1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 39 #include <asm/page.h> 40 #include <asm/pgalloc.h> 41 #include <asm/tlb.h> 42 43 #include <linux/io.h> 44 #include <linux/hugetlb.h> 45 #include <linux/hugetlb_cgroup.h> 46 #include <linux/node.h> 47 #include <linux/page_owner.h> 48 #include "internal.h" 49 #include "hugetlb_vmemmap.h" 50 51 int hugetlb_max_hstate __read_mostly; 52 unsigned int default_hstate_idx; 53 struct hstate hstates[HUGE_MAX_HSTATE]; 54 55 #ifdef CONFIG_CMA 56 static struct cma *hugetlb_cma[MAX_NUMNODES]; 57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 59 { 60 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 61 1 << order); 62 } 63 #else 64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 65 { 66 return false; 67 } 68 #endif 69 static unsigned long hugetlb_cma_size __initdata; 70 71 __initdata LIST_HEAD(huge_boot_pages); 72 73 /* for command line parsing */ 74 static struct hstate * __initdata parsed_hstate; 75 static unsigned long __initdata default_hstate_max_huge_pages; 76 static bool __initdata parsed_valid_hugepagesz = true; 77 static bool __initdata parsed_default_hugepagesz; 78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 79 80 /* 81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 82 * free_huge_pages, and surplus_huge_pages. 83 */ 84 DEFINE_SPINLOCK(hugetlb_lock); 85 86 /* 87 * Serializes faults on the same logical page. This is used to 88 * prevent spurious OOMs when the hugepage pool is fully utilized. 89 */ 90 static int num_fault_mutexes; 91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 92 93 /* Forward declaration */ 94 static int hugetlb_acct_memory(struct hstate *h, long delta); 95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 99 unsigned long start, unsigned long end); 100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 101 102 static inline bool subpool_is_free(struct hugepage_subpool *spool) 103 { 104 if (spool->count) 105 return false; 106 if (spool->max_hpages != -1) 107 return spool->used_hpages == 0; 108 if (spool->min_hpages != -1) 109 return spool->rsv_hpages == spool->min_hpages; 110 111 return true; 112 } 113 114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 115 unsigned long irq_flags) 116 { 117 spin_unlock_irqrestore(&spool->lock, irq_flags); 118 119 /* If no pages are used, and no other handles to the subpool 120 * remain, give up any reservations based on minimum size and 121 * free the subpool */ 122 if (subpool_is_free(spool)) { 123 if (spool->min_hpages != -1) 124 hugetlb_acct_memory(spool->hstate, 125 -spool->min_hpages); 126 kfree(spool); 127 } 128 } 129 130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 131 long min_hpages) 132 { 133 struct hugepage_subpool *spool; 134 135 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 136 if (!spool) 137 return NULL; 138 139 spin_lock_init(&spool->lock); 140 spool->count = 1; 141 spool->max_hpages = max_hpages; 142 spool->hstate = h; 143 spool->min_hpages = min_hpages; 144 145 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 146 kfree(spool); 147 return NULL; 148 } 149 spool->rsv_hpages = min_hpages; 150 151 return spool; 152 } 153 154 void hugepage_put_subpool(struct hugepage_subpool *spool) 155 { 156 unsigned long flags; 157 158 spin_lock_irqsave(&spool->lock, flags); 159 BUG_ON(!spool->count); 160 spool->count--; 161 unlock_or_release_subpool(spool, flags); 162 } 163 164 /* 165 * Subpool accounting for allocating and reserving pages. 166 * Return -ENOMEM if there are not enough resources to satisfy the 167 * request. Otherwise, return the number of pages by which the 168 * global pools must be adjusted (upward). The returned value may 169 * only be different than the passed value (delta) in the case where 170 * a subpool minimum size must be maintained. 171 */ 172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 173 long delta) 174 { 175 long ret = delta; 176 177 if (!spool) 178 return ret; 179 180 spin_lock_irq(&spool->lock); 181 182 if (spool->max_hpages != -1) { /* maximum size accounting */ 183 if ((spool->used_hpages + delta) <= spool->max_hpages) 184 spool->used_hpages += delta; 185 else { 186 ret = -ENOMEM; 187 goto unlock_ret; 188 } 189 } 190 191 /* minimum size accounting */ 192 if (spool->min_hpages != -1 && spool->rsv_hpages) { 193 if (delta > spool->rsv_hpages) { 194 /* 195 * Asking for more reserves than those already taken on 196 * behalf of subpool. Return difference. 197 */ 198 ret = delta - spool->rsv_hpages; 199 spool->rsv_hpages = 0; 200 } else { 201 ret = 0; /* reserves already accounted for */ 202 spool->rsv_hpages -= delta; 203 } 204 } 205 206 unlock_ret: 207 spin_unlock_irq(&spool->lock); 208 return ret; 209 } 210 211 /* 212 * Subpool accounting for freeing and unreserving pages. 213 * Return the number of global page reservations that must be dropped. 214 * The return value may only be different than the passed value (delta) 215 * in the case where a subpool minimum size must be maintained. 216 */ 217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 218 long delta) 219 { 220 long ret = delta; 221 unsigned long flags; 222 223 if (!spool) 224 return delta; 225 226 spin_lock_irqsave(&spool->lock, flags); 227 228 if (spool->max_hpages != -1) /* maximum size accounting */ 229 spool->used_hpages -= delta; 230 231 /* minimum size accounting */ 232 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 233 if (spool->rsv_hpages + delta <= spool->min_hpages) 234 ret = 0; 235 else 236 ret = spool->rsv_hpages + delta - spool->min_hpages; 237 238 spool->rsv_hpages += delta; 239 if (spool->rsv_hpages > spool->min_hpages) 240 spool->rsv_hpages = spool->min_hpages; 241 } 242 243 /* 244 * If hugetlbfs_put_super couldn't free spool due to an outstanding 245 * quota reference, free it now. 246 */ 247 unlock_or_release_subpool(spool, flags); 248 249 return ret; 250 } 251 252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 253 { 254 return HUGETLBFS_SB(inode->i_sb)->spool; 255 } 256 257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 258 { 259 return subpool_inode(file_inode(vma->vm_file)); 260 } 261 262 /* 263 * hugetlb vma_lock helper routines 264 */ 265 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 266 { 267 if (__vma_shareable_lock(vma)) { 268 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 269 270 down_read(&vma_lock->rw_sema); 271 } else if (__vma_private_lock(vma)) { 272 struct resv_map *resv_map = vma_resv_map(vma); 273 274 down_read(&resv_map->rw_sema); 275 } 276 } 277 278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 279 { 280 if (__vma_shareable_lock(vma)) { 281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 282 283 up_read(&vma_lock->rw_sema); 284 } else if (__vma_private_lock(vma)) { 285 struct resv_map *resv_map = vma_resv_map(vma); 286 287 up_read(&resv_map->rw_sema); 288 } 289 } 290 291 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 292 { 293 if (__vma_shareable_lock(vma)) { 294 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 295 296 down_write(&vma_lock->rw_sema); 297 } else if (__vma_private_lock(vma)) { 298 struct resv_map *resv_map = vma_resv_map(vma); 299 300 down_write(&resv_map->rw_sema); 301 } 302 } 303 304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 305 { 306 if (__vma_shareable_lock(vma)) { 307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 308 309 up_write(&vma_lock->rw_sema); 310 } else if (__vma_private_lock(vma)) { 311 struct resv_map *resv_map = vma_resv_map(vma); 312 313 up_write(&resv_map->rw_sema); 314 } 315 } 316 317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 318 { 319 320 if (__vma_shareable_lock(vma)) { 321 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 322 323 return down_write_trylock(&vma_lock->rw_sema); 324 } else if (__vma_private_lock(vma)) { 325 struct resv_map *resv_map = vma_resv_map(vma); 326 327 return down_write_trylock(&resv_map->rw_sema); 328 } 329 330 return 1; 331 } 332 333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 334 { 335 if (__vma_shareable_lock(vma)) { 336 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 337 338 lockdep_assert_held(&vma_lock->rw_sema); 339 } else if (__vma_private_lock(vma)) { 340 struct resv_map *resv_map = vma_resv_map(vma); 341 342 lockdep_assert_held(&resv_map->rw_sema); 343 } 344 } 345 346 void hugetlb_vma_lock_release(struct kref *kref) 347 { 348 struct hugetlb_vma_lock *vma_lock = container_of(kref, 349 struct hugetlb_vma_lock, refs); 350 351 kfree(vma_lock); 352 } 353 354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 355 { 356 struct vm_area_struct *vma = vma_lock->vma; 357 358 /* 359 * vma_lock structure may or not be released as a result of put, 360 * it certainly will no longer be attached to vma so clear pointer. 361 * Semaphore synchronizes access to vma_lock->vma field. 362 */ 363 vma_lock->vma = NULL; 364 vma->vm_private_data = NULL; 365 up_write(&vma_lock->rw_sema); 366 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 367 } 368 369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 370 { 371 if (__vma_shareable_lock(vma)) { 372 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 373 374 __hugetlb_vma_unlock_write_put(vma_lock); 375 } else if (__vma_private_lock(vma)) { 376 struct resv_map *resv_map = vma_resv_map(vma); 377 378 /* no free for anon vmas, but still need to unlock */ 379 up_write(&resv_map->rw_sema); 380 } 381 } 382 383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 384 { 385 /* 386 * Only present in sharable vmas. 387 */ 388 if (!vma || !__vma_shareable_lock(vma)) 389 return; 390 391 if (vma->vm_private_data) { 392 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 393 394 down_write(&vma_lock->rw_sema); 395 __hugetlb_vma_unlock_write_put(vma_lock); 396 } 397 } 398 399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 400 { 401 struct hugetlb_vma_lock *vma_lock; 402 403 /* Only establish in (flags) sharable vmas */ 404 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 405 return; 406 407 /* Should never get here with non-NULL vm_private_data */ 408 if (vma->vm_private_data) 409 return; 410 411 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 412 if (!vma_lock) { 413 /* 414 * If we can not allocate structure, then vma can not 415 * participate in pmd sharing. This is only a possible 416 * performance enhancement and memory saving issue. 417 * However, the lock is also used to synchronize page 418 * faults with truncation. If the lock is not present, 419 * unlikely races could leave pages in a file past i_size 420 * until the file is removed. Warn in the unlikely case of 421 * allocation failure. 422 */ 423 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 424 return; 425 } 426 427 kref_init(&vma_lock->refs); 428 init_rwsem(&vma_lock->rw_sema); 429 vma_lock->vma = vma; 430 vma->vm_private_data = vma_lock; 431 } 432 433 /* Helper that removes a struct file_region from the resv_map cache and returns 434 * it for use. 435 */ 436 static struct file_region * 437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 438 { 439 struct file_region *nrg; 440 441 VM_BUG_ON(resv->region_cache_count <= 0); 442 443 resv->region_cache_count--; 444 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 445 list_del(&nrg->link); 446 447 nrg->from = from; 448 nrg->to = to; 449 450 return nrg; 451 } 452 453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 454 struct file_region *rg) 455 { 456 #ifdef CONFIG_CGROUP_HUGETLB 457 nrg->reservation_counter = rg->reservation_counter; 458 nrg->css = rg->css; 459 if (rg->css) 460 css_get(rg->css); 461 #endif 462 } 463 464 /* Helper that records hugetlb_cgroup uncharge info. */ 465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 466 struct hstate *h, 467 struct resv_map *resv, 468 struct file_region *nrg) 469 { 470 #ifdef CONFIG_CGROUP_HUGETLB 471 if (h_cg) { 472 nrg->reservation_counter = 473 &h_cg->rsvd_hugepage[hstate_index(h)]; 474 nrg->css = &h_cg->css; 475 /* 476 * The caller will hold exactly one h_cg->css reference for the 477 * whole contiguous reservation region. But this area might be 478 * scattered when there are already some file_regions reside in 479 * it. As a result, many file_regions may share only one css 480 * reference. In order to ensure that one file_region must hold 481 * exactly one h_cg->css reference, we should do css_get for 482 * each file_region and leave the reference held by caller 483 * untouched. 484 */ 485 css_get(&h_cg->css); 486 if (!resv->pages_per_hpage) 487 resv->pages_per_hpage = pages_per_huge_page(h); 488 /* pages_per_hpage should be the same for all entries in 489 * a resv_map. 490 */ 491 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 492 } else { 493 nrg->reservation_counter = NULL; 494 nrg->css = NULL; 495 } 496 #endif 497 } 498 499 static void put_uncharge_info(struct file_region *rg) 500 { 501 #ifdef CONFIG_CGROUP_HUGETLB 502 if (rg->css) 503 css_put(rg->css); 504 #endif 505 } 506 507 static bool has_same_uncharge_info(struct file_region *rg, 508 struct file_region *org) 509 { 510 #ifdef CONFIG_CGROUP_HUGETLB 511 return rg->reservation_counter == org->reservation_counter && 512 rg->css == org->css; 513 514 #else 515 return true; 516 #endif 517 } 518 519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 520 { 521 struct file_region *nrg, *prg; 522 523 prg = list_prev_entry(rg, link); 524 if (&prg->link != &resv->regions && prg->to == rg->from && 525 has_same_uncharge_info(prg, rg)) { 526 prg->to = rg->to; 527 528 list_del(&rg->link); 529 put_uncharge_info(rg); 530 kfree(rg); 531 532 rg = prg; 533 } 534 535 nrg = list_next_entry(rg, link); 536 if (&nrg->link != &resv->regions && nrg->from == rg->to && 537 has_same_uncharge_info(nrg, rg)) { 538 nrg->from = rg->from; 539 540 list_del(&rg->link); 541 put_uncharge_info(rg); 542 kfree(rg); 543 } 544 } 545 546 static inline long 547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 548 long to, struct hstate *h, struct hugetlb_cgroup *cg, 549 long *regions_needed) 550 { 551 struct file_region *nrg; 552 553 if (!regions_needed) { 554 nrg = get_file_region_entry_from_cache(map, from, to); 555 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 556 list_add(&nrg->link, rg); 557 coalesce_file_region(map, nrg); 558 } else 559 *regions_needed += 1; 560 561 return to - from; 562 } 563 564 /* 565 * Must be called with resv->lock held. 566 * 567 * Calling this with regions_needed != NULL will count the number of pages 568 * to be added but will not modify the linked list. And regions_needed will 569 * indicate the number of file_regions needed in the cache to carry out to add 570 * the regions for this range. 571 */ 572 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 573 struct hugetlb_cgroup *h_cg, 574 struct hstate *h, long *regions_needed) 575 { 576 long add = 0; 577 struct list_head *head = &resv->regions; 578 long last_accounted_offset = f; 579 struct file_region *iter, *trg = NULL; 580 struct list_head *rg = NULL; 581 582 if (regions_needed) 583 *regions_needed = 0; 584 585 /* In this loop, we essentially handle an entry for the range 586 * [last_accounted_offset, iter->from), at every iteration, with some 587 * bounds checking. 588 */ 589 list_for_each_entry_safe(iter, trg, head, link) { 590 /* Skip irrelevant regions that start before our range. */ 591 if (iter->from < f) { 592 /* If this region ends after the last accounted offset, 593 * then we need to update last_accounted_offset. 594 */ 595 if (iter->to > last_accounted_offset) 596 last_accounted_offset = iter->to; 597 continue; 598 } 599 600 /* When we find a region that starts beyond our range, we've 601 * finished. 602 */ 603 if (iter->from >= t) { 604 rg = iter->link.prev; 605 break; 606 } 607 608 /* Add an entry for last_accounted_offset -> iter->from, and 609 * update last_accounted_offset. 610 */ 611 if (iter->from > last_accounted_offset) 612 add += hugetlb_resv_map_add(resv, iter->link.prev, 613 last_accounted_offset, 614 iter->from, h, h_cg, 615 regions_needed); 616 617 last_accounted_offset = iter->to; 618 } 619 620 /* Handle the case where our range extends beyond 621 * last_accounted_offset. 622 */ 623 if (!rg) 624 rg = head->prev; 625 if (last_accounted_offset < t) 626 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 627 t, h, h_cg, regions_needed); 628 629 return add; 630 } 631 632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 633 */ 634 static int allocate_file_region_entries(struct resv_map *resv, 635 int regions_needed) 636 __must_hold(&resv->lock) 637 { 638 LIST_HEAD(allocated_regions); 639 int to_allocate = 0, i = 0; 640 struct file_region *trg = NULL, *rg = NULL; 641 642 VM_BUG_ON(regions_needed < 0); 643 644 /* 645 * Check for sufficient descriptors in the cache to accommodate 646 * the number of in progress add operations plus regions_needed. 647 * 648 * This is a while loop because when we drop the lock, some other call 649 * to region_add or region_del may have consumed some region_entries, 650 * so we keep looping here until we finally have enough entries for 651 * (adds_in_progress + regions_needed). 652 */ 653 while (resv->region_cache_count < 654 (resv->adds_in_progress + regions_needed)) { 655 to_allocate = resv->adds_in_progress + regions_needed - 656 resv->region_cache_count; 657 658 /* At this point, we should have enough entries in the cache 659 * for all the existing adds_in_progress. We should only be 660 * needing to allocate for regions_needed. 661 */ 662 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 663 664 spin_unlock(&resv->lock); 665 for (i = 0; i < to_allocate; i++) { 666 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 667 if (!trg) 668 goto out_of_memory; 669 list_add(&trg->link, &allocated_regions); 670 } 671 672 spin_lock(&resv->lock); 673 674 list_splice(&allocated_regions, &resv->region_cache); 675 resv->region_cache_count += to_allocate; 676 } 677 678 return 0; 679 680 out_of_memory: 681 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 682 list_del(&rg->link); 683 kfree(rg); 684 } 685 return -ENOMEM; 686 } 687 688 /* 689 * Add the huge page range represented by [f, t) to the reserve 690 * map. Regions will be taken from the cache to fill in this range. 691 * Sufficient regions should exist in the cache due to the previous 692 * call to region_chg with the same range, but in some cases the cache will not 693 * have sufficient entries due to races with other code doing region_add or 694 * region_del. The extra needed entries will be allocated. 695 * 696 * regions_needed is the out value provided by a previous call to region_chg. 697 * 698 * Return the number of new huge pages added to the map. This number is greater 699 * than or equal to zero. If file_region entries needed to be allocated for 700 * this operation and we were not able to allocate, it returns -ENOMEM. 701 * region_add of regions of length 1 never allocate file_regions and cannot 702 * fail; region_chg will always allocate at least 1 entry and a region_add for 703 * 1 page will only require at most 1 entry. 704 */ 705 static long region_add(struct resv_map *resv, long f, long t, 706 long in_regions_needed, struct hstate *h, 707 struct hugetlb_cgroup *h_cg) 708 { 709 long add = 0, actual_regions_needed = 0; 710 711 spin_lock(&resv->lock); 712 retry: 713 714 /* Count how many regions are actually needed to execute this add. */ 715 add_reservation_in_range(resv, f, t, NULL, NULL, 716 &actual_regions_needed); 717 718 /* 719 * Check for sufficient descriptors in the cache to accommodate 720 * this add operation. Note that actual_regions_needed may be greater 721 * than in_regions_needed, as the resv_map may have been modified since 722 * the region_chg call. In this case, we need to make sure that we 723 * allocate extra entries, such that we have enough for all the 724 * existing adds_in_progress, plus the excess needed for this 725 * operation. 726 */ 727 if (actual_regions_needed > in_regions_needed && 728 resv->region_cache_count < 729 resv->adds_in_progress + 730 (actual_regions_needed - in_regions_needed)) { 731 /* region_add operation of range 1 should never need to 732 * allocate file_region entries. 733 */ 734 VM_BUG_ON(t - f <= 1); 735 736 if (allocate_file_region_entries( 737 resv, actual_regions_needed - in_regions_needed)) { 738 return -ENOMEM; 739 } 740 741 goto retry; 742 } 743 744 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 745 746 resv->adds_in_progress -= in_regions_needed; 747 748 spin_unlock(&resv->lock); 749 return add; 750 } 751 752 /* 753 * Examine the existing reserve map and determine how many 754 * huge pages in the specified range [f, t) are NOT currently 755 * represented. This routine is called before a subsequent 756 * call to region_add that will actually modify the reserve 757 * map to add the specified range [f, t). region_chg does 758 * not change the number of huge pages represented by the 759 * map. A number of new file_region structures is added to the cache as a 760 * placeholder, for the subsequent region_add call to use. At least 1 761 * file_region structure is added. 762 * 763 * out_regions_needed is the number of regions added to the 764 * resv->adds_in_progress. This value needs to be provided to a follow up call 765 * to region_add or region_abort for proper accounting. 766 * 767 * Returns the number of huge pages that need to be added to the existing 768 * reservation map for the range [f, t). This number is greater or equal to 769 * zero. -ENOMEM is returned if a new file_region structure or cache entry 770 * is needed and can not be allocated. 771 */ 772 static long region_chg(struct resv_map *resv, long f, long t, 773 long *out_regions_needed) 774 { 775 long chg = 0; 776 777 spin_lock(&resv->lock); 778 779 /* Count how many hugepages in this range are NOT represented. */ 780 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 781 out_regions_needed); 782 783 if (*out_regions_needed == 0) 784 *out_regions_needed = 1; 785 786 if (allocate_file_region_entries(resv, *out_regions_needed)) 787 return -ENOMEM; 788 789 resv->adds_in_progress += *out_regions_needed; 790 791 spin_unlock(&resv->lock); 792 return chg; 793 } 794 795 /* 796 * Abort the in progress add operation. The adds_in_progress field 797 * of the resv_map keeps track of the operations in progress between 798 * calls to region_chg and region_add. Operations are sometimes 799 * aborted after the call to region_chg. In such cases, region_abort 800 * is called to decrement the adds_in_progress counter. regions_needed 801 * is the value returned by the region_chg call, it is used to decrement 802 * the adds_in_progress counter. 803 * 804 * NOTE: The range arguments [f, t) are not needed or used in this 805 * routine. They are kept to make reading the calling code easier as 806 * arguments will match the associated region_chg call. 807 */ 808 static void region_abort(struct resv_map *resv, long f, long t, 809 long regions_needed) 810 { 811 spin_lock(&resv->lock); 812 VM_BUG_ON(!resv->region_cache_count); 813 resv->adds_in_progress -= regions_needed; 814 spin_unlock(&resv->lock); 815 } 816 817 /* 818 * Delete the specified range [f, t) from the reserve map. If the 819 * t parameter is LONG_MAX, this indicates that ALL regions after f 820 * should be deleted. Locate the regions which intersect [f, t) 821 * and either trim, delete or split the existing regions. 822 * 823 * Returns the number of huge pages deleted from the reserve map. 824 * In the normal case, the return value is zero or more. In the 825 * case where a region must be split, a new region descriptor must 826 * be allocated. If the allocation fails, -ENOMEM will be returned. 827 * NOTE: If the parameter t == LONG_MAX, then we will never split 828 * a region and possibly return -ENOMEM. Callers specifying 829 * t == LONG_MAX do not need to check for -ENOMEM error. 830 */ 831 static long region_del(struct resv_map *resv, long f, long t) 832 { 833 struct list_head *head = &resv->regions; 834 struct file_region *rg, *trg; 835 struct file_region *nrg = NULL; 836 long del = 0; 837 838 retry: 839 spin_lock(&resv->lock); 840 list_for_each_entry_safe(rg, trg, head, link) { 841 /* 842 * Skip regions before the range to be deleted. file_region 843 * ranges are normally of the form [from, to). However, there 844 * may be a "placeholder" entry in the map which is of the form 845 * (from, to) with from == to. Check for placeholder entries 846 * at the beginning of the range to be deleted. 847 */ 848 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 849 continue; 850 851 if (rg->from >= t) 852 break; 853 854 if (f > rg->from && t < rg->to) { /* Must split region */ 855 /* 856 * Check for an entry in the cache before dropping 857 * lock and attempting allocation. 858 */ 859 if (!nrg && 860 resv->region_cache_count > resv->adds_in_progress) { 861 nrg = list_first_entry(&resv->region_cache, 862 struct file_region, 863 link); 864 list_del(&nrg->link); 865 resv->region_cache_count--; 866 } 867 868 if (!nrg) { 869 spin_unlock(&resv->lock); 870 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 871 if (!nrg) 872 return -ENOMEM; 873 goto retry; 874 } 875 876 del += t - f; 877 hugetlb_cgroup_uncharge_file_region( 878 resv, rg, t - f, false); 879 880 /* New entry for end of split region */ 881 nrg->from = t; 882 nrg->to = rg->to; 883 884 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 885 886 INIT_LIST_HEAD(&nrg->link); 887 888 /* Original entry is trimmed */ 889 rg->to = f; 890 891 list_add(&nrg->link, &rg->link); 892 nrg = NULL; 893 break; 894 } 895 896 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 897 del += rg->to - rg->from; 898 hugetlb_cgroup_uncharge_file_region(resv, rg, 899 rg->to - rg->from, true); 900 list_del(&rg->link); 901 kfree(rg); 902 continue; 903 } 904 905 if (f <= rg->from) { /* Trim beginning of region */ 906 hugetlb_cgroup_uncharge_file_region(resv, rg, 907 t - rg->from, false); 908 909 del += t - rg->from; 910 rg->from = t; 911 } else { /* Trim end of region */ 912 hugetlb_cgroup_uncharge_file_region(resv, rg, 913 rg->to - f, false); 914 915 del += rg->to - f; 916 rg->to = f; 917 } 918 } 919 920 spin_unlock(&resv->lock); 921 kfree(nrg); 922 return del; 923 } 924 925 /* 926 * A rare out of memory error was encountered which prevented removal of 927 * the reserve map region for a page. The huge page itself was free'ed 928 * and removed from the page cache. This routine will adjust the subpool 929 * usage count, and the global reserve count if needed. By incrementing 930 * these counts, the reserve map entry which could not be deleted will 931 * appear as a "reserved" entry instead of simply dangling with incorrect 932 * counts. 933 */ 934 void hugetlb_fix_reserve_counts(struct inode *inode) 935 { 936 struct hugepage_subpool *spool = subpool_inode(inode); 937 long rsv_adjust; 938 bool reserved = false; 939 940 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 941 if (rsv_adjust > 0) { 942 struct hstate *h = hstate_inode(inode); 943 944 if (!hugetlb_acct_memory(h, 1)) 945 reserved = true; 946 } else if (!rsv_adjust) { 947 reserved = true; 948 } 949 950 if (!reserved) 951 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 952 } 953 954 /* 955 * Count and return the number of huge pages in the reserve map 956 * that intersect with the range [f, t). 957 */ 958 static long region_count(struct resv_map *resv, long f, long t) 959 { 960 struct list_head *head = &resv->regions; 961 struct file_region *rg; 962 long chg = 0; 963 964 spin_lock(&resv->lock); 965 /* Locate each segment we overlap with, and count that overlap. */ 966 list_for_each_entry(rg, head, link) { 967 long seg_from; 968 long seg_to; 969 970 if (rg->to <= f) 971 continue; 972 if (rg->from >= t) 973 break; 974 975 seg_from = max(rg->from, f); 976 seg_to = min(rg->to, t); 977 978 chg += seg_to - seg_from; 979 } 980 spin_unlock(&resv->lock); 981 982 return chg; 983 } 984 985 /* 986 * Convert the address within this vma to the page offset within 987 * the mapping, in pagecache page units; huge pages here. 988 */ 989 static pgoff_t vma_hugecache_offset(struct hstate *h, 990 struct vm_area_struct *vma, unsigned long address) 991 { 992 return ((address - vma->vm_start) >> huge_page_shift(h)) + 993 (vma->vm_pgoff >> huge_page_order(h)); 994 } 995 996 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 997 unsigned long address) 998 { 999 return vma_hugecache_offset(hstate_vma(vma), vma, address); 1000 } 1001 EXPORT_SYMBOL_GPL(linear_hugepage_index); 1002 1003 /** 1004 * vma_kernel_pagesize - Page size granularity for this VMA. 1005 * @vma: The user mapping. 1006 * 1007 * Folios in this VMA will be aligned to, and at least the size of the 1008 * number of bytes returned by this function. 1009 * 1010 * Return: The default size of the folios allocated when backing a VMA. 1011 */ 1012 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1013 { 1014 if (vma->vm_ops && vma->vm_ops->pagesize) 1015 return vma->vm_ops->pagesize(vma); 1016 return PAGE_SIZE; 1017 } 1018 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1019 1020 /* 1021 * Return the page size being used by the MMU to back a VMA. In the majority 1022 * of cases, the page size used by the kernel matches the MMU size. On 1023 * architectures where it differs, an architecture-specific 'strong' 1024 * version of this symbol is required. 1025 */ 1026 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1027 { 1028 return vma_kernel_pagesize(vma); 1029 } 1030 1031 /* 1032 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1033 * bits of the reservation map pointer, which are always clear due to 1034 * alignment. 1035 */ 1036 #define HPAGE_RESV_OWNER (1UL << 0) 1037 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1038 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1039 1040 /* 1041 * These helpers are used to track how many pages are reserved for 1042 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1043 * is guaranteed to have their future faults succeed. 1044 * 1045 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1046 * the reserve counters are updated with the hugetlb_lock held. It is safe 1047 * to reset the VMA at fork() time as it is not in use yet and there is no 1048 * chance of the global counters getting corrupted as a result of the values. 1049 * 1050 * The private mapping reservation is represented in a subtly different 1051 * manner to a shared mapping. A shared mapping has a region map associated 1052 * with the underlying file, this region map represents the backing file 1053 * pages which have ever had a reservation assigned which this persists even 1054 * after the page is instantiated. A private mapping has a region map 1055 * associated with the original mmap which is attached to all VMAs which 1056 * reference it, this region map represents those offsets which have consumed 1057 * reservation ie. where pages have been instantiated. 1058 */ 1059 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1060 { 1061 return (unsigned long)vma->vm_private_data; 1062 } 1063 1064 static void set_vma_private_data(struct vm_area_struct *vma, 1065 unsigned long value) 1066 { 1067 vma->vm_private_data = (void *)value; 1068 } 1069 1070 static void 1071 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1072 struct hugetlb_cgroup *h_cg, 1073 struct hstate *h) 1074 { 1075 #ifdef CONFIG_CGROUP_HUGETLB 1076 if (!h_cg || !h) { 1077 resv_map->reservation_counter = NULL; 1078 resv_map->pages_per_hpage = 0; 1079 resv_map->css = NULL; 1080 } else { 1081 resv_map->reservation_counter = 1082 &h_cg->rsvd_hugepage[hstate_index(h)]; 1083 resv_map->pages_per_hpage = pages_per_huge_page(h); 1084 resv_map->css = &h_cg->css; 1085 } 1086 #endif 1087 } 1088 1089 struct resv_map *resv_map_alloc(void) 1090 { 1091 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1092 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1093 1094 if (!resv_map || !rg) { 1095 kfree(resv_map); 1096 kfree(rg); 1097 return NULL; 1098 } 1099 1100 kref_init(&resv_map->refs); 1101 spin_lock_init(&resv_map->lock); 1102 INIT_LIST_HEAD(&resv_map->regions); 1103 init_rwsem(&resv_map->rw_sema); 1104 1105 resv_map->adds_in_progress = 0; 1106 /* 1107 * Initialize these to 0. On shared mappings, 0's here indicate these 1108 * fields don't do cgroup accounting. On private mappings, these will be 1109 * re-initialized to the proper values, to indicate that hugetlb cgroup 1110 * reservations are to be un-charged from here. 1111 */ 1112 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1113 1114 INIT_LIST_HEAD(&resv_map->region_cache); 1115 list_add(&rg->link, &resv_map->region_cache); 1116 resv_map->region_cache_count = 1; 1117 1118 return resv_map; 1119 } 1120 1121 void resv_map_release(struct kref *ref) 1122 { 1123 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1124 struct list_head *head = &resv_map->region_cache; 1125 struct file_region *rg, *trg; 1126 1127 /* Clear out any active regions before we release the map. */ 1128 region_del(resv_map, 0, LONG_MAX); 1129 1130 /* ... and any entries left in the cache */ 1131 list_for_each_entry_safe(rg, trg, head, link) { 1132 list_del(&rg->link); 1133 kfree(rg); 1134 } 1135 1136 VM_BUG_ON(resv_map->adds_in_progress); 1137 1138 kfree(resv_map); 1139 } 1140 1141 static inline struct resv_map *inode_resv_map(struct inode *inode) 1142 { 1143 /* 1144 * At inode evict time, i_mapping may not point to the original 1145 * address space within the inode. This original address space 1146 * contains the pointer to the resv_map. So, always use the 1147 * address space embedded within the inode. 1148 * The VERY common case is inode->mapping == &inode->i_data but, 1149 * this may not be true for device special inodes. 1150 */ 1151 return (struct resv_map *)(&inode->i_data)->private_data; 1152 } 1153 1154 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1155 { 1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1157 if (vma->vm_flags & VM_MAYSHARE) { 1158 struct address_space *mapping = vma->vm_file->f_mapping; 1159 struct inode *inode = mapping->host; 1160 1161 return inode_resv_map(inode); 1162 1163 } else { 1164 return (struct resv_map *)(get_vma_private_data(vma) & 1165 ~HPAGE_RESV_MASK); 1166 } 1167 } 1168 1169 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1170 { 1171 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1172 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1173 1174 set_vma_private_data(vma, (unsigned long)map); 1175 } 1176 1177 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1178 { 1179 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1180 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1181 1182 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1183 } 1184 1185 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1186 { 1187 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1188 1189 return (get_vma_private_data(vma) & flag) != 0; 1190 } 1191 1192 bool __vma_private_lock(struct vm_area_struct *vma) 1193 { 1194 return !(vma->vm_flags & VM_MAYSHARE) && 1195 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1196 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1197 } 1198 1199 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1200 { 1201 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1202 /* 1203 * Clear vm_private_data 1204 * - For shared mappings this is a per-vma semaphore that may be 1205 * allocated in a subsequent call to hugetlb_vm_op_open. 1206 * Before clearing, make sure pointer is not associated with vma 1207 * as this will leak the structure. This is the case when called 1208 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1209 * been called to allocate a new structure. 1210 * - For MAP_PRIVATE mappings, this is the reserve map which does 1211 * not apply to children. Faults generated by the children are 1212 * not guaranteed to succeed, even if read-only. 1213 */ 1214 if (vma->vm_flags & VM_MAYSHARE) { 1215 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1216 1217 if (vma_lock && vma_lock->vma != vma) 1218 vma->vm_private_data = NULL; 1219 } else 1220 vma->vm_private_data = NULL; 1221 } 1222 1223 /* 1224 * Reset and decrement one ref on hugepage private reservation. 1225 * Called with mm->mmap_lock writer semaphore held. 1226 * This function should be only used by move_vma() and operate on 1227 * same sized vma. It should never come here with last ref on the 1228 * reservation. 1229 */ 1230 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1231 { 1232 /* 1233 * Clear the old hugetlb private page reservation. 1234 * It has already been transferred to new_vma. 1235 * 1236 * During a mremap() operation of a hugetlb vma we call move_vma() 1237 * which copies vma into new_vma and unmaps vma. After the copy 1238 * operation both new_vma and vma share a reference to the resv_map 1239 * struct, and at that point vma is about to be unmapped. We don't 1240 * want to return the reservation to the pool at unmap of vma because 1241 * the reservation still lives on in new_vma, so simply decrement the 1242 * ref here and remove the resv_map reference from this vma. 1243 */ 1244 struct resv_map *reservations = vma_resv_map(vma); 1245 1246 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1247 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1248 kref_put(&reservations->refs, resv_map_release); 1249 } 1250 1251 hugetlb_dup_vma_private(vma); 1252 } 1253 1254 /* Returns true if the VMA has associated reserve pages */ 1255 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1256 { 1257 if (vma->vm_flags & VM_NORESERVE) { 1258 /* 1259 * This address is already reserved by other process(chg == 0), 1260 * so, we should decrement reserved count. Without decrementing, 1261 * reserve count remains after releasing inode, because this 1262 * allocated page will go into page cache and is regarded as 1263 * coming from reserved pool in releasing step. Currently, we 1264 * don't have any other solution to deal with this situation 1265 * properly, so add work-around here. 1266 */ 1267 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1268 return true; 1269 else 1270 return false; 1271 } 1272 1273 /* Shared mappings always use reserves */ 1274 if (vma->vm_flags & VM_MAYSHARE) { 1275 /* 1276 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1277 * be a region map for all pages. The only situation where 1278 * there is no region map is if a hole was punched via 1279 * fallocate. In this case, there really are no reserves to 1280 * use. This situation is indicated if chg != 0. 1281 */ 1282 if (chg) 1283 return false; 1284 else 1285 return true; 1286 } 1287 1288 /* 1289 * Only the process that called mmap() has reserves for 1290 * private mappings. 1291 */ 1292 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1293 /* 1294 * Like the shared case above, a hole punch or truncate 1295 * could have been performed on the private mapping. 1296 * Examine the value of chg to determine if reserves 1297 * actually exist or were previously consumed. 1298 * Very Subtle - The value of chg comes from a previous 1299 * call to vma_needs_reserves(). The reserve map for 1300 * private mappings has different (opposite) semantics 1301 * than that of shared mappings. vma_needs_reserves() 1302 * has already taken this difference in semantics into 1303 * account. Therefore, the meaning of chg is the same 1304 * as in the shared case above. Code could easily be 1305 * combined, but keeping it separate draws attention to 1306 * subtle differences. 1307 */ 1308 if (chg) 1309 return false; 1310 else 1311 return true; 1312 } 1313 1314 return false; 1315 } 1316 1317 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1318 { 1319 int nid = folio_nid(folio); 1320 1321 lockdep_assert_held(&hugetlb_lock); 1322 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1323 1324 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1325 h->free_huge_pages++; 1326 h->free_huge_pages_node[nid]++; 1327 folio_set_hugetlb_freed(folio); 1328 } 1329 1330 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1331 int nid) 1332 { 1333 struct folio *folio; 1334 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1335 1336 lockdep_assert_held(&hugetlb_lock); 1337 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1338 if (pin && !folio_is_longterm_pinnable(folio)) 1339 continue; 1340 1341 if (folio_test_hwpoison(folio)) 1342 continue; 1343 1344 list_move(&folio->lru, &h->hugepage_activelist); 1345 folio_ref_unfreeze(folio, 1); 1346 folio_clear_hugetlb_freed(folio); 1347 h->free_huge_pages--; 1348 h->free_huge_pages_node[nid]--; 1349 return folio; 1350 } 1351 1352 return NULL; 1353 } 1354 1355 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1356 int nid, nodemask_t *nmask) 1357 { 1358 unsigned int cpuset_mems_cookie; 1359 struct zonelist *zonelist; 1360 struct zone *zone; 1361 struct zoneref *z; 1362 int node = NUMA_NO_NODE; 1363 1364 zonelist = node_zonelist(nid, gfp_mask); 1365 1366 retry_cpuset: 1367 cpuset_mems_cookie = read_mems_allowed_begin(); 1368 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1369 struct folio *folio; 1370 1371 if (!cpuset_zone_allowed(zone, gfp_mask)) 1372 continue; 1373 /* 1374 * no need to ask again on the same node. Pool is node rather than 1375 * zone aware 1376 */ 1377 if (zone_to_nid(zone) == node) 1378 continue; 1379 node = zone_to_nid(zone); 1380 1381 folio = dequeue_hugetlb_folio_node_exact(h, node); 1382 if (folio) 1383 return folio; 1384 } 1385 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1386 goto retry_cpuset; 1387 1388 return NULL; 1389 } 1390 1391 static unsigned long available_huge_pages(struct hstate *h) 1392 { 1393 return h->free_huge_pages - h->resv_huge_pages; 1394 } 1395 1396 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1397 struct vm_area_struct *vma, 1398 unsigned long address, int avoid_reserve, 1399 long chg) 1400 { 1401 struct folio *folio = NULL; 1402 struct mempolicy *mpol; 1403 gfp_t gfp_mask; 1404 nodemask_t *nodemask; 1405 int nid; 1406 1407 /* 1408 * A child process with MAP_PRIVATE mappings created by their parent 1409 * have no page reserves. This check ensures that reservations are 1410 * not "stolen". The child may still get SIGKILLed 1411 */ 1412 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1413 goto err; 1414 1415 /* If reserves cannot be used, ensure enough pages are in the pool */ 1416 if (avoid_reserve && !available_huge_pages(h)) 1417 goto err; 1418 1419 gfp_mask = htlb_alloc_mask(h); 1420 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1421 1422 if (mpol_is_preferred_many(mpol)) { 1423 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1424 nid, nodemask); 1425 1426 /* Fallback to all nodes if page==NULL */ 1427 nodemask = NULL; 1428 } 1429 1430 if (!folio) 1431 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1432 nid, nodemask); 1433 1434 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1435 folio_set_hugetlb_restore_reserve(folio); 1436 h->resv_huge_pages--; 1437 } 1438 1439 mpol_cond_put(mpol); 1440 return folio; 1441 1442 err: 1443 return NULL; 1444 } 1445 1446 /* 1447 * common helper functions for hstate_next_node_to_{alloc|free}. 1448 * We may have allocated or freed a huge page based on a different 1449 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1450 * be outside of *nodes_allowed. Ensure that we use an allowed 1451 * node for alloc or free. 1452 */ 1453 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1454 { 1455 nid = next_node_in(nid, *nodes_allowed); 1456 VM_BUG_ON(nid >= MAX_NUMNODES); 1457 1458 return nid; 1459 } 1460 1461 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1462 { 1463 if (!node_isset(nid, *nodes_allowed)) 1464 nid = next_node_allowed(nid, nodes_allowed); 1465 return nid; 1466 } 1467 1468 /* 1469 * returns the previously saved node ["this node"] from which to 1470 * allocate a persistent huge page for the pool and advance the 1471 * next node from which to allocate, handling wrap at end of node 1472 * mask. 1473 */ 1474 static int hstate_next_node_to_alloc(struct hstate *h, 1475 nodemask_t *nodes_allowed) 1476 { 1477 int nid; 1478 1479 VM_BUG_ON(!nodes_allowed); 1480 1481 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1482 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1483 1484 return nid; 1485 } 1486 1487 /* 1488 * helper for remove_pool_huge_page() - return the previously saved 1489 * node ["this node"] from which to free a huge page. Advance the 1490 * next node id whether or not we find a free huge page to free so 1491 * that the next attempt to free addresses the next node. 1492 */ 1493 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1494 { 1495 int nid; 1496 1497 VM_BUG_ON(!nodes_allowed); 1498 1499 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1500 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1501 1502 return nid; 1503 } 1504 1505 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1506 for (nr_nodes = nodes_weight(*mask); \ 1507 nr_nodes > 0 && \ 1508 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1509 nr_nodes--) 1510 1511 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1512 for (nr_nodes = nodes_weight(*mask); \ 1513 nr_nodes > 0 && \ 1514 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1515 nr_nodes--) 1516 1517 /* used to demote non-gigantic_huge pages as well */ 1518 static void __destroy_compound_gigantic_folio(struct folio *folio, 1519 unsigned int order, bool demote) 1520 { 1521 int i; 1522 int nr_pages = 1 << order; 1523 struct page *p; 1524 1525 atomic_set(&folio->_entire_mapcount, 0); 1526 atomic_set(&folio->_nr_pages_mapped, 0); 1527 atomic_set(&folio->_pincount, 0); 1528 1529 for (i = 1; i < nr_pages; i++) { 1530 p = folio_page(folio, i); 1531 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE; 1532 p->mapping = NULL; 1533 clear_compound_head(p); 1534 if (!demote) 1535 set_page_refcounted(p); 1536 } 1537 1538 __folio_clear_head(folio); 1539 } 1540 1541 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1542 unsigned int order) 1543 { 1544 __destroy_compound_gigantic_folio(folio, order, true); 1545 } 1546 1547 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1548 static void destroy_compound_gigantic_folio(struct folio *folio, 1549 unsigned int order) 1550 { 1551 __destroy_compound_gigantic_folio(folio, order, false); 1552 } 1553 1554 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1555 { 1556 /* 1557 * If the page isn't allocated using the cma allocator, 1558 * cma_release() returns false. 1559 */ 1560 #ifdef CONFIG_CMA 1561 int nid = folio_nid(folio); 1562 1563 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1564 return; 1565 #endif 1566 1567 free_contig_range(folio_pfn(folio), 1 << order); 1568 } 1569 1570 #ifdef CONFIG_CONTIG_ALLOC 1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1572 int nid, nodemask_t *nodemask) 1573 { 1574 struct page *page; 1575 unsigned long nr_pages = pages_per_huge_page(h); 1576 if (nid == NUMA_NO_NODE) 1577 nid = numa_mem_id(); 1578 1579 #ifdef CONFIG_CMA 1580 { 1581 int node; 1582 1583 if (hugetlb_cma[nid]) { 1584 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1585 huge_page_order(h), true); 1586 if (page) 1587 return page_folio(page); 1588 } 1589 1590 if (!(gfp_mask & __GFP_THISNODE)) { 1591 for_each_node_mask(node, *nodemask) { 1592 if (node == nid || !hugetlb_cma[node]) 1593 continue; 1594 1595 page = cma_alloc(hugetlb_cma[node], nr_pages, 1596 huge_page_order(h), true); 1597 if (page) 1598 return page_folio(page); 1599 } 1600 } 1601 } 1602 #endif 1603 1604 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1605 return page ? page_folio(page) : NULL; 1606 } 1607 1608 #else /* !CONFIG_CONTIG_ALLOC */ 1609 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1610 int nid, nodemask_t *nodemask) 1611 { 1612 return NULL; 1613 } 1614 #endif /* CONFIG_CONTIG_ALLOC */ 1615 1616 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1617 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1618 int nid, nodemask_t *nodemask) 1619 { 1620 return NULL; 1621 } 1622 static inline void free_gigantic_folio(struct folio *folio, 1623 unsigned int order) { } 1624 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1625 unsigned int order) { } 1626 #endif 1627 1628 static inline void __clear_hugetlb_destructor(struct hstate *h, 1629 struct folio *folio) 1630 { 1631 lockdep_assert_held(&hugetlb_lock); 1632 1633 __folio_clear_hugetlb(folio); 1634 } 1635 1636 /* 1637 * Remove hugetlb folio from lists. 1638 * If vmemmap exists for the folio, update dtor so that the folio appears 1639 * as just a compound page. Otherwise, wait until after allocating vmemmap 1640 * to update dtor. 1641 * 1642 * A reference is held on the folio, except in the case of demote. 1643 * 1644 * Must be called with hugetlb lock held. 1645 */ 1646 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1647 bool adjust_surplus, 1648 bool demote) 1649 { 1650 int nid = folio_nid(folio); 1651 1652 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1653 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1654 1655 lockdep_assert_held(&hugetlb_lock); 1656 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1657 return; 1658 1659 list_del(&folio->lru); 1660 1661 if (folio_test_hugetlb_freed(folio)) { 1662 h->free_huge_pages--; 1663 h->free_huge_pages_node[nid]--; 1664 } 1665 if (adjust_surplus) { 1666 h->surplus_huge_pages--; 1667 h->surplus_huge_pages_node[nid]--; 1668 } 1669 1670 /* 1671 * We can only clear the hugetlb destructor after allocating vmemmap 1672 * pages. Otherwise, someone (memory error handling) may try to write 1673 * to tail struct pages. 1674 */ 1675 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1676 __clear_hugetlb_destructor(h, folio); 1677 1678 /* 1679 * In the case of demote we do not ref count the page as it will soon 1680 * be turned into a page of smaller size. 1681 */ 1682 if (!demote) 1683 folio_ref_unfreeze(folio, 1); 1684 1685 h->nr_huge_pages--; 1686 h->nr_huge_pages_node[nid]--; 1687 } 1688 1689 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1690 bool adjust_surplus) 1691 { 1692 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1693 } 1694 1695 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1696 bool adjust_surplus) 1697 { 1698 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1699 } 1700 1701 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1702 bool adjust_surplus) 1703 { 1704 int zeroed; 1705 int nid = folio_nid(folio); 1706 1707 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1708 1709 lockdep_assert_held(&hugetlb_lock); 1710 1711 INIT_LIST_HEAD(&folio->lru); 1712 h->nr_huge_pages++; 1713 h->nr_huge_pages_node[nid]++; 1714 1715 if (adjust_surplus) { 1716 h->surplus_huge_pages++; 1717 h->surplus_huge_pages_node[nid]++; 1718 } 1719 1720 __folio_set_hugetlb(folio); 1721 folio_change_private(folio, NULL); 1722 /* 1723 * We have to set hugetlb_vmemmap_optimized again as above 1724 * folio_change_private(folio, NULL) cleared it. 1725 */ 1726 folio_set_hugetlb_vmemmap_optimized(folio); 1727 1728 /* 1729 * This folio is about to be managed by the hugetlb allocator and 1730 * should have no users. Drop our reference, and check for others 1731 * just in case. 1732 */ 1733 zeroed = folio_put_testzero(folio); 1734 if (unlikely(!zeroed)) 1735 /* 1736 * It is VERY unlikely soneone else has taken a ref 1737 * on the folio. In this case, we simply return as 1738 * free_huge_folio() will be called when this other ref 1739 * is dropped. 1740 */ 1741 return; 1742 1743 arch_clear_hugepage_flags(&folio->page); 1744 enqueue_hugetlb_folio(h, folio); 1745 } 1746 1747 static void __update_and_free_hugetlb_folio(struct hstate *h, 1748 struct folio *folio) 1749 { 1750 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio); 1751 1752 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1753 return; 1754 1755 /* 1756 * If we don't know which subpages are hwpoisoned, we can't free 1757 * the hugepage, so it's leaked intentionally. 1758 */ 1759 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1760 return; 1761 1762 if (hugetlb_vmemmap_restore(h, &folio->page)) { 1763 spin_lock_irq(&hugetlb_lock); 1764 /* 1765 * If we cannot allocate vmemmap pages, just refuse to free the 1766 * page and put the page back on the hugetlb free list and treat 1767 * as a surplus page. 1768 */ 1769 add_hugetlb_folio(h, folio, true); 1770 spin_unlock_irq(&hugetlb_lock); 1771 return; 1772 } 1773 1774 /* 1775 * Move PageHWPoison flag from head page to the raw error pages, 1776 * which makes any healthy subpages reusable. 1777 */ 1778 if (unlikely(folio_test_hwpoison(folio))) 1779 folio_clear_hugetlb_hwpoison(folio); 1780 1781 /* 1782 * If vmemmap pages were allocated above, then we need to clear the 1783 * hugetlb destructor under the hugetlb lock. 1784 */ 1785 if (clear_dtor) { 1786 spin_lock_irq(&hugetlb_lock); 1787 __clear_hugetlb_destructor(h, folio); 1788 spin_unlock_irq(&hugetlb_lock); 1789 } 1790 1791 /* 1792 * Non-gigantic pages demoted from CMA allocated gigantic pages 1793 * need to be given back to CMA in free_gigantic_folio. 1794 */ 1795 if (hstate_is_gigantic(h) || 1796 hugetlb_cma_folio(folio, huge_page_order(h))) { 1797 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1798 free_gigantic_folio(folio, huge_page_order(h)); 1799 } else { 1800 __free_pages(&folio->page, huge_page_order(h)); 1801 } 1802 } 1803 1804 /* 1805 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1806 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1807 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1808 * the vmemmap pages. 1809 * 1810 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1811 * freed and frees them one-by-one. As the page->mapping pointer is going 1812 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1813 * structure of a lockless linked list of huge pages to be freed. 1814 */ 1815 static LLIST_HEAD(hpage_freelist); 1816 1817 static void free_hpage_workfn(struct work_struct *work) 1818 { 1819 struct llist_node *node; 1820 1821 node = llist_del_all(&hpage_freelist); 1822 1823 while (node) { 1824 struct page *page; 1825 struct hstate *h; 1826 1827 page = container_of((struct address_space **)node, 1828 struct page, mapping); 1829 node = node->next; 1830 page->mapping = NULL; 1831 /* 1832 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1833 * folio_hstate() is going to trigger because a previous call to 1834 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1835 * not use folio_hstate() directly. 1836 */ 1837 h = size_to_hstate(page_size(page)); 1838 1839 __update_and_free_hugetlb_folio(h, page_folio(page)); 1840 1841 cond_resched(); 1842 } 1843 } 1844 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1845 1846 static inline void flush_free_hpage_work(struct hstate *h) 1847 { 1848 if (hugetlb_vmemmap_optimizable(h)) 1849 flush_work(&free_hpage_work); 1850 } 1851 1852 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1853 bool atomic) 1854 { 1855 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1856 __update_and_free_hugetlb_folio(h, folio); 1857 return; 1858 } 1859 1860 /* 1861 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1862 * 1863 * Only call schedule_work() if hpage_freelist is previously 1864 * empty. Otherwise, schedule_work() had been called but the workfn 1865 * hasn't retrieved the list yet. 1866 */ 1867 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1868 schedule_work(&free_hpage_work); 1869 } 1870 1871 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1872 { 1873 struct page *page, *t_page; 1874 struct folio *folio; 1875 1876 list_for_each_entry_safe(page, t_page, list, lru) { 1877 folio = page_folio(page); 1878 update_and_free_hugetlb_folio(h, folio, false); 1879 cond_resched(); 1880 } 1881 } 1882 1883 struct hstate *size_to_hstate(unsigned long size) 1884 { 1885 struct hstate *h; 1886 1887 for_each_hstate(h) { 1888 if (huge_page_size(h) == size) 1889 return h; 1890 } 1891 return NULL; 1892 } 1893 1894 void free_huge_folio(struct folio *folio) 1895 { 1896 /* 1897 * Can't pass hstate in here because it is called from the 1898 * compound page destructor. 1899 */ 1900 struct hstate *h = folio_hstate(folio); 1901 int nid = folio_nid(folio); 1902 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1903 bool restore_reserve; 1904 unsigned long flags; 1905 1906 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1907 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1908 1909 hugetlb_set_folio_subpool(folio, NULL); 1910 if (folio_test_anon(folio)) 1911 __ClearPageAnonExclusive(&folio->page); 1912 folio->mapping = NULL; 1913 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1914 folio_clear_hugetlb_restore_reserve(folio); 1915 1916 /* 1917 * If HPageRestoreReserve was set on page, page allocation consumed a 1918 * reservation. If the page was associated with a subpool, there 1919 * would have been a page reserved in the subpool before allocation 1920 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1921 * reservation, do not call hugepage_subpool_put_pages() as this will 1922 * remove the reserved page from the subpool. 1923 */ 1924 if (!restore_reserve) { 1925 /* 1926 * A return code of zero implies that the subpool will be 1927 * under its minimum size if the reservation is not restored 1928 * after page is free. Therefore, force restore_reserve 1929 * operation. 1930 */ 1931 if (hugepage_subpool_put_pages(spool, 1) == 0) 1932 restore_reserve = true; 1933 } 1934 1935 spin_lock_irqsave(&hugetlb_lock, flags); 1936 folio_clear_hugetlb_migratable(folio); 1937 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1938 pages_per_huge_page(h), folio); 1939 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1940 pages_per_huge_page(h), folio); 1941 if (restore_reserve) 1942 h->resv_huge_pages++; 1943 1944 if (folio_test_hugetlb_temporary(folio)) { 1945 remove_hugetlb_folio(h, folio, false); 1946 spin_unlock_irqrestore(&hugetlb_lock, flags); 1947 update_and_free_hugetlb_folio(h, folio, true); 1948 } else if (h->surplus_huge_pages_node[nid]) { 1949 /* remove the page from active list */ 1950 remove_hugetlb_folio(h, folio, true); 1951 spin_unlock_irqrestore(&hugetlb_lock, flags); 1952 update_and_free_hugetlb_folio(h, folio, true); 1953 } else { 1954 arch_clear_hugepage_flags(&folio->page); 1955 enqueue_hugetlb_folio(h, folio); 1956 spin_unlock_irqrestore(&hugetlb_lock, flags); 1957 } 1958 } 1959 1960 /* 1961 * Must be called with the hugetlb lock held 1962 */ 1963 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1964 { 1965 lockdep_assert_held(&hugetlb_lock); 1966 h->nr_huge_pages++; 1967 h->nr_huge_pages_node[nid]++; 1968 } 1969 1970 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1971 { 1972 hugetlb_vmemmap_optimize(h, &folio->page); 1973 INIT_LIST_HEAD(&folio->lru); 1974 __folio_set_hugetlb(folio); 1975 hugetlb_set_folio_subpool(folio, NULL); 1976 set_hugetlb_cgroup(folio, NULL); 1977 set_hugetlb_cgroup_rsvd(folio, NULL); 1978 } 1979 1980 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1981 { 1982 __prep_new_hugetlb_folio(h, folio); 1983 spin_lock_irq(&hugetlb_lock); 1984 __prep_account_new_huge_page(h, nid); 1985 spin_unlock_irq(&hugetlb_lock); 1986 } 1987 1988 static bool __prep_compound_gigantic_folio(struct folio *folio, 1989 unsigned int order, bool demote) 1990 { 1991 int i, j; 1992 int nr_pages = 1 << order; 1993 struct page *p; 1994 1995 __folio_clear_reserved(folio); 1996 for (i = 0; i < nr_pages; i++) { 1997 p = folio_page(folio, i); 1998 1999 /* 2000 * For gigantic hugepages allocated through bootmem at 2001 * boot, it's safer to be consistent with the not-gigantic 2002 * hugepages and clear the PG_reserved bit from all tail pages 2003 * too. Otherwise drivers using get_user_pages() to access tail 2004 * pages may get the reference counting wrong if they see 2005 * PG_reserved set on a tail page (despite the head page not 2006 * having PG_reserved set). Enforcing this consistency between 2007 * head and tail pages allows drivers to optimize away a check 2008 * on the head page when they need know if put_page() is needed 2009 * after get_user_pages(). 2010 */ 2011 if (i != 0) /* head page cleared above */ 2012 __ClearPageReserved(p); 2013 /* 2014 * Subtle and very unlikely 2015 * 2016 * Gigantic 'page allocators' such as memblock or cma will 2017 * return a set of pages with each page ref counted. We need 2018 * to turn this set of pages into a compound page with tail 2019 * page ref counts set to zero. Code such as speculative page 2020 * cache adding could take a ref on a 'to be' tail page. 2021 * We need to respect any increased ref count, and only set 2022 * the ref count to zero if count is currently 1. If count 2023 * is not 1, we return an error. An error return indicates 2024 * the set of pages can not be converted to a gigantic page. 2025 * The caller who allocated the pages should then discard the 2026 * pages using the appropriate free interface. 2027 * 2028 * In the case of demote, the ref count will be zero. 2029 */ 2030 if (!demote) { 2031 if (!page_ref_freeze(p, 1)) { 2032 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 2033 goto out_error; 2034 } 2035 } else { 2036 VM_BUG_ON_PAGE(page_count(p), p); 2037 } 2038 if (i != 0) 2039 set_compound_head(p, &folio->page); 2040 } 2041 __folio_set_head(folio); 2042 /* we rely on prep_new_hugetlb_folio to set the destructor */ 2043 folio_set_order(folio, order); 2044 atomic_set(&folio->_entire_mapcount, -1); 2045 atomic_set(&folio->_nr_pages_mapped, 0); 2046 atomic_set(&folio->_pincount, 0); 2047 return true; 2048 2049 out_error: 2050 /* undo page modifications made above */ 2051 for (j = 0; j < i; j++) { 2052 p = folio_page(folio, j); 2053 if (j != 0) 2054 clear_compound_head(p); 2055 set_page_refcounted(p); 2056 } 2057 /* need to clear PG_reserved on remaining tail pages */ 2058 for (; j < nr_pages; j++) { 2059 p = folio_page(folio, j); 2060 __ClearPageReserved(p); 2061 } 2062 return false; 2063 } 2064 2065 static bool prep_compound_gigantic_folio(struct folio *folio, 2066 unsigned int order) 2067 { 2068 return __prep_compound_gigantic_folio(folio, order, false); 2069 } 2070 2071 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2072 unsigned int order) 2073 { 2074 return __prep_compound_gigantic_folio(folio, order, true); 2075 } 2076 2077 /* 2078 * Find and lock address space (mapping) in write mode. 2079 * 2080 * Upon entry, the page is locked which means that page_mapping() is 2081 * stable. Due to locking order, we can only trylock_write. If we can 2082 * not get the lock, simply return NULL to caller. 2083 */ 2084 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 2085 { 2086 struct address_space *mapping = page_mapping(hpage); 2087 2088 if (!mapping) 2089 return mapping; 2090 2091 if (i_mmap_trylock_write(mapping)) 2092 return mapping; 2093 2094 return NULL; 2095 } 2096 2097 pgoff_t hugetlb_basepage_index(struct page *page) 2098 { 2099 struct page *page_head = compound_head(page); 2100 pgoff_t index = page_index(page_head); 2101 unsigned long compound_idx; 2102 2103 if (compound_order(page_head) > MAX_ORDER) 2104 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 2105 else 2106 compound_idx = page - page_head; 2107 2108 return (index << compound_order(page_head)) + compound_idx; 2109 } 2110 2111 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2112 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2113 nodemask_t *node_alloc_noretry) 2114 { 2115 int order = huge_page_order(h); 2116 struct page *page; 2117 bool alloc_try_hard = true; 2118 bool retry = true; 2119 2120 /* 2121 * By default we always try hard to allocate the page with 2122 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 2123 * a loop (to adjust global huge page counts) and previous allocation 2124 * failed, do not continue to try hard on the same node. Use the 2125 * node_alloc_noretry bitmap to manage this state information. 2126 */ 2127 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2128 alloc_try_hard = false; 2129 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2130 if (alloc_try_hard) 2131 gfp_mask |= __GFP_RETRY_MAYFAIL; 2132 if (nid == NUMA_NO_NODE) 2133 nid = numa_mem_id(); 2134 retry: 2135 page = __alloc_pages(gfp_mask, order, nid, nmask); 2136 2137 /* Freeze head page */ 2138 if (page && !page_ref_freeze(page, 1)) { 2139 __free_pages(page, order); 2140 if (retry) { /* retry once */ 2141 retry = false; 2142 goto retry; 2143 } 2144 /* WOW! twice in a row. */ 2145 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 2146 page = NULL; 2147 } 2148 2149 /* 2150 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 2151 * indicates an overall state change. Clear bit so that we resume 2152 * normal 'try hard' allocations. 2153 */ 2154 if (node_alloc_noretry && page && !alloc_try_hard) 2155 node_clear(nid, *node_alloc_noretry); 2156 2157 /* 2158 * If we tried hard to get a page but failed, set bit so that 2159 * subsequent attempts will not try as hard until there is an 2160 * overall state change. 2161 */ 2162 if (node_alloc_noretry && !page && alloc_try_hard) 2163 node_set(nid, *node_alloc_noretry); 2164 2165 if (!page) { 2166 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2167 return NULL; 2168 } 2169 2170 __count_vm_event(HTLB_BUDDY_PGALLOC); 2171 return page_folio(page); 2172 } 2173 2174 /* 2175 * Common helper to allocate a fresh hugetlb page. All specific allocators 2176 * should use this function to get new hugetlb pages 2177 * 2178 * Note that returned page is 'frozen': ref count of head page and all tail 2179 * pages is zero. 2180 */ 2181 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2182 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2183 nodemask_t *node_alloc_noretry) 2184 { 2185 struct folio *folio; 2186 bool retry = false; 2187 2188 retry: 2189 if (hstate_is_gigantic(h)) 2190 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2191 else 2192 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2193 nid, nmask, node_alloc_noretry); 2194 if (!folio) 2195 return NULL; 2196 if (hstate_is_gigantic(h)) { 2197 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2198 /* 2199 * Rare failure to convert pages to compound page. 2200 * Free pages and try again - ONCE! 2201 */ 2202 free_gigantic_folio(folio, huge_page_order(h)); 2203 if (!retry) { 2204 retry = true; 2205 goto retry; 2206 } 2207 return NULL; 2208 } 2209 } 2210 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2211 2212 return folio; 2213 } 2214 2215 /* 2216 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2217 * manner. 2218 */ 2219 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2220 nodemask_t *node_alloc_noretry) 2221 { 2222 struct folio *folio; 2223 int nr_nodes, node; 2224 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2225 2226 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2227 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2228 nodes_allowed, node_alloc_noretry); 2229 if (folio) { 2230 free_huge_folio(folio); /* free it into the hugepage allocator */ 2231 return 1; 2232 } 2233 } 2234 2235 return 0; 2236 } 2237 2238 /* 2239 * Remove huge page from pool from next node to free. Attempt to keep 2240 * persistent huge pages more or less balanced over allowed nodes. 2241 * This routine only 'removes' the hugetlb page. The caller must make 2242 * an additional call to free the page to low level allocators. 2243 * Called with hugetlb_lock locked. 2244 */ 2245 static struct page *remove_pool_huge_page(struct hstate *h, 2246 nodemask_t *nodes_allowed, 2247 bool acct_surplus) 2248 { 2249 int nr_nodes, node; 2250 struct page *page = NULL; 2251 struct folio *folio; 2252 2253 lockdep_assert_held(&hugetlb_lock); 2254 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2255 /* 2256 * If we're returning unused surplus pages, only examine 2257 * nodes with surplus pages. 2258 */ 2259 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2260 !list_empty(&h->hugepage_freelists[node])) { 2261 page = list_entry(h->hugepage_freelists[node].next, 2262 struct page, lru); 2263 folio = page_folio(page); 2264 remove_hugetlb_folio(h, folio, acct_surplus); 2265 break; 2266 } 2267 } 2268 2269 return page; 2270 } 2271 2272 /* 2273 * Dissolve a given free hugepage into free buddy pages. This function does 2274 * nothing for in-use hugepages and non-hugepages. 2275 * This function returns values like below: 2276 * 2277 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2278 * when the system is under memory pressure and the feature of 2279 * freeing unused vmemmap pages associated with each hugetlb page 2280 * is enabled. 2281 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2282 * (allocated or reserved.) 2283 * 0: successfully dissolved free hugepages or the page is not a 2284 * hugepage (considered as already dissolved) 2285 */ 2286 int dissolve_free_huge_page(struct page *page) 2287 { 2288 int rc = -EBUSY; 2289 struct folio *folio = page_folio(page); 2290 2291 retry: 2292 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2293 if (!folio_test_hugetlb(folio)) 2294 return 0; 2295 2296 spin_lock_irq(&hugetlb_lock); 2297 if (!folio_test_hugetlb(folio)) { 2298 rc = 0; 2299 goto out; 2300 } 2301 2302 if (!folio_ref_count(folio)) { 2303 struct hstate *h = folio_hstate(folio); 2304 if (!available_huge_pages(h)) 2305 goto out; 2306 2307 /* 2308 * We should make sure that the page is already on the free list 2309 * when it is dissolved. 2310 */ 2311 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2312 spin_unlock_irq(&hugetlb_lock); 2313 cond_resched(); 2314 2315 /* 2316 * Theoretically, we should return -EBUSY when we 2317 * encounter this race. In fact, we have a chance 2318 * to successfully dissolve the page if we do a 2319 * retry. Because the race window is quite small. 2320 * If we seize this opportunity, it is an optimization 2321 * for increasing the success rate of dissolving page. 2322 */ 2323 goto retry; 2324 } 2325 2326 remove_hugetlb_folio(h, folio, false); 2327 h->max_huge_pages--; 2328 spin_unlock_irq(&hugetlb_lock); 2329 2330 /* 2331 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2332 * before freeing the page. update_and_free_hugtlb_folio will fail to 2333 * free the page if it can not allocate required vmemmap. We 2334 * need to adjust max_huge_pages if the page is not freed. 2335 * Attempt to allocate vmemmmap here so that we can take 2336 * appropriate action on failure. 2337 */ 2338 rc = hugetlb_vmemmap_restore(h, &folio->page); 2339 if (!rc) { 2340 update_and_free_hugetlb_folio(h, folio, false); 2341 } else { 2342 spin_lock_irq(&hugetlb_lock); 2343 add_hugetlb_folio(h, folio, false); 2344 h->max_huge_pages++; 2345 spin_unlock_irq(&hugetlb_lock); 2346 } 2347 2348 return rc; 2349 } 2350 out: 2351 spin_unlock_irq(&hugetlb_lock); 2352 return rc; 2353 } 2354 2355 /* 2356 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2357 * make specified memory blocks removable from the system. 2358 * Note that this will dissolve a free gigantic hugepage completely, if any 2359 * part of it lies within the given range. 2360 * Also note that if dissolve_free_huge_page() returns with an error, all 2361 * free hugepages that were dissolved before that error are lost. 2362 */ 2363 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2364 { 2365 unsigned long pfn; 2366 struct page *page; 2367 int rc = 0; 2368 unsigned int order; 2369 struct hstate *h; 2370 2371 if (!hugepages_supported()) 2372 return rc; 2373 2374 order = huge_page_order(&default_hstate); 2375 for_each_hstate(h) 2376 order = min(order, huge_page_order(h)); 2377 2378 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2379 page = pfn_to_page(pfn); 2380 rc = dissolve_free_huge_page(page); 2381 if (rc) 2382 break; 2383 } 2384 2385 return rc; 2386 } 2387 2388 /* 2389 * Allocates a fresh surplus page from the page allocator. 2390 */ 2391 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2392 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2393 { 2394 struct folio *folio = NULL; 2395 2396 if (hstate_is_gigantic(h)) 2397 return NULL; 2398 2399 spin_lock_irq(&hugetlb_lock); 2400 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2401 goto out_unlock; 2402 spin_unlock_irq(&hugetlb_lock); 2403 2404 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2405 if (!folio) 2406 return NULL; 2407 2408 spin_lock_irq(&hugetlb_lock); 2409 /* 2410 * We could have raced with the pool size change. 2411 * Double check that and simply deallocate the new page 2412 * if we would end up overcommiting the surpluses. Abuse 2413 * temporary page to workaround the nasty free_huge_folio 2414 * codeflow 2415 */ 2416 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2417 folio_set_hugetlb_temporary(folio); 2418 spin_unlock_irq(&hugetlb_lock); 2419 free_huge_folio(folio); 2420 return NULL; 2421 } 2422 2423 h->surplus_huge_pages++; 2424 h->surplus_huge_pages_node[folio_nid(folio)]++; 2425 2426 out_unlock: 2427 spin_unlock_irq(&hugetlb_lock); 2428 2429 return folio; 2430 } 2431 2432 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2433 int nid, nodemask_t *nmask) 2434 { 2435 struct folio *folio; 2436 2437 if (hstate_is_gigantic(h)) 2438 return NULL; 2439 2440 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2441 if (!folio) 2442 return NULL; 2443 2444 /* fresh huge pages are frozen */ 2445 folio_ref_unfreeze(folio, 1); 2446 /* 2447 * We do not account these pages as surplus because they are only 2448 * temporary and will be released properly on the last reference 2449 */ 2450 folio_set_hugetlb_temporary(folio); 2451 2452 return folio; 2453 } 2454 2455 /* 2456 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2457 */ 2458 static 2459 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2460 struct vm_area_struct *vma, unsigned long addr) 2461 { 2462 struct folio *folio = NULL; 2463 struct mempolicy *mpol; 2464 gfp_t gfp_mask = htlb_alloc_mask(h); 2465 int nid; 2466 nodemask_t *nodemask; 2467 2468 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2469 if (mpol_is_preferred_many(mpol)) { 2470 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2471 2472 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2473 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2474 2475 /* Fallback to all nodes if page==NULL */ 2476 nodemask = NULL; 2477 } 2478 2479 if (!folio) 2480 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2481 mpol_cond_put(mpol); 2482 return folio; 2483 } 2484 2485 /* folio migration callback function */ 2486 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2487 nodemask_t *nmask, gfp_t gfp_mask) 2488 { 2489 spin_lock_irq(&hugetlb_lock); 2490 if (available_huge_pages(h)) { 2491 struct folio *folio; 2492 2493 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2494 preferred_nid, nmask); 2495 if (folio) { 2496 spin_unlock_irq(&hugetlb_lock); 2497 return folio; 2498 } 2499 } 2500 spin_unlock_irq(&hugetlb_lock); 2501 2502 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2503 } 2504 2505 /* mempolicy aware migration callback */ 2506 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma, 2507 unsigned long address) 2508 { 2509 struct mempolicy *mpol; 2510 nodemask_t *nodemask; 2511 struct folio *folio; 2512 gfp_t gfp_mask; 2513 int node; 2514 2515 gfp_mask = htlb_alloc_mask(h); 2516 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2517 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask); 2518 mpol_cond_put(mpol); 2519 2520 return folio; 2521 } 2522 2523 /* 2524 * Increase the hugetlb pool such that it can accommodate a reservation 2525 * of size 'delta'. 2526 */ 2527 static int gather_surplus_pages(struct hstate *h, long delta) 2528 __must_hold(&hugetlb_lock) 2529 { 2530 LIST_HEAD(surplus_list); 2531 struct folio *folio, *tmp; 2532 int ret; 2533 long i; 2534 long needed, allocated; 2535 bool alloc_ok = true; 2536 2537 lockdep_assert_held(&hugetlb_lock); 2538 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2539 if (needed <= 0) { 2540 h->resv_huge_pages += delta; 2541 return 0; 2542 } 2543 2544 allocated = 0; 2545 2546 ret = -ENOMEM; 2547 retry: 2548 spin_unlock_irq(&hugetlb_lock); 2549 for (i = 0; i < needed; i++) { 2550 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2551 NUMA_NO_NODE, NULL); 2552 if (!folio) { 2553 alloc_ok = false; 2554 break; 2555 } 2556 list_add(&folio->lru, &surplus_list); 2557 cond_resched(); 2558 } 2559 allocated += i; 2560 2561 /* 2562 * After retaking hugetlb_lock, we need to recalculate 'needed' 2563 * because either resv_huge_pages or free_huge_pages may have changed. 2564 */ 2565 spin_lock_irq(&hugetlb_lock); 2566 needed = (h->resv_huge_pages + delta) - 2567 (h->free_huge_pages + allocated); 2568 if (needed > 0) { 2569 if (alloc_ok) 2570 goto retry; 2571 /* 2572 * We were not able to allocate enough pages to 2573 * satisfy the entire reservation so we free what 2574 * we've allocated so far. 2575 */ 2576 goto free; 2577 } 2578 /* 2579 * The surplus_list now contains _at_least_ the number of extra pages 2580 * needed to accommodate the reservation. Add the appropriate number 2581 * of pages to the hugetlb pool and free the extras back to the buddy 2582 * allocator. Commit the entire reservation here to prevent another 2583 * process from stealing the pages as they are added to the pool but 2584 * before they are reserved. 2585 */ 2586 needed += allocated; 2587 h->resv_huge_pages += delta; 2588 ret = 0; 2589 2590 /* Free the needed pages to the hugetlb pool */ 2591 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2592 if ((--needed) < 0) 2593 break; 2594 /* Add the page to the hugetlb allocator */ 2595 enqueue_hugetlb_folio(h, folio); 2596 } 2597 free: 2598 spin_unlock_irq(&hugetlb_lock); 2599 2600 /* 2601 * Free unnecessary surplus pages to the buddy allocator. 2602 * Pages have no ref count, call free_huge_folio directly. 2603 */ 2604 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2605 free_huge_folio(folio); 2606 spin_lock_irq(&hugetlb_lock); 2607 2608 return ret; 2609 } 2610 2611 /* 2612 * This routine has two main purposes: 2613 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2614 * in unused_resv_pages. This corresponds to the prior adjustments made 2615 * to the associated reservation map. 2616 * 2) Free any unused surplus pages that may have been allocated to satisfy 2617 * the reservation. As many as unused_resv_pages may be freed. 2618 */ 2619 static void return_unused_surplus_pages(struct hstate *h, 2620 unsigned long unused_resv_pages) 2621 { 2622 unsigned long nr_pages; 2623 struct page *page; 2624 LIST_HEAD(page_list); 2625 2626 lockdep_assert_held(&hugetlb_lock); 2627 /* Uncommit the reservation */ 2628 h->resv_huge_pages -= unused_resv_pages; 2629 2630 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2631 goto out; 2632 2633 /* 2634 * Part (or even all) of the reservation could have been backed 2635 * by pre-allocated pages. Only free surplus pages. 2636 */ 2637 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2638 2639 /* 2640 * We want to release as many surplus pages as possible, spread 2641 * evenly across all nodes with memory. Iterate across these nodes 2642 * until we can no longer free unreserved surplus pages. This occurs 2643 * when the nodes with surplus pages have no free pages. 2644 * remove_pool_huge_page() will balance the freed pages across the 2645 * on-line nodes with memory and will handle the hstate accounting. 2646 */ 2647 while (nr_pages--) { 2648 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2649 if (!page) 2650 goto out; 2651 2652 list_add(&page->lru, &page_list); 2653 } 2654 2655 out: 2656 spin_unlock_irq(&hugetlb_lock); 2657 update_and_free_pages_bulk(h, &page_list); 2658 spin_lock_irq(&hugetlb_lock); 2659 } 2660 2661 2662 /* 2663 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2664 * are used by the huge page allocation routines to manage reservations. 2665 * 2666 * vma_needs_reservation is called to determine if the huge page at addr 2667 * within the vma has an associated reservation. If a reservation is 2668 * needed, the value 1 is returned. The caller is then responsible for 2669 * managing the global reservation and subpool usage counts. After 2670 * the huge page has been allocated, vma_commit_reservation is called 2671 * to add the page to the reservation map. If the page allocation fails, 2672 * the reservation must be ended instead of committed. vma_end_reservation 2673 * is called in such cases. 2674 * 2675 * In the normal case, vma_commit_reservation returns the same value 2676 * as the preceding vma_needs_reservation call. The only time this 2677 * is not the case is if a reserve map was changed between calls. It 2678 * is the responsibility of the caller to notice the difference and 2679 * take appropriate action. 2680 * 2681 * vma_add_reservation is used in error paths where a reservation must 2682 * be restored when a newly allocated huge page must be freed. It is 2683 * to be called after calling vma_needs_reservation to determine if a 2684 * reservation exists. 2685 * 2686 * vma_del_reservation is used in error paths where an entry in the reserve 2687 * map was created during huge page allocation and must be removed. It is to 2688 * be called after calling vma_needs_reservation to determine if a reservation 2689 * exists. 2690 */ 2691 enum vma_resv_mode { 2692 VMA_NEEDS_RESV, 2693 VMA_COMMIT_RESV, 2694 VMA_END_RESV, 2695 VMA_ADD_RESV, 2696 VMA_DEL_RESV, 2697 }; 2698 static long __vma_reservation_common(struct hstate *h, 2699 struct vm_area_struct *vma, unsigned long addr, 2700 enum vma_resv_mode mode) 2701 { 2702 struct resv_map *resv; 2703 pgoff_t idx; 2704 long ret; 2705 long dummy_out_regions_needed; 2706 2707 resv = vma_resv_map(vma); 2708 if (!resv) 2709 return 1; 2710 2711 idx = vma_hugecache_offset(h, vma, addr); 2712 switch (mode) { 2713 case VMA_NEEDS_RESV: 2714 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2715 /* We assume that vma_reservation_* routines always operate on 2716 * 1 page, and that adding to resv map a 1 page entry can only 2717 * ever require 1 region. 2718 */ 2719 VM_BUG_ON(dummy_out_regions_needed != 1); 2720 break; 2721 case VMA_COMMIT_RESV: 2722 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2723 /* region_add calls of range 1 should never fail. */ 2724 VM_BUG_ON(ret < 0); 2725 break; 2726 case VMA_END_RESV: 2727 region_abort(resv, idx, idx + 1, 1); 2728 ret = 0; 2729 break; 2730 case VMA_ADD_RESV: 2731 if (vma->vm_flags & VM_MAYSHARE) { 2732 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2733 /* region_add calls of range 1 should never fail. */ 2734 VM_BUG_ON(ret < 0); 2735 } else { 2736 region_abort(resv, idx, idx + 1, 1); 2737 ret = region_del(resv, idx, idx + 1); 2738 } 2739 break; 2740 case VMA_DEL_RESV: 2741 if (vma->vm_flags & VM_MAYSHARE) { 2742 region_abort(resv, idx, idx + 1, 1); 2743 ret = region_del(resv, idx, idx + 1); 2744 } else { 2745 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2746 /* region_add calls of range 1 should never fail. */ 2747 VM_BUG_ON(ret < 0); 2748 } 2749 break; 2750 default: 2751 BUG(); 2752 } 2753 2754 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2755 return ret; 2756 /* 2757 * We know private mapping must have HPAGE_RESV_OWNER set. 2758 * 2759 * In most cases, reserves always exist for private mappings. 2760 * However, a file associated with mapping could have been 2761 * hole punched or truncated after reserves were consumed. 2762 * As subsequent fault on such a range will not use reserves. 2763 * Subtle - The reserve map for private mappings has the 2764 * opposite meaning than that of shared mappings. If NO 2765 * entry is in the reserve map, it means a reservation exists. 2766 * If an entry exists in the reserve map, it means the 2767 * reservation has already been consumed. As a result, the 2768 * return value of this routine is the opposite of the 2769 * value returned from reserve map manipulation routines above. 2770 */ 2771 if (ret > 0) 2772 return 0; 2773 if (ret == 0) 2774 return 1; 2775 return ret; 2776 } 2777 2778 static long vma_needs_reservation(struct hstate *h, 2779 struct vm_area_struct *vma, unsigned long addr) 2780 { 2781 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2782 } 2783 2784 static long vma_commit_reservation(struct hstate *h, 2785 struct vm_area_struct *vma, unsigned long addr) 2786 { 2787 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2788 } 2789 2790 static void vma_end_reservation(struct hstate *h, 2791 struct vm_area_struct *vma, unsigned long addr) 2792 { 2793 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2794 } 2795 2796 static long vma_add_reservation(struct hstate *h, 2797 struct vm_area_struct *vma, unsigned long addr) 2798 { 2799 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2800 } 2801 2802 static long vma_del_reservation(struct hstate *h, 2803 struct vm_area_struct *vma, unsigned long addr) 2804 { 2805 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2806 } 2807 2808 /* 2809 * This routine is called to restore reservation information on error paths. 2810 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2811 * and the hugetlb mutex should remain held when calling this routine. 2812 * 2813 * It handles two specific cases: 2814 * 1) A reservation was in place and the folio consumed the reservation. 2815 * hugetlb_restore_reserve is set in the folio. 2816 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2817 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2818 * 2819 * In case 1, free_huge_folio later in the error path will increment the 2820 * global reserve count. But, free_huge_folio does not have enough context 2821 * to adjust the reservation map. This case deals primarily with private 2822 * mappings. Adjust the reserve map here to be consistent with global 2823 * reserve count adjustments to be made by free_huge_folio. Make sure the 2824 * reserve map indicates there is a reservation present. 2825 * 2826 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2827 */ 2828 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2829 unsigned long address, struct folio *folio) 2830 { 2831 long rc = vma_needs_reservation(h, vma, address); 2832 2833 if (folio_test_hugetlb_restore_reserve(folio)) { 2834 if (unlikely(rc < 0)) 2835 /* 2836 * Rare out of memory condition in reserve map 2837 * manipulation. Clear hugetlb_restore_reserve so 2838 * that global reserve count will not be incremented 2839 * by free_huge_folio. This will make it appear 2840 * as though the reservation for this folio was 2841 * consumed. This may prevent the task from 2842 * faulting in the folio at a later time. This 2843 * is better than inconsistent global huge page 2844 * accounting of reserve counts. 2845 */ 2846 folio_clear_hugetlb_restore_reserve(folio); 2847 else if (rc) 2848 (void)vma_add_reservation(h, vma, address); 2849 else 2850 vma_end_reservation(h, vma, address); 2851 } else { 2852 if (!rc) { 2853 /* 2854 * This indicates there is an entry in the reserve map 2855 * not added by alloc_hugetlb_folio. We know it was added 2856 * before the alloc_hugetlb_folio call, otherwise 2857 * hugetlb_restore_reserve would be set on the folio. 2858 * Remove the entry so that a subsequent allocation 2859 * does not consume a reservation. 2860 */ 2861 rc = vma_del_reservation(h, vma, address); 2862 if (rc < 0) 2863 /* 2864 * VERY rare out of memory condition. Since 2865 * we can not delete the entry, set 2866 * hugetlb_restore_reserve so that the reserve 2867 * count will be incremented when the folio 2868 * is freed. This reserve will be consumed 2869 * on a subsequent allocation. 2870 */ 2871 folio_set_hugetlb_restore_reserve(folio); 2872 } else if (rc < 0) { 2873 /* 2874 * Rare out of memory condition from 2875 * vma_needs_reservation call. Memory allocation is 2876 * only attempted if a new entry is needed. Therefore, 2877 * this implies there is not an entry in the 2878 * reserve map. 2879 * 2880 * For shared mappings, no entry in the map indicates 2881 * no reservation. We are done. 2882 */ 2883 if (!(vma->vm_flags & VM_MAYSHARE)) 2884 /* 2885 * For private mappings, no entry indicates 2886 * a reservation is present. Since we can 2887 * not add an entry, set hugetlb_restore_reserve 2888 * on the folio so reserve count will be 2889 * incremented when freed. This reserve will 2890 * be consumed on a subsequent allocation. 2891 */ 2892 folio_set_hugetlb_restore_reserve(folio); 2893 } else 2894 /* 2895 * No reservation present, do nothing 2896 */ 2897 vma_end_reservation(h, vma, address); 2898 } 2899 } 2900 2901 /* 2902 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2903 * the old one 2904 * @h: struct hstate old page belongs to 2905 * @old_folio: Old folio to dissolve 2906 * @list: List to isolate the page in case we need to 2907 * Returns 0 on success, otherwise negated error. 2908 */ 2909 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2910 struct folio *old_folio, struct list_head *list) 2911 { 2912 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2913 int nid = folio_nid(old_folio); 2914 struct folio *new_folio; 2915 int ret = 0; 2916 2917 /* 2918 * Before dissolving the folio, we need to allocate a new one for the 2919 * pool to remain stable. Here, we allocate the folio and 'prep' it 2920 * by doing everything but actually updating counters and adding to 2921 * the pool. This simplifies and let us do most of the processing 2922 * under the lock. 2923 */ 2924 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); 2925 if (!new_folio) 2926 return -ENOMEM; 2927 __prep_new_hugetlb_folio(h, new_folio); 2928 2929 retry: 2930 spin_lock_irq(&hugetlb_lock); 2931 if (!folio_test_hugetlb(old_folio)) { 2932 /* 2933 * Freed from under us. Drop new_folio too. 2934 */ 2935 goto free_new; 2936 } else if (folio_ref_count(old_folio)) { 2937 bool isolated; 2938 2939 /* 2940 * Someone has grabbed the folio, try to isolate it here. 2941 * Fail with -EBUSY if not possible. 2942 */ 2943 spin_unlock_irq(&hugetlb_lock); 2944 isolated = isolate_hugetlb(old_folio, list); 2945 ret = isolated ? 0 : -EBUSY; 2946 spin_lock_irq(&hugetlb_lock); 2947 goto free_new; 2948 } else if (!folio_test_hugetlb_freed(old_folio)) { 2949 /* 2950 * Folio's refcount is 0 but it has not been enqueued in the 2951 * freelist yet. Race window is small, so we can succeed here if 2952 * we retry. 2953 */ 2954 spin_unlock_irq(&hugetlb_lock); 2955 cond_resched(); 2956 goto retry; 2957 } else { 2958 /* 2959 * Ok, old_folio is still a genuine free hugepage. Remove it from 2960 * the freelist and decrease the counters. These will be 2961 * incremented again when calling __prep_account_new_huge_page() 2962 * and enqueue_hugetlb_folio() for new_folio. The counters will 2963 * remain stable since this happens under the lock. 2964 */ 2965 remove_hugetlb_folio(h, old_folio, false); 2966 2967 /* 2968 * Ref count on new_folio is already zero as it was dropped 2969 * earlier. It can be directly added to the pool free list. 2970 */ 2971 __prep_account_new_huge_page(h, nid); 2972 enqueue_hugetlb_folio(h, new_folio); 2973 2974 /* 2975 * Folio has been replaced, we can safely free the old one. 2976 */ 2977 spin_unlock_irq(&hugetlb_lock); 2978 update_and_free_hugetlb_folio(h, old_folio, false); 2979 } 2980 2981 return ret; 2982 2983 free_new: 2984 spin_unlock_irq(&hugetlb_lock); 2985 /* Folio has a zero ref count, but needs a ref to be freed */ 2986 folio_ref_unfreeze(new_folio, 1); 2987 update_and_free_hugetlb_folio(h, new_folio, false); 2988 2989 return ret; 2990 } 2991 2992 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2993 { 2994 struct hstate *h; 2995 struct folio *folio = page_folio(page); 2996 int ret = -EBUSY; 2997 2998 /* 2999 * The page might have been dissolved from under our feet, so make sure 3000 * to carefully check the state under the lock. 3001 * Return success when racing as if we dissolved the page ourselves. 3002 */ 3003 spin_lock_irq(&hugetlb_lock); 3004 if (folio_test_hugetlb(folio)) { 3005 h = folio_hstate(folio); 3006 } else { 3007 spin_unlock_irq(&hugetlb_lock); 3008 return 0; 3009 } 3010 spin_unlock_irq(&hugetlb_lock); 3011 3012 /* 3013 * Fence off gigantic pages as there is a cyclic dependency between 3014 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3015 * of bailing out right away without further retrying. 3016 */ 3017 if (hstate_is_gigantic(h)) 3018 return -ENOMEM; 3019 3020 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3021 ret = 0; 3022 else if (!folio_ref_count(folio)) 3023 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3024 3025 return ret; 3026 } 3027 3028 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3029 unsigned long addr, int avoid_reserve) 3030 { 3031 struct hugepage_subpool *spool = subpool_vma(vma); 3032 struct hstate *h = hstate_vma(vma); 3033 struct folio *folio; 3034 long map_chg, map_commit; 3035 long gbl_chg; 3036 int ret, idx; 3037 struct hugetlb_cgroup *h_cg = NULL; 3038 bool deferred_reserve; 3039 3040 idx = hstate_index(h); 3041 /* 3042 * Examine the region/reserve map to determine if the process 3043 * has a reservation for the page to be allocated. A return 3044 * code of zero indicates a reservation exists (no change). 3045 */ 3046 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3047 if (map_chg < 0) 3048 return ERR_PTR(-ENOMEM); 3049 3050 /* 3051 * Processes that did not create the mapping will have no 3052 * reserves as indicated by the region/reserve map. Check 3053 * that the allocation will not exceed the subpool limit. 3054 * Allocations for MAP_NORESERVE mappings also need to be 3055 * checked against any subpool limit. 3056 */ 3057 if (map_chg || avoid_reserve) { 3058 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3059 if (gbl_chg < 0) { 3060 vma_end_reservation(h, vma, addr); 3061 return ERR_PTR(-ENOSPC); 3062 } 3063 3064 /* 3065 * Even though there was no reservation in the region/reserve 3066 * map, there could be reservations associated with the 3067 * subpool that can be used. This would be indicated if the 3068 * return value of hugepage_subpool_get_pages() is zero. 3069 * However, if avoid_reserve is specified we still avoid even 3070 * the subpool reservations. 3071 */ 3072 if (avoid_reserve) 3073 gbl_chg = 1; 3074 } 3075 3076 /* If this allocation is not consuming a reservation, charge it now. 3077 */ 3078 deferred_reserve = map_chg || avoid_reserve; 3079 if (deferred_reserve) { 3080 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3081 idx, pages_per_huge_page(h), &h_cg); 3082 if (ret) 3083 goto out_subpool_put; 3084 } 3085 3086 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3087 if (ret) 3088 goto out_uncharge_cgroup_reservation; 3089 3090 spin_lock_irq(&hugetlb_lock); 3091 /* 3092 * glb_chg is passed to indicate whether or not a page must be taken 3093 * from the global free pool (global change). gbl_chg == 0 indicates 3094 * a reservation exists for the allocation. 3095 */ 3096 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3097 if (!folio) { 3098 spin_unlock_irq(&hugetlb_lock); 3099 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3100 if (!folio) 3101 goto out_uncharge_cgroup; 3102 spin_lock_irq(&hugetlb_lock); 3103 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3104 folio_set_hugetlb_restore_reserve(folio); 3105 h->resv_huge_pages--; 3106 } 3107 list_add(&folio->lru, &h->hugepage_activelist); 3108 folio_ref_unfreeze(folio, 1); 3109 /* Fall through */ 3110 } 3111 3112 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3113 /* If allocation is not consuming a reservation, also store the 3114 * hugetlb_cgroup pointer on the page. 3115 */ 3116 if (deferred_reserve) { 3117 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3118 h_cg, folio); 3119 } 3120 3121 spin_unlock_irq(&hugetlb_lock); 3122 3123 hugetlb_set_folio_subpool(folio, spool); 3124 3125 map_commit = vma_commit_reservation(h, vma, addr); 3126 if (unlikely(map_chg > map_commit)) { 3127 /* 3128 * The page was added to the reservation map between 3129 * vma_needs_reservation and vma_commit_reservation. 3130 * This indicates a race with hugetlb_reserve_pages. 3131 * Adjust for the subpool count incremented above AND 3132 * in hugetlb_reserve_pages for the same page. Also, 3133 * the reservation count added in hugetlb_reserve_pages 3134 * no longer applies. 3135 */ 3136 long rsv_adjust; 3137 3138 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3139 hugetlb_acct_memory(h, -rsv_adjust); 3140 if (deferred_reserve) { 3141 spin_lock_irq(&hugetlb_lock); 3142 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3143 pages_per_huge_page(h), folio); 3144 spin_unlock_irq(&hugetlb_lock); 3145 } 3146 } 3147 return folio; 3148 3149 out_uncharge_cgroup: 3150 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3151 out_uncharge_cgroup_reservation: 3152 if (deferred_reserve) 3153 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3154 h_cg); 3155 out_subpool_put: 3156 if (map_chg || avoid_reserve) 3157 hugepage_subpool_put_pages(spool, 1); 3158 vma_end_reservation(h, vma, addr); 3159 return ERR_PTR(-ENOSPC); 3160 } 3161 3162 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3163 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3164 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3165 { 3166 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3167 int nr_nodes, node; 3168 3169 /* do node specific alloc */ 3170 if (nid != NUMA_NO_NODE) { 3171 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3172 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3173 if (!m) 3174 return 0; 3175 goto found; 3176 } 3177 /* allocate from next node when distributing huge pages */ 3178 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3179 m = memblock_alloc_try_nid_raw( 3180 huge_page_size(h), huge_page_size(h), 3181 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3182 /* 3183 * Use the beginning of the huge page to store the 3184 * huge_bootmem_page struct (until gather_bootmem 3185 * puts them into the mem_map). 3186 */ 3187 if (!m) 3188 return 0; 3189 goto found; 3190 } 3191 3192 found: 3193 /* Put them into a private list first because mem_map is not up yet */ 3194 INIT_LIST_HEAD(&m->list); 3195 list_add(&m->list, &huge_boot_pages); 3196 m->hstate = h; 3197 return 1; 3198 } 3199 3200 /* 3201 * Put bootmem huge pages into the standard lists after mem_map is up. 3202 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3203 */ 3204 static void __init gather_bootmem_prealloc(void) 3205 { 3206 struct huge_bootmem_page *m; 3207 3208 list_for_each_entry(m, &huge_boot_pages, list) { 3209 struct page *page = virt_to_page(m); 3210 struct folio *folio = page_folio(page); 3211 struct hstate *h = m->hstate; 3212 3213 VM_BUG_ON(!hstate_is_gigantic(h)); 3214 WARN_ON(folio_ref_count(folio) != 1); 3215 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) { 3216 WARN_ON(folio_test_reserved(folio)); 3217 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 3218 free_huge_folio(folio); /* add to the hugepage allocator */ 3219 } else { 3220 /* VERY unlikely inflated ref count on a tail page */ 3221 free_gigantic_folio(folio, huge_page_order(h)); 3222 } 3223 3224 /* 3225 * We need to restore the 'stolen' pages to totalram_pages 3226 * in order to fix confusing memory reports from free(1) and 3227 * other side-effects, like CommitLimit going negative. 3228 */ 3229 adjust_managed_page_count(page, pages_per_huge_page(h)); 3230 cond_resched(); 3231 } 3232 } 3233 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3234 { 3235 unsigned long i; 3236 char buf[32]; 3237 3238 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3239 if (hstate_is_gigantic(h)) { 3240 if (!alloc_bootmem_huge_page(h, nid)) 3241 break; 3242 } else { 3243 struct folio *folio; 3244 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3245 3246 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3247 &node_states[N_MEMORY], NULL); 3248 if (!folio) 3249 break; 3250 free_huge_folio(folio); /* free it into the hugepage allocator */ 3251 } 3252 cond_resched(); 3253 } 3254 if (i == h->max_huge_pages_node[nid]) 3255 return; 3256 3257 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3258 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3259 h->max_huge_pages_node[nid], buf, nid, i); 3260 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3261 h->max_huge_pages_node[nid] = i; 3262 } 3263 3264 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3265 { 3266 unsigned long i; 3267 nodemask_t *node_alloc_noretry; 3268 bool node_specific_alloc = false; 3269 3270 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3271 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3272 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3273 return; 3274 } 3275 3276 /* do node specific alloc */ 3277 for_each_online_node(i) { 3278 if (h->max_huge_pages_node[i] > 0) { 3279 hugetlb_hstate_alloc_pages_onenode(h, i); 3280 node_specific_alloc = true; 3281 } 3282 } 3283 3284 if (node_specific_alloc) 3285 return; 3286 3287 /* below will do all node balanced alloc */ 3288 if (!hstate_is_gigantic(h)) { 3289 /* 3290 * Bit mask controlling how hard we retry per-node allocations. 3291 * Ignore errors as lower level routines can deal with 3292 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3293 * time, we are likely in bigger trouble. 3294 */ 3295 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3296 GFP_KERNEL); 3297 } else { 3298 /* allocations done at boot time */ 3299 node_alloc_noretry = NULL; 3300 } 3301 3302 /* bit mask controlling how hard we retry per-node allocations */ 3303 if (node_alloc_noretry) 3304 nodes_clear(*node_alloc_noretry); 3305 3306 for (i = 0; i < h->max_huge_pages; ++i) { 3307 if (hstate_is_gigantic(h)) { 3308 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3309 break; 3310 } else if (!alloc_pool_huge_page(h, 3311 &node_states[N_MEMORY], 3312 node_alloc_noretry)) 3313 break; 3314 cond_resched(); 3315 } 3316 if (i < h->max_huge_pages) { 3317 char buf[32]; 3318 3319 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3320 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3321 h->max_huge_pages, buf, i); 3322 h->max_huge_pages = i; 3323 } 3324 kfree(node_alloc_noretry); 3325 } 3326 3327 static void __init hugetlb_init_hstates(void) 3328 { 3329 struct hstate *h, *h2; 3330 3331 for_each_hstate(h) { 3332 /* oversize hugepages were init'ed in early boot */ 3333 if (!hstate_is_gigantic(h)) 3334 hugetlb_hstate_alloc_pages(h); 3335 3336 /* 3337 * Set demote order for each hstate. Note that 3338 * h->demote_order is initially 0. 3339 * - We can not demote gigantic pages if runtime freeing 3340 * is not supported, so skip this. 3341 * - If CMA allocation is possible, we can not demote 3342 * HUGETLB_PAGE_ORDER or smaller size pages. 3343 */ 3344 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3345 continue; 3346 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3347 continue; 3348 for_each_hstate(h2) { 3349 if (h2 == h) 3350 continue; 3351 if (h2->order < h->order && 3352 h2->order > h->demote_order) 3353 h->demote_order = h2->order; 3354 } 3355 } 3356 } 3357 3358 static void __init report_hugepages(void) 3359 { 3360 struct hstate *h; 3361 3362 for_each_hstate(h) { 3363 char buf[32]; 3364 3365 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3366 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3367 buf, h->free_huge_pages); 3368 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3369 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3370 } 3371 } 3372 3373 #ifdef CONFIG_HIGHMEM 3374 static void try_to_free_low(struct hstate *h, unsigned long count, 3375 nodemask_t *nodes_allowed) 3376 { 3377 int i; 3378 LIST_HEAD(page_list); 3379 3380 lockdep_assert_held(&hugetlb_lock); 3381 if (hstate_is_gigantic(h)) 3382 return; 3383 3384 /* 3385 * Collect pages to be freed on a list, and free after dropping lock 3386 */ 3387 for_each_node_mask(i, *nodes_allowed) { 3388 struct page *page, *next; 3389 struct list_head *freel = &h->hugepage_freelists[i]; 3390 list_for_each_entry_safe(page, next, freel, lru) { 3391 if (count >= h->nr_huge_pages) 3392 goto out; 3393 if (PageHighMem(page)) 3394 continue; 3395 remove_hugetlb_folio(h, page_folio(page), false); 3396 list_add(&page->lru, &page_list); 3397 } 3398 } 3399 3400 out: 3401 spin_unlock_irq(&hugetlb_lock); 3402 update_and_free_pages_bulk(h, &page_list); 3403 spin_lock_irq(&hugetlb_lock); 3404 } 3405 #else 3406 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3407 nodemask_t *nodes_allowed) 3408 { 3409 } 3410 #endif 3411 3412 /* 3413 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3414 * balanced by operating on them in a round-robin fashion. 3415 * Returns 1 if an adjustment was made. 3416 */ 3417 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3418 int delta) 3419 { 3420 int nr_nodes, node; 3421 3422 lockdep_assert_held(&hugetlb_lock); 3423 VM_BUG_ON(delta != -1 && delta != 1); 3424 3425 if (delta < 0) { 3426 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3427 if (h->surplus_huge_pages_node[node]) 3428 goto found; 3429 } 3430 } else { 3431 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3432 if (h->surplus_huge_pages_node[node] < 3433 h->nr_huge_pages_node[node]) 3434 goto found; 3435 } 3436 } 3437 return 0; 3438 3439 found: 3440 h->surplus_huge_pages += delta; 3441 h->surplus_huge_pages_node[node] += delta; 3442 return 1; 3443 } 3444 3445 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3446 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3447 nodemask_t *nodes_allowed) 3448 { 3449 unsigned long min_count, ret; 3450 struct page *page; 3451 LIST_HEAD(page_list); 3452 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3453 3454 /* 3455 * Bit mask controlling how hard we retry per-node allocations. 3456 * If we can not allocate the bit mask, do not attempt to allocate 3457 * the requested huge pages. 3458 */ 3459 if (node_alloc_noretry) 3460 nodes_clear(*node_alloc_noretry); 3461 else 3462 return -ENOMEM; 3463 3464 /* 3465 * resize_lock mutex prevents concurrent adjustments to number of 3466 * pages in hstate via the proc/sysfs interfaces. 3467 */ 3468 mutex_lock(&h->resize_lock); 3469 flush_free_hpage_work(h); 3470 spin_lock_irq(&hugetlb_lock); 3471 3472 /* 3473 * Check for a node specific request. 3474 * Changing node specific huge page count may require a corresponding 3475 * change to the global count. In any case, the passed node mask 3476 * (nodes_allowed) will restrict alloc/free to the specified node. 3477 */ 3478 if (nid != NUMA_NO_NODE) { 3479 unsigned long old_count = count; 3480 3481 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3482 /* 3483 * User may have specified a large count value which caused the 3484 * above calculation to overflow. In this case, they wanted 3485 * to allocate as many huge pages as possible. Set count to 3486 * largest possible value to align with their intention. 3487 */ 3488 if (count < old_count) 3489 count = ULONG_MAX; 3490 } 3491 3492 /* 3493 * Gigantic pages runtime allocation depend on the capability for large 3494 * page range allocation. 3495 * If the system does not provide this feature, return an error when 3496 * the user tries to allocate gigantic pages but let the user free the 3497 * boottime allocated gigantic pages. 3498 */ 3499 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3500 if (count > persistent_huge_pages(h)) { 3501 spin_unlock_irq(&hugetlb_lock); 3502 mutex_unlock(&h->resize_lock); 3503 NODEMASK_FREE(node_alloc_noretry); 3504 return -EINVAL; 3505 } 3506 /* Fall through to decrease pool */ 3507 } 3508 3509 /* 3510 * Increase the pool size 3511 * First take pages out of surplus state. Then make up the 3512 * remaining difference by allocating fresh huge pages. 3513 * 3514 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3515 * to convert a surplus huge page to a normal huge page. That is 3516 * not critical, though, it just means the overall size of the 3517 * pool might be one hugepage larger than it needs to be, but 3518 * within all the constraints specified by the sysctls. 3519 */ 3520 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3521 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3522 break; 3523 } 3524 3525 while (count > persistent_huge_pages(h)) { 3526 /* 3527 * If this allocation races such that we no longer need the 3528 * page, free_huge_folio will handle it by freeing the page 3529 * and reducing the surplus. 3530 */ 3531 spin_unlock_irq(&hugetlb_lock); 3532 3533 /* yield cpu to avoid soft lockup */ 3534 cond_resched(); 3535 3536 ret = alloc_pool_huge_page(h, nodes_allowed, 3537 node_alloc_noretry); 3538 spin_lock_irq(&hugetlb_lock); 3539 if (!ret) 3540 goto out; 3541 3542 /* Bail for signals. Probably ctrl-c from user */ 3543 if (signal_pending(current)) 3544 goto out; 3545 } 3546 3547 /* 3548 * Decrease the pool size 3549 * First return free pages to the buddy allocator (being careful 3550 * to keep enough around to satisfy reservations). Then place 3551 * pages into surplus state as needed so the pool will shrink 3552 * to the desired size as pages become free. 3553 * 3554 * By placing pages into the surplus state independent of the 3555 * overcommit value, we are allowing the surplus pool size to 3556 * exceed overcommit. There are few sane options here. Since 3557 * alloc_surplus_hugetlb_folio() is checking the global counter, 3558 * though, we'll note that we're not allowed to exceed surplus 3559 * and won't grow the pool anywhere else. Not until one of the 3560 * sysctls are changed, or the surplus pages go out of use. 3561 */ 3562 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3563 min_count = max(count, min_count); 3564 try_to_free_low(h, min_count, nodes_allowed); 3565 3566 /* 3567 * Collect pages to be removed on list without dropping lock 3568 */ 3569 while (min_count < persistent_huge_pages(h)) { 3570 page = remove_pool_huge_page(h, nodes_allowed, 0); 3571 if (!page) 3572 break; 3573 3574 list_add(&page->lru, &page_list); 3575 } 3576 /* free the pages after dropping lock */ 3577 spin_unlock_irq(&hugetlb_lock); 3578 update_and_free_pages_bulk(h, &page_list); 3579 flush_free_hpage_work(h); 3580 spin_lock_irq(&hugetlb_lock); 3581 3582 while (count < persistent_huge_pages(h)) { 3583 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3584 break; 3585 } 3586 out: 3587 h->max_huge_pages = persistent_huge_pages(h); 3588 spin_unlock_irq(&hugetlb_lock); 3589 mutex_unlock(&h->resize_lock); 3590 3591 NODEMASK_FREE(node_alloc_noretry); 3592 3593 return 0; 3594 } 3595 3596 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) 3597 { 3598 int i, nid = folio_nid(folio); 3599 struct hstate *target_hstate; 3600 struct page *subpage; 3601 struct folio *inner_folio; 3602 int rc = 0; 3603 3604 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3605 3606 remove_hugetlb_folio_for_demote(h, folio, false); 3607 spin_unlock_irq(&hugetlb_lock); 3608 3609 rc = hugetlb_vmemmap_restore(h, &folio->page); 3610 if (rc) { 3611 /* Allocation of vmemmmap failed, we can not demote folio */ 3612 spin_lock_irq(&hugetlb_lock); 3613 folio_ref_unfreeze(folio, 1); 3614 add_hugetlb_folio(h, folio, false); 3615 return rc; 3616 } 3617 3618 /* 3619 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3620 * sizes as it will not ref count folios. 3621 */ 3622 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3623 3624 /* 3625 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3626 * Without the mutex, pages added to target hstate could be marked 3627 * as surplus. 3628 * 3629 * Note that we already hold h->resize_lock. To prevent deadlock, 3630 * use the convention of always taking larger size hstate mutex first. 3631 */ 3632 mutex_lock(&target_hstate->resize_lock); 3633 for (i = 0; i < pages_per_huge_page(h); 3634 i += pages_per_huge_page(target_hstate)) { 3635 subpage = folio_page(folio, i); 3636 inner_folio = page_folio(subpage); 3637 if (hstate_is_gigantic(target_hstate)) 3638 prep_compound_gigantic_folio_for_demote(inner_folio, 3639 target_hstate->order); 3640 else 3641 prep_compound_page(subpage, target_hstate->order); 3642 folio_change_private(inner_folio, NULL); 3643 prep_new_hugetlb_folio(target_hstate, inner_folio, nid); 3644 free_huge_folio(inner_folio); 3645 } 3646 mutex_unlock(&target_hstate->resize_lock); 3647 3648 spin_lock_irq(&hugetlb_lock); 3649 3650 /* 3651 * Not absolutely necessary, but for consistency update max_huge_pages 3652 * based on pool changes for the demoted page. 3653 */ 3654 h->max_huge_pages--; 3655 target_hstate->max_huge_pages += 3656 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3657 3658 return rc; 3659 } 3660 3661 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3662 __must_hold(&hugetlb_lock) 3663 { 3664 int nr_nodes, node; 3665 struct folio *folio; 3666 3667 lockdep_assert_held(&hugetlb_lock); 3668 3669 /* We should never get here if no demote order */ 3670 if (!h->demote_order) { 3671 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3672 return -EINVAL; /* internal error */ 3673 } 3674 3675 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3676 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { 3677 if (folio_test_hwpoison(folio)) 3678 continue; 3679 return demote_free_hugetlb_folio(h, folio); 3680 } 3681 } 3682 3683 /* 3684 * Only way to get here is if all pages on free lists are poisoned. 3685 * Return -EBUSY so that caller will not retry. 3686 */ 3687 return -EBUSY; 3688 } 3689 3690 #define HSTATE_ATTR_RO(_name) \ 3691 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3692 3693 #define HSTATE_ATTR_WO(_name) \ 3694 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3695 3696 #define HSTATE_ATTR(_name) \ 3697 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3698 3699 static struct kobject *hugepages_kobj; 3700 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3701 3702 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3703 3704 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3705 { 3706 int i; 3707 3708 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3709 if (hstate_kobjs[i] == kobj) { 3710 if (nidp) 3711 *nidp = NUMA_NO_NODE; 3712 return &hstates[i]; 3713 } 3714 3715 return kobj_to_node_hstate(kobj, nidp); 3716 } 3717 3718 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3719 struct kobj_attribute *attr, char *buf) 3720 { 3721 struct hstate *h; 3722 unsigned long nr_huge_pages; 3723 int nid; 3724 3725 h = kobj_to_hstate(kobj, &nid); 3726 if (nid == NUMA_NO_NODE) 3727 nr_huge_pages = h->nr_huge_pages; 3728 else 3729 nr_huge_pages = h->nr_huge_pages_node[nid]; 3730 3731 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3732 } 3733 3734 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3735 struct hstate *h, int nid, 3736 unsigned long count, size_t len) 3737 { 3738 int err; 3739 nodemask_t nodes_allowed, *n_mask; 3740 3741 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3742 return -EINVAL; 3743 3744 if (nid == NUMA_NO_NODE) { 3745 /* 3746 * global hstate attribute 3747 */ 3748 if (!(obey_mempolicy && 3749 init_nodemask_of_mempolicy(&nodes_allowed))) 3750 n_mask = &node_states[N_MEMORY]; 3751 else 3752 n_mask = &nodes_allowed; 3753 } else { 3754 /* 3755 * Node specific request. count adjustment happens in 3756 * set_max_huge_pages() after acquiring hugetlb_lock. 3757 */ 3758 init_nodemask_of_node(&nodes_allowed, nid); 3759 n_mask = &nodes_allowed; 3760 } 3761 3762 err = set_max_huge_pages(h, count, nid, n_mask); 3763 3764 return err ? err : len; 3765 } 3766 3767 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3768 struct kobject *kobj, const char *buf, 3769 size_t len) 3770 { 3771 struct hstate *h; 3772 unsigned long count; 3773 int nid; 3774 int err; 3775 3776 err = kstrtoul(buf, 10, &count); 3777 if (err) 3778 return err; 3779 3780 h = kobj_to_hstate(kobj, &nid); 3781 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3782 } 3783 3784 static ssize_t nr_hugepages_show(struct kobject *kobj, 3785 struct kobj_attribute *attr, char *buf) 3786 { 3787 return nr_hugepages_show_common(kobj, attr, buf); 3788 } 3789 3790 static ssize_t nr_hugepages_store(struct kobject *kobj, 3791 struct kobj_attribute *attr, const char *buf, size_t len) 3792 { 3793 return nr_hugepages_store_common(false, kobj, buf, len); 3794 } 3795 HSTATE_ATTR(nr_hugepages); 3796 3797 #ifdef CONFIG_NUMA 3798 3799 /* 3800 * hstate attribute for optionally mempolicy-based constraint on persistent 3801 * huge page alloc/free. 3802 */ 3803 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3804 struct kobj_attribute *attr, 3805 char *buf) 3806 { 3807 return nr_hugepages_show_common(kobj, attr, buf); 3808 } 3809 3810 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3811 struct kobj_attribute *attr, const char *buf, size_t len) 3812 { 3813 return nr_hugepages_store_common(true, kobj, buf, len); 3814 } 3815 HSTATE_ATTR(nr_hugepages_mempolicy); 3816 #endif 3817 3818 3819 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3820 struct kobj_attribute *attr, char *buf) 3821 { 3822 struct hstate *h = kobj_to_hstate(kobj, NULL); 3823 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3824 } 3825 3826 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3827 struct kobj_attribute *attr, const char *buf, size_t count) 3828 { 3829 int err; 3830 unsigned long input; 3831 struct hstate *h = kobj_to_hstate(kobj, NULL); 3832 3833 if (hstate_is_gigantic(h)) 3834 return -EINVAL; 3835 3836 err = kstrtoul(buf, 10, &input); 3837 if (err) 3838 return err; 3839 3840 spin_lock_irq(&hugetlb_lock); 3841 h->nr_overcommit_huge_pages = input; 3842 spin_unlock_irq(&hugetlb_lock); 3843 3844 return count; 3845 } 3846 HSTATE_ATTR(nr_overcommit_hugepages); 3847 3848 static ssize_t free_hugepages_show(struct kobject *kobj, 3849 struct kobj_attribute *attr, char *buf) 3850 { 3851 struct hstate *h; 3852 unsigned long free_huge_pages; 3853 int nid; 3854 3855 h = kobj_to_hstate(kobj, &nid); 3856 if (nid == NUMA_NO_NODE) 3857 free_huge_pages = h->free_huge_pages; 3858 else 3859 free_huge_pages = h->free_huge_pages_node[nid]; 3860 3861 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3862 } 3863 HSTATE_ATTR_RO(free_hugepages); 3864 3865 static ssize_t resv_hugepages_show(struct kobject *kobj, 3866 struct kobj_attribute *attr, char *buf) 3867 { 3868 struct hstate *h = kobj_to_hstate(kobj, NULL); 3869 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3870 } 3871 HSTATE_ATTR_RO(resv_hugepages); 3872 3873 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3874 struct kobj_attribute *attr, char *buf) 3875 { 3876 struct hstate *h; 3877 unsigned long surplus_huge_pages; 3878 int nid; 3879 3880 h = kobj_to_hstate(kobj, &nid); 3881 if (nid == NUMA_NO_NODE) 3882 surplus_huge_pages = h->surplus_huge_pages; 3883 else 3884 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3885 3886 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3887 } 3888 HSTATE_ATTR_RO(surplus_hugepages); 3889 3890 static ssize_t demote_store(struct kobject *kobj, 3891 struct kobj_attribute *attr, const char *buf, size_t len) 3892 { 3893 unsigned long nr_demote; 3894 unsigned long nr_available; 3895 nodemask_t nodes_allowed, *n_mask; 3896 struct hstate *h; 3897 int err; 3898 int nid; 3899 3900 err = kstrtoul(buf, 10, &nr_demote); 3901 if (err) 3902 return err; 3903 h = kobj_to_hstate(kobj, &nid); 3904 3905 if (nid != NUMA_NO_NODE) { 3906 init_nodemask_of_node(&nodes_allowed, nid); 3907 n_mask = &nodes_allowed; 3908 } else { 3909 n_mask = &node_states[N_MEMORY]; 3910 } 3911 3912 /* Synchronize with other sysfs operations modifying huge pages */ 3913 mutex_lock(&h->resize_lock); 3914 spin_lock_irq(&hugetlb_lock); 3915 3916 while (nr_demote) { 3917 /* 3918 * Check for available pages to demote each time thorough the 3919 * loop as demote_pool_huge_page will drop hugetlb_lock. 3920 */ 3921 if (nid != NUMA_NO_NODE) 3922 nr_available = h->free_huge_pages_node[nid]; 3923 else 3924 nr_available = h->free_huge_pages; 3925 nr_available -= h->resv_huge_pages; 3926 if (!nr_available) 3927 break; 3928 3929 err = demote_pool_huge_page(h, n_mask); 3930 if (err) 3931 break; 3932 3933 nr_demote--; 3934 } 3935 3936 spin_unlock_irq(&hugetlb_lock); 3937 mutex_unlock(&h->resize_lock); 3938 3939 if (err) 3940 return err; 3941 return len; 3942 } 3943 HSTATE_ATTR_WO(demote); 3944 3945 static ssize_t demote_size_show(struct kobject *kobj, 3946 struct kobj_attribute *attr, char *buf) 3947 { 3948 struct hstate *h = kobj_to_hstate(kobj, NULL); 3949 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3950 3951 return sysfs_emit(buf, "%lukB\n", demote_size); 3952 } 3953 3954 static ssize_t demote_size_store(struct kobject *kobj, 3955 struct kobj_attribute *attr, 3956 const char *buf, size_t count) 3957 { 3958 struct hstate *h, *demote_hstate; 3959 unsigned long demote_size; 3960 unsigned int demote_order; 3961 3962 demote_size = (unsigned long)memparse(buf, NULL); 3963 3964 demote_hstate = size_to_hstate(demote_size); 3965 if (!demote_hstate) 3966 return -EINVAL; 3967 demote_order = demote_hstate->order; 3968 if (demote_order < HUGETLB_PAGE_ORDER) 3969 return -EINVAL; 3970 3971 /* demote order must be smaller than hstate order */ 3972 h = kobj_to_hstate(kobj, NULL); 3973 if (demote_order >= h->order) 3974 return -EINVAL; 3975 3976 /* resize_lock synchronizes access to demote size and writes */ 3977 mutex_lock(&h->resize_lock); 3978 h->demote_order = demote_order; 3979 mutex_unlock(&h->resize_lock); 3980 3981 return count; 3982 } 3983 HSTATE_ATTR(demote_size); 3984 3985 static struct attribute *hstate_attrs[] = { 3986 &nr_hugepages_attr.attr, 3987 &nr_overcommit_hugepages_attr.attr, 3988 &free_hugepages_attr.attr, 3989 &resv_hugepages_attr.attr, 3990 &surplus_hugepages_attr.attr, 3991 #ifdef CONFIG_NUMA 3992 &nr_hugepages_mempolicy_attr.attr, 3993 #endif 3994 NULL, 3995 }; 3996 3997 static const struct attribute_group hstate_attr_group = { 3998 .attrs = hstate_attrs, 3999 }; 4000 4001 static struct attribute *hstate_demote_attrs[] = { 4002 &demote_size_attr.attr, 4003 &demote_attr.attr, 4004 NULL, 4005 }; 4006 4007 static const struct attribute_group hstate_demote_attr_group = { 4008 .attrs = hstate_demote_attrs, 4009 }; 4010 4011 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4012 struct kobject **hstate_kobjs, 4013 const struct attribute_group *hstate_attr_group) 4014 { 4015 int retval; 4016 int hi = hstate_index(h); 4017 4018 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4019 if (!hstate_kobjs[hi]) 4020 return -ENOMEM; 4021 4022 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4023 if (retval) { 4024 kobject_put(hstate_kobjs[hi]); 4025 hstate_kobjs[hi] = NULL; 4026 return retval; 4027 } 4028 4029 if (h->demote_order) { 4030 retval = sysfs_create_group(hstate_kobjs[hi], 4031 &hstate_demote_attr_group); 4032 if (retval) { 4033 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4034 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4035 kobject_put(hstate_kobjs[hi]); 4036 hstate_kobjs[hi] = NULL; 4037 return retval; 4038 } 4039 } 4040 4041 return 0; 4042 } 4043 4044 #ifdef CONFIG_NUMA 4045 static bool hugetlb_sysfs_initialized __ro_after_init; 4046 4047 /* 4048 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4049 * with node devices in node_devices[] using a parallel array. The array 4050 * index of a node device or _hstate == node id. 4051 * This is here to avoid any static dependency of the node device driver, in 4052 * the base kernel, on the hugetlb module. 4053 */ 4054 struct node_hstate { 4055 struct kobject *hugepages_kobj; 4056 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4057 }; 4058 static struct node_hstate node_hstates[MAX_NUMNODES]; 4059 4060 /* 4061 * A subset of global hstate attributes for node devices 4062 */ 4063 static struct attribute *per_node_hstate_attrs[] = { 4064 &nr_hugepages_attr.attr, 4065 &free_hugepages_attr.attr, 4066 &surplus_hugepages_attr.attr, 4067 NULL, 4068 }; 4069 4070 static const struct attribute_group per_node_hstate_attr_group = { 4071 .attrs = per_node_hstate_attrs, 4072 }; 4073 4074 /* 4075 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4076 * Returns node id via non-NULL nidp. 4077 */ 4078 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4079 { 4080 int nid; 4081 4082 for (nid = 0; nid < nr_node_ids; nid++) { 4083 struct node_hstate *nhs = &node_hstates[nid]; 4084 int i; 4085 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4086 if (nhs->hstate_kobjs[i] == kobj) { 4087 if (nidp) 4088 *nidp = nid; 4089 return &hstates[i]; 4090 } 4091 } 4092 4093 BUG(); 4094 return NULL; 4095 } 4096 4097 /* 4098 * Unregister hstate attributes from a single node device. 4099 * No-op if no hstate attributes attached. 4100 */ 4101 void hugetlb_unregister_node(struct node *node) 4102 { 4103 struct hstate *h; 4104 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4105 4106 if (!nhs->hugepages_kobj) 4107 return; /* no hstate attributes */ 4108 4109 for_each_hstate(h) { 4110 int idx = hstate_index(h); 4111 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4112 4113 if (!hstate_kobj) 4114 continue; 4115 if (h->demote_order) 4116 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4117 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4118 kobject_put(hstate_kobj); 4119 nhs->hstate_kobjs[idx] = NULL; 4120 } 4121 4122 kobject_put(nhs->hugepages_kobj); 4123 nhs->hugepages_kobj = NULL; 4124 } 4125 4126 4127 /* 4128 * Register hstate attributes for a single node device. 4129 * No-op if attributes already registered. 4130 */ 4131 void hugetlb_register_node(struct node *node) 4132 { 4133 struct hstate *h; 4134 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4135 int err; 4136 4137 if (!hugetlb_sysfs_initialized) 4138 return; 4139 4140 if (nhs->hugepages_kobj) 4141 return; /* already allocated */ 4142 4143 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4144 &node->dev.kobj); 4145 if (!nhs->hugepages_kobj) 4146 return; 4147 4148 for_each_hstate(h) { 4149 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4150 nhs->hstate_kobjs, 4151 &per_node_hstate_attr_group); 4152 if (err) { 4153 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4154 h->name, node->dev.id); 4155 hugetlb_unregister_node(node); 4156 break; 4157 } 4158 } 4159 } 4160 4161 /* 4162 * hugetlb init time: register hstate attributes for all registered node 4163 * devices of nodes that have memory. All on-line nodes should have 4164 * registered their associated device by this time. 4165 */ 4166 static void __init hugetlb_register_all_nodes(void) 4167 { 4168 int nid; 4169 4170 for_each_online_node(nid) 4171 hugetlb_register_node(node_devices[nid]); 4172 } 4173 #else /* !CONFIG_NUMA */ 4174 4175 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4176 { 4177 BUG(); 4178 if (nidp) 4179 *nidp = -1; 4180 return NULL; 4181 } 4182 4183 static void hugetlb_register_all_nodes(void) { } 4184 4185 #endif 4186 4187 #ifdef CONFIG_CMA 4188 static void __init hugetlb_cma_check(void); 4189 #else 4190 static inline __init void hugetlb_cma_check(void) 4191 { 4192 } 4193 #endif 4194 4195 static void __init hugetlb_sysfs_init(void) 4196 { 4197 struct hstate *h; 4198 int err; 4199 4200 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4201 if (!hugepages_kobj) 4202 return; 4203 4204 for_each_hstate(h) { 4205 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4206 hstate_kobjs, &hstate_attr_group); 4207 if (err) 4208 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4209 } 4210 4211 #ifdef CONFIG_NUMA 4212 hugetlb_sysfs_initialized = true; 4213 #endif 4214 hugetlb_register_all_nodes(); 4215 } 4216 4217 #ifdef CONFIG_SYSCTL 4218 static void hugetlb_sysctl_init(void); 4219 #else 4220 static inline void hugetlb_sysctl_init(void) { } 4221 #endif 4222 4223 static int __init hugetlb_init(void) 4224 { 4225 int i; 4226 4227 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4228 __NR_HPAGEFLAGS); 4229 4230 if (!hugepages_supported()) { 4231 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4232 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4233 return 0; 4234 } 4235 4236 /* 4237 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4238 * architectures depend on setup being done here. 4239 */ 4240 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4241 if (!parsed_default_hugepagesz) { 4242 /* 4243 * If we did not parse a default huge page size, set 4244 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4245 * number of huge pages for this default size was implicitly 4246 * specified, set that here as well. 4247 * Note that the implicit setting will overwrite an explicit 4248 * setting. A warning will be printed in this case. 4249 */ 4250 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4251 if (default_hstate_max_huge_pages) { 4252 if (default_hstate.max_huge_pages) { 4253 char buf[32]; 4254 4255 string_get_size(huge_page_size(&default_hstate), 4256 1, STRING_UNITS_2, buf, 32); 4257 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4258 default_hstate.max_huge_pages, buf); 4259 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4260 default_hstate_max_huge_pages); 4261 } 4262 default_hstate.max_huge_pages = 4263 default_hstate_max_huge_pages; 4264 4265 for_each_online_node(i) 4266 default_hstate.max_huge_pages_node[i] = 4267 default_hugepages_in_node[i]; 4268 } 4269 } 4270 4271 hugetlb_cma_check(); 4272 hugetlb_init_hstates(); 4273 gather_bootmem_prealloc(); 4274 report_hugepages(); 4275 4276 hugetlb_sysfs_init(); 4277 hugetlb_cgroup_file_init(); 4278 hugetlb_sysctl_init(); 4279 4280 #ifdef CONFIG_SMP 4281 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4282 #else 4283 num_fault_mutexes = 1; 4284 #endif 4285 hugetlb_fault_mutex_table = 4286 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4287 GFP_KERNEL); 4288 BUG_ON(!hugetlb_fault_mutex_table); 4289 4290 for (i = 0; i < num_fault_mutexes; i++) 4291 mutex_init(&hugetlb_fault_mutex_table[i]); 4292 return 0; 4293 } 4294 subsys_initcall(hugetlb_init); 4295 4296 /* Overwritten by architectures with more huge page sizes */ 4297 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4298 { 4299 return size == HPAGE_SIZE; 4300 } 4301 4302 void __init hugetlb_add_hstate(unsigned int order) 4303 { 4304 struct hstate *h; 4305 unsigned long i; 4306 4307 if (size_to_hstate(PAGE_SIZE << order)) { 4308 return; 4309 } 4310 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4311 BUG_ON(order == 0); 4312 h = &hstates[hugetlb_max_hstate++]; 4313 mutex_init(&h->resize_lock); 4314 h->order = order; 4315 h->mask = ~(huge_page_size(h) - 1); 4316 for (i = 0; i < MAX_NUMNODES; ++i) 4317 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4318 INIT_LIST_HEAD(&h->hugepage_activelist); 4319 h->next_nid_to_alloc = first_memory_node; 4320 h->next_nid_to_free = first_memory_node; 4321 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4322 huge_page_size(h)/SZ_1K); 4323 4324 parsed_hstate = h; 4325 } 4326 4327 bool __init __weak hugetlb_node_alloc_supported(void) 4328 { 4329 return true; 4330 } 4331 4332 static void __init hugepages_clear_pages_in_node(void) 4333 { 4334 if (!hugetlb_max_hstate) { 4335 default_hstate_max_huge_pages = 0; 4336 memset(default_hugepages_in_node, 0, 4337 sizeof(default_hugepages_in_node)); 4338 } else { 4339 parsed_hstate->max_huge_pages = 0; 4340 memset(parsed_hstate->max_huge_pages_node, 0, 4341 sizeof(parsed_hstate->max_huge_pages_node)); 4342 } 4343 } 4344 4345 /* 4346 * hugepages command line processing 4347 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4348 * specification. If not, ignore the hugepages value. hugepages can also 4349 * be the first huge page command line option in which case it implicitly 4350 * specifies the number of huge pages for the default size. 4351 */ 4352 static int __init hugepages_setup(char *s) 4353 { 4354 unsigned long *mhp; 4355 static unsigned long *last_mhp; 4356 int node = NUMA_NO_NODE; 4357 int count; 4358 unsigned long tmp; 4359 char *p = s; 4360 4361 if (!parsed_valid_hugepagesz) { 4362 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4363 parsed_valid_hugepagesz = true; 4364 return 1; 4365 } 4366 4367 /* 4368 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4369 * yet, so this hugepages= parameter goes to the "default hstate". 4370 * Otherwise, it goes with the previously parsed hugepagesz or 4371 * default_hugepagesz. 4372 */ 4373 else if (!hugetlb_max_hstate) 4374 mhp = &default_hstate_max_huge_pages; 4375 else 4376 mhp = &parsed_hstate->max_huge_pages; 4377 4378 if (mhp == last_mhp) { 4379 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4380 return 1; 4381 } 4382 4383 while (*p) { 4384 count = 0; 4385 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4386 goto invalid; 4387 /* Parameter is node format */ 4388 if (p[count] == ':') { 4389 if (!hugetlb_node_alloc_supported()) { 4390 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4391 return 1; 4392 } 4393 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4394 goto invalid; 4395 node = array_index_nospec(tmp, MAX_NUMNODES); 4396 p += count + 1; 4397 /* Parse hugepages */ 4398 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4399 goto invalid; 4400 if (!hugetlb_max_hstate) 4401 default_hugepages_in_node[node] = tmp; 4402 else 4403 parsed_hstate->max_huge_pages_node[node] = tmp; 4404 *mhp += tmp; 4405 /* Go to parse next node*/ 4406 if (p[count] == ',') 4407 p += count + 1; 4408 else 4409 break; 4410 } else { 4411 if (p != s) 4412 goto invalid; 4413 *mhp = tmp; 4414 break; 4415 } 4416 } 4417 4418 /* 4419 * Global state is always initialized later in hugetlb_init. 4420 * But we need to allocate gigantic hstates here early to still 4421 * use the bootmem allocator. 4422 */ 4423 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4424 hugetlb_hstate_alloc_pages(parsed_hstate); 4425 4426 last_mhp = mhp; 4427 4428 return 1; 4429 4430 invalid: 4431 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4432 hugepages_clear_pages_in_node(); 4433 return 1; 4434 } 4435 __setup("hugepages=", hugepages_setup); 4436 4437 /* 4438 * hugepagesz command line processing 4439 * A specific huge page size can only be specified once with hugepagesz. 4440 * hugepagesz is followed by hugepages on the command line. The global 4441 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4442 * hugepagesz argument was valid. 4443 */ 4444 static int __init hugepagesz_setup(char *s) 4445 { 4446 unsigned long size; 4447 struct hstate *h; 4448 4449 parsed_valid_hugepagesz = false; 4450 size = (unsigned long)memparse(s, NULL); 4451 4452 if (!arch_hugetlb_valid_size(size)) { 4453 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4454 return 1; 4455 } 4456 4457 h = size_to_hstate(size); 4458 if (h) { 4459 /* 4460 * hstate for this size already exists. This is normally 4461 * an error, but is allowed if the existing hstate is the 4462 * default hstate. More specifically, it is only allowed if 4463 * the number of huge pages for the default hstate was not 4464 * previously specified. 4465 */ 4466 if (!parsed_default_hugepagesz || h != &default_hstate || 4467 default_hstate.max_huge_pages) { 4468 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4469 return 1; 4470 } 4471 4472 /* 4473 * No need to call hugetlb_add_hstate() as hstate already 4474 * exists. But, do set parsed_hstate so that a following 4475 * hugepages= parameter will be applied to this hstate. 4476 */ 4477 parsed_hstate = h; 4478 parsed_valid_hugepagesz = true; 4479 return 1; 4480 } 4481 4482 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4483 parsed_valid_hugepagesz = true; 4484 return 1; 4485 } 4486 __setup("hugepagesz=", hugepagesz_setup); 4487 4488 /* 4489 * default_hugepagesz command line input 4490 * Only one instance of default_hugepagesz allowed on command line. 4491 */ 4492 static int __init default_hugepagesz_setup(char *s) 4493 { 4494 unsigned long size; 4495 int i; 4496 4497 parsed_valid_hugepagesz = false; 4498 if (parsed_default_hugepagesz) { 4499 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4500 return 1; 4501 } 4502 4503 size = (unsigned long)memparse(s, NULL); 4504 4505 if (!arch_hugetlb_valid_size(size)) { 4506 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4507 return 1; 4508 } 4509 4510 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4511 parsed_valid_hugepagesz = true; 4512 parsed_default_hugepagesz = true; 4513 default_hstate_idx = hstate_index(size_to_hstate(size)); 4514 4515 /* 4516 * The number of default huge pages (for this size) could have been 4517 * specified as the first hugetlb parameter: hugepages=X. If so, 4518 * then default_hstate_max_huge_pages is set. If the default huge 4519 * page size is gigantic (> MAX_ORDER), then the pages must be 4520 * allocated here from bootmem allocator. 4521 */ 4522 if (default_hstate_max_huge_pages) { 4523 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4524 for_each_online_node(i) 4525 default_hstate.max_huge_pages_node[i] = 4526 default_hugepages_in_node[i]; 4527 if (hstate_is_gigantic(&default_hstate)) 4528 hugetlb_hstate_alloc_pages(&default_hstate); 4529 default_hstate_max_huge_pages = 0; 4530 } 4531 4532 return 1; 4533 } 4534 __setup("default_hugepagesz=", default_hugepagesz_setup); 4535 4536 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4537 { 4538 #ifdef CONFIG_NUMA 4539 struct mempolicy *mpol = get_task_policy(current); 4540 4541 /* 4542 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4543 * (from policy_nodemask) specifically for hugetlb case 4544 */ 4545 if (mpol->mode == MPOL_BIND && 4546 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4547 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4548 return &mpol->nodes; 4549 #endif 4550 return NULL; 4551 } 4552 4553 static unsigned int allowed_mems_nr(struct hstate *h) 4554 { 4555 int node; 4556 unsigned int nr = 0; 4557 nodemask_t *mbind_nodemask; 4558 unsigned int *array = h->free_huge_pages_node; 4559 gfp_t gfp_mask = htlb_alloc_mask(h); 4560 4561 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4562 for_each_node_mask(node, cpuset_current_mems_allowed) { 4563 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4564 nr += array[node]; 4565 } 4566 4567 return nr; 4568 } 4569 4570 #ifdef CONFIG_SYSCTL 4571 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4572 void *buffer, size_t *length, 4573 loff_t *ppos, unsigned long *out) 4574 { 4575 struct ctl_table dup_table; 4576 4577 /* 4578 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4579 * can duplicate the @table and alter the duplicate of it. 4580 */ 4581 dup_table = *table; 4582 dup_table.data = out; 4583 4584 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4585 } 4586 4587 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4588 struct ctl_table *table, int write, 4589 void *buffer, size_t *length, loff_t *ppos) 4590 { 4591 struct hstate *h = &default_hstate; 4592 unsigned long tmp = h->max_huge_pages; 4593 int ret; 4594 4595 if (!hugepages_supported()) 4596 return -EOPNOTSUPP; 4597 4598 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4599 &tmp); 4600 if (ret) 4601 goto out; 4602 4603 if (write) 4604 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4605 NUMA_NO_NODE, tmp, *length); 4606 out: 4607 return ret; 4608 } 4609 4610 static int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4611 void *buffer, size_t *length, loff_t *ppos) 4612 { 4613 4614 return hugetlb_sysctl_handler_common(false, table, write, 4615 buffer, length, ppos); 4616 } 4617 4618 #ifdef CONFIG_NUMA 4619 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4620 void *buffer, size_t *length, loff_t *ppos) 4621 { 4622 return hugetlb_sysctl_handler_common(true, table, write, 4623 buffer, length, ppos); 4624 } 4625 #endif /* CONFIG_NUMA */ 4626 4627 static int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4628 void *buffer, size_t *length, loff_t *ppos) 4629 { 4630 struct hstate *h = &default_hstate; 4631 unsigned long tmp; 4632 int ret; 4633 4634 if (!hugepages_supported()) 4635 return -EOPNOTSUPP; 4636 4637 tmp = h->nr_overcommit_huge_pages; 4638 4639 if (write && hstate_is_gigantic(h)) 4640 return -EINVAL; 4641 4642 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4643 &tmp); 4644 if (ret) 4645 goto out; 4646 4647 if (write) { 4648 spin_lock_irq(&hugetlb_lock); 4649 h->nr_overcommit_huge_pages = tmp; 4650 spin_unlock_irq(&hugetlb_lock); 4651 } 4652 out: 4653 return ret; 4654 } 4655 4656 static struct ctl_table hugetlb_table[] = { 4657 { 4658 .procname = "nr_hugepages", 4659 .data = NULL, 4660 .maxlen = sizeof(unsigned long), 4661 .mode = 0644, 4662 .proc_handler = hugetlb_sysctl_handler, 4663 }, 4664 #ifdef CONFIG_NUMA 4665 { 4666 .procname = "nr_hugepages_mempolicy", 4667 .data = NULL, 4668 .maxlen = sizeof(unsigned long), 4669 .mode = 0644, 4670 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 4671 }, 4672 #endif 4673 { 4674 .procname = "hugetlb_shm_group", 4675 .data = &sysctl_hugetlb_shm_group, 4676 .maxlen = sizeof(gid_t), 4677 .mode = 0644, 4678 .proc_handler = proc_dointvec, 4679 }, 4680 { 4681 .procname = "nr_overcommit_hugepages", 4682 .data = NULL, 4683 .maxlen = sizeof(unsigned long), 4684 .mode = 0644, 4685 .proc_handler = hugetlb_overcommit_handler, 4686 }, 4687 { } 4688 }; 4689 4690 static void hugetlb_sysctl_init(void) 4691 { 4692 register_sysctl_init("vm", hugetlb_table); 4693 } 4694 #endif /* CONFIG_SYSCTL */ 4695 4696 void hugetlb_report_meminfo(struct seq_file *m) 4697 { 4698 struct hstate *h; 4699 unsigned long total = 0; 4700 4701 if (!hugepages_supported()) 4702 return; 4703 4704 for_each_hstate(h) { 4705 unsigned long count = h->nr_huge_pages; 4706 4707 total += huge_page_size(h) * count; 4708 4709 if (h == &default_hstate) 4710 seq_printf(m, 4711 "HugePages_Total: %5lu\n" 4712 "HugePages_Free: %5lu\n" 4713 "HugePages_Rsvd: %5lu\n" 4714 "HugePages_Surp: %5lu\n" 4715 "Hugepagesize: %8lu kB\n", 4716 count, 4717 h->free_huge_pages, 4718 h->resv_huge_pages, 4719 h->surplus_huge_pages, 4720 huge_page_size(h) / SZ_1K); 4721 } 4722 4723 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4724 } 4725 4726 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4727 { 4728 struct hstate *h = &default_hstate; 4729 4730 if (!hugepages_supported()) 4731 return 0; 4732 4733 return sysfs_emit_at(buf, len, 4734 "Node %d HugePages_Total: %5u\n" 4735 "Node %d HugePages_Free: %5u\n" 4736 "Node %d HugePages_Surp: %5u\n", 4737 nid, h->nr_huge_pages_node[nid], 4738 nid, h->free_huge_pages_node[nid], 4739 nid, h->surplus_huge_pages_node[nid]); 4740 } 4741 4742 void hugetlb_show_meminfo_node(int nid) 4743 { 4744 struct hstate *h; 4745 4746 if (!hugepages_supported()) 4747 return; 4748 4749 for_each_hstate(h) 4750 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4751 nid, 4752 h->nr_huge_pages_node[nid], 4753 h->free_huge_pages_node[nid], 4754 h->surplus_huge_pages_node[nid], 4755 huge_page_size(h) / SZ_1K); 4756 } 4757 4758 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4759 { 4760 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4761 K(atomic_long_read(&mm->hugetlb_usage))); 4762 } 4763 4764 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4765 unsigned long hugetlb_total_pages(void) 4766 { 4767 struct hstate *h; 4768 unsigned long nr_total_pages = 0; 4769 4770 for_each_hstate(h) 4771 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4772 return nr_total_pages; 4773 } 4774 4775 static int hugetlb_acct_memory(struct hstate *h, long delta) 4776 { 4777 int ret = -ENOMEM; 4778 4779 if (!delta) 4780 return 0; 4781 4782 spin_lock_irq(&hugetlb_lock); 4783 /* 4784 * When cpuset is configured, it breaks the strict hugetlb page 4785 * reservation as the accounting is done on a global variable. Such 4786 * reservation is completely rubbish in the presence of cpuset because 4787 * the reservation is not checked against page availability for the 4788 * current cpuset. Application can still potentially OOM'ed by kernel 4789 * with lack of free htlb page in cpuset that the task is in. 4790 * Attempt to enforce strict accounting with cpuset is almost 4791 * impossible (or too ugly) because cpuset is too fluid that 4792 * task or memory node can be dynamically moved between cpusets. 4793 * 4794 * The change of semantics for shared hugetlb mapping with cpuset is 4795 * undesirable. However, in order to preserve some of the semantics, 4796 * we fall back to check against current free page availability as 4797 * a best attempt and hopefully to minimize the impact of changing 4798 * semantics that cpuset has. 4799 * 4800 * Apart from cpuset, we also have memory policy mechanism that 4801 * also determines from which node the kernel will allocate memory 4802 * in a NUMA system. So similar to cpuset, we also should consider 4803 * the memory policy of the current task. Similar to the description 4804 * above. 4805 */ 4806 if (delta > 0) { 4807 if (gather_surplus_pages(h, delta) < 0) 4808 goto out; 4809 4810 if (delta > allowed_mems_nr(h)) { 4811 return_unused_surplus_pages(h, delta); 4812 goto out; 4813 } 4814 } 4815 4816 ret = 0; 4817 if (delta < 0) 4818 return_unused_surplus_pages(h, (unsigned long) -delta); 4819 4820 out: 4821 spin_unlock_irq(&hugetlb_lock); 4822 return ret; 4823 } 4824 4825 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4826 { 4827 struct resv_map *resv = vma_resv_map(vma); 4828 4829 /* 4830 * HPAGE_RESV_OWNER indicates a private mapping. 4831 * This new VMA should share its siblings reservation map if present. 4832 * The VMA will only ever have a valid reservation map pointer where 4833 * it is being copied for another still existing VMA. As that VMA 4834 * has a reference to the reservation map it cannot disappear until 4835 * after this open call completes. It is therefore safe to take a 4836 * new reference here without additional locking. 4837 */ 4838 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4839 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4840 kref_get(&resv->refs); 4841 } 4842 4843 /* 4844 * vma_lock structure for sharable mappings is vma specific. 4845 * Clear old pointer (if copied via vm_area_dup) and allocate 4846 * new structure. Before clearing, make sure vma_lock is not 4847 * for this vma. 4848 */ 4849 if (vma->vm_flags & VM_MAYSHARE) { 4850 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 4851 4852 if (vma_lock) { 4853 if (vma_lock->vma != vma) { 4854 vma->vm_private_data = NULL; 4855 hugetlb_vma_lock_alloc(vma); 4856 } else 4857 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 4858 } else 4859 hugetlb_vma_lock_alloc(vma); 4860 } 4861 } 4862 4863 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4864 { 4865 struct hstate *h = hstate_vma(vma); 4866 struct resv_map *resv; 4867 struct hugepage_subpool *spool = subpool_vma(vma); 4868 unsigned long reserve, start, end; 4869 long gbl_reserve; 4870 4871 hugetlb_vma_lock_free(vma); 4872 4873 resv = vma_resv_map(vma); 4874 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4875 return; 4876 4877 start = vma_hugecache_offset(h, vma, vma->vm_start); 4878 end = vma_hugecache_offset(h, vma, vma->vm_end); 4879 4880 reserve = (end - start) - region_count(resv, start, end); 4881 hugetlb_cgroup_uncharge_counter(resv, start, end); 4882 if (reserve) { 4883 /* 4884 * Decrement reserve counts. The global reserve count may be 4885 * adjusted if the subpool has a minimum size. 4886 */ 4887 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4888 hugetlb_acct_memory(h, -gbl_reserve); 4889 } 4890 4891 kref_put(&resv->refs, resv_map_release); 4892 } 4893 4894 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4895 { 4896 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4897 return -EINVAL; 4898 4899 /* 4900 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 4901 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 4902 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 4903 */ 4904 if (addr & ~PUD_MASK) { 4905 /* 4906 * hugetlb_vm_op_split is called right before we attempt to 4907 * split the VMA. We will need to unshare PMDs in the old and 4908 * new VMAs, so let's unshare before we split. 4909 */ 4910 unsigned long floor = addr & PUD_MASK; 4911 unsigned long ceil = floor + PUD_SIZE; 4912 4913 if (floor >= vma->vm_start && ceil <= vma->vm_end) 4914 hugetlb_unshare_pmds(vma, floor, ceil); 4915 } 4916 4917 return 0; 4918 } 4919 4920 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4921 { 4922 return huge_page_size(hstate_vma(vma)); 4923 } 4924 4925 /* 4926 * We cannot handle pagefaults against hugetlb pages at all. They cause 4927 * handle_mm_fault() to try to instantiate regular-sized pages in the 4928 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4929 * this far. 4930 */ 4931 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4932 { 4933 BUG(); 4934 return 0; 4935 } 4936 4937 /* 4938 * When a new function is introduced to vm_operations_struct and added 4939 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4940 * This is because under System V memory model, mappings created via 4941 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4942 * their original vm_ops are overwritten with shm_vm_ops. 4943 */ 4944 const struct vm_operations_struct hugetlb_vm_ops = { 4945 .fault = hugetlb_vm_op_fault, 4946 .open = hugetlb_vm_op_open, 4947 .close = hugetlb_vm_op_close, 4948 .may_split = hugetlb_vm_op_split, 4949 .pagesize = hugetlb_vm_op_pagesize, 4950 }; 4951 4952 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4953 int writable) 4954 { 4955 pte_t entry; 4956 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4957 4958 if (writable) { 4959 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4960 vma->vm_page_prot))); 4961 } else { 4962 entry = huge_pte_wrprotect(mk_huge_pte(page, 4963 vma->vm_page_prot)); 4964 } 4965 entry = pte_mkyoung(entry); 4966 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4967 4968 return entry; 4969 } 4970 4971 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4972 unsigned long address, pte_t *ptep) 4973 { 4974 pte_t entry; 4975 4976 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4977 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4978 update_mmu_cache(vma, address, ptep); 4979 } 4980 4981 bool is_hugetlb_entry_migration(pte_t pte) 4982 { 4983 swp_entry_t swp; 4984 4985 if (huge_pte_none(pte) || pte_present(pte)) 4986 return false; 4987 swp = pte_to_swp_entry(pte); 4988 if (is_migration_entry(swp)) 4989 return true; 4990 else 4991 return false; 4992 } 4993 4994 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4995 { 4996 swp_entry_t swp; 4997 4998 if (huge_pte_none(pte) || pte_present(pte)) 4999 return false; 5000 swp = pte_to_swp_entry(pte); 5001 if (is_hwpoison_entry(swp)) 5002 return true; 5003 else 5004 return false; 5005 } 5006 5007 static void 5008 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5009 struct folio *new_folio, pte_t old, unsigned long sz) 5010 { 5011 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5012 5013 __folio_mark_uptodate(new_folio); 5014 hugepage_add_new_anon_rmap(new_folio, vma, addr); 5015 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5016 newpte = huge_pte_mkuffd_wp(newpte); 5017 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5018 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5019 folio_set_hugetlb_migratable(new_folio); 5020 } 5021 5022 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5023 struct vm_area_struct *dst_vma, 5024 struct vm_area_struct *src_vma) 5025 { 5026 pte_t *src_pte, *dst_pte, entry; 5027 struct folio *pte_folio; 5028 unsigned long addr; 5029 bool cow = is_cow_mapping(src_vma->vm_flags); 5030 struct hstate *h = hstate_vma(src_vma); 5031 unsigned long sz = huge_page_size(h); 5032 unsigned long npages = pages_per_huge_page(h); 5033 struct mmu_notifier_range range; 5034 unsigned long last_addr_mask; 5035 int ret = 0; 5036 5037 if (cow) { 5038 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5039 src_vma->vm_start, 5040 src_vma->vm_end); 5041 mmu_notifier_invalidate_range_start(&range); 5042 vma_assert_write_locked(src_vma); 5043 raw_write_seqcount_begin(&src->write_protect_seq); 5044 } else { 5045 /* 5046 * For shared mappings the vma lock must be held before 5047 * calling hugetlb_walk() in the src vma. Otherwise, the 5048 * returned ptep could go away if part of a shared pmd and 5049 * another thread calls huge_pmd_unshare. 5050 */ 5051 hugetlb_vma_lock_read(src_vma); 5052 } 5053 5054 last_addr_mask = hugetlb_mask_last_page(h); 5055 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5056 spinlock_t *src_ptl, *dst_ptl; 5057 src_pte = hugetlb_walk(src_vma, addr, sz); 5058 if (!src_pte) { 5059 addr |= last_addr_mask; 5060 continue; 5061 } 5062 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5063 if (!dst_pte) { 5064 ret = -ENOMEM; 5065 break; 5066 } 5067 5068 /* 5069 * If the pagetables are shared don't copy or take references. 5070 * 5071 * dst_pte == src_pte is the common case of src/dest sharing. 5072 * However, src could have 'unshared' and dst shares with 5073 * another vma. So page_count of ptep page is checked instead 5074 * to reliably determine whether pte is shared. 5075 */ 5076 if (page_count(virt_to_page(dst_pte)) > 1) { 5077 addr |= last_addr_mask; 5078 continue; 5079 } 5080 5081 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5082 src_ptl = huge_pte_lockptr(h, src, src_pte); 5083 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5084 entry = huge_ptep_get(src_pte); 5085 again: 5086 if (huge_pte_none(entry)) { 5087 /* 5088 * Skip if src entry none. 5089 */ 5090 ; 5091 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5092 if (!userfaultfd_wp(dst_vma)) 5093 entry = huge_pte_clear_uffd_wp(entry); 5094 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5095 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5096 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5097 bool uffd_wp = pte_swp_uffd_wp(entry); 5098 5099 if (!is_readable_migration_entry(swp_entry) && cow) { 5100 /* 5101 * COW mappings require pages in both 5102 * parent and child to be set to read. 5103 */ 5104 swp_entry = make_readable_migration_entry( 5105 swp_offset(swp_entry)); 5106 entry = swp_entry_to_pte(swp_entry); 5107 if (userfaultfd_wp(src_vma) && uffd_wp) 5108 entry = pte_swp_mkuffd_wp(entry); 5109 set_huge_pte_at(src, addr, src_pte, entry, sz); 5110 } 5111 if (!userfaultfd_wp(dst_vma)) 5112 entry = huge_pte_clear_uffd_wp(entry); 5113 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5114 } else if (unlikely(is_pte_marker(entry))) { 5115 pte_marker marker = copy_pte_marker( 5116 pte_to_swp_entry(entry), dst_vma); 5117 5118 if (marker) 5119 set_huge_pte_at(dst, addr, dst_pte, 5120 make_pte_marker(marker), sz); 5121 } else { 5122 entry = huge_ptep_get(src_pte); 5123 pte_folio = page_folio(pte_page(entry)); 5124 folio_get(pte_folio); 5125 5126 /* 5127 * Failing to duplicate the anon rmap is a rare case 5128 * where we see pinned hugetlb pages while they're 5129 * prone to COW. We need to do the COW earlier during 5130 * fork. 5131 * 5132 * When pre-allocating the page or copying data, we 5133 * need to be without the pgtable locks since we could 5134 * sleep during the process. 5135 */ 5136 if (!folio_test_anon(pte_folio)) { 5137 page_dup_file_rmap(&pte_folio->page, true); 5138 } else if (page_try_dup_anon_rmap(&pte_folio->page, 5139 true, src_vma)) { 5140 pte_t src_pte_old = entry; 5141 struct folio *new_folio; 5142 5143 spin_unlock(src_ptl); 5144 spin_unlock(dst_ptl); 5145 /* Do not use reserve as it's private owned */ 5146 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5147 if (IS_ERR(new_folio)) { 5148 folio_put(pte_folio); 5149 ret = PTR_ERR(new_folio); 5150 break; 5151 } 5152 ret = copy_user_large_folio(new_folio, 5153 pte_folio, 5154 addr, dst_vma); 5155 folio_put(pte_folio); 5156 if (ret) { 5157 folio_put(new_folio); 5158 break; 5159 } 5160 5161 /* Install the new hugetlb folio if src pte stable */ 5162 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5163 src_ptl = huge_pte_lockptr(h, src, src_pte); 5164 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5165 entry = huge_ptep_get(src_pte); 5166 if (!pte_same(src_pte_old, entry)) { 5167 restore_reserve_on_error(h, dst_vma, addr, 5168 new_folio); 5169 folio_put(new_folio); 5170 /* huge_ptep of dst_pte won't change as in child */ 5171 goto again; 5172 } 5173 hugetlb_install_folio(dst_vma, dst_pte, addr, 5174 new_folio, src_pte_old, sz); 5175 spin_unlock(src_ptl); 5176 spin_unlock(dst_ptl); 5177 continue; 5178 } 5179 5180 if (cow) { 5181 /* 5182 * No need to notify as we are downgrading page 5183 * table protection not changing it to point 5184 * to a new page. 5185 * 5186 * See Documentation/mm/mmu_notifier.rst 5187 */ 5188 huge_ptep_set_wrprotect(src, addr, src_pte); 5189 entry = huge_pte_wrprotect(entry); 5190 } 5191 5192 if (!userfaultfd_wp(dst_vma)) 5193 entry = huge_pte_clear_uffd_wp(entry); 5194 5195 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5196 hugetlb_count_add(npages, dst); 5197 } 5198 spin_unlock(src_ptl); 5199 spin_unlock(dst_ptl); 5200 } 5201 5202 if (cow) { 5203 raw_write_seqcount_end(&src->write_protect_seq); 5204 mmu_notifier_invalidate_range_end(&range); 5205 } else { 5206 hugetlb_vma_unlock_read(src_vma); 5207 } 5208 5209 return ret; 5210 } 5211 5212 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5213 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5214 unsigned long sz) 5215 { 5216 struct hstate *h = hstate_vma(vma); 5217 struct mm_struct *mm = vma->vm_mm; 5218 spinlock_t *src_ptl, *dst_ptl; 5219 pte_t pte; 5220 5221 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5222 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5223 5224 /* 5225 * We don't have to worry about the ordering of src and dst ptlocks 5226 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5227 */ 5228 if (src_ptl != dst_ptl) 5229 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5230 5231 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5232 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5233 5234 if (src_ptl != dst_ptl) 5235 spin_unlock(src_ptl); 5236 spin_unlock(dst_ptl); 5237 } 5238 5239 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5240 struct vm_area_struct *new_vma, 5241 unsigned long old_addr, unsigned long new_addr, 5242 unsigned long len) 5243 { 5244 struct hstate *h = hstate_vma(vma); 5245 struct address_space *mapping = vma->vm_file->f_mapping; 5246 unsigned long sz = huge_page_size(h); 5247 struct mm_struct *mm = vma->vm_mm; 5248 unsigned long old_end = old_addr + len; 5249 unsigned long last_addr_mask; 5250 pte_t *src_pte, *dst_pte; 5251 struct mmu_notifier_range range; 5252 bool shared_pmd = false; 5253 5254 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5255 old_end); 5256 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5257 /* 5258 * In case of shared PMDs, we should cover the maximum possible 5259 * range. 5260 */ 5261 flush_cache_range(vma, range.start, range.end); 5262 5263 mmu_notifier_invalidate_range_start(&range); 5264 last_addr_mask = hugetlb_mask_last_page(h); 5265 /* Prevent race with file truncation */ 5266 hugetlb_vma_lock_write(vma); 5267 i_mmap_lock_write(mapping); 5268 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5269 src_pte = hugetlb_walk(vma, old_addr, sz); 5270 if (!src_pte) { 5271 old_addr |= last_addr_mask; 5272 new_addr |= last_addr_mask; 5273 continue; 5274 } 5275 if (huge_pte_none(huge_ptep_get(src_pte))) 5276 continue; 5277 5278 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5279 shared_pmd = true; 5280 old_addr |= last_addr_mask; 5281 new_addr |= last_addr_mask; 5282 continue; 5283 } 5284 5285 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5286 if (!dst_pte) 5287 break; 5288 5289 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5290 } 5291 5292 if (shared_pmd) 5293 flush_hugetlb_tlb_range(vma, range.start, range.end); 5294 else 5295 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5296 mmu_notifier_invalidate_range_end(&range); 5297 i_mmap_unlock_write(mapping); 5298 hugetlb_vma_unlock_write(vma); 5299 5300 return len + old_addr - old_end; 5301 } 5302 5303 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5304 unsigned long start, unsigned long end, 5305 struct page *ref_page, zap_flags_t zap_flags) 5306 { 5307 struct mm_struct *mm = vma->vm_mm; 5308 unsigned long address; 5309 pte_t *ptep; 5310 pte_t pte; 5311 spinlock_t *ptl; 5312 struct page *page; 5313 struct hstate *h = hstate_vma(vma); 5314 unsigned long sz = huge_page_size(h); 5315 unsigned long last_addr_mask; 5316 bool force_flush = false; 5317 5318 WARN_ON(!is_vm_hugetlb_page(vma)); 5319 BUG_ON(start & ~huge_page_mask(h)); 5320 BUG_ON(end & ~huge_page_mask(h)); 5321 5322 /* 5323 * This is a hugetlb vma, all the pte entries should point 5324 * to huge page. 5325 */ 5326 tlb_change_page_size(tlb, sz); 5327 tlb_start_vma(tlb, vma); 5328 5329 last_addr_mask = hugetlb_mask_last_page(h); 5330 address = start; 5331 for (; address < end; address += sz) { 5332 ptep = hugetlb_walk(vma, address, sz); 5333 if (!ptep) { 5334 address |= last_addr_mask; 5335 continue; 5336 } 5337 5338 ptl = huge_pte_lock(h, mm, ptep); 5339 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5340 spin_unlock(ptl); 5341 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5342 force_flush = true; 5343 address |= last_addr_mask; 5344 continue; 5345 } 5346 5347 pte = huge_ptep_get(ptep); 5348 if (huge_pte_none(pte)) { 5349 spin_unlock(ptl); 5350 continue; 5351 } 5352 5353 /* 5354 * Migrating hugepage or HWPoisoned hugepage is already 5355 * unmapped and its refcount is dropped, so just clear pte here. 5356 */ 5357 if (unlikely(!pte_present(pte))) { 5358 /* 5359 * If the pte was wr-protected by uffd-wp in any of the 5360 * swap forms, meanwhile the caller does not want to 5361 * drop the uffd-wp bit in this zap, then replace the 5362 * pte with a marker. 5363 */ 5364 if (pte_swp_uffd_wp_any(pte) && 5365 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5366 set_huge_pte_at(mm, address, ptep, 5367 make_pte_marker(PTE_MARKER_UFFD_WP), 5368 sz); 5369 else 5370 huge_pte_clear(mm, address, ptep, sz); 5371 spin_unlock(ptl); 5372 continue; 5373 } 5374 5375 page = pte_page(pte); 5376 /* 5377 * If a reference page is supplied, it is because a specific 5378 * page is being unmapped, not a range. Ensure the page we 5379 * are about to unmap is the actual page of interest. 5380 */ 5381 if (ref_page) { 5382 if (page != ref_page) { 5383 spin_unlock(ptl); 5384 continue; 5385 } 5386 /* 5387 * Mark the VMA as having unmapped its page so that 5388 * future faults in this VMA will fail rather than 5389 * looking like data was lost 5390 */ 5391 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5392 } 5393 5394 pte = huge_ptep_get_and_clear(mm, address, ptep); 5395 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5396 if (huge_pte_dirty(pte)) 5397 set_page_dirty(page); 5398 /* Leave a uffd-wp pte marker if needed */ 5399 if (huge_pte_uffd_wp(pte) && 5400 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5401 set_huge_pte_at(mm, address, ptep, 5402 make_pte_marker(PTE_MARKER_UFFD_WP), 5403 sz); 5404 hugetlb_count_sub(pages_per_huge_page(h), mm); 5405 page_remove_rmap(page, vma, true); 5406 5407 spin_unlock(ptl); 5408 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5409 /* 5410 * Bail out after unmapping reference page if supplied 5411 */ 5412 if (ref_page) 5413 break; 5414 } 5415 tlb_end_vma(tlb, vma); 5416 5417 /* 5418 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5419 * could defer the flush until now, since by holding i_mmap_rwsem we 5420 * guaranteed that the last refernece would not be dropped. But we must 5421 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5422 * dropped and the last reference to the shared PMDs page might be 5423 * dropped as well. 5424 * 5425 * In theory we could defer the freeing of the PMD pages as well, but 5426 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5427 * detect sharing, so we cannot defer the release of the page either. 5428 * Instead, do flush now. 5429 */ 5430 if (force_flush) 5431 tlb_flush_mmu_tlbonly(tlb); 5432 } 5433 5434 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5435 unsigned long *start, unsigned long *end) 5436 { 5437 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5438 return; 5439 5440 adjust_range_if_pmd_sharing_possible(vma, start, end); 5441 hugetlb_vma_lock_write(vma); 5442 if (vma->vm_file) 5443 i_mmap_lock_write(vma->vm_file->f_mapping); 5444 } 5445 5446 void __hugetlb_zap_end(struct vm_area_struct *vma, 5447 struct zap_details *details) 5448 { 5449 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5450 5451 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5452 return; 5453 5454 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5455 /* 5456 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5457 * When the vma_lock is freed, this makes the vma ineligible 5458 * for pmd sharing. And, i_mmap_rwsem is required to set up 5459 * pmd sharing. This is important as page tables for this 5460 * unmapped range will be asynchrously deleted. If the page 5461 * tables are shared, there will be issues when accessed by 5462 * someone else. 5463 */ 5464 __hugetlb_vma_unlock_write_free(vma); 5465 } else { 5466 hugetlb_vma_unlock_write(vma); 5467 } 5468 5469 if (vma->vm_file) 5470 i_mmap_unlock_write(vma->vm_file->f_mapping); 5471 } 5472 5473 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5474 unsigned long end, struct page *ref_page, 5475 zap_flags_t zap_flags) 5476 { 5477 struct mmu_notifier_range range; 5478 struct mmu_gather tlb; 5479 5480 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5481 start, end); 5482 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5483 mmu_notifier_invalidate_range_start(&range); 5484 tlb_gather_mmu(&tlb, vma->vm_mm); 5485 5486 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5487 5488 mmu_notifier_invalidate_range_end(&range); 5489 tlb_finish_mmu(&tlb); 5490 } 5491 5492 /* 5493 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5494 * mapping it owns the reserve page for. The intention is to unmap the page 5495 * from other VMAs and let the children be SIGKILLed if they are faulting the 5496 * same region. 5497 */ 5498 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5499 struct page *page, unsigned long address) 5500 { 5501 struct hstate *h = hstate_vma(vma); 5502 struct vm_area_struct *iter_vma; 5503 struct address_space *mapping; 5504 pgoff_t pgoff; 5505 5506 /* 5507 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5508 * from page cache lookup which is in HPAGE_SIZE units. 5509 */ 5510 address = address & huge_page_mask(h); 5511 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5512 vma->vm_pgoff; 5513 mapping = vma->vm_file->f_mapping; 5514 5515 /* 5516 * Take the mapping lock for the duration of the table walk. As 5517 * this mapping should be shared between all the VMAs, 5518 * __unmap_hugepage_range() is called as the lock is already held 5519 */ 5520 i_mmap_lock_write(mapping); 5521 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5522 /* Do not unmap the current VMA */ 5523 if (iter_vma == vma) 5524 continue; 5525 5526 /* 5527 * Shared VMAs have their own reserves and do not affect 5528 * MAP_PRIVATE accounting but it is possible that a shared 5529 * VMA is using the same page so check and skip such VMAs. 5530 */ 5531 if (iter_vma->vm_flags & VM_MAYSHARE) 5532 continue; 5533 5534 /* 5535 * Unmap the page from other VMAs without their own reserves. 5536 * They get marked to be SIGKILLed if they fault in these 5537 * areas. This is because a future no-page fault on this VMA 5538 * could insert a zeroed page instead of the data existing 5539 * from the time of fork. This would look like data corruption 5540 */ 5541 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5542 unmap_hugepage_range(iter_vma, address, 5543 address + huge_page_size(h), page, 0); 5544 } 5545 i_mmap_unlock_write(mapping); 5546 } 5547 5548 /* 5549 * hugetlb_wp() should be called with page lock of the original hugepage held. 5550 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5551 * cannot race with other handlers or page migration. 5552 * Keep the pte_same checks anyway to make transition from the mutex easier. 5553 */ 5554 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5555 unsigned long address, pte_t *ptep, unsigned int flags, 5556 struct folio *pagecache_folio, spinlock_t *ptl) 5557 { 5558 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5559 pte_t pte = huge_ptep_get(ptep); 5560 struct hstate *h = hstate_vma(vma); 5561 struct folio *old_folio; 5562 struct folio *new_folio; 5563 int outside_reserve = 0; 5564 vm_fault_t ret = 0; 5565 unsigned long haddr = address & huge_page_mask(h); 5566 struct mmu_notifier_range range; 5567 5568 /* 5569 * Never handle CoW for uffd-wp protected pages. It should be only 5570 * handled when the uffd-wp protection is removed. 5571 * 5572 * Note that only the CoW optimization path (in hugetlb_no_page()) 5573 * can trigger this, because hugetlb_fault() will always resolve 5574 * uffd-wp bit first. 5575 */ 5576 if (!unshare && huge_pte_uffd_wp(pte)) 5577 return 0; 5578 5579 /* 5580 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5581 * PTE mapped R/O such as maybe_mkwrite() would do. 5582 */ 5583 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5584 return VM_FAULT_SIGSEGV; 5585 5586 /* Let's take out MAP_SHARED mappings first. */ 5587 if (vma->vm_flags & VM_MAYSHARE) { 5588 set_huge_ptep_writable(vma, haddr, ptep); 5589 return 0; 5590 } 5591 5592 old_folio = page_folio(pte_page(pte)); 5593 5594 delayacct_wpcopy_start(); 5595 5596 retry_avoidcopy: 5597 /* 5598 * If no-one else is actually using this page, we're the exclusive 5599 * owner and can reuse this page. 5600 */ 5601 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5602 if (!PageAnonExclusive(&old_folio->page)) 5603 page_move_anon_rmap(&old_folio->page, vma); 5604 if (likely(!unshare)) 5605 set_huge_ptep_writable(vma, haddr, ptep); 5606 5607 delayacct_wpcopy_end(); 5608 return 0; 5609 } 5610 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5611 PageAnonExclusive(&old_folio->page), &old_folio->page); 5612 5613 /* 5614 * If the process that created a MAP_PRIVATE mapping is about to 5615 * perform a COW due to a shared page count, attempt to satisfy 5616 * the allocation without using the existing reserves. The pagecache 5617 * page is used to determine if the reserve at this address was 5618 * consumed or not. If reserves were used, a partial faulted mapping 5619 * at the time of fork() could consume its reserves on COW instead 5620 * of the full address range. 5621 */ 5622 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5623 old_folio != pagecache_folio) 5624 outside_reserve = 1; 5625 5626 folio_get(old_folio); 5627 5628 /* 5629 * Drop page table lock as buddy allocator may be called. It will 5630 * be acquired again before returning to the caller, as expected. 5631 */ 5632 spin_unlock(ptl); 5633 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve); 5634 5635 if (IS_ERR(new_folio)) { 5636 /* 5637 * If a process owning a MAP_PRIVATE mapping fails to COW, 5638 * it is due to references held by a child and an insufficient 5639 * huge page pool. To guarantee the original mappers 5640 * reliability, unmap the page from child processes. The child 5641 * may get SIGKILLed if it later faults. 5642 */ 5643 if (outside_reserve) { 5644 struct address_space *mapping = vma->vm_file->f_mapping; 5645 pgoff_t idx; 5646 u32 hash; 5647 5648 folio_put(old_folio); 5649 /* 5650 * Drop hugetlb_fault_mutex and vma_lock before 5651 * unmapping. unmapping needs to hold vma_lock 5652 * in write mode. Dropping vma_lock in read mode 5653 * here is OK as COW mappings do not interact with 5654 * PMD sharing. 5655 * 5656 * Reacquire both after unmap operation. 5657 */ 5658 idx = vma_hugecache_offset(h, vma, haddr); 5659 hash = hugetlb_fault_mutex_hash(mapping, idx); 5660 hugetlb_vma_unlock_read(vma); 5661 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5662 5663 unmap_ref_private(mm, vma, &old_folio->page, haddr); 5664 5665 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5666 hugetlb_vma_lock_read(vma); 5667 spin_lock(ptl); 5668 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5669 if (likely(ptep && 5670 pte_same(huge_ptep_get(ptep), pte))) 5671 goto retry_avoidcopy; 5672 /* 5673 * race occurs while re-acquiring page table 5674 * lock, and our job is done. 5675 */ 5676 delayacct_wpcopy_end(); 5677 return 0; 5678 } 5679 5680 ret = vmf_error(PTR_ERR(new_folio)); 5681 goto out_release_old; 5682 } 5683 5684 /* 5685 * When the original hugepage is shared one, it does not have 5686 * anon_vma prepared. 5687 */ 5688 if (unlikely(anon_vma_prepare(vma))) { 5689 ret = VM_FAULT_OOM; 5690 goto out_release_all; 5691 } 5692 5693 if (copy_user_large_folio(new_folio, old_folio, address, vma)) { 5694 ret = VM_FAULT_HWPOISON_LARGE; 5695 goto out_release_all; 5696 } 5697 __folio_mark_uptodate(new_folio); 5698 5699 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr, 5700 haddr + huge_page_size(h)); 5701 mmu_notifier_invalidate_range_start(&range); 5702 5703 /* 5704 * Retake the page table lock to check for racing updates 5705 * before the page tables are altered 5706 */ 5707 spin_lock(ptl); 5708 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5709 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5710 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 5711 5712 /* Break COW or unshare */ 5713 huge_ptep_clear_flush(vma, haddr, ptep); 5714 page_remove_rmap(&old_folio->page, vma, true); 5715 hugepage_add_new_anon_rmap(new_folio, vma, haddr); 5716 if (huge_pte_uffd_wp(pte)) 5717 newpte = huge_pte_mkuffd_wp(newpte); 5718 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h)); 5719 folio_set_hugetlb_migratable(new_folio); 5720 /* Make the old page be freed below */ 5721 new_folio = old_folio; 5722 } 5723 spin_unlock(ptl); 5724 mmu_notifier_invalidate_range_end(&range); 5725 out_release_all: 5726 /* 5727 * No restore in case of successful pagetable update (Break COW or 5728 * unshare) 5729 */ 5730 if (new_folio != old_folio) 5731 restore_reserve_on_error(h, vma, haddr, new_folio); 5732 folio_put(new_folio); 5733 out_release_old: 5734 folio_put(old_folio); 5735 5736 spin_lock(ptl); /* Caller expects lock to be held */ 5737 5738 delayacct_wpcopy_end(); 5739 return ret; 5740 } 5741 5742 /* 5743 * Return whether there is a pagecache page to back given address within VMA. 5744 */ 5745 static bool hugetlbfs_pagecache_present(struct hstate *h, 5746 struct vm_area_struct *vma, unsigned long address) 5747 { 5748 struct address_space *mapping = vma->vm_file->f_mapping; 5749 pgoff_t idx = vma_hugecache_offset(h, vma, address); 5750 struct folio *folio; 5751 5752 folio = filemap_get_folio(mapping, idx); 5753 if (IS_ERR(folio)) 5754 return false; 5755 folio_put(folio); 5756 return true; 5757 } 5758 5759 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 5760 pgoff_t idx) 5761 { 5762 struct inode *inode = mapping->host; 5763 struct hstate *h = hstate_inode(inode); 5764 int err; 5765 5766 __folio_set_locked(folio); 5767 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5768 5769 if (unlikely(err)) { 5770 __folio_clear_locked(folio); 5771 return err; 5772 } 5773 folio_clear_hugetlb_restore_reserve(folio); 5774 5775 /* 5776 * mark folio dirty so that it will not be removed from cache/file 5777 * by non-hugetlbfs specific code paths. 5778 */ 5779 folio_mark_dirty(folio); 5780 5781 spin_lock(&inode->i_lock); 5782 inode->i_blocks += blocks_per_huge_page(h); 5783 spin_unlock(&inode->i_lock); 5784 return 0; 5785 } 5786 5787 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5788 struct address_space *mapping, 5789 pgoff_t idx, 5790 unsigned int flags, 5791 unsigned long haddr, 5792 unsigned long addr, 5793 unsigned long reason) 5794 { 5795 u32 hash; 5796 struct vm_fault vmf = { 5797 .vma = vma, 5798 .address = haddr, 5799 .real_address = addr, 5800 .flags = flags, 5801 5802 /* 5803 * Hard to debug if it ends up being 5804 * used by a callee that assumes 5805 * something about the other 5806 * uninitialized fields... same as in 5807 * memory.c 5808 */ 5809 }; 5810 5811 /* 5812 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5813 * userfault. Also mmap_lock could be dropped due to handling 5814 * userfault, any vma operation should be careful from here. 5815 */ 5816 hugetlb_vma_unlock_read(vma); 5817 hash = hugetlb_fault_mutex_hash(mapping, idx); 5818 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5819 return handle_userfault(&vmf, reason); 5820 } 5821 5822 /* 5823 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5824 * false if pte changed or is changing. 5825 */ 5826 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 5827 pte_t *ptep, pte_t old_pte) 5828 { 5829 spinlock_t *ptl; 5830 bool same; 5831 5832 ptl = huge_pte_lock(h, mm, ptep); 5833 same = pte_same(huge_ptep_get(ptep), old_pte); 5834 spin_unlock(ptl); 5835 5836 return same; 5837 } 5838 5839 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5840 struct vm_area_struct *vma, 5841 struct address_space *mapping, pgoff_t idx, 5842 unsigned long address, pte_t *ptep, 5843 pte_t old_pte, unsigned int flags) 5844 { 5845 struct hstate *h = hstate_vma(vma); 5846 vm_fault_t ret = VM_FAULT_SIGBUS; 5847 int anon_rmap = 0; 5848 unsigned long size; 5849 struct folio *folio; 5850 pte_t new_pte; 5851 spinlock_t *ptl; 5852 unsigned long haddr = address & huge_page_mask(h); 5853 bool new_folio, new_pagecache_folio = false; 5854 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 5855 5856 /* 5857 * Currently, we are forced to kill the process in the event the 5858 * original mapper has unmapped pages from the child due to a failed 5859 * COW/unsharing. Warn that such a situation has occurred as it may not 5860 * be obvious. 5861 */ 5862 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5863 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5864 current->pid); 5865 goto out; 5866 } 5867 5868 /* 5869 * Use page lock to guard against racing truncation 5870 * before we get page_table_lock. 5871 */ 5872 new_folio = false; 5873 folio = filemap_lock_folio(mapping, idx); 5874 if (IS_ERR(folio)) { 5875 size = i_size_read(mapping->host) >> huge_page_shift(h); 5876 if (idx >= size) 5877 goto out; 5878 /* Check for page in userfault range */ 5879 if (userfaultfd_missing(vma)) { 5880 /* 5881 * Since hugetlb_no_page() was examining pte 5882 * without pgtable lock, we need to re-test under 5883 * lock because the pte may not be stable and could 5884 * have changed from under us. Try to detect 5885 * either changed or during-changing ptes and retry 5886 * properly when needed. 5887 * 5888 * Note that userfaultfd is actually fine with 5889 * false positives (e.g. caused by pte changed), 5890 * but not wrong logical events (e.g. caused by 5891 * reading a pte during changing). The latter can 5892 * confuse the userspace, so the strictness is very 5893 * much preferred. E.g., MISSING event should 5894 * never happen on the page after UFFDIO_COPY has 5895 * correctly installed the page and returned. 5896 */ 5897 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5898 ret = 0; 5899 goto out; 5900 } 5901 5902 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5903 haddr, address, 5904 VM_UFFD_MISSING); 5905 } 5906 5907 folio = alloc_hugetlb_folio(vma, haddr, 0); 5908 if (IS_ERR(folio)) { 5909 /* 5910 * Returning error will result in faulting task being 5911 * sent SIGBUS. The hugetlb fault mutex prevents two 5912 * tasks from racing to fault in the same page which 5913 * could result in false unable to allocate errors. 5914 * Page migration does not take the fault mutex, but 5915 * does a clear then write of pte's under page table 5916 * lock. Page fault code could race with migration, 5917 * notice the clear pte and try to allocate a page 5918 * here. Before returning error, get ptl and make 5919 * sure there really is no pte entry. 5920 */ 5921 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 5922 ret = vmf_error(PTR_ERR(folio)); 5923 else 5924 ret = 0; 5925 goto out; 5926 } 5927 clear_huge_page(&folio->page, address, pages_per_huge_page(h)); 5928 __folio_mark_uptodate(folio); 5929 new_folio = true; 5930 5931 if (vma->vm_flags & VM_MAYSHARE) { 5932 int err = hugetlb_add_to_page_cache(folio, mapping, idx); 5933 if (err) { 5934 /* 5935 * err can't be -EEXIST which implies someone 5936 * else consumed the reservation since hugetlb 5937 * fault mutex is held when add a hugetlb page 5938 * to the page cache. So it's safe to call 5939 * restore_reserve_on_error() here. 5940 */ 5941 restore_reserve_on_error(h, vma, haddr, folio); 5942 folio_put(folio); 5943 goto out; 5944 } 5945 new_pagecache_folio = true; 5946 } else { 5947 folio_lock(folio); 5948 if (unlikely(anon_vma_prepare(vma))) { 5949 ret = VM_FAULT_OOM; 5950 goto backout_unlocked; 5951 } 5952 anon_rmap = 1; 5953 } 5954 } else { 5955 /* 5956 * If memory error occurs between mmap() and fault, some process 5957 * don't have hwpoisoned swap entry for errored virtual address. 5958 * So we need to block hugepage fault by PG_hwpoison bit check. 5959 */ 5960 if (unlikely(folio_test_hwpoison(folio))) { 5961 ret = VM_FAULT_HWPOISON_LARGE | 5962 VM_FAULT_SET_HINDEX(hstate_index(h)); 5963 goto backout_unlocked; 5964 } 5965 5966 /* Check for page in userfault range. */ 5967 if (userfaultfd_minor(vma)) { 5968 folio_unlock(folio); 5969 folio_put(folio); 5970 /* See comment in userfaultfd_missing() block above */ 5971 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5972 ret = 0; 5973 goto out; 5974 } 5975 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5976 haddr, address, 5977 VM_UFFD_MINOR); 5978 } 5979 } 5980 5981 /* 5982 * If we are going to COW a private mapping later, we examine the 5983 * pending reservations for this page now. This will ensure that 5984 * any allocations necessary to record that reservation occur outside 5985 * the spinlock. 5986 */ 5987 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5988 if (vma_needs_reservation(h, vma, haddr) < 0) { 5989 ret = VM_FAULT_OOM; 5990 goto backout_unlocked; 5991 } 5992 /* Just decrements count, does not deallocate */ 5993 vma_end_reservation(h, vma, haddr); 5994 } 5995 5996 ptl = huge_pte_lock(h, mm, ptep); 5997 ret = 0; 5998 /* If pte changed from under us, retry */ 5999 if (!pte_same(huge_ptep_get(ptep), old_pte)) 6000 goto backout; 6001 6002 if (anon_rmap) 6003 hugepage_add_new_anon_rmap(folio, vma, haddr); 6004 else 6005 page_dup_file_rmap(&folio->page, true); 6006 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 6007 && (vma->vm_flags & VM_SHARED))); 6008 /* 6009 * If this pte was previously wr-protected, keep it wr-protected even 6010 * if populated. 6011 */ 6012 if (unlikely(pte_marker_uffd_wp(old_pte))) 6013 new_pte = huge_pte_mkuffd_wp(new_pte); 6014 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h)); 6015 6016 hugetlb_count_add(pages_per_huge_page(h), mm); 6017 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6018 /* Optimization, do the COW without a second fault */ 6019 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl); 6020 } 6021 6022 spin_unlock(ptl); 6023 6024 /* 6025 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6026 * found in the pagecache may not have hugetlb_migratable if they have 6027 * been isolated for migration. 6028 */ 6029 if (new_folio) 6030 folio_set_hugetlb_migratable(folio); 6031 6032 folio_unlock(folio); 6033 out: 6034 hugetlb_vma_unlock_read(vma); 6035 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6036 return ret; 6037 6038 backout: 6039 spin_unlock(ptl); 6040 backout_unlocked: 6041 if (new_folio && !new_pagecache_folio) 6042 restore_reserve_on_error(h, vma, haddr, folio); 6043 6044 folio_unlock(folio); 6045 folio_put(folio); 6046 goto out; 6047 } 6048 6049 #ifdef CONFIG_SMP 6050 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6051 { 6052 unsigned long key[2]; 6053 u32 hash; 6054 6055 key[0] = (unsigned long) mapping; 6056 key[1] = idx; 6057 6058 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6059 6060 return hash & (num_fault_mutexes - 1); 6061 } 6062 #else 6063 /* 6064 * For uniprocessor systems we always use a single mutex, so just 6065 * return 0 and avoid the hashing overhead. 6066 */ 6067 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6068 { 6069 return 0; 6070 } 6071 #endif 6072 6073 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6074 unsigned long address, unsigned int flags) 6075 { 6076 pte_t *ptep, entry; 6077 spinlock_t *ptl; 6078 vm_fault_t ret; 6079 u32 hash; 6080 pgoff_t idx; 6081 struct folio *folio = NULL; 6082 struct folio *pagecache_folio = NULL; 6083 struct hstate *h = hstate_vma(vma); 6084 struct address_space *mapping; 6085 int need_wait_lock = 0; 6086 unsigned long haddr = address & huge_page_mask(h); 6087 6088 /* TODO: Handle faults under the VMA lock */ 6089 if (flags & FAULT_FLAG_VMA_LOCK) { 6090 vma_end_read(vma); 6091 return VM_FAULT_RETRY; 6092 } 6093 6094 /* 6095 * Serialize hugepage allocation and instantiation, so that we don't 6096 * get spurious allocation failures if two CPUs race to instantiate 6097 * the same page in the page cache. 6098 */ 6099 mapping = vma->vm_file->f_mapping; 6100 idx = vma_hugecache_offset(h, vma, haddr); 6101 hash = hugetlb_fault_mutex_hash(mapping, idx); 6102 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6103 6104 /* 6105 * Acquire vma lock before calling huge_pte_alloc and hold 6106 * until finished with ptep. This prevents huge_pmd_unshare from 6107 * being called elsewhere and making the ptep no longer valid. 6108 */ 6109 hugetlb_vma_lock_read(vma); 6110 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 6111 if (!ptep) { 6112 hugetlb_vma_unlock_read(vma); 6113 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6114 return VM_FAULT_OOM; 6115 } 6116 6117 entry = huge_ptep_get(ptep); 6118 if (huge_pte_none_mostly(entry)) { 6119 if (is_pte_marker(entry)) { 6120 pte_marker marker = 6121 pte_marker_get(pte_to_swp_entry(entry)); 6122 6123 if (marker & PTE_MARKER_POISONED) { 6124 ret = VM_FAULT_HWPOISON_LARGE; 6125 goto out_mutex; 6126 } 6127 } 6128 6129 /* 6130 * Other PTE markers should be handled the same way as none PTE. 6131 * 6132 * hugetlb_no_page will drop vma lock and hugetlb fault 6133 * mutex internally, which make us return immediately. 6134 */ 6135 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 6136 entry, flags); 6137 } 6138 6139 ret = 0; 6140 6141 /* 6142 * entry could be a migration/hwpoison entry at this point, so this 6143 * check prevents the kernel from going below assuming that we have 6144 * an active hugepage in pagecache. This goto expects the 2nd page 6145 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 6146 * properly handle it. 6147 */ 6148 if (!pte_present(entry)) { 6149 if (unlikely(is_hugetlb_entry_migration(entry))) { 6150 /* 6151 * Release the hugetlb fault lock now, but retain 6152 * the vma lock, because it is needed to guard the 6153 * huge_pte_lockptr() later in 6154 * migration_entry_wait_huge(). The vma lock will 6155 * be released there. 6156 */ 6157 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6158 migration_entry_wait_huge(vma, ptep); 6159 return 0; 6160 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 6161 ret = VM_FAULT_HWPOISON_LARGE | 6162 VM_FAULT_SET_HINDEX(hstate_index(h)); 6163 goto out_mutex; 6164 } 6165 6166 /* 6167 * If we are going to COW/unshare the mapping later, we examine the 6168 * pending reservations for this page now. This will ensure that any 6169 * allocations necessary to record that reservation occur outside the 6170 * spinlock. Also lookup the pagecache page now as it is used to 6171 * determine if a reservation has been consumed. 6172 */ 6173 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6174 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 6175 if (vma_needs_reservation(h, vma, haddr) < 0) { 6176 ret = VM_FAULT_OOM; 6177 goto out_mutex; 6178 } 6179 /* Just decrements count, does not deallocate */ 6180 vma_end_reservation(h, vma, haddr); 6181 6182 pagecache_folio = filemap_lock_folio(mapping, idx); 6183 if (IS_ERR(pagecache_folio)) 6184 pagecache_folio = NULL; 6185 } 6186 6187 ptl = huge_pte_lock(h, mm, ptep); 6188 6189 /* Check for a racing update before calling hugetlb_wp() */ 6190 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 6191 goto out_ptl; 6192 6193 /* Handle userfault-wp first, before trying to lock more pages */ 6194 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 6195 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 6196 struct vm_fault vmf = { 6197 .vma = vma, 6198 .address = haddr, 6199 .real_address = address, 6200 .flags = flags, 6201 }; 6202 6203 spin_unlock(ptl); 6204 if (pagecache_folio) { 6205 folio_unlock(pagecache_folio); 6206 folio_put(pagecache_folio); 6207 } 6208 hugetlb_vma_unlock_read(vma); 6209 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6210 return handle_userfault(&vmf, VM_UFFD_WP); 6211 } 6212 6213 /* 6214 * hugetlb_wp() requires page locks of pte_page(entry) and 6215 * pagecache_folio, so here we need take the former one 6216 * when folio != pagecache_folio or !pagecache_folio. 6217 */ 6218 folio = page_folio(pte_page(entry)); 6219 if (folio != pagecache_folio) 6220 if (!folio_trylock(folio)) { 6221 need_wait_lock = 1; 6222 goto out_ptl; 6223 } 6224 6225 folio_get(folio); 6226 6227 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6228 if (!huge_pte_write(entry)) { 6229 ret = hugetlb_wp(mm, vma, address, ptep, flags, 6230 pagecache_folio, ptl); 6231 goto out_put_page; 6232 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6233 entry = huge_pte_mkdirty(entry); 6234 } 6235 } 6236 entry = pte_mkyoung(entry); 6237 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 6238 flags & FAULT_FLAG_WRITE)) 6239 update_mmu_cache(vma, haddr, ptep); 6240 out_put_page: 6241 if (folio != pagecache_folio) 6242 folio_unlock(folio); 6243 folio_put(folio); 6244 out_ptl: 6245 spin_unlock(ptl); 6246 6247 if (pagecache_folio) { 6248 folio_unlock(pagecache_folio); 6249 folio_put(pagecache_folio); 6250 } 6251 out_mutex: 6252 hugetlb_vma_unlock_read(vma); 6253 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6254 /* 6255 * Generally it's safe to hold refcount during waiting page lock. But 6256 * here we just wait to defer the next page fault to avoid busy loop and 6257 * the page is not used after unlocked before returning from the current 6258 * page fault. So we are safe from accessing freed page, even if we wait 6259 * here without taking refcount. 6260 */ 6261 if (need_wait_lock) 6262 folio_wait_locked(folio); 6263 return ret; 6264 } 6265 6266 #ifdef CONFIG_USERFAULTFD 6267 /* 6268 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6269 * with modifications for hugetlb pages. 6270 */ 6271 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6272 struct vm_area_struct *dst_vma, 6273 unsigned long dst_addr, 6274 unsigned long src_addr, 6275 uffd_flags_t flags, 6276 struct folio **foliop) 6277 { 6278 struct mm_struct *dst_mm = dst_vma->vm_mm; 6279 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6280 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6281 struct hstate *h = hstate_vma(dst_vma); 6282 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6283 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6284 unsigned long size; 6285 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6286 pte_t _dst_pte; 6287 spinlock_t *ptl; 6288 int ret = -ENOMEM; 6289 struct folio *folio; 6290 int writable; 6291 bool folio_in_pagecache = false; 6292 6293 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6294 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6295 6296 /* Don't overwrite any existing PTEs (even markers) */ 6297 if (!huge_pte_none(huge_ptep_get(dst_pte))) { 6298 spin_unlock(ptl); 6299 return -EEXIST; 6300 } 6301 6302 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6303 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, 6304 huge_page_size(h)); 6305 6306 /* No need to invalidate - it was non-present before */ 6307 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6308 6309 spin_unlock(ptl); 6310 return 0; 6311 } 6312 6313 if (is_continue) { 6314 ret = -EFAULT; 6315 folio = filemap_lock_folio(mapping, idx); 6316 if (IS_ERR(folio)) 6317 goto out; 6318 folio_in_pagecache = true; 6319 } else if (!*foliop) { 6320 /* If a folio already exists, then it's UFFDIO_COPY for 6321 * a non-missing case. Return -EEXIST. 6322 */ 6323 if (vm_shared && 6324 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6325 ret = -EEXIST; 6326 goto out; 6327 } 6328 6329 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6330 if (IS_ERR(folio)) { 6331 ret = -ENOMEM; 6332 goto out; 6333 } 6334 6335 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6336 false); 6337 6338 /* fallback to copy_from_user outside mmap_lock */ 6339 if (unlikely(ret)) { 6340 ret = -ENOENT; 6341 /* Free the allocated folio which may have 6342 * consumed a reservation. 6343 */ 6344 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6345 folio_put(folio); 6346 6347 /* Allocate a temporary folio to hold the copied 6348 * contents. 6349 */ 6350 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6351 if (!folio) { 6352 ret = -ENOMEM; 6353 goto out; 6354 } 6355 *foliop = folio; 6356 /* Set the outparam foliop and return to the caller to 6357 * copy the contents outside the lock. Don't free the 6358 * folio. 6359 */ 6360 goto out; 6361 } 6362 } else { 6363 if (vm_shared && 6364 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6365 folio_put(*foliop); 6366 ret = -EEXIST; 6367 *foliop = NULL; 6368 goto out; 6369 } 6370 6371 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6372 if (IS_ERR(folio)) { 6373 folio_put(*foliop); 6374 ret = -ENOMEM; 6375 *foliop = NULL; 6376 goto out; 6377 } 6378 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6379 folio_put(*foliop); 6380 *foliop = NULL; 6381 if (ret) { 6382 folio_put(folio); 6383 goto out; 6384 } 6385 } 6386 6387 /* 6388 * The memory barrier inside __folio_mark_uptodate makes sure that 6389 * preceding stores to the page contents become visible before 6390 * the set_pte_at() write. 6391 */ 6392 __folio_mark_uptodate(folio); 6393 6394 /* Add shared, newly allocated pages to the page cache. */ 6395 if (vm_shared && !is_continue) { 6396 size = i_size_read(mapping->host) >> huge_page_shift(h); 6397 ret = -EFAULT; 6398 if (idx >= size) 6399 goto out_release_nounlock; 6400 6401 /* 6402 * Serialization between remove_inode_hugepages() and 6403 * hugetlb_add_to_page_cache() below happens through the 6404 * hugetlb_fault_mutex_table that here must be hold by 6405 * the caller. 6406 */ 6407 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6408 if (ret) 6409 goto out_release_nounlock; 6410 folio_in_pagecache = true; 6411 } 6412 6413 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6414 6415 ret = -EIO; 6416 if (folio_test_hwpoison(folio)) 6417 goto out_release_unlock; 6418 6419 /* 6420 * We allow to overwrite a pte marker: consider when both MISSING|WP 6421 * registered, we firstly wr-protect a none pte which has no page cache 6422 * page backing it, then access the page. 6423 */ 6424 ret = -EEXIST; 6425 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6426 goto out_release_unlock; 6427 6428 if (folio_in_pagecache) 6429 page_dup_file_rmap(&folio->page, true); 6430 else 6431 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr); 6432 6433 /* 6434 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6435 * with wp flag set, don't set pte write bit. 6436 */ 6437 if (wp_enabled || (is_continue && !vm_shared)) 6438 writable = 0; 6439 else 6440 writable = dst_vma->vm_flags & VM_WRITE; 6441 6442 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6443 /* 6444 * Always mark UFFDIO_COPY page dirty; note that this may not be 6445 * extremely important for hugetlbfs for now since swapping is not 6446 * supported, but we should still be clear in that this page cannot be 6447 * thrown away at will, even if write bit not set. 6448 */ 6449 _dst_pte = huge_pte_mkdirty(_dst_pte); 6450 _dst_pte = pte_mkyoung(_dst_pte); 6451 6452 if (wp_enabled) 6453 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6454 6455 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h)); 6456 6457 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6458 6459 /* No need to invalidate - it was non-present before */ 6460 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6461 6462 spin_unlock(ptl); 6463 if (!is_continue) 6464 folio_set_hugetlb_migratable(folio); 6465 if (vm_shared || is_continue) 6466 folio_unlock(folio); 6467 ret = 0; 6468 out: 6469 return ret; 6470 out_release_unlock: 6471 spin_unlock(ptl); 6472 if (vm_shared || is_continue) 6473 folio_unlock(folio); 6474 out_release_nounlock: 6475 if (!folio_in_pagecache) 6476 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6477 folio_put(folio); 6478 goto out; 6479 } 6480 #endif /* CONFIG_USERFAULTFD */ 6481 6482 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 6483 unsigned long address, unsigned int flags, 6484 unsigned int *page_mask) 6485 { 6486 struct hstate *h = hstate_vma(vma); 6487 struct mm_struct *mm = vma->vm_mm; 6488 unsigned long haddr = address & huge_page_mask(h); 6489 struct page *page = NULL; 6490 spinlock_t *ptl; 6491 pte_t *pte, entry; 6492 int ret; 6493 6494 hugetlb_vma_lock_read(vma); 6495 pte = hugetlb_walk(vma, haddr, huge_page_size(h)); 6496 if (!pte) 6497 goto out_unlock; 6498 6499 ptl = huge_pte_lock(h, mm, pte); 6500 entry = huge_ptep_get(pte); 6501 if (pte_present(entry)) { 6502 page = pte_page(entry); 6503 6504 if (!huge_pte_write(entry)) { 6505 if (flags & FOLL_WRITE) { 6506 page = NULL; 6507 goto out; 6508 } 6509 6510 if (gup_must_unshare(vma, flags, page)) { 6511 /* Tell the caller to do unsharing */ 6512 page = ERR_PTR(-EMLINK); 6513 goto out; 6514 } 6515 } 6516 6517 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT)); 6518 6519 /* 6520 * Note that page may be a sub-page, and with vmemmap 6521 * optimizations the page struct may be read only. 6522 * try_grab_page() will increase the ref count on the 6523 * head page, so this will be OK. 6524 * 6525 * try_grab_page() should always be able to get the page here, 6526 * because we hold the ptl lock and have verified pte_present(). 6527 */ 6528 ret = try_grab_page(page, flags); 6529 6530 if (WARN_ON_ONCE(ret)) { 6531 page = ERR_PTR(ret); 6532 goto out; 6533 } 6534 6535 *page_mask = (1U << huge_page_order(h)) - 1; 6536 } 6537 out: 6538 spin_unlock(ptl); 6539 out_unlock: 6540 hugetlb_vma_unlock_read(vma); 6541 6542 /* 6543 * Fixup retval for dump requests: if pagecache doesn't exist, 6544 * don't try to allocate a new page but just skip it. 6545 */ 6546 if (!page && (flags & FOLL_DUMP) && 6547 !hugetlbfs_pagecache_present(h, vma, address)) 6548 page = ERR_PTR(-EFAULT); 6549 6550 return page; 6551 } 6552 6553 long hugetlb_change_protection(struct vm_area_struct *vma, 6554 unsigned long address, unsigned long end, 6555 pgprot_t newprot, unsigned long cp_flags) 6556 { 6557 struct mm_struct *mm = vma->vm_mm; 6558 unsigned long start = address; 6559 pte_t *ptep; 6560 pte_t pte; 6561 struct hstate *h = hstate_vma(vma); 6562 long pages = 0, psize = huge_page_size(h); 6563 bool shared_pmd = false; 6564 struct mmu_notifier_range range; 6565 unsigned long last_addr_mask; 6566 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6567 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6568 6569 /* 6570 * In the case of shared PMDs, the area to flush could be beyond 6571 * start/end. Set range.start/range.end to cover the maximum possible 6572 * range if PMD sharing is possible. 6573 */ 6574 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6575 0, mm, start, end); 6576 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6577 6578 BUG_ON(address >= end); 6579 flush_cache_range(vma, range.start, range.end); 6580 6581 mmu_notifier_invalidate_range_start(&range); 6582 hugetlb_vma_lock_write(vma); 6583 i_mmap_lock_write(vma->vm_file->f_mapping); 6584 last_addr_mask = hugetlb_mask_last_page(h); 6585 for (; address < end; address += psize) { 6586 spinlock_t *ptl; 6587 ptep = hugetlb_walk(vma, address, psize); 6588 if (!ptep) { 6589 if (!uffd_wp) { 6590 address |= last_addr_mask; 6591 continue; 6592 } 6593 /* 6594 * Userfaultfd wr-protect requires pgtable 6595 * pre-allocations to install pte markers. 6596 */ 6597 ptep = huge_pte_alloc(mm, vma, address, psize); 6598 if (!ptep) { 6599 pages = -ENOMEM; 6600 break; 6601 } 6602 } 6603 ptl = huge_pte_lock(h, mm, ptep); 6604 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6605 /* 6606 * When uffd-wp is enabled on the vma, unshare 6607 * shouldn't happen at all. Warn about it if it 6608 * happened due to some reason. 6609 */ 6610 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6611 pages++; 6612 spin_unlock(ptl); 6613 shared_pmd = true; 6614 address |= last_addr_mask; 6615 continue; 6616 } 6617 pte = huge_ptep_get(ptep); 6618 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6619 /* Nothing to do. */ 6620 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6621 swp_entry_t entry = pte_to_swp_entry(pte); 6622 struct page *page = pfn_swap_entry_to_page(entry); 6623 pte_t newpte = pte; 6624 6625 if (is_writable_migration_entry(entry)) { 6626 if (PageAnon(page)) 6627 entry = make_readable_exclusive_migration_entry( 6628 swp_offset(entry)); 6629 else 6630 entry = make_readable_migration_entry( 6631 swp_offset(entry)); 6632 newpte = swp_entry_to_pte(entry); 6633 pages++; 6634 } 6635 6636 if (uffd_wp) 6637 newpte = pte_swp_mkuffd_wp(newpte); 6638 else if (uffd_wp_resolve) 6639 newpte = pte_swp_clear_uffd_wp(newpte); 6640 if (!pte_same(pte, newpte)) 6641 set_huge_pte_at(mm, address, ptep, newpte, psize); 6642 } else if (unlikely(is_pte_marker(pte))) { 6643 /* 6644 * Do nothing on a poison marker; page is 6645 * corrupted, permissons do not apply. Here 6646 * pte_marker_uffd_wp()==true implies !poison 6647 * because they're mutual exclusive. 6648 */ 6649 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 6650 /* Safe to modify directly (non-present->none). */ 6651 huge_pte_clear(mm, address, ptep, psize); 6652 } else if (!huge_pte_none(pte)) { 6653 pte_t old_pte; 6654 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6655 6656 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6657 pte = huge_pte_modify(old_pte, newprot); 6658 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6659 if (uffd_wp) 6660 pte = huge_pte_mkuffd_wp(pte); 6661 else if (uffd_wp_resolve) 6662 pte = huge_pte_clear_uffd_wp(pte); 6663 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6664 pages++; 6665 } else { 6666 /* None pte */ 6667 if (unlikely(uffd_wp)) 6668 /* Safe to modify directly (none->non-present). */ 6669 set_huge_pte_at(mm, address, ptep, 6670 make_pte_marker(PTE_MARKER_UFFD_WP), 6671 psize); 6672 } 6673 spin_unlock(ptl); 6674 } 6675 /* 6676 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6677 * may have cleared our pud entry and done put_page on the page table: 6678 * once we release i_mmap_rwsem, another task can do the final put_page 6679 * and that page table be reused and filled with junk. If we actually 6680 * did unshare a page of pmds, flush the range corresponding to the pud. 6681 */ 6682 if (shared_pmd) 6683 flush_hugetlb_tlb_range(vma, range.start, range.end); 6684 else 6685 flush_hugetlb_tlb_range(vma, start, end); 6686 /* 6687 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 6688 * downgrading page table protection not changing it to point to a new 6689 * page. 6690 * 6691 * See Documentation/mm/mmu_notifier.rst 6692 */ 6693 i_mmap_unlock_write(vma->vm_file->f_mapping); 6694 hugetlb_vma_unlock_write(vma); 6695 mmu_notifier_invalidate_range_end(&range); 6696 6697 return pages > 0 ? (pages << h->order) : pages; 6698 } 6699 6700 /* Return true if reservation was successful, false otherwise. */ 6701 bool hugetlb_reserve_pages(struct inode *inode, 6702 long from, long to, 6703 struct vm_area_struct *vma, 6704 vm_flags_t vm_flags) 6705 { 6706 long chg = -1, add = -1; 6707 struct hstate *h = hstate_inode(inode); 6708 struct hugepage_subpool *spool = subpool_inode(inode); 6709 struct resv_map *resv_map; 6710 struct hugetlb_cgroup *h_cg = NULL; 6711 long gbl_reserve, regions_needed = 0; 6712 6713 /* This should never happen */ 6714 if (from > to) { 6715 VM_WARN(1, "%s called with a negative range\n", __func__); 6716 return false; 6717 } 6718 6719 /* 6720 * vma specific semaphore used for pmd sharing and fault/truncation 6721 * synchronization 6722 */ 6723 hugetlb_vma_lock_alloc(vma); 6724 6725 /* 6726 * Only apply hugepage reservation if asked. At fault time, an 6727 * attempt will be made for VM_NORESERVE to allocate a page 6728 * without using reserves 6729 */ 6730 if (vm_flags & VM_NORESERVE) 6731 return true; 6732 6733 /* 6734 * Shared mappings base their reservation on the number of pages that 6735 * are already allocated on behalf of the file. Private mappings need 6736 * to reserve the full area even if read-only as mprotect() may be 6737 * called to make the mapping read-write. Assume !vma is a shm mapping 6738 */ 6739 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6740 /* 6741 * resv_map can not be NULL as hugetlb_reserve_pages is only 6742 * called for inodes for which resv_maps were created (see 6743 * hugetlbfs_get_inode). 6744 */ 6745 resv_map = inode_resv_map(inode); 6746 6747 chg = region_chg(resv_map, from, to, ®ions_needed); 6748 } else { 6749 /* Private mapping. */ 6750 resv_map = resv_map_alloc(); 6751 if (!resv_map) 6752 goto out_err; 6753 6754 chg = to - from; 6755 6756 set_vma_resv_map(vma, resv_map); 6757 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6758 } 6759 6760 if (chg < 0) 6761 goto out_err; 6762 6763 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6764 chg * pages_per_huge_page(h), &h_cg) < 0) 6765 goto out_err; 6766 6767 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6768 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6769 * of the resv_map. 6770 */ 6771 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6772 } 6773 6774 /* 6775 * There must be enough pages in the subpool for the mapping. If 6776 * the subpool has a minimum size, there may be some global 6777 * reservations already in place (gbl_reserve). 6778 */ 6779 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6780 if (gbl_reserve < 0) 6781 goto out_uncharge_cgroup; 6782 6783 /* 6784 * Check enough hugepages are available for the reservation. 6785 * Hand the pages back to the subpool if there are not 6786 */ 6787 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6788 goto out_put_pages; 6789 6790 /* 6791 * Account for the reservations made. Shared mappings record regions 6792 * that have reservations as they are shared by multiple VMAs. 6793 * When the last VMA disappears, the region map says how much 6794 * the reservation was and the page cache tells how much of 6795 * the reservation was consumed. Private mappings are per-VMA and 6796 * only the consumed reservations are tracked. When the VMA 6797 * disappears, the original reservation is the VMA size and the 6798 * consumed reservations are stored in the map. Hence, nothing 6799 * else has to be done for private mappings here 6800 */ 6801 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6802 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6803 6804 if (unlikely(add < 0)) { 6805 hugetlb_acct_memory(h, -gbl_reserve); 6806 goto out_put_pages; 6807 } else if (unlikely(chg > add)) { 6808 /* 6809 * pages in this range were added to the reserve 6810 * map between region_chg and region_add. This 6811 * indicates a race with alloc_hugetlb_folio. Adjust 6812 * the subpool and reserve counts modified above 6813 * based on the difference. 6814 */ 6815 long rsv_adjust; 6816 6817 /* 6818 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6819 * reference to h_cg->css. See comment below for detail. 6820 */ 6821 hugetlb_cgroup_uncharge_cgroup_rsvd( 6822 hstate_index(h), 6823 (chg - add) * pages_per_huge_page(h), h_cg); 6824 6825 rsv_adjust = hugepage_subpool_put_pages(spool, 6826 chg - add); 6827 hugetlb_acct_memory(h, -rsv_adjust); 6828 } else if (h_cg) { 6829 /* 6830 * The file_regions will hold their own reference to 6831 * h_cg->css. So we should release the reference held 6832 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6833 * done. 6834 */ 6835 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6836 } 6837 } 6838 return true; 6839 6840 out_put_pages: 6841 /* put back original number of pages, chg */ 6842 (void)hugepage_subpool_put_pages(spool, chg); 6843 out_uncharge_cgroup: 6844 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6845 chg * pages_per_huge_page(h), h_cg); 6846 out_err: 6847 hugetlb_vma_lock_free(vma); 6848 if (!vma || vma->vm_flags & VM_MAYSHARE) 6849 /* Only call region_abort if the region_chg succeeded but the 6850 * region_add failed or didn't run. 6851 */ 6852 if (chg >= 0 && add < 0) 6853 region_abort(resv_map, from, to, regions_needed); 6854 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 6855 kref_put(&resv_map->refs, resv_map_release); 6856 set_vma_resv_map(vma, NULL); 6857 } 6858 return false; 6859 } 6860 6861 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6862 long freed) 6863 { 6864 struct hstate *h = hstate_inode(inode); 6865 struct resv_map *resv_map = inode_resv_map(inode); 6866 long chg = 0; 6867 struct hugepage_subpool *spool = subpool_inode(inode); 6868 long gbl_reserve; 6869 6870 /* 6871 * Since this routine can be called in the evict inode path for all 6872 * hugetlbfs inodes, resv_map could be NULL. 6873 */ 6874 if (resv_map) { 6875 chg = region_del(resv_map, start, end); 6876 /* 6877 * region_del() can fail in the rare case where a region 6878 * must be split and another region descriptor can not be 6879 * allocated. If end == LONG_MAX, it will not fail. 6880 */ 6881 if (chg < 0) 6882 return chg; 6883 } 6884 6885 spin_lock(&inode->i_lock); 6886 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6887 spin_unlock(&inode->i_lock); 6888 6889 /* 6890 * If the subpool has a minimum size, the number of global 6891 * reservations to be released may be adjusted. 6892 * 6893 * Note that !resv_map implies freed == 0. So (chg - freed) 6894 * won't go negative. 6895 */ 6896 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6897 hugetlb_acct_memory(h, -gbl_reserve); 6898 6899 return 0; 6900 } 6901 6902 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6903 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6904 struct vm_area_struct *vma, 6905 unsigned long addr, pgoff_t idx) 6906 { 6907 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6908 svma->vm_start; 6909 unsigned long sbase = saddr & PUD_MASK; 6910 unsigned long s_end = sbase + PUD_SIZE; 6911 6912 /* Allow segments to share if only one is marked locked */ 6913 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 6914 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 6915 6916 /* 6917 * match the virtual addresses, permission and the alignment of the 6918 * page table page. 6919 * 6920 * Also, vma_lock (vm_private_data) is required for sharing. 6921 */ 6922 if (pmd_index(addr) != pmd_index(saddr) || 6923 vm_flags != svm_flags || 6924 !range_in_vma(svma, sbase, s_end) || 6925 !svma->vm_private_data) 6926 return 0; 6927 6928 return saddr; 6929 } 6930 6931 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6932 { 6933 unsigned long start = addr & PUD_MASK; 6934 unsigned long end = start + PUD_SIZE; 6935 6936 #ifdef CONFIG_USERFAULTFD 6937 if (uffd_disable_huge_pmd_share(vma)) 6938 return false; 6939 #endif 6940 /* 6941 * check on proper vm_flags and page table alignment 6942 */ 6943 if (!(vma->vm_flags & VM_MAYSHARE)) 6944 return false; 6945 if (!vma->vm_private_data) /* vma lock required for sharing */ 6946 return false; 6947 if (!range_in_vma(vma, start, end)) 6948 return false; 6949 return true; 6950 } 6951 6952 /* 6953 * Determine if start,end range within vma could be mapped by shared pmd. 6954 * If yes, adjust start and end to cover range associated with possible 6955 * shared pmd mappings. 6956 */ 6957 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6958 unsigned long *start, unsigned long *end) 6959 { 6960 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6961 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6962 6963 /* 6964 * vma needs to span at least one aligned PUD size, and the range 6965 * must be at least partially within in. 6966 */ 6967 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6968 (*end <= v_start) || (*start >= v_end)) 6969 return; 6970 6971 /* Extend the range to be PUD aligned for a worst case scenario */ 6972 if (*start > v_start) 6973 *start = ALIGN_DOWN(*start, PUD_SIZE); 6974 6975 if (*end < v_end) 6976 *end = ALIGN(*end, PUD_SIZE); 6977 } 6978 6979 /* 6980 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6981 * and returns the corresponding pte. While this is not necessary for the 6982 * !shared pmd case because we can allocate the pmd later as well, it makes the 6983 * code much cleaner. pmd allocation is essential for the shared case because 6984 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 6985 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 6986 * bad pmd for sharing. 6987 */ 6988 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6989 unsigned long addr, pud_t *pud) 6990 { 6991 struct address_space *mapping = vma->vm_file->f_mapping; 6992 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 6993 vma->vm_pgoff; 6994 struct vm_area_struct *svma; 6995 unsigned long saddr; 6996 pte_t *spte = NULL; 6997 pte_t *pte; 6998 6999 i_mmap_lock_read(mapping); 7000 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7001 if (svma == vma) 7002 continue; 7003 7004 saddr = page_table_shareable(svma, vma, addr, idx); 7005 if (saddr) { 7006 spte = hugetlb_walk(svma, saddr, 7007 vma_mmu_pagesize(svma)); 7008 if (spte) { 7009 get_page(virt_to_page(spte)); 7010 break; 7011 } 7012 } 7013 } 7014 7015 if (!spte) 7016 goto out; 7017 7018 spin_lock(&mm->page_table_lock); 7019 if (pud_none(*pud)) { 7020 pud_populate(mm, pud, 7021 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7022 mm_inc_nr_pmds(mm); 7023 } else { 7024 put_page(virt_to_page(spte)); 7025 } 7026 spin_unlock(&mm->page_table_lock); 7027 out: 7028 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7029 i_mmap_unlock_read(mapping); 7030 return pte; 7031 } 7032 7033 /* 7034 * unmap huge page backed by shared pte. 7035 * 7036 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7037 * indicated by page_count > 1, unmap is achieved by clearing pud and 7038 * decrementing the ref count. If count == 1, the pte page is not shared. 7039 * 7040 * Called with page table lock held. 7041 * 7042 * returns: 1 successfully unmapped a shared pte page 7043 * 0 the underlying pte page is not shared, or it is the last user 7044 */ 7045 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7046 unsigned long addr, pte_t *ptep) 7047 { 7048 pgd_t *pgd = pgd_offset(mm, addr); 7049 p4d_t *p4d = p4d_offset(pgd, addr); 7050 pud_t *pud = pud_offset(p4d, addr); 7051 7052 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7053 hugetlb_vma_assert_locked(vma); 7054 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7055 if (page_count(virt_to_page(ptep)) == 1) 7056 return 0; 7057 7058 pud_clear(pud); 7059 put_page(virt_to_page(ptep)); 7060 mm_dec_nr_pmds(mm); 7061 return 1; 7062 } 7063 7064 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7065 7066 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7067 unsigned long addr, pud_t *pud) 7068 { 7069 return NULL; 7070 } 7071 7072 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7073 unsigned long addr, pte_t *ptep) 7074 { 7075 return 0; 7076 } 7077 7078 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7079 unsigned long *start, unsigned long *end) 7080 { 7081 } 7082 7083 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7084 { 7085 return false; 7086 } 7087 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7088 7089 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7090 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7091 unsigned long addr, unsigned long sz) 7092 { 7093 pgd_t *pgd; 7094 p4d_t *p4d; 7095 pud_t *pud; 7096 pte_t *pte = NULL; 7097 7098 pgd = pgd_offset(mm, addr); 7099 p4d = p4d_alloc(mm, pgd, addr); 7100 if (!p4d) 7101 return NULL; 7102 pud = pud_alloc(mm, p4d, addr); 7103 if (pud) { 7104 if (sz == PUD_SIZE) { 7105 pte = (pte_t *)pud; 7106 } else { 7107 BUG_ON(sz != PMD_SIZE); 7108 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7109 pte = huge_pmd_share(mm, vma, addr, pud); 7110 else 7111 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7112 } 7113 } 7114 7115 if (pte) { 7116 pte_t pteval = ptep_get_lockless(pte); 7117 7118 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7119 } 7120 7121 return pte; 7122 } 7123 7124 /* 7125 * huge_pte_offset() - Walk the page table to resolve the hugepage 7126 * entry at address @addr 7127 * 7128 * Return: Pointer to page table entry (PUD or PMD) for 7129 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7130 * size @sz doesn't match the hugepage size at this level of the page 7131 * table. 7132 */ 7133 pte_t *huge_pte_offset(struct mm_struct *mm, 7134 unsigned long addr, unsigned long sz) 7135 { 7136 pgd_t *pgd; 7137 p4d_t *p4d; 7138 pud_t *pud; 7139 pmd_t *pmd; 7140 7141 pgd = pgd_offset(mm, addr); 7142 if (!pgd_present(*pgd)) 7143 return NULL; 7144 p4d = p4d_offset(pgd, addr); 7145 if (!p4d_present(*p4d)) 7146 return NULL; 7147 7148 pud = pud_offset(p4d, addr); 7149 if (sz == PUD_SIZE) 7150 /* must be pud huge, non-present or none */ 7151 return (pte_t *)pud; 7152 if (!pud_present(*pud)) 7153 return NULL; 7154 /* must have a valid entry and size to go further */ 7155 7156 pmd = pmd_offset(pud, addr); 7157 /* must be pmd huge, non-present or none */ 7158 return (pte_t *)pmd; 7159 } 7160 7161 /* 7162 * Return a mask that can be used to update an address to the last huge 7163 * page in a page table page mapping size. Used to skip non-present 7164 * page table entries when linearly scanning address ranges. Architectures 7165 * with unique huge page to page table relationships can define their own 7166 * version of this routine. 7167 */ 7168 unsigned long hugetlb_mask_last_page(struct hstate *h) 7169 { 7170 unsigned long hp_size = huge_page_size(h); 7171 7172 if (hp_size == PUD_SIZE) 7173 return P4D_SIZE - PUD_SIZE; 7174 else if (hp_size == PMD_SIZE) 7175 return PUD_SIZE - PMD_SIZE; 7176 else 7177 return 0UL; 7178 } 7179 7180 #else 7181 7182 /* See description above. Architectures can provide their own version. */ 7183 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7184 { 7185 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7186 if (huge_page_size(h) == PMD_SIZE) 7187 return PUD_SIZE - PMD_SIZE; 7188 #endif 7189 return 0UL; 7190 } 7191 7192 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7193 7194 /* 7195 * These functions are overwritable if your architecture needs its own 7196 * behavior. 7197 */ 7198 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7199 { 7200 bool ret = true; 7201 7202 spin_lock_irq(&hugetlb_lock); 7203 if (!folio_test_hugetlb(folio) || 7204 !folio_test_hugetlb_migratable(folio) || 7205 !folio_try_get(folio)) { 7206 ret = false; 7207 goto unlock; 7208 } 7209 folio_clear_hugetlb_migratable(folio); 7210 list_move_tail(&folio->lru, list); 7211 unlock: 7212 spin_unlock_irq(&hugetlb_lock); 7213 return ret; 7214 } 7215 7216 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7217 { 7218 int ret = 0; 7219 7220 *hugetlb = false; 7221 spin_lock_irq(&hugetlb_lock); 7222 if (folio_test_hugetlb(folio)) { 7223 *hugetlb = true; 7224 if (folio_test_hugetlb_freed(folio)) 7225 ret = 0; 7226 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7227 ret = folio_try_get(folio); 7228 else 7229 ret = -EBUSY; 7230 } 7231 spin_unlock_irq(&hugetlb_lock); 7232 return ret; 7233 } 7234 7235 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7236 bool *migratable_cleared) 7237 { 7238 int ret; 7239 7240 spin_lock_irq(&hugetlb_lock); 7241 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7242 spin_unlock_irq(&hugetlb_lock); 7243 return ret; 7244 } 7245 7246 void folio_putback_active_hugetlb(struct folio *folio) 7247 { 7248 spin_lock_irq(&hugetlb_lock); 7249 folio_set_hugetlb_migratable(folio); 7250 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7251 spin_unlock_irq(&hugetlb_lock); 7252 folio_put(folio); 7253 } 7254 7255 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7256 { 7257 struct hstate *h = folio_hstate(old_folio); 7258 7259 hugetlb_cgroup_migrate(old_folio, new_folio); 7260 set_page_owner_migrate_reason(&new_folio->page, reason); 7261 7262 /* 7263 * transfer temporary state of the new hugetlb folio. This is 7264 * reverse to other transitions because the newpage is going to 7265 * be final while the old one will be freed so it takes over 7266 * the temporary status. 7267 * 7268 * Also note that we have to transfer the per-node surplus state 7269 * here as well otherwise the global surplus count will not match 7270 * the per-node's. 7271 */ 7272 if (folio_test_hugetlb_temporary(new_folio)) { 7273 int old_nid = folio_nid(old_folio); 7274 int new_nid = folio_nid(new_folio); 7275 7276 folio_set_hugetlb_temporary(old_folio); 7277 folio_clear_hugetlb_temporary(new_folio); 7278 7279 7280 /* 7281 * There is no need to transfer the per-node surplus state 7282 * when we do not cross the node. 7283 */ 7284 if (new_nid == old_nid) 7285 return; 7286 spin_lock_irq(&hugetlb_lock); 7287 if (h->surplus_huge_pages_node[old_nid]) { 7288 h->surplus_huge_pages_node[old_nid]--; 7289 h->surplus_huge_pages_node[new_nid]++; 7290 } 7291 spin_unlock_irq(&hugetlb_lock); 7292 } 7293 } 7294 7295 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7296 unsigned long start, 7297 unsigned long end) 7298 { 7299 struct hstate *h = hstate_vma(vma); 7300 unsigned long sz = huge_page_size(h); 7301 struct mm_struct *mm = vma->vm_mm; 7302 struct mmu_notifier_range range; 7303 unsigned long address; 7304 spinlock_t *ptl; 7305 pte_t *ptep; 7306 7307 if (!(vma->vm_flags & VM_MAYSHARE)) 7308 return; 7309 7310 if (start >= end) 7311 return; 7312 7313 flush_cache_range(vma, start, end); 7314 /* 7315 * No need to call adjust_range_if_pmd_sharing_possible(), because 7316 * we have already done the PUD_SIZE alignment. 7317 */ 7318 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7319 start, end); 7320 mmu_notifier_invalidate_range_start(&range); 7321 hugetlb_vma_lock_write(vma); 7322 i_mmap_lock_write(vma->vm_file->f_mapping); 7323 for (address = start; address < end; address += PUD_SIZE) { 7324 ptep = hugetlb_walk(vma, address, sz); 7325 if (!ptep) 7326 continue; 7327 ptl = huge_pte_lock(h, mm, ptep); 7328 huge_pmd_unshare(mm, vma, address, ptep); 7329 spin_unlock(ptl); 7330 } 7331 flush_hugetlb_tlb_range(vma, start, end); 7332 i_mmap_unlock_write(vma->vm_file->f_mapping); 7333 hugetlb_vma_unlock_write(vma); 7334 /* 7335 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7336 * Documentation/mm/mmu_notifier.rst. 7337 */ 7338 mmu_notifier_invalidate_range_end(&range); 7339 } 7340 7341 /* 7342 * This function will unconditionally remove all the shared pmd pgtable entries 7343 * within the specific vma for a hugetlbfs memory range. 7344 */ 7345 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7346 { 7347 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7348 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7349 } 7350 7351 #ifdef CONFIG_CMA 7352 static bool cma_reserve_called __initdata; 7353 7354 static int __init cmdline_parse_hugetlb_cma(char *p) 7355 { 7356 int nid, count = 0; 7357 unsigned long tmp; 7358 char *s = p; 7359 7360 while (*s) { 7361 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7362 break; 7363 7364 if (s[count] == ':') { 7365 if (tmp >= MAX_NUMNODES) 7366 break; 7367 nid = array_index_nospec(tmp, MAX_NUMNODES); 7368 7369 s += count + 1; 7370 tmp = memparse(s, &s); 7371 hugetlb_cma_size_in_node[nid] = tmp; 7372 hugetlb_cma_size += tmp; 7373 7374 /* 7375 * Skip the separator if have one, otherwise 7376 * break the parsing. 7377 */ 7378 if (*s == ',') 7379 s++; 7380 else 7381 break; 7382 } else { 7383 hugetlb_cma_size = memparse(p, &p); 7384 break; 7385 } 7386 } 7387 7388 return 0; 7389 } 7390 7391 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7392 7393 void __init hugetlb_cma_reserve(int order) 7394 { 7395 unsigned long size, reserved, per_node; 7396 bool node_specific_cma_alloc = false; 7397 int nid; 7398 7399 cma_reserve_called = true; 7400 7401 if (!hugetlb_cma_size) 7402 return; 7403 7404 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7405 if (hugetlb_cma_size_in_node[nid] == 0) 7406 continue; 7407 7408 if (!node_online(nid)) { 7409 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7410 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7411 hugetlb_cma_size_in_node[nid] = 0; 7412 continue; 7413 } 7414 7415 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7416 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7417 nid, (PAGE_SIZE << order) / SZ_1M); 7418 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7419 hugetlb_cma_size_in_node[nid] = 0; 7420 } else { 7421 node_specific_cma_alloc = true; 7422 } 7423 } 7424 7425 /* Validate the CMA size again in case some invalid nodes specified. */ 7426 if (!hugetlb_cma_size) 7427 return; 7428 7429 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7430 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7431 (PAGE_SIZE << order) / SZ_1M); 7432 hugetlb_cma_size = 0; 7433 return; 7434 } 7435 7436 if (!node_specific_cma_alloc) { 7437 /* 7438 * If 3 GB area is requested on a machine with 4 numa nodes, 7439 * let's allocate 1 GB on first three nodes and ignore the last one. 7440 */ 7441 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7442 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7443 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7444 } 7445 7446 reserved = 0; 7447 for_each_online_node(nid) { 7448 int res; 7449 char name[CMA_MAX_NAME]; 7450 7451 if (node_specific_cma_alloc) { 7452 if (hugetlb_cma_size_in_node[nid] == 0) 7453 continue; 7454 7455 size = hugetlb_cma_size_in_node[nid]; 7456 } else { 7457 size = min(per_node, hugetlb_cma_size - reserved); 7458 } 7459 7460 size = round_up(size, PAGE_SIZE << order); 7461 7462 snprintf(name, sizeof(name), "hugetlb%d", nid); 7463 /* 7464 * Note that 'order per bit' is based on smallest size that 7465 * may be returned to CMA allocator in the case of 7466 * huge page demotion. 7467 */ 7468 res = cma_declare_contiguous_nid(0, size, 0, 7469 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7470 0, false, name, 7471 &hugetlb_cma[nid], nid); 7472 if (res) { 7473 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7474 res, nid); 7475 continue; 7476 } 7477 7478 reserved += size; 7479 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7480 size / SZ_1M, nid); 7481 7482 if (reserved >= hugetlb_cma_size) 7483 break; 7484 } 7485 7486 if (!reserved) 7487 /* 7488 * hugetlb_cma_size is used to determine if allocations from 7489 * cma are possible. Set to zero if no cma regions are set up. 7490 */ 7491 hugetlb_cma_size = 0; 7492 } 7493 7494 static void __init hugetlb_cma_check(void) 7495 { 7496 if (!hugetlb_cma_size || cma_reserve_called) 7497 return; 7498 7499 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7500 } 7501 7502 #endif /* CONFIG_CMA */ 7503