xref: /openbmc/linux/mm/hugetlb.c (revision f0a86878)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41 
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49 
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53 
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_page(struct page *page, unsigned int order)
58 {
59 	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
60 				1 << order);
61 }
62 #else
63 static bool hugetlb_cma_page(struct page *page, unsigned int order)
64 {
65 	return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69 
70 __initdata LIST_HEAD(huge_boot_pages);
71 
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78 
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84 
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91 
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
99 {
100 	if (spool->count)
101 		return false;
102 	if (spool->max_hpages != -1)
103 		return spool->used_hpages == 0;
104 	if (spool->min_hpages != -1)
105 		return spool->rsv_hpages == spool->min_hpages;
106 
107 	return true;
108 }
109 
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111 						unsigned long irq_flags)
112 {
113 	spin_unlock_irqrestore(&spool->lock, irq_flags);
114 
115 	/* If no pages are used, and no other handles to the subpool
116 	 * remain, give up any reservations based on minimum size and
117 	 * free the subpool */
118 	if (subpool_is_free(spool)) {
119 		if (spool->min_hpages != -1)
120 			hugetlb_acct_memory(spool->hstate,
121 						-spool->min_hpages);
122 		kfree(spool);
123 	}
124 }
125 
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127 						long min_hpages)
128 {
129 	struct hugepage_subpool *spool;
130 
131 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
132 	if (!spool)
133 		return NULL;
134 
135 	spin_lock_init(&spool->lock);
136 	spool->count = 1;
137 	spool->max_hpages = max_hpages;
138 	spool->hstate = h;
139 	spool->min_hpages = min_hpages;
140 
141 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142 		kfree(spool);
143 		return NULL;
144 	}
145 	spool->rsv_hpages = min_hpages;
146 
147 	return spool;
148 }
149 
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
151 {
152 	unsigned long flags;
153 
154 	spin_lock_irqsave(&spool->lock, flags);
155 	BUG_ON(!spool->count);
156 	spool->count--;
157 	unlock_or_release_subpool(spool, flags);
158 }
159 
160 /*
161  * Subpool accounting for allocating and reserving pages.
162  * Return -ENOMEM if there are not enough resources to satisfy the
163  * request.  Otherwise, return the number of pages by which the
164  * global pools must be adjusted (upward).  The returned value may
165  * only be different than the passed value (delta) in the case where
166  * a subpool minimum size must be maintained.
167  */
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
169 				      long delta)
170 {
171 	long ret = delta;
172 
173 	if (!spool)
174 		return ret;
175 
176 	spin_lock_irq(&spool->lock);
177 
178 	if (spool->max_hpages != -1) {		/* maximum size accounting */
179 		if ((spool->used_hpages + delta) <= spool->max_hpages)
180 			spool->used_hpages += delta;
181 		else {
182 			ret = -ENOMEM;
183 			goto unlock_ret;
184 		}
185 	}
186 
187 	/* minimum size accounting */
188 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
189 		if (delta > spool->rsv_hpages) {
190 			/*
191 			 * Asking for more reserves than those already taken on
192 			 * behalf of subpool.  Return difference.
193 			 */
194 			ret = delta - spool->rsv_hpages;
195 			spool->rsv_hpages = 0;
196 		} else {
197 			ret = 0;	/* reserves already accounted for */
198 			spool->rsv_hpages -= delta;
199 		}
200 	}
201 
202 unlock_ret:
203 	spin_unlock_irq(&spool->lock);
204 	return ret;
205 }
206 
207 /*
208  * Subpool accounting for freeing and unreserving pages.
209  * Return the number of global page reservations that must be dropped.
210  * The return value may only be different than the passed value (delta)
211  * in the case where a subpool minimum size must be maintained.
212  */
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
214 				       long delta)
215 {
216 	long ret = delta;
217 	unsigned long flags;
218 
219 	if (!spool)
220 		return delta;
221 
222 	spin_lock_irqsave(&spool->lock, flags);
223 
224 	if (spool->max_hpages != -1)		/* maximum size accounting */
225 		spool->used_hpages -= delta;
226 
227 	 /* minimum size accounting */
228 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229 		if (spool->rsv_hpages + delta <= spool->min_hpages)
230 			ret = 0;
231 		else
232 			ret = spool->rsv_hpages + delta - spool->min_hpages;
233 
234 		spool->rsv_hpages += delta;
235 		if (spool->rsv_hpages > spool->min_hpages)
236 			spool->rsv_hpages = spool->min_hpages;
237 	}
238 
239 	/*
240 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
241 	 * quota reference, free it now.
242 	 */
243 	unlock_or_release_subpool(spool, flags);
244 
245 	return ret;
246 }
247 
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249 {
250 	return HUGETLBFS_SB(inode->i_sb)->spool;
251 }
252 
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254 {
255 	return subpool_inode(file_inode(vma->vm_file));
256 }
257 
258 /* Helper that removes a struct file_region from the resv_map cache and returns
259  * it for use.
260  */
261 static struct file_region *
262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
263 {
264 	struct file_region *nrg;
265 
266 	VM_BUG_ON(resv->region_cache_count <= 0);
267 
268 	resv->region_cache_count--;
269 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
270 	list_del(&nrg->link);
271 
272 	nrg->from = from;
273 	nrg->to = to;
274 
275 	return nrg;
276 }
277 
278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279 					      struct file_region *rg)
280 {
281 #ifdef CONFIG_CGROUP_HUGETLB
282 	nrg->reservation_counter = rg->reservation_counter;
283 	nrg->css = rg->css;
284 	if (rg->css)
285 		css_get(rg->css);
286 #endif
287 }
288 
289 /* Helper that records hugetlb_cgroup uncharge info. */
290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
291 						struct hstate *h,
292 						struct resv_map *resv,
293 						struct file_region *nrg)
294 {
295 #ifdef CONFIG_CGROUP_HUGETLB
296 	if (h_cg) {
297 		nrg->reservation_counter =
298 			&h_cg->rsvd_hugepage[hstate_index(h)];
299 		nrg->css = &h_cg->css;
300 		/*
301 		 * The caller will hold exactly one h_cg->css reference for the
302 		 * whole contiguous reservation region. But this area might be
303 		 * scattered when there are already some file_regions reside in
304 		 * it. As a result, many file_regions may share only one css
305 		 * reference. In order to ensure that one file_region must hold
306 		 * exactly one h_cg->css reference, we should do css_get for
307 		 * each file_region and leave the reference held by caller
308 		 * untouched.
309 		 */
310 		css_get(&h_cg->css);
311 		if (!resv->pages_per_hpage)
312 			resv->pages_per_hpage = pages_per_huge_page(h);
313 		/* pages_per_hpage should be the same for all entries in
314 		 * a resv_map.
315 		 */
316 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
317 	} else {
318 		nrg->reservation_counter = NULL;
319 		nrg->css = NULL;
320 	}
321 #endif
322 }
323 
324 static void put_uncharge_info(struct file_region *rg)
325 {
326 #ifdef CONFIG_CGROUP_HUGETLB
327 	if (rg->css)
328 		css_put(rg->css);
329 #endif
330 }
331 
332 static bool has_same_uncharge_info(struct file_region *rg,
333 				   struct file_region *org)
334 {
335 #ifdef CONFIG_CGROUP_HUGETLB
336 	return rg->reservation_counter == org->reservation_counter &&
337 	       rg->css == org->css;
338 
339 #else
340 	return true;
341 #endif
342 }
343 
344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
345 {
346 	struct file_region *nrg, *prg;
347 
348 	prg = list_prev_entry(rg, link);
349 	if (&prg->link != &resv->regions && prg->to == rg->from &&
350 	    has_same_uncharge_info(prg, rg)) {
351 		prg->to = rg->to;
352 
353 		list_del(&rg->link);
354 		put_uncharge_info(rg);
355 		kfree(rg);
356 
357 		rg = prg;
358 	}
359 
360 	nrg = list_next_entry(rg, link);
361 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362 	    has_same_uncharge_info(nrg, rg)) {
363 		nrg->from = rg->from;
364 
365 		list_del(&rg->link);
366 		put_uncharge_info(rg);
367 		kfree(rg);
368 	}
369 }
370 
371 static inline long
372 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
373 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
374 		     long *regions_needed)
375 {
376 	struct file_region *nrg;
377 
378 	if (!regions_needed) {
379 		nrg = get_file_region_entry_from_cache(map, from, to);
380 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381 		list_add(&nrg->link, rg);
382 		coalesce_file_region(map, nrg);
383 	} else
384 		*regions_needed += 1;
385 
386 	return to - from;
387 }
388 
389 /*
390  * Must be called with resv->lock held.
391  *
392  * Calling this with regions_needed != NULL will count the number of pages
393  * to be added but will not modify the linked list. And regions_needed will
394  * indicate the number of file_regions needed in the cache to carry out to add
395  * the regions for this range.
396  */
397 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
398 				     struct hugetlb_cgroup *h_cg,
399 				     struct hstate *h, long *regions_needed)
400 {
401 	long add = 0;
402 	struct list_head *head = &resv->regions;
403 	long last_accounted_offset = f;
404 	struct file_region *iter, *trg = NULL;
405 	struct list_head *rg = NULL;
406 
407 	if (regions_needed)
408 		*regions_needed = 0;
409 
410 	/* In this loop, we essentially handle an entry for the range
411 	 * [last_accounted_offset, iter->from), at every iteration, with some
412 	 * bounds checking.
413 	 */
414 	list_for_each_entry_safe(iter, trg, head, link) {
415 		/* Skip irrelevant regions that start before our range. */
416 		if (iter->from < f) {
417 			/* If this region ends after the last accounted offset,
418 			 * then we need to update last_accounted_offset.
419 			 */
420 			if (iter->to > last_accounted_offset)
421 				last_accounted_offset = iter->to;
422 			continue;
423 		}
424 
425 		/* When we find a region that starts beyond our range, we've
426 		 * finished.
427 		 */
428 		if (iter->from >= t) {
429 			rg = iter->link.prev;
430 			break;
431 		}
432 
433 		/* Add an entry for last_accounted_offset -> iter->from, and
434 		 * update last_accounted_offset.
435 		 */
436 		if (iter->from > last_accounted_offset)
437 			add += hugetlb_resv_map_add(resv, iter->link.prev,
438 						    last_accounted_offset,
439 						    iter->from, h, h_cg,
440 						    regions_needed);
441 
442 		last_accounted_offset = iter->to;
443 	}
444 
445 	/* Handle the case where our range extends beyond
446 	 * last_accounted_offset.
447 	 */
448 	if (!rg)
449 		rg = head->prev;
450 	if (last_accounted_offset < t)
451 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
452 					    t, h, h_cg, regions_needed);
453 
454 	return add;
455 }
456 
457 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
458  */
459 static int allocate_file_region_entries(struct resv_map *resv,
460 					int regions_needed)
461 	__must_hold(&resv->lock)
462 {
463 	LIST_HEAD(allocated_regions);
464 	int to_allocate = 0, i = 0;
465 	struct file_region *trg = NULL, *rg = NULL;
466 
467 	VM_BUG_ON(regions_needed < 0);
468 
469 	/*
470 	 * Check for sufficient descriptors in the cache to accommodate
471 	 * the number of in progress add operations plus regions_needed.
472 	 *
473 	 * This is a while loop because when we drop the lock, some other call
474 	 * to region_add or region_del may have consumed some region_entries,
475 	 * so we keep looping here until we finally have enough entries for
476 	 * (adds_in_progress + regions_needed).
477 	 */
478 	while (resv->region_cache_count <
479 	       (resv->adds_in_progress + regions_needed)) {
480 		to_allocate = resv->adds_in_progress + regions_needed -
481 			      resv->region_cache_count;
482 
483 		/* At this point, we should have enough entries in the cache
484 		 * for all the existing adds_in_progress. We should only be
485 		 * needing to allocate for regions_needed.
486 		 */
487 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
488 
489 		spin_unlock(&resv->lock);
490 		for (i = 0; i < to_allocate; i++) {
491 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
492 			if (!trg)
493 				goto out_of_memory;
494 			list_add(&trg->link, &allocated_regions);
495 		}
496 
497 		spin_lock(&resv->lock);
498 
499 		list_splice(&allocated_regions, &resv->region_cache);
500 		resv->region_cache_count += to_allocate;
501 	}
502 
503 	return 0;
504 
505 out_of_memory:
506 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
507 		list_del(&rg->link);
508 		kfree(rg);
509 	}
510 	return -ENOMEM;
511 }
512 
513 /*
514  * Add the huge page range represented by [f, t) to the reserve
515  * map.  Regions will be taken from the cache to fill in this range.
516  * Sufficient regions should exist in the cache due to the previous
517  * call to region_chg with the same range, but in some cases the cache will not
518  * have sufficient entries due to races with other code doing region_add or
519  * region_del.  The extra needed entries will be allocated.
520  *
521  * regions_needed is the out value provided by a previous call to region_chg.
522  *
523  * Return the number of new huge pages added to the map.  This number is greater
524  * than or equal to zero.  If file_region entries needed to be allocated for
525  * this operation and we were not able to allocate, it returns -ENOMEM.
526  * region_add of regions of length 1 never allocate file_regions and cannot
527  * fail; region_chg will always allocate at least 1 entry and a region_add for
528  * 1 page will only require at most 1 entry.
529  */
530 static long region_add(struct resv_map *resv, long f, long t,
531 		       long in_regions_needed, struct hstate *h,
532 		       struct hugetlb_cgroup *h_cg)
533 {
534 	long add = 0, actual_regions_needed = 0;
535 
536 	spin_lock(&resv->lock);
537 retry:
538 
539 	/* Count how many regions are actually needed to execute this add. */
540 	add_reservation_in_range(resv, f, t, NULL, NULL,
541 				 &actual_regions_needed);
542 
543 	/*
544 	 * Check for sufficient descriptors in the cache to accommodate
545 	 * this add operation. Note that actual_regions_needed may be greater
546 	 * than in_regions_needed, as the resv_map may have been modified since
547 	 * the region_chg call. In this case, we need to make sure that we
548 	 * allocate extra entries, such that we have enough for all the
549 	 * existing adds_in_progress, plus the excess needed for this
550 	 * operation.
551 	 */
552 	if (actual_regions_needed > in_regions_needed &&
553 	    resv->region_cache_count <
554 		    resv->adds_in_progress +
555 			    (actual_regions_needed - in_regions_needed)) {
556 		/* region_add operation of range 1 should never need to
557 		 * allocate file_region entries.
558 		 */
559 		VM_BUG_ON(t - f <= 1);
560 
561 		if (allocate_file_region_entries(
562 			    resv, actual_regions_needed - in_regions_needed)) {
563 			return -ENOMEM;
564 		}
565 
566 		goto retry;
567 	}
568 
569 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
570 
571 	resv->adds_in_progress -= in_regions_needed;
572 
573 	spin_unlock(&resv->lock);
574 	return add;
575 }
576 
577 /*
578  * Examine the existing reserve map and determine how many
579  * huge pages in the specified range [f, t) are NOT currently
580  * represented.  This routine is called before a subsequent
581  * call to region_add that will actually modify the reserve
582  * map to add the specified range [f, t).  region_chg does
583  * not change the number of huge pages represented by the
584  * map.  A number of new file_region structures is added to the cache as a
585  * placeholder, for the subsequent region_add call to use. At least 1
586  * file_region structure is added.
587  *
588  * out_regions_needed is the number of regions added to the
589  * resv->adds_in_progress.  This value needs to be provided to a follow up call
590  * to region_add or region_abort for proper accounting.
591  *
592  * Returns the number of huge pages that need to be added to the existing
593  * reservation map for the range [f, t).  This number is greater or equal to
594  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
595  * is needed and can not be allocated.
596  */
597 static long region_chg(struct resv_map *resv, long f, long t,
598 		       long *out_regions_needed)
599 {
600 	long chg = 0;
601 
602 	spin_lock(&resv->lock);
603 
604 	/* Count how many hugepages in this range are NOT represented. */
605 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
606 				       out_regions_needed);
607 
608 	if (*out_regions_needed == 0)
609 		*out_regions_needed = 1;
610 
611 	if (allocate_file_region_entries(resv, *out_regions_needed))
612 		return -ENOMEM;
613 
614 	resv->adds_in_progress += *out_regions_needed;
615 
616 	spin_unlock(&resv->lock);
617 	return chg;
618 }
619 
620 /*
621  * Abort the in progress add operation.  The adds_in_progress field
622  * of the resv_map keeps track of the operations in progress between
623  * calls to region_chg and region_add.  Operations are sometimes
624  * aborted after the call to region_chg.  In such cases, region_abort
625  * is called to decrement the adds_in_progress counter. regions_needed
626  * is the value returned by the region_chg call, it is used to decrement
627  * the adds_in_progress counter.
628  *
629  * NOTE: The range arguments [f, t) are not needed or used in this
630  * routine.  They are kept to make reading the calling code easier as
631  * arguments will match the associated region_chg call.
632  */
633 static void region_abort(struct resv_map *resv, long f, long t,
634 			 long regions_needed)
635 {
636 	spin_lock(&resv->lock);
637 	VM_BUG_ON(!resv->region_cache_count);
638 	resv->adds_in_progress -= regions_needed;
639 	spin_unlock(&resv->lock);
640 }
641 
642 /*
643  * Delete the specified range [f, t) from the reserve map.  If the
644  * t parameter is LONG_MAX, this indicates that ALL regions after f
645  * should be deleted.  Locate the regions which intersect [f, t)
646  * and either trim, delete or split the existing regions.
647  *
648  * Returns the number of huge pages deleted from the reserve map.
649  * In the normal case, the return value is zero or more.  In the
650  * case where a region must be split, a new region descriptor must
651  * be allocated.  If the allocation fails, -ENOMEM will be returned.
652  * NOTE: If the parameter t == LONG_MAX, then we will never split
653  * a region and possibly return -ENOMEM.  Callers specifying
654  * t == LONG_MAX do not need to check for -ENOMEM error.
655  */
656 static long region_del(struct resv_map *resv, long f, long t)
657 {
658 	struct list_head *head = &resv->regions;
659 	struct file_region *rg, *trg;
660 	struct file_region *nrg = NULL;
661 	long del = 0;
662 
663 retry:
664 	spin_lock(&resv->lock);
665 	list_for_each_entry_safe(rg, trg, head, link) {
666 		/*
667 		 * Skip regions before the range to be deleted.  file_region
668 		 * ranges are normally of the form [from, to).  However, there
669 		 * may be a "placeholder" entry in the map which is of the form
670 		 * (from, to) with from == to.  Check for placeholder entries
671 		 * at the beginning of the range to be deleted.
672 		 */
673 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
674 			continue;
675 
676 		if (rg->from >= t)
677 			break;
678 
679 		if (f > rg->from && t < rg->to) { /* Must split region */
680 			/*
681 			 * Check for an entry in the cache before dropping
682 			 * lock and attempting allocation.
683 			 */
684 			if (!nrg &&
685 			    resv->region_cache_count > resv->adds_in_progress) {
686 				nrg = list_first_entry(&resv->region_cache,
687 							struct file_region,
688 							link);
689 				list_del(&nrg->link);
690 				resv->region_cache_count--;
691 			}
692 
693 			if (!nrg) {
694 				spin_unlock(&resv->lock);
695 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
696 				if (!nrg)
697 					return -ENOMEM;
698 				goto retry;
699 			}
700 
701 			del += t - f;
702 			hugetlb_cgroup_uncharge_file_region(
703 				resv, rg, t - f, false);
704 
705 			/* New entry for end of split region */
706 			nrg->from = t;
707 			nrg->to = rg->to;
708 
709 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
710 
711 			INIT_LIST_HEAD(&nrg->link);
712 
713 			/* Original entry is trimmed */
714 			rg->to = f;
715 
716 			list_add(&nrg->link, &rg->link);
717 			nrg = NULL;
718 			break;
719 		}
720 
721 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
722 			del += rg->to - rg->from;
723 			hugetlb_cgroup_uncharge_file_region(resv, rg,
724 							    rg->to - rg->from, true);
725 			list_del(&rg->link);
726 			kfree(rg);
727 			continue;
728 		}
729 
730 		if (f <= rg->from) {	/* Trim beginning of region */
731 			hugetlb_cgroup_uncharge_file_region(resv, rg,
732 							    t - rg->from, false);
733 
734 			del += t - rg->from;
735 			rg->from = t;
736 		} else {		/* Trim end of region */
737 			hugetlb_cgroup_uncharge_file_region(resv, rg,
738 							    rg->to - f, false);
739 
740 			del += rg->to - f;
741 			rg->to = f;
742 		}
743 	}
744 
745 	spin_unlock(&resv->lock);
746 	kfree(nrg);
747 	return del;
748 }
749 
750 /*
751  * A rare out of memory error was encountered which prevented removal of
752  * the reserve map region for a page.  The huge page itself was free'ed
753  * and removed from the page cache.  This routine will adjust the subpool
754  * usage count, and the global reserve count if needed.  By incrementing
755  * these counts, the reserve map entry which could not be deleted will
756  * appear as a "reserved" entry instead of simply dangling with incorrect
757  * counts.
758  */
759 void hugetlb_fix_reserve_counts(struct inode *inode)
760 {
761 	struct hugepage_subpool *spool = subpool_inode(inode);
762 	long rsv_adjust;
763 	bool reserved = false;
764 
765 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
766 	if (rsv_adjust > 0) {
767 		struct hstate *h = hstate_inode(inode);
768 
769 		if (!hugetlb_acct_memory(h, 1))
770 			reserved = true;
771 	} else if (!rsv_adjust) {
772 		reserved = true;
773 	}
774 
775 	if (!reserved)
776 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
777 }
778 
779 /*
780  * Count and return the number of huge pages in the reserve map
781  * that intersect with the range [f, t).
782  */
783 static long region_count(struct resv_map *resv, long f, long t)
784 {
785 	struct list_head *head = &resv->regions;
786 	struct file_region *rg;
787 	long chg = 0;
788 
789 	spin_lock(&resv->lock);
790 	/* Locate each segment we overlap with, and count that overlap. */
791 	list_for_each_entry(rg, head, link) {
792 		long seg_from;
793 		long seg_to;
794 
795 		if (rg->to <= f)
796 			continue;
797 		if (rg->from >= t)
798 			break;
799 
800 		seg_from = max(rg->from, f);
801 		seg_to = min(rg->to, t);
802 
803 		chg += seg_to - seg_from;
804 	}
805 	spin_unlock(&resv->lock);
806 
807 	return chg;
808 }
809 
810 /*
811  * Convert the address within this vma to the page offset within
812  * the mapping, in pagecache page units; huge pages here.
813  */
814 static pgoff_t vma_hugecache_offset(struct hstate *h,
815 			struct vm_area_struct *vma, unsigned long address)
816 {
817 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
818 			(vma->vm_pgoff >> huge_page_order(h));
819 }
820 
821 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
822 				     unsigned long address)
823 {
824 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
825 }
826 EXPORT_SYMBOL_GPL(linear_hugepage_index);
827 
828 /*
829  * Return the size of the pages allocated when backing a VMA. In the majority
830  * cases this will be same size as used by the page table entries.
831  */
832 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
833 {
834 	if (vma->vm_ops && vma->vm_ops->pagesize)
835 		return vma->vm_ops->pagesize(vma);
836 	return PAGE_SIZE;
837 }
838 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
839 
840 /*
841  * Return the page size being used by the MMU to back a VMA. In the majority
842  * of cases, the page size used by the kernel matches the MMU size. On
843  * architectures where it differs, an architecture-specific 'strong'
844  * version of this symbol is required.
845  */
846 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
847 {
848 	return vma_kernel_pagesize(vma);
849 }
850 
851 /*
852  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
853  * bits of the reservation map pointer, which are always clear due to
854  * alignment.
855  */
856 #define HPAGE_RESV_OWNER    (1UL << 0)
857 #define HPAGE_RESV_UNMAPPED (1UL << 1)
858 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
859 
860 /*
861  * These helpers are used to track how many pages are reserved for
862  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
863  * is guaranteed to have their future faults succeed.
864  *
865  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
866  * the reserve counters are updated with the hugetlb_lock held. It is safe
867  * to reset the VMA at fork() time as it is not in use yet and there is no
868  * chance of the global counters getting corrupted as a result of the values.
869  *
870  * The private mapping reservation is represented in a subtly different
871  * manner to a shared mapping.  A shared mapping has a region map associated
872  * with the underlying file, this region map represents the backing file
873  * pages which have ever had a reservation assigned which this persists even
874  * after the page is instantiated.  A private mapping has a region map
875  * associated with the original mmap which is attached to all VMAs which
876  * reference it, this region map represents those offsets which have consumed
877  * reservation ie. where pages have been instantiated.
878  */
879 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
880 {
881 	return (unsigned long)vma->vm_private_data;
882 }
883 
884 static void set_vma_private_data(struct vm_area_struct *vma,
885 							unsigned long value)
886 {
887 	vma->vm_private_data = (void *)value;
888 }
889 
890 static void
891 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
892 					  struct hugetlb_cgroup *h_cg,
893 					  struct hstate *h)
894 {
895 #ifdef CONFIG_CGROUP_HUGETLB
896 	if (!h_cg || !h) {
897 		resv_map->reservation_counter = NULL;
898 		resv_map->pages_per_hpage = 0;
899 		resv_map->css = NULL;
900 	} else {
901 		resv_map->reservation_counter =
902 			&h_cg->rsvd_hugepage[hstate_index(h)];
903 		resv_map->pages_per_hpage = pages_per_huge_page(h);
904 		resv_map->css = &h_cg->css;
905 	}
906 #endif
907 }
908 
909 struct resv_map *resv_map_alloc(void)
910 {
911 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
912 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
913 
914 	if (!resv_map || !rg) {
915 		kfree(resv_map);
916 		kfree(rg);
917 		return NULL;
918 	}
919 
920 	kref_init(&resv_map->refs);
921 	spin_lock_init(&resv_map->lock);
922 	INIT_LIST_HEAD(&resv_map->regions);
923 
924 	resv_map->adds_in_progress = 0;
925 	/*
926 	 * Initialize these to 0. On shared mappings, 0's here indicate these
927 	 * fields don't do cgroup accounting. On private mappings, these will be
928 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
929 	 * reservations are to be un-charged from here.
930 	 */
931 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
932 
933 	INIT_LIST_HEAD(&resv_map->region_cache);
934 	list_add(&rg->link, &resv_map->region_cache);
935 	resv_map->region_cache_count = 1;
936 
937 	return resv_map;
938 }
939 
940 void resv_map_release(struct kref *ref)
941 {
942 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
943 	struct list_head *head = &resv_map->region_cache;
944 	struct file_region *rg, *trg;
945 
946 	/* Clear out any active regions before we release the map. */
947 	region_del(resv_map, 0, LONG_MAX);
948 
949 	/* ... and any entries left in the cache */
950 	list_for_each_entry_safe(rg, trg, head, link) {
951 		list_del(&rg->link);
952 		kfree(rg);
953 	}
954 
955 	VM_BUG_ON(resv_map->adds_in_progress);
956 
957 	kfree(resv_map);
958 }
959 
960 static inline struct resv_map *inode_resv_map(struct inode *inode)
961 {
962 	/*
963 	 * At inode evict time, i_mapping may not point to the original
964 	 * address space within the inode.  This original address space
965 	 * contains the pointer to the resv_map.  So, always use the
966 	 * address space embedded within the inode.
967 	 * The VERY common case is inode->mapping == &inode->i_data but,
968 	 * this may not be true for device special inodes.
969 	 */
970 	return (struct resv_map *)(&inode->i_data)->private_data;
971 }
972 
973 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
974 {
975 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976 	if (vma->vm_flags & VM_MAYSHARE) {
977 		struct address_space *mapping = vma->vm_file->f_mapping;
978 		struct inode *inode = mapping->host;
979 
980 		return inode_resv_map(inode);
981 
982 	} else {
983 		return (struct resv_map *)(get_vma_private_data(vma) &
984 							~HPAGE_RESV_MASK);
985 	}
986 }
987 
988 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
989 {
990 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
991 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
992 
993 	set_vma_private_data(vma, (get_vma_private_data(vma) &
994 				HPAGE_RESV_MASK) | (unsigned long)map);
995 }
996 
997 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
998 {
999 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1000 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1001 
1002 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1003 }
1004 
1005 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1006 {
1007 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1008 
1009 	return (get_vma_private_data(vma) & flag) != 0;
1010 }
1011 
1012 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1013 {
1014 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1015 	/*
1016 	 * Clear vm_private_data
1017 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1018 	 *   not apply to children.  Faults generated by the children are
1019 	 *   not guaranteed to succeed, even if read-only.
1020 	 * - For shared mappings this is a per-vma semaphore that may be
1021 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1022 	 */
1023 	vma->vm_private_data = (void *)0;
1024 	if (!(vma->vm_flags & VM_MAYSHARE))
1025 		return;
1026 }
1027 
1028 /*
1029  * Reset and decrement one ref on hugepage private reservation.
1030  * Called with mm->mmap_sem writer semaphore held.
1031  * This function should be only used by move_vma() and operate on
1032  * same sized vma. It should never come here with last ref on the
1033  * reservation.
1034  */
1035 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1036 {
1037 	/*
1038 	 * Clear the old hugetlb private page reservation.
1039 	 * It has already been transferred to new_vma.
1040 	 *
1041 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1042 	 * which copies vma into new_vma and unmaps vma. After the copy
1043 	 * operation both new_vma and vma share a reference to the resv_map
1044 	 * struct, and at that point vma is about to be unmapped. We don't
1045 	 * want to return the reservation to the pool at unmap of vma because
1046 	 * the reservation still lives on in new_vma, so simply decrement the
1047 	 * ref here and remove the resv_map reference from this vma.
1048 	 */
1049 	struct resv_map *reservations = vma_resv_map(vma);
1050 
1051 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1052 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1053 		kref_put(&reservations->refs, resv_map_release);
1054 	}
1055 
1056 	hugetlb_dup_vma_private(vma);
1057 }
1058 
1059 /* Returns true if the VMA has associated reserve pages */
1060 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1061 {
1062 	if (vma->vm_flags & VM_NORESERVE) {
1063 		/*
1064 		 * This address is already reserved by other process(chg == 0),
1065 		 * so, we should decrement reserved count. Without decrementing,
1066 		 * reserve count remains after releasing inode, because this
1067 		 * allocated page will go into page cache and is regarded as
1068 		 * coming from reserved pool in releasing step.  Currently, we
1069 		 * don't have any other solution to deal with this situation
1070 		 * properly, so add work-around here.
1071 		 */
1072 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1073 			return true;
1074 		else
1075 			return false;
1076 	}
1077 
1078 	/* Shared mappings always use reserves */
1079 	if (vma->vm_flags & VM_MAYSHARE) {
1080 		/*
1081 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1082 		 * be a region map for all pages.  The only situation where
1083 		 * there is no region map is if a hole was punched via
1084 		 * fallocate.  In this case, there really are no reserves to
1085 		 * use.  This situation is indicated if chg != 0.
1086 		 */
1087 		if (chg)
1088 			return false;
1089 		else
1090 			return true;
1091 	}
1092 
1093 	/*
1094 	 * Only the process that called mmap() has reserves for
1095 	 * private mappings.
1096 	 */
1097 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1098 		/*
1099 		 * Like the shared case above, a hole punch or truncate
1100 		 * could have been performed on the private mapping.
1101 		 * Examine the value of chg to determine if reserves
1102 		 * actually exist or were previously consumed.
1103 		 * Very Subtle - The value of chg comes from a previous
1104 		 * call to vma_needs_reserves().  The reserve map for
1105 		 * private mappings has different (opposite) semantics
1106 		 * than that of shared mappings.  vma_needs_reserves()
1107 		 * has already taken this difference in semantics into
1108 		 * account.  Therefore, the meaning of chg is the same
1109 		 * as in the shared case above.  Code could easily be
1110 		 * combined, but keeping it separate draws attention to
1111 		 * subtle differences.
1112 		 */
1113 		if (chg)
1114 			return false;
1115 		else
1116 			return true;
1117 	}
1118 
1119 	return false;
1120 }
1121 
1122 static void enqueue_huge_page(struct hstate *h, struct page *page)
1123 {
1124 	int nid = page_to_nid(page);
1125 
1126 	lockdep_assert_held(&hugetlb_lock);
1127 	VM_BUG_ON_PAGE(page_count(page), page);
1128 
1129 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1130 	h->free_huge_pages++;
1131 	h->free_huge_pages_node[nid]++;
1132 	SetHPageFreed(page);
1133 }
1134 
1135 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1136 {
1137 	struct page *page;
1138 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1139 
1140 	lockdep_assert_held(&hugetlb_lock);
1141 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1142 		if (pin && !is_longterm_pinnable_page(page))
1143 			continue;
1144 
1145 		if (PageHWPoison(page))
1146 			continue;
1147 
1148 		list_move(&page->lru, &h->hugepage_activelist);
1149 		set_page_refcounted(page);
1150 		ClearHPageFreed(page);
1151 		h->free_huge_pages--;
1152 		h->free_huge_pages_node[nid]--;
1153 		return page;
1154 	}
1155 
1156 	return NULL;
1157 }
1158 
1159 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1160 		nodemask_t *nmask)
1161 {
1162 	unsigned int cpuset_mems_cookie;
1163 	struct zonelist *zonelist;
1164 	struct zone *zone;
1165 	struct zoneref *z;
1166 	int node = NUMA_NO_NODE;
1167 
1168 	zonelist = node_zonelist(nid, gfp_mask);
1169 
1170 retry_cpuset:
1171 	cpuset_mems_cookie = read_mems_allowed_begin();
1172 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1173 		struct page *page;
1174 
1175 		if (!cpuset_zone_allowed(zone, gfp_mask))
1176 			continue;
1177 		/*
1178 		 * no need to ask again on the same node. Pool is node rather than
1179 		 * zone aware
1180 		 */
1181 		if (zone_to_nid(zone) == node)
1182 			continue;
1183 		node = zone_to_nid(zone);
1184 
1185 		page = dequeue_huge_page_node_exact(h, node);
1186 		if (page)
1187 			return page;
1188 	}
1189 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1190 		goto retry_cpuset;
1191 
1192 	return NULL;
1193 }
1194 
1195 static unsigned long available_huge_pages(struct hstate *h)
1196 {
1197 	return h->free_huge_pages - h->resv_huge_pages;
1198 }
1199 
1200 static struct page *dequeue_huge_page_vma(struct hstate *h,
1201 				struct vm_area_struct *vma,
1202 				unsigned long address, int avoid_reserve,
1203 				long chg)
1204 {
1205 	struct page *page = NULL;
1206 	struct mempolicy *mpol;
1207 	gfp_t gfp_mask;
1208 	nodemask_t *nodemask;
1209 	int nid;
1210 
1211 	/*
1212 	 * A child process with MAP_PRIVATE mappings created by their parent
1213 	 * have no page reserves. This check ensures that reservations are
1214 	 * not "stolen". The child may still get SIGKILLed
1215 	 */
1216 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1217 		goto err;
1218 
1219 	/* If reserves cannot be used, ensure enough pages are in the pool */
1220 	if (avoid_reserve && !available_huge_pages(h))
1221 		goto err;
1222 
1223 	gfp_mask = htlb_alloc_mask(h);
1224 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1225 
1226 	if (mpol_is_preferred_many(mpol)) {
1227 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1228 
1229 		/* Fallback to all nodes if page==NULL */
1230 		nodemask = NULL;
1231 	}
1232 
1233 	if (!page)
1234 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1235 
1236 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1237 		SetHPageRestoreReserve(page);
1238 		h->resv_huge_pages--;
1239 	}
1240 
1241 	mpol_cond_put(mpol);
1242 	return page;
1243 
1244 err:
1245 	return NULL;
1246 }
1247 
1248 /*
1249  * common helper functions for hstate_next_node_to_{alloc|free}.
1250  * We may have allocated or freed a huge page based on a different
1251  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1252  * be outside of *nodes_allowed.  Ensure that we use an allowed
1253  * node for alloc or free.
1254  */
1255 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1256 {
1257 	nid = next_node_in(nid, *nodes_allowed);
1258 	VM_BUG_ON(nid >= MAX_NUMNODES);
1259 
1260 	return nid;
1261 }
1262 
1263 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1264 {
1265 	if (!node_isset(nid, *nodes_allowed))
1266 		nid = next_node_allowed(nid, nodes_allowed);
1267 	return nid;
1268 }
1269 
1270 /*
1271  * returns the previously saved node ["this node"] from which to
1272  * allocate a persistent huge page for the pool and advance the
1273  * next node from which to allocate, handling wrap at end of node
1274  * mask.
1275  */
1276 static int hstate_next_node_to_alloc(struct hstate *h,
1277 					nodemask_t *nodes_allowed)
1278 {
1279 	int nid;
1280 
1281 	VM_BUG_ON(!nodes_allowed);
1282 
1283 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1284 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1285 
1286 	return nid;
1287 }
1288 
1289 /*
1290  * helper for remove_pool_huge_page() - return the previously saved
1291  * node ["this node"] from which to free a huge page.  Advance the
1292  * next node id whether or not we find a free huge page to free so
1293  * that the next attempt to free addresses the next node.
1294  */
1295 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1296 {
1297 	int nid;
1298 
1299 	VM_BUG_ON(!nodes_allowed);
1300 
1301 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1302 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1303 
1304 	return nid;
1305 }
1306 
1307 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1308 	for (nr_nodes = nodes_weight(*mask);				\
1309 		nr_nodes > 0 &&						\
1310 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1311 		nr_nodes--)
1312 
1313 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1314 	for (nr_nodes = nodes_weight(*mask);				\
1315 		nr_nodes > 0 &&						\
1316 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1317 		nr_nodes--)
1318 
1319 /* used to demote non-gigantic_huge pages as well */
1320 static void __destroy_compound_gigantic_page(struct page *page,
1321 					unsigned int order, bool demote)
1322 {
1323 	int i;
1324 	int nr_pages = 1 << order;
1325 	struct page *p;
1326 
1327 	atomic_set(compound_mapcount_ptr(page), 0);
1328 	atomic_set(compound_pincount_ptr(page), 0);
1329 
1330 	for (i = 1; i < nr_pages; i++) {
1331 		p = nth_page(page, i);
1332 		p->mapping = NULL;
1333 		clear_compound_head(p);
1334 		if (!demote)
1335 			set_page_refcounted(p);
1336 	}
1337 
1338 	set_compound_order(page, 0);
1339 #ifdef CONFIG_64BIT
1340 	page[1].compound_nr = 0;
1341 #endif
1342 	__ClearPageHead(page);
1343 }
1344 
1345 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1346 					unsigned int order)
1347 {
1348 	__destroy_compound_gigantic_page(page, order, true);
1349 }
1350 
1351 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1352 static void destroy_compound_gigantic_page(struct page *page,
1353 					unsigned int order)
1354 {
1355 	__destroy_compound_gigantic_page(page, order, false);
1356 }
1357 
1358 static void free_gigantic_page(struct page *page, unsigned int order)
1359 {
1360 	/*
1361 	 * If the page isn't allocated using the cma allocator,
1362 	 * cma_release() returns false.
1363 	 */
1364 #ifdef CONFIG_CMA
1365 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1366 		return;
1367 #endif
1368 
1369 	free_contig_range(page_to_pfn(page), 1 << order);
1370 }
1371 
1372 #ifdef CONFIG_CONTIG_ALLOC
1373 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1374 		int nid, nodemask_t *nodemask)
1375 {
1376 	unsigned long nr_pages = pages_per_huge_page(h);
1377 	if (nid == NUMA_NO_NODE)
1378 		nid = numa_mem_id();
1379 
1380 #ifdef CONFIG_CMA
1381 	{
1382 		struct page *page;
1383 		int node;
1384 
1385 		if (hugetlb_cma[nid]) {
1386 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1387 					huge_page_order(h), true);
1388 			if (page)
1389 				return page;
1390 		}
1391 
1392 		if (!(gfp_mask & __GFP_THISNODE)) {
1393 			for_each_node_mask(node, *nodemask) {
1394 				if (node == nid || !hugetlb_cma[node])
1395 					continue;
1396 
1397 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1398 						huge_page_order(h), true);
1399 				if (page)
1400 					return page;
1401 			}
1402 		}
1403 	}
1404 #endif
1405 
1406 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1407 }
1408 
1409 #else /* !CONFIG_CONTIG_ALLOC */
1410 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1411 					int nid, nodemask_t *nodemask)
1412 {
1413 	return NULL;
1414 }
1415 #endif /* CONFIG_CONTIG_ALLOC */
1416 
1417 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1418 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1419 					int nid, nodemask_t *nodemask)
1420 {
1421 	return NULL;
1422 }
1423 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1424 static inline void destroy_compound_gigantic_page(struct page *page,
1425 						unsigned int order) { }
1426 #endif
1427 
1428 /*
1429  * Remove hugetlb page from lists, and update dtor so that page appears
1430  * as just a compound page.
1431  *
1432  * A reference is held on the page, except in the case of demote.
1433  *
1434  * Must be called with hugetlb lock held.
1435  */
1436 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1437 							bool adjust_surplus,
1438 							bool demote)
1439 {
1440 	int nid = page_to_nid(page);
1441 
1442 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1443 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1444 
1445 	lockdep_assert_held(&hugetlb_lock);
1446 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1447 		return;
1448 
1449 	list_del(&page->lru);
1450 
1451 	if (HPageFreed(page)) {
1452 		h->free_huge_pages--;
1453 		h->free_huge_pages_node[nid]--;
1454 	}
1455 	if (adjust_surplus) {
1456 		h->surplus_huge_pages--;
1457 		h->surplus_huge_pages_node[nid]--;
1458 	}
1459 
1460 	/*
1461 	 * Very subtle
1462 	 *
1463 	 * For non-gigantic pages set the destructor to the normal compound
1464 	 * page dtor.  This is needed in case someone takes an additional
1465 	 * temporary ref to the page, and freeing is delayed until they drop
1466 	 * their reference.
1467 	 *
1468 	 * For gigantic pages set the destructor to the null dtor.  This
1469 	 * destructor will never be called.  Before freeing the gigantic
1470 	 * page destroy_compound_gigantic_page will turn the compound page
1471 	 * into a simple group of pages.  After this the destructor does not
1472 	 * apply.
1473 	 *
1474 	 * This handles the case where more than one ref is held when and
1475 	 * after update_and_free_page is called.
1476 	 *
1477 	 * In the case of demote we do not ref count the page as it will soon
1478 	 * be turned into a page of smaller size.
1479 	 */
1480 	if (!demote)
1481 		set_page_refcounted(page);
1482 	if (hstate_is_gigantic(h))
1483 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1484 	else
1485 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1486 
1487 	h->nr_huge_pages--;
1488 	h->nr_huge_pages_node[nid]--;
1489 }
1490 
1491 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1492 							bool adjust_surplus)
1493 {
1494 	__remove_hugetlb_page(h, page, adjust_surplus, false);
1495 }
1496 
1497 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1498 							bool adjust_surplus)
1499 {
1500 	__remove_hugetlb_page(h, page, adjust_surplus, true);
1501 }
1502 
1503 static void add_hugetlb_page(struct hstate *h, struct page *page,
1504 			     bool adjust_surplus)
1505 {
1506 	int zeroed;
1507 	int nid = page_to_nid(page);
1508 
1509 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1510 
1511 	lockdep_assert_held(&hugetlb_lock);
1512 
1513 	INIT_LIST_HEAD(&page->lru);
1514 	h->nr_huge_pages++;
1515 	h->nr_huge_pages_node[nid]++;
1516 
1517 	if (adjust_surplus) {
1518 		h->surplus_huge_pages++;
1519 		h->surplus_huge_pages_node[nid]++;
1520 	}
1521 
1522 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1523 	set_page_private(page, 0);
1524 	/*
1525 	 * We have to set HPageVmemmapOptimized again as above
1526 	 * set_page_private(page, 0) cleared it.
1527 	 */
1528 	SetHPageVmemmapOptimized(page);
1529 
1530 	/*
1531 	 * This page is about to be managed by the hugetlb allocator and
1532 	 * should have no users.  Drop our reference, and check for others
1533 	 * just in case.
1534 	 */
1535 	zeroed = put_page_testzero(page);
1536 	if (!zeroed)
1537 		/*
1538 		 * It is VERY unlikely soneone else has taken a ref on
1539 		 * the page.  In this case, we simply return as the
1540 		 * hugetlb destructor (free_huge_page) will be called
1541 		 * when this other ref is dropped.
1542 		 */
1543 		return;
1544 
1545 	arch_clear_hugepage_flags(page);
1546 	enqueue_huge_page(h, page);
1547 }
1548 
1549 static void __update_and_free_page(struct hstate *h, struct page *page)
1550 {
1551 	int i;
1552 	struct page *subpage;
1553 
1554 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1555 		return;
1556 
1557 	/*
1558 	 * If we don't know which subpages are hwpoisoned, we can't free
1559 	 * the hugepage, so it's leaked intentionally.
1560 	 */
1561 	if (HPageRawHwpUnreliable(page))
1562 		return;
1563 
1564 	if (hugetlb_vmemmap_restore(h, page)) {
1565 		spin_lock_irq(&hugetlb_lock);
1566 		/*
1567 		 * If we cannot allocate vmemmap pages, just refuse to free the
1568 		 * page and put the page back on the hugetlb free list and treat
1569 		 * as a surplus page.
1570 		 */
1571 		add_hugetlb_page(h, page, true);
1572 		spin_unlock_irq(&hugetlb_lock);
1573 		return;
1574 	}
1575 
1576 	/*
1577 	 * Move PageHWPoison flag from head page to the raw error pages,
1578 	 * which makes any healthy subpages reusable.
1579 	 */
1580 	if (unlikely(PageHWPoison(page)))
1581 		hugetlb_clear_page_hwpoison(page);
1582 
1583 	for (i = 0; i < pages_per_huge_page(h); i++) {
1584 		subpage = nth_page(page, i);
1585 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1586 				1 << PG_referenced | 1 << PG_dirty |
1587 				1 << PG_active | 1 << PG_private |
1588 				1 << PG_writeback);
1589 	}
1590 
1591 	/*
1592 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1593 	 * need to be given back to CMA in free_gigantic_page.
1594 	 */
1595 	if (hstate_is_gigantic(h) ||
1596 	    hugetlb_cma_page(page, huge_page_order(h))) {
1597 		destroy_compound_gigantic_page(page, huge_page_order(h));
1598 		free_gigantic_page(page, huge_page_order(h));
1599 	} else {
1600 		__free_pages(page, huge_page_order(h));
1601 	}
1602 }
1603 
1604 /*
1605  * As update_and_free_page() can be called under any context, so we cannot
1606  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1607  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1608  * the vmemmap pages.
1609  *
1610  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1611  * freed and frees them one-by-one. As the page->mapping pointer is going
1612  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1613  * structure of a lockless linked list of huge pages to be freed.
1614  */
1615 static LLIST_HEAD(hpage_freelist);
1616 
1617 static void free_hpage_workfn(struct work_struct *work)
1618 {
1619 	struct llist_node *node;
1620 
1621 	node = llist_del_all(&hpage_freelist);
1622 
1623 	while (node) {
1624 		struct page *page;
1625 		struct hstate *h;
1626 
1627 		page = container_of((struct address_space **)node,
1628 				     struct page, mapping);
1629 		node = node->next;
1630 		page->mapping = NULL;
1631 		/*
1632 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1633 		 * is going to trigger because a previous call to
1634 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1635 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1636 		 */
1637 		h = size_to_hstate(page_size(page));
1638 
1639 		__update_and_free_page(h, page);
1640 
1641 		cond_resched();
1642 	}
1643 }
1644 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1645 
1646 static inline void flush_free_hpage_work(struct hstate *h)
1647 {
1648 	if (hugetlb_vmemmap_optimizable(h))
1649 		flush_work(&free_hpage_work);
1650 }
1651 
1652 static void update_and_free_page(struct hstate *h, struct page *page,
1653 				 bool atomic)
1654 {
1655 	if (!HPageVmemmapOptimized(page) || !atomic) {
1656 		__update_and_free_page(h, page);
1657 		return;
1658 	}
1659 
1660 	/*
1661 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1662 	 *
1663 	 * Only call schedule_work() if hpage_freelist is previously
1664 	 * empty. Otherwise, schedule_work() had been called but the workfn
1665 	 * hasn't retrieved the list yet.
1666 	 */
1667 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1668 		schedule_work(&free_hpage_work);
1669 }
1670 
1671 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1672 {
1673 	struct page *page, *t_page;
1674 
1675 	list_for_each_entry_safe(page, t_page, list, lru) {
1676 		update_and_free_page(h, page, false);
1677 		cond_resched();
1678 	}
1679 }
1680 
1681 struct hstate *size_to_hstate(unsigned long size)
1682 {
1683 	struct hstate *h;
1684 
1685 	for_each_hstate(h) {
1686 		if (huge_page_size(h) == size)
1687 			return h;
1688 	}
1689 	return NULL;
1690 }
1691 
1692 void free_huge_page(struct page *page)
1693 {
1694 	/*
1695 	 * Can't pass hstate in here because it is called from the
1696 	 * compound page destructor.
1697 	 */
1698 	struct hstate *h = page_hstate(page);
1699 	int nid = page_to_nid(page);
1700 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1701 	bool restore_reserve;
1702 	unsigned long flags;
1703 
1704 	VM_BUG_ON_PAGE(page_count(page), page);
1705 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1706 
1707 	hugetlb_set_page_subpool(page, NULL);
1708 	if (PageAnon(page))
1709 		__ClearPageAnonExclusive(page);
1710 	page->mapping = NULL;
1711 	restore_reserve = HPageRestoreReserve(page);
1712 	ClearHPageRestoreReserve(page);
1713 
1714 	/*
1715 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1716 	 * reservation.  If the page was associated with a subpool, there
1717 	 * would have been a page reserved in the subpool before allocation
1718 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1719 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1720 	 * remove the reserved page from the subpool.
1721 	 */
1722 	if (!restore_reserve) {
1723 		/*
1724 		 * A return code of zero implies that the subpool will be
1725 		 * under its minimum size if the reservation is not restored
1726 		 * after page is free.  Therefore, force restore_reserve
1727 		 * operation.
1728 		 */
1729 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1730 			restore_reserve = true;
1731 	}
1732 
1733 	spin_lock_irqsave(&hugetlb_lock, flags);
1734 	ClearHPageMigratable(page);
1735 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1736 				     pages_per_huge_page(h), page);
1737 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1738 					  pages_per_huge_page(h), page);
1739 	if (restore_reserve)
1740 		h->resv_huge_pages++;
1741 
1742 	if (HPageTemporary(page)) {
1743 		remove_hugetlb_page(h, page, false);
1744 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1745 		update_and_free_page(h, page, true);
1746 	} else if (h->surplus_huge_pages_node[nid]) {
1747 		/* remove the page from active list */
1748 		remove_hugetlb_page(h, page, true);
1749 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1750 		update_and_free_page(h, page, true);
1751 	} else {
1752 		arch_clear_hugepage_flags(page);
1753 		enqueue_huge_page(h, page);
1754 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1755 	}
1756 }
1757 
1758 /*
1759  * Must be called with the hugetlb lock held
1760  */
1761 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1762 {
1763 	lockdep_assert_held(&hugetlb_lock);
1764 	h->nr_huge_pages++;
1765 	h->nr_huge_pages_node[nid]++;
1766 }
1767 
1768 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1769 {
1770 	hugetlb_vmemmap_optimize(h, page);
1771 	INIT_LIST_HEAD(&page->lru);
1772 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1773 	hugetlb_set_page_subpool(page, NULL);
1774 	set_hugetlb_cgroup(page, NULL);
1775 	set_hugetlb_cgroup_rsvd(page, NULL);
1776 }
1777 
1778 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1779 {
1780 	__prep_new_huge_page(h, page);
1781 	spin_lock_irq(&hugetlb_lock);
1782 	__prep_account_new_huge_page(h, nid);
1783 	spin_unlock_irq(&hugetlb_lock);
1784 }
1785 
1786 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1787 								bool demote)
1788 {
1789 	int i, j;
1790 	int nr_pages = 1 << order;
1791 	struct page *p;
1792 
1793 	/* we rely on prep_new_huge_page to set the destructor */
1794 	set_compound_order(page, order);
1795 	__SetPageHead(page);
1796 	for (i = 0; i < nr_pages; i++) {
1797 		p = nth_page(page, i);
1798 
1799 		/*
1800 		 * For gigantic hugepages allocated through bootmem at
1801 		 * boot, it's safer to be consistent with the not-gigantic
1802 		 * hugepages and clear the PG_reserved bit from all tail pages
1803 		 * too.  Otherwise drivers using get_user_pages() to access tail
1804 		 * pages may get the reference counting wrong if they see
1805 		 * PG_reserved set on a tail page (despite the head page not
1806 		 * having PG_reserved set).  Enforcing this consistency between
1807 		 * head and tail pages allows drivers to optimize away a check
1808 		 * on the head page when they need know if put_page() is needed
1809 		 * after get_user_pages().
1810 		 */
1811 		__ClearPageReserved(p);
1812 		/*
1813 		 * Subtle and very unlikely
1814 		 *
1815 		 * Gigantic 'page allocators' such as memblock or cma will
1816 		 * return a set of pages with each page ref counted.  We need
1817 		 * to turn this set of pages into a compound page with tail
1818 		 * page ref counts set to zero.  Code such as speculative page
1819 		 * cache adding could take a ref on a 'to be' tail page.
1820 		 * We need to respect any increased ref count, and only set
1821 		 * the ref count to zero if count is currently 1.  If count
1822 		 * is not 1, we return an error.  An error return indicates
1823 		 * the set of pages can not be converted to a gigantic page.
1824 		 * The caller who allocated the pages should then discard the
1825 		 * pages using the appropriate free interface.
1826 		 *
1827 		 * In the case of demote, the ref count will be zero.
1828 		 */
1829 		if (!demote) {
1830 			if (!page_ref_freeze(p, 1)) {
1831 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1832 				goto out_error;
1833 			}
1834 		} else {
1835 			VM_BUG_ON_PAGE(page_count(p), p);
1836 		}
1837 		if (i != 0)
1838 			set_compound_head(p, page);
1839 	}
1840 	atomic_set(compound_mapcount_ptr(page), -1);
1841 	atomic_set(compound_pincount_ptr(page), 0);
1842 	return true;
1843 
1844 out_error:
1845 	/* undo page modifications made above */
1846 	for (j = 0; j < i; j++) {
1847 		p = nth_page(page, j);
1848 		if (j != 0)
1849 			clear_compound_head(p);
1850 		set_page_refcounted(p);
1851 	}
1852 	/* need to clear PG_reserved on remaining tail pages  */
1853 	for (; j < nr_pages; j++) {
1854 		p = nth_page(page, j);
1855 		__ClearPageReserved(p);
1856 	}
1857 	set_compound_order(page, 0);
1858 #ifdef CONFIG_64BIT
1859 	page[1].compound_nr = 0;
1860 #endif
1861 	__ClearPageHead(page);
1862 	return false;
1863 }
1864 
1865 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1866 {
1867 	return __prep_compound_gigantic_page(page, order, false);
1868 }
1869 
1870 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1871 							unsigned int order)
1872 {
1873 	return __prep_compound_gigantic_page(page, order, true);
1874 }
1875 
1876 /*
1877  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1878  * transparent huge pages.  See the PageTransHuge() documentation for more
1879  * details.
1880  */
1881 int PageHuge(struct page *page)
1882 {
1883 	if (!PageCompound(page))
1884 		return 0;
1885 
1886 	page = compound_head(page);
1887 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1888 }
1889 EXPORT_SYMBOL_GPL(PageHuge);
1890 
1891 /*
1892  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1893  * normal or transparent huge pages.
1894  */
1895 int PageHeadHuge(struct page *page_head)
1896 {
1897 	if (!PageHead(page_head))
1898 		return 0;
1899 
1900 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1901 }
1902 EXPORT_SYMBOL_GPL(PageHeadHuge);
1903 
1904 /*
1905  * Find and lock address space (mapping) in write mode.
1906  *
1907  * Upon entry, the page is locked which means that page_mapping() is
1908  * stable.  Due to locking order, we can only trylock_write.  If we can
1909  * not get the lock, simply return NULL to caller.
1910  */
1911 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1912 {
1913 	struct address_space *mapping = page_mapping(hpage);
1914 
1915 	if (!mapping)
1916 		return mapping;
1917 
1918 	if (i_mmap_trylock_write(mapping))
1919 		return mapping;
1920 
1921 	return NULL;
1922 }
1923 
1924 pgoff_t hugetlb_basepage_index(struct page *page)
1925 {
1926 	struct page *page_head = compound_head(page);
1927 	pgoff_t index = page_index(page_head);
1928 	unsigned long compound_idx;
1929 
1930 	if (compound_order(page_head) >= MAX_ORDER)
1931 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1932 	else
1933 		compound_idx = page - page_head;
1934 
1935 	return (index << compound_order(page_head)) + compound_idx;
1936 }
1937 
1938 static struct page *alloc_buddy_huge_page(struct hstate *h,
1939 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1940 		nodemask_t *node_alloc_noretry)
1941 {
1942 	int order = huge_page_order(h);
1943 	struct page *page;
1944 	bool alloc_try_hard = true;
1945 	bool retry = true;
1946 
1947 	/*
1948 	 * By default we always try hard to allocate the page with
1949 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1950 	 * a loop (to adjust global huge page counts) and previous allocation
1951 	 * failed, do not continue to try hard on the same node.  Use the
1952 	 * node_alloc_noretry bitmap to manage this state information.
1953 	 */
1954 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1955 		alloc_try_hard = false;
1956 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1957 	if (alloc_try_hard)
1958 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1959 	if (nid == NUMA_NO_NODE)
1960 		nid = numa_mem_id();
1961 retry:
1962 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1963 
1964 	/* Freeze head page */
1965 	if (page && !page_ref_freeze(page, 1)) {
1966 		__free_pages(page, order);
1967 		if (retry) {	/* retry once */
1968 			retry = false;
1969 			goto retry;
1970 		}
1971 		/* WOW!  twice in a row. */
1972 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
1973 		page = NULL;
1974 	}
1975 
1976 	if (page)
1977 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1978 	else
1979 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1980 
1981 	/*
1982 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1983 	 * indicates an overall state change.  Clear bit so that we resume
1984 	 * normal 'try hard' allocations.
1985 	 */
1986 	if (node_alloc_noretry && page && !alloc_try_hard)
1987 		node_clear(nid, *node_alloc_noretry);
1988 
1989 	/*
1990 	 * If we tried hard to get a page but failed, set bit so that
1991 	 * subsequent attempts will not try as hard until there is an
1992 	 * overall state change.
1993 	 */
1994 	if (node_alloc_noretry && !page && alloc_try_hard)
1995 		node_set(nid, *node_alloc_noretry);
1996 
1997 	return page;
1998 }
1999 
2000 /*
2001  * Common helper to allocate a fresh hugetlb page. All specific allocators
2002  * should use this function to get new hugetlb pages
2003  *
2004  * Note that returned page is 'frozen':  ref count of head page and all tail
2005  * pages is zero.
2006  */
2007 static struct page *alloc_fresh_huge_page(struct hstate *h,
2008 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2009 		nodemask_t *node_alloc_noretry)
2010 {
2011 	struct page *page;
2012 	bool retry = false;
2013 
2014 retry:
2015 	if (hstate_is_gigantic(h))
2016 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
2017 	else
2018 		page = alloc_buddy_huge_page(h, gfp_mask,
2019 				nid, nmask, node_alloc_noretry);
2020 	if (!page)
2021 		return NULL;
2022 
2023 	if (hstate_is_gigantic(h)) {
2024 		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
2025 			/*
2026 			 * Rare failure to convert pages to compound page.
2027 			 * Free pages and try again - ONCE!
2028 			 */
2029 			free_gigantic_page(page, huge_page_order(h));
2030 			if (!retry) {
2031 				retry = true;
2032 				goto retry;
2033 			}
2034 			return NULL;
2035 		}
2036 	}
2037 	prep_new_huge_page(h, page, page_to_nid(page));
2038 
2039 	return page;
2040 }
2041 
2042 /*
2043  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2044  * manner.
2045  */
2046 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2047 				nodemask_t *node_alloc_noretry)
2048 {
2049 	struct page *page;
2050 	int nr_nodes, node;
2051 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2052 
2053 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2054 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2055 						node_alloc_noretry);
2056 		if (page)
2057 			break;
2058 	}
2059 
2060 	if (!page)
2061 		return 0;
2062 
2063 	free_huge_page(page); /* free it into the hugepage allocator */
2064 
2065 	return 1;
2066 }
2067 
2068 /*
2069  * Remove huge page from pool from next node to free.  Attempt to keep
2070  * persistent huge pages more or less balanced over allowed nodes.
2071  * This routine only 'removes' the hugetlb page.  The caller must make
2072  * an additional call to free the page to low level allocators.
2073  * Called with hugetlb_lock locked.
2074  */
2075 static struct page *remove_pool_huge_page(struct hstate *h,
2076 						nodemask_t *nodes_allowed,
2077 						 bool acct_surplus)
2078 {
2079 	int nr_nodes, node;
2080 	struct page *page = NULL;
2081 
2082 	lockdep_assert_held(&hugetlb_lock);
2083 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2084 		/*
2085 		 * If we're returning unused surplus pages, only examine
2086 		 * nodes with surplus pages.
2087 		 */
2088 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2089 		    !list_empty(&h->hugepage_freelists[node])) {
2090 			page = list_entry(h->hugepage_freelists[node].next,
2091 					  struct page, lru);
2092 			remove_hugetlb_page(h, page, acct_surplus);
2093 			break;
2094 		}
2095 	}
2096 
2097 	return page;
2098 }
2099 
2100 /*
2101  * Dissolve a given free hugepage into free buddy pages. This function does
2102  * nothing for in-use hugepages and non-hugepages.
2103  * This function returns values like below:
2104  *
2105  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2106  *           when the system is under memory pressure and the feature of
2107  *           freeing unused vmemmap pages associated with each hugetlb page
2108  *           is enabled.
2109  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2110  *           (allocated or reserved.)
2111  *       0:  successfully dissolved free hugepages or the page is not a
2112  *           hugepage (considered as already dissolved)
2113  */
2114 int dissolve_free_huge_page(struct page *page)
2115 {
2116 	int rc = -EBUSY;
2117 
2118 retry:
2119 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2120 	if (!PageHuge(page))
2121 		return 0;
2122 
2123 	spin_lock_irq(&hugetlb_lock);
2124 	if (!PageHuge(page)) {
2125 		rc = 0;
2126 		goto out;
2127 	}
2128 
2129 	if (!page_count(page)) {
2130 		struct page *head = compound_head(page);
2131 		struct hstate *h = page_hstate(head);
2132 		if (!available_huge_pages(h))
2133 			goto out;
2134 
2135 		/*
2136 		 * We should make sure that the page is already on the free list
2137 		 * when it is dissolved.
2138 		 */
2139 		if (unlikely(!HPageFreed(head))) {
2140 			spin_unlock_irq(&hugetlb_lock);
2141 			cond_resched();
2142 
2143 			/*
2144 			 * Theoretically, we should return -EBUSY when we
2145 			 * encounter this race. In fact, we have a chance
2146 			 * to successfully dissolve the page if we do a
2147 			 * retry. Because the race window is quite small.
2148 			 * If we seize this opportunity, it is an optimization
2149 			 * for increasing the success rate of dissolving page.
2150 			 */
2151 			goto retry;
2152 		}
2153 
2154 		remove_hugetlb_page(h, head, false);
2155 		h->max_huge_pages--;
2156 		spin_unlock_irq(&hugetlb_lock);
2157 
2158 		/*
2159 		 * Normally update_and_free_page will allocate required vmemmmap
2160 		 * before freeing the page.  update_and_free_page will fail to
2161 		 * free the page if it can not allocate required vmemmap.  We
2162 		 * need to adjust max_huge_pages if the page is not freed.
2163 		 * Attempt to allocate vmemmmap here so that we can take
2164 		 * appropriate action on failure.
2165 		 */
2166 		rc = hugetlb_vmemmap_restore(h, head);
2167 		if (!rc) {
2168 			update_and_free_page(h, head, false);
2169 		} else {
2170 			spin_lock_irq(&hugetlb_lock);
2171 			add_hugetlb_page(h, head, false);
2172 			h->max_huge_pages++;
2173 			spin_unlock_irq(&hugetlb_lock);
2174 		}
2175 
2176 		return rc;
2177 	}
2178 out:
2179 	spin_unlock_irq(&hugetlb_lock);
2180 	return rc;
2181 }
2182 
2183 /*
2184  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2185  * make specified memory blocks removable from the system.
2186  * Note that this will dissolve a free gigantic hugepage completely, if any
2187  * part of it lies within the given range.
2188  * Also note that if dissolve_free_huge_page() returns with an error, all
2189  * free hugepages that were dissolved before that error are lost.
2190  */
2191 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2192 {
2193 	unsigned long pfn;
2194 	struct page *page;
2195 	int rc = 0;
2196 	unsigned int order;
2197 	struct hstate *h;
2198 
2199 	if (!hugepages_supported())
2200 		return rc;
2201 
2202 	order = huge_page_order(&default_hstate);
2203 	for_each_hstate(h)
2204 		order = min(order, huge_page_order(h));
2205 
2206 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2207 		page = pfn_to_page(pfn);
2208 		rc = dissolve_free_huge_page(page);
2209 		if (rc)
2210 			break;
2211 	}
2212 
2213 	return rc;
2214 }
2215 
2216 /*
2217  * Allocates a fresh surplus page from the page allocator.
2218  */
2219 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2220 						int nid, nodemask_t *nmask)
2221 {
2222 	struct page *page = NULL;
2223 
2224 	if (hstate_is_gigantic(h))
2225 		return NULL;
2226 
2227 	spin_lock_irq(&hugetlb_lock);
2228 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2229 		goto out_unlock;
2230 	spin_unlock_irq(&hugetlb_lock);
2231 
2232 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2233 	if (!page)
2234 		return NULL;
2235 
2236 	spin_lock_irq(&hugetlb_lock);
2237 	/*
2238 	 * We could have raced with the pool size change.
2239 	 * Double check that and simply deallocate the new page
2240 	 * if we would end up overcommiting the surpluses. Abuse
2241 	 * temporary page to workaround the nasty free_huge_page
2242 	 * codeflow
2243 	 */
2244 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2245 		SetHPageTemporary(page);
2246 		spin_unlock_irq(&hugetlb_lock);
2247 		free_huge_page(page);
2248 		return NULL;
2249 	}
2250 
2251 	h->surplus_huge_pages++;
2252 	h->surplus_huge_pages_node[page_to_nid(page)]++;
2253 
2254 out_unlock:
2255 	spin_unlock_irq(&hugetlb_lock);
2256 
2257 	return page;
2258 }
2259 
2260 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2261 				     int nid, nodemask_t *nmask)
2262 {
2263 	struct page *page;
2264 
2265 	if (hstate_is_gigantic(h))
2266 		return NULL;
2267 
2268 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2269 	if (!page)
2270 		return NULL;
2271 
2272 	/* fresh huge pages are frozen */
2273 	set_page_refcounted(page);
2274 
2275 	/*
2276 	 * We do not account these pages as surplus because they are only
2277 	 * temporary and will be released properly on the last reference
2278 	 */
2279 	SetHPageTemporary(page);
2280 
2281 	return page;
2282 }
2283 
2284 /*
2285  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2286  */
2287 static
2288 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2289 		struct vm_area_struct *vma, unsigned long addr)
2290 {
2291 	struct page *page = NULL;
2292 	struct mempolicy *mpol;
2293 	gfp_t gfp_mask = htlb_alloc_mask(h);
2294 	int nid;
2295 	nodemask_t *nodemask;
2296 
2297 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2298 	if (mpol_is_preferred_many(mpol)) {
2299 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2300 
2301 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2302 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2303 
2304 		/* Fallback to all nodes if page==NULL */
2305 		nodemask = NULL;
2306 	}
2307 
2308 	if (!page)
2309 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2310 	mpol_cond_put(mpol);
2311 	return page;
2312 }
2313 
2314 /* page migration callback function */
2315 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2316 		nodemask_t *nmask, gfp_t gfp_mask)
2317 {
2318 	spin_lock_irq(&hugetlb_lock);
2319 	if (available_huge_pages(h)) {
2320 		struct page *page;
2321 
2322 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2323 		if (page) {
2324 			spin_unlock_irq(&hugetlb_lock);
2325 			return page;
2326 		}
2327 	}
2328 	spin_unlock_irq(&hugetlb_lock);
2329 
2330 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2331 }
2332 
2333 /* mempolicy aware migration callback */
2334 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2335 		unsigned long address)
2336 {
2337 	struct mempolicy *mpol;
2338 	nodemask_t *nodemask;
2339 	struct page *page;
2340 	gfp_t gfp_mask;
2341 	int node;
2342 
2343 	gfp_mask = htlb_alloc_mask(h);
2344 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2345 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2346 	mpol_cond_put(mpol);
2347 
2348 	return page;
2349 }
2350 
2351 /*
2352  * Increase the hugetlb pool such that it can accommodate a reservation
2353  * of size 'delta'.
2354  */
2355 static int gather_surplus_pages(struct hstate *h, long delta)
2356 	__must_hold(&hugetlb_lock)
2357 {
2358 	LIST_HEAD(surplus_list);
2359 	struct page *page, *tmp;
2360 	int ret;
2361 	long i;
2362 	long needed, allocated;
2363 	bool alloc_ok = true;
2364 
2365 	lockdep_assert_held(&hugetlb_lock);
2366 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2367 	if (needed <= 0) {
2368 		h->resv_huge_pages += delta;
2369 		return 0;
2370 	}
2371 
2372 	allocated = 0;
2373 
2374 	ret = -ENOMEM;
2375 retry:
2376 	spin_unlock_irq(&hugetlb_lock);
2377 	for (i = 0; i < needed; i++) {
2378 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2379 				NUMA_NO_NODE, NULL);
2380 		if (!page) {
2381 			alloc_ok = false;
2382 			break;
2383 		}
2384 		list_add(&page->lru, &surplus_list);
2385 		cond_resched();
2386 	}
2387 	allocated += i;
2388 
2389 	/*
2390 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2391 	 * because either resv_huge_pages or free_huge_pages may have changed.
2392 	 */
2393 	spin_lock_irq(&hugetlb_lock);
2394 	needed = (h->resv_huge_pages + delta) -
2395 			(h->free_huge_pages + allocated);
2396 	if (needed > 0) {
2397 		if (alloc_ok)
2398 			goto retry;
2399 		/*
2400 		 * We were not able to allocate enough pages to
2401 		 * satisfy the entire reservation so we free what
2402 		 * we've allocated so far.
2403 		 */
2404 		goto free;
2405 	}
2406 	/*
2407 	 * The surplus_list now contains _at_least_ the number of extra pages
2408 	 * needed to accommodate the reservation.  Add the appropriate number
2409 	 * of pages to the hugetlb pool and free the extras back to the buddy
2410 	 * allocator.  Commit the entire reservation here to prevent another
2411 	 * process from stealing the pages as they are added to the pool but
2412 	 * before they are reserved.
2413 	 */
2414 	needed += allocated;
2415 	h->resv_huge_pages += delta;
2416 	ret = 0;
2417 
2418 	/* Free the needed pages to the hugetlb pool */
2419 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2420 		if ((--needed) < 0)
2421 			break;
2422 		/* Add the page to the hugetlb allocator */
2423 		enqueue_huge_page(h, page);
2424 	}
2425 free:
2426 	spin_unlock_irq(&hugetlb_lock);
2427 
2428 	/*
2429 	 * Free unnecessary surplus pages to the buddy allocator.
2430 	 * Pages have no ref count, call free_huge_page directly.
2431 	 */
2432 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2433 		free_huge_page(page);
2434 	spin_lock_irq(&hugetlb_lock);
2435 
2436 	return ret;
2437 }
2438 
2439 /*
2440  * This routine has two main purposes:
2441  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2442  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2443  *    to the associated reservation map.
2444  * 2) Free any unused surplus pages that may have been allocated to satisfy
2445  *    the reservation.  As many as unused_resv_pages may be freed.
2446  */
2447 static void return_unused_surplus_pages(struct hstate *h,
2448 					unsigned long unused_resv_pages)
2449 {
2450 	unsigned long nr_pages;
2451 	struct page *page;
2452 	LIST_HEAD(page_list);
2453 
2454 	lockdep_assert_held(&hugetlb_lock);
2455 	/* Uncommit the reservation */
2456 	h->resv_huge_pages -= unused_resv_pages;
2457 
2458 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2459 		goto out;
2460 
2461 	/*
2462 	 * Part (or even all) of the reservation could have been backed
2463 	 * by pre-allocated pages. Only free surplus pages.
2464 	 */
2465 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2466 
2467 	/*
2468 	 * We want to release as many surplus pages as possible, spread
2469 	 * evenly across all nodes with memory. Iterate across these nodes
2470 	 * until we can no longer free unreserved surplus pages. This occurs
2471 	 * when the nodes with surplus pages have no free pages.
2472 	 * remove_pool_huge_page() will balance the freed pages across the
2473 	 * on-line nodes with memory and will handle the hstate accounting.
2474 	 */
2475 	while (nr_pages--) {
2476 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2477 		if (!page)
2478 			goto out;
2479 
2480 		list_add(&page->lru, &page_list);
2481 	}
2482 
2483 out:
2484 	spin_unlock_irq(&hugetlb_lock);
2485 	update_and_free_pages_bulk(h, &page_list);
2486 	spin_lock_irq(&hugetlb_lock);
2487 }
2488 
2489 
2490 /*
2491  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2492  * are used by the huge page allocation routines to manage reservations.
2493  *
2494  * vma_needs_reservation is called to determine if the huge page at addr
2495  * within the vma has an associated reservation.  If a reservation is
2496  * needed, the value 1 is returned.  The caller is then responsible for
2497  * managing the global reservation and subpool usage counts.  After
2498  * the huge page has been allocated, vma_commit_reservation is called
2499  * to add the page to the reservation map.  If the page allocation fails,
2500  * the reservation must be ended instead of committed.  vma_end_reservation
2501  * is called in such cases.
2502  *
2503  * In the normal case, vma_commit_reservation returns the same value
2504  * as the preceding vma_needs_reservation call.  The only time this
2505  * is not the case is if a reserve map was changed between calls.  It
2506  * is the responsibility of the caller to notice the difference and
2507  * take appropriate action.
2508  *
2509  * vma_add_reservation is used in error paths where a reservation must
2510  * be restored when a newly allocated huge page must be freed.  It is
2511  * to be called after calling vma_needs_reservation to determine if a
2512  * reservation exists.
2513  *
2514  * vma_del_reservation is used in error paths where an entry in the reserve
2515  * map was created during huge page allocation and must be removed.  It is to
2516  * be called after calling vma_needs_reservation to determine if a reservation
2517  * exists.
2518  */
2519 enum vma_resv_mode {
2520 	VMA_NEEDS_RESV,
2521 	VMA_COMMIT_RESV,
2522 	VMA_END_RESV,
2523 	VMA_ADD_RESV,
2524 	VMA_DEL_RESV,
2525 };
2526 static long __vma_reservation_common(struct hstate *h,
2527 				struct vm_area_struct *vma, unsigned long addr,
2528 				enum vma_resv_mode mode)
2529 {
2530 	struct resv_map *resv;
2531 	pgoff_t idx;
2532 	long ret;
2533 	long dummy_out_regions_needed;
2534 
2535 	resv = vma_resv_map(vma);
2536 	if (!resv)
2537 		return 1;
2538 
2539 	idx = vma_hugecache_offset(h, vma, addr);
2540 	switch (mode) {
2541 	case VMA_NEEDS_RESV:
2542 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2543 		/* We assume that vma_reservation_* routines always operate on
2544 		 * 1 page, and that adding to resv map a 1 page entry can only
2545 		 * ever require 1 region.
2546 		 */
2547 		VM_BUG_ON(dummy_out_regions_needed != 1);
2548 		break;
2549 	case VMA_COMMIT_RESV:
2550 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2551 		/* region_add calls of range 1 should never fail. */
2552 		VM_BUG_ON(ret < 0);
2553 		break;
2554 	case VMA_END_RESV:
2555 		region_abort(resv, idx, idx + 1, 1);
2556 		ret = 0;
2557 		break;
2558 	case VMA_ADD_RESV:
2559 		if (vma->vm_flags & VM_MAYSHARE) {
2560 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2561 			/* region_add calls of range 1 should never fail. */
2562 			VM_BUG_ON(ret < 0);
2563 		} else {
2564 			region_abort(resv, idx, idx + 1, 1);
2565 			ret = region_del(resv, idx, idx + 1);
2566 		}
2567 		break;
2568 	case VMA_DEL_RESV:
2569 		if (vma->vm_flags & VM_MAYSHARE) {
2570 			region_abort(resv, idx, idx + 1, 1);
2571 			ret = region_del(resv, idx, idx + 1);
2572 		} else {
2573 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2574 			/* region_add calls of range 1 should never fail. */
2575 			VM_BUG_ON(ret < 0);
2576 		}
2577 		break;
2578 	default:
2579 		BUG();
2580 	}
2581 
2582 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2583 		return ret;
2584 	/*
2585 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2586 	 *
2587 	 * In most cases, reserves always exist for private mappings.
2588 	 * However, a file associated with mapping could have been
2589 	 * hole punched or truncated after reserves were consumed.
2590 	 * As subsequent fault on such a range will not use reserves.
2591 	 * Subtle - The reserve map for private mappings has the
2592 	 * opposite meaning than that of shared mappings.  If NO
2593 	 * entry is in the reserve map, it means a reservation exists.
2594 	 * If an entry exists in the reserve map, it means the
2595 	 * reservation has already been consumed.  As a result, the
2596 	 * return value of this routine is the opposite of the
2597 	 * value returned from reserve map manipulation routines above.
2598 	 */
2599 	if (ret > 0)
2600 		return 0;
2601 	if (ret == 0)
2602 		return 1;
2603 	return ret;
2604 }
2605 
2606 static long vma_needs_reservation(struct hstate *h,
2607 			struct vm_area_struct *vma, unsigned long addr)
2608 {
2609 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2610 }
2611 
2612 static long vma_commit_reservation(struct hstate *h,
2613 			struct vm_area_struct *vma, unsigned long addr)
2614 {
2615 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2616 }
2617 
2618 static void vma_end_reservation(struct hstate *h,
2619 			struct vm_area_struct *vma, unsigned long addr)
2620 {
2621 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2622 }
2623 
2624 static long vma_add_reservation(struct hstate *h,
2625 			struct vm_area_struct *vma, unsigned long addr)
2626 {
2627 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2628 }
2629 
2630 static long vma_del_reservation(struct hstate *h,
2631 			struct vm_area_struct *vma, unsigned long addr)
2632 {
2633 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2634 }
2635 
2636 /*
2637  * This routine is called to restore reservation information on error paths.
2638  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2639  * the hugetlb mutex should remain held when calling this routine.
2640  *
2641  * It handles two specific cases:
2642  * 1) A reservation was in place and the page consumed the reservation.
2643  *    HPageRestoreReserve is set in the page.
2644  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2645  *    not set.  However, alloc_huge_page always updates the reserve map.
2646  *
2647  * In case 1, free_huge_page later in the error path will increment the
2648  * global reserve count.  But, free_huge_page does not have enough context
2649  * to adjust the reservation map.  This case deals primarily with private
2650  * mappings.  Adjust the reserve map here to be consistent with global
2651  * reserve count adjustments to be made by free_huge_page.  Make sure the
2652  * reserve map indicates there is a reservation present.
2653  *
2654  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2655  */
2656 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2657 			unsigned long address, struct page *page)
2658 {
2659 	long rc = vma_needs_reservation(h, vma, address);
2660 
2661 	if (HPageRestoreReserve(page)) {
2662 		if (unlikely(rc < 0))
2663 			/*
2664 			 * Rare out of memory condition in reserve map
2665 			 * manipulation.  Clear HPageRestoreReserve so that
2666 			 * global reserve count will not be incremented
2667 			 * by free_huge_page.  This will make it appear
2668 			 * as though the reservation for this page was
2669 			 * consumed.  This may prevent the task from
2670 			 * faulting in the page at a later time.  This
2671 			 * is better than inconsistent global huge page
2672 			 * accounting of reserve counts.
2673 			 */
2674 			ClearHPageRestoreReserve(page);
2675 		else if (rc)
2676 			(void)vma_add_reservation(h, vma, address);
2677 		else
2678 			vma_end_reservation(h, vma, address);
2679 	} else {
2680 		if (!rc) {
2681 			/*
2682 			 * This indicates there is an entry in the reserve map
2683 			 * not added by alloc_huge_page.  We know it was added
2684 			 * before the alloc_huge_page call, otherwise
2685 			 * HPageRestoreReserve would be set on the page.
2686 			 * Remove the entry so that a subsequent allocation
2687 			 * does not consume a reservation.
2688 			 */
2689 			rc = vma_del_reservation(h, vma, address);
2690 			if (rc < 0)
2691 				/*
2692 				 * VERY rare out of memory condition.  Since
2693 				 * we can not delete the entry, set
2694 				 * HPageRestoreReserve so that the reserve
2695 				 * count will be incremented when the page
2696 				 * is freed.  This reserve will be consumed
2697 				 * on a subsequent allocation.
2698 				 */
2699 				SetHPageRestoreReserve(page);
2700 		} else if (rc < 0) {
2701 			/*
2702 			 * Rare out of memory condition from
2703 			 * vma_needs_reservation call.  Memory allocation is
2704 			 * only attempted if a new entry is needed.  Therefore,
2705 			 * this implies there is not an entry in the
2706 			 * reserve map.
2707 			 *
2708 			 * For shared mappings, no entry in the map indicates
2709 			 * no reservation.  We are done.
2710 			 */
2711 			if (!(vma->vm_flags & VM_MAYSHARE))
2712 				/*
2713 				 * For private mappings, no entry indicates
2714 				 * a reservation is present.  Since we can
2715 				 * not add an entry, set SetHPageRestoreReserve
2716 				 * on the page so reserve count will be
2717 				 * incremented when freed.  This reserve will
2718 				 * be consumed on a subsequent allocation.
2719 				 */
2720 				SetHPageRestoreReserve(page);
2721 		} else
2722 			/*
2723 			 * No reservation present, do nothing
2724 			 */
2725 			 vma_end_reservation(h, vma, address);
2726 	}
2727 }
2728 
2729 /*
2730  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2731  * @h: struct hstate old page belongs to
2732  * @old_page: Old page to dissolve
2733  * @list: List to isolate the page in case we need to
2734  * Returns 0 on success, otherwise negated error.
2735  */
2736 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2737 					struct list_head *list)
2738 {
2739 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2740 	int nid = page_to_nid(old_page);
2741 	struct page *new_page;
2742 	int ret = 0;
2743 
2744 	/*
2745 	 * Before dissolving the page, we need to allocate a new one for the
2746 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2747 	 * by doing everything but actually updating counters and adding to
2748 	 * the pool.  This simplifies and let us do most of the processing
2749 	 * under the lock.
2750 	 */
2751 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2752 	if (!new_page)
2753 		return -ENOMEM;
2754 	__prep_new_huge_page(h, new_page);
2755 
2756 retry:
2757 	spin_lock_irq(&hugetlb_lock);
2758 	if (!PageHuge(old_page)) {
2759 		/*
2760 		 * Freed from under us. Drop new_page too.
2761 		 */
2762 		goto free_new;
2763 	} else if (page_count(old_page)) {
2764 		/*
2765 		 * Someone has grabbed the page, try to isolate it here.
2766 		 * Fail with -EBUSY if not possible.
2767 		 */
2768 		spin_unlock_irq(&hugetlb_lock);
2769 		ret = isolate_hugetlb(old_page, list);
2770 		spin_lock_irq(&hugetlb_lock);
2771 		goto free_new;
2772 	} else if (!HPageFreed(old_page)) {
2773 		/*
2774 		 * Page's refcount is 0 but it has not been enqueued in the
2775 		 * freelist yet. Race window is small, so we can succeed here if
2776 		 * we retry.
2777 		 */
2778 		spin_unlock_irq(&hugetlb_lock);
2779 		cond_resched();
2780 		goto retry;
2781 	} else {
2782 		/*
2783 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2784 		 * the freelist and decrease the counters. These will be
2785 		 * incremented again when calling __prep_account_new_huge_page()
2786 		 * and enqueue_huge_page() for new_page. The counters will remain
2787 		 * stable since this happens under the lock.
2788 		 */
2789 		remove_hugetlb_page(h, old_page, false);
2790 
2791 		/*
2792 		 * Ref count on new page is already zero as it was dropped
2793 		 * earlier.  It can be directly added to the pool free list.
2794 		 */
2795 		__prep_account_new_huge_page(h, nid);
2796 		enqueue_huge_page(h, new_page);
2797 
2798 		/*
2799 		 * Pages have been replaced, we can safely free the old one.
2800 		 */
2801 		spin_unlock_irq(&hugetlb_lock);
2802 		update_and_free_page(h, old_page, false);
2803 	}
2804 
2805 	return ret;
2806 
2807 free_new:
2808 	spin_unlock_irq(&hugetlb_lock);
2809 	/* Page has a zero ref count, but needs a ref to be freed */
2810 	set_page_refcounted(new_page);
2811 	update_and_free_page(h, new_page, false);
2812 
2813 	return ret;
2814 }
2815 
2816 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2817 {
2818 	struct hstate *h;
2819 	struct page *head;
2820 	int ret = -EBUSY;
2821 
2822 	/*
2823 	 * The page might have been dissolved from under our feet, so make sure
2824 	 * to carefully check the state under the lock.
2825 	 * Return success when racing as if we dissolved the page ourselves.
2826 	 */
2827 	spin_lock_irq(&hugetlb_lock);
2828 	if (PageHuge(page)) {
2829 		head = compound_head(page);
2830 		h = page_hstate(head);
2831 	} else {
2832 		spin_unlock_irq(&hugetlb_lock);
2833 		return 0;
2834 	}
2835 	spin_unlock_irq(&hugetlb_lock);
2836 
2837 	/*
2838 	 * Fence off gigantic pages as there is a cyclic dependency between
2839 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2840 	 * of bailing out right away without further retrying.
2841 	 */
2842 	if (hstate_is_gigantic(h))
2843 		return -ENOMEM;
2844 
2845 	if (page_count(head) && !isolate_hugetlb(head, list))
2846 		ret = 0;
2847 	else if (!page_count(head))
2848 		ret = alloc_and_dissolve_huge_page(h, head, list);
2849 
2850 	return ret;
2851 }
2852 
2853 struct page *alloc_huge_page(struct vm_area_struct *vma,
2854 				    unsigned long addr, int avoid_reserve)
2855 {
2856 	struct hugepage_subpool *spool = subpool_vma(vma);
2857 	struct hstate *h = hstate_vma(vma);
2858 	struct page *page;
2859 	long map_chg, map_commit;
2860 	long gbl_chg;
2861 	int ret, idx;
2862 	struct hugetlb_cgroup *h_cg;
2863 	bool deferred_reserve;
2864 
2865 	idx = hstate_index(h);
2866 	/*
2867 	 * Examine the region/reserve map to determine if the process
2868 	 * has a reservation for the page to be allocated.  A return
2869 	 * code of zero indicates a reservation exists (no change).
2870 	 */
2871 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2872 	if (map_chg < 0)
2873 		return ERR_PTR(-ENOMEM);
2874 
2875 	/*
2876 	 * Processes that did not create the mapping will have no
2877 	 * reserves as indicated by the region/reserve map. Check
2878 	 * that the allocation will not exceed the subpool limit.
2879 	 * Allocations for MAP_NORESERVE mappings also need to be
2880 	 * checked against any subpool limit.
2881 	 */
2882 	if (map_chg || avoid_reserve) {
2883 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2884 		if (gbl_chg < 0) {
2885 			vma_end_reservation(h, vma, addr);
2886 			return ERR_PTR(-ENOSPC);
2887 		}
2888 
2889 		/*
2890 		 * Even though there was no reservation in the region/reserve
2891 		 * map, there could be reservations associated with the
2892 		 * subpool that can be used.  This would be indicated if the
2893 		 * return value of hugepage_subpool_get_pages() is zero.
2894 		 * However, if avoid_reserve is specified we still avoid even
2895 		 * the subpool reservations.
2896 		 */
2897 		if (avoid_reserve)
2898 			gbl_chg = 1;
2899 	}
2900 
2901 	/* If this allocation is not consuming a reservation, charge it now.
2902 	 */
2903 	deferred_reserve = map_chg || avoid_reserve;
2904 	if (deferred_reserve) {
2905 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2906 			idx, pages_per_huge_page(h), &h_cg);
2907 		if (ret)
2908 			goto out_subpool_put;
2909 	}
2910 
2911 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2912 	if (ret)
2913 		goto out_uncharge_cgroup_reservation;
2914 
2915 	spin_lock_irq(&hugetlb_lock);
2916 	/*
2917 	 * glb_chg is passed to indicate whether or not a page must be taken
2918 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2919 	 * a reservation exists for the allocation.
2920 	 */
2921 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2922 	if (!page) {
2923 		spin_unlock_irq(&hugetlb_lock);
2924 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2925 		if (!page)
2926 			goto out_uncharge_cgroup;
2927 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2928 			SetHPageRestoreReserve(page);
2929 			h->resv_huge_pages--;
2930 		}
2931 		spin_lock_irq(&hugetlb_lock);
2932 		list_add(&page->lru, &h->hugepage_activelist);
2933 		set_page_refcounted(page);
2934 		/* Fall through */
2935 	}
2936 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2937 	/* If allocation is not consuming a reservation, also store the
2938 	 * hugetlb_cgroup pointer on the page.
2939 	 */
2940 	if (deferred_reserve) {
2941 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2942 						  h_cg, page);
2943 	}
2944 
2945 	spin_unlock_irq(&hugetlb_lock);
2946 
2947 	hugetlb_set_page_subpool(page, spool);
2948 
2949 	map_commit = vma_commit_reservation(h, vma, addr);
2950 	if (unlikely(map_chg > map_commit)) {
2951 		/*
2952 		 * The page was added to the reservation map between
2953 		 * vma_needs_reservation and vma_commit_reservation.
2954 		 * This indicates a race with hugetlb_reserve_pages.
2955 		 * Adjust for the subpool count incremented above AND
2956 		 * in hugetlb_reserve_pages for the same page.  Also,
2957 		 * the reservation count added in hugetlb_reserve_pages
2958 		 * no longer applies.
2959 		 */
2960 		long rsv_adjust;
2961 
2962 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2963 		hugetlb_acct_memory(h, -rsv_adjust);
2964 		if (deferred_reserve)
2965 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2966 					pages_per_huge_page(h), page);
2967 	}
2968 	return page;
2969 
2970 out_uncharge_cgroup:
2971 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2972 out_uncharge_cgroup_reservation:
2973 	if (deferred_reserve)
2974 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2975 						    h_cg);
2976 out_subpool_put:
2977 	if (map_chg || avoid_reserve)
2978 		hugepage_subpool_put_pages(spool, 1);
2979 	vma_end_reservation(h, vma, addr);
2980 	return ERR_PTR(-ENOSPC);
2981 }
2982 
2983 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2984 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2985 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2986 {
2987 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
2988 	int nr_nodes, node;
2989 
2990 	/* do node specific alloc */
2991 	if (nid != NUMA_NO_NODE) {
2992 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2993 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2994 		if (!m)
2995 			return 0;
2996 		goto found;
2997 	}
2998 	/* allocate from next node when distributing huge pages */
2999 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3000 		m = memblock_alloc_try_nid_raw(
3001 				huge_page_size(h), huge_page_size(h),
3002 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3003 		/*
3004 		 * Use the beginning of the huge page to store the
3005 		 * huge_bootmem_page struct (until gather_bootmem
3006 		 * puts them into the mem_map).
3007 		 */
3008 		if (!m)
3009 			return 0;
3010 		goto found;
3011 	}
3012 
3013 found:
3014 	/* Put them into a private list first because mem_map is not up yet */
3015 	INIT_LIST_HEAD(&m->list);
3016 	list_add(&m->list, &huge_boot_pages);
3017 	m->hstate = h;
3018 	return 1;
3019 }
3020 
3021 /*
3022  * Put bootmem huge pages into the standard lists after mem_map is up.
3023  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3024  */
3025 static void __init gather_bootmem_prealloc(void)
3026 {
3027 	struct huge_bootmem_page *m;
3028 
3029 	list_for_each_entry(m, &huge_boot_pages, list) {
3030 		struct page *page = virt_to_page(m);
3031 		struct hstate *h = m->hstate;
3032 
3033 		VM_BUG_ON(!hstate_is_gigantic(h));
3034 		WARN_ON(page_count(page) != 1);
3035 		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3036 			WARN_ON(PageReserved(page));
3037 			prep_new_huge_page(h, page, page_to_nid(page));
3038 			free_huge_page(page); /* add to the hugepage allocator */
3039 		} else {
3040 			/* VERY unlikely inflated ref count on a tail page */
3041 			free_gigantic_page(page, huge_page_order(h));
3042 		}
3043 
3044 		/*
3045 		 * We need to restore the 'stolen' pages to totalram_pages
3046 		 * in order to fix confusing memory reports from free(1) and
3047 		 * other side-effects, like CommitLimit going negative.
3048 		 */
3049 		adjust_managed_page_count(page, pages_per_huge_page(h));
3050 		cond_resched();
3051 	}
3052 }
3053 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3054 {
3055 	unsigned long i;
3056 	char buf[32];
3057 
3058 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3059 		if (hstate_is_gigantic(h)) {
3060 			if (!alloc_bootmem_huge_page(h, nid))
3061 				break;
3062 		} else {
3063 			struct page *page;
3064 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3065 
3066 			page = alloc_fresh_huge_page(h, gfp_mask, nid,
3067 					&node_states[N_MEMORY], NULL);
3068 			if (!page)
3069 				break;
3070 			free_huge_page(page); /* free it into the hugepage allocator */
3071 		}
3072 		cond_resched();
3073 	}
3074 	if (i == h->max_huge_pages_node[nid])
3075 		return;
3076 
3077 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3078 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3079 		h->max_huge_pages_node[nid], buf, nid, i);
3080 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3081 	h->max_huge_pages_node[nid] = i;
3082 }
3083 
3084 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3085 {
3086 	unsigned long i;
3087 	nodemask_t *node_alloc_noretry;
3088 	bool node_specific_alloc = false;
3089 
3090 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3091 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3092 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3093 		return;
3094 	}
3095 
3096 	/* do node specific alloc */
3097 	for_each_online_node(i) {
3098 		if (h->max_huge_pages_node[i] > 0) {
3099 			hugetlb_hstate_alloc_pages_onenode(h, i);
3100 			node_specific_alloc = true;
3101 		}
3102 	}
3103 
3104 	if (node_specific_alloc)
3105 		return;
3106 
3107 	/* below will do all node balanced alloc */
3108 	if (!hstate_is_gigantic(h)) {
3109 		/*
3110 		 * Bit mask controlling how hard we retry per-node allocations.
3111 		 * Ignore errors as lower level routines can deal with
3112 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3113 		 * time, we are likely in bigger trouble.
3114 		 */
3115 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3116 						GFP_KERNEL);
3117 	} else {
3118 		/* allocations done at boot time */
3119 		node_alloc_noretry = NULL;
3120 	}
3121 
3122 	/* bit mask controlling how hard we retry per-node allocations */
3123 	if (node_alloc_noretry)
3124 		nodes_clear(*node_alloc_noretry);
3125 
3126 	for (i = 0; i < h->max_huge_pages; ++i) {
3127 		if (hstate_is_gigantic(h)) {
3128 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3129 				break;
3130 		} else if (!alloc_pool_huge_page(h,
3131 					 &node_states[N_MEMORY],
3132 					 node_alloc_noretry))
3133 			break;
3134 		cond_resched();
3135 	}
3136 	if (i < h->max_huge_pages) {
3137 		char buf[32];
3138 
3139 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3140 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3141 			h->max_huge_pages, buf, i);
3142 		h->max_huge_pages = i;
3143 	}
3144 	kfree(node_alloc_noretry);
3145 }
3146 
3147 static void __init hugetlb_init_hstates(void)
3148 {
3149 	struct hstate *h, *h2;
3150 
3151 	for_each_hstate(h) {
3152 		/* oversize hugepages were init'ed in early boot */
3153 		if (!hstate_is_gigantic(h))
3154 			hugetlb_hstate_alloc_pages(h);
3155 
3156 		/*
3157 		 * Set demote order for each hstate.  Note that
3158 		 * h->demote_order is initially 0.
3159 		 * - We can not demote gigantic pages if runtime freeing
3160 		 *   is not supported, so skip this.
3161 		 * - If CMA allocation is possible, we can not demote
3162 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3163 		 */
3164 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3165 			continue;
3166 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3167 			continue;
3168 		for_each_hstate(h2) {
3169 			if (h2 == h)
3170 				continue;
3171 			if (h2->order < h->order &&
3172 			    h2->order > h->demote_order)
3173 				h->demote_order = h2->order;
3174 		}
3175 	}
3176 }
3177 
3178 static void __init report_hugepages(void)
3179 {
3180 	struct hstate *h;
3181 
3182 	for_each_hstate(h) {
3183 		char buf[32];
3184 
3185 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3186 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3187 			buf, h->free_huge_pages);
3188 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3189 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3190 	}
3191 }
3192 
3193 #ifdef CONFIG_HIGHMEM
3194 static void try_to_free_low(struct hstate *h, unsigned long count,
3195 						nodemask_t *nodes_allowed)
3196 {
3197 	int i;
3198 	LIST_HEAD(page_list);
3199 
3200 	lockdep_assert_held(&hugetlb_lock);
3201 	if (hstate_is_gigantic(h))
3202 		return;
3203 
3204 	/*
3205 	 * Collect pages to be freed on a list, and free after dropping lock
3206 	 */
3207 	for_each_node_mask(i, *nodes_allowed) {
3208 		struct page *page, *next;
3209 		struct list_head *freel = &h->hugepage_freelists[i];
3210 		list_for_each_entry_safe(page, next, freel, lru) {
3211 			if (count >= h->nr_huge_pages)
3212 				goto out;
3213 			if (PageHighMem(page))
3214 				continue;
3215 			remove_hugetlb_page(h, page, false);
3216 			list_add(&page->lru, &page_list);
3217 		}
3218 	}
3219 
3220 out:
3221 	spin_unlock_irq(&hugetlb_lock);
3222 	update_and_free_pages_bulk(h, &page_list);
3223 	spin_lock_irq(&hugetlb_lock);
3224 }
3225 #else
3226 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3227 						nodemask_t *nodes_allowed)
3228 {
3229 }
3230 #endif
3231 
3232 /*
3233  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3234  * balanced by operating on them in a round-robin fashion.
3235  * Returns 1 if an adjustment was made.
3236  */
3237 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3238 				int delta)
3239 {
3240 	int nr_nodes, node;
3241 
3242 	lockdep_assert_held(&hugetlb_lock);
3243 	VM_BUG_ON(delta != -1 && delta != 1);
3244 
3245 	if (delta < 0) {
3246 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3247 			if (h->surplus_huge_pages_node[node])
3248 				goto found;
3249 		}
3250 	} else {
3251 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3252 			if (h->surplus_huge_pages_node[node] <
3253 					h->nr_huge_pages_node[node])
3254 				goto found;
3255 		}
3256 	}
3257 	return 0;
3258 
3259 found:
3260 	h->surplus_huge_pages += delta;
3261 	h->surplus_huge_pages_node[node] += delta;
3262 	return 1;
3263 }
3264 
3265 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3266 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3267 			      nodemask_t *nodes_allowed)
3268 {
3269 	unsigned long min_count, ret;
3270 	struct page *page;
3271 	LIST_HEAD(page_list);
3272 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3273 
3274 	/*
3275 	 * Bit mask controlling how hard we retry per-node allocations.
3276 	 * If we can not allocate the bit mask, do not attempt to allocate
3277 	 * the requested huge pages.
3278 	 */
3279 	if (node_alloc_noretry)
3280 		nodes_clear(*node_alloc_noretry);
3281 	else
3282 		return -ENOMEM;
3283 
3284 	/*
3285 	 * resize_lock mutex prevents concurrent adjustments to number of
3286 	 * pages in hstate via the proc/sysfs interfaces.
3287 	 */
3288 	mutex_lock(&h->resize_lock);
3289 	flush_free_hpage_work(h);
3290 	spin_lock_irq(&hugetlb_lock);
3291 
3292 	/*
3293 	 * Check for a node specific request.
3294 	 * Changing node specific huge page count may require a corresponding
3295 	 * change to the global count.  In any case, the passed node mask
3296 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3297 	 */
3298 	if (nid != NUMA_NO_NODE) {
3299 		unsigned long old_count = count;
3300 
3301 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3302 		/*
3303 		 * User may have specified a large count value which caused the
3304 		 * above calculation to overflow.  In this case, they wanted
3305 		 * to allocate as many huge pages as possible.  Set count to
3306 		 * largest possible value to align with their intention.
3307 		 */
3308 		if (count < old_count)
3309 			count = ULONG_MAX;
3310 	}
3311 
3312 	/*
3313 	 * Gigantic pages runtime allocation depend on the capability for large
3314 	 * page range allocation.
3315 	 * If the system does not provide this feature, return an error when
3316 	 * the user tries to allocate gigantic pages but let the user free the
3317 	 * boottime allocated gigantic pages.
3318 	 */
3319 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3320 		if (count > persistent_huge_pages(h)) {
3321 			spin_unlock_irq(&hugetlb_lock);
3322 			mutex_unlock(&h->resize_lock);
3323 			NODEMASK_FREE(node_alloc_noretry);
3324 			return -EINVAL;
3325 		}
3326 		/* Fall through to decrease pool */
3327 	}
3328 
3329 	/*
3330 	 * Increase the pool size
3331 	 * First take pages out of surplus state.  Then make up the
3332 	 * remaining difference by allocating fresh huge pages.
3333 	 *
3334 	 * We might race with alloc_surplus_huge_page() here and be unable
3335 	 * to convert a surplus huge page to a normal huge page. That is
3336 	 * not critical, though, it just means the overall size of the
3337 	 * pool might be one hugepage larger than it needs to be, but
3338 	 * within all the constraints specified by the sysctls.
3339 	 */
3340 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3341 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3342 			break;
3343 	}
3344 
3345 	while (count > persistent_huge_pages(h)) {
3346 		/*
3347 		 * If this allocation races such that we no longer need the
3348 		 * page, free_huge_page will handle it by freeing the page
3349 		 * and reducing the surplus.
3350 		 */
3351 		spin_unlock_irq(&hugetlb_lock);
3352 
3353 		/* yield cpu to avoid soft lockup */
3354 		cond_resched();
3355 
3356 		ret = alloc_pool_huge_page(h, nodes_allowed,
3357 						node_alloc_noretry);
3358 		spin_lock_irq(&hugetlb_lock);
3359 		if (!ret)
3360 			goto out;
3361 
3362 		/* Bail for signals. Probably ctrl-c from user */
3363 		if (signal_pending(current))
3364 			goto out;
3365 	}
3366 
3367 	/*
3368 	 * Decrease the pool size
3369 	 * First return free pages to the buddy allocator (being careful
3370 	 * to keep enough around to satisfy reservations).  Then place
3371 	 * pages into surplus state as needed so the pool will shrink
3372 	 * to the desired size as pages become free.
3373 	 *
3374 	 * By placing pages into the surplus state independent of the
3375 	 * overcommit value, we are allowing the surplus pool size to
3376 	 * exceed overcommit. There are few sane options here. Since
3377 	 * alloc_surplus_huge_page() is checking the global counter,
3378 	 * though, we'll note that we're not allowed to exceed surplus
3379 	 * and won't grow the pool anywhere else. Not until one of the
3380 	 * sysctls are changed, or the surplus pages go out of use.
3381 	 */
3382 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3383 	min_count = max(count, min_count);
3384 	try_to_free_low(h, min_count, nodes_allowed);
3385 
3386 	/*
3387 	 * Collect pages to be removed on list without dropping lock
3388 	 */
3389 	while (min_count < persistent_huge_pages(h)) {
3390 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3391 		if (!page)
3392 			break;
3393 
3394 		list_add(&page->lru, &page_list);
3395 	}
3396 	/* free the pages after dropping lock */
3397 	spin_unlock_irq(&hugetlb_lock);
3398 	update_and_free_pages_bulk(h, &page_list);
3399 	flush_free_hpage_work(h);
3400 	spin_lock_irq(&hugetlb_lock);
3401 
3402 	while (count < persistent_huge_pages(h)) {
3403 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3404 			break;
3405 	}
3406 out:
3407 	h->max_huge_pages = persistent_huge_pages(h);
3408 	spin_unlock_irq(&hugetlb_lock);
3409 	mutex_unlock(&h->resize_lock);
3410 
3411 	NODEMASK_FREE(node_alloc_noretry);
3412 
3413 	return 0;
3414 }
3415 
3416 static int demote_free_huge_page(struct hstate *h, struct page *page)
3417 {
3418 	int i, nid = page_to_nid(page);
3419 	struct hstate *target_hstate;
3420 	struct page *subpage;
3421 	int rc = 0;
3422 
3423 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3424 
3425 	remove_hugetlb_page_for_demote(h, page, false);
3426 	spin_unlock_irq(&hugetlb_lock);
3427 
3428 	rc = hugetlb_vmemmap_restore(h, page);
3429 	if (rc) {
3430 		/* Allocation of vmemmmap failed, we can not demote page */
3431 		spin_lock_irq(&hugetlb_lock);
3432 		set_page_refcounted(page);
3433 		add_hugetlb_page(h, page, false);
3434 		return rc;
3435 	}
3436 
3437 	/*
3438 	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3439 	 * sizes as it will not ref count pages.
3440 	 */
3441 	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3442 
3443 	/*
3444 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3445 	 * Without the mutex, pages added to target hstate could be marked
3446 	 * as surplus.
3447 	 *
3448 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3449 	 * use the convention of always taking larger size hstate mutex first.
3450 	 */
3451 	mutex_lock(&target_hstate->resize_lock);
3452 	for (i = 0; i < pages_per_huge_page(h);
3453 				i += pages_per_huge_page(target_hstate)) {
3454 		subpage = nth_page(page, i);
3455 		if (hstate_is_gigantic(target_hstate))
3456 			prep_compound_gigantic_page_for_demote(subpage,
3457 							target_hstate->order);
3458 		else
3459 			prep_compound_page(subpage, target_hstate->order);
3460 		set_page_private(subpage, 0);
3461 		prep_new_huge_page(target_hstate, subpage, nid);
3462 		free_huge_page(subpage);
3463 	}
3464 	mutex_unlock(&target_hstate->resize_lock);
3465 
3466 	spin_lock_irq(&hugetlb_lock);
3467 
3468 	/*
3469 	 * Not absolutely necessary, but for consistency update max_huge_pages
3470 	 * based on pool changes for the demoted page.
3471 	 */
3472 	h->max_huge_pages--;
3473 	target_hstate->max_huge_pages +=
3474 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3475 
3476 	return rc;
3477 }
3478 
3479 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3480 	__must_hold(&hugetlb_lock)
3481 {
3482 	int nr_nodes, node;
3483 	struct page *page;
3484 
3485 	lockdep_assert_held(&hugetlb_lock);
3486 
3487 	/* We should never get here if no demote order */
3488 	if (!h->demote_order) {
3489 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3490 		return -EINVAL;		/* internal error */
3491 	}
3492 
3493 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3494 		list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3495 			if (PageHWPoison(page))
3496 				continue;
3497 
3498 			return demote_free_huge_page(h, page);
3499 		}
3500 	}
3501 
3502 	/*
3503 	 * Only way to get here is if all pages on free lists are poisoned.
3504 	 * Return -EBUSY so that caller will not retry.
3505 	 */
3506 	return -EBUSY;
3507 }
3508 
3509 #define HSTATE_ATTR_RO(_name) \
3510 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3511 
3512 #define HSTATE_ATTR_WO(_name) \
3513 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3514 
3515 #define HSTATE_ATTR(_name) \
3516 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3517 
3518 static struct kobject *hugepages_kobj;
3519 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3520 
3521 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3522 
3523 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3524 {
3525 	int i;
3526 
3527 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3528 		if (hstate_kobjs[i] == kobj) {
3529 			if (nidp)
3530 				*nidp = NUMA_NO_NODE;
3531 			return &hstates[i];
3532 		}
3533 
3534 	return kobj_to_node_hstate(kobj, nidp);
3535 }
3536 
3537 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3538 					struct kobj_attribute *attr, char *buf)
3539 {
3540 	struct hstate *h;
3541 	unsigned long nr_huge_pages;
3542 	int nid;
3543 
3544 	h = kobj_to_hstate(kobj, &nid);
3545 	if (nid == NUMA_NO_NODE)
3546 		nr_huge_pages = h->nr_huge_pages;
3547 	else
3548 		nr_huge_pages = h->nr_huge_pages_node[nid];
3549 
3550 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3551 }
3552 
3553 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3554 					   struct hstate *h, int nid,
3555 					   unsigned long count, size_t len)
3556 {
3557 	int err;
3558 	nodemask_t nodes_allowed, *n_mask;
3559 
3560 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3561 		return -EINVAL;
3562 
3563 	if (nid == NUMA_NO_NODE) {
3564 		/*
3565 		 * global hstate attribute
3566 		 */
3567 		if (!(obey_mempolicy &&
3568 				init_nodemask_of_mempolicy(&nodes_allowed)))
3569 			n_mask = &node_states[N_MEMORY];
3570 		else
3571 			n_mask = &nodes_allowed;
3572 	} else {
3573 		/*
3574 		 * Node specific request.  count adjustment happens in
3575 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3576 		 */
3577 		init_nodemask_of_node(&nodes_allowed, nid);
3578 		n_mask = &nodes_allowed;
3579 	}
3580 
3581 	err = set_max_huge_pages(h, count, nid, n_mask);
3582 
3583 	return err ? err : len;
3584 }
3585 
3586 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3587 					 struct kobject *kobj, const char *buf,
3588 					 size_t len)
3589 {
3590 	struct hstate *h;
3591 	unsigned long count;
3592 	int nid;
3593 	int err;
3594 
3595 	err = kstrtoul(buf, 10, &count);
3596 	if (err)
3597 		return err;
3598 
3599 	h = kobj_to_hstate(kobj, &nid);
3600 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3601 }
3602 
3603 static ssize_t nr_hugepages_show(struct kobject *kobj,
3604 				       struct kobj_attribute *attr, char *buf)
3605 {
3606 	return nr_hugepages_show_common(kobj, attr, buf);
3607 }
3608 
3609 static ssize_t nr_hugepages_store(struct kobject *kobj,
3610 	       struct kobj_attribute *attr, const char *buf, size_t len)
3611 {
3612 	return nr_hugepages_store_common(false, kobj, buf, len);
3613 }
3614 HSTATE_ATTR(nr_hugepages);
3615 
3616 #ifdef CONFIG_NUMA
3617 
3618 /*
3619  * hstate attribute for optionally mempolicy-based constraint on persistent
3620  * huge page alloc/free.
3621  */
3622 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3623 					   struct kobj_attribute *attr,
3624 					   char *buf)
3625 {
3626 	return nr_hugepages_show_common(kobj, attr, buf);
3627 }
3628 
3629 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3630 	       struct kobj_attribute *attr, const char *buf, size_t len)
3631 {
3632 	return nr_hugepages_store_common(true, kobj, buf, len);
3633 }
3634 HSTATE_ATTR(nr_hugepages_mempolicy);
3635 #endif
3636 
3637 
3638 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3639 					struct kobj_attribute *attr, char *buf)
3640 {
3641 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3642 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3643 }
3644 
3645 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3646 		struct kobj_attribute *attr, const char *buf, size_t count)
3647 {
3648 	int err;
3649 	unsigned long input;
3650 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3651 
3652 	if (hstate_is_gigantic(h))
3653 		return -EINVAL;
3654 
3655 	err = kstrtoul(buf, 10, &input);
3656 	if (err)
3657 		return err;
3658 
3659 	spin_lock_irq(&hugetlb_lock);
3660 	h->nr_overcommit_huge_pages = input;
3661 	spin_unlock_irq(&hugetlb_lock);
3662 
3663 	return count;
3664 }
3665 HSTATE_ATTR(nr_overcommit_hugepages);
3666 
3667 static ssize_t free_hugepages_show(struct kobject *kobj,
3668 					struct kobj_attribute *attr, char *buf)
3669 {
3670 	struct hstate *h;
3671 	unsigned long free_huge_pages;
3672 	int nid;
3673 
3674 	h = kobj_to_hstate(kobj, &nid);
3675 	if (nid == NUMA_NO_NODE)
3676 		free_huge_pages = h->free_huge_pages;
3677 	else
3678 		free_huge_pages = h->free_huge_pages_node[nid];
3679 
3680 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3681 }
3682 HSTATE_ATTR_RO(free_hugepages);
3683 
3684 static ssize_t resv_hugepages_show(struct kobject *kobj,
3685 					struct kobj_attribute *attr, char *buf)
3686 {
3687 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3688 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3689 }
3690 HSTATE_ATTR_RO(resv_hugepages);
3691 
3692 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3693 					struct kobj_attribute *attr, char *buf)
3694 {
3695 	struct hstate *h;
3696 	unsigned long surplus_huge_pages;
3697 	int nid;
3698 
3699 	h = kobj_to_hstate(kobj, &nid);
3700 	if (nid == NUMA_NO_NODE)
3701 		surplus_huge_pages = h->surplus_huge_pages;
3702 	else
3703 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3704 
3705 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3706 }
3707 HSTATE_ATTR_RO(surplus_hugepages);
3708 
3709 static ssize_t demote_store(struct kobject *kobj,
3710 	       struct kobj_attribute *attr, const char *buf, size_t len)
3711 {
3712 	unsigned long nr_demote;
3713 	unsigned long nr_available;
3714 	nodemask_t nodes_allowed, *n_mask;
3715 	struct hstate *h;
3716 	int err;
3717 	int nid;
3718 
3719 	err = kstrtoul(buf, 10, &nr_demote);
3720 	if (err)
3721 		return err;
3722 	h = kobj_to_hstate(kobj, &nid);
3723 
3724 	if (nid != NUMA_NO_NODE) {
3725 		init_nodemask_of_node(&nodes_allowed, nid);
3726 		n_mask = &nodes_allowed;
3727 	} else {
3728 		n_mask = &node_states[N_MEMORY];
3729 	}
3730 
3731 	/* Synchronize with other sysfs operations modifying huge pages */
3732 	mutex_lock(&h->resize_lock);
3733 	spin_lock_irq(&hugetlb_lock);
3734 
3735 	while (nr_demote) {
3736 		/*
3737 		 * Check for available pages to demote each time thorough the
3738 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3739 		 */
3740 		if (nid != NUMA_NO_NODE)
3741 			nr_available = h->free_huge_pages_node[nid];
3742 		else
3743 			nr_available = h->free_huge_pages;
3744 		nr_available -= h->resv_huge_pages;
3745 		if (!nr_available)
3746 			break;
3747 
3748 		err = demote_pool_huge_page(h, n_mask);
3749 		if (err)
3750 			break;
3751 
3752 		nr_demote--;
3753 	}
3754 
3755 	spin_unlock_irq(&hugetlb_lock);
3756 	mutex_unlock(&h->resize_lock);
3757 
3758 	if (err)
3759 		return err;
3760 	return len;
3761 }
3762 HSTATE_ATTR_WO(demote);
3763 
3764 static ssize_t demote_size_show(struct kobject *kobj,
3765 					struct kobj_attribute *attr, char *buf)
3766 {
3767 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3768 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3769 
3770 	return sysfs_emit(buf, "%lukB\n", demote_size);
3771 }
3772 
3773 static ssize_t demote_size_store(struct kobject *kobj,
3774 					struct kobj_attribute *attr,
3775 					const char *buf, size_t count)
3776 {
3777 	struct hstate *h, *demote_hstate;
3778 	unsigned long demote_size;
3779 	unsigned int demote_order;
3780 
3781 	demote_size = (unsigned long)memparse(buf, NULL);
3782 
3783 	demote_hstate = size_to_hstate(demote_size);
3784 	if (!demote_hstate)
3785 		return -EINVAL;
3786 	demote_order = demote_hstate->order;
3787 	if (demote_order < HUGETLB_PAGE_ORDER)
3788 		return -EINVAL;
3789 
3790 	/* demote order must be smaller than hstate order */
3791 	h = kobj_to_hstate(kobj, NULL);
3792 	if (demote_order >= h->order)
3793 		return -EINVAL;
3794 
3795 	/* resize_lock synchronizes access to demote size and writes */
3796 	mutex_lock(&h->resize_lock);
3797 	h->demote_order = demote_order;
3798 	mutex_unlock(&h->resize_lock);
3799 
3800 	return count;
3801 }
3802 HSTATE_ATTR(demote_size);
3803 
3804 static struct attribute *hstate_attrs[] = {
3805 	&nr_hugepages_attr.attr,
3806 	&nr_overcommit_hugepages_attr.attr,
3807 	&free_hugepages_attr.attr,
3808 	&resv_hugepages_attr.attr,
3809 	&surplus_hugepages_attr.attr,
3810 #ifdef CONFIG_NUMA
3811 	&nr_hugepages_mempolicy_attr.attr,
3812 #endif
3813 	NULL,
3814 };
3815 
3816 static const struct attribute_group hstate_attr_group = {
3817 	.attrs = hstate_attrs,
3818 };
3819 
3820 static struct attribute *hstate_demote_attrs[] = {
3821 	&demote_size_attr.attr,
3822 	&demote_attr.attr,
3823 	NULL,
3824 };
3825 
3826 static const struct attribute_group hstate_demote_attr_group = {
3827 	.attrs = hstate_demote_attrs,
3828 };
3829 
3830 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3831 				    struct kobject **hstate_kobjs,
3832 				    const struct attribute_group *hstate_attr_group)
3833 {
3834 	int retval;
3835 	int hi = hstate_index(h);
3836 
3837 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3838 	if (!hstate_kobjs[hi])
3839 		return -ENOMEM;
3840 
3841 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3842 	if (retval) {
3843 		kobject_put(hstate_kobjs[hi]);
3844 		hstate_kobjs[hi] = NULL;
3845 		return retval;
3846 	}
3847 
3848 	if (h->demote_order) {
3849 		retval = sysfs_create_group(hstate_kobjs[hi],
3850 					    &hstate_demote_attr_group);
3851 		if (retval) {
3852 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3853 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
3854 			kobject_put(hstate_kobjs[hi]);
3855 			hstate_kobjs[hi] = NULL;
3856 			return retval;
3857 		}
3858 	}
3859 
3860 	return 0;
3861 }
3862 
3863 #ifdef CONFIG_NUMA
3864 static bool hugetlb_sysfs_initialized __ro_after_init;
3865 
3866 /*
3867  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3868  * with node devices in node_devices[] using a parallel array.  The array
3869  * index of a node device or _hstate == node id.
3870  * This is here to avoid any static dependency of the node device driver, in
3871  * the base kernel, on the hugetlb module.
3872  */
3873 struct node_hstate {
3874 	struct kobject		*hugepages_kobj;
3875 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3876 };
3877 static struct node_hstate node_hstates[MAX_NUMNODES];
3878 
3879 /*
3880  * A subset of global hstate attributes for node devices
3881  */
3882 static struct attribute *per_node_hstate_attrs[] = {
3883 	&nr_hugepages_attr.attr,
3884 	&free_hugepages_attr.attr,
3885 	&surplus_hugepages_attr.attr,
3886 	NULL,
3887 };
3888 
3889 static const struct attribute_group per_node_hstate_attr_group = {
3890 	.attrs = per_node_hstate_attrs,
3891 };
3892 
3893 /*
3894  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3895  * Returns node id via non-NULL nidp.
3896  */
3897 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3898 {
3899 	int nid;
3900 
3901 	for (nid = 0; nid < nr_node_ids; nid++) {
3902 		struct node_hstate *nhs = &node_hstates[nid];
3903 		int i;
3904 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3905 			if (nhs->hstate_kobjs[i] == kobj) {
3906 				if (nidp)
3907 					*nidp = nid;
3908 				return &hstates[i];
3909 			}
3910 	}
3911 
3912 	BUG();
3913 	return NULL;
3914 }
3915 
3916 /*
3917  * Unregister hstate attributes from a single node device.
3918  * No-op if no hstate attributes attached.
3919  */
3920 void hugetlb_unregister_node(struct node *node)
3921 {
3922 	struct hstate *h;
3923 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3924 
3925 	if (!nhs->hugepages_kobj)
3926 		return;		/* no hstate attributes */
3927 
3928 	for_each_hstate(h) {
3929 		int idx = hstate_index(h);
3930 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
3931 
3932 		if (!hstate_kobj)
3933 			continue;
3934 		if (h->demote_order)
3935 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
3936 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
3937 		kobject_put(hstate_kobj);
3938 		nhs->hstate_kobjs[idx] = NULL;
3939 	}
3940 
3941 	kobject_put(nhs->hugepages_kobj);
3942 	nhs->hugepages_kobj = NULL;
3943 }
3944 
3945 
3946 /*
3947  * Register hstate attributes for a single node device.
3948  * No-op if attributes already registered.
3949  */
3950 void hugetlb_register_node(struct node *node)
3951 {
3952 	struct hstate *h;
3953 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3954 	int err;
3955 
3956 	if (!hugetlb_sysfs_initialized)
3957 		return;
3958 
3959 	if (nhs->hugepages_kobj)
3960 		return;		/* already allocated */
3961 
3962 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3963 							&node->dev.kobj);
3964 	if (!nhs->hugepages_kobj)
3965 		return;
3966 
3967 	for_each_hstate(h) {
3968 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3969 						nhs->hstate_kobjs,
3970 						&per_node_hstate_attr_group);
3971 		if (err) {
3972 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3973 				h->name, node->dev.id);
3974 			hugetlb_unregister_node(node);
3975 			break;
3976 		}
3977 	}
3978 }
3979 
3980 /*
3981  * hugetlb init time:  register hstate attributes for all registered node
3982  * devices of nodes that have memory.  All on-line nodes should have
3983  * registered their associated device by this time.
3984  */
3985 static void __init hugetlb_register_all_nodes(void)
3986 {
3987 	int nid;
3988 
3989 	for_each_online_node(nid)
3990 		hugetlb_register_node(node_devices[nid]);
3991 }
3992 #else	/* !CONFIG_NUMA */
3993 
3994 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3995 {
3996 	BUG();
3997 	if (nidp)
3998 		*nidp = -1;
3999 	return NULL;
4000 }
4001 
4002 static void hugetlb_register_all_nodes(void) { }
4003 
4004 #endif
4005 
4006 #ifdef CONFIG_CMA
4007 static void __init hugetlb_cma_check(void);
4008 #else
4009 static inline __init void hugetlb_cma_check(void)
4010 {
4011 }
4012 #endif
4013 
4014 static void __init hugetlb_sysfs_init(void)
4015 {
4016 	struct hstate *h;
4017 	int err;
4018 
4019 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4020 	if (!hugepages_kobj)
4021 		return;
4022 
4023 	for_each_hstate(h) {
4024 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4025 					 hstate_kobjs, &hstate_attr_group);
4026 		if (err)
4027 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4028 	}
4029 
4030 #ifdef CONFIG_NUMA
4031 	hugetlb_sysfs_initialized = true;
4032 #endif
4033 	hugetlb_register_all_nodes();
4034 }
4035 
4036 static int __init hugetlb_init(void)
4037 {
4038 	int i;
4039 
4040 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4041 			__NR_HPAGEFLAGS);
4042 
4043 	if (!hugepages_supported()) {
4044 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4045 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4046 		return 0;
4047 	}
4048 
4049 	/*
4050 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4051 	 * architectures depend on setup being done here.
4052 	 */
4053 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4054 	if (!parsed_default_hugepagesz) {
4055 		/*
4056 		 * If we did not parse a default huge page size, set
4057 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4058 		 * number of huge pages for this default size was implicitly
4059 		 * specified, set that here as well.
4060 		 * Note that the implicit setting will overwrite an explicit
4061 		 * setting.  A warning will be printed in this case.
4062 		 */
4063 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4064 		if (default_hstate_max_huge_pages) {
4065 			if (default_hstate.max_huge_pages) {
4066 				char buf[32];
4067 
4068 				string_get_size(huge_page_size(&default_hstate),
4069 					1, STRING_UNITS_2, buf, 32);
4070 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4071 					default_hstate.max_huge_pages, buf);
4072 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4073 					default_hstate_max_huge_pages);
4074 			}
4075 			default_hstate.max_huge_pages =
4076 				default_hstate_max_huge_pages;
4077 
4078 			for_each_online_node(i)
4079 				default_hstate.max_huge_pages_node[i] =
4080 					default_hugepages_in_node[i];
4081 		}
4082 	}
4083 
4084 	hugetlb_cma_check();
4085 	hugetlb_init_hstates();
4086 	gather_bootmem_prealloc();
4087 	report_hugepages();
4088 
4089 	hugetlb_sysfs_init();
4090 	hugetlb_cgroup_file_init();
4091 
4092 #ifdef CONFIG_SMP
4093 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4094 #else
4095 	num_fault_mutexes = 1;
4096 #endif
4097 	hugetlb_fault_mutex_table =
4098 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4099 			      GFP_KERNEL);
4100 	BUG_ON(!hugetlb_fault_mutex_table);
4101 
4102 	for (i = 0; i < num_fault_mutexes; i++)
4103 		mutex_init(&hugetlb_fault_mutex_table[i]);
4104 	return 0;
4105 }
4106 subsys_initcall(hugetlb_init);
4107 
4108 /* Overwritten by architectures with more huge page sizes */
4109 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4110 {
4111 	return size == HPAGE_SIZE;
4112 }
4113 
4114 void __init hugetlb_add_hstate(unsigned int order)
4115 {
4116 	struct hstate *h;
4117 	unsigned long i;
4118 
4119 	if (size_to_hstate(PAGE_SIZE << order)) {
4120 		return;
4121 	}
4122 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4123 	BUG_ON(order == 0);
4124 	h = &hstates[hugetlb_max_hstate++];
4125 	mutex_init(&h->resize_lock);
4126 	h->order = order;
4127 	h->mask = ~(huge_page_size(h) - 1);
4128 	for (i = 0; i < MAX_NUMNODES; ++i)
4129 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4130 	INIT_LIST_HEAD(&h->hugepage_activelist);
4131 	h->next_nid_to_alloc = first_memory_node;
4132 	h->next_nid_to_free = first_memory_node;
4133 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4134 					huge_page_size(h)/SZ_1K);
4135 
4136 	parsed_hstate = h;
4137 }
4138 
4139 bool __init __weak hugetlb_node_alloc_supported(void)
4140 {
4141 	return true;
4142 }
4143 
4144 static void __init hugepages_clear_pages_in_node(void)
4145 {
4146 	if (!hugetlb_max_hstate) {
4147 		default_hstate_max_huge_pages = 0;
4148 		memset(default_hugepages_in_node, 0,
4149 			sizeof(default_hugepages_in_node));
4150 	} else {
4151 		parsed_hstate->max_huge_pages = 0;
4152 		memset(parsed_hstate->max_huge_pages_node, 0,
4153 			sizeof(parsed_hstate->max_huge_pages_node));
4154 	}
4155 }
4156 
4157 /*
4158  * hugepages command line processing
4159  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4160  * specification.  If not, ignore the hugepages value.  hugepages can also
4161  * be the first huge page command line  option in which case it implicitly
4162  * specifies the number of huge pages for the default size.
4163  */
4164 static int __init hugepages_setup(char *s)
4165 {
4166 	unsigned long *mhp;
4167 	static unsigned long *last_mhp;
4168 	int node = NUMA_NO_NODE;
4169 	int count;
4170 	unsigned long tmp;
4171 	char *p = s;
4172 
4173 	if (!parsed_valid_hugepagesz) {
4174 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4175 		parsed_valid_hugepagesz = true;
4176 		return 1;
4177 	}
4178 
4179 	/*
4180 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4181 	 * yet, so this hugepages= parameter goes to the "default hstate".
4182 	 * Otherwise, it goes with the previously parsed hugepagesz or
4183 	 * default_hugepagesz.
4184 	 */
4185 	else if (!hugetlb_max_hstate)
4186 		mhp = &default_hstate_max_huge_pages;
4187 	else
4188 		mhp = &parsed_hstate->max_huge_pages;
4189 
4190 	if (mhp == last_mhp) {
4191 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4192 		return 1;
4193 	}
4194 
4195 	while (*p) {
4196 		count = 0;
4197 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4198 			goto invalid;
4199 		/* Parameter is node format */
4200 		if (p[count] == ':') {
4201 			if (!hugetlb_node_alloc_supported()) {
4202 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4203 				return 1;
4204 			}
4205 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4206 				goto invalid;
4207 			node = array_index_nospec(tmp, MAX_NUMNODES);
4208 			p += count + 1;
4209 			/* Parse hugepages */
4210 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4211 				goto invalid;
4212 			if (!hugetlb_max_hstate)
4213 				default_hugepages_in_node[node] = tmp;
4214 			else
4215 				parsed_hstate->max_huge_pages_node[node] = tmp;
4216 			*mhp += tmp;
4217 			/* Go to parse next node*/
4218 			if (p[count] == ',')
4219 				p += count + 1;
4220 			else
4221 				break;
4222 		} else {
4223 			if (p != s)
4224 				goto invalid;
4225 			*mhp = tmp;
4226 			break;
4227 		}
4228 	}
4229 
4230 	/*
4231 	 * Global state is always initialized later in hugetlb_init.
4232 	 * But we need to allocate gigantic hstates here early to still
4233 	 * use the bootmem allocator.
4234 	 */
4235 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4236 		hugetlb_hstate_alloc_pages(parsed_hstate);
4237 
4238 	last_mhp = mhp;
4239 
4240 	return 1;
4241 
4242 invalid:
4243 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4244 	hugepages_clear_pages_in_node();
4245 	return 1;
4246 }
4247 __setup("hugepages=", hugepages_setup);
4248 
4249 /*
4250  * hugepagesz command line processing
4251  * A specific huge page size can only be specified once with hugepagesz.
4252  * hugepagesz is followed by hugepages on the command line.  The global
4253  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4254  * hugepagesz argument was valid.
4255  */
4256 static int __init hugepagesz_setup(char *s)
4257 {
4258 	unsigned long size;
4259 	struct hstate *h;
4260 
4261 	parsed_valid_hugepagesz = false;
4262 	size = (unsigned long)memparse(s, NULL);
4263 
4264 	if (!arch_hugetlb_valid_size(size)) {
4265 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4266 		return 1;
4267 	}
4268 
4269 	h = size_to_hstate(size);
4270 	if (h) {
4271 		/*
4272 		 * hstate for this size already exists.  This is normally
4273 		 * an error, but is allowed if the existing hstate is the
4274 		 * default hstate.  More specifically, it is only allowed if
4275 		 * the number of huge pages for the default hstate was not
4276 		 * previously specified.
4277 		 */
4278 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4279 		    default_hstate.max_huge_pages) {
4280 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4281 			return 1;
4282 		}
4283 
4284 		/*
4285 		 * No need to call hugetlb_add_hstate() as hstate already
4286 		 * exists.  But, do set parsed_hstate so that a following
4287 		 * hugepages= parameter will be applied to this hstate.
4288 		 */
4289 		parsed_hstate = h;
4290 		parsed_valid_hugepagesz = true;
4291 		return 1;
4292 	}
4293 
4294 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4295 	parsed_valid_hugepagesz = true;
4296 	return 1;
4297 }
4298 __setup("hugepagesz=", hugepagesz_setup);
4299 
4300 /*
4301  * default_hugepagesz command line input
4302  * Only one instance of default_hugepagesz allowed on command line.
4303  */
4304 static int __init default_hugepagesz_setup(char *s)
4305 {
4306 	unsigned long size;
4307 	int i;
4308 
4309 	parsed_valid_hugepagesz = false;
4310 	if (parsed_default_hugepagesz) {
4311 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4312 		return 1;
4313 	}
4314 
4315 	size = (unsigned long)memparse(s, NULL);
4316 
4317 	if (!arch_hugetlb_valid_size(size)) {
4318 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4319 		return 1;
4320 	}
4321 
4322 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4323 	parsed_valid_hugepagesz = true;
4324 	parsed_default_hugepagesz = true;
4325 	default_hstate_idx = hstate_index(size_to_hstate(size));
4326 
4327 	/*
4328 	 * The number of default huge pages (for this size) could have been
4329 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4330 	 * then default_hstate_max_huge_pages is set.  If the default huge
4331 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4332 	 * allocated here from bootmem allocator.
4333 	 */
4334 	if (default_hstate_max_huge_pages) {
4335 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4336 		for_each_online_node(i)
4337 			default_hstate.max_huge_pages_node[i] =
4338 				default_hugepages_in_node[i];
4339 		if (hstate_is_gigantic(&default_hstate))
4340 			hugetlb_hstate_alloc_pages(&default_hstate);
4341 		default_hstate_max_huge_pages = 0;
4342 	}
4343 
4344 	return 1;
4345 }
4346 __setup("default_hugepagesz=", default_hugepagesz_setup);
4347 
4348 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4349 {
4350 #ifdef CONFIG_NUMA
4351 	struct mempolicy *mpol = get_task_policy(current);
4352 
4353 	/*
4354 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4355 	 * (from policy_nodemask) specifically for hugetlb case
4356 	 */
4357 	if (mpol->mode == MPOL_BIND &&
4358 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4359 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4360 		return &mpol->nodes;
4361 #endif
4362 	return NULL;
4363 }
4364 
4365 static unsigned int allowed_mems_nr(struct hstate *h)
4366 {
4367 	int node;
4368 	unsigned int nr = 0;
4369 	nodemask_t *mbind_nodemask;
4370 	unsigned int *array = h->free_huge_pages_node;
4371 	gfp_t gfp_mask = htlb_alloc_mask(h);
4372 
4373 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4374 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4375 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4376 			nr += array[node];
4377 	}
4378 
4379 	return nr;
4380 }
4381 
4382 #ifdef CONFIG_SYSCTL
4383 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4384 					  void *buffer, size_t *length,
4385 					  loff_t *ppos, unsigned long *out)
4386 {
4387 	struct ctl_table dup_table;
4388 
4389 	/*
4390 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4391 	 * can duplicate the @table and alter the duplicate of it.
4392 	 */
4393 	dup_table = *table;
4394 	dup_table.data = out;
4395 
4396 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4397 }
4398 
4399 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4400 			 struct ctl_table *table, int write,
4401 			 void *buffer, size_t *length, loff_t *ppos)
4402 {
4403 	struct hstate *h = &default_hstate;
4404 	unsigned long tmp = h->max_huge_pages;
4405 	int ret;
4406 
4407 	if (!hugepages_supported())
4408 		return -EOPNOTSUPP;
4409 
4410 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4411 					     &tmp);
4412 	if (ret)
4413 		goto out;
4414 
4415 	if (write)
4416 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4417 						  NUMA_NO_NODE, tmp, *length);
4418 out:
4419 	return ret;
4420 }
4421 
4422 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4423 			  void *buffer, size_t *length, loff_t *ppos)
4424 {
4425 
4426 	return hugetlb_sysctl_handler_common(false, table, write,
4427 							buffer, length, ppos);
4428 }
4429 
4430 #ifdef CONFIG_NUMA
4431 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4432 			  void *buffer, size_t *length, loff_t *ppos)
4433 {
4434 	return hugetlb_sysctl_handler_common(true, table, write,
4435 							buffer, length, ppos);
4436 }
4437 #endif /* CONFIG_NUMA */
4438 
4439 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4440 		void *buffer, size_t *length, loff_t *ppos)
4441 {
4442 	struct hstate *h = &default_hstate;
4443 	unsigned long tmp;
4444 	int ret;
4445 
4446 	if (!hugepages_supported())
4447 		return -EOPNOTSUPP;
4448 
4449 	tmp = h->nr_overcommit_huge_pages;
4450 
4451 	if (write && hstate_is_gigantic(h))
4452 		return -EINVAL;
4453 
4454 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4455 					     &tmp);
4456 	if (ret)
4457 		goto out;
4458 
4459 	if (write) {
4460 		spin_lock_irq(&hugetlb_lock);
4461 		h->nr_overcommit_huge_pages = tmp;
4462 		spin_unlock_irq(&hugetlb_lock);
4463 	}
4464 out:
4465 	return ret;
4466 }
4467 
4468 #endif /* CONFIG_SYSCTL */
4469 
4470 void hugetlb_report_meminfo(struct seq_file *m)
4471 {
4472 	struct hstate *h;
4473 	unsigned long total = 0;
4474 
4475 	if (!hugepages_supported())
4476 		return;
4477 
4478 	for_each_hstate(h) {
4479 		unsigned long count = h->nr_huge_pages;
4480 
4481 		total += huge_page_size(h) * count;
4482 
4483 		if (h == &default_hstate)
4484 			seq_printf(m,
4485 				   "HugePages_Total:   %5lu\n"
4486 				   "HugePages_Free:    %5lu\n"
4487 				   "HugePages_Rsvd:    %5lu\n"
4488 				   "HugePages_Surp:    %5lu\n"
4489 				   "Hugepagesize:   %8lu kB\n",
4490 				   count,
4491 				   h->free_huge_pages,
4492 				   h->resv_huge_pages,
4493 				   h->surplus_huge_pages,
4494 				   huge_page_size(h) / SZ_1K);
4495 	}
4496 
4497 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4498 }
4499 
4500 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4501 {
4502 	struct hstate *h = &default_hstate;
4503 
4504 	if (!hugepages_supported())
4505 		return 0;
4506 
4507 	return sysfs_emit_at(buf, len,
4508 			     "Node %d HugePages_Total: %5u\n"
4509 			     "Node %d HugePages_Free:  %5u\n"
4510 			     "Node %d HugePages_Surp:  %5u\n",
4511 			     nid, h->nr_huge_pages_node[nid],
4512 			     nid, h->free_huge_pages_node[nid],
4513 			     nid, h->surplus_huge_pages_node[nid]);
4514 }
4515 
4516 void hugetlb_show_meminfo_node(int nid)
4517 {
4518 	struct hstate *h;
4519 
4520 	if (!hugepages_supported())
4521 		return;
4522 
4523 	for_each_hstate(h)
4524 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4525 			nid,
4526 			h->nr_huge_pages_node[nid],
4527 			h->free_huge_pages_node[nid],
4528 			h->surplus_huge_pages_node[nid],
4529 			huge_page_size(h) / SZ_1K);
4530 }
4531 
4532 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4533 {
4534 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4535 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4536 }
4537 
4538 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4539 unsigned long hugetlb_total_pages(void)
4540 {
4541 	struct hstate *h;
4542 	unsigned long nr_total_pages = 0;
4543 
4544 	for_each_hstate(h)
4545 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4546 	return nr_total_pages;
4547 }
4548 
4549 static int hugetlb_acct_memory(struct hstate *h, long delta)
4550 {
4551 	int ret = -ENOMEM;
4552 
4553 	if (!delta)
4554 		return 0;
4555 
4556 	spin_lock_irq(&hugetlb_lock);
4557 	/*
4558 	 * When cpuset is configured, it breaks the strict hugetlb page
4559 	 * reservation as the accounting is done on a global variable. Such
4560 	 * reservation is completely rubbish in the presence of cpuset because
4561 	 * the reservation is not checked against page availability for the
4562 	 * current cpuset. Application can still potentially OOM'ed by kernel
4563 	 * with lack of free htlb page in cpuset that the task is in.
4564 	 * Attempt to enforce strict accounting with cpuset is almost
4565 	 * impossible (or too ugly) because cpuset is too fluid that
4566 	 * task or memory node can be dynamically moved between cpusets.
4567 	 *
4568 	 * The change of semantics for shared hugetlb mapping with cpuset is
4569 	 * undesirable. However, in order to preserve some of the semantics,
4570 	 * we fall back to check against current free page availability as
4571 	 * a best attempt and hopefully to minimize the impact of changing
4572 	 * semantics that cpuset has.
4573 	 *
4574 	 * Apart from cpuset, we also have memory policy mechanism that
4575 	 * also determines from which node the kernel will allocate memory
4576 	 * in a NUMA system. So similar to cpuset, we also should consider
4577 	 * the memory policy of the current task. Similar to the description
4578 	 * above.
4579 	 */
4580 	if (delta > 0) {
4581 		if (gather_surplus_pages(h, delta) < 0)
4582 			goto out;
4583 
4584 		if (delta > allowed_mems_nr(h)) {
4585 			return_unused_surplus_pages(h, delta);
4586 			goto out;
4587 		}
4588 	}
4589 
4590 	ret = 0;
4591 	if (delta < 0)
4592 		return_unused_surplus_pages(h, (unsigned long) -delta);
4593 
4594 out:
4595 	spin_unlock_irq(&hugetlb_lock);
4596 	return ret;
4597 }
4598 
4599 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4600 {
4601 	struct resv_map *resv = vma_resv_map(vma);
4602 
4603 	/*
4604 	 * This new VMA should share its siblings reservation map if present.
4605 	 * The VMA will only ever have a valid reservation map pointer where
4606 	 * it is being copied for another still existing VMA.  As that VMA
4607 	 * has a reference to the reservation map it cannot disappear until
4608 	 * after this open call completes.  It is therefore safe to take a
4609 	 * new reference here without additional locking.
4610 	 */
4611 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4612 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4613 		kref_get(&resv->refs);
4614 	}
4615 
4616 	/*
4617 	 * vma_lock structure for sharable mappings is vma specific.
4618 	 * Clear old pointer (if copied via vm_area_dup) and create new.
4619 	 */
4620 	if (vma->vm_flags & VM_MAYSHARE) {
4621 		vma->vm_private_data = NULL;
4622 		hugetlb_vma_lock_alloc(vma);
4623 	}
4624 }
4625 
4626 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4627 {
4628 	struct hstate *h = hstate_vma(vma);
4629 	struct resv_map *resv;
4630 	struct hugepage_subpool *spool = subpool_vma(vma);
4631 	unsigned long reserve, start, end;
4632 	long gbl_reserve;
4633 
4634 	hugetlb_vma_lock_free(vma);
4635 
4636 	resv = vma_resv_map(vma);
4637 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4638 		return;
4639 
4640 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4641 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4642 
4643 	reserve = (end - start) - region_count(resv, start, end);
4644 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4645 	if (reserve) {
4646 		/*
4647 		 * Decrement reserve counts.  The global reserve count may be
4648 		 * adjusted if the subpool has a minimum size.
4649 		 */
4650 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4651 		hugetlb_acct_memory(h, -gbl_reserve);
4652 	}
4653 
4654 	kref_put(&resv->refs, resv_map_release);
4655 }
4656 
4657 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4658 {
4659 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4660 		return -EINVAL;
4661 	return 0;
4662 }
4663 
4664 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4665 {
4666 	return huge_page_size(hstate_vma(vma));
4667 }
4668 
4669 /*
4670  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4671  * handle_mm_fault() to try to instantiate regular-sized pages in the
4672  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4673  * this far.
4674  */
4675 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4676 {
4677 	BUG();
4678 	return 0;
4679 }
4680 
4681 /*
4682  * When a new function is introduced to vm_operations_struct and added
4683  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4684  * This is because under System V memory model, mappings created via
4685  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4686  * their original vm_ops are overwritten with shm_vm_ops.
4687  */
4688 const struct vm_operations_struct hugetlb_vm_ops = {
4689 	.fault = hugetlb_vm_op_fault,
4690 	.open = hugetlb_vm_op_open,
4691 	.close = hugetlb_vm_op_close,
4692 	.may_split = hugetlb_vm_op_split,
4693 	.pagesize = hugetlb_vm_op_pagesize,
4694 };
4695 
4696 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4697 				int writable)
4698 {
4699 	pte_t entry;
4700 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4701 
4702 	if (writable) {
4703 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4704 					 vma->vm_page_prot)));
4705 	} else {
4706 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4707 					   vma->vm_page_prot));
4708 	}
4709 	entry = pte_mkyoung(entry);
4710 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4711 
4712 	return entry;
4713 }
4714 
4715 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4716 				   unsigned long address, pte_t *ptep)
4717 {
4718 	pte_t entry;
4719 
4720 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4721 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4722 		update_mmu_cache(vma, address, ptep);
4723 }
4724 
4725 bool is_hugetlb_entry_migration(pte_t pte)
4726 {
4727 	swp_entry_t swp;
4728 
4729 	if (huge_pte_none(pte) || pte_present(pte))
4730 		return false;
4731 	swp = pte_to_swp_entry(pte);
4732 	if (is_migration_entry(swp))
4733 		return true;
4734 	else
4735 		return false;
4736 }
4737 
4738 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4739 {
4740 	swp_entry_t swp;
4741 
4742 	if (huge_pte_none(pte) || pte_present(pte))
4743 		return false;
4744 	swp = pte_to_swp_entry(pte);
4745 	if (is_hwpoison_entry(swp))
4746 		return true;
4747 	else
4748 		return false;
4749 }
4750 
4751 static void
4752 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4753 		     struct page *new_page)
4754 {
4755 	__SetPageUptodate(new_page);
4756 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4757 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4758 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4759 	ClearHPageRestoreReserve(new_page);
4760 	SetHPageMigratable(new_page);
4761 }
4762 
4763 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4764 			    struct vm_area_struct *dst_vma,
4765 			    struct vm_area_struct *src_vma)
4766 {
4767 	pte_t *src_pte, *dst_pte, entry;
4768 	struct page *ptepage;
4769 	unsigned long addr;
4770 	bool cow = is_cow_mapping(src_vma->vm_flags);
4771 	struct hstate *h = hstate_vma(src_vma);
4772 	unsigned long sz = huge_page_size(h);
4773 	unsigned long npages = pages_per_huge_page(h);
4774 	struct mmu_notifier_range range;
4775 	unsigned long last_addr_mask;
4776 	int ret = 0;
4777 
4778 	if (cow) {
4779 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4780 					src_vma->vm_start,
4781 					src_vma->vm_end);
4782 		mmu_notifier_invalidate_range_start(&range);
4783 		mmap_assert_write_locked(src);
4784 		raw_write_seqcount_begin(&src->write_protect_seq);
4785 	} else {
4786 		/*
4787 		 * For shared mappings the vma lock must be held before
4788 		 * calling huge_pte_offset in the src vma. Otherwise, the
4789 		 * returned ptep could go away if part of a shared pmd and
4790 		 * another thread calls huge_pmd_unshare.
4791 		 */
4792 		hugetlb_vma_lock_read(src_vma);
4793 	}
4794 
4795 	last_addr_mask = hugetlb_mask_last_page(h);
4796 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4797 		spinlock_t *src_ptl, *dst_ptl;
4798 		src_pte = huge_pte_offset(src, addr, sz);
4799 		if (!src_pte) {
4800 			addr |= last_addr_mask;
4801 			continue;
4802 		}
4803 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4804 		if (!dst_pte) {
4805 			ret = -ENOMEM;
4806 			break;
4807 		}
4808 
4809 		/*
4810 		 * If the pagetables are shared don't copy or take references.
4811 		 *
4812 		 * dst_pte == src_pte is the common case of src/dest sharing.
4813 		 * However, src could have 'unshared' and dst shares with
4814 		 * another vma. So page_count of ptep page is checked instead
4815 		 * to reliably determine whether pte is shared.
4816 		 */
4817 		if (page_count(virt_to_page(dst_pte)) > 1) {
4818 			addr |= last_addr_mask;
4819 			continue;
4820 		}
4821 
4822 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4823 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4824 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4825 		entry = huge_ptep_get(src_pte);
4826 again:
4827 		if (huge_pte_none(entry)) {
4828 			/*
4829 			 * Skip if src entry none.
4830 			 */
4831 			;
4832 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4833 			bool uffd_wp = huge_pte_uffd_wp(entry);
4834 
4835 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
4836 				entry = huge_pte_clear_uffd_wp(entry);
4837 			set_huge_pte_at(dst, addr, dst_pte, entry);
4838 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
4839 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4840 			bool uffd_wp = huge_pte_uffd_wp(entry);
4841 
4842 			if (!is_readable_migration_entry(swp_entry) && cow) {
4843 				/*
4844 				 * COW mappings require pages in both
4845 				 * parent and child to be set to read.
4846 				 */
4847 				swp_entry = make_readable_migration_entry(
4848 							swp_offset(swp_entry));
4849 				entry = swp_entry_to_pte(swp_entry);
4850 				if (userfaultfd_wp(src_vma) && uffd_wp)
4851 					entry = huge_pte_mkuffd_wp(entry);
4852 				set_huge_pte_at(src, addr, src_pte, entry);
4853 			}
4854 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
4855 				entry = huge_pte_clear_uffd_wp(entry);
4856 			set_huge_pte_at(dst, addr, dst_pte, entry);
4857 		} else if (unlikely(is_pte_marker(entry))) {
4858 			/*
4859 			 * We copy the pte marker only if the dst vma has
4860 			 * uffd-wp enabled.
4861 			 */
4862 			if (userfaultfd_wp(dst_vma))
4863 				set_huge_pte_at(dst, addr, dst_pte, entry);
4864 		} else {
4865 			entry = huge_ptep_get(src_pte);
4866 			ptepage = pte_page(entry);
4867 			get_page(ptepage);
4868 
4869 			/*
4870 			 * Failing to duplicate the anon rmap is a rare case
4871 			 * where we see pinned hugetlb pages while they're
4872 			 * prone to COW. We need to do the COW earlier during
4873 			 * fork.
4874 			 *
4875 			 * When pre-allocating the page or copying data, we
4876 			 * need to be without the pgtable locks since we could
4877 			 * sleep during the process.
4878 			 */
4879 			if (!PageAnon(ptepage)) {
4880 				page_dup_file_rmap(ptepage, true);
4881 			} else if (page_try_dup_anon_rmap(ptepage, true,
4882 							  src_vma)) {
4883 				pte_t src_pte_old = entry;
4884 				struct page *new;
4885 
4886 				spin_unlock(src_ptl);
4887 				spin_unlock(dst_ptl);
4888 				/* Do not use reserve as it's private owned */
4889 				new = alloc_huge_page(dst_vma, addr, 1);
4890 				if (IS_ERR(new)) {
4891 					put_page(ptepage);
4892 					ret = PTR_ERR(new);
4893 					break;
4894 				}
4895 				copy_user_huge_page(new, ptepage, addr, dst_vma,
4896 						    npages);
4897 				put_page(ptepage);
4898 
4899 				/* Install the new huge page if src pte stable */
4900 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4901 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4902 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4903 				entry = huge_ptep_get(src_pte);
4904 				if (!pte_same(src_pte_old, entry)) {
4905 					restore_reserve_on_error(h, dst_vma, addr,
4906 								new);
4907 					put_page(new);
4908 					/* huge_ptep of dst_pte won't change as in child */
4909 					goto again;
4910 				}
4911 				hugetlb_install_page(dst_vma, dst_pte, addr, new);
4912 				spin_unlock(src_ptl);
4913 				spin_unlock(dst_ptl);
4914 				continue;
4915 			}
4916 
4917 			if (cow) {
4918 				/*
4919 				 * No need to notify as we are downgrading page
4920 				 * table protection not changing it to point
4921 				 * to a new page.
4922 				 *
4923 				 * See Documentation/mm/mmu_notifier.rst
4924 				 */
4925 				huge_ptep_set_wrprotect(src, addr, src_pte);
4926 				entry = huge_pte_wrprotect(entry);
4927 			}
4928 
4929 			set_huge_pte_at(dst, addr, dst_pte, entry);
4930 			hugetlb_count_add(npages, dst);
4931 		}
4932 		spin_unlock(src_ptl);
4933 		spin_unlock(dst_ptl);
4934 	}
4935 
4936 	if (cow) {
4937 		raw_write_seqcount_end(&src->write_protect_seq);
4938 		mmu_notifier_invalidate_range_end(&range);
4939 	} else {
4940 		hugetlb_vma_unlock_read(src_vma);
4941 	}
4942 
4943 	return ret;
4944 }
4945 
4946 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4947 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4948 {
4949 	struct hstate *h = hstate_vma(vma);
4950 	struct mm_struct *mm = vma->vm_mm;
4951 	spinlock_t *src_ptl, *dst_ptl;
4952 	pte_t pte;
4953 
4954 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
4955 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
4956 
4957 	/*
4958 	 * We don't have to worry about the ordering of src and dst ptlocks
4959 	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4960 	 */
4961 	if (src_ptl != dst_ptl)
4962 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4963 
4964 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4965 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
4966 
4967 	if (src_ptl != dst_ptl)
4968 		spin_unlock(src_ptl);
4969 	spin_unlock(dst_ptl);
4970 }
4971 
4972 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4973 			     struct vm_area_struct *new_vma,
4974 			     unsigned long old_addr, unsigned long new_addr,
4975 			     unsigned long len)
4976 {
4977 	struct hstate *h = hstate_vma(vma);
4978 	struct address_space *mapping = vma->vm_file->f_mapping;
4979 	unsigned long sz = huge_page_size(h);
4980 	struct mm_struct *mm = vma->vm_mm;
4981 	unsigned long old_end = old_addr + len;
4982 	unsigned long last_addr_mask;
4983 	pte_t *src_pte, *dst_pte;
4984 	struct mmu_notifier_range range;
4985 	bool shared_pmd = false;
4986 
4987 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4988 				old_end);
4989 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4990 	/*
4991 	 * In case of shared PMDs, we should cover the maximum possible
4992 	 * range.
4993 	 */
4994 	flush_cache_range(vma, range.start, range.end);
4995 
4996 	mmu_notifier_invalidate_range_start(&range);
4997 	last_addr_mask = hugetlb_mask_last_page(h);
4998 	/* Prevent race with file truncation */
4999 	hugetlb_vma_lock_write(vma);
5000 	i_mmap_lock_write(mapping);
5001 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5002 		src_pte = huge_pte_offset(mm, old_addr, sz);
5003 		if (!src_pte) {
5004 			old_addr |= last_addr_mask;
5005 			new_addr |= last_addr_mask;
5006 			continue;
5007 		}
5008 		if (huge_pte_none(huge_ptep_get(src_pte)))
5009 			continue;
5010 
5011 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5012 			shared_pmd = true;
5013 			old_addr |= last_addr_mask;
5014 			new_addr |= last_addr_mask;
5015 			continue;
5016 		}
5017 
5018 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5019 		if (!dst_pte)
5020 			break;
5021 
5022 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5023 	}
5024 
5025 	if (shared_pmd)
5026 		flush_tlb_range(vma, range.start, range.end);
5027 	else
5028 		flush_tlb_range(vma, old_end - len, old_end);
5029 	mmu_notifier_invalidate_range_end(&range);
5030 	i_mmap_unlock_write(mapping);
5031 	hugetlb_vma_unlock_write(vma);
5032 
5033 	return len + old_addr - old_end;
5034 }
5035 
5036 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5037 				   unsigned long start, unsigned long end,
5038 				   struct page *ref_page, zap_flags_t zap_flags)
5039 {
5040 	struct mm_struct *mm = vma->vm_mm;
5041 	unsigned long address;
5042 	pte_t *ptep;
5043 	pte_t pte;
5044 	spinlock_t *ptl;
5045 	struct page *page;
5046 	struct hstate *h = hstate_vma(vma);
5047 	unsigned long sz = huge_page_size(h);
5048 	struct mmu_notifier_range range;
5049 	unsigned long last_addr_mask;
5050 	bool force_flush = false;
5051 
5052 	WARN_ON(!is_vm_hugetlb_page(vma));
5053 	BUG_ON(start & ~huge_page_mask(h));
5054 	BUG_ON(end & ~huge_page_mask(h));
5055 
5056 	/*
5057 	 * This is a hugetlb vma, all the pte entries should point
5058 	 * to huge page.
5059 	 */
5060 	tlb_change_page_size(tlb, sz);
5061 	tlb_start_vma(tlb, vma);
5062 
5063 	/*
5064 	 * If sharing possible, alert mmu notifiers of worst case.
5065 	 */
5066 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5067 				end);
5068 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5069 	mmu_notifier_invalidate_range_start(&range);
5070 	last_addr_mask = hugetlb_mask_last_page(h);
5071 	address = start;
5072 	for (; address < end; address += sz) {
5073 		ptep = huge_pte_offset(mm, address, sz);
5074 		if (!ptep) {
5075 			address |= last_addr_mask;
5076 			continue;
5077 		}
5078 
5079 		ptl = huge_pte_lock(h, mm, ptep);
5080 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5081 			spin_unlock(ptl);
5082 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5083 			force_flush = true;
5084 			address |= last_addr_mask;
5085 			continue;
5086 		}
5087 
5088 		pte = huge_ptep_get(ptep);
5089 		if (huge_pte_none(pte)) {
5090 			spin_unlock(ptl);
5091 			continue;
5092 		}
5093 
5094 		/*
5095 		 * Migrating hugepage or HWPoisoned hugepage is already
5096 		 * unmapped and its refcount is dropped, so just clear pte here.
5097 		 */
5098 		if (unlikely(!pte_present(pte))) {
5099 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5100 			/*
5101 			 * If the pte was wr-protected by uffd-wp in any of the
5102 			 * swap forms, meanwhile the caller does not want to
5103 			 * drop the uffd-wp bit in this zap, then replace the
5104 			 * pte with a marker.
5105 			 */
5106 			if (pte_swp_uffd_wp_any(pte) &&
5107 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5108 				set_huge_pte_at(mm, address, ptep,
5109 						make_pte_marker(PTE_MARKER_UFFD_WP));
5110 			else
5111 #endif
5112 				huge_pte_clear(mm, address, ptep, sz);
5113 			spin_unlock(ptl);
5114 			continue;
5115 		}
5116 
5117 		page = pte_page(pte);
5118 		/*
5119 		 * If a reference page is supplied, it is because a specific
5120 		 * page is being unmapped, not a range. Ensure the page we
5121 		 * are about to unmap is the actual page of interest.
5122 		 */
5123 		if (ref_page) {
5124 			if (page != ref_page) {
5125 				spin_unlock(ptl);
5126 				continue;
5127 			}
5128 			/*
5129 			 * Mark the VMA as having unmapped its page so that
5130 			 * future faults in this VMA will fail rather than
5131 			 * looking like data was lost
5132 			 */
5133 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5134 		}
5135 
5136 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5137 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5138 		if (huge_pte_dirty(pte))
5139 			set_page_dirty(page);
5140 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5141 		/* Leave a uffd-wp pte marker if needed */
5142 		if (huge_pte_uffd_wp(pte) &&
5143 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5144 			set_huge_pte_at(mm, address, ptep,
5145 					make_pte_marker(PTE_MARKER_UFFD_WP));
5146 #endif
5147 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5148 		page_remove_rmap(page, vma, true);
5149 
5150 		spin_unlock(ptl);
5151 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5152 		/*
5153 		 * Bail out after unmapping reference page if supplied
5154 		 */
5155 		if (ref_page)
5156 			break;
5157 	}
5158 	mmu_notifier_invalidate_range_end(&range);
5159 	tlb_end_vma(tlb, vma);
5160 
5161 	/*
5162 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5163 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5164 	 * guaranteed that the last refernece would not be dropped. But we must
5165 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5166 	 * dropped and the last reference to the shared PMDs page might be
5167 	 * dropped as well.
5168 	 *
5169 	 * In theory we could defer the freeing of the PMD pages as well, but
5170 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5171 	 * detect sharing, so we cannot defer the release of the page either.
5172 	 * Instead, do flush now.
5173 	 */
5174 	if (force_flush)
5175 		tlb_flush_mmu_tlbonly(tlb);
5176 }
5177 
5178 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5179 			  struct vm_area_struct *vma, unsigned long start,
5180 			  unsigned long end, struct page *ref_page,
5181 			  zap_flags_t zap_flags)
5182 {
5183 	hugetlb_vma_lock_write(vma);
5184 	i_mmap_lock_write(vma->vm_file->f_mapping);
5185 
5186 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5187 
5188 	/*
5189 	 * Unlock and free the vma lock before releasing i_mmap_rwsem.  When
5190 	 * the vma_lock is freed, this makes the vma ineligible for pmd
5191 	 * sharing.  And, i_mmap_rwsem is required to set up pmd sharing.
5192 	 * This is important as page tables for this unmapped range will
5193 	 * be asynchrously deleted.  If the page tables are shared, there
5194 	 * will be issues when accessed by someone else.
5195 	 */
5196 	__hugetlb_vma_unlock_write_free(vma);
5197 
5198 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5199 }
5200 
5201 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5202 			  unsigned long end, struct page *ref_page,
5203 			  zap_flags_t zap_flags)
5204 {
5205 	struct mmu_gather tlb;
5206 
5207 	tlb_gather_mmu(&tlb, vma->vm_mm);
5208 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5209 	tlb_finish_mmu(&tlb);
5210 }
5211 
5212 /*
5213  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5214  * mapping it owns the reserve page for. The intention is to unmap the page
5215  * from other VMAs and let the children be SIGKILLed if they are faulting the
5216  * same region.
5217  */
5218 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5219 			      struct page *page, unsigned long address)
5220 {
5221 	struct hstate *h = hstate_vma(vma);
5222 	struct vm_area_struct *iter_vma;
5223 	struct address_space *mapping;
5224 	pgoff_t pgoff;
5225 
5226 	/*
5227 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5228 	 * from page cache lookup which is in HPAGE_SIZE units.
5229 	 */
5230 	address = address & huge_page_mask(h);
5231 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5232 			vma->vm_pgoff;
5233 	mapping = vma->vm_file->f_mapping;
5234 
5235 	/*
5236 	 * Take the mapping lock for the duration of the table walk. As
5237 	 * this mapping should be shared between all the VMAs,
5238 	 * __unmap_hugepage_range() is called as the lock is already held
5239 	 */
5240 	i_mmap_lock_write(mapping);
5241 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5242 		/* Do not unmap the current VMA */
5243 		if (iter_vma == vma)
5244 			continue;
5245 
5246 		/*
5247 		 * Shared VMAs have their own reserves and do not affect
5248 		 * MAP_PRIVATE accounting but it is possible that a shared
5249 		 * VMA is using the same page so check and skip such VMAs.
5250 		 */
5251 		if (iter_vma->vm_flags & VM_MAYSHARE)
5252 			continue;
5253 
5254 		/*
5255 		 * Unmap the page from other VMAs without their own reserves.
5256 		 * They get marked to be SIGKILLed if they fault in these
5257 		 * areas. This is because a future no-page fault on this VMA
5258 		 * could insert a zeroed page instead of the data existing
5259 		 * from the time of fork. This would look like data corruption
5260 		 */
5261 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5262 			unmap_hugepage_range(iter_vma, address,
5263 					     address + huge_page_size(h), page, 0);
5264 	}
5265 	i_mmap_unlock_write(mapping);
5266 }
5267 
5268 /*
5269  * hugetlb_wp() should be called with page lock of the original hugepage held.
5270  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5271  * cannot race with other handlers or page migration.
5272  * Keep the pte_same checks anyway to make transition from the mutex easier.
5273  */
5274 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5275 		       unsigned long address, pte_t *ptep, unsigned int flags,
5276 		       struct page *pagecache_page, spinlock_t *ptl)
5277 {
5278 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5279 	pte_t pte;
5280 	struct hstate *h = hstate_vma(vma);
5281 	struct page *old_page, *new_page;
5282 	int outside_reserve = 0;
5283 	vm_fault_t ret = 0;
5284 	unsigned long haddr = address & huge_page_mask(h);
5285 	struct mmu_notifier_range range;
5286 
5287 	VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5288 	VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5289 
5290 	/*
5291 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5292 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5293 	 */
5294 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5295 		return VM_FAULT_SIGSEGV;
5296 
5297 	/* Let's take out MAP_SHARED mappings first. */
5298 	if (vma->vm_flags & VM_MAYSHARE) {
5299 		if (unlikely(unshare))
5300 			return 0;
5301 		set_huge_ptep_writable(vma, haddr, ptep);
5302 		return 0;
5303 	}
5304 
5305 	pte = huge_ptep_get(ptep);
5306 	old_page = pte_page(pte);
5307 
5308 	delayacct_wpcopy_start();
5309 
5310 retry_avoidcopy:
5311 	/*
5312 	 * If no-one else is actually using this page, we're the exclusive
5313 	 * owner and can reuse this page.
5314 	 */
5315 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5316 		if (!PageAnonExclusive(old_page))
5317 			page_move_anon_rmap(old_page, vma);
5318 		if (likely(!unshare))
5319 			set_huge_ptep_writable(vma, haddr, ptep);
5320 
5321 		delayacct_wpcopy_end();
5322 		return 0;
5323 	}
5324 	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5325 		       old_page);
5326 
5327 	/*
5328 	 * If the process that created a MAP_PRIVATE mapping is about to
5329 	 * perform a COW due to a shared page count, attempt to satisfy
5330 	 * the allocation without using the existing reserves. The pagecache
5331 	 * page is used to determine if the reserve at this address was
5332 	 * consumed or not. If reserves were used, a partial faulted mapping
5333 	 * at the time of fork() could consume its reserves on COW instead
5334 	 * of the full address range.
5335 	 */
5336 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5337 			old_page != pagecache_page)
5338 		outside_reserve = 1;
5339 
5340 	get_page(old_page);
5341 
5342 	/*
5343 	 * Drop page table lock as buddy allocator may be called. It will
5344 	 * be acquired again before returning to the caller, as expected.
5345 	 */
5346 	spin_unlock(ptl);
5347 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5348 
5349 	if (IS_ERR(new_page)) {
5350 		/*
5351 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5352 		 * it is due to references held by a child and an insufficient
5353 		 * huge page pool. To guarantee the original mappers
5354 		 * reliability, unmap the page from child processes. The child
5355 		 * may get SIGKILLed if it later faults.
5356 		 */
5357 		if (outside_reserve) {
5358 			struct address_space *mapping = vma->vm_file->f_mapping;
5359 			pgoff_t idx;
5360 			u32 hash;
5361 
5362 			put_page(old_page);
5363 			/*
5364 			 * Drop hugetlb_fault_mutex and vma_lock before
5365 			 * unmapping.  unmapping needs to hold vma_lock
5366 			 * in write mode.  Dropping vma_lock in read mode
5367 			 * here is OK as COW mappings do not interact with
5368 			 * PMD sharing.
5369 			 *
5370 			 * Reacquire both after unmap operation.
5371 			 */
5372 			idx = vma_hugecache_offset(h, vma, haddr);
5373 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5374 			hugetlb_vma_unlock_read(vma);
5375 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5376 
5377 			unmap_ref_private(mm, vma, old_page, haddr);
5378 
5379 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5380 			hugetlb_vma_lock_read(vma);
5381 			spin_lock(ptl);
5382 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5383 			if (likely(ptep &&
5384 				   pte_same(huge_ptep_get(ptep), pte)))
5385 				goto retry_avoidcopy;
5386 			/*
5387 			 * race occurs while re-acquiring page table
5388 			 * lock, and our job is done.
5389 			 */
5390 			delayacct_wpcopy_end();
5391 			return 0;
5392 		}
5393 
5394 		ret = vmf_error(PTR_ERR(new_page));
5395 		goto out_release_old;
5396 	}
5397 
5398 	/*
5399 	 * When the original hugepage is shared one, it does not have
5400 	 * anon_vma prepared.
5401 	 */
5402 	if (unlikely(anon_vma_prepare(vma))) {
5403 		ret = VM_FAULT_OOM;
5404 		goto out_release_all;
5405 	}
5406 
5407 	copy_user_huge_page(new_page, old_page, address, vma,
5408 			    pages_per_huge_page(h));
5409 	__SetPageUptodate(new_page);
5410 
5411 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5412 				haddr + huge_page_size(h));
5413 	mmu_notifier_invalidate_range_start(&range);
5414 
5415 	/*
5416 	 * Retake the page table lock to check for racing updates
5417 	 * before the page tables are altered
5418 	 */
5419 	spin_lock(ptl);
5420 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5421 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5422 		ClearHPageRestoreReserve(new_page);
5423 
5424 		/* Break COW or unshare */
5425 		huge_ptep_clear_flush(vma, haddr, ptep);
5426 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5427 		page_remove_rmap(old_page, vma, true);
5428 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5429 		set_huge_pte_at(mm, haddr, ptep,
5430 				make_huge_pte(vma, new_page, !unshare));
5431 		SetHPageMigratable(new_page);
5432 		/* Make the old page be freed below */
5433 		new_page = old_page;
5434 	}
5435 	spin_unlock(ptl);
5436 	mmu_notifier_invalidate_range_end(&range);
5437 out_release_all:
5438 	/*
5439 	 * No restore in case of successful pagetable update (Break COW or
5440 	 * unshare)
5441 	 */
5442 	if (new_page != old_page)
5443 		restore_reserve_on_error(h, vma, haddr, new_page);
5444 	put_page(new_page);
5445 out_release_old:
5446 	put_page(old_page);
5447 
5448 	spin_lock(ptl); /* Caller expects lock to be held */
5449 
5450 	delayacct_wpcopy_end();
5451 	return ret;
5452 }
5453 
5454 /*
5455  * Return whether there is a pagecache page to back given address within VMA.
5456  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5457  */
5458 static bool hugetlbfs_pagecache_present(struct hstate *h,
5459 			struct vm_area_struct *vma, unsigned long address)
5460 {
5461 	struct address_space *mapping;
5462 	pgoff_t idx;
5463 	struct page *page;
5464 
5465 	mapping = vma->vm_file->f_mapping;
5466 	idx = vma_hugecache_offset(h, vma, address);
5467 
5468 	page = find_get_page(mapping, idx);
5469 	if (page)
5470 		put_page(page);
5471 	return page != NULL;
5472 }
5473 
5474 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5475 			   pgoff_t idx)
5476 {
5477 	struct folio *folio = page_folio(page);
5478 	struct inode *inode = mapping->host;
5479 	struct hstate *h = hstate_inode(inode);
5480 	int err;
5481 
5482 	__folio_set_locked(folio);
5483 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5484 
5485 	if (unlikely(err)) {
5486 		__folio_clear_locked(folio);
5487 		return err;
5488 	}
5489 	ClearHPageRestoreReserve(page);
5490 
5491 	/*
5492 	 * mark folio dirty so that it will not be removed from cache/file
5493 	 * by non-hugetlbfs specific code paths.
5494 	 */
5495 	folio_mark_dirty(folio);
5496 
5497 	spin_lock(&inode->i_lock);
5498 	inode->i_blocks += blocks_per_huge_page(h);
5499 	spin_unlock(&inode->i_lock);
5500 	return 0;
5501 }
5502 
5503 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5504 						  struct address_space *mapping,
5505 						  pgoff_t idx,
5506 						  unsigned int flags,
5507 						  unsigned long haddr,
5508 						  unsigned long addr,
5509 						  unsigned long reason)
5510 {
5511 	u32 hash;
5512 	struct vm_fault vmf = {
5513 		.vma = vma,
5514 		.address = haddr,
5515 		.real_address = addr,
5516 		.flags = flags,
5517 
5518 		/*
5519 		 * Hard to debug if it ends up being
5520 		 * used by a callee that assumes
5521 		 * something about the other
5522 		 * uninitialized fields... same as in
5523 		 * memory.c
5524 		 */
5525 	};
5526 
5527 	/*
5528 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5529 	 * userfault. Also mmap_lock could be dropped due to handling
5530 	 * userfault, any vma operation should be careful from here.
5531 	 */
5532 	hugetlb_vma_unlock_read(vma);
5533 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5534 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5535 	return handle_userfault(&vmf, reason);
5536 }
5537 
5538 /*
5539  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5540  * false if pte changed or is changing.
5541  */
5542 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5543 			       pte_t *ptep, pte_t old_pte)
5544 {
5545 	spinlock_t *ptl;
5546 	bool same;
5547 
5548 	ptl = huge_pte_lock(h, mm, ptep);
5549 	same = pte_same(huge_ptep_get(ptep), old_pte);
5550 	spin_unlock(ptl);
5551 
5552 	return same;
5553 }
5554 
5555 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5556 			struct vm_area_struct *vma,
5557 			struct address_space *mapping, pgoff_t idx,
5558 			unsigned long address, pte_t *ptep,
5559 			pte_t old_pte, unsigned int flags)
5560 {
5561 	struct hstate *h = hstate_vma(vma);
5562 	vm_fault_t ret = VM_FAULT_SIGBUS;
5563 	int anon_rmap = 0;
5564 	unsigned long size;
5565 	struct page *page;
5566 	pte_t new_pte;
5567 	spinlock_t *ptl;
5568 	unsigned long haddr = address & huge_page_mask(h);
5569 	bool new_page, new_pagecache_page = false;
5570 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5571 
5572 	/*
5573 	 * Currently, we are forced to kill the process in the event the
5574 	 * original mapper has unmapped pages from the child due to a failed
5575 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5576 	 * be obvious.
5577 	 */
5578 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5579 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5580 			   current->pid);
5581 		goto out;
5582 	}
5583 
5584 	/*
5585 	 * Use page lock to guard against racing truncation
5586 	 * before we get page_table_lock.
5587 	 */
5588 	new_page = false;
5589 	page = find_lock_page(mapping, idx);
5590 	if (!page) {
5591 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5592 		if (idx >= size)
5593 			goto out;
5594 		/* Check for page in userfault range */
5595 		if (userfaultfd_missing(vma)) {
5596 			/*
5597 			 * Since hugetlb_no_page() was examining pte
5598 			 * without pgtable lock, we need to re-test under
5599 			 * lock because the pte may not be stable and could
5600 			 * have changed from under us.  Try to detect
5601 			 * either changed or during-changing ptes and retry
5602 			 * properly when needed.
5603 			 *
5604 			 * Note that userfaultfd is actually fine with
5605 			 * false positives (e.g. caused by pte changed),
5606 			 * but not wrong logical events (e.g. caused by
5607 			 * reading a pte during changing).  The latter can
5608 			 * confuse the userspace, so the strictness is very
5609 			 * much preferred.  E.g., MISSING event should
5610 			 * never happen on the page after UFFDIO_COPY has
5611 			 * correctly installed the page and returned.
5612 			 */
5613 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5614 				ret = 0;
5615 				goto out;
5616 			}
5617 
5618 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5619 							haddr, address,
5620 							VM_UFFD_MISSING);
5621 		}
5622 
5623 		page = alloc_huge_page(vma, haddr, 0);
5624 		if (IS_ERR(page)) {
5625 			/*
5626 			 * Returning error will result in faulting task being
5627 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5628 			 * tasks from racing to fault in the same page which
5629 			 * could result in false unable to allocate errors.
5630 			 * Page migration does not take the fault mutex, but
5631 			 * does a clear then write of pte's under page table
5632 			 * lock.  Page fault code could race with migration,
5633 			 * notice the clear pte and try to allocate a page
5634 			 * here.  Before returning error, get ptl and make
5635 			 * sure there really is no pte entry.
5636 			 */
5637 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5638 				ret = vmf_error(PTR_ERR(page));
5639 			else
5640 				ret = 0;
5641 			goto out;
5642 		}
5643 		clear_huge_page(page, address, pages_per_huge_page(h));
5644 		__SetPageUptodate(page);
5645 		new_page = true;
5646 
5647 		if (vma->vm_flags & VM_MAYSHARE) {
5648 			int err = hugetlb_add_to_page_cache(page, mapping, idx);
5649 			if (err) {
5650 				/*
5651 				 * err can't be -EEXIST which implies someone
5652 				 * else consumed the reservation since hugetlb
5653 				 * fault mutex is held when add a hugetlb page
5654 				 * to the page cache. So it's safe to call
5655 				 * restore_reserve_on_error() here.
5656 				 */
5657 				restore_reserve_on_error(h, vma, haddr, page);
5658 				put_page(page);
5659 				goto out;
5660 			}
5661 			new_pagecache_page = true;
5662 		} else {
5663 			lock_page(page);
5664 			if (unlikely(anon_vma_prepare(vma))) {
5665 				ret = VM_FAULT_OOM;
5666 				goto backout_unlocked;
5667 			}
5668 			anon_rmap = 1;
5669 		}
5670 	} else {
5671 		/*
5672 		 * If memory error occurs between mmap() and fault, some process
5673 		 * don't have hwpoisoned swap entry for errored virtual address.
5674 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5675 		 */
5676 		if (unlikely(PageHWPoison(page))) {
5677 			ret = VM_FAULT_HWPOISON_LARGE |
5678 				VM_FAULT_SET_HINDEX(hstate_index(h));
5679 			goto backout_unlocked;
5680 		}
5681 
5682 		/* Check for page in userfault range. */
5683 		if (userfaultfd_minor(vma)) {
5684 			unlock_page(page);
5685 			put_page(page);
5686 			/* See comment in userfaultfd_missing() block above */
5687 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5688 				ret = 0;
5689 				goto out;
5690 			}
5691 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5692 							haddr, address,
5693 							VM_UFFD_MINOR);
5694 		}
5695 	}
5696 
5697 	/*
5698 	 * If we are going to COW a private mapping later, we examine the
5699 	 * pending reservations for this page now. This will ensure that
5700 	 * any allocations necessary to record that reservation occur outside
5701 	 * the spinlock.
5702 	 */
5703 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5704 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5705 			ret = VM_FAULT_OOM;
5706 			goto backout_unlocked;
5707 		}
5708 		/* Just decrements count, does not deallocate */
5709 		vma_end_reservation(h, vma, haddr);
5710 	}
5711 
5712 	ptl = huge_pte_lock(h, mm, ptep);
5713 	ret = 0;
5714 	/* If pte changed from under us, retry */
5715 	if (!pte_same(huge_ptep_get(ptep), old_pte))
5716 		goto backout;
5717 
5718 	if (anon_rmap) {
5719 		ClearHPageRestoreReserve(page);
5720 		hugepage_add_new_anon_rmap(page, vma, haddr);
5721 	} else
5722 		page_dup_file_rmap(page, true);
5723 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5724 				&& (vma->vm_flags & VM_SHARED)));
5725 	/*
5726 	 * If this pte was previously wr-protected, keep it wr-protected even
5727 	 * if populated.
5728 	 */
5729 	if (unlikely(pte_marker_uffd_wp(old_pte)))
5730 		new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5731 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5732 
5733 	hugetlb_count_add(pages_per_huge_page(h), mm);
5734 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5735 		/* Optimization, do the COW without a second fault */
5736 		ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5737 	}
5738 
5739 	spin_unlock(ptl);
5740 
5741 	/*
5742 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5743 	 * found in the pagecache may not have HPageMigratableset if they have
5744 	 * been isolated for migration.
5745 	 */
5746 	if (new_page)
5747 		SetHPageMigratable(page);
5748 
5749 	unlock_page(page);
5750 out:
5751 	hugetlb_vma_unlock_read(vma);
5752 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5753 	return ret;
5754 
5755 backout:
5756 	spin_unlock(ptl);
5757 backout_unlocked:
5758 	if (new_page && !new_pagecache_page)
5759 		restore_reserve_on_error(h, vma, haddr, page);
5760 
5761 	unlock_page(page);
5762 	put_page(page);
5763 	goto out;
5764 }
5765 
5766 #ifdef CONFIG_SMP
5767 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5768 {
5769 	unsigned long key[2];
5770 	u32 hash;
5771 
5772 	key[0] = (unsigned long) mapping;
5773 	key[1] = idx;
5774 
5775 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5776 
5777 	return hash & (num_fault_mutexes - 1);
5778 }
5779 #else
5780 /*
5781  * For uniprocessor systems we always use a single mutex, so just
5782  * return 0 and avoid the hashing overhead.
5783  */
5784 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5785 {
5786 	return 0;
5787 }
5788 #endif
5789 
5790 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5791 			unsigned long address, unsigned int flags)
5792 {
5793 	pte_t *ptep, entry;
5794 	spinlock_t *ptl;
5795 	vm_fault_t ret;
5796 	u32 hash;
5797 	pgoff_t idx;
5798 	struct page *page = NULL;
5799 	struct page *pagecache_page = NULL;
5800 	struct hstate *h = hstate_vma(vma);
5801 	struct address_space *mapping;
5802 	int need_wait_lock = 0;
5803 	unsigned long haddr = address & huge_page_mask(h);
5804 
5805 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5806 	if (ptep) {
5807 		/*
5808 		 * Since we hold no locks, ptep could be stale.  That is
5809 		 * OK as we are only making decisions based on content and
5810 		 * not actually modifying content here.
5811 		 */
5812 		entry = huge_ptep_get(ptep);
5813 		if (unlikely(is_hugetlb_entry_migration(entry))) {
5814 			migration_entry_wait_huge(vma, ptep);
5815 			return 0;
5816 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5817 			return VM_FAULT_HWPOISON_LARGE |
5818 				VM_FAULT_SET_HINDEX(hstate_index(h));
5819 	}
5820 
5821 	/*
5822 	 * Serialize hugepage allocation and instantiation, so that we don't
5823 	 * get spurious allocation failures if two CPUs race to instantiate
5824 	 * the same page in the page cache.
5825 	 */
5826 	mapping = vma->vm_file->f_mapping;
5827 	idx = vma_hugecache_offset(h, vma, haddr);
5828 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5829 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5830 
5831 	/*
5832 	 * Acquire vma lock before calling huge_pte_alloc and hold
5833 	 * until finished with ptep.  This prevents huge_pmd_unshare from
5834 	 * being called elsewhere and making the ptep no longer valid.
5835 	 *
5836 	 * ptep could have already be assigned via huge_pte_offset.  That
5837 	 * is OK, as huge_pte_alloc will return the same value unless
5838 	 * something has changed.
5839 	 */
5840 	hugetlb_vma_lock_read(vma);
5841 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5842 	if (!ptep) {
5843 		hugetlb_vma_unlock_read(vma);
5844 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5845 		return VM_FAULT_OOM;
5846 	}
5847 
5848 	entry = huge_ptep_get(ptep);
5849 	/* PTE markers should be handled the same way as none pte */
5850 	if (huge_pte_none_mostly(entry))
5851 		/*
5852 		 * hugetlb_no_page will drop vma lock and hugetlb fault
5853 		 * mutex internally, which make us return immediately.
5854 		 */
5855 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5856 				      entry, flags);
5857 
5858 	ret = 0;
5859 
5860 	/*
5861 	 * entry could be a migration/hwpoison entry at this point, so this
5862 	 * check prevents the kernel from going below assuming that we have
5863 	 * an active hugepage in pagecache. This goto expects the 2nd page
5864 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5865 	 * properly handle it.
5866 	 */
5867 	if (!pte_present(entry))
5868 		goto out_mutex;
5869 
5870 	/*
5871 	 * If we are going to COW/unshare the mapping later, we examine the
5872 	 * pending reservations for this page now. This will ensure that any
5873 	 * allocations necessary to record that reservation occur outside the
5874 	 * spinlock. Also lookup the pagecache page now as it is used to
5875 	 * determine if a reservation has been consumed.
5876 	 */
5877 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5878 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5879 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5880 			ret = VM_FAULT_OOM;
5881 			goto out_mutex;
5882 		}
5883 		/* Just decrements count, does not deallocate */
5884 		vma_end_reservation(h, vma, haddr);
5885 
5886 		pagecache_page = find_lock_page(mapping, idx);
5887 	}
5888 
5889 	ptl = huge_pte_lock(h, mm, ptep);
5890 
5891 	/* Check for a racing update before calling hugetlb_wp() */
5892 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5893 		goto out_ptl;
5894 
5895 	/* Handle userfault-wp first, before trying to lock more pages */
5896 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5897 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5898 		struct vm_fault vmf = {
5899 			.vma = vma,
5900 			.address = haddr,
5901 			.real_address = address,
5902 			.flags = flags,
5903 		};
5904 
5905 		spin_unlock(ptl);
5906 		if (pagecache_page) {
5907 			unlock_page(pagecache_page);
5908 			put_page(pagecache_page);
5909 		}
5910 		hugetlb_vma_unlock_read(vma);
5911 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5912 		return handle_userfault(&vmf, VM_UFFD_WP);
5913 	}
5914 
5915 	/*
5916 	 * hugetlb_wp() requires page locks of pte_page(entry) and
5917 	 * pagecache_page, so here we need take the former one
5918 	 * when page != pagecache_page or !pagecache_page.
5919 	 */
5920 	page = pte_page(entry);
5921 	if (page != pagecache_page)
5922 		if (!trylock_page(page)) {
5923 			need_wait_lock = 1;
5924 			goto out_ptl;
5925 		}
5926 
5927 	get_page(page);
5928 
5929 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5930 		if (!huge_pte_write(entry)) {
5931 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
5932 					 pagecache_page, ptl);
5933 			goto out_put_page;
5934 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
5935 			entry = huge_pte_mkdirty(entry);
5936 		}
5937 	}
5938 	entry = pte_mkyoung(entry);
5939 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5940 						flags & FAULT_FLAG_WRITE))
5941 		update_mmu_cache(vma, haddr, ptep);
5942 out_put_page:
5943 	if (page != pagecache_page)
5944 		unlock_page(page);
5945 	put_page(page);
5946 out_ptl:
5947 	spin_unlock(ptl);
5948 
5949 	if (pagecache_page) {
5950 		unlock_page(pagecache_page);
5951 		put_page(pagecache_page);
5952 	}
5953 out_mutex:
5954 	hugetlb_vma_unlock_read(vma);
5955 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5956 	/*
5957 	 * Generally it's safe to hold refcount during waiting page lock. But
5958 	 * here we just wait to defer the next page fault to avoid busy loop and
5959 	 * the page is not used after unlocked before returning from the current
5960 	 * page fault. So we are safe from accessing freed page, even if we wait
5961 	 * here without taking refcount.
5962 	 */
5963 	if (need_wait_lock)
5964 		wait_on_page_locked(page);
5965 	return ret;
5966 }
5967 
5968 #ifdef CONFIG_USERFAULTFD
5969 /*
5970  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5971  * modifications for huge pages.
5972  */
5973 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5974 			    pte_t *dst_pte,
5975 			    struct vm_area_struct *dst_vma,
5976 			    unsigned long dst_addr,
5977 			    unsigned long src_addr,
5978 			    enum mcopy_atomic_mode mode,
5979 			    struct page **pagep,
5980 			    bool wp_copy)
5981 {
5982 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5983 	struct hstate *h = hstate_vma(dst_vma);
5984 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
5985 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5986 	unsigned long size;
5987 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5988 	pte_t _dst_pte;
5989 	spinlock_t *ptl;
5990 	int ret = -ENOMEM;
5991 	struct page *page;
5992 	int writable;
5993 	bool page_in_pagecache = false;
5994 
5995 	if (is_continue) {
5996 		ret = -EFAULT;
5997 		page = find_lock_page(mapping, idx);
5998 		if (!page)
5999 			goto out;
6000 		page_in_pagecache = true;
6001 	} else if (!*pagep) {
6002 		/* If a page already exists, then it's UFFDIO_COPY for
6003 		 * a non-missing case. Return -EEXIST.
6004 		 */
6005 		if (vm_shared &&
6006 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6007 			ret = -EEXIST;
6008 			goto out;
6009 		}
6010 
6011 		page = alloc_huge_page(dst_vma, dst_addr, 0);
6012 		if (IS_ERR(page)) {
6013 			ret = -ENOMEM;
6014 			goto out;
6015 		}
6016 
6017 		ret = copy_huge_page_from_user(page,
6018 						(const void __user *) src_addr,
6019 						pages_per_huge_page(h), false);
6020 
6021 		/* fallback to copy_from_user outside mmap_lock */
6022 		if (unlikely(ret)) {
6023 			ret = -ENOENT;
6024 			/* Free the allocated page which may have
6025 			 * consumed a reservation.
6026 			 */
6027 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
6028 			put_page(page);
6029 
6030 			/* Allocate a temporary page to hold the copied
6031 			 * contents.
6032 			 */
6033 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6034 			if (!page) {
6035 				ret = -ENOMEM;
6036 				goto out;
6037 			}
6038 			*pagep = page;
6039 			/* Set the outparam pagep and return to the caller to
6040 			 * copy the contents outside the lock. Don't free the
6041 			 * page.
6042 			 */
6043 			goto out;
6044 		}
6045 	} else {
6046 		if (vm_shared &&
6047 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6048 			put_page(*pagep);
6049 			ret = -EEXIST;
6050 			*pagep = NULL;
6051 			goto out;
6052 		}
6053 
6054 		page = alloc_huge_page(dst_vma, dst_addr, 0);
6055 		if (IS_ERR(page)) {
6056 			put_page(*pagep);
6057 			ret = -ENOMEM;
6058 			*pagep = NULL;
6059 			goto out;
6060 		}
6061 		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6062 				    pages_per_huge_page(h));
6063 		put_page(*pagep);
6064 		*pagep = NULL;
6065 	}
6066 
6067 	/*
6068 	 * The memory barrier inside __SetPageUptodate makes sure that
6069 	 * preceding stores to the page contents become visible before
6070 	 * the set_pte_at() write.
6071 	 */
6072 	__SetPageUptodate(page);
6073 
6074 	/* Add shared, newly allocated pages to the page cache. */
6075 	if (vm_shared && !is_continue) {
6076 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6077 		ret = -EFAULT;
6078 		if (idx >= size)
6079 			goto out_release_nounlock;
6080 
6081 		/*
6082 		 * Serialization between remove_inode_hugepages() and
6083 		 * hugetlb_add_to_page_cache() below happens through the
6084 		 * hugetlb_fault_mutex_table that here must be hold by
6085 		 * the caller.
6086 		 */
6087 		ret = hugetlb_add_to_page_cache(page, mapping, idx);
6088 		if (ret)
6089 			goto out_release_nounlock;
6090 		page_in_pagecache = true;
6091 	}
6092 
6093 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6094 
6095 	/*
6096 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6097 	 * registered, we firstly wr-protect a none pte which has no page cache
6098 	 * page backing it, then access the page.
6099 	 */
6100 	ret = -EEXIST;
6101 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6102 		goto out_release_unlock;
6103 
6104 	if (page_in_pagecache) {
6105 		page_dup_file_rmap(page, true);
6106 	} else {
6107 		ClearHPageRestoreReserve(page);
6108 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6109 	}
6110 
6111 	/*
6112 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6113 	 * with wp flag set, don't set pte write bit.
6114 	 */
6115 	if (wp_copy || (is_continue && !vm_shared))
6116 		writable = 0;
6117 	else
6118 		writable = dst_vma->vm_flags & VM_WRITE;
6119 
6120 	_dst_pte = make_huge_pte(dst_vma, page, writable);
6121 	/*
6122 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6123 	 * extremely important for hugetlbfs for now since swapping is not
6124 	 * supported, but we should still be clear in that this page cannot be
6125 	 * thrown away at will, even if write bit not set.
6126 	 */
6127 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6128 	_dst_pte = pte_mkyoung(_dst_pte);
6129 
6130 	if (wp_copy)
6131 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6132 
6133 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6134 
6135 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6136 
6137 	/* No need to invalidate - it was non-present before */
6138 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6139 
6140 	spin_unlock(ptl);
6141 	if (!is_continue)
6142 		SetHPageMigratable(page);
6143 	if (vm_shared || is_continue)
6144 		unlock_page(page);
6145 	ret = 0;
6146 out:
6147 	return ret;
6148 out_release_unlock:
6149 	spin_unlock(ptl);
6150 	if (vm_shared || is_continue)
6151 		unlock_page(page);
6152 out_release_nounlock:
6153 	if (!page_in_pagecache)
6154 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
6155 	put_page(page);
6156 	goto out;
6157 }
6158 #endif /* CONFIG_USERFAULTFD */
6159 
6160 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6161 				 int refs, struct page **pages,
6162 				 struct vm_area_struct **vmas)
6163 {
6164 	int nr;
6165 
6166 	for (nr = 0; nr < refs; nr++) {
6167 		if (likely(pages))
6168 			pages[nr] = nth_page(page, nr);
6169 		if (vmas)
6170 			vmas[nr] = vma;
6171 	}
6172 }
6173 
6174 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6175 					       bool *unshare)
6176 {
6177 	pte_t pteval = huge_ptep_get(pte);
6178 
6179 	*unshare = false;
6180 	if (is_swap_pte(pteval))
6181 		return true;
6182 	if (huge_pte_write(pteval))
6183 		return false;
6184 	if (flags & FOLL_WRITE)
6185 		return true;
6186 	if (gup_must_unshare(flags, pte_page(pteval))) {
6187 		*unshare = true;
6188 		return true;
6189 	}
6190 	return false;
6191 }
6192 
6193 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6194 			 struct page **pages, struct vm_area_struct **vmas,
6195 			 unsigned long *position, unsigned long *nr_pages,
6196 			 long i, unsigned int flags, int *locked)
6197 {
6198 	unsigned long pfn_offset;
6199 	unsigned long vaddr = *position;
6200 	unsigned long remainder = *nr_pages;
6201 	struct hstate *h = hstate_vma(vma);
6202 	int err = -EFAULT, refs;
6203 
6204 	while (vaddr < vma->vm_end && remainder) {
6205 		pte_t *pte;
6206 		spinlock_t *ptl = NULL;
6207 		bool unshare = false;
6208 		int absent;
6209 		struct page *page;
6210 
6211 		/*
6212 		 * If we have a pending SIGKILL, don't keep faulting pages and
6213 		 * potentially allocating memory.
6214 		 */
6215 		if (fatal_signal_pending(current)) {
6216 			remainder = 0;
6217 			break;
6218 		}
6219 
6220 		/*
6221 		 * Some archs (sparc64, sh*) have multiple pte_ts to
6222 		 * each hugepage.  We have to make sure we get the
6223 		 * first, for the page indexing below to work.
6224 		 *
6225 		 * Note that page table lock is not held when pte is null.
6226 		 */
6227 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6228 				      huge_page_size(h));
6229 		if (pte)
6230 			ptl = huge_pte_lock(h, mm, pte);
6231 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
6232 
6233 		/*
6234 		 * When coredumping, it suits get_dump_page if we just return
6235 		 * an error where there's an empty slot with no huge pagecache
6236 		 * to back it.  This way, we avoid allocating a hugepage, and
6237 		 * the sparse dumpfile avoids allocating disk blocks, but its
6238 		 * huge holes still show up with zeroes where they need to be.
6239 		 */
6240 		if (absent && (flags & FOLL_DUMP) &&
6241 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6242 			if (pte)
6243 				spin_unlock(ptl);
6244 			remainder = 0;
6245 			break;
6246 		}
6247 
6248 		/*
6249 		 * We need call hugetlb_fault for both hugepages under migration
6250 		 * (in which case hugetlb_fault waits for the migration,) and
6251 		 * hwpoisoned hugepages (in which case we need to prevent the
6252 		 * caller from accessing to them.) In order to do this, we use
6253 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6254 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6255 		 * both cases, and because we can't follow correct pages
6256 		 * directly from any kind of swap entries.
6257 		 */
6258 		if (absent ||
6259 		    __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6260 			vm_fault_t ret;
6261 			unsigned int fault_flags = 0;
6262 
6263 			if (pte)
6264 				spin_unlock(ptl);
6265 			if (flags & FOLL_WRITE)
6266 				fault_flags |= FAULT_FLAG_WRITE;
6267 			else if (unshare)
6268 				fault_flags |= FAULT_FLAG_UNSHARE;
6269 			if (locked)
6270 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6271 					FAULT_FLAG_KILLABLE;
6272 			if (flags & FOLL_NOWAIT)
6273 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6274 					FAULT_FLAG_RETRY_NOWAIT;
6275 			if (flags & FOLL_TRIED) {
6276 				/*
6277 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6278 				 * FAULT_FLAG_TRIED can co-exist
6279 				 */
6280 				fault_flags |= FAULT_FLAG_TRIED;
6281 			}
6282 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6283 			if (ret & VM_FAULT_ERROR) {
6284 				err = vm_fault_to_errno(ret, flags);
6285 				remainder = 0;
6286 				break;
6287 			}
6288 			if (ret & VM_FAULT_RETRY) {
6289 				if (locked &&
6290 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6291 					*locked = 0;
6292 				*nr_pages = 0;
6293 				/*
6294 				 * VM_FAULT_RETRY must not return an
6295 				 * error, it will return zero
6296 				 * instead.
6297 				 *
6298 				 * No need to update "position" as the
6299 				 * caller will not check it after
6300 				 * *nr_pages is set to 0.
6301 				 */
6302 				return i;
6303 			}
6304 			continue;
6305 		}
6306 
6307 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6308 		page = pte_page(huge_ptep_get(pte));
6309 
6310 		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6311 			       !PageAnonExclusive(page), page);
6312 
6313 		/*
6314 		 * If subpage information not requested, update counters
6315 		 * and skip the same_page loop below.
6316 		 */
6317 		if (!pages && !vmas && !pfn_offset &&
6318 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6319 		    (remainder >= pages_per_huge_page(h))) {
6320 			vaddr += huge_page_size(h);
6321 			remainder -= pages_per_huge_page(h);
6322 			i += pages_per_huge_page(h);
6323 			spin_unlock(ptl);
6324 			continue;
6325 		}
6326 
6327 		/* vaddr may not be aligned to PAGE_SIZE */
6328 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6329 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6330 
6331 		if (pages || vmas)
6332 			record_subpages_vmas(nth_page(page, pfn_offset),
6333 					     vma, refs,
6334 					     likely(pages) ? pages + i : NULL,
6335 					     vmas ? vmas + i : NULL);
6336 
6337 		if (pages) {
6338 			/*
6339 			 * try_grab_folio() should always succeed here,
6340 			 * because: a) we hold the ptl lock, and b) we've just
6341 			 * checked that the huge page is present in the page
6342 			 * tables. If the huge page is present, then the tail
6343 			 * pages must also be present. The ptl prevents the
6344 			 * head page and tail pages from being rearranged in
6345 			 * any way. So this page must be available at this
6346 			 * point, unless the page refcount overflowed:
6347 			 */
6348 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6349 							 flags))) {
6350 				spin_unlock(ptl);
6351 				remainder = 0;
6352 				err = -ENOMEM;
6353 				break;
6354 			}
6355 		}
6356 
6357 		vaddr += (refs << PAGE_SHIFT);
6358 		remainder -= refs;
6359 		i += refs;
6360 
6361 		spin_unlock(ptl);
6362 	}
6363 	*nr_pages = remainder;
6364 	/*
6365 	 * setting position is actually required only if remainder is
6366 	 * not zero but it's faster not to add a "if (remainder)"
6367 	 * branch.
6368 	 */
6369 	*position = vaddr;
6370 
6371 	return i ? i : err;
6372 }
6373 
6374 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6375 		unsigned long address, unsigned long end,
6376 		pgprot_t newprot, unsigned long cp_flags)
6377 {
6378 	struct mm_struct *mm = vma->vm_mm;
6379 	unsigned long start = address;
6380 	pte_t *ptep;
6381 	pte_t pte;
6382 	struct hstate *h = hstate_vma(vma);
6383 	unsigned long pages = 0, psize = huge_page_size(h);
6384 	bool shared_pmd = false;
6385 	struct mmu_notifier_range range;
6386 	unsigned long last_addr_mask;
6387 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6388 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6389 
6390 	/*
6391 	 * In the case of shared PMDs, the area to flush could be beyond
6392 	 * start/end.  Set range.start/range.end to cover the maximum possible
6393 	 * range if PMD sharing is possible.
6394 	 */
6395 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6396 				0, vma, mm, start, end);
6397 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6398 
6399 	BUG_ON(address >= end);
6400 	flush_cache_range(vma, range.start, range.end);
6401 
6402 	mmu_notifier_invalidate_range_start(&range);
6403 	hugetlb_vma_lock_write(vma);
6404 	i_mmap_lock_write(vma->vm_file->f_mapping);
6405 	last_addr_mask = hugetlb_mask_last_page(h);
6406 	for (; address < end; address += psize) {
6407 		spinlock_t *ptl;
6408 		ptep = huge_pte_offset(mm, address, psize);
6409 		if (!ptep) {
6410 			address |= last_addr_mask;
6411 			continue;
6412 		}
6413 		ptl = huge_pte_lock(h, mm, ptep);
6414 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6415 			/*
6416 			 * When uffd-wp is enabled on the vma, unshare
6417 			 * shouldn't happen at all.  Warn about it if it
6418 			 * happened due to some reason.
6419 			 */
6420 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6421 			pages++;
6422 			spin_unlock(ptl);
6423 			shared_pmd = true;
6424 			address |= last_addr_mask;
6425 			continue;
6426 		}
6427 		pte = huge_ptep_get(ptep);
6428 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6429 			spin_unlock(ptl);
6430 			continue;
6431 		}
6432 		if (unlikely(is_hugetlb_entry_migration(pte))) {
6433 			swp_entry_t entry = pte_to_swp_entry(pte);
6434 			struct page *page = pfn_swap_entry_to_page(entry);
6435 
6436 			if (!is_readable_migration_entry(entry)) {
6437 				pte_t newpte;
6438 
6439 				if (PageAnon(page))
6440 					entry = make_readable_exclusive_migration_entry(
6441 								swp_offset(entry));
6442 				else
6443 					entry = make_readable_migration_entry(
6444 								swp_offset(entry));
6445 				newpte = swp_entry_to_pte(entry);
6446 				if (uffd_wp)
6447 					newpte = pte_swp_mkuffd_wp(newpte);
6448 				else if (uffd_wp_resolve)
6449 					newpte = pte_swp_clear_uffd_wp(newpte);
6450 				set_huge_pte_at(mm, address, ptep, newpte);
6451 				pages++;
6452 			}
6453 			spin_unlock(ptl);
6454 			continue;
6455 		}
6456 		if (unlikely(pte_marker_uffd_wp(pte))) {
6457 			/*
6458 			 * This is changing a non-present pte into a none pte,
6459 			 * no need for huge_ptep_modify_prot_start/commit().
6460 			 */
6461 			if (uffd_wp_resolve)
6462 				huge_pte_clear(mm, address, ptep, psize);
6463 		}
6464 		if (!huge_pte_none(pte)) {
6465 			pte_t old_pte;
6466 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6467 
6468 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6469 			pte = huge_pte_modify(old_pte, newprot);
6470 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6471 			if (uffd_wp)
6472 				pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6473 			else if (uffd_wp_resolve)
6474 				pte = huge_pte_clear_uffd_wp(pte);
6475 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6476 			pages++;
6477 		} else {
6478 			/* None pte */
6479 			if (unlikely(uffd_wp))
6480 				/* Safe to modify directly (none->non-present). */
6481 				set_huge_pte_at(mm, address, ptep,
6482 						make_pte_marker(PTE_MARKER_UFFD_WP));
6483 		}
6484 		spin_unlock(ptl);
6485 	}
6486 	/*
6487 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6488 	 * may have cleared our pud entry and done put_page on the page table:
6489 	 * once we release i_mmap_rwsem, another task can do the final put_page
6490 	 * and that page table be reused and filled with junk.  If we actually
6491 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6492 	 */
6493 	if (shared_pmd)
6494 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6495 	else
6496 		flush_hugetlb_tlb_range(vma, start, end);
6497 	/*
6498 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6499 	 * page table protection not changing it to point to a new page.
6500 	 *
6501 	 * See Documentation/mm/mmu_notifier.rst
6502 	 */
6503 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6504 	hugetlb_vma_unlock_write(vma);
6505 	mmu_notifier_invalidate_range_end(&range);
6506 
6507 	return pages << h->order;
6508 }
6509 
6510 /* Return true if reservation was successful, false otherwise.  */
6511 bool hugetlb_reserve_pages(struct inode *inode,
6512 					long from, long to,
6513 					struct vm_area_struct *vma,
6514 					vm_flags_t vm_flags)
6515 {
6516 	long chg, add = -1;
6517 	struct hstate *h = hstate_inode(inode);
6518 	struct hugepage_subpool *spool = subpool_inode(inode);
6519 	struct resv_map *resv_map;
6520 	struct hugetlb_cgroup *h_cg = NULL;
6521 	long gbl_reserve, regions_needed = 0;
6522 
6523 	/* This should never happen */
6524 	if (from > to) {
6525 		VM_WARN(1, "%s called with a negative range\n", __func__);
6526 		return false;
6527 	}
6528 
6529 	/*
6530 	 * vma specific semaphore used for pmd sharing synchronization
6531 	 */
6532 	hugetlb_vma_lock_alloc(vma);
6533 
6534 	/*
6535 	 * Only apply hugepage reservation if asked. At fault time, an
6536 	 * attempt will be made for VM_NORESERVE to allocate a page
6537 	 * without using reserves
6538 	 */
6539 	if (vm_flags & VM_NORESERVE)
6540 		return true;
6541 
6542 	/*
6543 	 * Shared mappings base their reservation on the number of pages that
6544 	 * are already allocated on behalf of the file. Private mappings need
6545 	 * to reserve the full area even if read-only as mprotect() may be
6546 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6547 	 */
6548 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6549 		/*
6550 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6551 		 * called for inodes for which resv_maps were created (see
6552 		 * hugetlbfs_get_inode).
6553 		 */
6554 		resv_map = inode_resv_map(inode);
6555 
6556 		chg = region_chg(resv_map, from, to, &regions_needed);
6557 	} else {
6558 		/* Private mapping. */
6559 		resv_map = resv_map_alloc();
6560 		if (!resv_map)
6561 			goto out_err;
6562 
6563 		chg = to - from;
6564 
6565 		set_vma_resv_map(vma, resv_map);
6566 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6567 	}
6568 
6569 	if (chg < 0)
6570 		goto out_err;
6571 
6572 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6573 				chg * pages_per_huge_page(h), &h_cg) < 0)
6574 		goto out_err;
6575 
6576 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6577 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6578 		 * of the resv_map.
6579 		 */
6580 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6581 	}
6582 
6583 	/*
6584 	 * There must be enough pages in the subpool for the mapping. If
6585 	 * the subpool has a minimum size, there may be some global
6586 	 * reservations already in place (gbl_reserve).
6587 	 */
6588 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6589 	if (gbl_reserve < 0)
6590 		goto out_uncharge_cgroup;
6591 
6592 	/*
6593 	 * Check enough hugepages are available for the reservation.
6594 	 * Hand the pages back to the subpool if there are not
6595 	 */
6596 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6597 		goto out_put_pages;
6598 
6599 	/*
6600 	 * Account for the reservations made. Shared mappings record regions
6601 	 * that have reservations as they are shared by multiple VMAs.
6602 	 * When the last VMA disappears, the region map says how much
6603 	 * the reservation was and the page cache tells how much of
6604 	 * the reservation was consumed. Private mappings are per-VMA and
6605 	 * only the consumed reservations are tracked. When the VMA
6606 	 * disappears, the original reservation is the VMA size and the
6607 	 * consumed reservations are stored in the map. Hence, nothing
6608 	 * else has to be done for private mappings here
6609 	 */
6610 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6611 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6612 
6613 		if (unlikely(add < 0)) {
6614 			hugetlb_acct_memory(h, -gbl_reserve);
6615 			goto out_put_pages;
6616 		} else if (unlikely(chg > add)) {
6617 			/*
6618 			 * pages in this range were added to the reserve
6619 			 * map between region_chg and region_add.  This
6620 			 * indicates a race with alloc_huge_page.  Adjust
6621 			 * the subpool and reserve counts modified above
6622 			 * based on the difference.
6623 			 */
6624 			long rsv_adjust;
6625 
6626 			/*
6627 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6628 			 * reference to h_cg->css. See comment below for detail.
6629 			 */
6630 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6631 				hstate_index(h),
6632 				(chg - add) * pages_per_huge_page(h), h_cg);
6633 
6634 			rsv_adjust = hugepage_subpool_put_pages(spool,
6635 								chg - add);
6636 			hugetlb_acct_memory(h, -rsv_adjust);
6637 		} else if (h_cg) {
6638 			/*
6639 			 * The file_regions will hold their own reference to
6640 			 * h_cg->css. So we should release the reference held
6641 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6642 			 * done.
6643 			 */
6644 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6645 		}
6646 	}
6647 	return true;
6648 
6649 out_put_pages:
6650 	/* put back original number of pages, chg */
6651 	(void)hugepage_subpool_put_pages(spool, chg);
6652 out_uncharge_cgroup:
6653 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6654 					    chg * pages_per_huge_page(h), h_cg);
6655 out_err:
6656 	hugetlb_vma_lock_free(vma);
6657 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6658 		/* Only call region_abort if the region_chg succeeded but the
6659 		 * region_add failed or didn't run.
6660 		 */
6661 		if (chg >= 0 && add < 0)
6662 			region_abort(resv_map, from, to, regions_needed);
6663 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6664 		kref_put(&resv_map->refs, resv_map_release);
6665 	return false;
6666 }
6667 
6668 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6669 								long freed)
6670 {
6671 	struct hstate *h = hstate_inode(inode);
6672 	struct resv_map *resv_map = inode_resv_map(inode);
6673 	long chg = 0;
6674 	struct hugepage_subpool *spool = subpool_inode(inode);
6675 	long gbl_reserve;
6676 
6677 	/*
6678 	 * Since this routine can be called in the evict inode path for all
6679 	 * hugetlbfs inodes, resv_map could be NULL.
6680 	 */
6681 	if (resv_map) {
6682 		chg = region_del(resv_map, start, end);
6683 		/*
6684 		 * region_del() can fail in the rare case where a region
6685 		 * must be split and another region descriptor can not be
6686 		 * allocated.  If end == LONG_MAX, it will not fail.
6687 		 */
6688 		if (chg < 0)
6689 			return chg;
6690 	}
6691 
6692 	spin_lock(&inode->i_lock);
6693 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6694 	spin_unlock(&inode->i_lock);
6695 
6696 	/*
6697 	 * If the subpool has a minimum size, the number of global
6698 	 * reservations to be released may be adjusted.
6699 	 *
6700 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6701 	 * won't go negative.
6702 	 */
6703 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6704 	hugetlb_acct_memory(h, -gbl_reserve);
6705 
6706 	return 0;
6707 }
6708 
6709 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6710 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6711 				struct vm_area_struct *vma,
6712 				unsigned long addr, pgoff_t idx)
6713 {
6714 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6715 				svma->vm_start;
6716 	unsigned long sbase = saddr & PUD_MASK;
6717 	unsigned long s_end = sbase + PUD_SIZE;
6718 
6719 	/* Allow segments to share if only one is marked locked */
6720 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6721 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6722 
6723 	/*
6724 	 * match the virtual addresses, permission and the alignment of the
6725 	 * page table page.
6726 	 *
6727 	 * Also, vma_lock (vm_private_data) is required for sharing.
6728 	 */
6729 	if (pmd_index(addr) != pmd_index(saddr) ||
6730 	    vm_flags != svm_flags ||
6731 	    !range_in_vma(svma, sbase, s_end) ||
6732 	    !svma->vm_private_data)
6733 		return 0;
6734 
6735 	return saddr;
6736 }
6737 
6738 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6739 {
6740 	unsigned long start = addr & PUD_MASK;
6741 	unsigned long end = start + PUD_SIZE;
6742 
6743 #ifdef CONFIG_USERFAULTFD
6744 	if (uffd_disable_huge_pmd_share(vma))
6745 		return false;
6746 #endif
6747 	/*
6748 	 * check on proper vm_flags and page table alignment
6749 	 */
6750 	if (!(vma->vm_flags & VM_MAYSHARE))
6751 		return false;
6752 	if (!vma->vm_private_data)	/* vma lock required for sharing */
6753 		return false;
6754 	if (!range_in_vma(vma, start, end))
6755 		return false;
6756 	return true;
6757 }
6758 
6759 /*
6760  * Determine if start,end range within vma could be mapped by shared pmd.
6761  * If yes, adjust start and end to cover range associated with possible
6762  * shared pmd mappings.
6763  */
6764 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6765 				unsigned long *start, unsigned long *end)
6766 {
6767 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6768 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6769 
6770 	/*
6771 	 * vma needs to span at least one aligned PUD size, and the range
6772 	 * must be at least partially within in.
6773 	 */
6774 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6775 		(*end <= v_start) || (*start >= v_end))
6776 		return;
6777 
6778 	/* Extend the range to be PUD aligned for a worst case scenario */
6779 	if (*start > v_start)
6780 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6781 
6782 	if (*end < v_end)
6783 		*end = ALIGN(*end, PUD_SIZE);
6784 }
6785 
6786 static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma)
6787 {
6788 	return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
6789 		vma->vm_private_data;
6790 }
6791 
6792 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
6793 {
6794 	if (__vma_shareable_flags_pmd(vma)) {
6795 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6796 
6797 		down_read(&vma_lock->rw_sema);
6798 	}
6799 }
6800 
6801 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
6802 {
6803 	if (__vma_shareable_flags_pmd(vma)) {
6804 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6805 
6806 		up_read(&vma_lock->rw_sema);
6807 	}
6808 }
6809 
6810 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
6811 {
6812 	if (__vma_shareable_flags_pmd(vma)) {
6813 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6814 
6815 		down_write(&vma_lock->rw_sema);
6816 	}
6817 }
6818 
6819 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
6820 {
6821 	if (__vma_shareable_flags_pmd(vma)) {
6822 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6823 
6824 		up_write(&vma_lock->rw_sema);
6825 	}
6826 }
6827 
6828 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
6829 {
6830 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6831 
6832 	if (!__vma_shareable_flags_pmd(vma))
6833 		return 1;
6834 
6835 	return down_write_trylock(&vma_lock->rw_sema);
6836 }
6837 
6838 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
6839 {
6840 	if (__vma_shareable_flags_pmd(vma)) {
6841 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6842 
6843 		lockdep_assert_held(&vma_lock->rw_sema);
6844 	}
6845 }
6846 
6847 void hugetlb_vma_lock_release(struct kref *kref)
6848 {
6849 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
6850 			struct hugetlb_vma_lock, refs);
6851 
6852 	kfree(vma_lock);
6853 }
6854 
6855 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
6856 {
6857 	struct vm_area_struct *vma = vma_lock->vma;
6858 
6859 	/*
6860 	 * vma_lock structure may or not be released as a result of put,
6861 	 * it certainly will no longer be attached to vma so clear pointer.
6862 	 * Semaphore synchronizes access to vma_lock->vma field.
6863 	 */
6864 	vma_lock->vma = NULL;
6865 	vma->vm_private_data = NULL;
6866 	up_write(&vma_lock->rw_sema);
6867 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
6868 }
6869 
6870 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
6871 {
6872 	if (__vma_shareable_flags_pmd(vma)) {
6873 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6874 
6875 		__hugetlb_vma_unlock_write_put(vma_lock);
6876 	}
6877 }
6878 
6879 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
6880 {
6881 	/*
6882 	 * Only present in sharable vmas.
6883 	 */
6884 	if (!vma || !__vma_shareable_flags_pmd(vma))
6885 		return;
6886 
6887 	if (vma->vm_private_data) {
6888 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6889 
6890 		down_write(&vma_lock->rw_sema);
6891 		__hugetlb_vma_unlock_write_put(vma_lock);
6892 	}
6893 }
6894 
6895 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
6896 {
6897 	struct hugetlb_vma_lock *vma_lock;
6898 
6899 	/* Only establish in (flags) sharable vmas */
6900 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
6901 		return;
6902 
6903 	/* Should never get here with non-NULL vm_private_data */
6904 	if (vma->vm_private_data)
6905 		return;
6906 
6907 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
6908 	if (!vma_lock) {
6909 		/*
6910 		 * If we can not allocate structure, then vma can not
6911 		 * participate in pmd sharing.  This is only a possible
6912 		 * performance enhancement and memory saving issue.
6913 		 * However, the lock is also used to synchronize page
6914 		 * faults with truncation.  If the lock is not present,
6915 		 * unlikely races could leave pages in a file past i_size
6916 		 * until the file is removed.  Warn in the unlikely case of
6917 		 * allocation failure.
6918 		 */
6919 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
6920 		return;
6921 	}
6922 
6923 	kref_init(&vma_lock->refs);
6924 	init_rwsem(&vma_lock->rw_sema);
6925 	vma_lock->vma = vma;
6926 	vma->vm_private_data = vma_lock;
6927 }
6928 
6929 /*
6930  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6931  * and returns the corresponding pte. While this is not necessary for the
6932  * !shared pmd case because we can allocate the pmd later as well, it makes the
6933  * code much cleaner. pmd allocation is essential for the shared case because
6934  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6935  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6936  * bad pmd for sharing.
6937  */
6938 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6939 		      unsigned long addr, pud_t *pud)
6940 {
6941 	struct address_space *mapping = vma->vm_file->f_mapping;
6942 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6943 			vma->vm_pgoff;
6944 	struct vm_area_struct *svma;
6945 	unsigned long saddr;
6946 	pte_t *spte = NULL;
6947 	pte_t *pte;
6948 	spinlock_t *ptl;
6949 
6950 	i_mmap_lock_read(mapping);
6951 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6952 		if (svma == vma)
6953 			continue;
6954 
6955 		saddr = page_table_shareable(svma, vma, addr, idx);
6956 		if (saddr) {
6957 			spte = huge_pte_offset(svma->vm_mm, saddr,
6958 					       vma_mmu_pagesize(svma));
6959 			if (spte) {
6960 				get_page(virt_to_page(spte));
6961 				break;
6962 			}
6963 		}
6964 	}
6965 
6966 	if (!spte)
6967 		goto out;
6968 
6969 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6970 	if (pud_none(*pud)) {
6971 		pud_populate(mm, pud,
6972 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6973 		mm_inc_nr_pmds(mm);
6974 	} else {
6975 		put_page(virt_to_page(spte));
6976 	}
6977 	spin_unlock(ptl);
6978 out:
6979 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6980 	i_mmap_unlock_read(mapping);
6981 	return pte;
6982 }
6983 
6984 /*
6985  * unmap huge page backed by shared pte.
6986  *
6987  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6988  * indicated by page_count > 1, unmap is achieved by clearing pud and
6989  * decrementing the ref count. If count == 1, the pte page is not shared.
6990  *
6991  * Called with page table lock held.
6992  *
6993  * returns: 1 successfully unmapped a shared pte page
6994  *	    0 the underlying pte page is not shared, or it is the last user
6995  */
6996 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6997 					unsigned long addr, pte_t *ptep)
6998 {
6999 	pgd_t *pgd = pgd_offset(mm, addr);
7000 	p4d_t *p4d = p4d_offset(pgd, addr);
7001 	pud_t *pud = pud_offset(p4d, addr);
7002 
7003 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7004 	hugetlb_vma_assert_locked(vma);
7005 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7006 	if (page_count(virt_to_page(ptep)) == 1)
7007 		return 0;
7008 
7009 	pud_clear(pud);
7010 	put_page(virt_to_page(ptep));
7011 	mm_dec_nr_pmds(mm);
7012 	return 1;
7013 }
7014 
7015 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7016 
7017 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
7018 {
7019 }
7020 
7021 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
7022 {
7023 }
7024 
7025 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
7026 {
7027 }
7028 
7029 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
7030 {
7031 }
7032 
7033 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
7034 {
7035 	return 1;
7036 }
7037 
7038 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
7039 {
7040 }
7041 
7042 void hugetlb_vma_lock_release(struct kref *kref)
7043 {
7044 }
7045 
7046 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
7047 {
7048 }
7049 
7050 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
7051 {
7052 }
7053 
7054 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
7055 {
7056 }
7057 
7058 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7059 		      unsigned long addr, pud_t *pud)
7060 {
7061 	return NULL;
7062 }
7063 
7064 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7065 				unsigned long addr, pte_t *ptep)
7066 {
7067 	return 0;
7068 }
7069 
7070 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7071 				unsigned long *start, unsigned long *end)
7072 {
7073 }
7074 
7075 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7076 {
7077 	return false;
7078 }
7079 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7080 
7081 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7082 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7083 			unsigned long addr, unsigned long sz)
7084 {
7085 	pgd_t *pgd;
7086 	p4d_t *p4d;
7087 	pud_t *pud;
7088 	pte_t *pte = NULL;
7089 
7090 	pgd = pgd_offset(mm, addr);
7091 	p4d = p4d_alloc(mm, pgd, addr);
7092 	if (!p4d)
7093 		return NULL;
7094 	pud = pud_alloc(mm, p4d, addr);
7095 	if (pud) {
7096 		if (sz == PUD_SIZE) {
7097 			pte = (pte_t *)pud;
7098 		} else {
7099 			BUG_ON(sz != PMD_SIZE);
7100 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7101 				pte = huge_pmd_share(mm, vma, addr, pud);
7102 			else
7103 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7104 		}
7105 	}
7106 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7107 
7108 	return pte;
7109 }
7110 
7111 /*
7112  * huge_pte_offset() - Walk the page table to resolve the hugepage
7113  * entry at address @addr
7114  *
7115  * Return: Pointer to page table entry (PUD or PMD) for
7116  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7117  * size @sz doesn't match the hugepage size at this level of the page
7118  * table.
7119  */
7120 pte_t *huge_pte_offset(struct mm_struct *mm,
7121 		       unsigned long addr, unsigned long sz)
7122 {
7123 	pgd_t *pgd;
7124 	p4d_t *p4d;
7125 	pud_t *pud;
7126 	pmd_t *pmd;
7127 
7128 	pgd = pgd_offset(mm, addr);
7129 	if (!pgd_present(*pgd))
7130 		return NULL;
7131 	p4d = p4d_offset(pgd, addr);
7132 	if (!p4d_present(*p4d))
7133 		return NULL;
7134 
7135 	pud = pud_offset(p4d, addr);
7136 	if (sz == PUD_SIZE)
7137 		/* must be pud huge, non-present or none */
7138 		return (pte_t *)pud;
7139 	if (!pud_present(*pud))
7140 		return NULL;
7141 	/* must have a valid entry and size to go further */
7142 
7143 	pmd = pmd_offset(pud, addr);
7144 	/* must be pmd huge, non-present or none */
7145 	return (pte_t *)pmd;
7146 }
7147 
7148 /*
7149  * Return a mask that can be used to update an address to the last huge
7150  * page in a page table page mapping size.  Used to skip non-present
7151  * page table entries when linearly scanning address ranges.  Architectures
7152  * with unique huge page to page table relationships can define their own
7153  * version of this routine.
7154  */
7155 unsigned long hugetlb_mask_last_page(struct hstate *h)
7156 {
7157 	unsigned long hp_size = huge_page_size(h);
7158 
7159 	if (hp_size == PUD_SIZE)
7160 		return P4D_SIZE - PUD_SIZE;
7161 	else if (hp_size == PMD_SIZE)
7162 		return PUD_SIZE - PMD_SIZE;
7163 	else
7164 		return 0UL;
7165 }
7166 
7167 #else
7168 
7169 /* See description above.  Architectures can provide their own version. */
7170 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7171 {
7172 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7173 	if (huge_page_size(h) == PMD_SIZE)
7174 		return PUD_SIZE - PMD_SIZE;
7175 #endif
7176 	return 0UL;
7177 }
7178 
7179 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7180 
7181 /*
7182  * These functions are overwritable if your architecture needs its own
7183  * behavior.
7184  */
7185 struct page * __weak
7186 follow_huge_addr(struct mm_struct *mm, unsigned long address,
7187 			      int write)
7188 {
7189 	return ERR_PTR(-EINVAL);
7190 }
7191 
7192 struct page * __weak
7193 follow_huge_pd(struct vm_area_struct *vma,
7194 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
7195 {
7196 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
7197 	return NULL;
7198 }
7199 
7200 struct page * __weak
7201 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
7202 {
7203 	struct hstate *h = hstate_vma(vma);
7204 	struct mm_struct *mm = vma->vm_mm;
7205 	struct page *page = NULL;
7206 	spinlock_t *ptl;
7207 	pte_t *ptep, pte;
7208 
7209 	/*
7210 	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
7211 	 * follow_hugetlb_page().
7212 	 */
7213 	if (WARN_ON_ONCE(flags & FOLL_PIN))
7214 		return NULL;
7215 
7216 retry:
7217 	ptep = huge_pte_offset(mm, address, huge_page_size(h));
7218 	if (!ptep)
7219 		return NULL;
7220 
7221 	ptl = huge_pte_lock(h, mm, ptep);
7222 	pte = huge_ptep_get(ptep);
7223 	if (pte_present(pte)) {
7224 		page = pte_page(pte) +
7225 			((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
7226 		/*
7227 		 * try_grab_page() should always succeed here, because: a) we
7228 		 * hold the pmd (ptl) lock, and b) we've just checked that the
7229 		 * huge pmd (head) page is present in the page tables. The ptl
7230 		 * prevents the head page and tail pages from being rearranged
7231 		 * in any way. So this page must be available at this point,
7232 		 * unless the page refcount overflowed:
7233 		 */
7234 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7235 			page = NULL;
7236 			goto out;
7237 		}
7238 	} else {
7239 		if (is_hugetlb_entry_migration(pte)) {
7240 			spin_unlock(ptl);
7241 			__migration_entry_wait_huge(ptep, ptl);
7242 			goto retry;
7243 		}
7244 		/*
7245 		 * hwpoisoned entry is treated as no_page_table in
7246 		 * follow_page_mask().
7247 		 */
7248 	}
7249 out:
7250 	spin_unlock(ptl);
7251 	return page;
7252 }
7253 
7254 struct page * __weak
7255 follow_huge_pud(struct mm_struct *mm, unsigned long address,
7256 		pud_t *pud, int flags)
7257 {
7258 	struct page *page = NULL;
7259 	spinlock_t *ptl;
7260 	pte_t pte;
7261 
7262 	if (WARN_ON_ONCE(flags & FOLL_PIN))
7263 		return NULL;
7264 
7265 retry:
7266 	ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7267 	if (!pud_huge(*pud))
7268 		goto out;
7269 	pte = huge_ptep_get((pte_t *)pud);
7270 	if (pte_present(pte)) {
7271 		page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7272 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7273 			page = NULL;
7274 			goto out;
7275 		}
7276 	} else {
7277 		if (is_hugetlb_entry_migration(pte)) {
7278 			spin_unlock(ptl);
7279 			__migration_entry_wait(mm, (pte_t *)pud, ptl);
7280 			goto retry;
7281 		}
7282 		/*
7283 		 * hwpoisoned entry is treated as no_page_table in
7284 		 * follow_page_mask().
7285 		 */
7286 	}
7287 out:
7288 	spin_unlock(ptl);
7289 	return page;
7290 }
7291 
7292 struct page * __weak
7293 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7294 {
7295 	if (flags & (FOLL_GET | FOLL_PIN))
7296 		return NULL;
7297 
7298 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7299 }
7300 
7301 int isolate_hugetlb(struct page *page, struct list_head *list)
7302 {
7303 	int ret = 0;
7304 
7305 	spin_lock_irq(&hugetlb_lock);
7306 	if (!PageHeadHuge(page) ||
7307 	    !HPageMigratable(page) ||
7308 	    !get_page_unless_zero(page)) {
7309 		ret = -EBUSY;
7310 		goto unlock;
7311 	}
7312 	ClearHPageMigratable(page);
7313 	list_move_tail(&page->lru, list);
7314 unlock:
7315 	spin_unlock_irq(&hugetlb_lock);
7316 	return ret;
7317 }
7318 
7319 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7320 {
7321 	int ret = 0;
7322 
7323 	*hugetlb = false;
7324 	spin_lock_irq(&hugetlb_lock);
7325 	if (PageHeadHuge(page)) {
7326 		*hugetlb = true;
7327 		if (HPageFreed(page))
7328 			ret = 0;
7329 		else if (HPageMigratable(page))
7330 			ret = get_page_unless_zero(page);
7331 		else
7332 			ret = -EBUSY;
7333 	}
7334 	spin_unlock_irq(&hugetlb_lock);
7335 	return ret;
7336 }
7337 
7338 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7339 {
7340 	int ret;
7341 
7342 	spin_lock_irq(&hugetlb_lock);
7343 	ret = __get_huge_page_for_hwpoison(pfn, flags);
7344 	spin_unlock_irq(&hugetlb_lock);
7345 	return ret;
7346 }
7347 
7348 void putback_active_hugepage(struct page *page)
7349 {
7350 	spin_lock_irq(&hugetlb_lock);
7351 	SetHPageMigratable(page);
7352 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7353 	spin_unlock_irq(&hugetlb_lock);
7354 	put_page(page);
7355 }
7356 
7357 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7358 {
7359 	struct hstate *h = page_hstate(oldpage);
7360 
7361 	hugetlb_cgroup_migrate(oldpage, newpage);
7362 	set_page_owner_migrate_reason(newpage, reason);
7363 
7364 	/*
7365 	 * transfer temporary state of the new huge page. This is
7366 	 * reverse to other transitions because the newpage is going to
7367 	 * be final while the old one will be freed so it takes over
7368 	 * the temporary status.
7369 	 *
7370 	 * Also note that we have to transfer the per-node surplus state
7371 	 * here as well otherwise the global surplus count will not match
7372 	 * the per-node's.
7373 	 */
7374 	if (HPageTemporary(newpage)) {
7375 		int old_nid = page_to_nid(oldpage);
7376 		int new_nid = page_to_nid(newpage);
7377 
7378 		SetHPageTemporary(oldpage);
7379 		ClearHPageTemporary(newpage);
7380 
7381 		/*
7382 		 * There is no need to transfer the per-node surplus state
7383 		 * when we do not cross the node.
7384 		 */
7385 		if (new_nid == old_nid)
7386 			return;
7387 		spin_lock_irq(&hugetlb_lock);
7388 		if (h->surplus_huge_pages_node[old_nid]) {
7389 			h->surplus_huge_pages_node[old_nid]--;
7390 			h->surplus_huge_pages_node[new_nid]++;
7391 		}
7392 		spin_unlock_irq(&hugetlb_lock);
7393 	}
7394 }
7395 
7396 /*
7397  * This function will unconditionally remove all the shared pmd pgtable entries
7398  * within the specific vma for a hugetlbfs memory range.
7399  */
7400 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7401 {
7402 	struct hstate *h = hstate_vma(vma);
7403 	unsigned long sz = huge_page_size(h);
7404 	struct mm_struct *mm = vma->vm_mm;
7405 	struct mmu_notifier_range range;
7406 	unsigned long address, start, end;
7407 	spinlock_t *ptl;
7408 	pte_t *ptep;
7409 
7410 	if (!(vma->vm_flags & VM_MAYSHARE))
7411 		return;
7412 
7413 	start = ALIGN(vma->vm_start, PUD_SIZE);
7414 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7415 
7416 	if (start >= end)
7417 		return;
7418 
7419 	flush_cache_range(vma, start, end);
7420 	/*
7421 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7422 	 * we have already done the PUD_SIZE alignment.
7423 	 */
7424 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7425 				start, end);
7426 	mmu_notifier_invalidate_range_start(&range);
7427 	hugetlb_vma_lock_write(vma);
7428 	i_mmap_lock_write(vma->vm_file->f_mapping);
7429 	for (address = start; address < end; address += PUD_SIZE) {
7430 		ptep = huge_pte_offset(mm, address, sz);
7431 		if (!ptep)
7432 			continue;
7433 		ptl = huge_pte_lock(h, mm, ptep);
7434 		huge_pmd_unshare(mm, vma, address, ptep);
7435 		spin_unlock(ptl);
7436 	}
7437 	flush_hugetlb_tlb_range(vma, start, end);
7438 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7439 	hugetlb_vma_unlock_write(vma);
7440 	/*
7441 	 * No need to call mmu_notifier_invalidate_range(), see
7442 	 * Documentation/mm/mmu_notifier.rst.
7443 	 */
7444 	mmu_notifier_invalidate_range_end(&range);
7445 }
7446 
7447 #ifdef CONFIG_CMA
7448 static bool cma_reserve_called __initdata;
7449 
7450 static int __init cmdline_parse_hugetlb_cma(char *p)
7451 {
7452 	int nid, count = 0;
7453 	unsigned long tmp;
7454 	char *s = p;
7455 
7456 	while (*s) {
7457 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7458 			break;
7459 
7460 		if (s[count] == ':') {
7461 			if (tmp >= MAX_NUMNODES)
7462 				break;
7463 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7464 
7465 			s += count + 1;
7466 			tmp = memparse(s, &s);
7467 			hugetlb_cma_size_in_node[nid] = tmp;
7468 			hugetlb_cma_size += tmp;
7469 
7470 			/*
7471 			 * Skip the separator if have one, otherwise
7472 			 * break the parsing.
7473 			 */
7474 			if (*s == ',')
7475 				s++;
7476 			else
7477 				break;
7478 		} else {
7479 			hugetlb_cma_size = memparse(p, &p);
7480 			break;
7481 		}
7482 	}
7483 
7484 	return 0;
7485 }
7486 
7487 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7488 
7489 void __init hugetlb_cma_reserve(int order)
7490 {
7491 	unsigned long size, reserved, per_node;
7492 	bool node_specific_cma_alloc = false;
7493 	int nid;
7494 
7495 	cma_reserve_called = true;
7496 
7497 	if (!hugetlb_cma_size)
7498 		return;
7499 
7500 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7501 		if (hugetlb_cma_size_in_node[nid] == 0)
7502 			continue;
7503 
7504 		if (!node_online(nid)) {
7505 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7506 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7507 			hugetlb_cma_size_in_node[nid] = 0;
7508 			continue;
7509 		}
7510 
7511 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7512 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7513 				nid, (PAGE_SIZE << order) / SZ_1M);
7514 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7515 			hugetlb_cma_size_in_node[nid] = 0;
7516 		} else {
7517 			node_specific_cma_alloc = true;
7518 		}
7519 	}
7520 
7521 	/* Validate the CMA size again in case some invalid nodes specified. */
7522 	if (!hugetlb_cma_size)
7523 		return;
7524 
7525 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7526 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7527 			(PAGE_SIZE << order) / SZ_1M);
7528 		hugetlb_cma_size = 0;
7529 		return;
7530 	}
7531 
7532 	if (!node_specific_cma_alloc) {
7533 		/*
7534 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7535 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7536 		 */
7537 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7538 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7539 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7540 	}
7541 
7542 	reserved = 0;
7543 	for_each_online_node(nid) {
7544 		int res;
7545 		char name[CMA_MAX_NAME];
7546 
7547 		if (node_specific_cma_alloc) {
7548 			if (hugetlb_cma_size_in_node[nid] == 0)
7549 				continue;
7550 
7551 			size = hugetlb_cma_size_in_node[nid];
7552 		} else {
7553 			size = min(per_node, hugetlb_cma_size - reserved);
7554 		}
7555 
7556 		size = round_up(size, PAGE_SIZE << order);
7557 
7558 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7559 		/*
7560 		 * Note that 'order per bit' is based on smallest size that
7561 		 * may be returned to CMA allocator in the case of
7562 		 * huge page demotion.
7563 		 */
7564 		res = cma_declare_contiguous_nid(0, size, 0,
7565 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7566 						 0, false, name,
7567 						 &hugetlb_cma[nid], nid);
7568 		if (res) {
7569 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7570 				res, nid);
7571 			continue;
7572 		}
7573 
7574 		reserved += size;
7575 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7576 			size / SZ_1M, nid);
7577 
7578 		if (reserved >= hugetlb_cma_size)
7579 			break;
7580 	}
7581 
7582 	if (!reserved)
7583 		/*
7584 		 * hugetlb_cma_size is used to determine if allocations from
7585 		 * cma are possible.  Set to zero if no cma regions are set up.
7586 		 */
7587 		hugetlb_cma_size = 0;
7588 }
7589 
7590 static void __init hugetlb_cma_check(void)
7591 {
7592 	if (!hugetlb_cma_size || cma_reserve_called)
7593 		return;
7594 
7595 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7596 }
7597 
7598 #endif /* CONFIG_CMA */
7599