set_page_subpool(page, spool);
2958 
2959 	map_commit = vma_commit_reservation(h, vma, addr);
2960 	if (unlikely(map_chg > map_commit)) {
2961 		/*
2962 		 * The page was added to the reservation map between
2963 		 * vma_needs_reservation and vma_commit_reservation.
2964 		 * This indicates a race with hugetlb_reserve_pages.
2965 		 * Adjust for the subpool count incremented above AND
2966 		 * in hugetlb_reserve_pages for the same page.  Also,
2967 		 * the reservation count added in hugetlb_reserve_pages
2968 		 * no longer applies.
2969 		 */
2970 		long rsv_adjust;
2971 
2972 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2973 		hugetlb_acct_memory(h, -rsv_adjust);
2974 		if (deferred_reserve)
2975 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2976 					pages_per_huge_page(h), page);
2977 	}
2978 	return page;
2979 
2980 out_uncharge_cgroup:
2981 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2982 out_uncharge_cgroup_reservation:
2983 	if (deferred_reserve)
2984 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2985 						    h_cg);
2986 out_subpool_put:
2987 	if (map_chg || avoid_reserve)
2988 		hugepage_subpool_put_pages(spool, 1);
2989 	vma_end_reservation(h, vma, addr);
2990 	return ERR_PTR(-ENOSPC);
2991 }
2992 
2993 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2994 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2995 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2996 {
2997 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
2998 	int nr_nodes, node;
2999 
3000 	/* do node specific alloc */
3001 	if (nid != NUMA_NO_NODE) {
3002 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3003 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3004 		if (!m)
3005 			return 0;
3006 		goto found;
3007 	}
3008 	/* allocate from next node when distributing huge pages */
3009 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3010 		m = memblock_alloc_try_nid_raw(
3011 				huge_page_size(h), huge_page_size(h),
3012 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3013 		/*
3014 		 * Use the beginning of the huge page to store the
3015 		 * huge_bootmem_page struct (until gather_bootmem
3016 		 * puts them into the mem_map).
3017 		 */
3018 		if (!m)
3019 			return 0;
3020 		goto found;
3021 	}
3022 
3023 found:
3024 	/* Put them into a private list first because mem_map is not up yet */
3025 	INIT_LIST_HEAD(&m->list);
3026 	list_add(&m->list, &huge_boot_pages);
3027 	m->hstate = h;
3028 	return 1;
3029 }
3030 
3031 /*
3032  * Put bootmem huge pages into the standard lists after mem_map is up.
3033  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3034  */
3035 static void __init gather_bootmem_prealloc(void)
3036 {
3037 	struct huge_bootmem_page *m;
3038 
3039 	list_for_each_entry(m, &huge_boot_pages, list) {
3040 		struct page *page = virt_to_page(m);
3041 		struct hstate *h = m->hstate;
3042 
3043 		VM_BUG_ON(!hstate_is_gigantic(h));
3044 		WARN_ON(page_count(page) != 1);
3045 		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3046 			WARN_ON(PageReserved(page));
3047 			prep_new_huge_page(h, page, page_to_nid(page));
3048 			free_huge_page(page); /* add to the hugepage allocator */
3049 		} else {
3050 			/* VERY unlikely inflated ref count on a tail page */
3051 			free_gigantic_page(page, huge_page_order(h));
3052 		}
3053 
3054 		/*
3055 		 * We need to restore the 'stolen' pages to totalram_pages
3056 		 * in order to fix confusing memory reports from free(1) and
3057 		 * other side-effects, like CommitLimit going negative.
3058 		 */
3059 		adjust_managed_page_count(page, pages_per_huge_page(h));
3060 		cond_resched();
3061 	}
3062 }
3063 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3064 {
3065 	unsigned long i;
3066 	char buf[32];
3067 
3068 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3069 		if (hstate_is_gigantic(h)) {
3070 			if (!alloc_bootmem_huge_page(h, nid))
3071 				break;
3072 		} else {
3073 			struct page *page;
3074 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3075 
3076 			page = alloc_fresh_huge_page(h, gfp_mask, nid,
3077 					&node_states[N_MEMORY], NULL);
3078 			if (!page)
3079 				break;
3080 			free_huge_page(page); /* free it into the hugepage allocator */
3081 		}
3082 		cond_resched();
3083 	}
3084 	if (i == h->max_huge_pages_node[nid])
3085 		return;
3086 
3087 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3088 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3089 		h->max_huge_pages_node[nid], buf, nid, i);
3090 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3091 	h->max_huge_pages_node[nid] = i;
3092 }
3093 
3094 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3095 {
3096 	unsigned long i;
3097 	nodemask_t *node_alloc_noretry;
3098 	bool node_specific_alloc = false;
3099 
3100 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3101 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3102 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3103 		return;
3104 	}
3105 
3106 	/* do node specific alloc */
3107 	for_each_online_node(i) {
3108 		if (h->max_huge_pages_node[i] > 0) {
3109 			hugetlb_hstate_alloc_pages_onenode(h, i);
3110 			node_specific_alloc = true;
3111 		}
3112 	}
3113 
3114 	if (node_specific_alloc)
3115 		return;
3116 
3117 	/* below will do all node balanced alloc */
3118 	if (!hstate_is_gigantic(h)) {
3119 		/*
3120 		 * Bit mask controlling how hard we retry per-node allocations.
3121 		 * Ignore errors as lower level routines can deal with
3122 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3123 		 * time, we are likely in bigger trouble.
3124 		 */
3125 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3126 						GFP_KERNEL);
3127 	} else {
3128 		/* allocations done at boot time */
3129 		node_alloc_noretry = NULL;
3130 	}
3131 
3132 	/* bit mask controlling how hard we retry per-node allocations */
3133 	if (node_alloc_noretry)
3134 		nodes_clear(*node_alloc_noretry);
3135 
3136 	for (i = 0; i < h->max_huge_pages; ++i) {
3137 		if (hstate_is_gigantic(h)) {
3138 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3139 				break;
3140 		} else if (!alloc_pool_huge_page(h,
3141 					 &node_states[N_MEMORY],
3142 					 node_alloc_noretry))
3143 			break;
3144 		cond_resched();
3145 	}
3146 	if (i < h->max_huge_pages) {
3147 		char buf[32];
3148 
3149 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3150 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3151 			h->max_huge_pages, buf, i);
3152 		h->max_huge_pages = i;
3153 	}
3154 	kfree(node_alloc_noretry);
3155 }
3156 
3157 static void __init hugetlb_init_hstates(void)
3158 {
3159 	struct hstate *h, *h2;
3160 
3161 	for_each_hstate(h) {
3162 		/* oversize hugepages were init'ed in early boot */
3163 		if (!hstate_is_gigantic(h))
3164 			hugetlb_hstate_alloc_pages(h);
3165 
3166 		/*
3167 		 * Set demote order for each hstate.  Note that
3168 		 * h->demote_order is initially 0.
3169 		 * - We can not demote gigantic pages if runtime freeing
3170 		 *   is not supported, so skip this.
3171 		 * - If CMA allocation is possible, we can not demote
3172 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3173 		 */
3174 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3175 			continue;
3176 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3177 			continue;
3178 		for_each_hstate(h2) {
3179 			if (h2 == h)
3180 				continue;
3181 			if (h2->order < h->order &&
3182 			    h2->order > h->demote_order)
3183 				h->demote_order = h2->order;
3184 		}
3185 	}
3186 }
3187 
3188 static void __init report_hugepages(void)
3189 {
3190 	struct hstate *h;
3191 
3192 	for_each_hstate(h) {
3193 		char buf[32];
3194 
3195 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3196 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3197 			buf, h->free_huge_pages);
3198 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3199 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3200 	}
3201 }
3202 
3203 #ifdef CONFIG_HIGHMEM
3204 static void try_to_free_low(struct hstate *h, unsigned long count,
3205 						nodemask_t *nodes_allowed)
3206 {
3207 	int i;
3208 	LIST_HEAD(page_list);
3209 
3210 	lockdep_assert_held(&hugetlb_lock);
3211 	if (hstate_is_gigantic(h))
3212 		return;
3213 
3214 	/*
3215 	 * Collect pages to be freed on a list, and free after dropping lock
3216 	 */
3217 	for_each_node_mask(i, *nodes_allowed) {
3218 		struct page *page, *next;
3219 		struct list_head *freel = &h->hugepage_freelists[i];
3220 		list_for_each_entry_safe(page, next, freel, lru) {
3221 			if (count >= h->nr_huge_pages)
3222 				goto out;
3223 			if (PageHighMem(page))
3224 				continue;
3225 			remove_hugetlb_page(h, page, false);
3226 			list_add(&page->lru, &page_list);
3227 		}
3228 	}
3229 
3230 out:
3231 	spin_unlock_irq(&hugetlb_lock);
3232 	update_and_free_pages_bulk(h, &page_list);
3233 	spin_lock_irq(&hugetlb_lock);
3234 }
3235 #else
3236 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3237 						nodemask_t *nodes_allowed)
3238 {
3239 }
3240 #endif
3241 
3242 /*
3243  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3244  * balanced by operating on them in a round-robin fashion.
3245  * Returns 1 if an adjustment was made.
3246  */
3247 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3248 				int delta)
3249 {
3250 	int nr_nodes, node;
3251 
3252 	lockdep_assert_held(&hugetlb_lock);
3253 	VM_BUG_ON(delta != -1 && delta != 1);
3254 
3255 	if (delta < 0) {
3256 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3257 			if (h->surplus_huge_pages_node[node])
3258 				goto found;
3259 		}
3260 	} else {
3261 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3262 			if (h->surplus_huge_pages_node[node] <
3263 					h->nr_huge_pages_node[node])
3264 				goto found;
3265 		}
3266 	}
3267 	return 0;
3268 
3269 found:
3270 	h->surplus_huge_pages += delta;
3271 	h->surplus_huge_pages_node[node] += delta;
3272 	return 1;
3273 }
3274 
3275 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3276 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3277 			      nodemask_t *nodes_allowed)
3278 {
3279 	unsigned long min_count, ret;
3280 	struct page *page;
3281 	LIST_HEAD(page_list);
3282 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3283 
3284 	/*
3285 	 * Bit mask controlling how hard we retry per-node allocations.
3286 	 * If we can not allocate the bit mask, do not attempt to allocate
3287 	 * the requested huge pages.
3288 	 */
3289 	if (node_alloc_noretry)
3290 		nodes_clear(*node_alloc_noretry);
3291 	else
3292 		return -ENOMEM;
3293 
3294 	/*
3295 	 * resize_lock mutex prevents concurrent adjustments to number of
3296 	 * pages in hstate via the proc/sysfs interfaces.
3297 	 */
3298 	mutex_lock(&h->resize_lock);
3299 	flush_free_hpage_work(h);
3300 	spin_lock_irq(&hugetlb_lock);
3301 
3302 	/*
3303 	 * Check for a node specific request.
3304 	 * Changing node specific huge page count may require a corresponding
3305 	 * change to the global count.  In any case, the passed node mask
3306 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3307 	 */
3308 	if (nid != NUMA_NO_NODE) {
3309 		unsigned long old_count = count;
3310 
3311 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3312 		/*
3313 		 * User may have specified a large count value which caused the
3314 		 * above calculation to overflow.  In this case, they wanted
3315 		 * to allocate as many huge pages as possible.  Set count to
3316 		 * largest possible value to align with their intention.
3317 		 */
3318 		if (count < old_count)
3319 			count = ULONG_MAX;
3320 	}
3321 
3322 	/*
3323 	 * Gigantic pages runtime allocation depend on the capability for large
3324 	 * page range allocation.
3325 	 * If the system does not provide this feature, return an error when
3326 	 * the user tries to allocate gigantic pages but let the user free the
3327 	 * boottime allocated gigantic pages.
3328 	 */
3329 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3330 		if (count > persistent_huge_pages(h)) {
3331 			spin_unlock_irq(&hugetlb_lock);
3332 			mutex_unlock(&h->resize_lock);
3333 			NODEMASK_FREE(node_alloc_noretry);
3334 			return -EINVAL;
3335 		}
3336 		/* Fall through to decrease pool */
3337 	}
3338 
3339 	/*
3340 	 * Increase the pool size
3341 	 * First take pages out of surplus state.  Then make up the
3342 	 * remaining difference by allocating fresh huge pages.
3343 	 *
3344 	 * We might race with alloc_surplus_huge_page() here and be unable
3345 	 * to convert a surplus huge page to a normal huge page. That is
3346 	 * not critical, though, it just means the overall size of the
3347 	 * pool might be one hugepage larger than it needs to be, but
3348 	 * within all the constraints specified by the sysctls.
3349 	 */
3350 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3351 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3352 			break;
3353 	}
3354 
3355 	while (count > persistent_huge_pages(h)) {
3356 		/*
3357 		 * If this allocation races such that we no longer need the
3358 		 * page, free_huge_page will handle it by freeing the page
3359 		 * and reducing the surplus.
3360 		 */
3361 		spin_unlock_irq(&hugetlb_lock);
3362 
3363 		/* yield cpu to avoid soft lockup */
3364 		cond_resched();
3365 
3366 		ret = alloc_pool_huge_page(h, nodes_allowed,
3367 						node_alloc_noretry);
3368 		spin_lock_irq(&hugetlb_lock);
3369 		if (!ret)
3370 			goto out;
3371 
3372 		/* Bail for signals. Probably ctrl-c from user */
3373 		if (signal_pending(current))
3374 			goto out;
3375 	}
3376 
3377 	/*
3378 	 * Decrease the pool size
3379 	 * First return free pages to the buddy allocator (being careful
3380 	 * to keep enough around to satisfy reservations).  Then place
3381 	 * pages into surplus state as needed so the pool will shrink
3382 	 * to the desired size as pages become free.
3383 	 *
3384 	 * By placing pages into the surplus state independent of the
3385 	 * overcommit value, we are allowing the surplus pool size to
3386 	 * exceed overcommit. There are few sane options here. Since
3387 	 * alloc_surplus_huge_page() is checking the global counter,
3388 	 * though, we'll note that we're not allowed to exceed surplus
3389 	 * and won't grow the pool anywhere else. Not until one of the
3390 	 * sysctls are changed, or the surplus pages go out of use.
3391 	 */
3392 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3393 	min_count = max(count, min_count);
3394 	try_to_free_low(h, min_count, nodes_allowed);
3395 
3396 	/*
3397 	 * Collect pages to be removed on list without dropping lock
3398 	 */
3399 	while (min_count < persistent_huge_pages(h)) {
3400 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3401 		if (!page)
3402 			break;
3403 
3404 		list_add(&page->lru, &page_list);
3405 	}
3406 	/* free the pages after dropping lock */
3407 	spin_unlock_irq(&hugetlb_lock);
3408 	update_and_free_pages_bulk(h, &page_list);
3409 	flush_free_hpage_work(h);
3410 	spin_lock_irq(&hugetlb_lock);
3411 
3412 	while (count < persistent_huge_pages(h)) {
3413 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3414 			break;
3415 	}
3416 out:
3417 	h->max_huge_pages = persistent_huge_pages(h);
3418 	spin_unlock_irq(&hugetlb_lock);
3419 	mutex_unlock(&h->resize_lock);
3420 
3421 	NODEMASK_FREE(node_alloc_noretry);
3422 
3423 	return 0;
3424 }
3425 
3426 static int demote_free_huge_page(struct hstate *h, struct page *page)
3427 {
3428 	int i, nid = page_to_nid(page);
3429 	struct hstate *target_hstate;
3430 	struct page *subpage;
3431 	int rc = 0;
3432 
3433 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3434 
3435 	remove_hugetlb_page_for_demote(h, page, false);
3436 	spin_unlock_irq(&hugetlb_lock);
3437 
3438 	rc = hugetlb_vmemmap_restore(h, page);
3439 	if (rc) {
3440 		/* Allocation of vmemmmap failed, we can not demote page */
3441 		spin_lock_irq(&hugetlb_lock);
3442 		set_page_refcounted(page);
3443 		add_hugetlb_page(h, page, false);
3444 		return rc;
3445 	}
3446 
3447 	/*
3448 	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3449 	 * sizes as it will not ref count pages.
3450 	 */
3451 	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3452 
3453 	/*
3454 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3455 	 * Without the mutex, pages added to target hstate could be marked
3456 	 * as surplus.
3457 	 *
3458 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3459 	 * use the convention of always taking larger size hstate mutex first.
3460 	 */
3461 	mutex_lock(&target_hstate->resize_lock);
3462 	for (i = 0; i < pages_per_huge_page(h);
3463 				i += pages_per_huge_page(target_hstate)) {
3464 		subpage = nth_page(page, i);
3465 		if (hstate_is_gigantic(target_hstate))
3466 			prep_compound_gigantic_page_for_demote(subpage,
3467 							target_hstate->order);
3468 		else
3469 			prep_compound_page(subpage, target_hstate->order);
3470 		set_page_private(subpage, 0);
3471 		prep_new_huge_page(target_hstate, subpage, nid);
3472 		free_huge_page(subpage);
3473 	}
3474 	mutex_unlock(&target_hstate->resize_lock);
3475 
3476 	spin_lock_irq(&hugetlb_lock);
3477 
3478 	/*
3479 	 * Not absolutely necessary, but for consistency update max_huge_pages
3480 	 * based on pool changes for the demoted page.
3481 	 */
3482 	h->max_huge_pages--;
3483 	target_hstate->max_huge_pages +=
3484 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3485 
3486 	return rc;
3487 }
3488 
3489 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3490 	__must_hold(&hugetlb_lock)
3491 {
3492 	int nr_nodes, node;
3493 	struct page *page;
3494 
3495 	lockdep_assert_held(&hugetlb_lock);
3496 
3497 	/* We should never get here if no demote order */
3498 	if (!h->demote_order) {
3499 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3500 		return -EINVAL;		/* internal error */
3501 	}
3502 
3503 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3504 		list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3505 			if (PageHWPoison(page))
3506 				continue;
3507 
3508 			return demote_free_huge_page(h, page);
3509 		}
3510 	}
3511 
3512 	/*
3513 	 * Only way to get here is if all pages on free lists are poisoned.
3514 	 * Return -EBUSY so that caller will not retry.
3515 	 */
3516 	return -EBUSY;
3517 }
3518 
3519 #define HSTATE_ATTR_RO(_name) \
3520 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3521 
3522 #define HSTATE_ATTR_WO(_name) \
3523 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3524 
3525 #define HSTATE_ATTR(_name) \
3526 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3527 
3528 static struct kobject *hugepages_kobj;
3529 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3530 
3531 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3532 
3533 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3534 {
3535 	int i;
3536 
3537 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3538 		if (hstate_kobjs[i] == kobj) {
3539 			if (nidp)
3540 				*nidp = NUMA_NO_NODE;
3541 			return &hstates[i];
3542 		}
3543 
3544 	return kobj_to_node_hstate(kobj, nidp);
3545 }
3546 
3547 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3548 					struct kobj_attribute *attr, char *buf)
3549 {
3550 	struct hstate *h;
3551 	unsigned long nr_huge_pages;
3552 	int nid;
3553 
3554 	h = kobj_to_hstate(kobj, &nid);
3555 	if (nid == NUMA_NO_NODE)
3556 		nr_huge_pages = h->nr_huge_pages;
3557 	else
3558 		nr_huge_pages = h->nr_huge_pages_node[nid];
3559 
3560 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3561 }
3562 
3563 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3564 					   struct hstate *h, int nid,
3565 					   unsigned long count, size_t len)
3566 {
3567 	int err;
3568 	nodemask_t nodes_allowed, *n_mask;
3569 
3570 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3571 		return -EINVAL;
3572 
3573 	if (nid == NUMA_NO_NODE) {
3574 		/*
3575 		 * global hstate attribute
3576 		 */
3577 		if (!(obey_mempolicy &&
3578 				init_nodemask_of_mempolicy(&nodes_allowed)))
3579 			n_mask = &node_states[N_MEMORY];
3580 		else
3581 			n_mask = &nodes_allowed;
3582 	} else {
3583 		/*
3584 		 * Node specific request.  count adjustment happens in
3585 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3586 		 */
3587 		init_nodemask_of_node(&nodes_allowed, nid);
3588 		n_mask = &nodes_allowed;
3589 	}
3590 
3591 	err = set_max_huge_pages(h, count, nid, n_mask);
3592 
3593 	return err ? err : len;
3594 }
3595 
3596 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3597 					 struct kobject *kobj, const char *buf,
3598 					 size_t len)
3599 {
3600 	struct hstate *h;
3601 	unsigned long count;
3602 	int nid;
3603 	int err;
3604 
3605 	err = kstrtoul(buf, 10, &count);
3606 	if (err)
3607 		return err;
3608 
3609 	h = kobj_to_hstate(kobj, &nid);
3610 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3611 }
3612 
3613 static ssize_t nr_hugepages_show(struct kobject *kobj,
3614 				       struct kobj_attribute *attr, char *buf)
3615 {
3616 	return nr_hugepages_show_common(kobj, attr, buf);
3617 }
3618 
3619 static ssize_t nr_hugepages_store(struct kobject *kobj,
3620 	       struct kobj_attribute *attr, const char *buf, size_t len)
3621 {
3622 	return nr_hugepages_store_common(false, kobj, buf, len);
3623 }
3624 HSTATE_ATTR(nr_hugepages);
3625 
3626 #ifdef CONFIG_NUMA
3627 
3628 /*
3629  * hstate attribute for optionally mempolicy-based constraint on persistent
3630  * huge page alloc/free.
3631  */
3632 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3633 					   struct kobj_attribute *attr,
3634 					   char *buf)
3635 {
3636 	return nr_hugepages_show_common(kobj, attr, buf);
3637 }
3638 
3639 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3640 	       struct kobj_attribute *attr, const char *buf, size_t len)
3641 {
3642 	return nr_hugepages_store_common(true, kobj, buf, len);
3643 }
3644 HSTATE_ATTR(nr_hugepages_mempolicy);
3645 #endif
3646 
3647 
3648 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3649 					struct kobj_attribute *attr, char *buf)
3650 {
3651 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3652 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3653 }
3654 
3655 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3656 		struct kobj_attribute *attr, const char *buf, size_t count)
3657 {
3658 	int err;
3659 	unsigned long input;
3660 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3661 
3662 	if (hstate_is_gigantic(h))
3663 		return -EINVAL;
3664 
3665 	err = kstrtoul(buf, 10, &input);
3666 	if (err)
3667 		return err;
3668 
3669 	spin_lock_irq(&hugetlb_lock);
3670 	h->nr_overcommit_huge_pages = input;
3671 	spin_unlock_irq(&hugetlb_lock);
3672 
3673 	return count;
3674 }
3675 HSTATE_ATTR(nr_overcommit_hugepages);
3676 
3677 static ssize_t free_hugepages_show(struct kobject *kobj,
3678 					struct kobj_attribute *attr, char *buf)
3679 {
3680 	struct hstate *h;
3681 	unsigned long free_huge_pages;
3682 	int nid;
3683 
3684 	h = kobj_to_hstate(kobj, &nid);
3685 	if (nid == NUMA_NO_NODE)
3686 		free_huge_pages = h->free_huge_pages;
3687 	else
3688 		free_huge_pages = h->free_huge_pages_node[nid];
3689 
3690 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3691 }
3692 HSTATE_ATTR_RO(free_hugepages);
3693 
3694 static ssize_t resv_hugepages_show(struct kobject *kobj,
3695 					struct kobj_attribute *attr, char *buf)
3696 {
3697 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3698 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3699 }
3700 HSTATE_ATTR_RO(resv_hugepages);
3701 
3702 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3703 					struct kobj_attribute *attr, char *buf)
3704 {
3705 	struct hstate *h;
3706 	unsigned long surplus_huge_pages;
3707 	int nid;
3708 
3709 	h = kobj_to_hstate(kobj, &nid);
3710 	if (nid == NUMA_NO_NODE)
3711 		surplus_huge_pages = h->surplus_huge_pages;
3712 	else
3713 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3714 
3715 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3716 }
3717 HSTATE_ATTR_RO(surplus_hugepages);
3718 
3719 static ssize_t demote_store(struct kobject *kobj,
3720 	       struct kobj_attribute *attr, const char *buf, size_t len)
3721 {
3722 	unsigned long nr_demote;
3723 	unsigned long nr_available;
3724 	nodemask_t nodes_allowed, *n_mask;
3725 	struct hstate *h;
3726 	int err;
3727 	int nid;
3728 
3729 	err = kstrtoul(buf, 10, &nr_demote);
3730 	if (err)
3731 		return err;
3732 	h = kobj_to_hstate(kobj, &nid);
3733 
3734 	if (nid != NUMA_NO_NODE) {
3735 		init_nodemask_of_node(&nodes_allowed, nid);
3736 		n_mask = &nodes_allowed;
3737 	} else {
3738 		n_mask = &node_states[N_MEMORY];
3739 	}
3740 
3741 	/* Synchronize with other sysfs operations modifying huge pages */
3742 	mutex_lock(&h->resize_lock);
3743 	spin_lock_irq(&hugetlb_lock);
3744 
3745 	while (nr_demote) {
3746 		/*
3747 		 * Check for available pages to demote each time thorough the
3748 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3749 		 */
3750 		if (nid != NUMA_NO_NODE)
3751 			nr_available = h->free_huge_pages_node[nid];
3752 		else
3753 			nr_available = h->free_huge_pages;
3754 		nr_available -= h->resv_huge_pages;
3755 		if (!nr_available)
3756 			break;
3757 
3758 		err = demote_pool_huge_page(h, n_mask);
3759 		if (err)
3760 			break;
3761 
3762 		nr_demote--;
3763 	}
3764 
3765 	spin_unlock_irq(&hugetlb_lock);
3766 	mutex_unlock(&h->resize_lock);
3767 
3768 	if (err)
3769 		return err;
3770 	return len;
3771 }
3772 HSTATE_ATTR_WO(demote);
3773 
3774 static ssize_t demote_size_show(struct kobject *kobj,
3775 					struct kobj_attribute *attr, char *buf)
3776 {
3777 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3778 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3779 
3780 	return sysfs_emit(buf, "%lukB\n", demote_size);
3781 }
3782 
3783 static ssize_t demote_size_store(struct kobject *kobj,
3784 					struct kobj_attribute *attr,
3785 					const char *buf, size_t count)
3786 {
3787 	struct hstate *h, *demote_hstate;
3788 	unsigned long demote_size;
3789 	unsigned int demote_order;
3790 
3791 	demote_size = (unsigned long)memparse(buf, NULL);
3792 
3793 	demote_hstate = size_to_hstate(demote_size);
3794 	if (!demote_hstate)
3795 		return -EINVAL;
3796 	demote_order = demote_hstate->order;
3797 	if (demote_order < HUGETLB_PAGE_ORDER)
3798 		return -EINVAL;
3799 
3800 	/* demote order must be smaller than hstate order */
3801 	h = kobj_to_hstate(kobj, NULL);
3802 	if (demote_order >= h->order)
3803 		return -EINVAL;
3804 
3805 	/* resize_lock synchronizes access to demote size and writes */
3806 	mutex_lock(&h->resize_lock);
3807 	h->demote_order = demote_order;
3808 	mutex_unlock(&h->resize_lock);
3809 
3810 	return count;
3811 }
3812 HSTATE_ATTR(demote_size);
3813 
3814 static struct attribute *hstate_attrs[] = {
3815 	&nr_hugepages_attr.attr,
3816 	&nr_overcommit_hugepages_attr.attr,
3817 	&free_hugepages_attr.attr,
3818 	&resv_hugepages_attr.attr,
3819 	&surplus_hugepages_attr.attr,
3820 #ifdef CONFIG_NUMA
3821 	&nr_hugepages_mempolicy_attr.attr,
3822 #endif
3823 	NULL,
3824 };
3825 
3826 static const struct attribute_group hstate_attr_group = {
3827 	.attrs = hstate_attrs,
3828 };
3829 
3830 static struct attribute *hstate_demote_attrs[] = {
3831 	&demote_size_attr.attr,
3832 	&demote_attr.attr,
3833 	NULL,
3834 };
3835 
3836 static const struct attribute_group hstate_demote_attr_group = {
3837 	.attrs = hstate_demote_attrs,
3838 };
3839 
3840 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3841 				    struct kobject **hstate_kobjs,
3842 				    const struct attribute_group *hstate_attr_group)
3843 {
3844 	int retval;
3845 	int hi = hstate_index(h);
3846 
3847 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3848 	if (!hstate_kobjs[hi])
3849 		return -ENOMEM;
3850 
3851 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3852 	if (retval) {
3853 		kobject_put(hstate_kobjs[hi]);
3854 		hstate_kobjs[hi] = NULL;
3855 		return retval;
3856 	}
3857 
3858 	if (h->demote_order) {
3859 		retval = sysfs_create_group(hstate_kobjs[hi],
3860 					    &hstate_demote_attr_group);
3861 		if (retval) {
3862 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3863 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
3864 			kobject_put(hstate_kobjs[hi]);
3865 			hstate_kobjs[hi] = NULL;
3866 			return retval;
3867 		}
3868 	}
3869 
3870 	return 0;
3871 }
3872 
3873 #ifdef CONFIG_NUMA
3874 static bool hugetlb_sysfs_initialized __ro_after_init;
3875 
3876 /*
3877  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3878  * with node devices in node_devices[] using a parallel array.  The array
3879  * index of a node device or _hstate == node id.
3880  * This is here to avoid any static dependency of the node device driver, in
3881  * the base kernel, on the hugetlb module.
3882  */
3883 struct node_hstate {
3884 	struct kobject		*hugepages_kobj;
3885 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3886 };
3887 static struct node_hstate node_hstates[MAX_NUMNODES];
3888 
3889 /*
3890  * A subset of global hstate attributes for node devices
3891  */
3892 static struct attribute *per_node_hstate_attrs[] = {
3893 	&nr_hugepages_attr.attr,
3894 	&free_hugepages_attr.attr,
3895 	&surplus_hugepages_attr.attr,
3896 	NULL,
3897 };
3898 
3899 static const struct attribute_group per_node_hstate_attr_group = {
3900 	.attrs = per_node_hstate_attrs,
3901 };
3902 
3903 /*
3904  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3905  * Returns node id via non-NULL nidp.
3906  */
3907 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3908 {
3909 	int nid;
3910 
3911 	for (nid = 0; nid < nr_node_ids; nid++) {
3912 		struct node_hstate *nhs = &node_hstates[nid];
3913 		int i;
3914 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3915 			if (nhs->hstate_kobjs[i] == kobj) {
3916 				if (nidp)
3917 					*nidp = nid;
3918 				return &hstates[i];
3919 			}
3920 	}
3921 
3922 	BUG();
3923 	return NULL;
3924 }
3925 
3926 /*
3927  * Unregister hstate attributes from a single node device.
3928  * No-op if no hstate attributes attached.
3929  */
3930 void hugetlb_unregister_node(struct node *node)
3931 {
3932 	struct hstate *h;
3933 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3934 
3935 	if (!nhs->hugepages_kobj)
3936 		return;		/* no hstate attributes */
3937 
3938 	for_each_hstate(h) {
3939 		int idx = hstate_index(h);
3940 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
3941 
3942 		if (!hstate_kobj)
3943 			continue;
3944 		if (h->demote_order)
3945 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
3946 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
3947 		kobject_put(hstate_kobj);
3948 		nhs->hstate_kobjs[idx] = NULL;
3949 	}
3950 
3951 	kobject_put(nhs->hugepages_kobj);
3952 	nhs->hugepages_kobj = NULL;
3953 }
3954 
3955 
3956 /*
3957  * Register hstate attributes for a single node device.
3958  * No-op if attributes already registered.
3959  */
3960 void hugetlb_register_node(struct node *node)
3961 {
3962 	struct hstate *h;
3963 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3964 	int err;
3965 
3966 	if (!hugetlb_sysfs_initialized)
3967 		return;
3968 
3969 	if (nhs->hugepages_kobj)
3970 		return;		/* already allocated */
3971 
3972 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3973 							&node->dev.kobj);
3974 	if (!nhs->hugepages_kobj)
3975 		return;
3976 
3977 	for_each_hstate(h) {
3978 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3979 						nhs->hstate_kobjs,
3980 						&per_node_hstate_attr_group);
3981 		if (err) {
3982 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3983 				h->name, node->dev.id);
3984 			hugetlb_unregister_node(node);
3985 			break;
3986 		}
3987 	}
3988 }
3989 
3990 /*
3991  * hugetlb init time:  register hstate attributes for all registered node
3992  * devices of nodes that have memory.  All on-line nodes should have
3993  * registered their associated device by this time.
3994  */
3995 static void __init hugetlb_register_all_nodes(void)
3996 {
3997 	int nid;
3998 
3999 	for_each_online_node(nid)
4000 		hugetlb_register_node(node_devices[nid]);
4001 }
4002 #else	/* !CONFIG_NUMA */
4003 
4004 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4005 {
4006 	BUG();
4007 	if (nidp)
4008 		*nidp = -1;
4009 	return NULL;
4010 }
4011 
4012 static void hugetlb_register_all_nodes(void) { }
4013 
4014 #endif
4015 
4016 #ifdef CONFIG_CMA
4017 static void __init hugetlb_cma_check(void);
4018 #else
4019 static inline __init void hugetlb_cma_check(void)
4020 {
4021 }
4022 #endif
4023 
4024 static void __init hugetlb_sysfs_init(void)
4025 {
4026 	struct hstate *h;
4027 	int err;
4028 
4029 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4030 	if (!hugepages_kobj)
4031 		return;
4032 
4033 	for_each_hstate(h) {
4034 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4035 					 hstate_kobjs, &hstate_attr_group);
4036 		if (err)
4037 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4038 	}
4039 
4040 #ifdef CONFIG_NUMA
4041 	hugetlb_sysfs_initialized = true;
4042 #endif
4043 	hugetlb_register_all_nodes();
4044 }
4045 
4046 static int __init hugetlb_init(void)
4047 {
4048 	int i;
4049 
4050 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4051 			__NR_HPAGEFLAGS);
4052 
4053 	if (!hugepages_supported()) {
4054 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4055 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4056 		return 0;
4057 	}
4058 
4059 	/*
4060 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4061 	 * architectures depend on setup being done here.
4062 	 */
4063 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4064 	if (!parsed_default_hugepagesz) {
4065 		/*
4066 		 * If we did not parse a default huge page size, set
4067 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4068 		 * number of huge pages for this default size was implicitly
4069 		 * specified, set that here as well.
4070 		 * Note that the implicit setting will overwrite an explicit
4071 		 * setting.  A warning will be printed in this case.
4072 		 */
4073 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4074 		if (default_hstate_max_huge_pages) {
4075 			if (default_hstate.max_huge_pages) {
4076 				char buf[32];
4077 
4078 				string_get_size(huge_page_size(&default_hstate),
4079 					1, STRING_UNITS_2, buf, 32);
4080 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4081 					default_hstate.max_huge_pages, buf);
4082 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4083 					default_hstate_max_huge_pages);
4084 			}
4085 			default_hstate.max_huge_pages =
4086 				default_hstate_max_huge_pages;
4087 
4088 			for_each_online_node(i)
4089 				default_hstate.max_huge_pages_node[i] =
4090 					default_hugepages_in_node[i];
4091 		}
4092 	}
4093 
4094 	hugetlb_cma_check();
4095 	hugetlb_init_hstates();
4096 	gather_bootmem_prealloc();
4097 	report_hugepages();
4098 
4099 	hugetlb_sysfs_init();
4100 	hugetlb_cgroup_file_init();
4101 
4102 #ifdef CONFIG_SMP
4103 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4104 #else
4105 	num_fault_mutexes = 1;
4106 #endif
4107 	hugetlb_fault_mutex_table =
4108 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4109 			      GFP_KERNEL);
4110 	BUG_ON(!hugetlb_fault_mutex_table);
4111 
4112 	for (i = 0; i < num_fault_mutexes; i++)
4113 		mutex_init(&hugetlb_fault_mutex_table[i]);
4114 	return 0;
4115 }
4116 subsys_initcall(hugetlb_init);
4117 
4118 /* Overwritten by architectures with more huge page sizes */
4119 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4120 {
4121 	return size == HPAGE_SIZE;
4122 }
4123 
4124 void __init hugetlb_add_hstate(unsigned int order)
4125 {
4126 	struct hstate *h;
4127 	unsigned long i;
4128 
4129 	if (size_to_hstate(PAGE_SIZE << order)) {
4130 		return;
4131 	}
4132 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4133 	BUG_ON(order == 0);
4134 	h = &hstates[hugetlb_max_hstate++];
4135 	mutex_init(&h->resize_lock);
4136 	h->order = order;
4137 	h->mask = ~(huge_page_size(h) - 1);
4138 	for (i = 0; i < MAX_NUMNODES; ++i)
4139 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4140 	INIT_LIST_HEAD(&h->hugepage_activelist);
4141 	h->next_nid_to_alloc = first_memory_node;
4142 	h->next_nid_to_free = first_memory_node;
4143 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4144 					huge_page_size(h)/SZ_1K);
4145 
4146 	parsed_hstate = h;
4147 }
4148 
4149 bool __init __weak hugetlb_node_alloc_supported(void)
4150 {
4151 	return true;
4152 }
4153 
4154 static void __init hugepages_clear_pages_in_node(void)
4155 {
4156 	if (!hugetlb_max_hstate) {
4157 		default_hstate_max_huge_pages = 0;
4158 		memset(default_hugepages_in_node, 0,
4159 			sizeof(default_hugepages_in_node));
4160 	} else {
4161 		parsed_hstate->max_huge_pages = 0;
4162 		memset(parsed_hstate->max_huge_pages_node, 0,
4163 			sizeof(parsed_hstate->max_huge_pages_node));
4164 	}
4165 }
4166 
4167 /*
4168  * hugepages command line processing
4169  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4170  * specification.  If not, ignore the hugepages value.  hugepages can also
4171  * be the first huge page command line  option in which case it implicitly
4172  * specifies the number of huge pages for the default size.
4173  */
4174 static int __init hugepages_setup(char *s)
4175 {
4176 	unsigned long *mhp;
4177 	static unsigned long *last_mhp;
4178 	int node = NUMA_NO_NODE;
4179 	int count;
4180 	unsigned long tmp;
4181 	char *p = s;
4182 
4183 	if (!parsed_valid_hugepagesz) {
4184 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4185 		parsed_valid_hugepagesz = true;
4186 		return 1;
4187 	}
4188 
4189 	/*
4190 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4191 	 * yet, so this hugepages= parameter goes to the "default hstate".
4192 	 * Otherwise, it goes with the previously parsed hugepagesz or
4193 	 * default_hugepagesz.
4194 	 */
4195 	else if (!hugetlb_max_hstate)
4196 		mhp = &default_hstate_max_huge_pages;
4197 	else
4198 		mhp = &parsed_hstate->max_huge_pages;
4199 
4200 	if (mhp == last_mhp) {
4201 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4202 		return 1;
4203 	}
4204 
4205 	while (*p) {
4206 		count = 0;
4207 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4208 			goto invalid;
4209 		/* Parameter is node format */
4210 		if (p[count] == ':') {
4211 			if (!hugetlb_node_alloc_supported()) {
4212 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4213 				return 1;
4214 			}
4215 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4216 				goto invalid;
4217 			node = array_index_nospec(tmp, MAX_NUMNODES);
4218 			p += count + 1;
4219 			/* Parse hugepages */
4220 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4221 				goto invalid;
4222 			if (!hugetlb_max_hstate)
4223 				default_hugepages_in_node[node] = tmp;
4224 			else
4225 				parsed_hstate->max_huge_pages_node[node] = tmp;
4226 			*mhp += tmp;
4227 			/* Go to parse next node*/
4228 			if (p[count] == ',')
4229 				p += count + 1;
4230 			else
4231 				break;
4232 		} else {
4233 			if (p != s)
4234 				goto invalid;
4235 			*mhp = tmp;
4236 			break;
4237 		}
4238 	}
4239 
4240 	/*
4241 	 * Global state is always initialized later in hugetlb_init.
4242 	 * But we need to allocate gigantic hstates here early to still
4243 	 * use the bootmem allocator.
4244 	 */
4245 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4246 		hugetlb_hstate_alloc_pages(parsed_hstate);
4247 
4248 	last_mhp = mhp;
4249 
4250 	return 1;
4251 
4252 invalid:
4253 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4254 	hugepages_clear_pages_in_node();
4255 	return 1;
4256 }
4257 __setup("hugepages=", hugepages_setup);
4258 
4259 /*
4260  * hugepagesz command line processing
4261  * A specific huge page size can only be specified once with hugepagesz.
4262  * hugepagesz is followed by hugepages on the command line.  The global
4263  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4264  * hugepagesz argument was valid.
4265  */
4266 static int __init hugepagesz_setup(char *s)
4267 {
4268 	unsigned long size;
4269 	struct hstate *h;
4270 
4271 	parsed_valid_hugepagesz = false;
4272 	size = (unsigned long)memparse(s, NULL);
4273 
4274 	if (!arch_hugetlb_valid_size(size)) {
4275 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4276 		return 1;
4277 	}
4278 
4279 	h = size_to_hstate(size);
4280 	if (h) {
4281 		/*
4282 		 * hstate for this size already exists.  This is normally
4283 		 * an error, but is allowed if the existing hstate is the
4284 		 * default hstate.  More specifically, it is only allowed if
4285 		 * the number of huge pages for the default hstate was not
4286 		 * previously specified.
4287 		 */
4288 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4289 		    default_hstate.max_huge_pages) {
4290 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4291 			return 1;
4292 		}
4293 
4294 		/*
4295 		 * No need to call hugetlb_add_hstate() as hstate already
4296 		 * exists.  But, do set parsed_hstate so that a following
4297 		 * hugepages= parameter will be applied to this hstate.
4298 		 */
4299 		parsed_hstate = h;
4300 		parsed_valid_hugepagesz = true;
4301 		return 1;
4302 	}
4303 
4304 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4305 	parsed_valid_hugepagesz = true;
4306 	return 1;
4307 }
4308 __setup("hugepagesz=", hugepagesz_setup);
4309 
4310 /*
4311  * default_hugepagesz command line input
4312  * Only one instance of default_hugepagesz allowed on command line.
4313  */
4314 static int __init default_hugepagesz_setup(char *s)
4315 {
4316 	unsigned long size;
4317 	int i;
4318 
4319 	parsed_valid_hugepagesz = false;
4320 	if (parsed_default_hugepagesz) {
4321 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4322 		return 1;
4323 	}
4324 
4325 	size = (unsigned long)memparse(s, NULL);
4326 
4327 	if (!arch_hugetlb_valid_size(size)) {
4328 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4329 		return 1;
4330 	}
4331 
4332 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4333 	parsed_valid_hugepagesz = true;
4334 	parsed_default_hugepagesz = true;
4335 	default_hstate_idx = hstate_index(size_to_hstate(size));
4336 
4337 	/*
4338 	 * The number of default huge pages (for this size) could have been
4339 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4340 	 * then default_hstate_max_huge_pages is set.  If the default huge
4341 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4342 	 * allocated here from bootmem allocator.
4343 	 */
4344 	if (default_hstate_max_huge_pages) {
4345 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4346 		for_each_online_node(i)
4347 			default_hstate.max_huge_pages_node[i] =
4348 				default_hugepages_in_node[i];
4349 		if (hstate_is_gigantic(&default_hstate))
4350 			hugetlb_hstate_alloc_pages(&default_hstate);
4351 		default_hstate_max_huge_pages = 0;
4352 	}
4353 
4354 	return 1;
4355 }
4356 __setup("default_hugepagesz=", default_hugepagesz_setup);
4357 
4358 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4359 {
4360 #ifdef CONFIG_NUMA
4361 	struct mempolicy *mpol = get_task_policy(current);
4362 
4363 	/*
4364 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4365 	 * (from policy_nodemask) specifically for hugetlb case
4366 	 */
4367 	if (mpol->mode == MPOL_BIND &&
4368 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4369 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4370 		return &mpol->nodes;
4371 #endif
4372 	return NULL;
4373 }
4374 
4375 static unsigned int allowed_mems_nr(struct hstate *h)
4376 {
4377 	int node;
4378 	unsigned int nr = 0;
4379 	nodemask_t *mbind_nodemask;
4380 	unsigned int *array = h->free_huge_pages_node;
4381 	gfp_t gfp_mask = htlb_alloc_mask(h);
4382 
4383 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4384 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4385 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4386 			nr += array[node];
4387 	}
4388 
4389 	return nr;
4390 }
4391 
4392 #ifdef CONFIG_SYSCTL
4393 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4394 					  void *buffer, size_t *length,
4395 					  loff_t *ppos, unsigned long *out)
4396 {
4397 	struct ctl_table dup_table;
4398 
4399 	/*
4400 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4401 	 * can duplicate the @table and alter the duplicate of it.
4402 	 */
4403 	dup_table = *table;
4404 	dup_table.data = out;
4405 
4406 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4407 }
4408 
4409 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4410 			 struct ctl_table *table, int write,
4411 			 void *buffer, size_t *length, loff_t *ppos)
4412 {
4413 	struct hstate *h = &default_hstate;
4414 	unsigned long tmp = h->max_huge_pages;
4415 	int ret;
4416 
4417 	if (!hugepages_supported())
4418 		return -EOPNOTSUPP;
4419 
4420 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4421 					     &tmp);
4422 	if (ret)
4423 		goto out;
4424 
4425 	if (write)
4426 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4427 						  NUMA_NO_NODE, tmp, *length);
4428 out:
4429 	return ret;
4430 }
4431 
4432 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4433 			  void *buffer, size_t *length, loff_t *ppos)
4434 {
4435 
4436 	return hugetlb_sysctl_handler_common(false, table, write,
4437 							buffer, length, ppos);
4438 }
4439 
4440 #ifdef CONFIG_NUMA
4441 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4442 			  void *buffer, size_t *length, loff_t *ppos)
4443 {
4444 	return hugetlb_sysctl_handler_common(true, table, write,
4445 							buffer, length, ppos);
4446 }
4447 #endif /* CONFIG_NUMA */
4448 
4449 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4450 		void *buffer, size_t *length, loff_t *ppos)
4451 {
4452 	struct hstate *h = &default_hstate;
4453 	unsigned long tmp;
4454 	int ret;
4455 
4456 	if (!hugepages_supported())
4457 		return -EOPNOTSUPP;
4458 
4459 	tmp = h->nr_overcommit_huge_pages;
4460 
4461 	if (write && hstate_is_gigantic(h))
4462 		return -EINVAL;
4463 
4464 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4465 					     &tmp);
4466 	if (ret)
4467 		goto out;
4468 
4469 	if (write) {
4470 		spin_lock_irq(&hugetlb_lock);
4471 		h->nr_overcommit_huge_pages = tmp;
4472 		spin_unlock_irq(&hugetlb_lock);
4473 	}
4474 out:
4475 	return ret;
4476 }
4477 
4478 #endif /* CONFIG_SYSCTL */
4479 
4480 void hugetlb_report_meminfo(struct seq_file *m)
4481 {
4482 	struct hstate *h;
4483 	unsigned long total = 0;
4484 
4485 	if (!hugepages_supported())
4486 		return;
4487 
4488 	for_each_hstate(h) {
4489 		unsigned long count = h->nr_huge_pages;
4490 
4491 		total += huge_page_size(h) * count;
4492 
4493 		if (h == &default_hstate)
4494 			seq_printf(m,
4495 				   "HugePages_Total:   %5lu\n"
4496 				   "HugePages_Free:    %5lu\n"
4497 				   "HugePages_Rsvd:    %5lu\n"
4498 				   "HugePages_Surp:    %5lu\n"
4499 				   "Hugepagesize:   %8lu kB\n",
4500 				   count,
4501 				   h->free_huge_pages,
4502 				   h->resv_huge_pages,
4503 				   h->surplus_huge_pages,
4504 				   huge_page_size(h) / SZ_1K);
4505 	}
4506 
4507 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4508 }
4509 
4510 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4511 {
4512 	struct hstate *h = &default_hstate;
4513 
4514 	if (!hugepages_supported())
4515 		return 0;
4516 
4517 	return sysfs_emit_at(buf, len,
4518 			     "Node %d HugePages_Total: %5u\n"
4519 			     "Node %d HugePages_Free:  %5u\n"
4520 			     "Node %d HugePages_Surp:  %5u\n",
4521 			     nid, h->nr_huge_pages_node[nid],
4522 			     nid, h->free_huge_pages_node[nid],
4523 			     nid, h->surplus_huge_pages_node[nid]);
4524 }
4525 
4526 void hugetlb_show_meminfo_node(int nid)
4527 {
4528 	struct hstate *h;
4529 
4530 	if (!hugepages_supported())
4531 		return;
4532 
4533 	for_each_hstate(h)
4534 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4535 			nid,
4536 			h->nr_huge_pages_node[nid],
4537 			h->free_huge_pages_node[nid],
4538 			h->surplus_huge_pages_node[nid],
4539 			huge_page_size(h) / SZ_1K);
4540 }
4541 
4542 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4543 {
4544 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4545 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4546 }
4547 
4548 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4549 unsigned long hugetlb_total_pages(void)
4550 {
4551 	struct hstate *h;
4552 	unsigned long nr_total_pages = 0;
4553 
4554 	for_each_hstate(h)
4555 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4556 	return nr_total_pages;
4557 }
4558 
4559 static int hugetlb_acct_memory(struct hstate *h, long delta)
4560 {
4561 	int ret = -ENOMEM;
4562 
4563 	if (!delta)
4564 		return 0;
4565 
4566 	spin_lock_irq(&hugetlb_lock);
4567 	/*
4568 	 * When cpuset is configured, it breaks the strict hugetlb page
4569 	 * reservation as the accounting is done on a global variable. Such
4570 	 * reservation is completely rubbish in the presence of cpuset because
4571 	 * the reservation is not checked against page availability for the
4572 	 * current cpuset. Application can still potentially OOM'ed by kernel
4573 	 * with lack of free htlb page in cpuset that the task is in.
4574 	 * Attempt to enforce strict accounting with cpuset is almost
4575 	 * impossible (or too ugly) because cpuset is too fluid that
4576 	 * task or memory node can be dynamically moved between cpusets.
4577 	 *
4578 	 * The change of semantics for shared hugetlb mapping with cpuset is
4579 	 * undesirable. However, in order to preserve some of the semantics,
4580 	 * we fall back to check against current free page availability as
4581 	 * a best attempt and hopefully to minimize the impact of changing
4582 	 * semantics that cpuset has.
4583 	 *
4584 	 * Apart from cpuset, we also have memory policy mechanism that
4585 	 * also determines from which node the kernel will allocate memory
4586 	 * in a NUMA system. So similar to cpuset, we also should consider
4587 	 * the memory policy of the current task. Similar to the description
4588 	 * above.
4589 	 */
4590 	if (delta > 0) {
4591 		if (gather_surplus_pages(h, delta) < 0)
4592 			goto out;
4593 
4594 		if (delta > allowed_mems_nr(h)) {
4595 			return_unused_surplus_pages(h, delta);
4596 			goto out;
4597 		}
4598 	}
4599 
4600 	ret = 0;
4601 	if (delta < 0)
4602 		return_unused_surplus_pages(h, (unsigned long) -delta);
4603 
4604 out:
4605 	spin_unlock_irq(&hugetlb_lock);
4606 	return ret;
4607 }
4608 
4609 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4610 {
4611 	struct resv_map *resv = vma_resv_map(vma);
4612 
4613 	/*
4614 	 * HPAGE_RESV_OWNER indicates a private mapping.
4615 	 * This new VMA should share its siblings reservation map if present.
4616 	 * The VMA will only ever have a valid reservation map pointer where
4617 	 * it is being copied for another still existing VMA.  As that VMA
4618 	 * has a reference to the reservation map it cannot disappear until
4619 	 * after this open call completes.  It is therefore safe to take a
4620 	 * new reference here without additional locking.
4621 	 */
4622 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4623 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4624 		kref_get(&resv->refs);
4625 	}
4626 
4627 	/*
4628 	 * vma_lock structure for sharable mappings is vma specific.
4629 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4630 	 * new structure.  Before clearing, make sure vma_lock is not
4631 	 * for this vma.
4632 	 */
4633 	if (vma->vm_flags & VM_MAYSHARE) {
4634 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4635 
4636 		if (vma_lock) {
4637 			if (vma_lock->vma != vma) {
4638 				vma->vm_private_data = NULL;
4639 				hugetlb_vma_lock_alloc(vma);
4640 			} else
4641 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4642 		} else
4643 			hugetlb_vma_lock_alloc(vma);
4644 	}
4645 }
4646 
4647 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4648 {
4649 	struct hstate *h = hstate_vma(vma);
4650 	struct resv_map *resv;
4651 	struct hugepage_subpool *spool = subpool_vma(vma);
4652 	unsigned long reserve, start, end;
4653 	long gbl_reserve;
4654 
4655 	hugetlb_vma_lock_free(vma);
4656 
4657 	resv = vma_resv_map(vma);
4658 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4659 		return;
4660 
4661 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4662 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4663 
4664 	reserve = (end - start) - region_count(resv, start, end);
4665 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4666 	if (reserve) {
4667 		/*
4668 		 * Decrement reserve counts.  The global reserve count may be
4669 		 * adjusted if the subpool has a minimum size.
4670 		 */
4671 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4672 		hugetlb_acct_memory(h, -gbl_reserve);
4673 	}
4674 
4675 	kref_put(&resv->refs, resv_map_release);
4676 }
4677 
4678 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4679 {
4680 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4681 		return -EINVAL;
4682 	return 0;
4683 }
4684 
4685 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4686 {
4687 	return huge_page_size(hstate_vma(vma));
4688 }
4689 
4690 /*
4691  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4692  * handle_mm_fault() to try to instantiate regular-sized pages in the
4693  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4694  * this far.
4695  */
4696 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4697 {
4698 	BUG();
4699 	return 0;
4700 }
4701 
4702 /*
4703  * When a new function is introduced to vm_operations_struct and added
4704  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4705  * This is because under System V memory model, mappings created via
4706  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4707  * their original vm_ops are overwritten with shm_vm_ops.
4708  */
4709 const struct vm_operations_struct hugetlb_vm_ops = {
4710 	.fault = hugetlb_vm_op_fault,
4711 	.open = hugetlb_vm_op_open,
4712 	.close = hugetlb_vm_op_close,
4713 	.may_split = hugetlb_vm_op_split,
4714 	.pagesize = hugetlb_vm_op_pagesize,
4715 };
4716 
4717 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4718 				int writable)
4719 {
4720 	pte_t entry;
4721 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4722 
4723 	if (writable) {
4724 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4725 					 vma->vm_page_prot)));
4726 	} else {
4727 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4728 					   vma->vm_page_prot));
4729 	}
4730 	entry = pte_mkyoung(entry);
4731 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4732 
4733 	return entry;
4734 }
4735 
4736 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4737 				   unsigned long address, pte_t *ptep)
4738 {
4739 	pte_t entry;
4740 
4741 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4742 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4743 		update_mmu_cache(vma, address, ptep);
4744 }
4745 
4746 bool is_hugetlb_entry_migration(pte_t pte)
4747 {
4748 	swp_entry_t swp;
4749 
4750 	if (huge_pte_none(pte) || pte_present(pte))
4751 		return false;
4752 	swp = pte_to_swp_entry(pte);
4753 	if (is_migration_entry(swp))
4754 		return true;
4755 	else
4756 		return false;
4757 }
4758 
4759 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4760 {
4761 	swp_entry_t swp;
4762 
4763 	if (huge_pte_none(pte) || pte_present(pte))
4764 		return false;
4765 	swp = pte_to_swp_entry(pte);
4766 	if (is_hwpoison_entry(swp))
4767 		return true;
4768 	else
4769 		return false;
4770 }
4771 
4772 static void
4773 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4774 		     struct page *new_page)
4775 {
4776 	__SetPageUptodate(new_page);
4777 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4778 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4779 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4780 	ClearHPageRestoreReserve(new_page);
4781 	SetHPageMigratable(new_page);
4782 }
4783 
4784 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4785 			    struct vm_area_struct *dst_vma,
4786 			    struct vm_area_struct *src_vma)
4787 {
4788 	pte_t *src_pte, *dst_pte, entry;
4789 	struct page *ptepage;
4790 	unsigned long addr;
4791 	bool cow = is_cow_mapping(src_vma->vm_flags);
4792 	struct hstate *h = hstate_vma(src_vma);
4793 	unsigned long sz = huge_page_size(h);
4794 	unsigned long npages = pages_per_huge_page(h);
4795 	struct mmu_notifier_range range;
4796 	unsigned long last_addr_mask;
4797 	int ret = 0;
4798 
4799 	if (cow) {
4800 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4801 					src_vma->vm_start,
4802 					src_vma->vm_end);
4803 		mmu_notifier_invalidate_range_start(&range);
4804 		mmap_assert_write_locked(src);
4805 		raw_write_seqcount_begin(&src->write_protect_seq);
4806 	} else {
4807 		/*
4808 		 * For shared mappings the vma lock must be held before
4809 		 * calling huge_pte_offset in the src vma. Otherwise, the
4810 		 * returned ptep could go away if part of a shared pmd and
4811 		 * another thread calls huge_pmd_unshare.
4812 		 */
4813 		hugetlb_vma_lock_read(src_vma);
4814 	}
4815 
4816 	last_addr_mask = hugetlb_mask_last_page(h);
4817 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4818 		spinlock_t *src_ptl, *dst_ptl;
4819 		src_pte = huge_pte_offset(src, addr, sz);
4820 		if (!src_pte) {
4821 			addr |= last_addr_mask;
4822 			continue;
4823 		}
4824 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4825 		if (!dst_pte) {
4826 			ret = -ENOMEM;
4827 			break;
4828 		}
4829 
4830 		/*
4831 		 * If the pagetables are shared don't copy or take references.
4832 		 *
4833 		 * dst_pte == src_pte is the common case of src/dest sharing.
4834 		 * However, src could have 'unshared' and dst shares with
4835 		 * another vma. So page_count of ptep page is checked instead
4836 		 * to reliably determine whether pte is shared.
4837 		 */
4838 		if (page_count(virt_to_page(dst_pte)) > 1) {
4839 			addr |= last_addr_mask;
4840 			continue;
4841 		}
4842 
4843 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4844 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4845 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4846 		entry = huge_ptep_get(src_pte);
4847 again:
4848 		if (huge_pte_none(entry)) {
4849 			/*
4850 			 * Skip if src entry none.
4851 			 */
4852 			;
4853 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4854 			bool uffd_wp = huge_pte_uffd_wp(entry);
4855 
4856 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
4857 				entry = huge_pte_clear_uffd_wp(entry);
4858 			set_huge_pte_at(dst, addr, dst_pte, entry);
4859 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
4860 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4861 			bool uffd_wp = huge_pte_uffd_wp(entry);
4862 
4863 			if (!is_readable_migration_entry(swp_entry) && cow) {
4864 				/*
4865 				 * COW mappings require pages in both
4866 				 * parent and child to be set to read.
4867 				 */
4868 				swp_entry = make_readable_migration_entry(
4869 							swp_offset(swp_entry));
4870 				entry = swp_entry_to_pte(swp_entry);
4871 				if (userfaultfd_wp(src_vma) && uffd_wp)
4872 					entry = huge_pte_mkuffd_wp(entry);
4873 				set_huge_pte_at(src, addr, src_pte, entry);
4874 			}
4875 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
4876 				entry = huge_pte_clear_uffd_wp(entry);
4877 			set_huge_pte_at(dst, addr, dst_pte, entry);
4878 		} else if (unlikely(is_pte_marker(entry))) {
4879 			/*
4880 			 * We copy the pte marker only if the dst vma has
4881 			 * uffd-wp enabled.
4882 			 */
4883 			if (userfaultfd_wp(dst_vma))
4884 				set_huge_pte_at(dst, addr, dst_pte, entry);
4885 		} else {
4886 			entry = huge_ptep_get(src_pte);
4887 			ptepage = pte_page(entry);
4888 			get_page(ptepage);
4889 
4890 			/*
4891 			 * Failing to duplicate the anon rmap is a rare case
4892 			 * where we see pinned hugetlb pages while they're
4893 			 * prone to COW. We need to do the COW earlier during
4894 			 * fork.
4895 			 *
4896 			 * When pre-allocating the page or copying data, we
4897 			 * need to be without the pgtable locks since we could
4898 			 * sleep during the process.
4899 			 */
4900 			if (!PageAnon(ptepage)) {
4901 				page_dup_file_rmap(ptepage, true);
4902 			} else if (page_try_dup_anon_rmap(ptepage, true,
4903 							  src_vma)) {
4904 				pte_t src_pte_old = entry;
4905 				struct page *new;
4906 
4907 				spin_unlock(src_ptl);
4908 				spin_unlock(dst_ptl);
4909 				/* Do not use reserve as it's private owned */
4910 				new = alloc_huge_page(dst_vma, addr, 1);
4911 				if (IS_ERR(new)) {
4912 					put_page(ptepage);
4913 					ret = PTR_ERR(new);
4914 					break;
4915 				}
4916 				copy_user_huge_page(new, ptepage, addr, dst_vma,
4917 						    npages);
4918 				put_page(ptepage);
4919 
4920 				/* Install the new huge page if src pte stable */
4921 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4922 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4923 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4924 				entry = huge_ptep_get(src_pte);
4925 				if (!pte_same(src_pte_old, entry)) {
4926 					restore_reserve_on_error(h, dst_vma, addr,
4927 								new);
4928 					put_page(new);
4929 					/* huge_ptep of dst_pte won't change as in child */
4930 					goto again;
4931 				}
4932 				hugetlb_install_page(dst_vma, dst_pte, addr, new);
4933 				spin_unlock(src_ptl);
4934 				spin_unlock(dst_ptl);
4935 				continue;
4936 			}
4937 
4938 			if (cow) {
4939 				/*
4940 				 * No need to notify as we are downgrading page
4941 				 * table protection not changing it to point
4942 				 * to a new page.
4943 				 *
4944 				 * See Documentation/mm/mmu_notifier.rst
4945 				 */
4946 				huge_ptep_set_wrprotect(src, addr, src_pte);
4947 				entry = huge_pte_wrprotect(entry);
4948 			}
4949 
4950 			set_huge_pte_at(dst, addr, dst_pte, entry);
4951 			hugetlb_count_add(npages, dst);
4952 		}
4953 		spin_unlock(src_ptl);
4954 		spin_unlock(dst_ptl);
4955 	}
4956 
4957 	if (cow) {
4958 		raw_write_seqcount_end(&src->write_protect_seq);
4959 		mmu_notifier_invalidate_range_end(&range);
4960 	} else {
4961 		hugetlb_vma_unlock_read(src_vma);
4962 	}
4963 
4964 	return ret;
4965 }
4966 
4967 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4968 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4969 {
4970 	struct hstate *h = hstate_vma(vma);
4971 	struct mm_struct *mm = vma->vm_mm;
4972 	spinlock_t *src_ptl, *dst_ptl;
4973 	pte_t pte;
4974 
4975 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
4976 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
4977 
4978 	/*
4979 	 * We don't have to worry about the ordering of src and dst ptlocks
4980 	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4981 	 */
4982 	if (src_ptl != dst_ptl)
4983 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4984 
4985 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4986 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
4987 
4988 	if (src_ptl != dst_ptl)
4989 		spin_unlock(src_ptl);
4990 	spin_unlock(dst_ptl);
4991 }
4992 
4993 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4994 			     struct vm_area_struct *new_vma,
4995 			     unsigned long old_addr, unsigned long new_addr,
4996 			     unsigned long len)
4997 {
4998 	struct hstate *h = hstate_vma(vma);
4999 	struct address_space *mapping = vma->vm_file->f_mapping;
5000 	unsigned long sz = huge_page_size(h);
5001 	struct mm_struct *mm = vma->vm_mm;
5002 	unsigned long old_end = old_addr + len;
5003 	unsigned long last_addr_mask;
5004 	pte_t *src_pte, *dst_pte;
5005 	struct mmu_notifier_range range;
5006 	bool shared_pmd = false;
5007 
5008 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5009 				old_end);
5010 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5011 	/*
5012 	 * In case of shared PMDs, we should cover the maximum possible
5013 	 * range.
5014 	 */
5015 	flush_cache_range(vma, range.start, range.end);
5016 
5017 	mmu_notifier_invalidate_range_start(&range);
5018 	last_addr_mask = hugetlb_mask_last_page(h);
5019 	/* Prevent race with file truncation */
5020 	hugetlb_vma_lock_write(vma);
5021 	i_mmap_lock_write(mapping);
5022 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5023 		src_pte = huge_pte_offset(mm, old_addr, sz);
5024 		if (!src_pte) {
5025 			old_addr |= last_addr_mask;
5026 			new_addr |= last_addr_mask;
5027 			continue;
5028 		}
5029 		if (huge_pte_none(huge_ptep_get(src_pte)))
5030 			continue;
5031 
5032 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5033 			shared_pmd = true;
5034 			old_addr |= last_addr_mask;
5035 			new_addr |= last_addr_mask;
5036 			continue;
5037 		}
5038 
5039 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5040 		if (!dst_pte)
5041 			break;
5042 
5043 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5044 	}
5045 
5046 	if (shared_pmd)
5047 		flush_tlb_range(vma, range.start, range.end);
5048 	else
5049 		flush_tlb_range(vma, old_end - len, old_end);
5050 	mmu_notifier_invalidate_range_end(&range);
5051 	i_mmap_unlock_write(mapping);
5052 	hugetlb_vma_unlock_write(vma);
5053 
5054 	return len + old_addr - old_end;
5055 }
5056 
5057 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5058 				   unsigned long start, unsigned long end,
5059 				   struct page *ref_page, zap_flags_t zap_flags)
5060 {
5061 	struct mm_struct *mm = vma->vm_mm;
5062 	unsigned long address;
5063 	pte_t *ptep;
5064 	pte_t pte;
5065 	spinlock_t *ptl;
5066 	struct page *page;
5067 	struct hstate *h = hstate_vma(vma);
5068 	unsigned long sz = huge_page_size(h);
5069 	struct mmu_notifier_range range;
5070 	unsigned long last_addr_mask;
5071 	bool force_flush = false;
5072 
5073 	WARN_ON(!is_vm_hugetlb_page(vma));
5074 	BUG_ON(start & ~huge_page_mask(h));
5075 	BUG_ON(end & ~huge_page_mask(h));
5076 
5077 	/*
5078 	 * This is a hugetlb vma, all the pte entries should point
5079 	 * to huge page.
5080 	 */
5081 	tlb_change_page_size(tlb, sz);
5082 	tlb_start_vma(tlb, vma);
5083 
5084 	/*
5085 	 * If sharing possible, alert mmu notifiers of worst case.
5086 	 */
5087 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5088 				end);
5089 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5090 	mmu_notifier_invalidate_range_start(&range);
5091 	last_addr_mask = hugetlb_mask_last_page(h);
5092 	address = start;
5093 	for (; address < end; address += sz) {
5094 		ptep = huge_pte_offset(mm, address, sz);
5095 		if (!ptep) {
5096 			address |= last_addr_mask;
5097 			continue;
5098 		}
5099 
5100 		ptl = huge_pte_lock(h, mm, ptep);
5101 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5102 			spin_unlock(ptl);
5103 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5104 			force_flush = true;
5105 			address |= last_addr_mask;
5106 			continue;
5107 		}
5108 
5109 		pte = huge_ptep_get(ptep);
5110 		if (huge_pte_none(pte)) {
5111 			spin_unlock(ptl);
5112 			continue;
5113 		}
5114 
5115 		/*
5116 		 * Migrating hugepage or HWPoisoned hugepage is already
5117 		 * unmapped and its refcount is dropped, so just clear pte here.
5118 		 */
5119 		if (unlikely(!pte_present(pte))) {
5120 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5121 			/*
5122 			 * If the pte was wr-protected by uffd-wp in any of the
5123 			 * swap forms, meanwhile the caller does not want to
5124 			 * drop the uffd-wp bit in this zap, then replace the
5125 			 * pte with a marker.
5126 			 */
5127 			if (pte_swp_uffd_wp_any(pte) &&
5128 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5129 				set_huge_pte_at(mm, address, ptep,
5130 						make_pte_marker(PTE_MARKER_UFFD_WP));
5131 			else
5132 #endif
5133 				huge_pte_clear(mm, address, ptep, sz);
5134 			spin_unlock(ptl);
5135 			continue;
5136 		}
5137 
5138 		page = pte_page(pte);
5139 		/*
5140 		 * If a reference page is supplied, it is because a specific
5141 		 * page is being unmapped, not a range. Ensure the page we
5142 		 * are about to unmap is the actual page of interest.
5143 		 */
5144 		if (ref_page) {
5145 			if (page != ref_page) {
5146 				spin_unlock(ptl);
5147 				continue;
5148 			}
5149 			/*
5150 			 * Mark the VMA as having unmapped its page so that
5151 			 * future faults in this VMA will fail rather than
5152 			 * looking like data was lost
5153 			 */
5154 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5155 		}
5156 
5157 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5158 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5159 		if (huge_pte_dirty(pte))
5160 			set_page_dirty(page);
5161 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5162 		/* Leave a uffd-wp pte marker if needed */
5163 		if (huge_pte_uffd_wp(pte) &&
5164 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5165 			set_huge_pte_at(mm, address, ptep,
5166 					make_pte_marker(PTE_MARKER_UFFD_WP));
5167 #endif
5168 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5169 		page_remove_rmap(page, vma, true);
5170 
5171 		spin_unlock(ptl);
5172 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5173 		/*
5174 		 * Bail out after unmapping reference page if supplied
5175 		 */
5176 		if (ref_page)
5177 			break;
5178 	}
5179 	mmu_notifier_invalidate_range_end(&range);
5180 	tlb_end_vma(tlb, vma);
5181 
5182 	/*
5183 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5184 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5185 	 * guaranteed that the last refernece would not be dropped. But we must
5186 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5187 	 * dropped and the last reference to the shared PMDs page might be
5188 	 * dropped as well.
5189 	 *
5190 	 * In theory we could defer the freeing of the PMD pages as well, but
5191 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5192 	 * detect sharing, so we cannot defer the release of the page either.
5193 	 * Instead, do flush now.
5194 	 */
5195 	if (force_flush)
5196 		tlb_flush_mmu_tlbonly(tlb);
5197 }
5198 
5199 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5200 			  struct vm_area_struct *vma, unsigned long start,
5201 			  unsigned long end, struct page *ref_page,
5202 			  zap_flags_t zap_flags)
5203 {
5204 	hugetlb_vma_lock_write(vma);
5205 	i_mmap_lock_write(vma->vm_file->f_mapping);
5206 
5207 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5208 
5209 	/*
5210 	 * Unlock and free the vma lock before releasing i_mmap_rwsem.  When
5211 	 * the vma_lock is freed, this makes the vma ineligible for pmd
5212 	 * sharing.  And, i_mmap_rwsem is required to set up pmd sharing.
5213 	 * This is important as page tables for this unmapped range will
5214 	 * be asynchrously deleted.  If the page tables are shared, there
5215 	 * will be issues when accessed by someone else.
5216 	 */
5217 	__hugetlb_vma_unlock_write_free(vma);
5218 
5219 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5220 }
5221 
5222 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5223 			  unsigned long end, struct page *ref_page,
5224 			  zap_flags_t zap_flags)
5225 {
5226 	struct mmu_gather tlb;
5227 
5228 	tlb_gather_mmu(&tlb, vma->vm_mm);
5229 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5230 	tlb_finish_mmu(&tlb);
5231 }
5232 
5233 /*
5234  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5235  * mapping it owns the reserve page for. The intention is to unmap the page
5236  * from other VMAs and let the children be SIGKILLed if they are faulting the
5237  * same region.
5238  */
5239 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5240 			      struct page *page, unsigned long address)
5241 {
5242 	struct hstate *h = hstate_vma(vma);
5243 	struct vm_area_struct *iter_vma;
5244 	struct address_space *mapping;
5245 	pgoff_t pgoff;
5246 
5247 	/*
5248 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5249 	 * from page cache lookup which is in HPAGE_SIZE units.
5250 	 */
5251 	address = address & huge_page_mask(h);
5252 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5253 			vma->vm_pgoff;
5254 	mapping = vma->vm_file->f_mapping;
5255 
5256 	/*
5257 	 * Take the mapping lock for the duration of the table walk. As
5258 	 * this mapping should be shared between all the VMAs,
5259 	 * __unmap_hugepage_range() is called as the lock is already held
5260 	 */
5261 	i_mmap_lock_write(mapping);
5262 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5263 		/* Do not unmap the current VMA */
5264 		if (iter_vma == vma)
5265 			continue;
5266 
5267 		/*
5268 		 * Shared VMAs have their own reserves and do not affect
5269 		 * MAP_PRIVATE accounting but it is possible that a shared
5270 		 * VMA is using the same page so check and skip such VMAs.
5271 		 */
5272 		if (iter_vma->vm_flags & VM_MAYSHARE)
5273 			continue;
5274 
5275 		/*
5276 		 * Unmap the page from other VMAs without their own reserves.
5277 		 * They get marked to be SIGKILLed if they fault in these
5278 		 * areas. This is because a future no-page fault on this VMA
5279 		 * could insert a zeroed page instead of the data existing
5280 		 * from the time of fork. This would look like data corruption
5281 		 */
5282 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5283 			unmap_hugepage_range(iter_vma, address,
5284 					     address + huge_page_size(h), page, 0);
5285 	}
5286 	i_mmap_unlock_write(mapping);
5287 }
5288 
5289 /*
5290  * hugetlb_wp() should be called with page lock of the original hugepage held.
5291  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5292  * cannot race with other handlers or page migration.
5293  * Keep the pte_same checks anyway to make transition from the mutex easier.
5294  */
5295 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5296 		       unsigned long address, pte_t *ptep, unsigned int flags,
5297 		       struct page *pagecache_page, spinlock_t *ptl)
5298 {
5299 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5300 	pte_t pte;
5301 	struct hstate *h = hstate_vma(vma);
5302 	struct page *old_page, *new_page;
5303 	int outside_reserve = 0;
5304 	vm_fault_t ret = 0;
5305 	unsigned long haddr = address & huge_page_mask(h);
5306 	struct mmu_notifier_range range;
5307 
5308 	VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5309 	VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5310 
5311 	/*
5312 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5313 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5314 	 */
5315 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5316 		return VM_FAULT_SIGSEGV;
5317 
5318 	/* Let's take out MAP_SHARED mappings first. */
5319 	if (vma->vm_flags & VM_MAYSHARE) {
5320 		if (unlikely(unshare))
5321 			return 0;
5322 		set_huge_ptep_writable(vma, haddr, ptep);
5323 		return 0;
5324 	}
5325 
5326 	pte = huge_ptep_get(ptep);
5327 	old_page = pte_page(pte);
5328 
5329 	delayacct_wpcopy_start();
5330 
5331 retry_avoidcopy:
5332 	/*
5333 	 * If no-one else is actually using this page, we're the exclusive
5334 	 * owner and can reuse this page.
5335 	 */
5336 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5337 		if (!PageAnonExclusive(old_page))
5338 			page_move_anon_rmap(old_page, vma);
5339 		if (likely(!unshare))
5340 			set_huge_ptep_writable(vma, haddr, ptep);
5341 
5342 		delayacct_wpcopy_end();
5343 		return 0;
5344 	}
5345 	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5346 		       old_page);
5347 
5348 	/*
5349 	 * If the process that created a MAP_PRIVATE mapping is about to
5350 	 * perform a COW due to a shared page count, attempt to satisfy
5351 	 * the allocation without using the existing reserves. The pagecache
5352 	 * page is used to determine if the reserve at this address was
5353 	 * consumed or not. If reserves were used, a partial faulted mapping
5354 	 * at the time of fork() could consume its reserves on COW instead
5355 	 * of the full address range.
5356 	 */
5357 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5358 			old_page != pagecache_page)
5359 		outside_reserve = 1;
5360 
5361 	get_page(old_page);
5362 
5363 	/*
5364 	 * Drop page table lock as buddy allocator may be called. It will
5365 	 * be acquired again before returning to the caller, as expected.
5366 	 */
5367 	spin_unlock(ptl);
5368 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5369 
5370 	if (IS_ERR(new_page)) {
5371 		/*
5372 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5373 		 * it is due to references held by a child and an insufficient
5374 		 * huge page pool. To guarantee the original mappers
5375 		 * reliability, unmap the page from child processes. The child
5376 		 * may get SIGKILLed if it later faults.
5377 		 */
5378 		if (outside_reserve) {
5379 			struct address_space *mapping = vma->vm_file->f_mapping;
5380 			pgoff_t idx;
5381 			u32 hash;
5382 
5383 			put_page(old_page);
5384 			/*
5385 			 * Drop hugetlb_fault_mutex and vma_lock before
5386 			 * unmapping.  unmapping needs to hold vma_lock
5387 			 * in write mode.  Dropping vma_lock in read mode
5388 			 * here is OK as COW mappings do not interact with
5389 			 * PMD sharing.
5390 			 *
5391 			 * Reacquire both after unmap operation.
5392 			 */
5393 			idx = vma_hugecache_offset(h, vma, haddr);
5394 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5395 			hugetlb_vma_unlock_read(vma);
5396 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5397 
5398 			unmap_ref_private(mm, vma, old_page, haddr);
5399 
5400 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5401 			hugetlb_vma_lock_read(vma);
5402 			spin_lock(ptl);
5403 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5404 			if (likely(ptep &&
5405 				   pte_same(huge_ptep_get(ptep), pte)))
5406 				goto retry_avoidcopy;
5407 			/*
5408 			 * race occurs while re-acquiring page table
5409 			 * lock, and our job is done.
5410 			 */
5411 			delayacct_wpcopy_end();
5412 			return 0;
5413 		}
5414 
5415 		ret = vmf_error(PTR_ERR(new_page));
5416 		goto out_release_old;
5417 	}
5418 
5419 	/*
5420 	 * When the original hugepage is shared one, it does not have
5421 	 * anon_vma prepared.
5422 	 */
5423 	if (unlikely(anon_vma_prepare(vma))) {
5424 		ret = VM_FAULT_OOM;
5425 		goto out_release_all;
5426 	}
5427 
5428 	copy_user_huge_page(new_page, old_page, address, vma,
5429 			    pages_per_huge_page(h));
5430 	__SetPageUptodate(new_page);
5431 
5432 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5433 				haddr + huge_page_size(h));
5434 	mmu_notifier_invalidate_range_start(&range);
5435 
5436 	/*
5437 	 * Retake the page table lock to check for racing updates
5438 	 * before the page tables are altered
5439 	 */
5440 	spin_lock(ptl);
5441 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5442 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5443 		ClearHPageRestoreReserve(new_page);
5444 
5445 		/* Break COW or unshare */
5446 		huge_ptep_clear_flush(vma, haddr, ptep);
5447 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5448 		page_remove_rmap(old_page, vma, true);
5449 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5450 		set_huge_pte_at(mm, haddr, ptep,
5451 				make_huge_pte(vma, new_page, !unshare));
5452 		SetHPageMigratable(new_page);
5453 		/* Make the old page be freed below */
5454 		new_page = old_page;
5455 	}
5456 	spin_unlock(ptl);
5457 	mmu_notifier_invalidate_range_end(&range);
5458 out_release_all:
5459 	/*
5460 	 * No restore in case of successful pagetable update (Break COW or
5461 	 * unshare)
5462 	 */
5463 	if (new_page != old_page)
5464 		restore_reserve_on_error(h, vma, haddr, new_page);
5465 	put_page(new_page);
5466 out_release_old:
5467 	put_page(old_page);
5468 
5469 	spin_lock(ptl); /* Caller expects lock to be held */
5470 
5471 	delayacct_wpcopy_end();
5472 	return ret;
5473 }
5474 
5475 /*
5476  * Return whether there is a pagecache page to back given address within VMA.
5477  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5478  */
5479 static bool hugetlbfs_pagecache_present(struct hstate *h,
5480 			struct vm_area_struct *vma, unsigned long address)
5481 {
5482 	struct address_space *mapping;
5483 	pgoff_t idx;
5484 	struct page *page;
5485 
5486 	mapping = vma->vm_file->f_mapping;
5487 	idx = vma_hugecache_offset(h, vma, address);
5488 
5489 	page = find_get_page(mapping, idx);
5490 	if (page)
5491 		put_page(page);
5492 	return page != NULL;
5493 }
5494 
5495 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5496 			   pgoff_t idx)
5497 {
5498 	struct folio *folio = page_folio(page);
5499 	struct inode *inode = mapping->host;
5500 	struct hstate *h = hstate_inode(inode);
5501 	int err;
5502 
5503 	__folio_set_locked(folio);
5504 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5505 
5506 	if (unlikely(err)) {
5507 		__folio_clear_locked(folio);
5508 		return err;
5509 	}
5510 	ClearHPageRestoreReserve(page);
5511 
5512 	/*
5513 	 * mark folio dirty so that it will not be removed from cache/file
5514 	 * by non-hugetlbfs specific code paths.
5515 	 */
5516 	folio_mark_dirty(folio);
5517 
5518 	spin_lock(&inode->i_lock);
5519 	inode->i_blocks += blocks_per_huge_page(h);
5520 	spin_unlock(&inode->i_lock);
5521 	return 0;
5522 }
5523 
5524 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5525 						  struct address_space *mapping,
5526 						  pgoff_t idx,
5527 						  unsigned int flags,
5528 						  unsigned long haddr,
5529 						  unsigned long addr,
5530 						  unsigned long reason)
5531 {
5532 	u32 hash;
5533 	struct vm_fault vmf = {
5534 		.vma = vma,
5535 		.address = haddr,
5536 		.real_address = addr,
5537 		.flags = flags,
5538 
5539 		/*
5540 		 * Hard to debug if it ends up being
5541 		 * used by a callee that assumes
5542 		 * something about the other
5543 		 * uninitialized fields... same as in
5544 		 * memory.c
5545 		 */
5546 	};
5547 
5548 	/*
5549 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5550 	 * userfault. Also mmap_lock could be dropped due to handling
5551 	 * userfault, any vma operation should be careful from here.
5552 	 */
5553 	hugetlb_vma_unlock_read(vma);
5554 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5555 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5556 	return handle_userfault(&vmf, reason);
5557 }
5558 
5559 /*
5560  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5561  * false if pte changed or is changing.
5562  */
5563 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5564 			       pte_t *ptep, pte_t old_pte)
5565 {
5566 	spinlock_t *ptl;
5567 	bool same;
5568 
5569 	ptl = huge_pte_lock(h, mm, ptep);
5570 	same = pte_same(huge_ptep_get(ptep), old_pte);
5571 	spin_unlock(ptl);
5572 
5573 	return same;
5574 }
5575 
5576 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5577 			struct vm_area_struct *vma,
5578 			struct address_space *mapping, pgoff_t idx,
5579 			unsigned long address, pte_t *ptep,
5580 			pte_t old_pte, unsigned int flags)
5581 {
5582 	struct hstate *h = hstate_vma(vma);
5583 	vm_fault_t ret = VM_FAULT_SIGBUS;
5584 	int anon_rmap = 0;
5585 	unsigned long size;
5586 	struct page *page;
5587 	pte_t new_pte;
5588 	spinlock_t *ptl;
5589 	unsigned long haddr = address & huge_page_mask(h);
5590 	bool new_page, new_pagecache_page = false;
5591 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5592 
5593 	/*
5594 	 * Currently, we are forced to kill the process in the event the
5595 	 * original mapper has unmapped pages from the child due to a failed
5596 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5597 	 * be obvious.
5598 	 */
5599 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5600 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5601 			   current->pid);
5602 		goto out;
5603 	}
5604 
5605 	/*
5606 	 * Use page lock to guard against racing truncation
5607 	 * before we get page_table_lock.
5608 	 */
5609 	new_page = false;
5610 	page = find_lock_page(mapping, idx);
5611 	if (!page) {
5612 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5613 		if (idx >= size)
5614 			goto out;
5615 		/* Check for page in userfault range */
5616 		if (userfaultfd_missing(vma)) {
5617 			/*
5618 			 * Since hugetlb_no_page() was examining pte
5619 			 * without pgtable lock, we need to re-test under
5620 			 * lock because the pte may not be stable and could
5621 			 * have changed from under us.  Try to detect
5622 			 * either changed or during-changing ptes and retry
5623 			 * properly when needed.
5624 			 *
5625 			 * Note that userfaultfd is actually fine with
5626 			 * false positives (e.g. caused by pte changed),
5627 			 * but not wrong logical events (e.g. caused by
5628 			 * reading a pte during changing).  The latter can
5629 			 * confuse the userspace, so the strictness is very
5630 			 * much preferred.  E.g., MISSING event should
5631 			 * never happen on the page after UFFDIO_COPY has
5632 			 * correctly installed the page and returned.
5633 			 */
5634 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5635 				ret = 0;
5636 				goto out;
5637 			}
5638 
5639 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5640 							haddr, address,
5641 							VM_UFFD_MISSING);
5642 		}
5643 
5644 		page = alloc_huge_page(vma, haddr, 0);
5645 		if (IS_ERR(page)) {
5646 			/*
5647 			 * Returning error will result in faulting task being
5648 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5649 			 * tasks from racing to fault in the same page which
5650 			 * could result in false unable to allocate errors.
5651 			 * Page migration does not take the fault mutex, but
5652 			 * does a clear then write of pte's under page table
5653 			 * lock.  Page fault code could race with migration,
5654 			 * notice the clear pte and try to allocate a page
5655 			 * here.  Before returning error, get ptl and make
5656 			 * sure there really is no pte entry.
5657 			 */
5658 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5659 				ret = vmf_error(PTR_ERR(page));
5660 			else
5661 				ret = 0;
5662 			goto out;
5663 		}
5664 		clear_huge_page(page, address, pages_per_huge_page(h));
5665 		__SetPageUptodate(page);
5666 		new_page = true;
5667 
5668 		if (vma->vm_flags & VM_MAYSHARE) {
5669 			int err = hugetlb_add_to_page_cache(page, mapping, idx);
5670 			if (err) {
5671 				/*
5672 				 * err can't be -EEXIST which implies someone
5673 				 * else consumed the reservation since hugetlb
5674 				 * fault mutex is held when add a hugetlb page
5675 				 * to the page cache. So it's safe to call
5676 				 * restore_reserve_on_error() here.
5677 				 */
5678 				restore_reserve_on_error(h, vma, haddr, page);
5679 				put_page(page);
5680 				goto out;
5681 			}
5682 			new_pagecache_page = true;
5683 		} else {
5684 			lock_page(page);
5685 			if (unlikely(anon_vma_prepare(vma))) {
5686 				ret = VM_FAULT_OOM;
5687 				goto backout_unlocked;
5688 			}
5689 			anon_rmap = 1;
5690 		}
5691 	} else {
5692 		/*
5693 		 * If memory error occurs between mmap() and fault, some process
5694 		 * don't have hwpoisoned swap entry for errored virtual address.
5695 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5696 		 */
5697 		if (unlikely(PageHWPoison(page))) {
5698 			ret = VM_FAULT_HWPOISON_LARGE |
5699 				VM_FAULT_SET_HINDEX(hstate_index(h));
5700 			goto backout_unlocked;
5701 		}
5702 
5703 		/* Check for page in userfault range. */
5704 		if (userfaultfd_minor(vma)) {
5705 			unlock_page(page);
5706 			put_page(page);
5707 			/* See comment in userfaultfd_missing() block above */
5708 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5709 				ret = 0;
5710 				goto out;
5711 			}
5712 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5713 							haddr, address,
5714 							VM_UFFD_MINOR);
5715 		}
5716 	}
5717 
5718 	/*
5719 	 * If we are going to COW a private mapping later, we examine the
5720 	 * pending reservations for this page now. This will ensure that
5721 	 * any allocations necessary to record that reservation occur outside
5722 	 * the spinlock.
5723 	 */
5724 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5725 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5726 			ret = VM_FAULT_OOM;
5727 			goto backout_unlocked;
5728 		}
5729 		/* Just decrements count, does not deallocate */
5730 		vma_end_reservation(h, vma, haddr);
5731 	}
5732 
5733 	ptl = huge_pte_lock(h, mm, ptep);
5734 	ret = 0;
5735 	/* If pte changed from under us, retry */
5736 	if (!pte_same(huge_ptep_get(ptep), old_pte))
5737 		goto backout;
5738 
5739 	if (anon_rmap) {
5740 		ClearHPageRestoreReserve(page);
5741 		hugepage_add_new_anon_rmap(page, vma, haddr);
5742 	} else
5743 		page_dup_file_rmap(page, true);
5744 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5745 				&& (vma->vm_flags & VM_SHARED)));
5746 	/*
5747 	 * If this pte was previously wr-protected, keep it wr-protected even
5748 	 * if populated.
5749 	 */
5750 	if (unlikely(pte_marker_uffd_wp(old_pte)))
5751 		new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5752 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5753 
5754 	hugetlb_count_add(pages_per_huge_page(h), mm);
5755 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5756 		/* Optimization, do the COW without a second fault */
5757 		ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5758 	}
5759 
5760 	spin_unlock(ptl);
5761 
5762 	/*
5763 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5764 	 * found in the pagecache may not have HPageMigratableset if they have
5765 	 * been isolated for migration.
5766 	 */
5767 	if (new_page)
5768 		SetHPageMigratable(page);
5769 
5770 	unlock_page(page);
5771 out:
5772 	hugetlb_vma_unlock_read(vma);
5773 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5774 	return ret;
5775 
5776 backout:
5777 	spin_unlock(ptl);
5778 backout_unlocked:
5779 	if (new_page && !new_pagecache_page)
5780 		restore_reserve_on_error(h, vma, haddr, page);
5781 
5782 	unlock_page(page);
5783 	put_page(page);
5784 	goto out;
5785 }
5786 
5787 #ifdef CONFIG_SMP
5788 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5789 {
5790 	unsigned long key[2];
5791 	u32 hash;
5792 
5793 	key[0] = (unsigned long) mapping;
5794 	key[1] = idx;
5795 
5796 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5797 
5798 	return hash & (num_fault_mutexes - 1);
5799 }
5800 #else
5801 /*
5802  * For uniprocessor systems we always use a single mutex, so just
5803  * return 0 and avoid the hashing overhead.
5804  */
5805 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5806 {
5807 	return 0;
5808 }
5809 #endif
5810 
5811 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5812 			unsigned long address, unsigned int flags)
5813 {
5814 	pte_t *ptep, entry;
5815 	spinlock_t *ptl;
5816 	vm_fault_t ret;
5817 	u32 hash;
5818 	pgoff_t idx;
5819 	struct page *page = NULL;
5820 	struct page *pagecache_page = NULL;
5821 	struct hstate *h = hstate_vma(vma);
5822 	struct address_space *mapping;
5823 	int need_wait_lock = 0;
5824 	unsigned long haddr = address & huge_page_mask(h);
5825 
5826 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5827 	if (ptep) {
5828 		/*
5829 		 * Since we hold no locks, ptep could be stale.  That is
5830 		 * OK as we are only making decisions based on content and
5831 		 * not actually modifying content here.
5832 		 */
5833 		entry = huge_ptep_get(ptep);
5834 		if (unlikely(is_hugetlb_entry_migration(entry))) {
5835 			migration_entry_wait_huge(vma, ptep);
5836 			return 0;
5837 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5838 			return VM_FAULT_HWPOISON_LARGE |
5839 				VM_FAULT_SET_HINDEX(hstate_index(h));
5840 	}
5841 
5842 	/*
5843 	 * Serialize hugepage allocation and instantiation, so that we don't
5844 	 * get spurious allocation failures if two CPUs race to instantiate
5845 	 * the same page in the page cache.
5846 	 */
5847 	mapping = vma->vm_file->f_mapping;
5848 	idx = vma_hugecache_offset(h, vma, haddr);
5849 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5850 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5851 
5852 	/*
5853 	 * Acquire vma lock before calling huge_pte_alloc and hold
5854 	 * until finished with ptep.  This prevents huge_pmd_unshare from
5855 	 * being called elsewhere and making the ptep no longer valid.
5856 	 *
5857 	 * ptep could have already be assigned via huge_pte_offset.  That
5858 	 * is OK, as huge_pte_alloc will return the same value unless
5859 	 * something has changed.
5860 	 */
5861 	hugetlb_vma_lock_read(vma);
5862 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5863 	if (!ptep) {
5864 		hugetlb_vma_unlock_read(vma);
5865 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5866 		return VM_FAULT_OOM;
5867 	}
5868 
5869 	entry = huge_ptep_get(ptep);
5870 	/* PTE markers should be handled the same way as none pte */
5871 	if (huge_pte_none_mostly(entry))
5872 		/*
5873 		 * hugetlb_no_page will drop vma lock and hugetlb fault
5874 		 * mutex internally, which make us return immediately.
5875 		 */
5876 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5877 				      entry, flags);
5878 
5879 	ret = 0;
5880 
5881 	/*
5882 	 * entry could be a migration/hwpoison entry at this point, so this
5883 	 * check prevents the kernel from going below assuming that we have
5884 	 * an active hugepage in pagecache. This goto expects the 2nd page
5885 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5886 	 * properly handle it.
5887 	 */
5888 	if (!pte_present(entry))
5889 		goto out_mutex;
5890 
5891 	/*
5892 	 * If we are going to COW/unshare the mapping later, we examine the
5893 	 * pending reservations for this page now. This will ensure that any
5894 	 * allocations necessary to record that reservation occur outside the
5895 	 * spinlock. Also lookup the pagecache page now as it is used to
5896 	 * determine if a reservation has been consumed.
5897 	 */
5898 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5899 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5900 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5901 			ret = VM_FAULT_OOM;
5902 			goto out_mutex;
5903 		}
5904 		/* Just decrements count, does not deallocate */
5905 		vma_end_reservation(h, vma, haddr);
5906 
5907 		pagecache_page = find_lock_page(mapping, idx);
5908 	}
5909 
5910 	ptl = huge_pte_lock(h, mm, ptep);
5911 
5912 	/* Check for a racing update before calling hugetlb_wp() */
5913 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5914 		goto out_ptl;
5915 
5916 	/* Handle userfault-wp first, before trying to lock more pages */
5917 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5918 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5919 		struct vm_fault vmf = {
5920 			.vma = vma,
5921 			.address = haddr,
5922 			.real_address = address,
5923 			.flags = flags,
5924 		};
5925 
5926 		spin_unlock(ptl);
5927 		if (pagecache_page) {
5928 			unlock_page(pagecache_page);
5929 			put_page(pagecache_page);
5930 		}
5931 		hugetlb_vma_unlock_read(vma);
5932 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5933 		return handle_userfault(&vmf, VM_UFFD_WP);
5934 	}
5935 
5936 	/*
5937 	 * hugetlb_wp() requires page locks of pte_page(entry) and
5938 	 * pagecache_page, so here we need take the former one
5939 	 * when page != pagecache_page or !pagecache_page.
5940 	 */
5941 	page = pte_page(entry);
5942 	if (page != pagecache_page)
5943 		if (!trylock_page(page)) {
5944 			need_wait_lock = 1;
5945 			goto out_ptl;
5946 		}
5947 
5948 	get_page(page);
5949 
5950 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5951 		if (!huge_pte_write(entry)) {
5952 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
5953 					 pagecache_page, ptl);
5954 			goto out_put_page;
5955 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
5956 			entry = huge_pte_mkdirty(entry);
5957 		}
5958 	}
5959 	entry = pte_mkyoung(entry);
5960 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5961 						flags & FAULT_FLAG_WRITE))
5962 		update_mmu_cache(vma, haddr, ptep);
5963 out_put_page:
5964 	if (page != pagecache_page)
5965 		unlock_page(page);
5966 	put_page(page);
5967 out_ptl:
5968 	spin_unlock(ptl);
5969 
5970 	if (pagecache_page) {
5971 		unlock_page(pagecache_page);
5972 		put_page(pagecache_page);
5973 	}
5974 out_mutex:
5975 	hugetlb_vma_unlock_read(vma);
5976 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5977 	/*
5978 	 * Generally it's safe to hold refcount during waiting page lock. But
5979 	 * here we just wait to defer the next page fault to avoid busy loop and
5980 	 * the page is not used after unlocked before returning from the current
5981 	 * page fault. So we are safe from accessing freed page, even if we wait
5982 	 * here without taking refcount.
5983 	 */
5984 	if (need_wait_lock)
5985 		wait_on_page_locked(page);
5986 	return ret;
5987 }
5988 
5989 #ifdef CONFIG_USERFAULTFD
5990 /*
5991  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5992  * modifications for huge pages.
5993  */
5994 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5995 			    pte_t *dst_pte,
5996 			    struct vm_area_struct *dst_vma,
5997 			    unsigned long dst_addr,
5998 			    unsigned long src_addr,
5999 			    enum mcopy_atomic_mode mode,
6000 			    struct page **pagep,
6001 			    bool wp_copy)
6002 {
6003 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6004 	struct hstate *h = hstate_vma(dst_vma);
6005 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6006 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6007 	unsigned long size;
6008 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6009 	pte_t _dst_pte;
6010 	spinlock_t *ptl;
6011 	int ret = -ENOMEM;
6012 	struct page *page;
6013 	int writable;
6014 	bool page_in_pagecache = false;
6015 
6016 	if (is_continue) {
6017 		ret = -EFAULT;
6018 		page = find_lock_page(mapping, idx);
6019 		if (!page)
6020 			goto out;
6021 		page_in_pagecache = true;
6022 	} else if (!*pagep) {
6023 		/* If a page already exists, then it's UFFDIO_COPY for
6024 		 * a non-missing case. Return -EEXIST.
6025 		 */
6026 		if (vm_shared &&
6027 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6028 			ret = -EEXIST;
6029 			goto out;
6030 		}
6031 
6032 		page = alloc_huge_page(dst_vma, dst_addr, 0);
6033 		if (IS_ERR(page)) {
6034 			ret = -ENOMEM;
6035 			goto out;
6036 		}
6037 
6038 		ret = copy_huge_page_from_user(page,
6039 						(const void __user *) src_addr,
6040 						pages_per_huge_page(h), false);
6041 
6042 		/* fallback to copy_from_user outside mmap_lock */
6043 		if (unlikely(ret)) {
6044 			ret = -ENOENT;
6045 			/* Free the allocated page which may have
6046 			 * consumed a reservation.
6047 			 */
6048 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
6049 			put_page(page);
6050 
6051 			/* Allocate a temporary page to hold the copied
6052 			 * contents.
6053 			 */
6054 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6055 			if (!page) {
6056 				ret = -ENOMEM;
6057 				goto out;
6058 			}
6059 			*pagep = page;
6060 			/* Set the outparam pagep and return to the caller to
6061 			 * copy the contents outside the lock. Don't free the
6062 			 * page.
6063 			 */
6064 			goto out;
6065 		}
6066 	} else {
6067 		if (vm_shared &&
6068 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6069 			put_page(*pagep);
6070 			ret = -EEXIST;
6071 			*pagep = NULL;
6072 			goto out;
6073 		}
6074 
6075 		page = alloc_huge_page(dst_vma, dst_addr, 0);
6076 		if (IS_ERR(page)) {
6077 			put_page(*pagep);
6078 			ret = -ENOMEM;
6079 			*pagep = NULL;
6080 			goto out;
6081 		}
6082 		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6083 				    pages_per_huge_page(h));
6084 		put_page(*pagep);
6085 		*pagep = NULL;
6086 	}
6087 
6088 	/*
6089 	 * The memory barrier inside __SetPageUptodate makes sure that
6090 	 * preceding stores to the page contents become visible before
6091 	 * the set_pte_at() write.
6092 	 */
6093 	__SetPageUptodate(page);
6094 
6095 	/* Add shared, newly allocated pages to the page cache. */
6096 	if (vm_shared && !is_continue) {
6097 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6098 		ret = -EFAULT;
6099 		if (idx >= size)
6100 			goto out_release_nounlock;
6101 
6102 		/*
6103 		 * Serialization between remove_inode_hugepages() and
6104 		 * hugetlb_add_to_page_cache() below happens through the
6105 		 * hugetlb_fault_mutex_table that here must be hold by
6106 		 * the caller.
6107 		 */
6108 		ret = hugetlb_add_to_page_cache(page, mapping, idx);
6109 		if (ret)
6110 			goto out_release_nounlock;
6111 		page_in_pagecache = true;
6112 	}
6113 
6114 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6115 
6116 	ret = -EIO;
6117 	if (PageHWPoison(page))
6118 		goto out_release_unlock;
6119 
6120 	/*
6121 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6122 	 * registered, we firstly wr-protect a none pte which has no page cache
6123 	 * page backing it, then access the page.
6124 	 */
6125 	ret = -EEXIST;
6126 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6127 		goto out_release_unlock;
6128 
6129 	if (page_in_pagecache) {
6130 		page_dup_file_rmap(page, true);
6131 	} else {
6132 		ClearHPageRestoreReserve(page);
6133 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6134 	}
6135 
6136 	/*
6137 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6138 	 * with wp flag set, don't set pte write bit.
6139 	 */
6140 	if (wp_copy || (is_continue && !vm_shared))
6141 		writable = 0;
6142 	else
6143 		writable = dst_vma->vm_flags & VM_WRITE;
6144 
6145 	_dst_pte = make_huge_pte(dst_vma, page, writable);
6146 	/*
6147 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6148 	 * extremely important for hugetlbfs for now since swapping is not
6149 	 * supported, but we should still be clear in that this page cannot be
6150 	 * thrown away at will, even if write bit not set.
6151 	 */
6152 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6153 	_dst_pte = pte_mkyoung(_dst_pte);
6154 
6155 	if (wp_copy)
6156 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6157 
6158 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6159 
6160 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6161 
6162 	/* No need to invalidate - it was non-present before */
6163 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6164 
6165 	spin_unlock(ptl);
6166 	if (!is_continue)
6167 		SetHPageMigratable(page);
6168 	if (vm_shared || is_continue)
6169 		unlock_page(page);
6170 	ret = 0;
6171 out:
6172 	return ret;
6173 out_release_unlock:
6174 	spin_unlock(ptl);
6175 	if (vm_shared || is_continue)
6176 		unlock_page(page);
6177 out_release_nounlock:
6178 	if (!page_in_pagecache)
6179 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
6180 	put_page(page);
6181 	goto out;
6182 }
6183 #endif /* CONFIG_USERFAULTFD */
6184 
6185 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6186 				 int refs, struct page **pages,
6187 				 struct vm_area_struct **vmas)
6188 {
6189 	int nr;
6190 
6191 	for (nr = 0; nr < refs; nr++) {
6192 		if (likely(pages))
6193 			pages[nr] = nth_page(page, nr);
6194 		if (vmas)
6195 			vmas[nr] = vma;
6196 	}
6197 }
6198 
6199 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6200 					       bool *unshare)
6201 {
6202 	pte_t pteval = huge_ptep_get(pte);
6203 
6204 	*unshare = false;
6205 	if (is_swap_pte(pteval))
6206 		return true;
6207 	if (huge_pte_write(pteval))
6208 		return false;
6209 	if (flags & FOLL_WRITE)
6210 		return true;
6211 	if (gup_must_unshare(flags, pte_page(pteval))) {
6212 		*unshare = true;
6213 		return true;
6214 	}
6215 	return false;
6216 }
6217 
6218 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6219 			 struct page **pages, struct vm_area_struct **vmas,
6220 			 unsigned long *position, unsigned long *nr_pages,
6221 			 long i, unsigned int flags, int *locked)
6222 {
6223 	unsigned long pfn_offset;
6224 	unsigned long vaddr = *position;
6225 	unsigned long remainder = *nr_pages;
6226 	struct hstate *h = hstate_vma(vma);
6227 	int err = -EFAULT, refs;
6228 
6229 	while (vaddr < vma->vm_end && remainder) {
6230 		pte_t *pte;
6231 		spinlock_t *ptl = NULL;
6232 		bool unshare = false;
6233 		int absent;
6234 		struct page *page;
6235 
6236 		/*
6237 		 * If we have a pending SIGKILL, don't keep faulting pages and
6238 		 * potentially allocating memory.
6239 		 */
6240 		if (fatal_signal_pending(current)) {
6241 			remainder = 0;
6242 			break;
6243 		}
6244 
6245 		/*
6246 		 * Some archs (sparc64, sh*) have multiple pte_ts to
6247 		 * each hugepage.  We have to make sure we get the
6248 		 * first, for the page indexing below to work.
6249 		 *
6250 		 * Note that page table lock is not held when pte is null.
6251 		 */
6252 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6253 				      huge_page_size(h));
6254 		if (pte)
6255 			ptl = huge_pte_lock(h, mm, pte);
6256 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
6257 
6258 		/*
6259 		 * When coredumping, it suits get_dump_page if we just return
6260 		 * an error where there's an empty slot with no huge pagecache
6261 		 * to back it.  This way, we avoid allocating a hugepage, and
6262 		 * the sparse dumpfile avoids allocating disk blocks, but its
6263 		 * huge holes still show up with zeroes where they need to be.
6264 		 */
6265 		if (absent && (flags & FOLL_DUMP) &&
6266 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6267 			if (pte)
6268 				spin_unlock(ptl);
6269 			remainder = 0;
6270 			break;
6271 		}
6272 
6273 		/*
6274 		 * We need call hugetlb_fault for both hugepages under migration
6275 		 * (in which case hugetlb_fault waits for the migration,) and
6276 		 * hwpoisoned hugepages (in which case we need to prevent the
6277 		 * caller from accessing to them.) In order to do this, we use
6278 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6279 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6280 		 * both cases, and because we can't follow correct pages
6281 		 * directly from any kind of swap entries.
6282 		 */
6283 		if (absent ||
6284 		    __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6285 			vm_fault_t ret;
6286 			unsigned int fault_flags = 0;
6287 
6288 			if (pte)
6289 				spin_unlock(ptl);
6290 			if (flags & FOLL_WRITE)
6291 				fault_flags |= FAULT_FLAG_WRITE;
6292 			else if (unshare)
6293 				fault_flags |= FAULT_FLAG_UNSHARE;
6294 			if (locked)
6295 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6296 					FAULT_FLAG_KILLABLE;
6297 			if (flags & FOLL_NOWAIT)
6298 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6299 					FAULT_FLAG_RETRY_NOWAIT;
6300 			if (flags & FOLL_TRIED) {
6301 				/*
6302 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6303 				 * FAULT_FLAG_TRIED can co-exist
6304 				 */
6305 				fault_flags |= FAULT_FLAG_TRIED;
6306 			}
6307 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6308 			if (ret & VM_FAULT_ERROR) {
6309 				err = vm_fault_to_errno(ret, flags);
6310 				remainder = 0;
6311 				break;
6312 			}
6313 			if (ret & VM_FAULT_RETRY) {
6314 				if (locked &&
6315 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6316 					*locked = 0;
6317 				*nr_pages = 0;
6318 				/*
6319 				 * VM_FAULT_RETRY must not return an
6320 				 * error, it will return zero
6321 				 * instead.
6322 				 *
6323 				 * No need to update "position" as the
6324 				 * caller will not check it after
6325 				 * *nr_pages is set to 0.
6326 				 */
6327 				return i;
6328 			}
6329 			continue;
6330 		}
6331 
6332 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6333 		page = pte_page(huge_ptep_get(pte));
6334 
6335 		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6336 			       !PageAnonExclusive(page), page);
6337 
6338 		/*
6339 		 * If subpage information not requested, update counters
6340 		 * and skip the same_page loop below.
6341 		 */
6342 		if (!pages && !vmas && !pfn_offset &&
6343 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6344 		    (remainder >= pages_per_huge_page(h))) {
6345 			vaddr += huge_page_size(h);
6346 			remainder -= pages_per_huge_page(h);
6347 			i += pages_per_huge_page(h);
6348 			spin_unlock(ptl);
6349 			continue;
6350 		}
6351 
6352 		/* vaddr may not be aligned to PAGE_SIZE */
6353 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6354 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6355 
6356 		if (pages || vmas)
6357 			record_subpages_vmas(nth_page(page, pfn_offset),
6358 					     vma, refs,
6359 					     likely(pages) ? pages + i : NULL,
6360 					     vmas ? vmas + i : NULL);
6361 
6362 		if (pages) {
6363 			/*
6364 			 * try_grab_folio() should always succeed here,
6365 			 * because: a) we hold the ptl lock, and b) we've just
6366 			 * checked that the huge page is present in the page
6367 			 * tables. If the huge page is present, then the tail
6368 			 * pages must also be present. The ptl prevents the
6369 			 * head page and tail pages from being rearranged in
6370 			 * any way. So this page must be available at this
6371 			 * point, unless the page refcount overflowed:
6372 			 */
6373 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6374 							 flags))) {
6375 				spin_unlock(ptl);
6376 				remainder = 0;
6377 				err = -ENOMEM;
6378 				break;
6379 			}
6380 		}
6381 
6382 		vaddr += (refs << PAGE_SHIFT);
6383 		remainder -= refs;
6384 		i += refs;
6385 
6386 		spin_unlock(ptl);
6387 	}
6388 	*nr_pages = remainder;
6389 	/*
6390 	 * setting position is actually required only if remainder is
6391 	 * not zero but it's faster not to add a "if (remainder)"
6392 	 * branch.
6393 	 */
6394 	*position = vaddr;
6395 
6396 	return i ? i : err;
6397 }
6398 
6399 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6400 		unsigned long address, unsigned long end,
6401 		pgprot_t newprot, unsigned long cp_flags)
6402 {
6403 	struct mm_struct *mm = vma->vm_mm;
6404 	unsigned long start = address;
6405 	pte_t *ptep;
6406 	pte_t pte;
6407 	struct hstate *h = hstate_vma(vma);
6408 	unsigned long pages = 0, psize = huge_page_size(h);
6409 	bool shared_pmd = false;
6410 	struct mmu_notifier_range range;
6411 	unsigned long last_addr_mask;
6412 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6413 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6414 
6415 	/*
6416 	 * In the case of shared PMDs, the area to flush could be beyond
6417 	 * start/end.  Set range.start/range.end to cover the maximum possible
6418 	 * range if PMD sharing is possible.
6419 	 */
6420 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6421 				0, vma, mm, start, end);
6422 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6423 
6424 	BUG_ON(address >= end);
6425 	flush_cache_range(vma, range.start, range.end);
6426 
6427 	mmu_notifier_invalidate_range_start(&range);
6428 	hugetlb_vma_lock_write(vma);
6429 	i_mmap_lock_write(vma->vm_file->f_mapping);
6430 	last_addr_mask = hugetlb_mask_last_page(h);
6431 	for (; address < end; address += psize) {
6432 		spinlock_t *ptl;
6433 		ptep = huge_pte_offset(mm, address, psize);
6434 		if (!ptep) {
6435 			address |= last_addr_mask;
6436 			continue;
6437 		}
6438 		ptl = huge_pte_lock(h, mm, ptep);
6439 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6440 			/*
6441 			 * When uffd-wp is enabled on the vma, unshare
6442 			 * shouldn't happen at all.  Warn about it if it
6443 			 * happened due to some reason.
6444 			 */
6445 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6446 			pages++;
6447 			spin_unlock(ptl);
6448 			shared_pmd = true;
6449 			address |= last_addr_mask;
6450 			continue;
6451 		}
6452 		pte = huge_ptep_get(ptep);
6453 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6454 			spin_unlock(ptl);
6455 			continue;
6456 		}
6457 		if (unlikely(is_hugetlb_entry_migration(pte))) {
6458 			swp_entry_t entry = pte_to_swp_entry(pte);
6459 			struct page *page = pfn_swap_entry_to_page(entry);
6460 
6461 			if (!is_readable_migration_entry(entry)) {
6462 				pte_t newpte;
6463 
6464 				if (PageAnon(page))
6465 					entry = make_readable_exclusive_migration_entry(
6466 								swp_offset(entry));
6467 				else
6468 					entry = make_readable_migration_entry(
6469 								swp_offset(entry));
6470 				newpte = swp_entry_to_pte(entry);
6471 				if (uffd_wp)
6472 					newpte = pte_swp_mkuffd_wp(newpte);
6473 				else if (uffd_wp_resolve)
6474 					newpte = pte_swp_clear_uffd_wp(newpte);
6475 				set_huge_pte_at(mm, address, ptep, newpte);
6476 				pages++;
6477 			}
6478 			spin_unlock(ptl);
6479 			continue;
6480 		}
6481 		if (unlikely(pte_marker_uffd_wp(pte))) {
6482 			/*
6483 			 * This is changing a non-present pte into a none pte,
6484 			 * no need for huge_ptep_modify_prot_start/commit().
6485 			 */
6486 			if (uffd_wp_resolve)
6487 				huge_pte_clear(mm, address, ptep, psize);
6488 		}
6489 		if (!huge_pte_none(pte)) {
6490 			pte_t old_pte;
6491 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6492 
6493 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6494 			pte = huge_pte_modify(old_pte, newprot);
6495 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6496 			if (uffd_wp)
6497 				pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6498 			else if (uffd_wp_resolve)
6499 				pte = huge_pte_clear_uffd_wp(pte);
6500 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6501 			pages++;
6502 		} else {
6503 			/* None pte */
6504 			if (unlikely(uffd_wp))
6505 				/* Safe to modify directly (none->non-present). */
6506 				set_huge_pte_at(mm, address, ptep,
6507 						make_pte_marker(PTE_MARKER_UFFD_WP));
6508 		}
6509 		spin_unlock(ptl);
6510 	}
6511 	/*
6512 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6513 	 * may have cleared our pud entry and done put_page on the page table:
6514 	 * once we release i_mmap_rwsem, another task can do the final put_page
6515 	 * and that page table be reused and filled with junk.  If we actually
6516 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6517 	 */
6518 	if (shared_pmd)
6519 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6520 	else
6521 		flush_hugetlb_tlb_range(vma, start, end);
6522 	/*
6523 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6524 	 * page table protection not changing it to point to a new page.
6525 	 *
6526 	 * See Documentation/mm/mmu_notifier.rst
6527 	 */
6528 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6529 	hugetlb_vma_unlock_write(vma);
6530 	mmu_notifier_invalidate_range_end(&range);
6531 
6532 	return pages << h->order;
6533 }
6534 
6535 /* Return true if reservation was successful, false otherwise.  */
6536 bool hugetlb_reserve_pages(struct inode *inode,
6537 					long from, long to,
6538 					struct vm_area_struct *vma,
6539 					vm_flags_t vm_flags)
6540 {
6541 	long chg, add = -1;
6542 	struct hstate *h = hstate_inode(inode);
6543 	struct hugepage_subpool *spool = subpool_inode(inode);
6544 	struct resv_map *resv_map;
6545 	struct hugetlb_cgroup *h_cg = NULL;
6546 	long gbl_reserve, regions_needed = 0;
6547 
6548 	/* This should never happen */
6549 	if (from > to) {
6550 		VM_WARN(1, "%s called with a negative range\n", __func__);
6551 		return false;
6552 	}
6553 
6554 	/*
6555 	 * vma specific semaphore used for pmd sharing synchronization
6556 	 */
6557 	hugetlb_vma_lock_alloc(vma);
6558 
6559 	/*
6560 	 * Only apply hugepage reservation if asked. At fault time, an
6561 	 * attempt will be made for VM_NORESERVE to allocate a page
6562 	 * without using reserves
6563 	 */
6564 	if (vm_flags & VM_NORESERVE)
6565 		return true;
6566 
6567 	/*
6568 	 * Shared mappings base their reservation on the number of pages that
6569 	 * are already allocated on behalf of the file. Private mappings need
6570 	 * to reserve the full area even if read-only as mprotect() may be
6571 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6572 	 */
6573 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6574 		/*
6575 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6576 		 * called for inodes for which resv_maps were created (see
6577 		 * hugetlbfs_get_inode).
6578 		 */
6579 		resv_map = inode_resv_map(inode);
6580 
6581 		chg = region_chg(resv_map, from, to, &regions_needed);
6582 	} else {
6583 		/* Private mapping. */
6584 		resv_map = resv_map_alloc();
6585 		if (!resv_map)
6586 			goto out_err;
6587 
6588 		chg = to - from;
6589 
6590 		set_vma_resv_map(vma, resv_map);
6591 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6592 	}
6593 
6594 	if (chg < 0)
6595 		goto out_err;
6596 
6597 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6598 				chg * pages_per_huge_page(h), &h_cg) < 0)
6599 		goto out_err;
6600 
6601 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6602 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6603 		 * of the resv_map.
6604 		 */
6605 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6606 	}
6607 
6608 	/*
6609 	 * There must be enough pages in the subpool for the mapping. If
6610 	 * the subpool has a minimum size, there may be some global
6611 	 * reservations already in place (gbl_reserve).
6612 	 */
6613 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6614 	if (gbl_reserve < 0)
6615 		goto out_uncharge_cgroup;
6616 
6617 	/*
6618 	 * Check enough hugepages are available for the reservation.
6619 	 * Hand the pages back to the subpool if there are not
6620 	 */
6621 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6622 		goto out_put_pages;
6623 
6624 	/*
6625 	 * Account for the reservations made. Shared mappings record regions
6626 	 * that have reservations as they are shared by multiple VMAs.
6627 	 * When the last VMA disappears, the region map says how much
6628 	 * the reservation was and the page cache tells how much of
6629 	 * the reservation was consumed. Private mappings are per-VMA and
6630 	 * only the consumed reservations are tracked. When the VMA
6631 	 * disappears, the original reservation is the VMA size and the
6632 	 * consumed reservations are stored in the map. Hence, nothing
6633 	 * else has to be done for private mappings here
6634 	 */
6635 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6636 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6637 
6638 		if (unlikely(add < 0)) {
6639 			hugetlb_acct_memory(h, -gbl_reserve);
6640 			goto out_put_pages;
6641 		} else if (unlikely(chg > add)) {
6642 			/*
6643 			 * pages in this range were added to the reserve
6644 			 * map between region_chg and region_add.  This
6645 			 * indicates a race with alloc_huge_page.  Adjust
6646 			 * the subpool and reserve counts modified above
6647 			 * based on the difference.
6648 			 */
6649 			long rsv_adjust;
6650 
6651 			/*
6652 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6653 			 * reference to h_cg->css. See comment below for detail.
6654 			 */
6655 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6656 				hstate_index(h),
6657 				(chg - add) * pages_per_huge_page(h), h_cg);
6658 
6659 			rsv_adjust = hugepage_subpool_put_pages(spool,
6660 								chg - add);
6661 			hugetlb_acct_memory(h, -rsv_adjust);
6662 		} else if (h_cg) {
6663 			/*
6664 			 * The file_regions will hold their own reference to
6665 			 * h_cg->css. So we should release the reference held
6666 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6667 			 * done.
6668 			 */
6669 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6670 		}
6671 	}
6672 	return true;
6673 
6674 out_put_pages:
6675 	/* put back original number of pages, chg */
6676 	(void)hugepage_subpool_put_pages(spool, chg);
6677 out_uncharge_cgroup:
6678 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6679 					    chg * pages_per_huge_page(h), h_cg);
6680 out_err:
6681 	hugetlb_vma_lock_free(vma);
6682 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6683 		/* Only call region_abort if the region_chg succeeded but the
6684 		 * region_add failed or didn't run.
6685 		 */
6686 		if (chg >= 0 && add < 0)
6687 			region_abort(resv_map, from, to, regions_needed);
6688 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6689 		kref_put(&resv_map->refs, resv_map_release);
6690 	return false;
6691 }
6692 
6693 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6694 								long freed)
6695 {
6696 	struct hstate *h = hstate_inode(inode);
6697 	struct resv_map *resv_map = inode_resv_map(inode);
6698 	long chg = 0;
6699 	struct hugepage_subpool *spool = subpool_inode(inode);
6700 	long gbl_reserve;
6701 
6702 	/*
6703 	 * Since this routine can be called in the evict inode path for all
6704 	 * hugetlbfs inodes, resv_map could be NULL.
6705 	 */
6706 	if (resv_map) {
6707 		chg = region_del(resv_map, start, end);
6708 		/*
6709 		 * region_del() can fail in the rare case where a region
6710 		 * must be split and another region descriptor can not be
6711 		 * allocated.  If end == LONG_MAX, it will not fail.
6712 		 */
6713 		if (chg < 0)
6714 			return chg;
6715 	}
6716 
6717 	spin_lock(&inode->i_lock);
6718 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6719 	spin_unlock(&inode->i_lock);
6720 
6721 	/*
6722 	 * If the subpool has a minimum size, the number of global
6723 	 * reservations to be released may be adjusted.
6724 	 *
6725 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6726 	 * won't go negative.
6727 	 */
6728 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6729 	hugetlb_acct_memory(h, -gbl_reserve);
6730 
6731 	return 0;
6732 }
6733 
6734 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6735 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6736 				struct vm_area_struct *vma,
6737 				unsigned long addr, pgoff_t idx)
6738 {
6739 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6740 				svma->vm_start;
6741 	unsigned long sbase = saddr & PUD_MASK;
6742 	unsigned long s_end = sbase + PUD_SIZE;
6743 
6744 	/* Allow segments to share if only one is marked locked */
6745 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6746 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6747 
6748 	/*
6749 	 * match the virtual addresses, permission and the alignment of the
6750 	 * page table page.
6751 	 *
6752 	 * Also, vma_lock (vm_private_data) is required for sharing.
6753 	 */
6754 	if (pmd_index(addr) != pmd_index(saddr) ||
6755 	    vm_flags != svm_flags ||
6756 	    !range_in_vma(svma, sbase, s_end) ||
6757 	    !svma->vm_private_data)
6758 		return 0;
6759 
6760 	return saddr;
6761 }
6762 
6763 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6764 {
6765 	unsigned long start = addr & PUD_MASK;
6766 	unsigned long end = start + PUD_SIZE;
6767 
6768 #ifdef CONFIG_USERFAULTFD
6769 	if (uffd_disable_huge_pmd_share(vma))
6770 		return false;
6771 #endif
6772 	/*
6773 	 * check on proper vm_flags and page table alignment
6774 	 */
6775 	if (!(vma->vm_flags & VM_MAYSHARE))
6776 		return false;
6777 	if (!vma->vm_private_data)	/* vma lock required for sharing */
6778 		return false;
6779 	if (!range_in_vma(vma, start, end))
6780 		return false;
6781 	return true;
6782 }
6783 
6784 /*
6785  * Determine if start,end range within vma could be mapped by shared pmd.
6786  * If yes, adjust start and end to cover range associated with possible
6787  * shared pmd mappings.
6788  */
6789 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6790 				unsigned long *start, unsigned long *end)
6791 {
6792 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6793 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6794 
6795 	/*
6796 	 * vma needs to span at least one aligned PUD size, and the range
6797 	 * must be at least partially within in.
6798 	 */
6799 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6800 		(*end <= v_start) || (*start >= v_end))
6801 		return;
6802 
6803 	/* Extend the range to be PUD aligned for a worst case scenario */
6804 	if (*start > v_start)
6805 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6806 
6807 	if (*end < v_end)
6808 		*end = ALIGN(*end, PUD_SIZE);
6809 }
6810 
6811 static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma)
6812 {
6813 	return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
6814 		vma->vm_private_data;
6815 }
6816 
6817 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
6818 {
6819 	if (__vma_shareable_flags_pmd(vma)) {
6820 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6821 
6822 		down_read(&vma_lock->rw_sema);
6823 	}
6824 }
6825 
6826 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
6827 {
6828 	if (__vma_shareable_flags_pmd(vma)) {
6829 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6830 
6831 		up_read(&vma_lock->rw_sema);
6832 	}
6833 }
6834 
6835 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
6836 {
6837 	if (__vma_shareable_flags_pmd(vma)) {
6838 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6839 
6840 		down_write(&vma_lock->rw_sema);
6841 	}
6842 }
6843 
6844 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
6845 {
6846 	if (__vma_shareable_flags_pmd(vma)) {
6847 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6848 
6849 		up_write(&vma_lock->rw_sema);
6850 	}
6851 }
6852 
6853 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
6854 {
6855 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6856 
6857 	if (!__vma_shareable_flags_pmd(vma))
6858 		return 1;
6859 
6860 	return down_write_trylock(&vma_lock->rw_sema);
6861 }
6862 
6863 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
6864 {
6865 	if (__vma_shareable_flags_pmd(vma)) {
6866 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6867 
6868 		lockdep_assert_held(&vma_lock->rw_sema);
6869 	}
6870 }
6871 
6872 void hugetlb_vma_lock_release(struct kref *kref)
6873 {
6874 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
6875 			struct hugetlb_vma_lock, refs);
6876 
6877 	kfree(vma_lock);
6878 }
6879 
6880 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
6881 {
6882 	struct vm_area_struct *vma = vma_lock->vma;
6883 
6884 	/*
6885 	 * vma_lock structure may or not be released as a result of put,
6886 	 * it certainly will no longer be attached to vma so clear pointer.
6887 	 * Semaphore synchronizes access to vma_lock->vma field.
6888 	 */
6889 	vma_lock->vma = NULL;
6890 	vma->vm_private_data = NULL;
6891 	up_write(&vma_lock->rw_sema);
6892 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
6893 }
6894 
6895 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
6896 {
6897 	if (__vma_shareable_flags_pmd(vma)) {
6898 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6899 
6900 		__hugetlb_vma_unlock_write_put(vma_lock);
6901 	}
6902 }
6903 
6904 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
6905 {
6906 	/*
6907 	 * Only present in sharable vmas.
6908 	 */
6909 	if (!vma || !__vma_shareable_flags_pmd(vma))
6910 		return;
6911 
6912 	if (vma->vm_private_data) {
6913 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6914 
6915 		down_write(&vma_lock->rw_sema);
6916 		__hugetlb_vma_unlock_write_put(vma_lock);
6917 	}
6918 }
6919 
6920 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
6921 {
6922 	struct hugetlb_vma_lock *vma_lock;
6923 
6924 	/* Only establish in (flags) sharable vmas */
6925 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
6926 		return;
6927 
6928 	/* Should never get here with non-NULL vm_private_data */
6929 	if (vma->vm_private_data)
6930 		return;
6931 
6932 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
6933 	if (!vma_lock) {
6934 		/*
6935 		 * If we can not allocate structure, then vma can not
6936 		 * participate in pmd sharing.  This is only a possible
6937 		 * performance enhancement and memory saving issue.
6938 		 * However, the lock is also used to synchronize page
6939 		 * faults with truncation.  If the lock is not present,
6940 		 * unlikely races could leave pages in a file past i_size
6941 		 * until the file is removed.  Warn in the unlikely case of
6942 		 * allocation failure.
6943 		 */
6944 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
6945 		return;
6946 	}
6947 
6948 	kref_init(&vma_lock->refs);
6949 	init_rwsem(&vma_lock->rw_sema);
6950 	vma_lock->vma = vma;
6951 	vma->vm_private_data = vma_lock;
6952 }
6953 
6954 /*
6955  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6956  * and returns the corresponding pte. While this is not necessary for the
6957  * !shared pmd case because we can allocate the pmd later as well, it makes the
6958  * code much cleaner. pmd allocation is essential for the shared case because
6959  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6960  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6961  * bad pmd for sharing.
6962  */
6963 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6964 		      unsigned long addr, pud_t *pud)
6965 {
6966 	struct address_space *mapping = vma->vm_file->f_mapping;
6967 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6968 			vma->vm_pgoff;
6969 	struct vm_area_struct *svma;
6970 	unsigned long saddr;
6971 	pte_t *spte = NULL;
6972 	pte_t *pte;
6973 	spinlock_t *ptl;
6974 
6975 	i_mmap_lock_read(mapping);
6976 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6977 		if (svma == vma)
6978 			continue;
6979 
6980 		saddr = page_table_shareable(svma, vma, addr, idx);
6981 		if (saddr) {
6982 			spte = huge_pte_offset(svma->vm_mm, saddr,
6983 					       vma_mmu_pagesize(svma));
6984 			if (spte) {
6985 				get_page(virt_to_page(spte));
6986 				break;
6987 			}
6988 		}
6989 	}
6990 
6991 	if (!spte)
6992 		goto out;
6993 
6994 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6995 	if (pud_none(*pud)) {
6996 		pud_populate(mm, pud,
6997 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6998 		mm_inc_nr_pmds(mm);
6999 	} else {
7000 		put_page(virt_to_page(spte));
7001 	}
7002 	spin_unlock(ptl);
7003 out:
7004 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7005 	i_mmap_unlock_read(mapping);
7006 	return pte;
7007 }
7008 
7009 /*
7010  * unmap huge page backed by shared pte.
7011  *
7012  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7013  * indicated by page_count > 1, unmap is achieved by clearing pud and
7014  * decrementing the ref count. If count == 1, the pte page is not shared.
7015  *
7016  * Called with page table lock held.
7017  *
7018  * returns: 1 successfully unmapped a shared pte page
7019  *	    0 the underlying pte page is not shared, or it is the last user
7020  */
7021 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7022 					unsigned long addr, pte_t *ptep)
7023 {
7024 	pgd_t *pgd = pgd_offset(mm, addr);
7025 	p4d_t *p4d = p4d_offset(pgd, addr);
7026 	pud_t *pud = pud_offset(p4d, addr);
7027 
7028 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7029 	hugetlb_vma_assert_locked(vma);
7030 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7031 	if (page_count(virt_to_page(ptep)) == 1)
7032 		return 0;
7033 
7034 	pud_clear(pud);
7035 	put_page(virt_to_page(ptep));
7036 	mm_dec_nr_pmds(mm);
7037 	return 1;
7038 }
7039 
7040 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7041 
7042 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
7043 {
7044 }
7045 
7046 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
7047 {
7048 }
7049 
7050 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
7051 {
7052 }
7053 
7054 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
7055 {
7056 }
7057 
7058 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
7059 {
7060 	return 1;
7061 }
7062 
7063 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
7064 {
7065 }
7066 
7067 void hugetlb_vma_lock_release(struct kref *kref)
7068 {
7069 }
7070 
7071 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
7072 {
7073 }
7074 
7075 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
7076 {
7077 }
7078 
7079 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
7080 {
7081 }
7082 
7083 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7084 		      unsigned long addr, pud_t *pud)
7085 {
7086 	return NULL;
7087 }
7088 
7089 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7090 				unsigned long addr, pte_t *ptep)
7091 {
7092 	return 0;
7093 }
7094 
7095 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7096 				unsigned long *start, unsigned long *end)
7097 {
7098 }
7099 
7100 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7101 {
7102 	return false;
7103 }
7104 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7105 
7106 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7107 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7108 			unsigned long addr, unsigned long sz)
7109 {
7110 	pgd_t *pgd;
7111 	p4d_t *p4d;
7112 	pud_t *pud;
7113 	pte_t *pte = NULL;
7114 
7115 	pgd = pgd_offset(mm, addr);
7116 	p4d = p4d_alloc(mm, pgd, addr);
7117 	if (!p4d)
7118 		return NULL;
7119 	pud = pud_alloc(mm, p4d, addr);
7120 	if (pud) {
7121 		if (sz == PUD_SIZE) {
7122 			pte = (pte_t *)pud;
7123 		} else {
7124 			BUG_ON(sz != PMD_SIZE);
7125 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7126 				pte = huge_pmd_share(mm, vma, addr, pud);
7127 			else
7128 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7129 		}
7130 	}
7131 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7132 
7133 	return pte;
7134 }
7135 
7136 /*
7137  * huge_pte_offset() - Walk the page table to resolve the hugepage
7138  * entry at address @addr
7139  *
7140  * Return: Pointer to page table entry (PUD or PMD) for
7141  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7142  * size @sz doesn't match the hugepage size at this level of the page
7143  * table.
7144  */
7145 pte_t *huge_pte_offset(struct mm_struct *mm,
7146 		       unsigned long addr, unsigned long sz)
7147 {
7148 	pgd_t *pgd;
7149 	p4d_t *p4d;
7150 	pud_t *pud;
7151 	pmd_t *pmd;
7152 
7153 	pgd = pgd_offset(mm, addr);
7154 	if (!pgd_present(*pgd))
7155 		return NULL;
7156 	p4d = p4d_offset(pgd, addr);
7157 	if (!p4d_present(*p4d))
7158 		return NULL;
7159 
7160 	pud = pud_offset(p4d, addr);
7161 	if (sz == PUD_SIZE)
7162 		/* must be pud huge, non-present or none */
7163 		return (pte_t *)pud;
7164 	if (!pud_present(*pud))
7165 		return NULL;
7166 	/* must have a valid entry and size to go further */
7167 
7168 	pmd = pmd_offset(pud, addr);
7169 	/* must be pmd huge, non-present or none */
7170 	return (pte_t *)pmd;
7171 }
7172 
7173 /*
7174  * Return a mask that can be used to update an address to the last huge
7175  * page in a page table page mapping size.  Used to skip non-present
7176  * page table entries when linearly scanning address ranges.  Architectures
7177  * with unique huge page to page table relationships can define their own
7178  * version of this routine.
7179  */
7180 unsigned long hugetlb_mask_last_page(struct hstate *h)
7181 {
7182 	unsigned long hp_size = huge_page_size(h);
7183 
7184 	if (hp_size == PUD_SIZE)
7185 		return P4D_SIZE - PUD_SIZE;
7186 	else if (hp_size == PMD_SIZE)
7187 		return PUD_SIZE - PMD_SIZE;
7188 	else
7189 		return 0UL;
7190 }
7191 
7192 #else
7193 
7194 /* See description above.  Architectures can provide their own version. */
7195 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7196 {
7197 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7198 	if (huge_page_size(h) == PMD_SIZE)
7199 		return PUD_SIZE - PMD_SIZE;
7200 #endif
7201 	return 0UL;
7202 }
7203 
7204 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7205 
7206 /*
7207  * These functions are overwritable if your architecture needs its own
7208  * behavior.
7209  */
7210 struct page * __weak
7211 follow_huge_addr(struct mm_struct *mm, unsigned long address,
7212 			      int write)
7213 {
7214 	return ERR_PTR(-EINVAL);
7215 }
7216 
7217 struct page * __weak
7218 follow_huge_pd(struct vm_area_struct *vma,
7219 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
7220 {
7221 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
7222 	return NULL;
7223 }
7224 
7225 struct page * __weak
7226 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
7227 {
7228 	struct hstate *h = hstate_vma(vma);
7229 	struct mm_struct *mm = vma->vm_mm;
7230 	struct page *page = NULL;
7231 	spinlock_t *ptl;
7232 	pte_t *ptep, pte;
7233 
7234 	/*
7235 	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
7236 	 * follow_hugetlb_page().
7237 	 */
7238 	if (WARN_ON_ONCE(flags & FOLL_PIN))
7239 		return NULL;
7240 
7241 retry:
7242 	ptep = huge_pte_offset(mm, address, huge_page_size(h));
7243 	if (!ptep)
7244 		return NULL;
7245 
7246 	ptl = huge_pte_lock(h, mm, ptep);
7247 	pte = huge_ptep_get(ptep);
7248 	if (pte_present(pte)) {
7249 		page = pte_page(pte) +
7250 			((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
7251 		/*
7252 		 * try_grab_page() should always succeed here, because: a) we
7253 		 * hold the pmd (ptl) lock, and b) we've just checked that the
7254 		 * huge pmd (head) page is present in the page tables. The ptl
7255 		 * prevents the head page and tail pages from being rearranged
7256 		 * in any way. So this page must be available at this point,
7257 		 * unless the page refcount overflowed:
7258 		 */
7259 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7260 			page = NULL;
7261 			goto out;
7262 		}
7263 	} else {
7264 		if (is_hugetlb_entry_migration(pte)) {
7265 			spin_unlock(ptl);
7266 			__migration_entry_wait_huge(ptep, ptl);
7267 			goto retry;
7268 		}
7269 		/*
7270 		 * hwpoisoned entry is treated as no_page_table in
7271 		 * follow_page_mask().
7272 		 */
7273 	}
7274 out:
7275 	spin_unlock(ptl);
7276 	return page;
7277 }
7278 
7279 struct page * __weak
7280 follow_huge_pud(struct mm_struct *mm, unsigned long address,
7281 		pud_t *pud, int flags)
7282 {
7283 	struct page *page = NULL;
7284 	spinlock_t *ptl;
7285 	pte_t pte;
7286 
7287 	if (WARN_ON_ONCE(flags & FOLL_PIN))
7288 		return NULL;
7289 
7290 retry:
7291 	ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7292 	if (!pud_huge(*pud))
7293 		goto out;
7294 	pte = huge_ptep_get((pte_t *)pud);
7295 	if (pte_present(pte)) {
7296 		page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7297 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7298 			page = NULL;
7299 			goto out;
7300 		}
7301 	} else {
7302 		if (is_hugetlb_entry_migration(pte)) {
7303 			spin_unlock(ptl);
7304 			__migration_entry_wait(mm, (pte_t *)pud, ptl);
7305 			goto retry;
7306 		}
7307 		/*
7308 		 * hwpoisoned entry is treated as no_page_table in
7309 		 * follow_page_mask().
7310 		 */
7311 	}
7312 out:
7313 	spin_unlock(ptl);
7314 	return page;
7315 }
7316 
7317 struct page * __weak
7318 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7319 {
7320 	if (flags & (FOLL_GET | FOLL_PIN))
7321 		return NULL;
7322 
7323 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7324 }
7325 
7326 int isolate_hugetlb(struct page *page, struct list_head *list)
7327 {
7328 	int ret = 0;
7329 
7330 	spin_lock_irq(&hugetlb_lock);
7331 	if (!PageHeadHuge(page) ||
7332 	    !HPageMigratable(page) ||
7333 	    !get_page_unless_zero(page)) {
7334 		ret = -EBUSY;
7335 		goto unlock;
7336 	}
7337 	ClearHPageMigratable(page);
7338 	list_move_tail(&page->lru, list);
7339 unlock:
7340 	spin_unlock_irq(&hugetlb_lock);
7341 	return ret;
7342 }
7343 
7344 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7345 {
7346 	int ret = 0;
7347 
7348 	*hugetlb = false;
7349 	spin_lock_irq(&hugetlb_lock);
7350 	if (PageHeadHuge(page)) {
7351 		*hugetlb = true;
7352 		if (HPageFreed(page))
7353 			ret = 0;
7354 		else if (HPageMigratable(page))
7355 			ret = get_page_unless_zero(page);
7356 		else
7357 			ret = -EBUSY;
7358 	}
7359 	spin_unlock_irq(&hugetlb_lock);
7360 	return ret;
7361 }
7362 
7363 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7364 {
7365 	int ret;
7366 
7367 	spin_lock_irq(&hugetlb_lock);
7368 	ret = __get_huge_page_for_hwpoison(pfn, flags);
7369 	spin_unlock_irq(&hugetlb_lock);
7370 	return ret;
7371 }
7372 
7373 void putback_active_hugepage(struct page *page)
7374 {
7375 	spin_lock_irq(&hugetlb_lock);
7376 	SetHPageMigratable(page);
7377 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7378 	spin_unlock_irq(&hugetlb_lock);
7379 	put_page(page);
7380 }
7381 
7382 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7383 {
7384 	struct hstate *h = page_hstate(oldpage);
7385 
7386 	hugetlb_cgroup_migrate(oldpage, newpage);
7387 	set_page_owner_migrate_reason(newpage, reason);
7388 
7389 	/*
7390 	 * transfer temporary state of the new huge page. This is
7391 	 * reverse to other transitions because the newpage is going to
7392 	 * be final while the old one will be freed so it takes over
7393 	 * the temporary status.
7394 	 *
7395 	 * Also note that we have to transfer the per-node surplus state
7396 	 * here as well otherwise the global surplus count will not match
7397 	 * the per-node's.
7398 	 */
7399 	if (HPageTemporary(newpage)) {
7400 		int old_nid = page_to_nid(oldpage);
7401 		int new_nid = page_to_nid(newpage);
7402 
7403 		SetHPageTemporary(oldpage);
7404 		ClearHPageTemporary(newpage);
7405 
7406 		/*
7407 		 * There is no need to transfer the per-node surplus state
7408 		 * when we do not cross the node.
7409 		 */
7410 		if (new_nid == old_nid)
7411 			return;
7412 		spin_lock_irq(&hugetlb_lock);
7413 		if (h->surplus_huge_pages_node[old_nid]) {
7414 			h->surplus_huge_pages_node[old_nid]--;
7415 			h->surplus_huge_pages_node[new_nid]++;
7416 		}
7417 		spin_unlock_irq(&hugetlb_lock);
7418 	}
7419 }
7420 
7421 /*
7422  * This function will unconditionally remove all the shared pmd pgtable entries
7423  * within the specific vma for a hugetlbfs memory range.
7424  */
7425 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7426 {
7427 	struct hstate *h = hstate_vma(vma);
7428 	unsigned long sz = huge_page_size(h);
7429 	struct mm_struct *mm = vma->vm_mm;
7430 	struct mmu_notifier_range range;
7431 	unsigned long address, start, end;
7432 	spinlock_t *ptl;
7433 	pte_t *ptep;
7434 
7435 	if (!(vma->vm_flags & VM_MAYSHARE))
7436 		return;
7437 
7438 	start = ALIGN(vma->vm_start, PUD_SIZE);
7439 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7440 
7441 	if (start >= end)
7442 		return;
7443 
7444 	flush_cache_range(vma, start, end);
7445 	/*
7446 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7447 	 * we have already done the PUD_SIZE alignment.
7448 	 */
7449 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7450 				start, end);
7451 	mmu_notifier_invalidate_range_start(&range);
7452 	hugetlb_vma_lock_write(vma);
7453 	i_mmap_lock_write(vma->vm_file->f_mapping);
7454 	for (address = start; address < end; address += PUD_SIZE) {
7455 		ptep = huge_pte_offset(mm, address, sz);
7456 		if (!ptep)
7457 			continue;
7458 		ptl = huge_pte_lock(h, mm, ptep);
7459 		huge_pmd_unshare(mm, vma, address, ptep);
7460 		spin_unlock(ptl);
7461 	}
7462 	flush_hugetlb_tlb_range(vma, start, end);
7463 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7464 	hugetlb_vma_unlock_write(vma);
7465 	/*
7466 	 * No need to call mmu_notifier_invalidate_range(), see
7467 	 * Documentation/mm/mmu_notifier.rst.
7468 	 */
7469 	mmu_notifier_invalidate_range_end(&range);
7470 }
7471 
7472 #ifdef CONFIG_CMA
7473 static bool cma_reserve_called __initdata;
7474 
7475 static int __init cmdline_parse_hugetlb_cma(char *p)
7476 {
7477 	int nid, count = 0;
7478 	unsigned long tmp;
7479 	char *s = p;
7480 
7481 	while (*s) {
7482 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7483 			break;
7484 
7485 		if (s[count] == ':') {
7486 			if (tmp >= MAX_NUMNODES)
7487 				break;
7488 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7489 
7490 			s += count + 1;
7491 			tmp = memparse(s, &s);
7492 			hugetlb_cma_size_in_node[nid] = tmp;
7493 			hugetlb_cma_size += tmp;
7494 
7495 			/*
7496 			 * Skip the separator if have one, otherwise
7497 			 * break the parsing.
7498 			 */
7499 			if (*s == ',')
7500 				s++;
7501 			else
7502 				break;
7503 		} else {
7504 			hugetlb_cma_size = memparse(p, &p);
7505 			break;
7506 		}
7507 	}
7508 
7509 	return 0;
7510 }
7511 
7512 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7513 
7514 void __init hugetlb_cma_reserve(int order)
7515 {
7516 	unsigned long size, reserved, per_node;
7517 	bool node_specific_cma_alloc = false;
7518 	int nid;
7519 
7520 	cma_reserve_called = true;
7521 
7522 	if (!hugetlb_cma_size)
7523 		return;
7524 
7525 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7526 		if (hugetlb_cma_size_in_node[nid] == 0)
7527 			continue;
7528 
7529 		if (!node_online(nid)) {
7530 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7531 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7532 			hugetlb_cma_size_in_node[nid] = 0;
7533 			continue;
7534 		}
7535 
7536 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7537 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7538 				nid, (PAGE_SIZE << order) / SZ_1M);
7539 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7540 			hugetlb_cma_size_in_node[nid] = 0;
7541 		} else {
7542 			node_specific_cma_alloc = true;
7543 		}
7544 	}
7545 
7546 	/* Validate the CMA size again in case some invalid nodes specified. */
7547 	if (!hugetlb_cma_size)
7548 		return;
7549 
7550 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7551 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7552 			(PAGE_SIZE << order) / SZ_1M);
7553 		hugetlb_cma_size = 0;
7554 		return;
7555 	}
7556 
7557 	if (!node_specific_cma_alloc) {
7558 		/*
7559 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7560 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7561 		 */
7562 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7563 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7564 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7565 	}
7566 
7567 	reserved = 0;
7568 	for_each_online_node(nid) {
7569 		int res;
7570 		char name[CMA_MAX_NAME];
7571 
7572 		if (node_specific_cma_alloc) {
7573 			if (hugetlb_cma_size_in_node[nid] == 0)
7574 				continue;
7575 
7576 			size = hugetlb_cma_size_in_node[nid];
7577 		} else {
7578 			size = min(per_node, hugetlb_cma_size - reserved);
7579 		}
7580 
7581 		size = round_up(size, PAGE_SIZE << order);
7582 
7583 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7584 		/*
7585 		 * Note that 'order per bit' is based on smallest size that
7586 		 * may be returned to CMA allocator in the case of
7587 		 * huge page demotion.
7588 		 */
7589 		res = cma_declare_contiguous_nid(0, size, 0,
7590 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7591 						 0, false, name,
7592 						 &hugetlb_cma[nid], nid);
7593 		if (res) {
7594 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7595 				res, nid);
7596 			continue;
7597 		}
7598 
7599 		reserved += size;
7600 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7601 			size / SZ_1M, nid);
7602 
7603 		if (reserved >= hugetlb_cma_size)
7604 			break;
7605 	}
7606 
7607 	if (!reserved)
7608 		/*
7609 		 * hugetlb_cma_size is used to determine if allocations from
7610 		 * cma are possible.  Set to zero if no cma regions are set up.
7611 		 */
7612 		hugetlb_cma_size = 0;
7613 }
7614 
7615 static void __init hugetlb_cma_check(void)
7616 {
7617 	if (!hugetlb_cma_size || cma_reserve_called)
7618 		return;
7619 
7620 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7621 }
7622 
7623 #endif /* CONFIG_CMA */
7624