xref: /openbmc/linux/mm/hugetlb.c (revision f2a89d3b)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26 
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36 
37 int hugepages_treat_as_movable;
38 
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 /*
43  * Minimum page order among possible hugepage sizes, set to a proper value
44  * at boot time.
45  */
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
47 
48 __initdata LIST_HEAD(huge_boot_pages);
49 
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
55 
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61 
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68 
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71 
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
75 
76 	spin_unlock(&spool->lock);
77 
78 	/* If no pages are used, and no other handles to the subpool
79 	 * remain, give up any reservations mased on minimum size and
80 	 * free the subpool */
81 	if (free) {
82 		if (spool->min_hpages != -1)
83 			hugetlb_acct_memory(spool->hstate,
84 						-spool->min_hpages);
85 		kfree(spool);
86 	}
87 }
88 
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 						long min_hpages)
91 {
92 	struct hugepage_subpool *spool;
93 
94 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 	if (!spool)
96 		return NULL;
97 
98 	spin_lock_init(&spool->lock);
99 	spool->count = 1;
100 	spool->max_hpages = max_hpages;
101 	spool->hstate = h;
102 	spool->min_hpages = min_hpages;
103 
104 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 		kfree(spool);
106 		return NULL;
107 	}
108 	spool->rsv_hpages = min_hpages;
109 
110 	return spool;
111 }
112 
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115 	spin_lock(&spool->lock);
116 	BUG_ON(!spool->count);
117 	spool->count--;
118 	unlock_or_release_subpool(spool);
119 }
120 
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 				      long delta)
131 {
132 	long ret = delta;
133 
134 	if (!spool)
135 		return ret;
136 
137 	spin_lock(&spool->lock);
138 
139 	if (spool->max_hpages != -1) {		/* maximum size accounting */
140 		if ((spool->used_hpages + delta) <= spool->max_hpages)
141 			spool->used_hpages += delta;
142 		else {
143 			ret = -ENOMEM;
144 			goto unlock_ret;
145 		}
146 	}
147 
148 	/* minimum size accounting */
149 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 		if (delta > spool->rsv_hpages) {
151 			/*
152 			 * Asking for more reserves than those already taken on
153 			 * behalf of subpool.  Return difference.
154 			 */
155 			ret = delta - spool->rsv_hpages;
156 			spool->rsv_hpages = 0;
157 		} else {
158 			ret = 0;	/* reserves already accounted for */
159 			spool->rsv_hpages -= delta;
160 		}
161 	}
162 
163 unlock_ret:
164 	spin_unlock(&spool->lock);
165 	return ret;
166 }
167 
168 /*
169  * Subpool accounting for freeing and unreserving pages.
170  * Return the number of global page reservations that must be dropped.
171  * The return value may only be different than the passed value (delta)
172  * in the case where a subpool minimum size must be maintained.
173  */
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 				       long delta)
176 {
177 	long ret = delta;
178 
179 	if (!spool)
180 		return delta;
181 
182 	spin_lock(&spool->lock);
183 
184 	if (spool->max_hpages != -1)		/* maximum size accounting */
185 		spool->used_hpages -= delta;
186 
187 	 /* minimum size accounting */
188 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 		if (spool->rsv_hpages + delta <= spool->min_hpages)
190 			ret = 0;
191 		else
192 			ret = spool->rsv_hpages + delta - spool->min_hpages;
193 
194 		spool->rsv_hpages += delta;
195 		if (spool->rsv_hpages > spool->min_hpages)
196 			spool->rsv_hpages = spool->min_hpages;
197 	}
198 
199 	/*
200 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 	 * quota reference, free it now.
202 	 */
203 	unlock_or_release_subpool(spool);
204 
205 	return ret;
206 }
207 
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209 {
210 	return HUGETLBFS_SB(inode->i_sb)->spool;
211 }
212 
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214 {
215 	return subpool_inode(file_inode(vma->vm_file));
216 }
217 
218 /*
219  * Region tracking -- allows tracking of reservations and instantiated pages
220  *                    across the pages in a mapping.
221  *
222  * The region data structures are embedded into a resv_map and protected
223  * by a resv_map's lock.  The set of regions within the resv_map represent
224  * reservations for huge pages, or huge pages that have already been
225  * instantiated within the map.  The from and to elements are huge page
226  * indicies into the associated mapping.  from indicates the starting index
227  * of the region.  to represents the first index past the end of  the region.
228  *
229  * For example, a file region structure with from == 0 and to == 4 represents
230  * four huge pages in a mapping.  It is important to note that the to element
231  * represents the first element past the end of the region. This is used in
232  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233  *
234  * Interval notation of the form [from, to) will be used to indicate that
235  * the endpoint from is inclusive and to is exclusive.
236  */
237 struct file_region {
238 	struct list_head link;
239 	long from;
240 	long to;
241 };
242 
243 /*
244  * Add the huge page range represented by [f, t) to the reserve
245  * map.  In the normal case, existing regions will be expanded
246  * to accommodate the specified range.  Sufficient regions should
247  * exist for expansion due to the previous call to region_chg
248  * with the same range.  However, it is possible that region_del
249  * could have been called after region_chg and modifed the map
250  * in such a way that no region exists to be expanded.  In this
251  * case, pull a region descriptor from the cache associated with
252  * the map and use that for the new range.
253  *
254  * Return the number of new huge pages added to the map.  This
255  * number is greater than or equal to zero.
256  */
257 static long region_add(struct resv_map *resv, long f, long t)
258 {
259 	struct list_head *head = &resv->regions;
260 	struct file_region *rg, *nrg, *trg;
261 	long add = 0;
262 
263 	spin_lock(&resv->lock);
264 	/* Locate the region we are either in or before. */
265 	list_for_each_entry(rg, head, link)
266 		if (f <= rg->to)
267 			break;
268 
269 	/*
270 	 * If no region exists which can be expanded to include the
271 	 * specified range, the list must have been modified by an
272 	 * interleving call to region_del().  Pull a region descriptor
273 	 * from the cache and use it for this range.
274 	 */
275 	if (&rg->link == head || t < rg->from) {
276 		VM_BUG_ON(resv->region_cache_count <= 0);
277 
278 		resv->region_cache_count--;
279 		nrg = list_first_entry(&resv->region_cache, struct file_region,
280 					link);
281 		list_del(&nrg->link);
282 
283 		nrg->from = f;
284 		nrg->to = t;
285 		list_add(&nrg->link, rg->link.prev);
286 
287 		add += t - f;
288 		goto out_locked;
289 	}
290 
291 	/* Round our left edge to the current segment if it encloses us. */
292 	if (f > rg->from)
293 		f = rg->from;
294 
295 	/* Check for and consume any regions we now overlap with. */
296 	nrg = rg;
297 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 		if (&rg->link == head)
299 			break;
300 		if (rg->from > t)
301 			break;
302 
303 		/* If this area reaches higher then extend our area to
304 		 * include it completely.  If this is not the first area
305 		 * which we intend to reuse, free it. */
306 		if (rg->to > t)
307 			t = rg->to;
308 		if (rg != nrg) {
309 			/* Decrement return value by the deleted range.
310 			 * Another range will span this area so that by
311 			 * end of routine add will be >= zero
312 			 */
313 			add -= (rg->to - rg->from);
314 			list_del(&rg->link);
315 			kfree(rg);
316 		}
317 	}
318 
319 	add += (nrg->from - f);		/* Added to beginning of region */
320 	nrg->from = f;
321 	add += t - nrg->to;		/* Added to end of region */
322 	nrg->to = t;
323 
324 out_locked:
325 	resv->adds_in_progress--;
326 	spin_unlock(&resv->lock);
327 	VM_BUG_ON(add < 0);
328 	return add;
329 }
330 
331 /*
332  * Examine the existing reserve map and determine how many
333  * huge pages in the specified range [f, t) are NOT currently
334  * represented.  This routine is called before a subsequent
335  * call to region_add that will actually modify the reserve
336  * map to add the specified range [f, t).  region_chg does
337  * not change the number of huge pages represented by the
338  * map.  However, if the existing regions in the map can not
339  * be expanded to represent the new range, a new file_region
340  * structure is added to the map as a placeholder.  This is
341  * so that the subsequent region_add call will have all the
342  * regions it needs and will not fail.
343  *
344  * Upon entry, region_chg will also examine the cache of region descriptors
345  * associated with the map.  If there are not enough descriptors cached, one
346  * will be allocated for the in progress add operation.
347  *
348  * Returns the number of huge pages that need to be added to the existing
349  * reservation map for the range [f, t).  This number is greater or equal to
350  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
351  * is needed and can not be allocated.
352  */
353 static long region_chg(struct resv_map *resv, long f, long t)
354 {
355 	struct list_head *head = &resv->regions;
356 	struct file_region *rg, *nrg = NULL;
357 	long chg = 0;
358 
359 retry:
360 	spin_lock(&resv->lock);
361 retry_locked:
362 	resv->adds_in_progress++;
363 
364 	/*
365 	 * Check for sufficient descriptors in the cache to accommodate
366 	 * the number of in progress add operations.
367 	 */
368 	if (resv->adds_in_progress > resv->region_cache_count) {
369 		struct file_region *trg;
370 
371 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 		/* Must drop lock to allocate a new descriptor. */
373 		resv->adds_in_progress--;
374 		spin_unlock(&resv->lock);
375 
376 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 		if (!trg) {
378 			kfree(nrg);
379 			return -ENOMEM;
380 		}
381 
382 		spin_lock(&resv->lock);
383 		list_add(&trg->link, &resv->region_cache);
384 		resv->region_cache_count++;
385 		goto retry_locked;
386 	}
387 
388 	/* Locate the region we are before or in. */
389 	list_for_each_entry(rg, head, link)
390 		if (f <= rg->to)
391 			break;
392 
393 	/* If we are below the current region then a new region is required.
394 	 * Subtle, allocate a new region at the position but make it zero
395 	 * size such that we can guarantee to record the reservation. */
396 	if (&rg->link == head || t < rg->from) {
397 		if (!nrg) {
398 			resv->adds_in_progress--;
399 			spin_unlock(&resv->lock);
400 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401 			if (!nrg)
402 				return -ENOMEM;
403 
404 			nrg->from = f;
405 			nrg->to   = f;
406 			INIT_LIST_HEAD(&nrg->link);
407 			goto retry;
408 		}
409 
410 		list_add(&nrg->link, rg->link.prev);
411 		chg = t - f;
412 		goto out_nrg;
413 	}
414 
415 	/* Round our left edge to the current segment if it encloses us. */
416 	if (f > rg->from)
417 		f = rg->from;
418 	chg = t - f;
419 
420 	/* Check for and consume any regions we now overlap with. */
421 	list_for_each_entry(rg, rg->link.prev, link) {
422 		if (&rg->link == head)
423 			break;
424 		if (rg->from > t)
425 			goto out;
426 
427 		/* We overlap with this area, if it extends further than
428 		 * us then we must extend ourselves.  Account for its
429 		 * existing reservation. */
430 		if (rg->to > t) {
431 			chg += rg->to - t;
432 			t = rg->to;
433 		}
434 		chg -= rg->to - rg->from;
435 	}
436 
437 out:
438 	spin_unlock(&resv->lock);
439 	/*  We already know we raced and no longer need the new region */
440 	kfree(nrg);
441 	return chg;
442 out_nrg:
443 	spin_unlock(&resv->lock);
444 	return chg;
445 }
446 
447 /*
448  * Abort the in progress add operation.  The adds_in_progress field
449  * of the resv_map keeps track of the operations in progress between
450  * calls to region_chg and region_add.  Operations are sometimes
451  * aborted after the call to region_chg.  In such cases, region_abort
452  * is called to decrement the adds_in_progress counter.
453  *
454  * NOTE: The range arguments [f, t) are not needed or used in this
455  * routine.  They are kept to make reading the calling code easier as
456  * arguments will match the associated region_chg call.
457  */
458 static void region_abort(struct resv_map *resv, long f, long t)
459 {
460 	spin_lock(&resv->lock);
461 	VM_BUG_ON(!resv->region_cache_count);
462 	resv->adds_in_progress--;
463 	spin_unlock(&resv->lock);
464 }
465 
466 /*
467  * Delete the specified range [f, t) from the reserve map.  If the
468  * t parameter is LONG_MAX, this indicates that ALL regions after f
469  * should be deleted.  Locate the regions which intersect [f, t)
470  * and either trim, delete or split the existing regions.
471  *
472  * Returns the number of huge pages deleted from the reserve map.
473  * In the normal case, the return value is zero or more.  In the
474  * case where a region must be split, a new region descriptor must
475  * be allocated.  If the allocation fails, -ENOMEM will be returned.
476  * NOTE: If the parameter t == LONG_MAX, then we will never split
477  * a region and possibly return -ENOMEM.  Callers specifying
478  * t == LONG_MAX do not need to check for -ENOMEM error.
479  */
480 static long region_del(struct resv_map *resv, long f, long t)
481 {
482 	struct list_head *head = &resv->regions;
483 	struct file_region *rg, *trg;
484 	struct file_region *nrg = NULL;
485 	long del = 0;
486 
487 retry:
488 	spin_lock(&resv->lock);
489 	list_for_each_entry_safe(rg, trg, head, link) {
490 		/*
491 		 * Skip regions before the range to be deleted.  file_region
492 		 * ranges are normally of the form [from, to).  However, there
493 		 * may be a "placeholder" entry in the map which is of the form
494 		 * (from, to) with from == to.  Check for placeholder entries
495 		 * at the beginning of the range to be deleted.
496 		 */
497 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498 			continue;
499 
500 		if (rg->from >= t)
501 			break;
502 
503 		if (f > rg->from && t < rg->to) { /* Must split region */
504 			/*
505 			 * Check for an entry in the cache before dropping
506 			 * lock and attempting allocation.
507 			 */
508 			if (!nrg &&
509 			    resv->region_cache_count > resv->adds_in_progress) {
510 				nrg = list_first_entry(&resv->region_cache,
511 							struct file_region,
512 							link);
513 				list_del(&nrg->link);
514 				resv->region_cache_count--;
515 			}
516 
517 			if (!nrg) {
518 				spin_unlock(&resv->lock);
519 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520 				if (!nrg)
521 					return -ENOMEM;
522 				goto retry;
523 			}
524 
525 			del += t - f;
526 
527 			/* New entry for end of split region */
528 			nrg->from = t;
529 			nrg->to = rg->to;
530 			INIT_LIST_HEAD(&nrg->link);
531 
532 			/* Original entry is trimmed */
533 			rg->to = f;
534 
535 			list_add(&nrg->link, &rg->link);
536 			nrg = NULL;
537 			break;
538 		}
539 
540 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 			del += rg->to - rg->from;
542 			list_del(&rg->link);
543 			kfree(rg);
544 			continue;
545 		}
546 
547 		if (f <= rg->from) {	/* Trim beginning of region */
548 			del += t - rg->from;
549 			rg->from = t;
550 		} else {		/* Trim end of region */
551 			del += rg->to - f;
552 			rg->to = f;
553 		}
554 	}
555 
556 	spin_unlock(&resv->lock);
557 	kfree(nrg);
558 	return del;
559 }
560 
561 /*
562  * A rare out of memory error was encountered which prevented removal of
563  * the reserve map region for a page.  The huge page itself was free'ed
564  * and removed from the page cache.  This routine will adjust the subpool
565  * usage count, and the global reserve count if needed.  By incrementing
566  * these counts, the reserve map entry which could not be deleted will
567  * appear as a "reserved" entry instead of simply dangling with incorrect
568  * counts.
569  */
570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
571 {
572 	struct hugepage_subpool *spool = subpool_inode(inode);
573 	long rsv_adjust;
574 
575 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576 	if (restore_reserve && rsv_adjust) {
577 		struct hstate *h = hstate_inode(inode);
578 
579 		hugetlb_acct_memory(h, 1);
580 	}
581 }
582 
583 /*
584  * Count and return the number of huge pages in the reserve map
585  * that intersect with the range [f, t).
586  */
587 static long region_count(struct resv_map *resv, long f, long t)
588 {
589 	struct list_head *head = &resv->regions;
590 	struct file_region *rg;
591 	long chg = 0;
592 
593 	spin_lock(&resv->lock);
594 	/* Locate each segment we overlap with, and count that overlap. */
595 	list_for_each_entry(rg, head, link) {
596 		long seg_from;
597 		long seg_to;
598 
599 		if (rg->to <= f)
600 			continue;
601 		if (rg->from >= t)
602 			break;
603 
604 		seg_from = max(rg->from, f);
605 		seg_to = min(rg->to, t);
606 
607 		chg += seg_to - seg_from;
608 	}
609 	spin_unlock(&resv->lock);
610 
611 	return chg;
612 }
613 
614 /*
615  * Convert the address within this vma to the page offset within
616  * the mapping, in pagecache page units; huge pages here.
617  */
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619 			struct vm_area_struct *vma, unsigned long address)
620 {
621 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 			(vma->vm_pgoff >> huge_page_order(h));
623 }
624 
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 				     unsigned long address)
627 {
628 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
629 }
630 EXPORT_SYMBOL_GPL(linear_hugepage_index);
631 
632 /*
633  * Return the size of the pages allocated when backing a VMA. In the majority
634  * cases this will be same size as used by the page table entries.
635  */
636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
637 {
638 	struct hstate *hstate;
639 
640 	if (!is_vm_hugetlb_page(vma))
641 		return PAGE_SIZE;
642 
643 	hstate = hstate_vma(vma);
644 
645 	return 1UL << huge_page_shift(hstate);
646 }
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
648 
649 /*
650  * Return the page size being used by the MMU to back a VMA. In the majority
651  * of cases, the page size used by the kernel matches the MMU size. On
652  * architectures where it differs, an architecture-specific version of this
653  * function is required.
654  */
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
657 {
658 	return vma_kernel_pagesize(vma);
659 }
660 #endif
661 
662 /*
663  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
664  * bits of the reservation map pointer, which are always clear due to
665  * alignment.
666  */
667 #define HPAGE_RESV_OWNER    (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670 
671 /*
672  * These helpers are used to track how many pages are reserved for
673  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674  * is guaranteed to have their future faults succeed.
675  *
676  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677  * the reserve counters are updated with the hugetlb_lock held. It is safe
678  * to reset the VMA at fork() time as it is not in use yet and there is no
679  * chance of the global counters getting corrupted as a result of the values.
680  *
681  * The private mapping reservation is represented in a subtly different
682  * manner to a shared mapping.  A shared mapping has a region map associated
683  * with the underlying file, this region map represents the backing file
684  * pages which have ever had a reservation assigned which this persists even
685  * after the page is instantiated.  A private mapping has a region map
686  * associated with the original mmap which is attached to all VMAs which
687  * reference it, this region map represents those offsets which have consumed
688  * reservation ie. where pages have been instantiated.
689  */
690 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
691 {
692 	return (unsigned long)vma->vm_private_data;
693 }
694 
695 static void set_vma_private_data(struct vm_area_struct *vma,
696 							unsigned long value)
697 {
698 	vma->vm_private_data = (void *)value;
699 }
700 
701 struct resv_map *resv_map_alloc(void)
702 {
703 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
705 
706 	if (!resv_map || !rg) {
707 		kfree(resv_map);
708 		kfree(rg);
709 		return NULL;
710 	}
711 
712 	kref_init(&resv_map->refs);
713 	spin_lock_init(&resv_map->lock);
714 	INIT_LIST_HEAD(&resv_map->regions);
715 
716 	resv_map->adds_in_progress = 0;
717 
718 	INIT_LIST_HEAD(&resv_map->region_cache);
719 	list_add(&rg->link, &resv_map->region_cache);
720 	resv_map->region_cache_count = 1;
721 
722 	return resv_map;
723 }
724 
725 void resv_map_release(struct kref *ref)
726 {
727 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728 	struct list_head *head = &resv_map->region_cache;
729 	struct file_region *rg, *trg;
730 
731 	/* Clear out any active regions before we release the map. */
732 	region_del(resv_map, 0, LONG_MAX);
733 
734 	/* ... and any entries left in the cache */
735 	list_for_each_entry_safe(rg, trg, head, link) {
736 		list_del(&rg->link);
737 		kfree(rg);
738 	}
739 
740 	VM_BUG_ON(resv_map->adds_in_progress);
741 
742 	kfree(resv_map);
743 }
744 
745 static inline struct resv_map *inode_resv_map(struct inode *inode)
746 {
747 	return inode->i_mapping->private_data;
748 }
749 
750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
751 {
752 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 	if (vma->vm_flags & VM_MAYSHARE) {
754 		struct address_space *mapping = vma->vm_file->f_mapping;
755 		struct inode *inode = mapping->host;
756 
757 		return inode_resv_map(inode);
758 
759 	} else {
760 		return (struct resv_map *)(get_vma_private_data(vma) &
761 							~HPAGE_RESV_MASK);
762 	}
763 }
764 
765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
766 {
767 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
769 
770 	set_vma_private_data(vma, (get_vma_private_data(vma) &
771 				HPAGE_RESV_MASK) | (unsigned long)map);
772 }
773 
774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
775 {
776 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
778 
779 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
780 }
781 
782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
783 {
784 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
785 
786 	return (get_vma_private_data(vma) & flag) != 0;
787 }
788 
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
791 {
792 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793 	if (!(vma->vm_flags & VM_MAYSHARE))
794 		vma->vm_private_data = (void *)0;
795 }
796 
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
799 {
800 	if (vma->vm_flags & VM_NORESERVE) {
801 		/*
802 		 * This address is already reserved by other process(chg == 0),
803 		 * so, we should decrement reserved count. Without decrementing,
804 		 * reserve count remains after releasing inode, because this
805 		 * allocated page will go into page cache and is regarded as
806 		 * coming from reserved pool in releasing step.  Currently, we
807 		 * don't have any other solution to deal with this situation
808 		 * properly, so add work-around here.
809 		 */
810 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811 			return true;
812 		else
813 			return false;
814 	}
815 
816 	/* Shared mappings always use reserves */
817 	if (vma->vm_flags & VM_MAYSHARE) {
818 		/*
819 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
820 		 * be a region map for all pages.  The only situation where
821 		 * there is no region map is if a hole was punched via
822 		 * fallocate.  In this case, there really are no reverves to
823 		 * use.  This situation is indicated if chg != 0.
824 		 */
825 		if (chg)
826 			return false;
827 		else
828 			return true;
829 	}
830 
831 	/*
832 	 * Only the process that called mmap() has reserves for
833 	 * private mappings.
834 	 */
835 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
836 		/*
837 		 * Like the shared case above, a hole punch or truncate
838 		 * could have been performed on the private mapping.
839 		 * Examine the value of chg to determine if reserves
840 		 * actually exist or were previously consumed.
841 		 * Very Subtle - The value of chg comes from a previous
842 		 * call to vma_needs_reserves().  The reserve map for
843 		 * private mappings has different (opposite) semantics
844 		 * than that of shared mappings.  vma_needs_reserves()
845 		 * has already taken this difference in semantics into
846 		 * account.  Therefore, the meaning of chg is the same
847 		 * as in the shared case above.  Code could easily be
848 		 * combined, but keeping it separate draws attention to
849 		 * subtle differences.
850 		 */
851 		if (chg)
852 			return false;
853 		else
854 			return true;
855 	}
856 
857 	return false;
858 }
859 
860 static void enqueue_huge_page(struct hstate *h, struct page *page)
861 {
862 	int nid = page_to_nid(page);
863 	list_move(&page->lru, &h->hugepage_freelists[nid]);
864 	h->free_huge_pages++;
865 	h->free_huge_pages_node[nid]++;
866 }
867 
868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
869 {
870 	struct page *page;
871 
872 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873 		if (!is_migrate_isolate_page(page))
874 			break;
875 	/*
876 	 * if 'non-isolated free hugepage' not found on the list,
877 	 * the allocation fails.
878 	 */
879 	if (&h->hugepage_freelists[nid] == &page->lru)
880 		return NULL;
881 	list_move(&page->lru, &h->hugepage_activelist);
882 	set_page_refcounted(page);
883 	h->free_huge_pages--;
884 	h->free_huge_pages_node[nid]--;
885 	return page;
886 }
887 
888 /* Movability of hugepages depends on migration support. */
889 static inline gfp_t htlb_alloc_mask(struct hstate *h)
890 {
891 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892 		return GFP_HIGHUSER_MOVABLE;
893 	else
894 		return GFP_HIGHUSER;
895 }
896 
897 static struct page *dequeue_huge_page_vma(struct hstate *h,
898 				struct vm_area_struct *vma,
899 				unsigned long address, int avoid_reserve,
900 				long chg)
901 {
902 	struct page *page = NULL;
903 	struct mempolicy *mpol;
904 	nodemask_t *nodemask;
905 	struct zonelist *zonelist;
906 	struct zone *zone;
907 	struct zoneref *z;
908 	unsigned int cpuset_mems_cookie;
909 
910 	/*
911 	 * A child process with MAP_PRIVATE mappings created by their parent
912 	 * have no page reserves. This check ensures that reservations are
913 	 * not "stolen". The child may still get SIGKILLed
914 	 */
915 	if (!vma_has_reserves(vma, chg) &&
916 			h->free_huge_pages - h->resv_huge_pages == 0)
917 		goto err;
918 
919 	/* If reserves cannot be used, ensure enough pages are in the pool */
920 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
921 		goto err;
922 
923 retry_cpuset:
924 	cpuset_mems_cookie = read_mems_allowed_begin();
925 	zonelist = huge_zonelist(vma, address,
926 					htlb_alloc_mask(h), &mpol, &nodemask);
927 
928 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
929 						MAX_NR_ZONES - 1, nodemask) {
930 		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
932 			if (page) {
933 				if (avoid_reserve)
934 					break;
935 				if (!vma_has_reserves(vma, chg))
936 					break;
937 
938 				SetPagePrivate(page);
939 				h->resv_huge_pages--;
940 				break;
941 			}
942 		}
943 	}
944 
945 	mpol_cond_put(mpol);
946 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
947 		goto retry_cpuset;
948 	return page;
949 
950 err:
951 	return NULL;
952 }
953 
954 /*
955  * common helper functions for hstate_next_node_to_{alloc|free}.
956  * We may have allocated or freed a huge page based on a different
957  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958  * be outside of *nodes_allowed.  Ensure that we use an allowed
959  * node for alloc or free.
960  */
961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
962 {
963 	nid = next_node_in(nid, *nodes_allowed);
964 	VM_BUG_ON(nid >= MAX_NUMNODES);
965 
966 	return nid;
967 }
968 
969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
970 {
971 	if (!node_isset(nid, *nodes_allowed))
972 		nid = next_node_allowed(nid, nodes_allowed);
973 	return nid;
974 }
975 
976 /*
977  * returns the previously saved node ["this node"] from which to
978  * allocate a persistent huge page for the pool and advance the
979  * next node from which to allocate, handling wrap at end of node
980  * mask.
981  */
982 static int hstate_next_node_to_alloc(struct hstate *h,
983 					nodemask_t *nodes_allowed)
984 {
985 	int nid;
986 
987 	VM_BUG_ON(!nodes_allowed);
988 
989 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
990 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
991 
992 	return nid;
993 }
994 
995 /*
996  * helper for free_pool_huge_page() - return the previously saved
997  * node ["this node"] from which to free a huge page.  Advance the
998  * next node id whether or not we find a free huge page to free so
999  * that the next attempt to free addresses the next node.
1000  */
1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1002 {
1003 	int nid;
1004 
1005 	VM_BUG_ON(!nodes_allowed);
1006 
1007 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1009 
1010 	return nid;
1011 }
1012 
1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1014 	for (nr_nodes = nodes_weight(*mask);				\
1015 		nr_nodes > 0 &&						\
1016 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1017 		nr_nodes--)
1018 
1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1020 	for (nr_nodes = nodes_weight(*mask);				\
1021 		nr_nodes > 0 &&						\
1022 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1023 		nr_nodes--)
1024 
1025 #if (defined(CONFIG_X86_64) || defined(CONFIG_S390)) && \
1026 	((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1027 	defined(CONFIG_CMA))
1028 static void destroy_compound_gigantic_page(struct page *page,
1029 					unsigned int order)
1030 {
1031 	int i;
1032 	int nr_pages = 1 << order;
1033 	struct page *p = page + 1;
1034 
1035 	atomic_set(compound_mapcount_ptr(page), 0);
1036 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1037 		clear_compound_head(p);
1038 		set_page_refcounted(p);
1039 	}
1040 
1041 	set_compound_order(page, 0);
1042 	__ClearPageHead(page);
1043 }
1044 
1045 static void free_gigantic_page(struct page *page, unsigned int order)
1046 {
1047 	free_contig_range(page_to_pfn(page), 1 << order);
1048 }
1049 
1050 static int __alloc_gigantic_page(unsigned long start_pfn,
1051 				unsigned long nr_pages)
1052 {
1053 	unsigned long end_pfn = start_pfn + nr_pages;
1054 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1055 }
1056 
1057 static bool pfn_range_valid_gigantic(struct zone *z,
1058 			unsigned long start_pfn, unsigned long nr_pages)
1059 {
1060 	unsigned long i, end_pfn = start_pfn + nr_pages;
1061 	struct page *page;
1062 
1063 	for (i = start_pfn; i < end_pfn; i++) {
1064 		if (!pfn_valid(i))
1065 			return false;
1066 
1067 		page = pfn_to_page(i);
1068 
1069 		if (page_zone(page) != z)
1070 			return false;
1071 
1072 		if (PageReserved(page))
1073 			return false;
1074 
1075 		if (page_count(page) > 0)
1076 			return false;
1077 
1078 		if (PageHuge(page))
1079 			return false;
1080 	}
1081 
1082 	return true;
1083 }
1084 
1085 static bool zone_spans_last_pfn(const struct zone *zone,
1086 			unsigned long start_pfn, unsigned long nr_pages)
1087 {
1088 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1089 	return zone_spans_pfn(zone, last_pfn);
1090 }
1091 
1092 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1093 {
1094 	unsigned long nr_pages = 1 << order;
1095 	unsigned long ret, pfn, flags;
1096 	struct zone *z;
1097 
1098 	z = NODE_DATA(nid)->node_zones;
1099 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1100 		spin_lock_irqsave(&z->lock, flags);
1101 
1102 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
1103 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1104 			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1105 				/*
1106 				 * We release the zone lock here because
1107 				 * alloc_contig_range() will also lock the zone
1108 				 * at some point. If there's an allocation
1109 				 * spinning on this lock, it may win the race
1110 				 * and cause alloc_contig_range() to fail...
1111 				 */
1112 				spin_unlock_irqrestore(&z->lock, flags);
1113 				ret = __alloc_gigantic_page(pfn, nr_pages);
1114 				if (!ret)
1115 					return pfn_to_page(pfn);
1116 				spin_lock_irqsave(&z->lock, flags);
1117 			}
1118 			pfn += nr_pages;
1119 		}
1120 
1121 		spin_unlock_irqrestore(&z->lock, flags);
1122 	}
1123 
1124 	return NULL;
1125 }
1126 
1127 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1128 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1129 
1130 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1131 {
1132 	struct page *page;
1133 
1134 	page = alloc_gigantic_page(nid, huge_page_order(h));
1135 	if (page) {
1136 		prep_compound_gigantic_page(page, huge_page_order(h));
1137 		prep_new_huge_page(h, page, nid);
1138 	}
1139 
1140 	return page;
1141 }
1142 
1143 static int alloc_fresh_gigantic_page(struct hstate *h,
1144 				nodemask_t *nodes_allowed)
1145 {
1146 	struct page *page = NULL;
1147 	int nr_nodes, node;
1148 
1149 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1150 		page = alloc_fresh_gigantic_page_node(h, node);
1151 		if (page)
1152 			return 1;
1153 	}
1154 
1155 	return 0;
1156 }
1157 
1158 static inline bool gigantic_page_supported(void) { return true; }
1159 #else
1160 static inline bool gigantic_page_supported(void) { return false; }
1161 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162 static inline void destroy_compound_gigantic_page(struct page *page,
1163 						unsigned int order) { }
1164 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1165 					nodemask_t *nodes_allowed) { return 0; }
1166 #endif
1167 
1168 static void update_and_free_page(struct hstate *h, struct page *page)
1169 {
1170 	int i;
1171 
1172 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1173 		return;
1174 
1175 	h->nr_huge_pages--;
1176 	h->nr_huge_pages_node[page_to_nid(page)]--;
1177 	for (i = 0; i < pages_per_huge_page(h); i++) {
1178 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1179 				1 << PG_referenced | 1 << PG_dirty |
1180 				1 << PG_active | 1 << PG_private |
1181 				1 << PG_writeback);
1182 	}
1183 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1184 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1185 	set_page_refcounted(page);
1186 	if (hstate_is_gigantic(h)) {
1187 		destroy_compound_gigantic_page(page, huge_page_order(h));
1188 		free_gigantic_page(page, huge_page_order(h));
1189 	} else {
1190 		__free_pages(page, huge_page_order(h));
1191 	}
1192 }
1193 
1194 struct hstate *size_to_hstate(unsigned long size)
1195 {
1196 	struct hstate *h;
1197 
1198 	for_each_hstate(h) {
1199 		if (huge_page_size(h) == size)
1200 			return h;
1201 	}
1202 	return NULL;
1203 }
1204 
1205 /*
1206  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1207  * to hstate->hugepage_activelist.)
1208  *
1209  * This function can be called for tail pages, but never returns true for them.
1210  */
1211 bool page_huge_active(struct page *page)
1212 {
1213 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1214 	return PageHead(page) && PagePrivate(&page[1]);
1215 }
1216 
1217 /* never called for tail page */
1218 static void set_page_huge_active(struct page *page)
1219 {
1220 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1221 	SetPagePrivate(&page[1]);
1222 }
1223 
1224 static void clear_page_huge_active(struct page *page)
1225 {
1226 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227 	ClearPagePrivate(&page[1]);
1228 }
1229 
1230 void free_huge_page(struct page *page)
1231 {
1232 	/*
1233 	 * Can't pass hstate in here because it is called from the
1234 	 * compound page destructor.
1235 	 */
1236 	struct hstate *h = page_hstate(page);
1237 	int nid = page_to_nid(page);
1238 	struct hugepage_subpool *spool =
1239 		(struct hugepage_subpool *)page_private(page);
1240 	bool restore_reserve;
1241 
1242 	set_page_private(page, 0);
1243 	page->mapping = NULL;
1244 	VM_BUG_ON_PAGE(page_count(page), page);
1245 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1246 	restore_reserve = PagePrivate(page);
1247 	ClearPagePrivate(page);
1248 
1249 	/*
1250 	 * A return code of zero implies that the subpool will be under its
1251 	 * minimum size if the reservation is not restored after page is free.
1252 	 * Therefore, force restore_reserve operation.
1253 	 */
1254 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1255 		restore_reserve = true;
1256 
1257 	spin_lock(&hugetlb_lock);
1258 	clear_page_huge_active(page);
1259 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1260 				     pages_per_huge_page(h), page);
1261 	if (restore_reserve)
1262 		h->resv_huge_pages++;
1263 
1264 	if (h->surplus_huge_pages_node[nid]) {
1265 		/* remove the page from active list */
1266 		list_del(&page->lru);
1267 		update_and_free_page(h, page);
1268 		h->surplus_huge_pages--;
1269 		h->surplus_huge_pages_node[nid]--;
1270 	} else {
1271 		arch_clear_hugepage_flags(page);
1272 		enqueue_huge_page(h, page);
1273 	}
1274 	spin_unlock(&hugetlb_lock);
1275 }
1276 
1277 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1278 {
1279 	INIT_LIST_HEAD(&page->lru);
1280 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1281 	spin_lock(&hugetlb_lock);
1282 	set_hugetlb_cgroup(page, NULL);
1283 	h->nr_huge_pages++;
1284 	h->nr_huge_pages_node[nid]++;
1285 	spin_unlock(&hugetlb_lock);
1286 	put_page(page); /* free it into the hugepage allocator */
1287 }
1288 
1289 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1290 {
1291 	int i;
1292 	int nr_pages = 1 << order;
1293 	struct page *p = page + 1;
1294 
1295 	/* we rely on prep_new_huge_page to set the destructor */
1296 	set_compound_order(page, order);
1297 	__ClearPageReserved(page);
1298 	__SetPageHead(page);
1299 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1300 		/*
1301 		 * For gigantic hugepages allocated through bootmem at
1302 		 * boot, it's safer to be consistent with the not-gigantic
1303 		 * hugepages and clear the PG_reserved bit from all tail pages
1304 		 * too.  Otherwse drivers using get_user_pages() to access tail
1305 		 * pages may get the reference counting wrong if they see
1306 		 * PG_reserved set on a tail page (despite the head page not
1307 		 * having PG_reserved set).  Enforcing this consistency between
1308 		 * head and tail pages allows drivers to optimize away a check
1309 		 * on the head page when they need know if put_page() is needed
1310 		 * after get_user_pages().
1311 		 */
1312 		__ClearPageReserved(p);
1313 		set_page_count(p, 0);
1314 		set_compound_head(p, page);
1315 	}
1316 	atomic_set(compound_mapcount_ptr(page), -1);
1317 }
1318 
1319 /*
1320  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1321  * transparent huge pages.  See the PageTransHuge() documentation for more
1322  * details.
1323  */
1324 int PageHuge(struct page *page)
1325 {
1326 	if (!PageCompound(page))
1327 		return 0;
1328 
1329 	page = compound_head(page);
1330 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1331 }
1332 EXPORT_SYMBOL_GPL(PageHuge);
1333 
1334 /*
1335  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1336  * normal or transparent huge pages.
1337  */
1338 int PageHeadHuge(struct page *page_head)
1339 {
1340 	if (!PageHead(page_head))
1341 		return 0;
1342 
1343 	return get_compound_page_dtor(page_head) == free_huge_page;
1344 }
1345 
1346 pgoff_t __basepage_index(struct page *page)
1347 {
1348 	struct page *page_head = compound_head(page);
1349 	pgoff_t index = page_index(page_head);
1350 	unsigned long compound_idx;
1351 
1352 	if (!PageHuge(page_head))
1353 		return page_index(page);
1354 
1355 	if (compound_order(page_head) >= MAX_ORDER)
1356 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1357 	else
1358 		compound_idx = page - page_head;
1359 
1360 	return (index << compound_order(page_head)) + compound_idx;
1361 }
1362 
1363 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1364 {
1365 	struct page *page;
1366 
1367 	page = __alloc_pages_node(nid,
1368 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1369 						__GFP_REPEAT|__GFP_NOWARN,
1370 		huge_page_order(h));
1371 	if (page) {
1372 		prep_new_huge_page(h, page, nid);
1373 	}
1374 
1375 	return page;
1376 }
1377 
1378 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1379 {
1380 	struct page *page;
1381 	int nr_nodes, node;
1382 	int ret = 0;
1383 
1384 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1385 		page = alloc_fresh_huge_page_node(h, node);
1386 		if (page) {
1387 			ret = 1;
1388 			break;
1389 		}
1390 	}
1391 
1392 	if (ret)
1393 		count_vm_event(HTLB_BUDDY_PGALLOC);
1394 	else
1395 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1396 
1397 	return ret;
1398 }
1399 
1400 /*
1401  * Free huge page from pool from next node to free.
1402  * Attempt to keep persistent huge pages more or less
1403  * balanced over allowed nodes.
1404  * Called with hugetlb_lock locked.
1405  */
1406 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1407 							 bool acct_surplus)
1408 {
1409 	int nr_nodes, node;
1410 	int ret = 0;
1411 
1412 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1413 		/*
1414 		 * If we're returning unused surplus pages, only examine
1415 		 * nodes with surplus pages.
1416 		 */
1417 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1418 		    !list_empty(&h->hugepage_freelists[node])) {
1419 			struct page *page =
1420 				list_entry(h->hugepage_freelists[node].next,
1421 					  struct page, lru);
1422 			list_del(&page->lru);
1423 			h->free_huge_pages--;
1424 			h->free_huge_pages_node[node]--;
1425 			if (acct_surplus) {
1426 				h->surplus_huge_pages--;
1427 				h->surplus_huge_pages_node[node]--;
1428 			}
1429 			update_and_free_page(h, page);
1430 			ret = 1;
1431 			break;
1432 		}
1433 	}
1434 
1435 	return ret;
1436 }
1437 
1438 /*
1439  * Dissolve a given free hugepage into free buddy pages. This function does
1440  * nothing for in-use (including surplus) hugepages.
1441  */
1442 static void dissolve_free_huge_page(struct page *page)
1443 {
1444 	spin_lock(&hugetlb_lock);
1445 	if (PageHuge(page) && !page_count(page)) {
1446 		struct hstate *h = page_hstate(page);
1447 		int nid = page_to_nid(page);
1448 		list_del(&page->lru);
1449 		h->free_huge_pages--;
1450 		h->free_huge_pages_node[nid]--;
1451 		update_and_free_page(h, page);
1452 	}
1453 	spin_unlock(&hugetlb_lock);
1454 }
1455 
1456 /*
1457  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1458  * make specified memory blocks removable from the system.
1459  * Note that start_pfn should aligned with (minimum) hugepage size.
1460  */
1461 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1462 {
1463 	unsigned long pfn;
1464 
1465 	if (!hugepages_supported())
1466 		return;
1467 
1468 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1469 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1470 		dissolve_free_huge_page(pfn_to_page(pfn));
1471 }
1472 
1473 /*
1474  * There are 3 ways this can get called:
1475  * 1. With vma+addr: we use the VMA's memory policy
1476  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1477  *    page from any node, and let the buddy allocator itself figure
1478  *    it out.
1479  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1480  *    strictly from 'nid'
1481  */
1482 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1483 		struct vm_area_struct *vma, unsigned long addr, int nid)
1484 {
1485 	int order = huge_page_order(h);
1486 	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1487 	unsigned int cpuset_mems_cookie;
1488 
1489 	/*
1490 	 * We need a VMA to get a memory policy.  If we do not
1491 	 * have one, we use the 'nid' argument.
1492 	 *
1493 	 * The mempolicy stuff below has some non-inlined bits
1494 	 * and calls ->vm_ops.  That makes it hard to optimize at
1495 	 * compile-time, even when NUMA is off and it does
1496 	 * nothing.  This helps the compiler optimize it out.
1497 	 */
1498 	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1499 		/*
1500 		 * If a specific node is requested, make sure to
1501 		 * get memory from there, but only when a node
1502 		 * is explicitly specified.
1503 		 */
1504 		if (nid != NUMA_NO_NODE)
1505 			gfp |= __GFP_THISNODE;
1506 		/*
1507 		 * Make sure to call something that can handle
1508 		 * nid=NUMA_NO_NODE
1509 		 */
1510 		return alloc_pages_node(nid, gfp, order);
1511 	}
1512 
1513 	/*
1514 	 * OK, so we have a VMA.  Fetch the mempolicy and try to
1515 	 * allocate a huge page with it.  We will only reach this
1516 	 * when CONFIG_NUMA=y.
1517 	 */
1518 	do {
1519 		struct page *page;
1520 		struct mempolicy *mpol;
1521 		struct zonelist *zl;
1522 		nodemask_t *nodemask;
1523 
1524 		cpuset_mems_cookie = read_mems_allowed_begin();
1525 		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1526 		mpol_cond_put(mpol);
1527 		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1528 		if (page)
1529 			return page;
1530 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1531 
1532 	return NULL;
1533 }
1534 
1535 /*
1536  * There are two ways to allocate a huge page:
1537  * 1. When you have a VMA and an address (like a fault)
1538  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1539  *
1540  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1541  * this case which signifies that the allocation should be done with
1542  * respect for the VMA's memory policy.
1543  *
1544  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1545  * implies that memory policies will not be taken in to account.
1546  */
1547 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1548 		struct vm_area_struct *vma, unsigned long addr, int nid)
1549 {
1550 	struct page *page;
1551 	unsigned int r_nid;
1552 
1553 	if (hstate_is_gigantic(h))
1554 		return NULL;
1555 
1556 	/*
1557 	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1558 	 * This makes sure the caller is picking _one_ of the modes with which
1559 	 * we can call this function, not both.
1560 	 */
1561 	if (vma || (addr != -1)) {
1562 		VM_WARN_ON_ONCE(addr == -1);
1563 		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1564 	}
1565 	/*
1566 	 * Assume we will successfully allocate the surplus page to
1567 	 * prevent racing processes from causing the surplus to exceed
1568 	 * overcommit
1569 	 *
1570 	 * This however introduces a different race, where a process B
1571 	 * tries to grow the static hugepage pool while alloc_pages() is
1572 	 * called by process A. B will only examine the per-node
1573 	 * counters in determining if surplus huge pages can be
1574 	 * converted to normal huge pages in adjust_pool_surplus(). A
1575 	 * won't be able to increment the per-node counter, until the
1576 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1577 	 * no more huge pages can be converted from surplus to normal
1578 	 * state (and doesn't try to convert again). Thus, we have a
1579 	 * case where a surplus huge page exists, the pool is grown, and
1580 	 * the surplus huge page still exists after, even though it
1581 	 * should just have been converted to a normal huge page. This
1582 	 * does not leak memory, though, as the hugepage will be freed
1583 	 * once it is out of use. It also does not allow the counters to
1584 	 * go out of whack in adjust_pool_surplus() as we don't modify
1585 	 * the node values until we've gotten the hugepage and only the
1586 	 * per-node value is checked there.
1587 	 */
1588 	spin_lock(&hugetlb_lock);
1589 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1590 		spin_unlock(&hugetlb_lock);
1591 		return NULL;
1592 	} else {
1593 		h->nr_huge_pages++;
1594 		h->surplus_huge_pages++;
1595 	}
1596 	spin_unlock(&hugetlb_lock);
1597 
1598 	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1599 
1600 	spin_lock(&hugetlb_lock);
1601 	if (page) {
1602 		INIT_LIST_HEAD(&page->lru);
1603 		r_nid = page_to_nid(page);
1604 		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1605 		set_hugetlb_cgroup(page, NULL);
1606 		/*
1607 		 * We incremented the global counters already
1608 		 */
1609 		h->nr_huge_pages_node[r_nid]++;
1610 		h->surplus_huge_pages_node[r_nid]++;
1611 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1612 	} else {
1613 		h->nr_huge_pages--;
1614 		h->surplus_huge_pages--;
1615 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1616 	}
1617 	spin_unlock(&hugetlb_lock);
1618 
1619 	return page;
1620 }
1621 
1622 /*
1623  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1624  * NUMA_NO_NODE, which means that it may be allocated
1625  * anywhere.
1626  */
1627 static
1628 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1629 {
1630 	unsigned long addr = -1;
1631 
1632 	return __alloc_buddy_huge_page(h, NULL, addr, nid);
1633 }
1634 
1635 /*
1636  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1637  */
1638 static
1639 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1640 		struct vm_area_struct *vma, unsigned long addr)
1641 {
1642 	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1643 }
1644 
1645 /*
1646  * This allocation function is useful in the context where vma is irrelevant.
1647  * E.g. soft-offlining uses this function because it only cares physical
1648  * address of error page.
1649  */
1650 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1651 {
1652 	struct page *page = NULL;
1653 
1654 	spin_lock(&hugetlb_lock);
1655 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1656 		page = dequeue_huge_page_node(h, nid);
1657 	spin_unlock(&hugetlb_lock);
1658 
1659 	if (!page)
1660 		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1661 
1662 	return page;
1663 }
1664 
1665 /*
1666  * Increase the hugetlb pool such that it can accommodate a reservation
1667  * of size 'delta'.
1668  */
1669 static int gather_surplus_pages(struct hstate *h, int delta)
1670 {
1671 	struct list_head surplus_list;
1672 	struct page *page, *tmp;
1673 	int ret, i;
1674 	int needed, allocated;
1675 	bool alloc_ok = true;
1676 
1677 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1678 	if (needed <= 0) {
1679 		h->resv_huge_pages += delta;
1680 		return 0;
1681 	}
1682 
1683 	allocated = 0;
1684 	INIT_LIST_HEAD(&surplus_list);
1685 
1686 	ret = -ENOMEM;
1687 retry:
1688 	spin_unlock(&hugetlb_lock);
1689 	for (i = 0; i < needed; i++) {
1690 		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1691 		if (!page) {
1692 			alloc_ok = false;
1693 			break;
1694 		}
1695 		list_add(&page->lru, &surplus_list);
1696 	}
1697 	allocated += i;
1698 
1699 	/*
1700 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1701 	 * because either resv_huge_pages or free_huge_pages may have changed.
1702 	 */
1703 	spin_lock(&hugetlb_lock);
1704 	needed = (h->resv_huge_pages + delta) -
1705 			(h->free_huge_pages + allocated);
1706 	if (needed > 0) {
1707 		if (alloc_ok)
1708 			goto retry;
1709 		/*
1710 		 * We were not able to allocate enough pages to
1711 		 * satisfy the entire reservation so we free what
1712 		 * we've allocated so far.
1713 		 */
1714 		goto free;
1715 	}
1716 	/*
1717 	 * The surplus_list now contains _at_least_ the number of extra pages
1718 	 * needed to accommodate the reservation.  Add the appropriate number
1719 	 * of pages to the hugetlb pool and free the extras back to the buddy
1720 	 * allocator.  Commit the entire reservation here to prevent another
1721 	 * process from stealing the pages as they are added to the pool but
1722 	 * before they are reserved.
1723 	 */
1724 	needed += allocated;
1725 	h->resv_huge_pages += delta;
1726 	ret = 0;
1727 
1728 	/* Free the needed pages to the hugetlb pool */
1729 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1730 		if ((--needed) < 0)
1731 			break;
1732 		/*
1733 		 * This page is now managed by the hugetlb allocator and has
1734 		 * no users -- drop the buddy allocator's reference.
1735 		 */
1736 		put_page_testzero(page);
1737 		VM_BUG_ON_PAGE(page_count(page), page);
1738 		enqueue_huge_page(h, page);
1739 	}
1740 free:
1741 	spin_unlock(&hugetlb_lock);
1742 
1743 	/* Free unnecessary surplus pages to the buddy allocator */
1744 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1745 		put_page(page);
1746 	spin_lock(&hugetlb_lock);
1747 
1748 	return ret;
1749 }
1750 
1751 /*
1752  * When releasing a hugetlb pool reservation, any surplus pages that were
1753  * allocated to satisfy the reservation must be explicitly freed if they were
1754  * never used.
1755  * Called with hugetlb_lock held.
1756  */
1757 static void return_unused_surplus_pages(struct hstate *h,
1758 					unsigned long unused_resv_pages)
1759 {
1760 	unsigned long nr_pages;
1761 
1762 	/* Uncommit the reservation */
1763 	h->resv_huge_pages -= unused_resv_pages;
1764 
1765 	/* Cannot return gigantic pages currently */
1766 	if (hstate_is_gigantic(h))
1767 		return;
1768 
1769 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1770 
1771 	/*
1772 	 * We want to release as many surplus pages as possible, spread
1773 	 * evenly across all nodes with memory. Iterate across these nodes
1774 	 * until we can no longer free unreserved surplus pages. This occurs
1775 	 * when the nodes with surplus pages have no free pages.
1776 	 * free_pool_huge_page() will balance the the freed pages across the
1777 	 * on-line nodes with memory and will handle the hstate accounting.
1778 	 */
1779 	while (nr_pages--) {
1780 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1781 			break;
1782 		cond_resched_lock(&hugetlb_lock);
1783 	}
1784 }
1785 
1786 
1787 /*
1788  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1789  * are used by the huge page allocation routines to manage reservations.
1790  *
1791  * vma_needs_reservation is called to determine if the huge page at addr
1792  * within the vma has an associated reservation.  If a reservation is
1793  * needed, the value 1 is returned.  The caller is then responsible for
1794  * managing the global reservation and subpool usage counts.  After
1795  * the huge page has been allocated, vma_commit_reservation is called
1796  * to add the page to the reservation map.  If the page allocation fails,
1797  * the reservation must be ended instead of committed.  vma_end_reservation
1798  * is called in such cases.
1799  *
1800  * In the normal case, vma_commit_reservation returns the same value
1801  * as the preceding vma_needs_reservation call.  The only time this
1802  * is not the case is if a reserve map was changed between calls.  It
1803  * is the responsibility of the caller to notice the difference and
1804  * take appropriate action.
1805  */
1806 enum vma_resv_mode {
1807 	VMA_NEEDS_RESV,
1808 	VMA_COMMIT_RESV,
1809 	VMA_END_RESV,
1810 };
1811 static long __vma_reservation_common(struct hstate *h,
1812 				struct vm_area_struct *vma, unsigned long addr,
1813 				enum vma_resv_mode mode)
1814 {
1815 	struct resv_map *resv;
1816 	pgoff_t idx;
1817 	long ret;
1818 
1819 	resv = vma_resv_map(vma);
1820 	if (!resv)
1821 		return 1;
1822 
1823 	idx = vma_hugecache_offset(h, vma, addr);
1824 	switch (mode) {
1825 	case VMA_NEEDS_RESV:
1826 		ret = region_chg(resv, idx, idx + 1);
1827 		break;
1828 	case VMA_COMMIT_RESV:
1829 		ret = region_add(resv, idx, idx + 1);
1830 		break;
1831 	case VMA_END_RESV:
1832 		region_abort(resv, idx, idx + 1);
1833 		ret = 0;
1834 		break;
1835 	default:
1836 		BUG();
1837 	}
1838 
1839 	if (vma->vm_flags & VM_MAYSHARE)
1840 		return ret;
1841 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1842 		/*
1843 		 * In most cases, reserves always exist for private mappings.
1844 		 * However, a file associated with mapping could have been
1845 		 * hole punched or truncated after reserves were consumed.
1846 		 * As subsequent fault on such a range will not use reserves.
1847 		 * Subtle - The reserve map for private mappings has the
1848 		 * opposite meaning than that of shared mappings.  If NO
1849 		 * entry is in the reserve map, it means a reservation exists.
1850 		 * If an entry exists in the reserve map, it means the
1851 		 * reservation has already been consumed.  As a result, the
1852 		 * return value of this routine is the opposite of the
1853 		 * value returned from reserve map manipulation routines above.
1854 		 */
1855 		if (ret)
1856 			return 0;
1857 		else
1858 			return 1;
1859 	}
1860 	else
1861 		return ret < 0 ? ret : 0;
1862 }
1863 
1864 static long vma_needs_reservation(struct hstate *h,
1865 			struct vm_area_struct *vma, unsigned long addr)
1866 {
1867 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1868 }
1869 
1870 static long vma_commit_reservation(struct hstate *h,
1871 			struct vm_area_struct *vma, unsigned long addr)
1872 {
1873 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1874 }
1875 
1876 static void vma_end_reservation(struct hstate *h,
1877 			struct vm_area_struct *vma, unsigned long addr)
1878 {
1879 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1880 }
1881 
1882 struct page *alloc_huge_page(struct vm_area_struct *vma,
1883 				    unsigned long addr, int avoid_reserve)
1884 {
1885 	struct hugepage_subpool *spool = subpool_vma(vma);
1886 	struct hstate *h = hstate_vma(vma);
1887 	struct page *page;
1888 	long map_chg, map_commit;
1889 	long gbl_chg;
1890 	int ret, idx;
1891 	struct hugetlb_cgroup *h_cg;
1892 
1893 	idx = hstate_index(h);
1894 	/*
1895 	 * Examine the region/reserve map to determine if the process
1896 	 * has a reservation for the page to be allocated.  A return
1897 	 * code of zero indicates a reservation exists (no change).
1898 	 */
1899 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1900 	if (map_chg < 0)
1901 		return ERR_PTR(-ENOMEM);
1902 
1903 	/*
1904 	 * Processes that did not create the mapping will have no
1905 	 * reserves as indicated by the region/reserve map. Check
1906 	 * that the allocation will not exceed the subpool limit.
1907 	 * Allocations for MAP_NORESERVE mappings also need to be
1908 	 * checked against any subpool limit.
1909 	 */
1910 	if (map_chg || avoid_reserve) {
1911 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
1912 		if (gbl_chg < 0) {
1913 			vma_end_reservation(h, vma, addr);
1914 			return ERR_PTR(-ENOSPC);
1915 		}
1916 
1917 		/*
1918 		 * Even though there was no reservation in the region/reserve
1919 		 * map, there could be reservations associated with the
1920 		 * subpool that can be used.  This would be indicated if the
1921 		 * return value of hugepage_subpool_get_pages() is zero.
1922 		 * However, if avoid_reserve is specified we still avoid even
1923 		 * the subpool reservations.
1924 		 */
1925 		if (avoid_reserve)
1926 			gbl_chg = 1;
1927 	}
1928 
1929 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1930 	if (ret)
1931 		goto out_subpool_put;
1932 
1933 	spin_lock(&hugetlb_lock);
1934 	/*
1935 	 * glb_chg is passed to indicate whether or not a page must be taken
1936 	 * from the global free pool (global change).  gbl_chg == 0 indicates
1937 	 * a reservation exists for the allocation.
1938 	 */
1939 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1940 	if (!page) {
1941 		spin_unlock(&hugetlb_lock);
1942 		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1943 		if (!page)
1944 			goto out_uncharge_cgroup;
1945 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1946 			SetPagePrivate(page);
1947 			h->resv_huge_pages--;
1948 		}
1949 		spin_lock(&hugetlb_lock);
1950 		list_move(&page->lru, &h->hugepage_activelist);
1951 		/* Fall through */
1952 	}
1953 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1954 	spin_unlock(&hugetlb_lock);
1955 
1956 	set_page_private(page, (unsigned long)spool);
1957 
1958 	map_commit = vma_commit_reservation(h, vma, addr);
1959 	if (unlikely(map_chg > map_commit)) {
1960 		/*
1961 		 * The page was added to the reservation map between
1962 		 * vma_needs_reservation and vma_commit_reservation.
1963 		 * This indicates a race with hugetlb_reserve_pages.
1964 		 * Adjust for the subpool count incremented above AND
1965 		 * in hugetlb_reserve_pages for the same page.  Also,
1966 		 * the reservation count added in hugetlb_reserve_pages
1967 		 * no longer applies.
1968 		 */
1969 		long rsv_adjust;
1970 
1971 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1972 		hugetlb_acct_memory(h, -rsv_adjust);
1973 	}
1974 	return page;
1975 
1976 out_uncharge_cgroup:
1977 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1978 out_subpool_put:
1979 	if (map_chg || avoid_reserve)
1980 		hugepage_subpool_put_pages(spool, 1);
1981 	vma_end_reservation(h, vma, addr);
1982 	return ERR_PTR(-ENOSPC);
1983 }
1984 
1985 /*
1986  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1987  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1988  * where no ERR_VALUE is expected to be returned.
1989  */
1990 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1991 				unsigned long addr, int avoid_reserve)
1992 {
1993 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1994 	if (IS_ERR(page))
1995 		page = NULL;
1996 	return page;
1997 }
1998 
1999 int __weak alloc_bootmem_huge_page(struct hstate *h)
2000 {
2001 	struct huge_bootmem_page *m;
2002 	int nr_nodes, node;
2003 
2004 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2005 		void *addr;
2006 
2007 		addr = memblock_virt_alloc_try_nid_nopanic(
2008 				huge_page_size(h), huge_page_size(h),
2009 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2010 		if (addr) {
2011 			/*
2012 			 * Use the beginning of the huge page to store the
2013 			 * huge_bootmem_page struct (until gather_bootmem
2014 			 * puts them into the mem_map).
2015 			 */
2016 			m = addr;
2017 			goto found;
2018 		}
2019 	}
2020 	return 0;
2021 
2022 found:
2023 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2024 	/* Put them into a private list first because mem_map is not up yet */
2025 	list_add(&m->list, &huge_boot_pages);
2026 	m->hstate = h;
2027 	return 1;
2028 }
2029 
2030 static void __init prep_compound_huge_page(struct page *page,
2031 		unsigned int order)
2032 {
2033 	if (unlikely(order > (MAX_ORDER - 1)))
2034 		prep_compound_gigantic_page(page, order);
2035 	else
2036 		prep_compound_page(page, order);
2037 }
2038 
2039 /* Put bootmem huge pages into the standard lists after mem_map is up */
2040 static void __init gather_bootmem_prealloc(void)
2041 {
2042 	struct huge_bootmem_page *m;
2043 
2044 	list_for_each_entry(m, &huge_boot_pages, list) {
2045 		struct hstate *h = m->hstate;
2046 		struct page *page;
2047 
2048 #ifdef CONFIG_HIGHMEM
2049 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2050 		memblock_free_late(__pa(m),
2051 				   sizeof(struct huge_bootmem_page));
2052 #else
2053 		page = virt_to_page(m);
2054 #endif
2055 		WARN_ON(page_count(page) != 1);
2056 		prep_compound_huge_page(page, h->order);
2057 		WARN_ON(PageReserved(page));
2058 		prep_new_huge_page(h, page, page_to_nid(page));
2059 		/*
2060 		 * If we had gigantic hugepages allocated at boot time, we need
2061 		 * to restore the 'stolen' pages to totalram_pages in order to
2062 		 * fix confusing memory reports from free(1) and another
2063 		 * side-effects, like CommitLimit going negative.
2064 		 */
2065 		if (hstate_is_gigantic(h))
2066 			adjust_managed_page_count(page, 1 << h->order);
2067 	}
2068 }
2069 
2070 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2071 {
2072 	unsigned long i;
2073 
2074 	for (i = 0; i < h->max_huge_pages; ++i) {
2075 		if (hstate_is_gigantic(h)) {
2076 			if (!alloc_bootmem_huge_page(h))
2077 				break;
2078 		} else if (!alloc_fresh_huge_page(h,
2079 					 &node_states[N_MEMORY]))
2080 			break;
2081 	}
2082 	h->max_huge_pages = i;
2083 }
2084 
2085 static void __init hugetlb_init_hstates(void)
2086 {
2087 	struct hstate *h;
2088 
2089 	for_each_hstate(h) {
2090 		if (minimum_order > huge_page_order(h))
2091 			minimum_order = huge_page_order(h);
2092 
2093 		/* oversize hugepages were init'ed in early boot */
2094 		if (!hstate_is_gigantic(h))
2095 			hugetlb_hstate_alloc_pages(h);
2096 	}
2097 	VM_BUG_ON(minimum_order == UINT_MAX);
2098 }
2099 
2100 static char * __init memfmt(char *buf, unsigned long n)
2101 {
2102 	if (n >= (1UL << 30))
2103 		sprintf(buf, "%lu GB", n >> 30);
2104 	else if (n >= (1UL << 20))
2105 		sprintf(buf, "%lu MB", n >> 20);
2106 	else
2107 		sprintf(buf, "%lu KB", n >> 10);
2108 	return buf;
2109 }
2110 
2111 static void __init report_hugepages(void)
2112 {
2113 	struct hstate *h;
2114 
2115 	for_each_hstate(h) {
2116 		char buf[32];
2117 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2118 			memfmt(buf, huge_page_size(h)),
2119 			h->free_huge_pages);
2120 	}
2121 }
2122 
2123 #ifdef CONFIG_HIGHMEM
2124 static void try_to_free_low(struct hstate *h, unsigned long count,
2125 						nodemask_t *nodes_allowed)
2126 {
2127 	int i;
2128 
2129 	if (hstate_is_gigantic(h))
2130 		return;
2131 
2132 	for_each_node_mask(i, *nodes_allowed) {
2133 		struct page *page, *next;
2134 		struct list_head *freel = &h->hugepage_freelists[i];
2135 		list_for_each_entry_safe(page, next, freel, lru) {
2136 			if (count >= h->nr_huge_pages)
2137 				return;
2138 			if (PageHighMem(page))
2139 				continue;
2140 			list_del(&page->lru);
2141 			update_and_free_page(h, page);
2142 			h->free_huge_pages--;
2143 			h->free_huge_pages_node[page_to_nid(page)]--;
2144 		}
2145 	}
2146 }
2147 #else
2148 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2149 						nodemask_t *nodes_allowed)
2150 {
2151 }
2152 #endif
2153 
2154 /*
2155  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2156  * balanced by operating on them in a round-robin fashion.
2157  * Returns 1 if an adjustment was made.
2158  */
2159 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2160 				int delta)
2161 {
2162 	int nr_nodes, node;
2163 
2164 	VM_BUG_ON(delta != -1 && delta != 1);
2165 
2166 	if (delta < 0) {
2167 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2168 			if (h->surplus_huge_pages_node[node])
2169 				goto found;
2170 		}
2171 	} else {
2172 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2173 			if (h->surplus_huge_pages_node[node] <
2174 					h->nr_huge_pages_node[node])
2175 				goto found;
2176 		}
2177 	}
2178 	return 0;
2179 
2180 found:
2181 	h->surplus_huge_pages += delta;
2182 	h->surplus_huge_pages_node[node] += delta;
2183 	return 1;
2184 }
2185 
2186 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2187 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2188 						nodemask_t *nodes_allowed)
2189 {
2190 	unsigned long min_count, ret;
2191 
2192 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2193 		return h->max_huge_pages;
2194 
2195 	/*
2196 	 * Increase the pool size
2197 	 * First take pages out of surplus state.  Then make up the
2198 	 * remaining difference by allocating fresh huge pages.
2199 	 *
2200 	 * We might race with __alloc_buddy_huge_page() here and be unable
2201 	 * to convert a surplus huge page to a normal huge page. That is
2202 	 * not critical, though, it just means the overall size of the
2203 	 * pool might be one hugepage larger than it needs to be, but
2204 	 * within all the constraints specified by the sysctls.
2205 	 */
2206 	spin_lock(&hugetlb_lock);
2207 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2208 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2209 			break;
2210 	}
2211 
2212 	while (count > persistent_huge_pages(h)) {
2213 		/*
2214 		 * If this allocation races such that we no longer need the
2215 		 * page, free_huge_page will handle it by freeing the page
2216 		 * and reducing the surplus.
2217 		 */
2218 		spin_unlock(&hugetlb_lock);
2219 
2220 		/* yield cpu to avoid soft lockup */
2221 		cond_resched();
2222 
2223 		if (hstate_is_gigantic(h))
2224 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2225 		else
2226 			ret = alloc_fresh_huge_page(h, nodes_allowed);
2227 		spin_lock(&hugetlb_lock);
2228 		if (!ret)
2229 			goto out;
2230 
2231 		/* Bail for signals. Probably ctrl-c from user */
2232 		if (signal_pending(current))
2233 			goto out;
2234 	}
2235 
2236 	/*
2237 	 * Decrease the pool size
2238 	 * First return free pages to the buddy allocator (being careful
2239 	 * to keep enough around to satisfy reservations).  Then place
2240 	 * pages into surplus state as needed so the pool will shrink
2241 	 * to the desired size as pages become free.
2242 	 *
2243 	 * By placing pages into the surplus state independent of the
2244 	 * overcommit value, we are allowing the surplus pool size to
2245 	 * exceed overcommit. There are few sane options here. Since
2246 	 * __alloc_buddy_huge_page() is checking the global counter,
2247 	 * though, we'll note that we're not allowed to exceed surplus
2248 	 * and won't grow the pool anywhere else. Not until one of the
2249 	 * sysctls are changed, or the surplus pages go out of use.
2250 	 */
2251 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2252 	min_count = max(count, min_count);
2253 	try_to_free_low(h, min_count, nodes_allowed);
2254 	while (min_count < persistent_huge_pages(h)) {
2255 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2256 			break;
2257 		cond_resched_lock(&hugetlb_lock);
2258 	}
2259 	while (count < persistent_huge_pages(h)) {
2260 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2261 			break;
2262 	}
2263 out:
2264 	ret = persistent_huge_pages(h);
2265 	spin_unlock(&hugetlb_lock);
2266 	return ret;
2267 }
2268 
2269 #define HSTATE_ATTR_RO(_name) \
2270 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2271 
2272 #define HSTATE_ATTR(_name) \
2273 	static struct kobj_attribute _name##_attr = \
2274 		__ATTR(_name, 0644, _name##_show, _name##_store)
2275 
2276 static struct kobject *hugepages_kobj;
2277 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2278 
2279 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2280 
2281 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2282 {
2283 	int i;
2284 
2285 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2286 		if (hstate_kobjs[i] == kobj) {
2287 			if (nidp)
2288 				*nidp = NUMA_NO_NODE;
2289 			return &hstates[i];
2290 		}
2291 
2292 	return kobj_to_node_hstate(kobj, nidp);
2293 }
2294 
2295 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2296 					struct kobj_attribute *attr, char *buf)
2297 {
2298 	struct hstate *h;
2299 	unsigned long nr_huge_pages;
2300 	int nid;
2301 
2302 	h = kobj_to_hstate(kobj, &nid);
2303 	if (nid == NUMA_NO_NODE)
2304 		nr_huge_pages = h->nr_huge_pages;
2305 	else
2306 		nr_huge_pages = h->nr_huge_pages_node[nid];
2307 
2308 	return sprintf(buf, "%lu\n", nr_huge_pages);
2309 }
2310 
2311 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2312 					   struct hstate *h, int nid,
2313 					   unsigned long count, size_t len)
2314 {
2315 	int err;
2316 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2317 
2318 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2319 		err = -EINVAL;
2320 		goto out;
2321 	}
2322 
2323 	if (nid == NUMA_NO_NODE) {
2324 		/*
2325 		 * global hstate attribute
2326 		 */
2327 		if (!(obey_mempolicy &&
2328 				init_nodemask_of_mempolicy(nodes_allowed))) {
2329 			NODEMASK_FREE(nodes_allowed);
2330 			nodes_allowed = &node_states[N_MEMORY];
2331 		}
2332 	} else if (nodes_allowed) {
2333 		/*
2334 		 * per node hstate attribute: adjust count to global,
2335 		 * but restrict alloc/free to the specified node.
2336 		 */
2337 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2338 		init_nodemask_of_node(nodes_allowed, nid);
2339 	} else
2340 		nodes_allowed = &node_states[N_MEMORY];
2341 
2342 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2343 
2344 	if (nodes_allowed != &node_states[N_MEMORY])
2345 		NODEMASK_FREE(nodes_allowed);
2346 
2347 	return len;
2348 out:
2349 	NODEMASK_FREE(nodes_allowed);
2350 	return err;
2351 }
2352 
2353 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2354 					 struct kobject *kobj, const char *buf,
2355 					 size_t len)
2356 {
2357 	struct hstate *h;
2358 	unsigned long count;
2359 	int nid;
2360 	int err;
2361 
2362 	err = kstrtoul(buf, 10, &count);
2363 	if (err)
2364 		return err;
2365 
2366 	h = kobj_to_hstate(kobj, &nid);
2367 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2368 }
2369 
2370 static ssize_t nr_hugepages_show(struct kobject *kobj,
2371 				       struct kobj_attribute *attr, char *buf)
2372 {
2373 	return nr_hugepages_show_common(kobj, attr, buf);
2374 }
2375 
2376 static ssize_t nr_hugepages_store(struct kobject *kobj,
2377 	       struct kobj_attribute *attr, const char *buf, size_t len)
2378 {
2379 	return nr_hugepages_store_common(false, kobj, buf, len);
2380 }
2381 HSTATE_ATTR(nr_hugepages);
2382 
2383 #ifdef CONFIG_NUMA
2384 
2385 /*
2386  * hstate attribute for optionally mempolicy-based constraint on persistent
2387  * huge page alloc/free.
2388  */
2389 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2390 				       struct kobj_attribute *attr, char *buf)
2391 {
2392 	return nr_hugepages_show_common(kobj, attr, buf);
2393 }
2394 
2395 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2396 	       struct kobj_attribute *attr, const char *buf, size_t len)
2397 {
2398 	return nr_hugepages_store_common(true, kobj, buf, len);
2399 }
2400 HSTATE_ATTR(nr_hugepages_mempolicy);
2401 #endif
2402 
2403 
2404 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2405 					struct kobj_attribute *attr, char *buf)
2406 {
2407 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2408 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2409 }
2410 
2411 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2412 		struct kobj_attribute *attr, const char *buf, size_t count)
2413 {
2414 	int err;
2415 	unsigned long input;
2416 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2417 
2418 	if (hstate_is_gigantic(h))
2419 		return -EINVAL;
2420 
2421 	err = kstrtoul(buf, 10, &input);
2422 	if (err)
2423 		return err;
2424 
2425 	spin_lock(&hugetlb_lock);
2426 	h->nr_overcommit_huge_pages = input;
2427 	spin_unlock(&hugetlb_lock);
2428 
2429 	return count;
2430 }
2431 HSTATE_ATTR(nr_overcommit_hugepages);
2432 
2433 static ssize_t free_hugepages_show(struct kobject *kobj,
2434 					struct kobj_attribute *attr, char *buf)
2435 {
2436 	struct hstate *h;
2437 	unsigned long free_huge_pages;
2438 	int nid;
2439 
2440 	h = kobj_to_hstate(kobj, &nid);
2441 	if (nid == NUMA_NO_NODE)
2442 		free_huge_pages = h->free_huge_pages;
2443 	else
2444 		free_huge_pages = h->free_huge_pages_node[nid];
2445 
2446 	return sprintf(buf, "%lu\n", free_huge_pages);
2447 }
2448 HSTATE_ATTR_RO(free_hugepages);
2449 
2450 static ssize_t resv_hugepages_show(struct kobject *kobj,
2451 					struct kobj_attribute *attr, char *buf)
2452 {
2453 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2454 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2455 }
2456 HSTATE_ATTR_RO(resv_hugepages);
2457 
2458 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2459 					struct kobj_attribute *attr, char *buf)
2460 {
2461 	struct hstate *h;
2462 	unsigned long surplus_huge_pages;
2463 	int nid;
2464 
2465 	h = kobj_to_hstate(kobj, &nid);
2466 	if (nid == NUMA_NO_NODE)
2467 		surplus_huge_pages = h->surplus_huge_pages;
2468 	else
2469 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2470 
2471 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2472 }
2473 HSTATE_ATTR_RO(surplus_hugepages);
2474 
2475 static struct attribute *hstate_attrs[] = {
2476 	&nr_hugepages_attr.attr,
2477 	&nr_overcommit_hugepages_attr.attr,
2478 	&free_hugepages_attr.attr,
2479 	&resv_hugepages_attr.attr,
2480 	&surplus_hugepages_attr.attr,
2481 #ifdef CONFIG_NUMA
2482 	&nr_hugepages_mempolicy_attr.attr,
2483 #endif
2484 	NULL,
2485 };
2486 
2487 static struct attribute_group hstate_attr_group = {
2488 	.attrs = hstate_attrs,
2489 };
2490 
2491 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2492 				    struct kobject **hstate_kobjs,
2493 				    struct attribute_group *hstate_attr_group)
2494 {
2495 	int retval;
2496 	int hi = hstate_index(h);
2497 
2498 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2499 	if (!hstate_kobjs[hi])
2500 		return -ENOMEM;
2501 
2502 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2503 	if (retval)
2504 		kobject_put(hstate_kobjs[hi]);
2505 
2506 	return retval;
2507 }
2508 
2509 static void __init hugetlb_sysfs_init(void)
2510 {
2511 	struct hstate *h;
2512 	int err;
2513 
2514 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2515 	if (!hugepages_kobj)
2516 		return;
2517 
2518 	for_each_hstate(h) {
2519 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2520 					 hstate_kobjs, &hstate_attr_group);
2521 		if (err)
2522 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2523 	}
2524 }
2525 
2526 #ifdef CONFIG_NUMA
2527 
2528 /*
2529  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2530  * with node devices in node_devices[] using a parallel array.  The array
2531  * index of a node device or _hstate == node id.
2532  * This is here to avoid any static dependency of the node device driver, in
2533  * the base kernel, on the hugetlb module.
2534  */
2535 struct node_hstate {
2536 	struct kobject		*hugepages_kobj;
2537 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2538 };
2539 static struct node_hstate node_hstates[MAX_NUMNODES];
2540 
2541 /*
2542  * A subset of global hstate attributes for node devices
2543  */
2544 static struct attribute *per_node_hstate_attrs[] = {
2545 	&nr_hugepages_attr.attr,
2546 	&free_hugepages_attr.attr,
2547 	&surplus_hugepages_attr.attr,
2548 	NULL,
2549 };
2550 
2551 static struct attribute_group per_node_hstate_attr_group = {
2552 	.attrs = per_node_hstate_attrs,
2553 };
2554 
2555 /*
2556  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2557  * Returns node id via non-NULL nidp.
2558  */
2559 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2560 {
2561 	int nid;
2562 
2563 	for (nid = 0; nid < nr_node_ids; nid++) {
2564 		struct node_hstate *nhs = &node_hstates[nid];
2565 		int i;
2566 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2567 			if (nhs->hstate_kobjs[i] == kobj) {
2568 				if (nidp)
2569 					*nidp = nid;
2570 				return &hstates[i];
2571 			}
2572 	}
2573 
2574 	BUG();
2575 	return NULL;
2576 }
2577 
2578 /*
2579  * Unregister hstate attributes from a single node device.
2580  * No-op if no hstate attributes attached.
2581  */
2582 static void hugetlb_unregister_node(struct node *node)
2583 {
2584 	struct hstate *h;
2585 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2586 
2587 	if (!nhs->hugepages_kobj)
2588 		return;		/* no hstate attributes */
2589 
2590 	for_each_hstate(h) {
2591 		int idx = hstate_index(h);
2592 		if (nhs->hstate_kobjs[idx]) {
2593 			kobject_put(nhs->hstate_kobjs[idx]);
2594 			nhs->hstate_kobjs[idx] = NULL;
2595 		}
2596 	}
2597 
2598 	kobject_put(nhs->hugepages_kobj);
2599 	nhs->hugepages_kobj = NULL;
2600 }
2601 
2602 
2603 /*
2604  * Register hstate attributes for a single node device.
2605  * No-op if attributes already registered.
2606  */
2607 static void hugetlb_register_node(struct node *node)
2608 {
2609 	struct hstate *h;
2610 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2611 	int err;
2612 
2613 	if (nhs->hugepages_kobj)
2614 		return;		/* already allocated */
2615 
2616 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2617 							&node->dev.kobj);
2618 	if (!nhs->hugepages_kobj)
2619 		return;
2620 
2621 	for_each_hstate(h) {
2622 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2623 						nhs->hstate_kobjs,
2624 						&per_node_hstate_attr_group);
2625 		if (err) {
2626 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2627 				h->name, node->dev.id);
2628 			hugetlb_unregister_node(node);
2629 			break;
2630 		}
2631 	}
2632 }
2633 
2634 /*
2635  * hugetlb init time:  register hstate attributes for all registered node
2636  * devices of nodes that have memory.  All on-line nodes should have
2637  * registered their associated device by this time.
2638  */
2639 static void __init hugetlb_register_all_nodes(void)
2640 {
2641 	int nid;
2642 
2643 	for_each_node_state(nid, N_MEMORY) {
2644 		struct node *node = node_devices[nid];
2645 		if (node->dev.id == nid)
2646 			hugetlb_register_node(node);
2647 	}
2648 
2649 	/*
2650 	 * Let the node device driver know we're here so it can
2651 	 * [un]register hstate attributes on node hotplug.
2652 	 */
2653 	register_hugetlbfs_with_node(hugetlb_register_node,
2654 				     hugetlb_unregister_node);
2655 }
2656 #else	/* !CONFIG_NUMA */
2657 
2658 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2659 {
2660 	BUG();
2661 	if (nidp)
2662 		*nidp = -1;
2663 	return NULL;
2664 }
2665 
2666 static void hugetlb_register_all_nodes(void) { }
2667 
2668 #endif
2669 
2670 static int __init hugetlb_init(void)
2671 {
2672 	int i;
2673 
2674 	if (!hugepages_supported())
2675 		return 0;
2676 
2677 	if (!size_to_hstate(default_hstate_size)) {
2678 		default_hstate_size = HPAGE_SIZE;
2679 		if (!size_to_hstate(default_hstate_size))
2680 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2681 	}
2682 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2683 	if (default_hstate_max_huge_pages) {
2684 		if (!default_hstate.max_huge_pages)
2685 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2686 	}
2687 
2688 	hugetlb_init_hstates();
2689 	gather_bootmem_prealloc();
2690 	report_hugepages();
2691 
2692 	hugetlb_sysfs_init();
2693 	hugetlb_register_all_nodes();
2694 	hugetlb_cgroup_file_init();
2695 
2696 #ifdef CONFIG_SMP
2697 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2698 #else
2699 	num_fault_mutexes = 1;
2700 #endif
2701 	hugetlb_fault_mutex_table =
2702 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2703 	BUG_ON(!hugetlb_fault_mutex_table);
2704 
2705 	for (i = 0; i < num_fault_mutexes; i++)
2706 		mutex_init(&hugetlb_fault_mutex_table[i]);
2707 	return 0;
2708 }
2709 subsys_initcall(hugetlb_init);
2710 
2711 /* Should be called on processing a hugepagesz=... option */
2712 void __init hugetlb_bad_size(void)
2713 {
2714 	parsed_valid_hugepagesz = false;
2715 }
2716 
2717 void __init hugetlb_add_hstate(unsigned int order)
2718 {
2719 	struct hstate *h;
2720 	unsigned long i;
2721 
2722 	if (size_to_hstate(PAGE_SIZE << order)) {
2723 		pr_warn("hugepagesz= specified twice, ignoring\n");
2724 		return;
2725 	}
2726 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2727 	BUG_ON(order == 0);
2728 	h = &hstates[hugetlb_max_hstate++];
2729 	h->order = order;
2730 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2731 	h->nr_huge_pages = 0;
2732 	h->free_huge_pages = 0;
2733 	for (i = 0; i < MAX_NUMNODES; ++i)
2734 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2735 	INIT_LIST_HEAD(&h->hugepage_activelist);
2736 	h->next_nid_to_alloc = first_memory_node;
2737 	h->next_nid_to_free = first_memory_node;
2738 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2739 					huge_page_size(h)/1024);
2740 
2741 	parsed_hstate = h;
2742 }
2743 
2744 static int __init hugetlb_nrpages_setup(char *s)
2745 {
2746 	unsigned long *mhp;
2747 	static unsigned long *last_mhp;
2748 
2749 	if (!parsed_valid_hugepagesz) {
2750 		pr_warn("hugepages = %s preceded by "
2751 			"an unsupported hugepagesz, ignoring\n", s);
2752 		parsed_valid_hugepagesz = true;
2753 		return 1;
2754 	}
2755 	/*
2756 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2757 	 * so this hugepages= parameter goes to the "default hstate".
2758 	 */
2759 	else if (!hugetlb_max_hstate)
2760 		mhp = &default_hstate_max_huge_pages;
2761 	else
2762 		mhp = &parsed_hstate->max_huge_pages;
2763 
2764 	if (mhp == last_mhp) {
2765 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2766 		return 1;
2767 	}
2768 
2769 	if (sscanf(s, "%lu", mhp) <= 0)
2770 		*mhp = 0;
2771 
2772 	/*
2773 	 * Global state is always initialized later in hugetlb_init.
2774 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2775 	 * use the bootmem allocator.
2776 	 */
2777 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2778 		hugetlb_hstate_alloc_pages(parsed_hstate);
2779 
2780 	last_mhp = mhp;
2781 
2782 	return 1;
2783 }
2784 __setup("hugepages=", hugetlb_nrpages_setup);
2785 
2786 static int __init hugetlb_default_setup(char *s)
2787 {
2788 	default_hstate_size = memparse(s, &s);
2789 	return 1;
2790 }
2791 __setup("default_hugepagesz=", hugetlb_default_setup);
2792 
2793 static unsigned int cpuset_mems_nr(unsigned int *array)
2794 {
2795 	int node;
2796 	unsigned int nr = 0;
2797 
2798 	for_each_node_mask(node, cpuset_current_mems_allowed)
2799 		nr += array[node];
2800 
2801 	return nr;
2802 }
2803 
2804 #ifdef CONFIG_SYSCTL
2805 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2806 			 struct ctl_table *table, int write,
2807 			 void __user *buffer, size_t *length, loff_t *ppos)
2808 {
2809 	struct hstate *h = &default_hstate;
2810 	unsigned long tmp = h->max_huge_pages;
2811 	int ret;
2812 
2813 	if (!hugepages_supported())
2814 		return -EOPNOTSUPP;
2815 
2816 	table->data = &tmp;
2817 	table->maxlen = sizeof(unsigned long);
2818 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2819 	if (ret)
2820 		goto out;
2821 
2822 	if (write)
2823 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2824 						  NUMA_NO_NODE, tmp, *length);
2825 out:
2826 	return ret;
2827 }
2828 
2829 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2830 			  void __user *buffer, size_t *length, loff_t *ppos)
2831 {
2832 
2833 	return hugetlb_sysctl_handler_common(false, table, write,
2834 							buffer, length, ppos);
2835 }
2836 
2837 #ifdef CONFIG_NUMA
2838 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2839 			  void __user *buffer, size_t *length, loff_t *ppos)
2840 {
2841 	return hugetlb_sysctl_handler_common(true, table, write,
2842 							buffer, length, ppos);
2843 }
2844 #endif /* CONFIG_NUMA */
2845 
2846 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2847 			void __user *buffer,
2848 			size_t *length, loff_t *ppos)
2849 {
2850 	struct hstate *h = &default_hstate;
2851 	unsigned long tmp;
2852 	int ret;
2853 
2854 	if (!hugepages_supported())
2855 		return -EOPNOTSUPP;
2856 
2857 	tmp = h->nr_overcommit_huge_pages;
2858 
2859 	if (write && hstate_is_gigantic(h))
2860 		return -EINVAL;
2861 
2862 	table->data = &tmp;
2863 	table->maxlen = sizeof(unsigned long);
2864 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2865 	if (ret)
2866 		goto out;
2867 
2868 	if (write) {
2869 		spin_lock(&hugetlb_lock);
2870 		h->nr_overcommit_huge_pages = tmp;
2871 		spin_unlock(&hugetlb_lock);
2872 	}
2873 out:
2874 	return ret;
2875 }
2876 
2877 #endif /* CONFIG_SYSCTL */
2878 
2879 void hugetlb_report_meminfo(struct seq_file *m)
2880 {
2881 	struct hstate *h = &default_hstate;
2882 	if (!hugepages_supported())
2883 		return;
2884 	seq_printf(m,
2885 			"HugePages_Total:   %5lu\n"
2886 			"HugePages_Free:    %5lu\n"
2887 			"HugePages_Rsvd:    %5lu\n"
2888 			"HugePages_Surp:    %5lu\n"
2889 			"Hugepagesize:   %8lu kB\n",
2890 			h->nr_huge_pages,
2891 			h->free_huge_pages,
2892 			h->resv_huge_pages,
2893 			h->surplus_huge_pages,
2894 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2895 }
2896 
2897 int hugetlb_report_node_meminfo(int nid, char *buf)
2898 {
2899 	struct hstate *h = &default_hstate;
2900 	if (!hugepages_supported())
2901 		return 0;
2902 	return sprintf(buf,
2903 		"Node %d HugePages_Total: %5u\n"
2904 		"Node %d HugePages_Free:  %5u\n"
2905 		"Node %d HugePages_Surp:  %5u\n",
2906 		nid, h->nr_huge_pages_node[nid],
2907 		nid, h->free_huge_pages_node[nid],
2908 		nid, h->surplus_huge_pages_node[nid]);
2909 }
2910 
2911 void hugetlb_show_meminfo(void)
2912 {
2913 	struct hstate *h;
2914 	int nid;
2915 
2916 	if (!hugepages_supported())
2917 		return;
2918 
2919 	for_each_node_state(nid, N_MEMORY)
2920 		for_each_hstate(h)
2921 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2922 				nid,
2923 				h->nr_huge_pages_node[nid],
2924 				h->free_huge_pages_node[nid],
2925 				h->surplus_huge_pages_node[nid],
2926 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2927 }
2928 
2929 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2930 {
2931 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2932 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2933 }
2934 
2935 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2936 unsigned long hugetlb_total_pages(void)
2937 {
2938 	struct hstate *h;
2939 	unsigned long nr_total_pages = 0;
2940 
2941 	for_each_hstate(h)
2942 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2943 	return nr_total_pages;
2944 }
2945 
2946 static int hugetlb_acct_memory(struct hstate *h, long delta)
2947 {
2948 	int ret = -ENOMEM;
2949 
2950 	spin_lock(&hugetlb_lock);
2951 	/*
2952 	 * When cpuset is configured, it breaks the strict hugetlb page
2953 	 * reservation as the accounting is done on a global variable. Such
2954 	 * reservation is completely rubbish in the presence of cpuset because
2955 	 * the reservation is not checked against page availability for the
2956 	 * current cpuset. Application can still potentially OOM'ed by kernel
2957 	 * with lack of free htlb page in cpuset that the task is in.
2958 	 * Attempt to enforce strict accounting with cpuset is almost
2959 	 * impossible (or too ugly) because cpuset is too fluid that
2960 	 * task or memory node can be dynamically moved between cpusets.
2961 	 *
2962 	 * The change of semantics for shared hugetlb mapping with cpuset is
2963 	 * undesirable. However, in order to preserve some of the semantics,
2964 	 * we fall back to check against current free page availability as
2965 	 * a best attempt and hopefully to minimize the impact of changing
2966 	 * semantics that cpuset has.
2967 	 */
2968 	if (delta > 0) {
2969 		if (gather_surplus_pages(h, delta) < 0)
2970 			goto out;
2971 
2972 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2973 			return_unused_surplus_pages(h, delta);
2974 			goto out;
2975 		}
2976 	}
2977 
2978 	ret = 0;
2979 	if (delta < 0)
2980 		return_unused_surplus_pages(h, (unsigned long) -delta);
2981 
2982 out:
2983 	spin_unlock(&hugetlb_lock);
2984 	return ret;
2985 }
2986 
2987 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2988 {
2989 	struct resv_map *resv = vma_resv_map(vma);
2990 
2991 	/*
2992 	 * This new VMA should share its siblings reservation map if present.
2993 	 * The VMA will only ever have a valid reservation map pointer where
2994 	 * it is being copied for another still existing VMA.  As that VMA
2995 	 * has a reference to the reservation map it cannot disappear until
2996 	 * after this open call completes.  It is therefore safe to take a
2997 	 * new reference here without additional locking.
2998 	 */
2999 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3000 		kref_get(&resv->refs);
3001 }
3002 
3003 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3004 {
3005 	struct hstate *h = hstate_vma(vma);
3006 	struct resv_map *resv = vma_resv_map(vma);
3007 	struct hugepage_subpool *spool = subpool_vma(vma);
3008 	unsigned long reserve, start, end;
3009 	long gbl_reserve;
3010 
3011 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3012 		return;
3013 
3014 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3015 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3016 
3017 	reserve = (end - start) - region_count(resv, start, end);
3018 
3019 	kref_put(&resv->refs, resv_map_release);
3020 
3021 	if (reserve) {
3022 		/*
3023 		 * Decrement reserve counts.  The global reserve count may be
3024 		 * adjusted if the subpool has a minimum size.
3025 		 */
3026 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3027 		hugetlb_acct_memory(h, -gbl_reserve);
3028 	}
3029 }
3030 
3031 /*
3032  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3033  * handle_mm_fault() to try to instantiate regular-sized pages in the
3034  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3035  * this far.
3036  */
3037 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3038 {
3039 	BUG();
3040 	return 0;
3041 }
3042 
3043 const struct vm_operations_struct hugetlb_vm_ops = {
3044 	.fault = hugetlb_vm_op_fault,
3045 	.open = hugetlb_vm_op_open,
3046 	.close = hugetlb_vm_op_close,
3047 };
3048 
3049 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3050 				int writable)
3051 {
3052 	pte_t entry;
3053 
3054 	if (writable) {
3055 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3056 					 vma->vm_page_prot)));
3057 	} else {
3058 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3059 					   vma->vm_page_prot));
3060 	}
3061 	entry = pte_mkyoung(entry);
3062 	entry = pte_mkhuge(entry);
3063 	entry = arch_make_huge_pte(entry, vma, page, writable);
3064 
3065 	return entry;
3066 }
3067 
3068 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3069 				   unsigned long address, pte_t *ptep)
3070 {
3071 	pte_t entry;
3072 
3073 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3074 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3075 		update_mmu_cache(vma, address, ptep);
3076 }
3077 
3078 static int is_hugetlb_entry_migration(pte_t pte)
3079 {
3080 	swp_entry_t swp;
3081 
3082 	if (huge_pte_none(pte) || pte_present(pte))
3083 		return 0;
3084 	swp = pte_to_swp_entry(pte);
3085 	if (non_swap_entry(swp) && is_migration_entry(swp))
3086 		return 1;
3087 	else
3088 		return 0;
3089 }
3090 
3091 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3092 {
3093 	swp_entry_t swp;
3094 
3095 	if (huge_pte_none(pte) || pte_present(pte))
3096 		return 0;
3097 	swp = pte_to_swp_entry(pte);
3098 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3099 		return 1;
3100 	else
3101 		return 0;
3102 }
3103 
3104 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3105 			    struct vm_area_struct *vma)
3106 {
3107 	pte_t *src_pte, *dst_pte, entry;
3108 	struct page *ptepage;
3109 	unsigned long addr;
3110 	int cow;
3111 	struct hstate *h = hstate_vma(vma);
3112 	unsigned long sz = huge_page_size(h);
3113 	unsigned long mmun_start;	/* For mmu_notifiers */
3114 	unsigned long mmun_end;		/* For mmu_notifiers */
3115 	int ret = 0;
3116 
3117 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3118 
3119 	mmun_start = vma->vm_start;
3120 	mmun_end = vma->vm_end;
3121 	if (cow)
3122 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3123 
3124 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3125 		spinlock_t *src_ptl, *dst_ptl;
3126 		src_pte = huge_pte_offset(src, addr);
3127 		if (!src_pte)
3128 			continue;
3129 		dst_pte = huge_pte_alloc(dst, addr, sz);
3130 		if (!dst_pte) {
3131 			ret = -ENOMEM;
3132 			break;
3133 		}
3134 
3135 		/* If the pagetables are shared don't copy or take references */
3136 		if (dst_pte == src_pte)
3137 			continue;
3138 
3139 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3140 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3141 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3142 		entry = huge_ptep_get(src_pte);
3143 		if (huge_pte_none(entry)) { /* skip none entry */
3144 			;
3145 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3146 				    is_hugetlb_entry_hwpoisoned(entry))) {
3147 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3148 
3149 			if (is_write_migration_entry(swp_entry) && cow) {
3150 				/*
3151 				 * COW mappings require pages in both
3152 				 * parent and child to be set to read.
3153 				 */
3154 				make_migration_entry_read(&swp_entry);
3155 				entry = swp_entry_to_pte(swp_entry);
3156 				set_huge_pte_at(src, addr, src_pte, entry);
3157 			}
3158 			set_huge_pte_at(dst, addr, dst_pte, entry);
3159 		} else {
3160 			if (cow) {
3161 				huge_ptep_set_wrprotect(src, addr, src_pte);
3162 				mmu_notifier_invalidate_range(src, mmun_start,
3163 								   mmun_end);
3164 			}
3165 			entry = huge_ptep_get(src_pte);
3166 			ptepage = pte_page(entry);
3167 			get_page(ptepage);
3168 			page_dup_rmap(ptepage, true);
3169 			set_huge_pte_at(dst, addr, dst_pte, entry);
3170 			hugetlb_count_add(pages_per_huge_page(h), dst);
3171 		}
3172 		spin_unlock(src_ptl);
3173 		spin_unlock(dst_ptl);
3174 	}
3175 
3176 	if (cow)
3177 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3178 
3179 	return ret;
3180 }
3181 
3182 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3183 			    unsigned long start, unsigned long end,
3184 			    struct page *ref_page)
3185 {
3186 	struct mm_struct *mm = vma->vm_mm;
3187 	unsigned long address;
3188 	pte_t *ptep;
3189 	pte_t pte;
3190 	spinlock_t *ptl;
3191 	struct page *page;
3192 	struct hstate *h = hstate_vma(vma);
3193 	unsigned long sz = huge_page_size(h);
3194 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3195 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3196 
3197 	WARN_ON(!is_vm_hugetlb_page(vma));
3198 	BUG_ON(start & ~huge_page_mask(h));
3199 	BUG_ON(end & ~huge_page_mask(h));
3200 
3201 	tlb_start_vma(tlb, vma);
3202 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3203 	address = start;
3204 	for (; address < end; address += sz) {
3205 		ptep = huge_pte_offset(mm, address);
3206 		if (!ptep)
3207 			continue;
3208 
3209 		ptl = huge_pte_lock(h, mm, ptep);
3210 		if (huge_pmd_unshare(mm, &address, ptep)) {
3211 			spin_unlock(ptl);
3212 			continue;
3213 		}
3214 
3215 		pte = huge_ptep_get(ptep);
3216 		if (huge_pte_none(pte)) {
3217 			spin_unlock(ptl);
3218 			continue;
3219 		}
3220 
3221 		/*
3222 		 * Migrating hugepage or HWPoisoned hugepage is already
3223 		 * unmapped and its refcount is dropped, so just clear pte here.
3224 		 */
3225 		if (unlikely(!pte_present(pte))) {
3226 			huge_pte_clear(mm, address, ptep);
3227 			spin_unlock(ptl);
3228 			continue;
3229 		}
3230 
3231 		page = pte_page(pte);
3232 		/*
3233 		 * If a reference page is supplied, it is because a specific
3234 		 * page is being unmapped, not a range. Ensure the page we
3235 		 * are about to unmap is the actual page of interest.
3236 		 */
3237 		if (ref_page) {
3238 			if (page != ref_page) {
3239 				spin_unlock(ptl);
3240 				continue;
3241 			}
3242 			/*
3243 			 * Mark the VMA as having unmapped its page so that
3244 			 * future faults in this VMA will fail rather than
3245 			 * looking like data was lost
3246 			 */
3247 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3248 		}
3249 
3250 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3251 		tlb_remove_tlb_entry(tlb, ptep, address);
3252 		if (huge_pte_dirty(pte))
3253 			set_page_dirty(page);
3254 
3255 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3256 		page_remove_rmap(page, true);
3257 
3258 		spin_unlock(ptl);
3259 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3260 		/*
3261 		 * Bail out after unmapping reference page if supplied
3262 		 */
3263 		if (ref_page)
3264 			break;
3265 	}
3266 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3267 	tlb_end_vma(tlb, vma);
3268 }
3269 
3270 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3271 			  struct vm_area_struct *vma, unsigned long start,
3272 			  unsigned long end, struct page *ref_page)
3273 {
3274 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3275 
3276 	/*
3277 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3278 	 * test will fail on a vma being torn down, and not grab a page table
3279 	 * on its way out.  We're lucky that the flag has such an appropriate
3280 	 * name, and can in fact be safely cleared here. We could clear it
3281 	 * before the __unmap_hugepage_range above, but all that's necessary
3282 	 * is to clear it before releasing the i_mmap_rwsem. This works
3283 	 * because in the context this is called, the VMA is about to be
3284 	 * destroyed and the i_mmap_rwsem is held.
3285 	 */
3286 	vma->vm_flags &= ~VM_MAYSHARE;
3287 }
3288 
3289 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3290 			  unsigned long end, struct page *ref_page)
3291 {
3292 	struct mm_struct *mm;
3293 	struct mmu_gather tlb;
3294 
3295 	mm = vma->vm_mm;
3296 
3297 	tlb_gather_mmu(&tlb, mm, start, end);
3298 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3299 	tlb_finish_mmu(&tlb, start, end);
3300 }
3301 
3302 /*
3303  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3304  * mappping it owns the reserve page for. The intention is to unmap the page
3305  * from other VMAs and let the children be SIGKILLed if they are faulting the
3306  * same region.
3307  */
3308 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3309 			      struct page *page, unsigned long address)
3310 {
3311 	struct hstate *h = hstate_vma(vma);
3312 	struct vm_area_struct *iter_vma;
3313 	struct address_space *mapping;
3314 	pgoff_t pgoff;
3315 
3316 	/*
3317 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3318 	 * from page cache lookup which is in HPAGE_SIZE units.
3319 	 */
3320 	address = address & huge_page_mask(h);
3321 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3322 			vma->vm_pgoff;
3323 	mapping = vma->vm_file->f_mapping;
3324 
3325 	/*
3326 	 * Take the mapping lock for the duration of the table walk. As
3327 	 * this mapping should be shared between all the VMAs,
3328 	 * __unmap_hugepage_range() is called as the lock is already held
3329 	 */
3330 	i_mmap_lock_write(mapping);
3331 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3332 		/* Do not unmap the current VMA */
3333 		if (iter_vma == vma)
3334 			continue;
3335 
3336 		/*
3337 		 * Shared VMAs have their own reserves and do not affect
3338 		 * MAP_PRIVATE accounting but it is possible that a shared
3339 		 * VMA is using the same page so check and skip such VMAs.
3340 		 */
3341 		if (iter_vma->vm_flags & VM_MAYSHARE)
3342 			continue;
3343 
3344 		/*
3345 		 * Unmap the page from other VMAs without their own reserves.
3346 		 * They get marked to be SIGKILLed if they fault in these
3347 		 * areas. This is because a future no-page fault on this VMA
3348 		 * could insert a zeroed page instead of the data existing
3349 		 * from the time of fork. This would look like data corruption
3350 		 */
3351 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3352 			unmap_hugepage_range(iter_vma, address,
3353 					     address + huge_page_size(h), page);
3354 	}
3355 	i_mmap_unlock_write(mapping);
3356 }
3357 
3358 /*
3359  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3360  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3361  * cannot race with other handlers or page migration.
3362  * Keep the pte_same checks anyway to make transition from the mutex easier.
3363  */
3364 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3365 			unsigned long address, pte_t *ptep, pte_t pte,
3366 			struct page *pagecache_page, spinlock_t *ptl)
3367 {
3368 	struct hstate *h = hstate_vma(vma);
3369 	struct page *old_page, *new_page;
3370 	int ret = 0, outside_reserve = 0;
3371 	unsigned long mmun_start;	/* For mmu_notifiers */
3372 	unsigned long mmun_end;		/* For mmu_notifiers */
3373 
3374 	old_page = pte_page(pte);
3375 
3376 retry_avoidcopy:
3377 	/* If no-one else is actually using this page, avoid the copy
3378 	 * and just make the page writable */
3379 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3380 		page_move_anon_rmap(old_page, vma);
3381 		set_huge_ptep_writable(vma, address, ptep);
3382 		return 0;
3383 	}
3384 
3385 	/*
3386 	 * If the process that created a MAP_PRIVATE mapping is about to
3387 	 * perform a COW due to a shared page count, attempt to satisfy
3388 	 * the allocation without using the existing reserves. The pagecache
3389 	 * page is used to determine if the reserve at this address was
3390 	 * consumed or not. If reserves were used, a partial faulted mapping
3391 	 * at the time of fork() could consume its reserves on COW instead
3392 	 * of the full address range.
3393 	 */
3394 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3395 			old_page != pagecache_page)
3396 		outside_reserve = 1;
3397 
3398 	get_page(old_page);
3399 
3400 	/*
3401 	 * Drop page table lock as buddy allocator may be called. It will
3402 	 * be acquired again before returning to the caller, as expected.
3403 	 */
3404 	spin_unlock(ptl);
3405 	new_page = alloc_huge_page(vma, address, outside_reserve);
3406 
3407 	if (IS_ERR(new_page)) {
3408 		/*
3409 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3410 		 * it is due to references held by a child and an insufficient
3411 		 * huge page pool. To guarantee the original mappers
3412 		 * reliability, unmap the page from child processes. The child
3413 		 * may get SIGKILLed if it later faults.
3414 		 */
3415 		if (outside_reserve) {
3416 			put_page(old_page);
3417 			BUG_ON(huge_pte_none(pte));
3418 			unmap_ref_private(mm, vma, old_page, address);
3419 			BUG_ON(huge_pte_none(pte));
3420 			spin_lock(ptl);
3421 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3422 			if (likely(ptep &&
3423 				   pte_same(huge_ptep_get(ptep), pte)))
3424 				goto retry_avoidcopy;
3425 			/*
3426 			 * race occurs while re-acquiring page table
3427 			 * lock, and our job is done.
3428 			 */
3429 			return 0;
3430 		}
3431 
3432 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3433 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3434 		goto out_release_old;
3435 	}
3436 
3437 	/*
3438 	 * When the original hugepage is shared one, it does not have
3439 	 * anon_vma prepared.
3440 	 */
3441 	if (unlikely(anon_vma_prepare(vma))) {
3442 		ret = VM_FAULT_OOM;
3443 		goto out_release_all;
3444 	}
3445 
3446 	copy_user_huge_page(new_page, old_page, address, vma,
3447 			    pages_per_huge_page(h));
3448 	__SetPageUptodate(new_page);
3449 	set_page_huge_active(new_page);
3450 
3451 	mmun_start = address & huge_page_mask(h);
3452 	mmun_end = mmun_start + huge_page_size(h);
3453 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3454 
3455 	/*
3456 	 * Retake the page table lock to check for racing updates
3457 	 * before the page tables are altered
3458 	 */
3459 	spin_lock(ptl);
3460 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3461 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3462 		ClearPagePrivate(new_page);
3463 
3464 		/* Break COW */
3465 		huge_ptep_clear_flush(vma, address, ptep);
3466 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3467 		set_huge_pte_at(mm, address, ptep,
3468 				make_huge_pte(vma, new_page, 1));
3469 		page_remove_rmap(old_page, true);
3470 		hugepage_add_new_anon_rmap(new_page, vma, address);
3471 		/* Make the old page be freed below */
3472 		new_page = old_page;
3473 	}
3474 	spin_unlock(ptl);
3475 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3476 out_release_all:
3477 	put_page(new_page);
3478 out_release_old:
3479 	put_page(old_page);
3480 
3481 	spin_lock(ptl); /* Caller expects lock to be held */
3482 	return ret;
3483 }
3484 
3485 /* Return the pagecache page at a given address within a VMA */
3486 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3487 			struct vm_area_struct *vma, unsigned long address)
3488 {
3489 	struct address_space *mapping;
3490 	pgoff_t idx;
3491 
3492 	mapping = vma->vm_file->f_mapping;
3493 	idx = vma_hugecache_offset(h, vma, address);
3494 
3495 	return find_lock_page(mapping, idx);
3496 }
3497 
3498 /*
3499  * Return whether there is a pagecache page to back given address within VMA.
3500  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3501  */
3502 static bool hugetlbfs_pagecache_present(struct hstate *h,
3503 			struct vm_area_struct *vma, unsigned long address)
3504 {
3505 	struct address_space *mapping;
3506 	pgoff_t idx;
3507 	struct page *page;
3508 
3509 	mapping = vma->vm_file->f_mapping;
3510 	idx = vma_hugecache_offset(h, vma, address);
3511 
3512 	page = find_get_page(mapping, idx);
3513 	if (page)
3514 		put_page(page);
3515 	return page != NULL;
3516 }
3517 
3518 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3519 			   pgoff_t idx)
3520 {
3521 	struct inode *inode = mapping->host;
3522 	struct hstate *h = hstate_inode(inode);
3523 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3524 
3525 	if (err)
3526 		return err;
3527 	ClearPagePrivate(page);
3528 
3529 	spin_lock(&inode->i_lock);
3530 	inode->i_blocks += blocks_per_huge_page(h);
3531 	spin_unlock(&inode->i_lock);
3532 	return 0;
3533 }
3534 
3535 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3536 			   struct address_space *mapping, pgoff_t idx,
3537 			   unsigned long address, pte_t *ptep, unsigned int flags)
3538 {
3539 	struct hstate *h = hstate_vma(vma);
3540 	int ret = VM_FAULT_SIGBUS;
3541 	int anon_rmap = 0;
3542 	unsigned long size;
3543 	struct page *page;
3544 	pte_t new_pte;
3545 	spinlock_t *ptl;
3546 
3547 	/*
3548 	 * Currently, we are forced to kill the process in the event the
3549 	 * original mapper has unmapped pages from the child due to a failed
3550 	 * COW. Warn that such a situation has occurred as it may not be obvious
3551 	 */
3552 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3553 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3554 			   current->pid);
3555 		return ret;
3556 	}
3557 
3558 	/*
3559 	 * Use page lock to guard against racing truncation
3560 	 * before we get page_table_lock.
3561 	 */
3562 retry:
3563 	page = find_lock_page(mapping, idx);
3564 	if (!page) {
3565 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3566 		if (idx >= size)
3567 			goto out;
3568 		page = alloc_huge_page(vma, address, 0);
3569 		if (IS_ERR(page)) {
3570 			ret = PTR_ERR(page);
3571 			if (ret == -ENOMEM)
3572 				ret = VM_FAULT_OOM;
3573 			else
3574 				ret = VM_FAULT_SIGBUS;
3575 			goto out;
3576 		}
3577 		clear_huge_page(page, address, pages_per_huge_page(h));
3578 		__SetPageUptodate(page);
3579 		set_page_huge_active(page);
3580 
3581 		if (vma->vm_flags & VM_MAYSHARE) {
3582 			int err = huge_add_to_page_cache(page, mapping, idx);
3583 			if (err) {
3584 				put_page(page);
3585 				if (err == -EEXIST)
3586 					goto retry;
3587 				goto out;
3588 			}
3589 		} else {
3590 			lock_page(page);
3591 			if (unlikely(anon_vma_prepare(vma))) {
3592 				ret = VM_FAULT_OOM;
3593 				goto backout_unlocked;
3594 			}
3595 			anon_rmap = 1;
3596 		}
3597 	} else {
3598 		/*
3599 		 * If memory error occurs between mmap() and fault, some process
3600 		 * don't have hwpoisoned swap entry for errored virtual address.
3601 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3602 		 */
3603 		if (unlikely(PageHWPoison(page))) {
3604 			ret = VM_FAULT_HWPOISON |
3605 				VM_FAULT_SET_HINDEX(hstate_index(h));
3606 			goto backout_unlocked;
3607 		}
3608 	}
3609 
3610 	/*
3611 	 * If we are going to COW a private mapping later, we examine the
3612 	 * pending reservations for this page now. This will ensure that
3613 	 * any allocations necessary to record that reservation occur outside
3614 	 * the spinlock.
3615 	 */
3616 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3617 		if (vma_needs_reservation(h, vma, address) < 0) {
3618 			ret = VM_FAULT_OOM;
3619 			goto backout_unlocked;
3620 		}
3621 		/* Just decrements count, does not deallocate */
3622 		vma_end_reservation(h, vma, address);
3623 	}
3624 
3625 	ptl = huge_pte_lockptr(h, mm, ptep);
3626 	spin_lock(ptl);
3627 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3628 	if (idx >= size)
3629 		goto backout;
3630 
3631 	ret = 0;
3632 	if (!huge_pte_none(huge_ptep_get(ptep)))
3633 		goto backout;
3634 
3635 	if (anon_rmap) {
3636 		ClearPagePrivate(page);
3637 		hugepage_add_new_anon_rmap(page, vma, address);
3638 	} else
3639 		page_dup_rmap(page, true);
3640 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3641 				&& (vma->vm_flags & VM_SHARED)));
3642 	set_huge_pte_at(mm, address, ptep, new_pte);
3643 
3644 	hugetlb_count_add(pages_per_huge_page(h), mm);
3645 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3646 		/* Optimization, do the COW without a second fault */
3647 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3648 	}
3649 
3650 	spin_unlock(ptl);
3651 	unlock_page(page);
3652 out:
3653 	return ret;
3654 
3655 backout:
3656 	spin_unlock(ptl);
3657 backout_unlocked:
3658 	unlock_page(page);
3659 	put_page(page);
3660 	goto out;
3661 }
3662 
3663 #ifdef CONFIG_SMP
3664 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3665 			    struct vm_area_struct *vma,
3666 			    struct address_space *mapping,
3667 			    pgoff_t idx, unsigned long address)
3668 {
3669 	unsigned long key[2];
3670 	u32 hash;
3671 
3672 	if (vma->vm_flags & VM_SHARED) {
3673 		key[0] = (unsigned long) mapping;
3674 		key[1] = idx;
3675 	} else {
3676 		key[0] = (unsigned long) mm;
3677 		key[1] = address >> huge_page_shift(h);
3678 	}
3679 
3680 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3681 
3682 	return hash & (num_fault_mutexes - 1);
3683 }
3684 #else
3685 /*
3686  * For uniprocesor systems we always use a single mutex, so just
3687  * return 0 and avoid the hashing overhead.
3688  */
3689 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3690 			    struct vm_area_struct *vma,
3691 			    struct address_space *mapping,
3692 			    pgoff_t idx, unsigned long address)
3693 {
3694 	return 0;
3695 }
3696 #endif
3697 
3698 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3699 			unsigned long address, unsigned int flags)
3700 {
3701 	pte_t *ptep, entry;
3702 	spinlock_t *ptl;
3703 	int ret;
3704 	u32 hash;
3705 	pgoff_t idx;
3706 	struct page *page = NULL;
3707 	struct page *pagecache_page = NULL;
3708 	struct hstate *h = hstate_vma(vma);
3709 	struct address_space *mapping;
3710 	int need_wait_lock = 0;
3711 
3712 	address &= huge_page_mask(h);
3713 
3714 	ptep = huge_pte_offset(mm, address);
3715 	if (ptep) {
3716 		entry = huge_ptep_get(ptep);
3717 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3718 			migration_entry_wait_huge(vma, mm, ptep);
3719 			return 0;
3720 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3721 			return VM_FAULT_HWPOISON_LARGE |
3722 				VM_FAULT_SET_HINDEX(hstate_index(h));
3723 	} else {
3724 		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3725 		if (!ptep)
3726 			return VM_FAULT_OOM;
3727 	}
3728 
3729 	mapping = vma->vm_file->f_mapping;
3730 	idx = vma_hugecache_offset(h, vma, address);
3731 
3732 	/*
3733 	 * Serialize hugepage allocation and instantiation, so that we don't
3734 	 * get spurious allocation failures if two CPUs race to instantiate
3735 	 * the same page in the page cache.
3736 	 */
3737 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3738 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3739 
3740 	entry = huge_ptep_get(ptep);
3741 	if (huge_pte_none(entry)) {
3742 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3743 		goto out_mutex;
3744 	}
3745 
3746 	ret = 0;
3747 
3748 	/*
3749 	 * entry could be a migration/hwpoison entry at this point, so this
3750 	 * check prevents the kernel from going below assuming that we have
3751 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3752 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3753 	 * handle it.
3754 	 */
3755 	if (!pte_present(entry))
3756 		goto out_mutex;
3757 
3758 	/*
3759 	 * If we are going to COW the mapping later, we examine the pending
3760 	 * reservations for this page now. This will ensure that any
3761 	 * allocations necessary to record that reservation occur outside the
3762 	 * spinlock. For private mappings, we also lookup the pagecache
3763 	 * page now as it is used to determine if a reservation has been
3764 	 * consumed.
3765 	 */
3766 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3767 		if (vma_needs_reservation(h, vma, address) < 0) {
3768 			ret = VM_FAULT_OOM;
3769 			goto out_mutex;
3770 		}
3771 		/* Just decrements count, does not deallocate */
3772 		vma_end_reservation(h, vma, address);
3773 
3774 		if (!(vma->vm_flags & VM_MAYSHARE))
3775 			pagecache_page = hugetlbfs_pagecache_page(h,
3776 								vma, address);
3777 	}
3778 
3779 	ptl = huge_pte_lock(h, mm, ptep);
3780 
3781 	/* Check for a racing update before calling hugetlb_cow */
3782 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3783 		goto out_ptl;
3784 
3785 	/*
3786 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3787 	 * pagecache_page, so here we need take the former one
3788 	 * when page != pagecache_page or !pagecache_page.
3789 	 */
3790 	page = pte_page(entry);
3791 	if (page != pagecache_page)
3792 		if (!trylock_page(page)) {
3793 			need_wait_lock = 1;
3794 			goto out_ptl;
3795 		}
3796 
3797 	get_page(page);
3798 
3799 	if (flags & FAULT_FLAG_WRITE) {
3800 		if (!huge_pte_write(entry)) {
3801 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3802 					pagecache_page, ptl);
3803 			goto out_put_page;
3804 		}
3805 		entry = huge_pte_mkdirty(entry);
3806 	}
3807 	entry = pte_mkyoung(entry);
3808 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3809 						flags & FAULT_FLAG_WRITE))
3810 		update_mmu_cache(vma, address, ptep);
3811 out_put_page:
3812 	if (page != pagecache_page)
3813 		unlock_page(page);
3814 	put_page(page);
3815 out_ptl:
3816 	spin_unlock(ptl);
3817 
3818 	if (pagecache_page) {
3819 		unlock_page(pagecache_page);
3820 		put_page(pagecache_page);
3821 	}
3822 out_mutex:
3823 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3824 	/*
3825 	 * Generally it's safe to hold refcount during waiting page lock. But
3826 	 * here we just wait to defer the next page fault to avoid busy loop and
3827 	 * the page is not used after unlocked before returning from the current
3828 	 * page fault. So we are safe from accessing freed page, even if we wait
3829 	 * here without taking refcount.
3830 	 */
3831 	if (need_wait_lock)
3832 		wait_on_page_locked(page);
3833 	return ret;
3834 }
3835 
3836 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3837 			 struct page **pages, struct vm_area_struct **vmas,
3838 			 unsigned long *position, unsigned long *nr_pages,
3839 			 long i, unsigned int flags)
3840 {
3841 	unsigned long pfn_offset;
3842 	unsigned long vaddr = *position;
3843 	unsigned long remainder = *nr_pages;
3844 	struct hstate *h = hstate_vma(vma);
3845 
3846 	while (vaddr < vma->vm_end && remainder) {
3847 		pte_t *pte;
3848 		spinlock_t *ptl = NULL;
3849 		int absent;
3850 		struct page *page;
3851 
3852 		/*
3853 		 * If we have a pending SIGKILL, don't keep faulting pages and
3854 		 * potentially allocating memory.
3855 		 */
3856 		if (unlikely(fatal_signal_pending(current))) {
3857 			remainder = 0;
3858 			break;
3859 		}
3860 
3861 		/*
3862 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3863 		 * each hugepage.  We have to make sure we get the
3864 		 * first, for the page indexing below to work.
3865 		 *
3866 		 * Note that page table lock is not held when pte is null.
3867 		 */
3868 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3869 		if (pte)
3870 			ptl = huge_pte_lock(h, mm, pte);
3871 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3872 
3873 		/*
3874 		 * When coredumping, it suits get_dump_page if we just return
3875 		 * an error where there's an empty slot with no huge pagecache
3876 		 * to back it.  This way, we avoid allocating a hugepage, and
3877 		 * the sparse dumpfile avoids allocating disk blocks, but its
3878 		 * huge holes still show up with zeroes where they need to be.
3879 		 */
3880 		if (absent && (flags & FOLL_DUMP) &&
3881 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3882 			if (pte)
3883 				spin_unlock(ptl);
3884 			remainder = 0;
3885 			break;
3886 		}
3887 
3888 		/*
3889 		 * We need call hugetlb_fault for both hugepages under migration
3890 		 * (in which case hugetlb_fault waits for the migration,) and
3891 		 * hwpoisoned hugepages (in which case we need to prevent the
3892 		 * caller from accessing to them.) In order to do this, we use
3893 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3894 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3895 		 * both cases, and because we can't follow correct pages
3896 		 * directly from any kind of swap entries.
3897 		 */
3898 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3899 		    ((flags & FOLL_WRITE) &&
3900 		      !huge_pte_write(huge_ptep_get(pte)))) {
3901 			int ret;
3902 
3903 			if (pte)
3904 				spin_unlock(ptl);
3905 			ret = hugetlb_fault(mm, vma, vaddr,
3906 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3907 			if (!(ret & VM_FAULT_ERROR))
3908 				continue;
3909 
3910 			remainder = 0;
3911 			break;
3912 		}
3913 
3914 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3915 		page = pte_page(huge_ptep_get(pte));
3916 same_page:
3917 		if (pages) {
3918 			pages[i] = mem_map_offset(page, pfn_offset);
3919 			get_page(pages[i]);
3920 		}
3921 
3922 		if (vmas)
3923 			vmas[i] = vma;
3924 
3925 		vaddr += PAGE_SIZE;
3926 		++pfn_offset;
3927 		--remainder;
3928 		++i;
3929 		if (vaddr < vma->vm_end && remainder &&
3930 				pfn_offset < pages_per_huge_page(h)) {
3931 			/*
3932 			 * We use pfn_offset to avoid touching the pageframes
3933 			 * of this compound page.
3934 			 */
3935 			goto same_page;
3936 		}
3937 		spin_unlock(ptl);
3938 	}
3939 	*nr_pages = remainder;
3940 	*position = vaddr;
3941 
3942 	return i ? i : -EFAULT;
3943 }
3944 
3945 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
3946 /*
3947  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
3948  * implement this.
3949  */
3950 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
3951 #endif
3952 
3953 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3954 		unsigned long address, unsigned long end, pgprot_t newprot)
3955 {
3956 	struct mm_struct *mm = vma->vm_mm;
3957 	unsigned long start = address;
3958 	pte_t *ptep;
3959 	pte_t pte;
3960 	struct hstate *h = hstate_vma(vma);
3961 	unsigned long pages = 0;
3962 
3963 	BUG_ON(address >= end);
3964 	flush_cache_range(vma, address, end);
3965 
3966 	mmu_notifier_invalidate_range_start(mm, start, end);
3967 	i_mmap_lock_write(vma->vm_file->f_mapping);
3968 	for (; address < end; address += huge_page_size(h)) {
3969 		spinlock_t *ptl;
3970 		ptep = huge_pte_offset(mm, address);
3971 		if (!ptep)
3972 			continue;
3973 		ptl = huge_pte_lock(h, mm, ptep);
3974 		if (huge_pmd_unshare(mm, &address, ptep)) {
3975 			pages++;
3976 			spin_unlock(ptl);
3977 			continue;
3978 		}
3979 		pte = huge_ptep_get(ptep);
3980 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3981 			spin_unlock(ptl);
3982 			continue;
3983 		}
3984 		if (unlikely(is_hugetlb_entry_migration(pte))) {
3985 			swp_entry_t entry = pte_to_swp_entry(pte);
3986 
3987 			if (is_write_migration_entry(entry)) {
3988 				pte_t newpte;
3989 
3990 				make_migration_entry_read(&entry);
3991 				newpte = swp_entry_to_pte(entry);
3992 				set_huge_pte_at(mm, address, ptep, newpte);
3993 				pages++;
3994 			}
3995 			spin_unlock(ptl);
3996 			continue;
3997 		}
3998 		if (!huge_pte_none(pte)) {
3999 			pte = huge_ptep_get_and_clear(mm, address, ptep);
4000 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4001 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4002 			set_huge_pte_at(mm, address, ptep, pte);
4003 			pages++;
4004 		}
4005 		spin_unlock(ptl);
4006 	}
4007 	/*
4008 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4009 	 * may have cleared our pud entry and done put_page on the page table:
4010 	 * once we release i_mmap_rwsem, another task can do the final put_page
4011 	 * and that page table be reused and filled with junk.
4012 	 */
4013 	flush_hugetlb_tlb_range(vma, start, end);
4014 	mmu_notifier_invalidate_range(mm, start, end);
4015 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4016 	mmu_notifier_invalidate_range_end(mm, start, end);
4017 
4018 	return pages << h->order;
4019 }
4020 
4021 int hugetlb_reserve_pages(struct inode *inode,
4022 					long from, long to,
4023 					struct vm_area_struct *vma,
4024 					vm_flags_t vm_flags)
4025 {
4026 	long ret, chg;
4027 	struct hstate *h = hstate_inode(inode);
4028 	struct hugepage_subpool *spool = subpool_inode(inode);
4029 	struct resv_map *resv_map;
4030 	long gbl_reserve;
4031 
4032 	/*
4033 	 * Only apply hugepage reservation if asked. At fault time, an
4034 	 * attempt will be made for VM_NORESERVE to allocate a page
4035 	 * without using reserves
4036 	 */
4037 	if (vm_flags & VM_NORESERVE)
4038 		return 0;
4039 
4040 	/*
4041 	 * Shared mappings base their reservation on the number of pages that
4042 	 * are already allocated on behalf of the file. Private mappings need
4043 	 * to reserve the full area even if read-only as mprotect() may be
4044 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4045 	 */
4046 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4047 		resv_map = inode_resv_map(inode);
4048 
4049 		chg = region_chg(resv_map, from, to);
4050 
4051 	} else {
4052 		resv_map = resv_map_alloc();
4053 		if (!resv_map)
4054 			return -ENOMEM;
4055 
4056 		chg = to - from;
4057 
4058 		set_vma_resv_map(vma, resv_map);
4059 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4060 	}
4061 
4062 	if (chg < 0) {
4063 		ret = chg;
4064 		goto out_err;
4065 	}
4066 
4067 	/*
4068 	 * There must be enough pages in the subpool for the mapping. If
4069 	 * the subpool has a minimum size, there may be some global
4070 	 * reservations already in place (gbl_reserve).
4071 	 */
4072 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4073 	if (gbl_reserve < 0) {
4074 		ret = -ENOSPC;
4075 		goto out_err;
4076 	}
4077 
4078 	/*
4079 	 * Check enough hugepages are available for the reservation.
4080 	 * Hand the pages back to the subpool if there are not
4081 	 */
4082 	ret = hugetlb_acct_memory(h, gbl_reserve);
4083 	if (ret < 0) {
4084 		/* put back original number of pages, chg */
4085 		(void)hugepage_subpool_put_pages(spool, chg);
4086 		goto out_err;
4087 	}
4088 
4089 	/*
4090 	 * Account for the reservations made. Shared mappings record regions
4091 	 * that have reservations as they are shared by multiple VMAs.
4092 	 * When the last VMA disappears, the region map says how much
4093 	 * the reservation was and the page cache tells how much of
4094 	 * the reservation was consumed. Private mappings are per-VMA and
4095 	 * only the consumed reservations are tracked. When the VMA
4096 	 * disappears, the original reservation is the VMA size and the
4097 	 * consumed reservations are stored in the map. Hence, nothing
4098 	 * else has to be done for private mappings here
4099 	 */
4100 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4101 		long add = region_add(resv_map, from, to);
4102 
4103 		if (unlikely(chg > add)) {
4104 			/*
4105 			 * pages in this range were added to the reserve
4106 			 * map between region_chg and region_add.  This
4107 			 * indicates a race with alloc_huge_page.  Adjust
4108 			 * the subpool and reserve counts modified above
4109 			 * based on the difference.
4110 			 */
4111 			long rsv_adjust;
4112 
4113 			rsv_adjust = hugepage_subpool_put_pages(spool,
4114 								chg - add);
4115 			hugetlb_acct_memory(h, -rsv_adjust);
4116 		}
4117 	}
4118 	return 0;
4119 out_err:
4120 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4121 		region_abort(resv_map, from, to);
4122 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4123 		kref_put(&resv_map->refs, resv_map_release);
4124 	return ret;
4125 }
4126 
4127 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4128 								long freed)
4129 {
4130 	struct hstate *h = hstate_inode(inode);
4131 	struct resv_map *resv_map = inode_resv_map(inode);
4132 	long chg = 0;
4133 	struct hugepage_subpool *spool = subpool_inode(inode);
4134 	long gbl_reserve;
4135 
4136 	if (resv_map) {
4137 		chg = region_del(resv_map, start, end);
4138 		/*
4139 		 * region_del() can fail in the rare case where a region
4140 		 * must be split and another region descriptor can not be
4141 		 * allocated.  If end == LONG_MAX, it will not fail.
4142 		 */
4143 		if (chg < 0)
4144 			return chg;
4145 	}
4146 
4147 	spin_lock(&inode->i_lock);
4148 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4149 	spin_unlock(&inode->i_lock);
4150 
4151 	/*
4152 	 * If the subpool has a minimum size, the number of global
4153 	 * reservations to be released may be adjusted.
4154 	 */
4155 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4156 	hugetlb_acct_memory(h, -gbl_reserve);
4157 
4158 	return 0;
4159 }
4160 
4161 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4162 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4163 				struct vm_area_struct *vma,
4164 				unsigned long addr, pgoff_t idx)
4165 {
4166 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4167 				svma->vm_start;
4168 	unsigned long sbase = saddr & PUD_MASK;
4169 	unsigned long s_end = sbase + PUD_SIZE;
4170 
4171 	/* Allow segments to share if only one is marked locked */
4172 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4173 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4174 
4175 	/*
4176 	 * match the virtual addresses, permission and the alignment of the
4177 	 * page table page.
4178 	 */
4179 	if (pmd_index(addr) != pmd_index(saddr) ||
4180 	    vm_flags != svm_flags ||
4181 	    sbase < svma->vm_start || svma->vm_end < s_end)
4182 		return 0;
4183 
4184 	return saddr;
4185 }
4186 
4187 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4188 {
4189 	unsigned long base = addr & PUD_MASK;
4190 	unsigned long end = base + PUD_SIZE;
4191 
4192 	/*
4193 	 * check on proper vm_flags and page table alignment
4194 	 */
4195 	if (vma->vm_flags & VM_MAYSHARE &&
4196 	    vma->vm_start <= base && end <= vma->vm_end)
4197 		return true;
4198 	return false;
4199 }
4200 
4201 /*
4202  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4203  * and returns the corresponding pte. While this is not necessary for the
4204  * !shared pmd case because we can allocate the pmd later as well, it makes the
4205  * code much cleaner. pmd allocation is essential for the shared case because
4206  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4207  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4208  * bad pmd for sharing.
4209  */
4210 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4211 {
4212 	struct vm_area_struct *vma = find_vma(mm, addr);
4213 	struct address_space *mapping = vma->vm_file->f_mapping;
4214 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4215 			vma->vm_pgoff;
4216 	struct vm_area_struct *svma;
4217 	unsigned long saddr;
4218 	pte_t *spte = NULL;
4219 	pte_t *pte;
4220 	spinlock_t *ptl;
4221 
4222 	if (!vma_shareable(vma, addr))
4223 		return (pte_t *)pmd_alloc(mm, pud, addr);
4224 
4225 	i_mmap_lock_write(mapping);
4226 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4227 		if (svma == vma)
4228 			continue;
4229 
4230 		saddr = page_table_shareable(svma, vma, addr, idx);
4231 		if (saddr) {
4232 			spte = huge_pte_offset(svma->vm_mm, saddr);
4233 			if (spte) {
4234 				get_page(virt_to_page(spte));
4235 				break;
4236 			}
4237 		}
4238 	}
4239 
4240 	if (!spte)
4241 		goto out;
4242 
4243 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4244 	spin_lock(ptl);
4245 	if (pud_none(*pud)) {
4246 		pud_populate(mm, pud,
4247 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4248 		mm_inc_nr_pmds(mm);
4249 	} else {
4250 		put_page(virt_to_page(spte));
4251 	}
4252 	spin_unlock(ptl);
4253 out:
4254 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4255 	i_mmap_unlock_write(mapping);
4256 	return pte;
4257 }
4258 
4259 /*
4260  * unmap huge page backed by shared pte.
4261  *
4262  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4263  * indicated by page_count > 1, unmap is achieved by clearing pud and
4264  * decrementing the ref count. If count == 1, the pte page is not shared.
4265  *
4266  * called with page table lock held.
4267  *
4268  * returns: 1 successfully unmapped a shared pte page
4269  *	    0 the underlying pte page is not shared, or it is the last user
4270  */
4271 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4272 {
4273 	pgd_t *pgd = pgd_offset(mm, *addr);
4274 	pud_t *pud = pud_offset(pgd, *addr);
4275 
4276 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4277 	if (page_count(virt_to_page(ptep)) == 1)
4278 		return 0;
4279 
4280 	pud_clear(pud);
4281 	put_page(virt_to_page(ptep));
4282 	mm_dec_nr_pmds(mm);
4283 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4284 	return 1;
4285 }
4286 #define want_pmd_share()	(1)
4287 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4288 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4289 {
4290 	return NULL;
4291 }
4292 
4293 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4294 {
4295 	return 0;
4296 }
4297 #define want_pmd_share()	(0)
4298 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4299 
4300 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4301 pte_t *huge_pte_alloc(struct mm_struct *mm,
4302 			unsigned long addr, unsigned long sz)
4303 {
4304 	pgd_t *pgd;
4305 	pud_t *pud;
4306 	pte_t *pte = NULL;
4307 
4308 	pgd = pgd_offset(mm, addr);
4309 	pud = pud_alloc(mm, pgd, addr);
4310 	if (pud) {
4311 		if (sz == PUD_SIZE) {
4312 			pte = (pte_t *)pud;
4313 		} else {
4314 			BUG_ON(sz != PMD_SIZE);
4315 			if (want_pmd_share() && pud_none(*pud))
4316 				pte = huge_pmd_share(mm, addr, pud);
4317 			else
4318 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4319 		}
4320 	}
4321 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4322 
4323 	return pte;
4324 }
4325 
4326 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4327 {
4328 	pgd_t *pgd;
4329 	pud_t *pud;
4330 	pmd_t *pmd = NULL;
4331 
4332 	pgd = pgd_offset(mm, addr);
4333 	if (pgd_present(*pgd)) {
4334 		pud = pud_offset(pgd, addr);
4335 		if (pud_present(*pud)) {
4336 			if (pud_huge(*pud))
4337 				return (pte_t *)pud;
4338 			pmd = pmd_offset(pud, addr);
4339 		}
4340 	}
4341 	return (pte_t *) pmd;
4342 }
4343 
4344 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4345 
4346 /*
4347  * These functions are overwritable if your architecture needs its own
4348  * behavior.
4349  */
4350 struct page * __weak
4351 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4352 			      int write)
4353 {
4354 	return ERR_PTR(-EINVAL);
4355 }
4356 
4357 struct page * __weak
4358 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4359 		pmd_t *pmd, int flags)
4360 {
4361 	struct page *page = NULL;
4362 	spinlock_t *ptl;
4363 retry:
4364 	ptl = pmd_lockptr(mm, pmd);
4365 	spin_lock(ptl);
4366 	/*
4367 	 * make sure that the address range covered by this pmd is not
4368 	 * unmapped from other threads.
4369 	 */
4370 	if (!pmd_huge(*pmd))
4371 		goto out;
4372 	if (pmd_present(*pmd)) {
4373 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4374 		if (flags & FOLL_GET)
4375 			get_page(page);
4376 	} else {
4377 		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4378 			spin_unlock(ptl);
4379 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4380 			goto retry;
4381 		}
4382 		/*
4383 		 * hwpoisoned entry is treated as no_page_table in
4384 		 * follow_page_mask().
4385 		 */
4386 	}
4387 out:
4388 	spin_unlock(ptl);
4389 	return page;
4390 }
4391 
4392 struct page * __weak
4393 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4394 		pud_t *pud, int flags)
4395 {
4396 	if (flags & FOLL_GET)
4397 		return NULL;
4398 
4399 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4400 }
4401 
4402 #ifdef CONFIG_MEMORY_FAILURE
4403 
4404 /*
4405  * This function is called from memory failure code.
4406  */
4407 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4408 {
4409 	struct hstate *h = page_hstate(hpage);
4410 	int nid = page_to_nid(hpage);
4411 	int ret = -EBUSY;
4412 
4413 	spin_lock(&hugetlb_lock);
4414 	/*
4415 	 * Just checking !page_huge_active is not enough, because that could be
4416 	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4417 	 */
4418 	if (!page_huge_active(hpage) && !page_count(hpage)) {
4419 		/*
4420 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4421 		 * but dangling hpage->lru can trigger list-debug warnings
4422 		 * (this happens when we call unpoison_memory() on it),
4423 		 * so let it point to itself with list_del_init().
4424 		 */
4425 		list_del_init(&hpage->lru);
4426 		set_page_refcounted(hpage);
4427 		h->free_huge_pages--;
4428 		h->free_huge_pages_node[nid]--;
4429 		ret = 0;
4430 	}
4431 	spin_unlock(&hugetlb_lock);
4432 	return ret;
4433 }
4434 #endif
4435 
4436 bool isolate_huge_page(struct page *page, struct list_head *list)
4437 {
4438 	bool ret = true;
4439 
4440 	VM_BUG_ON_PAGE(!PageHead(page), page);
4441 	spin_lock(&hugetlb_lock);
4442 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4443 		ret = false;
4444 		goto unlock;
4445 	}
4446 	clear_page_huge_active(page);
4447 	list_move_tail(&page->lru, list);
4448 unlock:
4449 	spin_unlock(&hugetlb_lock);
4450 	return ret;
4451 }
4452 
4453 void putback_active_hugepage(struct page *page)
4454 {
4455 	VM_BUG_ON_PAGE(!PageHead(page), page);
4456 	spin_lock(&hugetlb_lock);
4457 	set_page_huge_active(page);
4458 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4459 	spin_unlock(&hugetlb_lock);
4460 	put_page(page);
4461 }
4462