xref: /openbmc/linux/mm/hugetlb.c (revision ed1666f6)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/memblock.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28 #include <linux/numa.h>
29 
30 #include <asm/page.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlb.h>
33 
34 #include <linux/io.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/node.h>
38 #include <linux/userfaultfd_k.h>
39 #include <linux/page_owner.h>
40 #include "internal.h"
41 
42 int hugetlb_max_hstate __read_mostly;
43 unsigned int default_hstate_idx;
44 struct hstate hstates[HUGE_MAX_HSTATE];
45 /*
46  * Minimum page order among possible hugepage sizes, set to a proper value
47  * at boot time.
48  */
49 static unsigned int minimum_order __read_mostly = UINT_MAX;
50 
51 __initdata LIST_HEAD(huge_boot_pages);
52 
53 /* for command line parsing */
54 static struct hstate * __initdata parsed_hstate;
55 static unsigned long __initdata default_hstate_max_huge_pages;
56 static unsigned long __initdata default_hstate_size;
57 static bool __initdata parsed_valid_hugepagesz = true;
58 
59 /*
60  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61  * free_huge_pages, and surplus_huge_pages.
62  */
63 DEFINE_SPINLOCK(hugetlb_lock);
64 
65 /*
66  * Serializes faults on the same logical page.  This is used to
67  * prevent spurious OOMs when the hugepage pool is fully utilized.
68  */
69 static int num_fault_mutexes;
70 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71 
72 /* Forward declaration */
73 static int hugetlb_acct_memory(struct hstate *h, long delta);
74 
75 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76 {
77 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
78 
79 	spin_unlock(&spool->lock);
80 
81 	/* If no pages are used, and no other handles to the subpool
82 	 * remain, give up any reservations mased on minimum size and
83 	 * free the subpool */
84 	if (free) {
85 		if (spool->min_hpages != -1)
86 			hugetlb_acct_memory(spool->hstate,
87 						-spool->min_hpages);
88 		kfree(spool);
89 	}
90 }
91 
92 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93 						long min_hpages)
94 {
95 	struct hugepage_subpool *spool;
96 
97 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
98 	if (!spool)
99 		return NULL;
100 
101 	spin_lock_init(&spool->lock);
102 	spool->count = 1;
103 	spool->max_hpages = max_hpages;
104 	spool->hstate = h;
105 	spool->min_hpages = min_hpages;
106 
107 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108 		kfree(spool);
109 		return NULL;
110 	}
111 	spool->rsv_hpages = min_hpages;
112 
113 	return spool;
114 }
115 
116 void hugepage_put_subpool(struct hugepage_subpool *spool)
117 {
118 	spin_lock(&spool->lock);
119 	BUG_ON(!spool->count);
120 	spool->count--;
121 	unlock_or_release_subpool(spool);
122 }
123 
124 /*
125  * Subpool accounting for allocating and reserving pages.
126  * Return -ENOMEM if there are not enough resources to satisfy the
127  * the request.  Otherwise, return the number of pages by which the
128  * global pools must be adjusted (upward).  The returned value may
129  * only be different than the passed value (delta) in the case where
130  * a subpool minimum size must be manitained.
131  */
132 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
133 				      long delta)
134 {
135 	long ret = delta;
136 
137 	if (!spool)
138 		return ret;
139 
140 	spin_lock(&spool->lock);
141 
142 	if (spool->max_hpages != -1) {		/* maximum size accounting */
143 		if ((spool->used_hpages + delta) <= spool->max_hpages)
144 			spool->used_hpages += delta;
145 		else {
146 			ret = -ENOMEM;
147 			goto unlock_ret;
148 		}
149 	}
150 
151 	/* minimum size accounting */
152 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
153 		if (delta > spool->rsv_hpages) {
154 			/*
155 			 * Asking for more reserves than those already taken on
156 			 * behalf of subpool.  Return difference.
157 			 */
158 			ret = delta - spool->rsv_hpages;
159 			spool->rsv_hpages = 0;
160 		} else {
161 			ret = 0;	/* reserves already accounted for */
162 			spool->rsv_hpages -= delta;
163 		}
164 	}
165 
166 unlock_ret:
167 	spin_unlock(&spool->lock);
168 	return ret;
169 }
170 
171 /*
172  * Subpool accounting for freeing and unreserving pages.
173  * Return the number of global page reservations that must be dropped.
174  * The return value may only be different than the passed value (delta)
175  * in the case where a subpool minimum size must be maintained.
176  */
177 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
178 				       long delta)
179 {
180 	long ret = delta;
181 
182 	if (!spool)
183 		return delta;
184 
185 	spin_lock(&spool->lock);
186 
187 	if (spool->max_hpages != -1)		/* maximum size accounting */
188 		spool->used_hpages -= delta;
189 
190 	 /* minimum size accounting */
191 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
192 		if (spool->rsv_hpages + delta <= spool->min_hpages)
193 			ret = 0;
194 		else
195 			ret = spool->rsv_hpages + delta - spool->min_hpages;
196 
197 		spool->rsv_hpages += delta;
198 		if (spool->rsv_hpages > spool->min_hpages)
199 			spool->rsv_hpages = spool->min_hpages;
200 	}
201 
202 	/*
203 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
204 	 * quota reference, free it now.
205 	 */
206 	unlock_or_release_subpool(spool);
207 
208 	return ret;
209 }
210 
211 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212 {
213 	return HUGETLBFS_SB(inode->i_sb)->spool;
214 }
215 
216 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217 {
218 	return subpool_inode(file_inode(vma->vm_file));
219 }
220 
221 /*
222  * Region tracking -- allows tracking of reservations and instantiated pages
223  *                    across the pages in a mapping.
224  *
225  * The region data structures are embedded into a resv_map and protected
226  * by a resv_map's lock.  The set of regions within the resv_map represent
227  * reservations for huge pages, or huge pages that have already been
228  * instantiated within the map.  The from and to elements are huge page
229  * indicies into the associated mapping.  from indicates the starting index
230  * of the region.  to represents the first index past the end of  the region.
231  *
232  * For example, a file region structure with from == 0 and to == 4 represents
233  * four huge pages in a mapping.  It is important to note that the to element
234  * represents the first element past the end of the region. This is used in
235  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236  *
237  * Interval notation of the form [from, to) will be used to indicate that
238  * the endpoint from is inclusive and to is exclusive.
239  */
240 struct file_region {
241 	struct list_head link;
242 	long from;
243 	long to;
244 };
245 
246 /*
247  * Add the huge page range represented by [f, t) to the reserve
248  * map.  In the normal case, existing regions will be expanded
249  * to accommodate the specified range.  Sufficient regions should
250  * exist for expansion due to the previous call to region_chg
251  * with the same range.  However, it is possible that region_del
252  * could have been called after region_chg and modifed the map
253  * in such a way that no region exists to be expanded.  In this
254  * case, pull a region descriptor from the cache associated with
255  * the map and use that for the new range.
256  *
257  * Return the number of new huge pages added to the map.  This
258  * number is greater than or equal to zero.
259  */
260 static long region_add(struct resv_map *resv, long f, long t)
261 {
262 	struct list_head *head = &resv->regions;
263 	struct file_region *rg, *nrg, *trg;
264 	long add = 0;
265 
266 	spin_lock(&resv->lock);
267 	/* Locate the region we are either in or before. */
268 	list_for_each_entry(rg, head, link)
269 		if (f <= rg->to)
270 			break;
271 
272 	/*
273 	 * If no region exists which can be expanded to include the
274 	 * specified range, the list must have been modified by an
275 	 * interleving call to region_del().  Pull a region descriptor
276 	 * from the cache and use it for this range.
277 	 */
278 	if (&rg->link == head || t < rg->from) {
279 		VM_BUG_ON(resv->region_cache_count <= 0);
280 
281 		resv->region_cache_count--;
282 		nrg = list_first_entry(&resv->region_cache, struct file_region,
283 					link);
284 		list_del(&nrg->link);
285 
286 		nrg->from = f;
287 		nrg->to = t;
288 		list_add(&nrg->link, rg->link.prev);
289 
290 		add += t - f;
291 		goto out_locked;
292 	}
293 
294 	/* Round our left edge to the current segment if it encloses us. */
295 	if (f > rg->from)
296 		f = rg->from;
297 
298 	/* Check for and consume any regions we now overlap with. */
299 	nrg = rg;
300 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301 		if (&rg->link == head)
302 			break;
303 		if (rg->from > t)
304 			break;
305 
306 		/* If this area reaches higher then extend our area to
307 		 * include it completely.  If this is not the first area
308 		 * which we intend to reuse, free it. */
309 		if (rg->to > t)
310 			t = rg->to;
311 		if (rg != nrg) {
312 			/* Decrement return value by the deleted range.
313 			 * Another range will span this area so that by
314 			 * end of routine add will be >= zero
315 			 */
316 			add -= (rg->to - rg->from);
317 			list_del(&rg->link);
318 			kfree(rg);
319 		}
320 	}
321 
322 	add += (nrg->from - f);		/* Added to beginning of region */
323 	nrg->from = f;
324 	add += t - nrg->to;		/* Added to end of region */
325 	nrg->to = t;
326 
327 out_locked:
328 	resv->adds_in_progress--;
329 	spin_unlock(&resv->lock);
330 	VM_BUG_ON(add < 0);
331 	return add;
332 }
333 
334 /*
335  * Examine the existing reserve map and determine how many
336  * huge pages in the specified range [f, t) are NOT currently
337  * represented.  This routine is called before a subsequent
338  * call to region_add that will actually modify the reserve
339  * map to add the specified range [f, t).  region_chg does
340  * not change the number of huge pages represented by the
341  * map.  However, if the existing regions in the map can not
342  * be expanded to represent the new range, a new file_region
343  * structure is added to the map as a placeholder.  This is
344  * so that the subsequent region_add call will have all the
345  * regions it needs and will not fail.
346  *
347  * Upon entry, region_chg will also examine the cache of region descriptors
348  * associated with the map.  If there are not enough descriptors cached, one
349  * will be allocated for the in progress add operation.
350  *
351  * Returns the number of huge pages that need to be added to the existing
352  * reservation map for the range [f, t).  This number is greater or equal to
353  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
354  * is needed and can not be allocated.
355  */
356 static long region_chg(struct resv_map *resv, long f, long t)
357 {
358 	struct list_head *head = &resv->regions;
359 	struct file_region *rg, *nrg = NULL;
360 	long chg = 0;
361 
362 retry:
363 	spin_lock(&resv->lock);
364 retry_locked:
365 	resv->adds_in_progress++;
366 
367 	/*
368 	 * Check for sufficient descriptors in the cache to accommodate
369 	 * the number of in progress add operations.
370 	 */
371 	if (resv->adds_in_progress > resv->region_cache_count) {
372 		struct file_region *trg;
373 
374 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375 		/* Must drop lock to allocate a new descriptor. */
376 		resv->adds_in_progress--;
377 		spin_unlock(&resv->lock);
378 
379 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
380 		if (!trg) {
381 			kfree(nrg);
382 			return -ENOMEM;
383 		}
384 
385 		spin_lock(&resv->lock);
386 		list_add(&trg->link, &resv->region_cache);
387 		resv->region_cache_count++;
388 		goto retry_locked;
389 	}
390 
391 	/* Locate the region we are before or in. */
392 	list_for_each_entry(rg, head, link)
393 		if (f <= rg->to)
394 			break;
395 
396 	/* If we are below the current region then a new region is required.
397 	 * Subtle, allocate a new region at the position but make it zero
398 	 * size such that we can guarantee to record the reservation. */
399 	if (&rg->link == head || t < rg->from) {
400 		if (!nrg) {
401 			resv->adds_in_progress--;
402 			spin_unlock(&resv->lock);
403 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404 			if (!nrg)
405 				return -ENOMEM;
406 
407 			nrg->from = f;
408 			nrg->to   = f;
409 			INIT_LIST_HEAD(&nrg->link);
410 			goto retry;
411 		}
412 
413 		list_add(&nrg->link, rg->link.prev);
414 		chg = t - f;
415 		goto out_nrg;
416 	}
417 
418 	/* Round our left edge to the current segment if it encloses us. */
419 	if (f > rg->from)
420 		f = rg->from;
421 	chg = t - f;
422 
423 	/* Check for and consume any regions we now overlap with. */
424 	list_for_each_entry(rg, rg->link.prev, link) {
425 		if (&rg->link == head)
426 			break;
427 		if (rg->from > t)
428 			goto out;
429 
430 		/* We overlap with this area, if it extends further than
431 		 * us then we must extend ourselves.  Account for its
432 		 * existing reservation. */
433 		if (rg->to > t) {
434 			chg += rg->to - t;
435 			t = rg->to;
436 		}
437 		chg -= rg->to - rg->from;
438 	}
439 
440 out:
441 	spin_unlock(&resv->lock);
442 	/*  We already know we raced and no longer need the new region */
443 	kfree(nrg);
444 	return chg;
445 out_nrg:
446 	spin_unlock(&resv->lock);
447 	return chg;
448 }
449 
450 /*
451  * Abort the in progress add operation.  The adds_in_progress field
452  * of the resv_map keeps track of the operations in progress between
453  * calls to region_chg and region_add.  Operations are sometimes
454  * aborted after the call to region_chg.  In such cases, region_abort
455  * is called to decrement the adds_in_progress counter.
456  *
457  * NOTE: The range arguments [f, t) are not needed or used in this
458  * routine.  They are kept to make reading the calling code easier as
459  * arguments will match the associated region_chg call.
460  */
461 static void region_abort(struct resv_map *resv, long f, long t)
462 {
463 	spin_lock(&resv->lock);
464 	VM_BUG_ON(!resv->region_cache_count);
465 	resv->adds_in_progress--;
466 	spin_unlock(&resv->lock);
467 }
468 
469 /*
470  * Delete the specified range [f, t) from the reserve map.  If the
471  * t parameter is LONG_MAX, this indicates that ALL regions after f
472  * should be deleted.  Locate the regions which intersect [f, t)
473  * and either trim, delete or split the existing regions.
474  *
475  * Returns the number of huge pages deleted from the reserve map.
476  * In the normal case, the return value is zero or more.  In the
477  * case where a region must be split, a new region descriptor must
478  * be allocated.  If the allocation fails, -ENOMEM will be returned.
479  * NOTE: If the parameter t == LONG_MAX, then we will never split
480  * a region and possibly return -ENOMEM.  Callers specifying
481  * t == LONG_MAX do not need to check for -ENOMEM error.
482  */
483 static long region_del(struct resv_map *resv, long f, long t)
484 {
485 	struct list_head *head = &resv->regions;
486 	struct file_region *rg, *trg;
487 	struct file_region *nrg = NULL;
488 	long del = 0;
489 
490 retry:
491 	spin_lock(&resv->lock);
492 	list_for_each_entry_safe(rg, trg, head, link) {
493 		/*
494 		 * Skip regions before the range to be deleted.  file_region
495 		 * ranges are normally of the form [from, to).  However, there
496 		 * may be a "placeholder" entry in the map which is of the form
497 		 * (from, to) with from == to.  Check for placeholder entries
498 		 * at the beginning of the range to be deleted.
499 		 */
500 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
501 			continue;
502 
503 		if (rg->from >= t)
504 			break;
505 
506 		if (f > rg->from && t < rg->to) { /* Must split region */
507 			/*
508 			 * Check for an entry in the cache before dropping
509 			 * lock and attempting allocation.
510 			 */
511 			if (!nrg &&
512 			    resv->region_cache_count > resv->adds_in_progress) {
513 				nrg = list_first_entry(&resv->region_cache,
514 							struct file_region,
515 							link);
516 				list_del(&nrg->link);
517 				resv->region_cache_count--;
518 			}
519 
520 			if (!nrg) {
521 				spin_unlock(&resv->lock);
522 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523 				if (!nrg)
524 					return -ENOMEM;
525 				goto retry;
526 			}
527 
528 			del += t - f;
529 
530 			/* New entry for end of split region */
531 			nrg->from = t;
532 			nrg->to = rg->to;
533 			INIT_LIST_HEAD(&nrg->link);
534 
535 			/* Original entry is trimmed */
536 			rg->to = f;
537 
538 			list_add(&nrg->link, &rg->link);
539 			nrg = NULL;
540 			break;
541 		}
542 
543 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544 			del += rg->to - rg->from;
545 			list_del(&rg->link);
546 			kfree(rg);
547 			continue;
548 		}
549 
550 		if (f <= rg->from) {	/* Trim beginning of region */
551 			del += t - rg->from;
552 			rg->from = t;
553 		} else {		/* Trim end of region */
554 			del += rg->to - f;
555 			rg->to = f;
556 		}
557 	}
558 
559 	spin_unlock(&resv->lock);
560 	kfree(nrg);
561 	return del;
562 }
563 
564 /*
565  * A rare out of memory error was encountered which prevented removal of
566  * the reserve map region for a page.  The huge page itself was free'ed
567  * and removed from the page cache.  This routine will adjust the subpool
568  * usage count, and the global reserve count if needed.  By incrementing
569  * these counts, the reserve map entry which could not be deleted will
570  * appear as a "reserved" entry instead of simply dangling with incorrect
571  * counts.
572  */
573 void hugetlb_fix_reserve_counts(struct inode *inode)
574 {
575 	struct hugepage_subpool *spool = subpool_inode(inode);
576 	long rsv_adjust;
577 
578 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
579 	if (rsv_adjust) {
580 		struct hstate *h = hstate_inode(inode);
581 
582 		hugetlb_acct_memory(h, 1);
583 	}
584 }
585 
586 /*
587  * Count and return the number of huge pages in the reserve map
588  * that intersect with the range [f, t).
589  */
590 static long region_count(struct resv_map *resv, long f, long t)
591 {
592 	struct list_head *head = &resv->regions;
593 	struct file_region *rg;
594 	long chg = 0;
595 
596 	spin_lock(&resv->lock);
597 	/* Locate each segment we overlap with, and count that overlap. */
598 	list_for_each_entry(rg, head, link) {
599 		long seg_from;
600 		long seg_to;
601 
602 		if (rg->to <= f)
603 			continue;
604 		if (rg->from >= t)
605 			break;
606 
607 		seg_from = max(rg->from, f);
608 		seg_to = min(rg->to, t);
609 
610 		chg += seg_to - seg_from;
611 	}
612 	spin_unlock(&resv->lock);
613 
614 	return chg;
615 }
616 
617 /*
618  * Convert the address within this vma to the page offset within
619  * the mapping, in pagecache page units; huge pages here.
620  */
621 static pgoff_t vma_hugecache_offset(struct hstate *h,
622 			struct vm_area_struct *vma, unsigned long address)
623 {
624 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
625 			(vma->vm_pgoff >> huge_page_order(h));
626 }
627 
628 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629 				     unsigned long address)
630 {
631 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
632 }
633 EXPORT_SYMBOL_GPL(linear_hugepage_index);
634 
635 /*
636  * Return the size of the pages allocated when backing a VMA. In the majority
637  * cases this will be same size as used by the page table entries.
638  */
639 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640 {
641 	if (vma->vm_ops && vma->vm_ops->pagesize)
642 		return vma->vm_ops->pagesize(vma);
643 	return PAGE_SIZE;
644 }
645 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
646 
647 /*
648  * Return the page size being used by the MMU to back a VMA. In the majority
649  * of cases, the page size used by the kernel matches the MMU size. On
650  * architectures where it differs, an architecture-specific 'strong'
651  * version of this symbol is required.
652  */
653 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 {
655 	return vma_kernel_pagesize(vma);
656 }
657 
658 /*
659  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
660  * bits of the reservation map pointer, which are always clear due to
661  * alignment.
662  */
663 #define HPAGE_RESV_OWNER    (1UL << 0)
664 #define HPAGE_RESV_UNMAPPED (1UL << 1)
665 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
666 
667 /*
668  * These helpers are used to track how many pages are reserved for
669  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670  * is guaranteed to have their future faults succeed.
671  *
672  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673  * the reserve counters are updated with the hugetlb_lock held. It is safe
674  * to reset the VMA at fork() time as it is not in use yet and there is no
675  * chance of the global counters getting corrupted as a result of the values.
676  *
677  * The private mapping reservation is represented in a subtly different
678  * manner to a shared mapping.  A shared mapping has a region map associated
679  * with the underlying file, this region map represents the backing file
680  * pages which have ever had a reservation assigned which this persists even
681  * after the page is instantiated.  A private mapping has a region map
682  * associated with the original mmap which is attached to all VMAs which
683  * reference it, this region map represents those offsets which have consumed
684  * reservation ie. where pages have been instantiated.
685  */
686 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687 {
688 	return (unsigned long)vma->vm_private_data;
689 }
690 
691 static void set_vma_private_data(struct vm_area_struct *vma,
692 							unsigned long value)
693 {
694 	vma->vm_private_data = (void *)value;
695 }
696 
697 struct resv_map *resv_map_alloc(void)
698 {
699 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
700 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701 
702 	if (!resv_map || !rg) {
703 		kfree(resv_map);
704 		kfree(rg);
705 		return NULL;
706 	}
707 
708 	kref_init(&resv_map->refs);
709 	spin_lock_init(&resv_map->lock);
710 	INIT_LIST_HEAD(&resv_map->regions);
711 
712 	resv_map->adds_in_progress = 0;
713 
714 	INIT_LIST_HEAD(&resv_map->region_cache);
715 	list_add(&rg->link, &resv_map->region_cache);
716 	resv_map->region_cache_count = 1;
717 
718 	return resv_map;
719 }
720 
721 void resv_map_release(struct kref *ref)
722 {
723 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
724 	struct list_head *head = &resv_map->region_cache;
725 	struct file_region *rg, *trg;
726 
727 	/* Clear out any active regions before we release the map. */
728 	region_del(resv_map, 0, LONG_MAX);
729 
730 	/* ... and any entries left in the cache */
731 	list_for_each_entry_safe(rg, trg, head, link) {
732 		list_del(&rg->link);
733 		kfree(rg);
734 	}
735 
736 	VM_BUG_ON(resv_map->adds_in_progress);
737 
738 	kfree(resv_map);
739 }
740 
741 static inline struct resv_map *inode_resv_map(struct inode *inode)
742 {
743 	return inode->i_mapping->private_data;
744 }
745 
746 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
747 {
748 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
749 	if (vma->vm_flags & VM_MAYSHARE) {
750 		struct address_space *mapping = vma->vm_file->f_mapping;
751 		struct inode *inode = mapping->host;
752 
753 		return inode_resv_map(inode);
754 
755 	} else {
756 		return (struct resv_map *)(get_vma_private_data(vma) &
757 							~HPAGE_RESV_MASK);
758 	}
759 }
760 
761 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
762 {
763 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765 
766 	set_vma_private_data(vma, (get_vma_private_data(vma) &
767 				HPAGE_RESV_MASK) | (unsigned long)map);
768 }
769 
770 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771 {
772 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774 
775 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
776 }
777 
778 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779 {
780 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781 
782 	return (get_vma_private_data(vma) & flag) != 0;
783 }
784 
785 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
786 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787 {
788 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789 	if (!(vma->vm_flags & VM_MAYSHARE))
790 		vma->vm_private_data = (void *)0;
791 }
792 
793 /* Returns true if the VMA has associated reserve pages */
794 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
795 {
796 	if (vma->vm_flags & VM_NORESERVE) {
797 		/*
798 		 * This address is already reserved by other process(chg == 0),
799 		 * so, we should decrement reserved count. Without decrementing,
800 		 * reserve count remains after releasing inode, because this
801 		 * allocated page will go into page cache and is regarded as
802 		 * coming from reserved pool in releasing step.  Currently, we
803 		 * don't have any other solution to deal with this situation
804 		 * properly, so add work-around here.
805 		 */
806 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
807 			return true;
808 		else
809 			return false;
810 	}
811 
812 	/* Shared mappings always use reserves */
813 	if (vma->vm_flags & VM_MAYSHARE) {
814 		/*
815 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
816 		 * be a region map for all pages.  The only situation where
817 		 * there is no region map is if a hole was punched via
818 		 * fallocate.  In this case, there really are no reverves to
819 		 * use.  This situation is indicated if chg != 0.
820 		 */
821 		if (chg)
822 			return false;
823 		else
824 			return true;
825 	}
826 
827 	/*
828 	 * Only the process that called mmap() has reserves for
829 	 * private mappings.
830 	 */
831 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
832 		/*
833 		 * Like the shared case above, a hole punch or truncate
834 		 * could have been performed on the private mapping.
835 		 * Examine the value of chg to determine if reserves
836 		 * actually exist or were previously consumed.
837 		 * Very Subtle - The value of chg comes from a previous
838 		 * call to vma_needs_reserves().  The reserve map for
839 		 * private mappings has different (opposite) semantics
840 		 * than that of shared mappings.  vma_needs_reserves()
841 		 * has already taken this difference in semantics into
842 		 * account.  Therefore, the meaning of chg is the same
843 		 * as in the shared case above.  Code could easily be
844 		 * combined, but keeping it separate draws attention to
845 		 * subtle differences.
846 		 */
847 		if (chg)
848 			return false;
849 		else
850 			return true;
851 	}
852 
853 	return false;
854 }
855 
856 static void enqueue_huge_page(struct hstate *h, struct page *page)
857 {
858 	int nid = page_to_nid(page);
859 	list_move(&page->lru, &h->hugepage_freelists[nid]);
860 	h->free_huge_pages++;
861 	h->free_huge_pages_node[nid]++;
862 }
863 
864 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
865 {
866 	struct page *page;
867 
868 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
869 		if (!PageHWPoison(page))
870 			break;
871 	/*
872 	 * if 'non-isolated free hugepage' not found on the list,
873 	 * the allocation fails.
874 	 */
875 	if (&h->hugepage_freelists[nid] == &page->lru)
876 		return NULL;
877 	list_move(&page->lru, &h->hugepage_activelist);
878 	set_page_refcounted(page);
879 	h->free_huge_pages--;
880 	h->free_huge_pages_node[nid]--;
881 	return page;
882 }
883 
884 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
885 		nodemask_t *nmask)
886 {
887 	unsigned int cpuset_mems_cookie;
888 	struct zonelist *zonelist;
889 	struct zone *zone;
890 	struct zoneref *z;
891 	int node = NUMA_NO_NODE;
892 
893 	zonelist = node_zonelist(nid, gfp_mask);
894 
895 retry_cpuset:
896 	cpuset_mems_cookie = read_mems_allowed_begin();
897 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
898 		struct page *page;
899 
900 		if (!cpuset_zone_allowed(zone, gfp_mask))
901 			continue;
902 		/*
903 		 * no need to ask again on the same node. Pool is node rather than
904 		 * zone aware
905 		 */
906 		if (zone_to_nid(zone) == node)
907 			continue;
908 		node = zone_to_nid(zone);
909 
910 		page = dequeue_huge_page_node_exact(h, node);
911 		if (page)
912 			return page;
913 	}
914 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
915 		goto retry_cpuset;
916 
917 	return NULL;
918 }
919 
920 /* Movability of hugepages depends on migration support. */
921 static inline gfp_t htlb_alloc_mask(struct hstate *h)
922 {
923 	if (hugepage_movable_supported(h))
924 		return GFP_HIGHUSER_MOVABLE;
925 	else
926 		return GFP_HIGHUSER;
927 }
928 
929 static struct page *dequeue_huge_page_vma(struct hstate *h,
930 				struct vm_area_struct *vma,
931 				unsigned long address, int avoid_reserve,
932 				long chg)
933 {
934 	struct page *page;
935 	struct mempolicy *mpol;
936 	gfp_t gfp_mask;
937 	nodemask_t *nodemask;
938 	int nid;
939 
940 	/*
941 	 * A child process with MAP_PRIVATE mappings created by their parent
942 	 * have no page reserves. This check ensures that reservations are
943 	 * not "stolen". The child may still get SIGKILLed
944 	 */
945 	if (!vma_has_reserves(vma, chg) &&
946 			h->free_huge_pages - h->resv_huge_pages == 0)
947 		goto err;
948 
949 	/* If reserves cannot be used, ensure enough pages are in the pool */
950 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
951 		goto err;
952 
953 	gfp_mask = htlb_alloc_mask(h);
954 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
955 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
956 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
957 		SetPagePrivate(page);
958 		h->resv_huge_pages--;
959 	}
960 
961 	mpol_cond_put(mpol);
962 	return page;
963 
964 err:
965 	return NULL;
966 }
967 
968 /*
969  * common helper functions for hstate_next_node_to_{alloc|free}.
970  * We may have allocated or freed a huge page based on a different
971  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
972  * be outside of *nodes_allowed.  Ensure that we use an allowed
973  * node for alloc or free.
974  */
975 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
976 {
977 	nid = next_node_in(nid, *nodes_allowed);
978 	VM_BUG_ON(nid >= MAX_NUMNODES);
979 
980 	return nid;
981 }
982 
983 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
984 {
985 	if (!node_isset(nid, *nodes_allowed))
986 		nid = next_node_allowed(nid, nodes_allowed);
987 	return nid;
988 }
989 
990 /*
991  * returns the previously saved node ["this node"] from which to
992  * allocate a persistent huge page for the pool and advance the
993  * next node from which to allocate, handling wrap at end of node
994  * mask.
995  */
996 static int hstate_next_node_to_alloc(struct hstate *h,
997 					nodemask_t *nodes_allowed)
998 {
999 	int nid;
1000 
1001 	VM_BUG_ON(!nodes_allowed);
1002 
1003 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1004 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1005 
1006 	return nid;
1007 }
1008 
1009 /*
1010  * helper for free_pool_huge_page() - return the previously saved
1011  * node ["this node"] from which to free a huge page.  Advance the
1012  * next node id whether or not we find a free huge page to free so
1013  * that the next attempt to free addresses the next node.
1014  */
1015 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1016 {
1017 	int nid;
1018 
1019 	VM_BUG_ON(!nodes_allowed);
1020 
1021 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1022 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1023 
1024 	return nid;
1025 }
1026 
1027 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1028 	for (nr_nodes = nodes_weight(*mask);				\
1029 		nr_nodes > 0 &&						\
1030 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1031 		nr_nodes--)
1032 
1033 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1034 	for (nr_nodes = nodes_weight(*mask);				\
1035 		nr_nodes > 0 &&						\
1036 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1037 		nr_nodes--)
1038 
1039 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1040 static void destroy_compound_gigantic_page(struct page *page,
1041 					unsigned int order)
1042 {
1043 	int i;
1044 	int nr_pages = 1 << order;
1045 	struct page *p = page + 1;
1046 
1047 	atomic_set(compound_mapcount_ptr(page), 0);
1048 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1049 		clear_compound_head(p);
1050 		set_page_refcounted(p);
1051 	}
1052 
1053 	set_compound_order(page, 0);
1054 	__ClearPageHead(page);
1055 }
1056 
1057 static void free_gigantic_page(struct page *page, unsigned int order)
1058 {
1059 	free_contig_range(page_to_pfn(page), 1 << order);
1060 }
1061 
1062 static int __alloc_gigantic_page(unsigned long start_pfn,
1063 				unsigned long nr_pages, gfp_t gfp_mask)
1064 {
1065 	unsigned long end_pfn = start_pfn + nr_pages;
1066 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1067 				  gfp_mask);
1068 }
1069 
1070 static bool pfn_range_valid_gigantic(struct zone *z,
1071 			unsigned long start_pfn, unsigned long nr_pages)
1072 {
1073 	unsigned long i, end_pfn = start_pfn + nr_pages;
1074 	struct page *page;
1075 
1076 	for (i = start_pfn; i < end_pfn; i++) {
1077 		if (!pfn_valid(i))
1078 			return false;
1079 
1080 		page = pfn_to_page(i);
1081 
1082 		if (page_zone(page) != z)
1083 			return false;
1084 
1085 		if (PageReserved(page))
1086 			return false;
1087 
1088 		if (page_count(page) > 0)
1089 			return false;
1090 
1091 		if (PageHuge(page))
1092 			return false;
1093 	}
1094 
1095 	return true;
1096 }
1097 
1098 static bool zone_spans_last_pfn(const struct zone *zone,
1099 			unsigned long start_pfn, unsigned long nr_pages)
1100 {
1101 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1102 	return zone_spans_pfn(zone, last_pfn);
1103 }
1104 
1105 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1106 		int nid, nodemask_t *nodemask)
1107 {
1108 	unsigned int order = huge_page_order(h);
1109 	unsigned long nr_pages = 1 << order;
1110 	unsigned long ret, pfn, flags;
1111 	struct zonelist *zonelist;
1112 	struct zone *zone;
1113 	struct zoneref *z;
1114 
1115 	zonelist = node_zonelist(nid, gfp_mask);
1116 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1117 		spin_lock_irqsave(&zone->lock, flags);
1118 
1119 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1120 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1121 			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1122 				/*
1123 				 * We release the zone lock here because
1124 				 * alloc_contig_range() will also lock the zone
1125 				 * at some point. If there's an allocation
1126 				 * spinning on this lock, it may win the race
1127 				 * and cause alloc_contig_range() to fail...
1128 				 */
1129 				spin_unlock_irqrestore(&zone->lock, flags);
1130 				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1131 				if (!ret)
1132 					return pfn_to_page(pfn);
1133 				spin_lock_irqsave(&zone->lock, flags);
1134 			}
1135 			pfn += nr_pages;
1136 		}
1137 
1138 		spin_unlock_irqrestore(&zone->lock, flags);
1139 	}
1140 
1141 	return NULL;
1142 }
1143 
1144 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1145 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1146 
1147 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1148 static inline bool gigantic_page_supported(void) { return false; }
1149 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1150 		int nid, nodemask_t *nodemask) { return NULL; }
1151 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1152 static inline void destroy_compound_gigantic_page(struct page *page,
1153 						unsigned int order) { }
1154 #endif
1155 
1156 static void update_and_free_page(struct hstate *h, struct page *page)
1157 {
1158 	int i;
1159 
1160 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1161 		return;
1162 
1163 	h->nr_huge_pages--;
1164 	h->nr_huge_pages_node[page_to_nid(page)]--;
1165 	for (i = 0; i < pages_per_huge_page(h); i++) {
1166 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1167 				1 << PG_referenced | 1 << PG_dirty |
1168 				1 << PG_active | 1 << PG_private |
1169 				1 << PG_writeback);
1170 	}
1171 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1172 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1173 	set_page_refcounted(page);
1174 	if (hstate_is_gigantic(h)) {
1175 		destroy_compound_gigantic_page(page, huge_page_order(h));
1176 		free_gigantic_page(page, huge_page_order(h));
1177 	} else {
1178 		__free_pages(page, huge_page_order(h));
1179 	}
1180 }
1181 
1182 struct hstate *size_to_hstate(unsigned long size)
1183 {
1184 	struct hstate *h;
1185 
1186 	for_each_hstate(h) {
1187 		if (huge_page_size(h) == size)
1188 			return h;
1189 	}
1190 	return NULL;
1191 }
1192 
1193 /*
1194  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1195  * to hstate->hugepage_activelist.)
1196  *
1197  * This function can be called for tail pages, but never returns true for them.
1198  */
1199 bool page_huge_active(struct page *page)
1200 {
1201 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1202 	return PageHead(page) && PagePrivate(&page[1]);
1203 }
1204 
1205 /* never called for tail page */
1206 static void set_page_huge_active(struct page *page)
1207 {
1208 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1209 	SetPagePrivate(&page[1]);
1210 }
1211 
1212 static void clear_page_huge_active(struct page *page)
1213 {
1214 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1215 	ClearPagePrivate(&page[1]);
1216 }
1217 
1218 /*
1219  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1220  * code
1221  */
1222 static inline bool PageHugeTemporary(struct page *page)
1223 {
1224 	if (!PageHuge(page))
1225 		return false;
1226 
1227 	return (unsigned long)page[2].mapping == -1U;
1228 }
1229 
1230 static inline void SetPageHugeTemporary(struct page *page)
1231 {
1232 	page[2].mapping = (void *)-1U;
1233 }
1234 
1235 static inline void ClearPageHugeTemporary(struct page *page)
1236 {
1237 	page[2].mapping = NULL;
1238 }
1239 
1240 void free_huge_page(struct page *page)
1241 {
1242 	/*
1243 	 * Can't pass hstate in here because it is called from the
1244 	 * compound page destructor.
1245 	 */
1246 	struct hstate *h = page_hstate(page);
1247 	int nid = page_to_nid(page);
1248 	struct hugepage_subpool *spool =
1249 		(struct hugepage_subpool *)page_private(page);
1250 	bool restore_reserve;
1251 
1252 	VM_BUG_ON_PAGE(page_count(page), page);
1253 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1254 
1255 	set_page_private(page, 0);
1256 	page->mapping = NULL;
1257 	restore_reserve = PagePrivate(page);
1258 	ClearPagePrivate(page);
1259 
1260 	/*
1261 	 * A return code of zero implies that the subpool will be under its
1262 	 * minimum size if the reservation is not restored after page is free.
1263 	 * Therefore, force restore_reserve operation.
1264 	 */
1265 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1266 		restore_reserve = true;
1267 
1268 	spin_lock(&hugetlb_lock);
1269 	clear_page_huge_active(page);
1270 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1271 				     pages_per_huge_page(h), page);
1272 	if (restore_reserve)
1273 		h->resv_huge_pages++;
1274 
1275 	if (PageHugeTemporary(page)) {
1276 		list_del(&page->lru);
1277 		ClearPageHugeTemporary(page);
1278 		update_and_free_page(h, page);
1279 	} else if (h->surplus_huge_pages_node[nid]) {
1280 		/* remove the page from active list */
1281 		list_del(&page->lru);
1282 		update_and_free_page(h, page);
1283 		h->surplus_huge_pages--;
1284 		h->surplus_huge_pages_node[nid]--;
1285 	} else {
1286 		arch_clear_hugepage_flags(page);
1287 		enqueue_huge_page(h, page);
1288 	}
1289 	spin_unlock(&hugetlb_lock);
1290 }
1291 
1292 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1293 {
1294 	INIT_LIST_HEAD(&page->lru);
1295 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1296 	spin_lock(&hugetlb_lock);
1297 	set_hugetlb_cgroup(page, NULL);
1298 	h->nr_huge_pages++;
1299 	h->nr_huge_pages_node[nid]++;
1300 	spin_unlock(&hugetlb_lock);
1301 }
1302 
1303 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1304 {
1305 	int i;
1306 	int nr_pages = 1 << order;
1307 	struct page *p = page + 1;
1308 
1309 	/* we rely on prep_new_huge_page to set the destructor */
1310 	set_compound_order(page, order);
1311 	__ClearPageReserved(page);
1312 	__SetPageHead(page);
1313 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1314 		/*
1315 		 * For gigantic hugepages allocated through bootmem at
1316 		 * boot, it's safer to be consistent with the not-gigantic
1317 		 * hugepages and clear the PG_reserved bit from all tail pages
1318 		 * too.  Otherwse drivers using get_user_pages() to access tail
1319 		 * pages may get the reference counting wrong if they see
1320 		 * PG_reserved set on a tail page (despite the head page not
1321 		 * having PG_reserved set).  Enforcing this consistency between
1322 		 * head and tail pages allows drivers to optimize away a check
1323 		 * on the head page when they need know if put_page() is needed
1324 		 * after get_user_pages().
1325 		 */
1326 		__ClearPageReserved(p);
1327 		set_page_count(p, 0);
1328 		set_compound_head(p, page);
1329 	}
1330 	atomic_set(compound_mapcount_ptr(page), -1);
1331 }
1332 
1333 /*
1334  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1335  * transparent huge pages.  See the PageTransHuge() documentation for more
1336  * details.
1337  */
1338 int PageHuge(struct page *page)
1339 {
1340 	if (!PageCompound(page))
1341 		return 0;
1342 
1343 	page = compound_head(page);
1344 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1345 }
1346 EXPORT_SYMBOL_GPL(PageHuge);
1347 
1348 /*
1349  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1350  * normal or transparent huge pages.
1351  */
1352 int PageHeadHuge(struct page *page_head)
1353 {
1354 	if (!PageHead(page_head))
1355 		return 0;
1356 
1357 	return get_compound_page_dtor(page_head) == free_huge_page;
1358 }
1359 
1360 pgoff_t __basepage_index(struct page *page)
1361 {
1362 	struct page *page_head = compound_head(page);
1363 	pgoff_t index = page_index(page_head);
1364 	unsigned long compound_idx;
1365 
1366 	if (!PageHuge(page_head))
1367 		return page_index(page);
1368 
1369 	if (compound_order(page_head) >= MAX_ORDER)
1370 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1371 	else
1372 		compound_idx = page - page_head;
1373 
1374 	return (index << compound_order(page_head)) + compound_idx;
1375 }
1376 
1377 static struct page *alloc_buddy_huge_page(struct hstate *h,
1378 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1379 {
1380 	int order = huge_page_order(h);
1381 	struct page *page;
1382 
1383 	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1384 	if (nid == NUMA_NO_NODE)
1385 		nid = numa_mem_id();
1386 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1387 	if (page)
1388 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1389 	else
1390 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1391 
1392 	return page;
1393 }
1394 
1395 /*
1396  * Common helper to allocate a fresh hugetlb page. All specific allocators
1397  * should use this function to get new hugetlb pages
1398  */
1399 static struct page *alloc_fresh_huge_page(struct hstate *h,
1400 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1401 {
1402 	struct page *page;
1403 
1404 	if (hstate_is_gigantic(h))
1405 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1406 	else
1407 		page = alloc_buddy_huge_page(h, gfp_mask,
1408 				nid, nmask);
1409 	if (!page)
1410 		return NULL;
1411 
1412 	if (hstate_is_gigantic(h))
1413 		prep_compound_gigantic_page(page, huge_page_order(h));
1414 	prep_new_huge_page(h, page, page_to_nid(page));
1415 
1416 	return page;
1417 }
1418 
1419 /*
1420  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1421  * manner.
1422  */
1423 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1424 {
1425 	struct page *page;
1426 	int nr_nodes, node;
1427 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1428 
1429 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1430 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1431 		if (page)
1432 			break;
1433 	}
1434 
1435 	if (!page)
1436 		return 0;
1437 
1438 	put_page(page); /* free it into the hugepage allocator */
1439 
1440 	return 1;
1441 }
1442 
1443 /*
1444  * Free huge page from pool from next node to free.
1445  * Attempt to keep persistent huge pages more or less
1446  * balanced over allowed nodes.
1447  * Called with hugetlb_lock locked.
1448  */
1449 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1450 							 bool acct_surplus)
1451 {
1452 	int nr_nodes, node;
1453 	int ret = 0;
1454 
1455 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1456 		/*
1457 		 * If we're returning unused surplus pages, only examine
1458 		 * nodes with surplus pages.
1459 		 */
1460 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1461 		    !list_empty(&h->hugepage_freelists[node])) {
1462 			struct page *page =
1463 				list_entry(h->hugepage_freelists[node].next,
1464 					  struct page, lru);
1465 			list_del(&page->lru);
1466 			h->free_huge_pages--;
1467 			h->free_huge_pages_node[node]--;
1468 			if (acct_surplus) {
1469 				h->surplus_huge_pages--;
1470 				h->surplus_huge_pages_node[node]--;
1471 			}
1472 			update_and_free_page(h, page);
1473 			ret = 1;
1474 			break;
1475 		}
1476 	}
1477 
1478 	return ret;
1479 }
1480 
1481 /*
1482  * Dissolve a given free hugepage into free buddy pages. This function does
1483  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1484  * dissolution fails because a give page is not a free hugepage, or because
1485  * free hugepages are fully reserved.
1486  */
1487 int dissolve_free_huge_page(struct page *page)
1488 {
1489 	int rc = -EBUSY;
1490 
1491 	spin_lock(&hugetlb_lock);
1492 	if (PageHuge(page) && !page_count(page)) {
1493 		struct page *head = compound_head(page);
1494 		struct hstate *h = page_hstate(head);
1495 		int nid = page_to_nid(head);
1496 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1497 			goto out;
1498 		/*
1499 		 * Move PageHWPoison flag from head page to the raw error page,
1500 		 * which makes any subpages rather than the error page reusable.
1501 		 */
1502 		if (PageHWPoison(head) && page != head) {
1503 			SetPageHWPoison(page);
1504 			ClearPageHWPoison(head);
1505 		}
1506 		list_del(&head->lru);
1507 		h->free_huge_pages--;
1508 		h->free_huge_pages_node[nid]--;
1509 		h->max_huge_pages--;
1510 		update_and_free_page(h, head);
1511 		rc = 0;
1512 	}
1513 out:
1514 	spin_unlock(&hugetlb_lock);
1515 	return rc;
1516 }
1517 
1518 /*
1519  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1520  * make specified memory blocks removable from the system.
1521  * Note that this will dissolve a free gigantic hugepage completely, if any
1522  * part of it lies within the given range.
1523  * Also note that if dissolve_free_huge_page() returns with an error, all
1524  * free hugepages that were dissolved before that error are lost.
1525  */
1526 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1527 {
1528 	unsigned long pfn;
1529 	struct page *page;
1530 	int rc = 0;
1531 
1532 	if (!hugepages_supported())
1533 		return rc;
1534 
1535 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1536 		page = pfn_to_page(pfn);
1537 		if (PageHuge(page) && !page_count(page)) {
1538 			rc = dissolve_free_huge_page(page);
1539 			if (rc)
1540 				break;
1541 		}
1542 	}
1543 
1544 	return rc;
1545 }
1546 
1547 /*
1548  * Allocates a fresh surplus page from the page allocator.
1549  */
1550 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1551 		int nid, nodemask_t *nmask)
1552 {
1553 	struct page *page = NULL;
1554 
1555 	if (hstate_is_gigantic(h))
1556 		return NULL;
1557 
1558 	spin_lock(&hugetlb_lock);
1559 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1560 		goto out_unlock;
1561 	spin_unlock(&hugetlb_lock);
1562 
1563 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1564 	if (!page)
1565 		return NULL;
1566 
1567 	spin_lock(&hugetlb_lock);
1568 	/*
1569 	 * We could have raced with the pool size change.
1570 	 * Double check that and simply deallocate the new page
1571 	 * if we would end up overcommiting the surpluses. Abuse
1572 	 * temporary page to workaround the nasty free_huge_page
1573 	 * codeflow
1574 	 */
1575 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1576 		SetPageHugeTemporary(page);
1577 		put_page(page);
1578 		page = NULL;
1579 	} else {
1580 		h->surplus_huge_pages++;
1581 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1582 	}
1583 
1584 out_unlock:
1585 	spin_unlock(&hugetlb_lock);
1586 
1587 	return page;
1588 }
1589 
1590 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1591 				     int nid, nodemask_t *nmask)
1592 {
1593 	struct page *page;
1594 
1595 	if (hstate_is_gigantic(h))
1596 		return NULL;
1597 
1598 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1599 	if (!page)
1600 		return NULL;
1601 
1602 	/*
1603 	 * We do not account these pages as surplus because they are only
1604 	 * temporary and will be released properly on the last reference
1605 	 */
1606 	SetPageHugeTemporary(page);
1607 
1608 	return page;
1609 }
1610 
1611 /*
1612  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1613  */
1614 static
1615 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1616 		struct vm_area_struct *vma, unsigned long addr)
1617 {
1618 	struct page *page;
1619 	struct mempolicy *mpol;
1620 	gfp_t gfp_mask = htlb_alloc_mask(h);
1621 	int nid;
1622 	nodemask_t *nodemask;
1623 
1624 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1625 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1626 	mpol_cond_put(mpol);
1627 
1628 	return page;
1629 }
1630 
1631 /* page migration callback function */
1632 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1633 {
1634 	gfp_t gfp_mask = htlb_alloc_mask(h);
1635 	struct page *page = NULL;
1636 
1637 	if (nid != NUMA_NO_NODE)
1638 		gfp_mask |= __GFP_THISNODE;
1639 
1640 	spin_lock(&hugetlb_lock);
1641 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1642 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1643 	spin_unlock(&hugetlb_lock);
1644 
1645 	if (!page)
1646 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1647 
1648 	return page;
1649 }
1650 
1651 /* page migration callback function */
1652 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1653 		nodemask_t *nmask)
1654 {
1655 	gfp_t gfp_mask = htlb_alloc_mask(h);
1656 
1657 	spin_lock(&hugetlb_lock);
1658 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1659 		struct page *page;
1660 
1661 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1662 		if (page) {
1663 			spin_unlock(&hugetlb_lock);
1664 			return page;
1665 		}
1666 	}
1667 	spin_unlock(&hugetlb_lock);
1668 
1669 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1670 }
1671 
1672 /* mempolicy aware migration callback */
1673 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1674 		unsigned long address)
1675 {
1676 	struct mempolicy *mpol;
1677 	nodemask_t *nodemask;
1678 	struct page *page;
1679 	gfp_t gfp_mask;
1680 	int node;
1681 
1682 	gfp_mask = htlb_alloc_mask(h);
1683 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1684 	page = alloc_huge_page_nodemask(h, node, nodemask);
1685 	mpol_cond_put(mpol);
1686 
1687 	return page;
1688 }
1689 
1690 /*
1691  * Increase the hugetlb pool such that it can accommodate a reservation
1692  * of size 'delta'.
1693  */
1694 static int gather_surplus_pages(struct hstate *h, int delta)
1695 {
1696 	struct list_head surplus_list;
1697 	struct page *page, *tmp;
1698 	int ret, i;
1699 	int needed, allocated;
1700 	bool alloc_ok = true;
1701 
1702 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1703 	if (needed <= 0) {
1704 		h->resv_huge_pages += delta;
1705 		return 0;
1706 	}
1707 
1708 	allocated = 0;
1709 	INIT_LIST_HEAD(&surplus_list);
1710 
1711 	ret = -ENOMEM;
1712 retry:
1713 	spin_unlock(&hugetlb_lock);
1714 	for (i = 0; i < needed; i++) {
1715 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1716 				NUMA_NO_NODE, NULL);
1717 		if (!page) {
1718 			alloc_ok = false;
1719 			break;
1720 		}
1721 		list_add(&page->lru, &surplus_list);
1722 		cond_resched();
1723 	}
1724 	allocated += i;
1725 
1726 	/*
1727 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1728 	 * because either resv_huge_pages or free_huge_pages may have changed.
1729 	 */
1730 	spin_lock(&hugetlb_lock);
1731 	needed = (h->resv_huge_pages + delta) -
1732 			(h->free_huge_pages + allocated);
1733 	if (needed > 0) {
1734 		if (alloc_ok)
1735 			goto retry;
1736 		/*
1737 		 * We were not able to allocate enough pages to
1738 		 * satisfy the entire reservation so we free what
1739 		 * we've allocated so far.
1740 		 */
1741 		goto free;
1742 	}
1743 	/*
1744 	 * The surplus_list now contains _at_least_ the number of extra pages
1745 	 * needed to accommodate the reservation.  Add the appropriate number
1746 	 * of pages to the hugetlb pool and free the extras back to the buddy
1747 	 * allocator.  Commit the entire reservation here to prevent another
1748 	 * process from stealing the pages as they are added to the pool but
1749 	 * before they are reserved.
1750 	 */
1751 	needed += allocated;
1752 	h->resv_huge_pages += delta;
1753 	ret = 0;
1754 
1755 	/* Free the needed pages to the hugetlb pool */
1756 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1757 		if ((--needed) < 0)
1758 			break;
1759 		/*
1760 		 * This page is now managed by the hugetlb allocator and has
1761 		 * no users -- drop the buddy allocator's reference.
1762 		 */
1763 		put_page_testzero(page);
1764 		VM_BUG_ON_PAGE(page_count(page), page);
1765 		enqueue_huge_page(h, page);
1766 	}
1767 free:
1768 	spin_unlock(&hugetlb_lock);
1769 
1770 	/* Free unnecessary surplus pages to the buddy allocator */
1771 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1772 		put_page(page);
1773 	spin_lock(&hugetlb_lock);
1774 
1775 	return ret;
1776 }
1777 
1778 /*
1779  * This routine has two main purposes:
1780  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1781  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1782  *    to the associated reservation map.
1783  * 2) Free any unused surplus pages that may have been allocated to satisfy
1784  *    the reservation.  As many as unused_resv_pages may be freed.
1785  *
1786  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1787  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1788  * we must make sure nobody else can claim pages we are in the process of
1789  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1790  * number of huge pages we plan to free when dropping the lock.
1791  */
1792 static void return_unused_surplus_pages(struct hstate *h,
1793 					unsigned long unused_resv_pages)
1794 {
1795 	unsigned long nr_pages;
1796 
1797 	/* Cannot return gigantic pages currently */
1798 	if (hstate_is_gigantic(h))
1799 		goto out;
1800 
1801 	/*
1802 	 * Part (or even all) of the reservation could have been backed
1803 	 * by pre-allocated pages. Only free surplus pages.
1804 	 */
1805 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1806 
1807 	/*
1808 	 * We want to release as many surplus pages as possible, spread
1809 	 * evenly across all nodes with memory. Iterate across these nodes
1810 	 * until we can no longer free unreserved surplus pages. This occurs
1811 	 * when the nodes with surplus pages have no free pages.
1812 	 * free_pool_huge_page() will balance the the freed pages across the
1813 	 * on-line nodes with memory and will handle the hstate accounting.
1814 	 *
1815 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1816 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1817 	 * to cover subsequent pages we may free.
1818 	 */
1819 	while (nr_pages--) {
1820 		h->resv_huge_pages--;
1821 		unused_resv_pages--;
1822 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1823 			goto out;
1824 		cond_resched_lock(&hugetlb_lock);
1825 	}
1826 
1827 out:
1828 	/* Fully uncommit the reservation */
1829 	h->resv_huge_pages -= unused_resv_pages;
1830 }
1831 
1832 
1833 /*
1834  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1835  * are used by the huge page allocation routines to manage reservations.
1836  *
1837  * vma_needs_reservation is called to determine if the huge page at addr
1838  * within the vma has an associated reservation.  If a reservation is
1839  * needed, the value 1 is returned.  The caller is then responsible for
1840  * managing the global reservation and subpool usage counts.  After
1841  * the huge page has been allocated, vma_commit_reservation is called
1842  * to add the page to the reservation map.  If the page allocation fails,
1843  * the reservation must be ended instead of committed.  vma_end_reservation
1844  * is called in such cases.
1845  *
1846  * In the normal case, vma_commit_reservation returns the same value
1847  * as the preceding vma_needs_reservation call.  The only time this
1848  * is not the case is if a reserve map was changed between calls.  It
1849  * is the responsibility of the caller to notice the difference and
1850  * take appropriate action.
1851  *
1852  * vma_add_reservation is used in error paths where a reservation must
1853  * be restored when a newly allocated huge page must be freed.  It is
1854  * to be called after calling vma_needs_reservation to determine if a
1855  * reservation exists.
1856  */
1857 enum vma_resv_mode {
1858 	VMA_NEEDS_RESV,
1859 	VMA_COMMIT_RESV,
1860 	VMA_END_RESV,
1861 	VMA_ADD_RESV,
1862 };
1863 static long __vma_reservation_common(struct hstate *h,
1864 				struct vm_area_struct *vma, unsigned long addr,
1865 				enum vma_resv_mode mode)
1866 {
1867 	struct resv_map *resv;
1868 	pgoff_t idx;
1869 	long ret;
1870 
1871 	resv = vma_resv_map(vma);
1872 	if (!resv)
1873 		return 1;
1874 
1875 	idx = vma_hugecache_offset(h, vma, addr);
1876 	switch (mode) {
1877 	case VMA_NEEDS_RESV:
1878 		ret = region_chg(resv, idx, idx + 1);
1879 		break;
1880 	case VMA_COMMIT_RESV:
1881 		ret = region_add(resv, idx, idx + 1);
1882 		break;
1883 	case VMA_END_RESV:
1884 		region_abort(resv, idx, idx + 1);
1885 		ret = 0;
1886 		break;
1887 	case VMA_ADD_RESV:
1888 		if (vma->vm_flags & VM_MAYSHARE)
1889 			ret = region_add(resv, idx, idx + 1);
1890 		else {
1891 			region_abort(resv, idx, idx + 1);
1892 			ret = region_del(resv, idx, idx + 1);
1893 		}
1894 		break;
1895 	default:
1896 		BUG();
1897 	}
1898 
1899 	if (vma->vm_flags & VM_MAYSHARE)
1900 		return ret;
1901 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1902 		/*
1903 		 * In most cases, reserves always exist for private mappings.
1904 		 * However, a file associated with mapping could have been
1905 		 * hole punched or truncated after reserves were consumed.
1906 		 * As subsequent fault on such a range will not use reserves.
1907 		 * Subtle - The reserve map for private mappings has the
1908 		 * opposite meaning than that of shared mappings.  If NO
1909 		 * entry is in the reserve map, it means a reservation exists.
1910 		 * If an entry exists in the reserve map, it means the
1911 		 * reservation has already been consumed.  As a result, the
1912 		 * return value of this routine is the opposite of the
1913 		 * value returned from reserve map manipulation routines above.
1914 		 */
1915 		if (ret)
1916 			return 0;
1917 		else
1918 			return 1;
1919 	}
1920 	else
1921 		return ret < 0 ? ret : 0;
1922 }
1923 
1924 static long vma_needs_reservation(struct hstate *h,
1925 			struct vm_area_struct *vma, unsigned long addr)
1926 {
1927 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1928 }
1929 
1930 static long vma_commit_reservation(struct hstate *h,
1931 			struct vm_area_struct *vma, unsigned long addr)
1932 {
1933 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1934 }
1935 
1936 static void vma_end_reservation(struct hstate *h,
1937 			struct vm_area_struct *vma, unsigned long addr)
1938 {
1939 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1940 }
1941 
1942 static long vma_add_reservation(struct hstate *h,
1943 			struct vm_area_struct *vma, unsigned long addr)
1944 {
1945 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1946 }
1947 
1948 /*
1949  * This routine is called to restore a reservation on error paths.  In the
1950  * specific error paths, a huge page was allocated (via alloc_huge_page)
1951  * and is about to be freed.  If a reservation for the page existed,
1952  * alloc_huge_page would have consumed the reservation and set PagePrivate
1953  * in the newly allocated page.  When the page is freed via free_huge_page,
1954  * the global reservation count will be incremented if PagePrivate is set.
1955  * However, free_huge_page can not adjust the reserve map.  Adjust the
1956  * reserve map here to be consistent with global reserve count adjustments
1957  * to be made by free_huge_page.
1958  */
1959 static void restore_reserve_on_error(struct hstate *h,
1960 			struct vm_area_struct *vma, unsigned long address,
1961 			struct page *page)
1962 {
1963 	if (unlikely(PagePrivate(page))) {
1964 		long rc = vma_needs_reservation(h, vma, address);
1965 
1966 		if (unlikely(rc < 0)) {
1967 			/*
1968 			 * Rare out of memory condition in reserve map
1969 			 * manipulation.  Clear PagePrivate so that
1970 			 * global reserve count will not be incremented
1971 			 * by free_huge_page.  This will make it appear
1972 			 * as though the reservation for this page was
1973 			 * consumed.  This may prevent the task from
1974 			 * faulting in the page at a later time.  This
1975 			 * is better than inconsistent global huge page
1976 			 * accounting of reserve counts.
1977 			 */
1978 			ClearPagePrivate(page);
1979 		} else if (rc) {
1980 			rc = vma_add_reservation(h, vma, address);
1981 			if (unlikely(rc < 0))
1982 				/*
1983 				 * See above comment about rare out of
1984 				 * memory condition.
1985 				 */
1986 				ClearPagePrivate(page);
1987 		} else
1988 			vma_end_reservation(h, vma, address);
1989 	}
1990 }
1991 
1992 struct page *alloc_huge_page(struct vm_area_struct *vma,
1993 				    unsigned long addr, int avoid_reserve)
1994 {
1995 	struct hugepage_subpool *spool = subpool_vma(vma);
1996 	struct hstate *h = hstate_vma(vma);
1997 	struct page *page;
1998 	long map_chg, map_commit;
1999 	long gbl_chg;
2000 	int ret, idx;
2001 	struct hugetlb_cgroup *h_cg;
2002 
2003 	idx = hstate_index(h);
2004 	/*
2005 	 * Examine the region/reserve map to determine if the process
2006 	 * has a reservation for the page to be allocated.  A return
2007 	 * code of zero indicates a reservation exists (no change).
2008 	 */
2009 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2010 	if (map_chg < 0)
2011 		return ERR_PTR(-ENOMEM);
2012 
2013 	/*
2014 	 * Processes that did not create the mapping will have no
2015 	 * reserves as indicated by the region/reserve map. Check
2016 	 * that the allocation will not exceed the subpool limit.
2017 	 * Allocations for MAP_NORESERVE mappings also need to be
2018 	 * checked against any subpool limit.
2019 	 */
2020 	if (map_chg || avoid_reserve) {
2021 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2022 		if (gbl_chg < 0) {
2023 			vma_end_reservation(h, vma, addr);
2024 			return ERR_PTR(-ENOSPC);
2025 		}
2026 
2027 		/*
2028 		 * Even though there was no reservation in the region/reserve
2029 		 * map, there could be reservations associated with the
2030 		 * subpool that can be used.  This would be indicated if the
2031 		 * return value of hugepage_subpool_get_pages() is zero.
2032 		 * However, if avoid_reserve is specified we still avoid even
2033 		 * the subpool reservations.
2034 		 */
2035 		if (avoid_reserve)
2036 			gbl_chg = 1;
2037 	}
2038 
2039 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2040 	if (ret)
2041 		goto out_subpool_put;
2042 
2043 	spin_lock(&hugetlb_lock);
2044 	/*
2045 	 * glb_chg is passed to indicate whether or not a page must be taken
2046 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2047 	 * a reservation exists for the allocation.
2048 	 */
2049 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2050 	if (!page) {
2051 		spin_unlock(&hugetlb_lock);
2052 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2053 		if (!page)
2054 			goto out_uncharge_cgroup;
2055 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2056 			SetPagePrivate(page);
2057 			h->resv_huge_pages--;
2058 		}
2059 		spin_lock(&hugetlb_lock);
2060 		list_move(&page->lru, &h->hugepage_activelist);
2061 		/* Fall through */
2062 	}
2063 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2064 	spin_unlock(&hugetlb_lock);
2065 
2066 	set_page_private(page, (unsigned long)spool);
2067 
2068 	map_commit = vma_commit_reservation(h, vma, addr);
2069 	if (unlikely(map_chg > map_commit)) {
2070 		/*
2071 		 * The page was added to the reservation map between
2072 		 * vma_needs_reservation and vma_commit_reservation.
2073 		 * This indicates a race with hugetlb_reserve_pages.
2074 		 * Adjust for the subpool count incremented above AND
2075 		 * in hugetlb_reserve_pages for the same page.  Also,
2076 		 * the reservation count added in hugetlb_reserve_pages
2077 		 * no longer applies.
2078 		 */
2079 		long rsv_adjust;
2080 
2081 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2082 		hugetlb_acct_memory(h, -rsv_adjust);
2083 	}
2084 	return page;
2085 
2086 out_uncharge_cgroup:
2087 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2088 out_subpool_put:
2089 	if (map_chg || avoid_reserve)
2090 		hugepage_subpool_put_pages(spool, 1);
2091 	vma_end_reservation(h, vma, addr);
2092 	return ERR_PTR(-ENOSPC);
2093 }
2094 
2095 int alloc_bootmem_huge_page(struct hstate *h)
2096 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2097 int __alloc_bootmem_huge_page(struct hstate *h)
2098 {
2099 	struct huge_bootmem_page *m;
2100 	int nr_nodes, node;
2101 
2102 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2103 		void *addr;
2104 
2105 		addr = memblock_alloc_try_nid_raw(
2106 				huge_page_size(h), huge_page_size(h),
2107 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2108 		if (addr) {
2109 			/*
2110 			 * Use the beginning of the huge page to store the
2111 			 * huge_bootmem_page struct (until gather_bootmem
2112 			 * puts them into the mem_map).
2113 			 */
2114 			m = addr;
2115 			goto found;
2116 		}
2117 	}
2118 	return 0;
2119 
2120 found:
2121 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2122 	/* Put them into a private list first because mem_map is not up yet */
2123 	INIT_LIST_HEAD(&m->list);
2124 	list_add(&m->list, &huge_boot_pages);
2125 	m->hstate = h;
2126 	return 1;
2127 }
2128 
2129 static void __init prep_compound_huge_page(struct page *page,
2130 		unsigned int order)
2131 {
2132 	if (unlikely(order > (MAX_ORDER - 1)))
2133 		prep_compound_gigantic_page(page, order);
2134 	else
2135 		prep_compound_page(page, order);
2136 }
2137 
2138 /* Put bootmem huge pages into the standard lists after mem_map is up */
2139 static void __init gather_bootmem_prealloc(void)
2140 {
2141 	struct huge_bootmem_page *m;
2142 
2143 	list_for_each_entry(m, &huge_boot_pages, list) {
2144 		struct page *page = virt_to_page(m);
2145 		struct hstate *h = m->hstate;
2146 
2147 		WARN_ON(page_count(page) != 1);
2148 		prep_compound_huge_page(page, h->order);
2149 		WARN_ON(PageReserved(page));
2150 		prep_new_huge_page(h, page, page_to_nid(page));
2151 		put_page(page); /* free it into the hugepage allocator */
2152 
2153 		/*
2154 		 * If we had gigantic hugepages allocated at boot time, we need
2155 		 * to restore the 'stolen' pages to totalram_pages in order to
2156 		 * fix confusing memory reports from free(1) and another
2157 		 * side-effects, like CommitLimit going negative.
2158 		 */
2159 		if (hstate_is_gigantic(h))
2160 			adjust_managed_page_count(page, 1 << h->order);
2161 		cond_resched();
2162 	}
2163 }
2164 
2165 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2166 {
2167 	unsigned long i;
2168 
2169 	for (i = 0; i < h->max_huge_pages; ++i) {
2170 		if (hstate_is_gigantic(h)) {
2171 			if (!alloc_bootmem_huge_page(h))
2172 				break;
2173 		} else if (!alloc_pool_huge_page(h,
2174 					 &node_states[N_MEMORY]))
2175 			break;
2176 		cond_resched();
2177 	}
2178 	if (i < h->max_huge_pages) {
2179 		char buf[32];
2180 
2181 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2182 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2183 			h->max_huge_pages, buf, i);
2184 		h->max_huge_pages = i;
2185 	}
2186 }
2187 
2188 static void __init hugetlb_init_hstates(void)
2189 {
2190 	struct hstate *h;
2191 
2192 	for_each_hstate(h) {
2193 		if (minimum_order > huge_page_order(h))
2194 			minimum_order = huge_page_order(h);
2195 
2196 		/* oversize hugepages were init'ed in early boot */
2197 		if (!hstate_is_gigantic(h))
2198 			hugetlb_hstate_alloc_pages(h);
2199 	}
2200 	VM_BUG_ON(minimum_order == UINT_MAX);
2201 }
2202 
2203 static void __init report_hugepages(void)
2204 {
2205 	struct hstate *h;
2206 
2207 	for_each_hstate(h) {
2208 		char buf[32];
2209 
2210 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2211 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2212 			buf, h->free_huge_pages);
2213 	}
2214 }
2215 
2216 #ifdef CONFIG_HIGHMEM
2217 static void try_to_free_low(struct hstate *h, unsigned long count,
2218 						nodemask_t *nodes_allowed)
2219 {
2220 	int i;
2221 
2222 	if (hstate_is_gigantic(h))
2223 		return;
2224 
2225 	for_each_node_mask(i, *nodes_allowed) {
2226 		struct page *page, *next;
2227 		struct list_head *freel = &h->hugepage_freelists[i];
2228 		list_for_each_entry_safe(page, next, freel, lru) {
2229 			if (count >= h->nr_huge_pages)
2230 				return;
2231 			if (PageHighMem(page))
2232 				continue;
2233 			list_del(&page->lru);
2234 			update_and_free_page(h, page);
2235 			h->free_huge_pages--;
2236 			h->free_huge_pages_node[page_to_nid(page)]--;
2237 		}
2238 	}
2239 }
2240 #else
2241 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2242 						nodemask_t *nodes_allowed)
2243 {
2244 }
2245 #endif
2246 
2247 /*
2248  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2249  * balanced by operating on them in a round-robin fashion.
2250  * Returns 1 if an adjustment was made.
2251  */
2252 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2253 				int delta)
2254 {
2255 	int nr_nodes, node;
2256 
2257 	VM_BUG_ON(delta != -1 && delta != 1);
2258 
2259 	if (delta < 0) {
2260 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2261 			if (h->surplus_huge_pages_node[node])
2262 				goto found;
2263 		}
2264 	} else {
2265 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2266 			if (h->surplus_huge_pages_node[node] <
2267 					h->nr_huge_pages_node[node])
2268 				goto found;
2269 		}
2270 	}
2271 	return 0;
2272 
2273 found:
2274 	h->surplus_huge_pages += delta;
2275 	h->surplus_huge_pages_node[node] += delta;
2276 	return 1;
2277 }
2278 
2279 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2280 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2281 						nodemask_t *nodes_allowed)
2282 {
2283 	unsigned long min_count, ret;
2284 
2285 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2286 		return h->max_huge_pages;
2287 
2288 	/*
2289 	 * Increase the pool size
2290 	 * First take pages out of surplus state.  Then make up the
2291 	 * remaining difference by allocating fresh huge pages.
2292 	 *
2293 	 * We might race with alloc_surplus_huge_page() here and be unable
2294 	 * to convert a surplus huge page to a normal huge page. That is
2295 	 * not critical, though, it just means the overall size of the
2296 	 * pool might be one hugepage larger than it needs to be, but
2297 	 * within all the constraints specified by the sysctls.
2298 	 */
2299 	spin_lock(&hugetlb_lock);
2300 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2301 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2302 			break;
2303 	}
2304 
2305 	while (count > persistent_huge_pages(h)) {
2306 		/*
2307 		 * If this allocation races such that we no longer need the
2308 		 * page, free_huge_page will handle it by freeing the page
2309 		 * and reducing the surplus.
2310 		 */
2311 		spin_unlock(&hugetlb_lock);
2312 
2313 		/* yield cpu to avoid soft lockup */
2314 		cond_resched();
2315 
2316 		ret = alloc_pool_huge_page(h, nodes_allowed);
2317 		spin_lock(&hugetlb_lock);
2318 		if (!ret)
2319 			goto out;
2320 
2321 		/* Bail for signals. Probably ctrl-c from user */
2322 		if (signal_pending(current))
2323 			goto out;
2324 	}
2325 
2326 	/*
2327 	 * Decrease the pool size
2328 	 * First return free pages to the buddy allocator (being careful
2329 	 * to keep enough around to satisfy reservations).  Then place
2330 	 * pages into surplus state as needed so the pool will shrink
2331 	 * to the desired size as pages become free.
2332 	 *
2333 	 * By placing pages into the surplus state independent of the
2334 	 * overcommit value, we are allowing the surplus pool size to
2335 	 * exceed overcommit. There are few sane options here. Since
2336 	 * alloc_surplus_huge_page() is checking the global counter,
2337 	 * though, we'll note that we're not allowed to exceed surplus
2338 	 * and won't grow the pool anywhere else. Not until one of the
2339 	 * sysctls are changed, or the surplus pages go out of use.
2340 	 */
2341 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2342 	min_count = max(count, min_count);
2343 	try_to_free_low(h, min_count, nodes_allowed);
2344 	while (min_count < persistent_huge_pages(h)) {
2345 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2346 			break;
2347 		cond_resched_lock(&hugetlb_lock);
2348 	}
2349 	while (count < persistent_huge_pages(h)) {
2350 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2351 			break;
2352 	}
2353 out:
2354 	ret = persistent_huge_pages(h);
2355 	spin_unlock(&hugetlb_lock);
2356 	return ret;
2357 }
2358 
2359 #define HSTATE_ATTR_RO(_name) \
2360 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2361 
2362 #define HSTATE_ATTR(_name) \
2363 	static struct kobj_attribute _name##_attr = \
2364 		__ATTR(_name, 0644, _name##_show, _name##_store)
2365 
2366 static struct kobject *hugepages_kobj;
2367 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2368 
2369 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2370 
2371 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2372 {
2373 	int i;
2374 
2375 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2376 		if (hstate_kobjs[i] == kobj) {
2377 			if (nidp)
2378 				*nidp = NUMA_NO_NODE;
2379 			return &hstates[i];
2380 		}
2381 
2382 	return kobj_to_node_hstate(kobj, nidp);
2383 }
2384 
2385 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2386 					struct kobj_attribute *attr, char *buf)
2387 {
2388 	struct hstate *h;
2389 	unsigned long nr_huge_pages;
2390 	int nid;
2391 
2392 	h = kobj_to_hstate(kobj, &nid);
2393 	if (nid == NUMA_NO_NODE)
2394 		nr_huge_pages = h->nr_huge_pages;
2395 	else
2396 		nr_huge_pages = h->nr_huge_pages_node[nid];
2397 
2398 	return sprintf(buf, "%lu\n", nr_huge_pages);
2399 }
2400 
2401 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2402 					   struct hstate *h, int nid,
2403 					   unsigned long count, size_t len)
2404 {
2405 	int err;
2406 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2407 
2408 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2409 		err = -EINVAL;
2410 		goto out;
2411 	}
2412 
2413 	if (nid == NUMA_NO_NODE) {
2414 		/*
2415 		 * global hstate attribute
2416 		 */
2417 		if (!(obey_mempolicy &&
2418 				init_nodemask_of_mempolicy(nodes_allowed))) {
2419 			NODEMASK_FREE(nodes_allowed);
2420 			nodes_allowed = &node_states[N_MEMORY];
2421 		}
2422 	} else if (nodes_allowed) {
2423 		/*
2424 		 * per node hstate attribute: adjust count to global,
2425 		 * but restrict alloc/free to the specified node.
2426 		 */
2427 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2428 		init_nodemask_of_node(nodes_allowed, nid);
2429 	} else
2430 		nodes_allowed = &node_states[N_MEMORY];
2431 
2432 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2433 
2434 	if (nodes_allowed != &node_states[N_MEMORY])
2435 		NODEMASK_FREE(nodes_allowed);
2436 
2437 	return len;
2438 out:
2439 	NODEMASK_FREE(nodes_allowed);
2440 	return err;
2441 }
2442 
2443 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2444 					 struct kobject *kobj, const char *buf,
2445 					 size_t len)
2446 {
2447 	struct hstate *h;
2448 	unsigned long count;
2449 	int nid;
2450 	int err;
2451 
2452 	err = kstrtoul(buf, 10, &count);
2453 	if (err)
2454 		return err;
2455 
2456 	h = kobj_to_hstate(kobj, &nid);
2457 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2458 }
2459 
2460 static ssize_t nr_hugepages_show(struct kobject *kobj,
2461 				       struct kobj_attribute *attr, char *buf)
2462 {
2463 	return nr_hugepages_show_common(kobj, attr, buf);
2464 }
2465 
2466 static ssize_t nr_hugepages_store(struct kobject *kobj,
2467 	       struct kobj_attribute *attr, const char *buf, size_t len)
2468 {
2469 	return nr_hugepages_store_common(false, kobj, buf, len);
2470 }
2471 HSTATE_ATTR(nr_hugepages);
2472 
2473 #ifdef CONFIG_NUMA
2474 
2475 /*
2476  * hstate attribute for optionally mempolicy-based constraint on persistent
2477  * huge page alloc/free.
2478  */
2479 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2480 				       struct kobj_attribute *attr, char *buf)
2481 {
2482 	return nr_hugepages_show_common(kobj, attr, buf);
2483 }
2484 
2485 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2486 	       struct kobj_attribute *attr, const char *buf, size_t len)
2487 {
2488 	return nr_hugepages_store_common(true, kobj, buf, len);
2489 }
2490 HSTATE_ATTR(nr_hugepages_mempolicy);
2491 #endif
2492 
2493 
2494 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2495 					struct kobj_attribute *attr, char *buf)
2496 {
2497 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2498 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2499 }
2500 
2501 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2502 		struct kobj_attribute *attr, const char *buf, size_t count)
2503 {
2504 	int err;
2505 	unsigned long input;
2506 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2507 
2508 	if (hstate_is_gigantic(h))
2509 		return -EINVAL;
2510 
2511 	err = kstrtoul(buf, 10, &input);
2512 	if (err)
2513 		return err;
2514 
2515 	spin_lock(&hugetlb_lock);
2516 	h->nr_overcommit_huge_pages = input;
2517 	spin_unlock(&hugetlb_lock);
2518 
2519 	return count;
2520 }
2521 HSTATE_ATTR(nr_overcommit_hugepages);
2522 
2523 static ssize_t free_hugepages_show(struct kobject *kobj,
2524 					struct kobj_attribute *attr, char *buf)
2525 {
2526 	struct hstate *h;
2527 	unsigned long free_huge_pages;
2528 	int nid;
2529 
2530 	h = kobj_to_hstate(kobj, &nid);
2531 	if (nid == NUMA_NO_NODE)
2532 		free_huge_pages = h->free_huge_pages;
2533 	else
2534 		free_huge_pages = h->free_huge_pages_node[nid];
2535 
2536 	return sprintf(buf, "%lu\n", free_huge_pages);
2537 }
2538 HSTATE_ATTR_RO(free_hugepages);
2539 
2540 static ssize_t resv_hugepages_show(struct kobject *kobj,
2541 					struct kobj_attribute *attr, char *buf)
2542 {
2543 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2544 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2545 }
2546 HSTATE_ATTR_RO(resv_hugepages);
2547 
2548 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2549 					struct kobj_attribute *attr, char *buf)
2550 {
2551 	struct hstate *h;
2552 	unsigned long surplus_huge_pages;
2553 	int nid;
2554 
2555 	h = kobj_to_hstate(kobj, &nid);
2556 	if (nid == NUMA_NO_NODE)
2557 		surplus_huge_pages = h->surplus_huge_pages;
2558 	else
2559 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2560 
2561 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2562 }
2563 HSTATE_ATTR_RO(surplus_hugepages);
2564 
2565 static struct attribute *hstate_attrs[] = {
2566 	&nr_hugepages_attr.attr,
2567 	&nr_overcommit_hugepages_attr.attr,
2568 	&free_hugepages_attr.attr,
2569 	&resv_hugepages_attr.attr,
2570 	&surplus_hugepages_attr.attr,
2571 #ifdef CONFIG_NUMA
2572 	&nr_hugepages_mempolicy_attr.attr,
2573 #endif
2574 	NULL,
2575 };
2576 
2577 static const struct attribute_group hstate_attr_group = {
2578 	.attrs = hstate_attrs,
2579 };
2580 
2581 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2582 				    struct kobject **hstate_kobjs,
2583 				    const struct attribute_group *hstate_attr_group)
2584 {
2585 	int retval;
2586 	int hi = hstate_index(h);
2587 
2588 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2589 	if (!hstate_kobjs[hi])
2590 		return -ENOMEM;
2591 
2592 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2593 	if (retval)
2594 		kobject_put(hstate_kobjs[hi]);
2595 
2596 	return retval;
2597 }
2598 
2599 static void __init hugetlb_sysfs_init(void)
2600 {
2601 	struct hstate *h;
2602 	int err;
2603 
2604 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2605 	if (!hugepages_kobj)
2606 		return;
2607 
2608 	for_each_hstate(h) {
2609 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2610 					 hstate_kobjs, &hstate_attr_group);
2611 		if (err)
2612 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2613 	}
2614 }
2615 
2616 #ifdef CONFIG_NUMA
2617 
2618 /*
2619  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2620  * with node devices in node_devices[] using a parallel array.  The array
2621  * index of a node device or _hstate == node id.
2622  * This is here to avoid any static dependency of the node device driver, in
2623  * the base kernel, on the hugetlb module.
2624  */
2625 struct node_hstate {
2626 	struct kobject		*hugepages_kobj;
2627 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2628 };
2629 static struct node_hstate node_hstates[MAX_NUMNODES];
2630 
2631 /*
2632  * A subset of global hstate attributes for node devices
2633  */
2634 static struct attribute *per_node_hstate_attrs[] = {
2635 	&nr_hugepages_attr.attr,
2636 	&free_hugepages_attr.attr,
2637 	&surplus_hugepages_attr.attr,
2638 	NULL,
2639 };
2640 
2641 static const struct attribute_group per_node_hstate_attr_group = {
2642 	.attrs = per_node_hstate_attrs,
2643 };
2644 
2645 /*
2646  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2647  * Returns node id via non-NULL nidp.
2648  */
2649 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2650 {
2651 	int nid;
2652 
2653 	for (nid = 0; nid < nr_node_ids; nid++) {
2654 		struct node_hstate *nhs = &node_hstates[nid];
2655 		int i;
2656 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2657 			if (nhs->hstate_kobjs[i] == kobj) {
2658 				if (nidp)
2659 					*nidp = nid;
2660 				return &hstates[i];
2661 			}
2662 	}
2663 
2664 	BUG();
2665 	return NULL;
2666 }
2667 
2668 /*
2669  * Unregister hstate attributes from a single node device.
2670  * No-op if no hstate attributes attached.
2671  */
2672 static void hugetlb_unregister_node(struct node *node)
2673 {
2674 	struct hstate *h;
2675 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2676 
2677 	if (!nhs->hugepages_kobj)
2678 		return;		/* no hstate attributes */
2679 
2680 	for_each_hstate(h) {
2681 		int idx = hstate_index(h);
2682 		if (nhs->hstate_kobjs[idx]) {
2683 			kobject_put(nhs->hstate_kobjs[idx]);
2684 			nhs->hstate_kobjs[idx] = NULL;
2685 		}
2686 	}
2687 
2688 	kobject_put(nhs->hugepages_kobj);
2689 	nhs->hugepages_kobj = NULL;
2690 }
2691 
2692 
2693 /*
2694  * Register hstate attributes for a single node device.
2695  * No-op if attributes already registered.
2696  */
2697 static void hugetlb_register_node(struct node *node)
2698 {
2699 	struct hstate *h;
2700 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2701 	int err;
2702 
2703 	if (nhs->hugepages_kobj)
2704 		return;		/* already allocated */
2705 
2706 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2707 							&node->dev.kobj);
2708 	if (!nhs->hugepages_kobj)
2709 		return;
2710 
2711 	for_each_hstate(h) {
2712 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2713 						nhs->hstate_kobjs,
2714 						&per_node_hstate_attr_group);
2715 		if (err) {
2716 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2717 				h->name, node->dev.id);
2718 			hugetlb_unregister_node(node);
2719 			break;
2720 		}
2721 	}
2722 }
2723 
2724 /*
2725  * hugetlb init time:  register hstate attributes for all registered node
2726  * devices of nodes that have memory.  All on-line nodes should have
2727  * registered their associated device by this time.
2728  */
2729 static void __init hugetlb_register_all_nodes(void)
2730 {
2731 	int nid;
2732 
2733 	for_each_node_state(nid, N_MEMORY) {
2734 		struct node *node = node_devices[nid];
2735 		if (node->dev.id == nid)
2736 			hugetlb_register_node(node);
2737 	}
2738 
2739 	/*
2740 	 * Let the node device driver know we're here so it can
2741 	 * [un]register hstate attributes on node hotplug.
2742 	 */
2743 	register_hugetlbfs_with_node(hugetlb_register_node,
2744 				     hugetlb_unregister_node);
2745 }
2746 #else	/* !CONFIG_NUMA */
2747 
2748 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2749 {
2750 	BUG();
2751 	if (nidp)
2752 		*nidp = -1;
2753 	return NULL;
2754 }
2755 
2756 static void hugetlb_register_all_nodes(void) { }
2757 
2758 #endif
2759 
2760 static int __init hugetlb_init(void)
2761 {
2762 	int i;
2763 
2764 	if (!hugepages_supported())
2765 		return 0;
2766 
2767 	if (!size_to_hstate(default_hstate_size)) {
2768 		if (default_hstate_size != 0) {
2769 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2770 			       default_hstate_size, HPAGE_SIZE);
2771 		}
2772 
2773 		default_hstate_size = HPAGE_SIZE;
2774 		if (!size_to_hstate(default_hstate_size))
2775 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2776 	}
2777 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2778 	if (default_hstate_max_huge_pages) {
2779 		if (!default_hstate.max_huge_pages)
2780 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2781 	}
2782 
2783 	hugetlb_init_hstates();
2784 	gather_bootmem_prealloc();
2785 	report_hugepages();
2786 
2787 	hugetlb_sysfs_init();
2788 	hugetlb_register_all_nodes();
2789 	hugetlb_cgroup_file_init();
2790 
2791 #ifdef CONFIG_SMP
2792 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2793 #else
2794 	num_fault_mutexes = 1;
2795 #endif
2796 	hugetlb_fault_mutex_table =
2797 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2798 			      GFP_KERNEL);
2799 	BUG_ON(!hugetlb_fault_mutex_table);
2800 
2801 	for (i = 0; i < num_fault_mutexes; i++)
2802 		mutex_init(&hugetlb_fault_mutex_table[i]);
2803 	return 0;
2804 }
2805 subsys_initcall(hugetlb_init);
2806 
2807 /* Should be called on processing a hugepagesz=... option */
2808 void __init hugetlb_bad_size(void)
2809 {
2810 	parsed_valid_hugepagesz = false;
2811 }
2812 
2813 void __init hugetlb_add_hstate(unsigned int order)
2814 {
2815 	struct hstate *h;
2816 	unsigned long i;
2817 
2818 	if (size_to_hstate(PAGE_SIZE << order)) {
2819 		pr_warn("hugepagesz= specified twice, ignoring\n");
2820 		return;
2821 	}
2822 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2823 	BUG_ON(order == 0);
2824 	h = &hstates[hugetlb_max_hstate++];
2825 	h->order = order;
2826 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2827 	h->nr_huge_pages = 0;
2828 	h->free_huge_pages = 0;
2829 	for (i = 0; i < MAX_NUMNODES; ++i)
2830 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2831 	INIT_LIST_HEAD(&h->hugepage_activelist);
2832 	h->next_nid_to_alloc = first_memory_node;
2833 	h->next_nid_to_free = first_memory_node;
2834 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2835 					huge_page_size(h)/1024);
2836 
2837 	parsed_hstate = h;
2838 }
2839 
2840 static int __init hugetlb_nrpages_setup(char *s)
2841 {
2842 	unsigned long *mhp;
2843 	static unsigned long *last_mhp;
2844 
2845 	if (!parsed_valid_hugepagesz) {
2846 		pr_warn("hugepages = %s preceded by "
2847 			"an unsupported hugepagesz, ignoring\n", s);
2848 		parsed_valid_hugepagesz = true;
2849 		return 1;
2850 	}
2851 	/*
2852 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2853 	 * so this hugepages= parameter goes to the "default hstate".
2854 	 */
2855 	else if (!hugetlb_max_hstate)
2856 		mhp = &default_hstate_max_huge_pages;
2857 	else
2858 		mhp = &parsed_hstate->max_huge_pages;
2859 
2860 	if (mhp == last_mhp) {
2861 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2862 		return 1;
2863 	}
2864 
2865 	if (sscanf(s, "%lu", mhp) <= 0)
2866 		*mhp = 0;
2867 
2868 	/*
2869 	 * Global state is always initialized later in hugetlb_init.
2870 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2871 	 * use the bootmem allocator.
2872 	 */
2873 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2874 		hugetlb_hstate_alloc_pages(parsed_hstate);
2875 
2876 	last_mhp = mhp;
2877 
2878 	return 1;
2879 }
2880 __setup("hugepages=", hugetlb_nrpages_setup);
2881 
2882 static int __init hugetlb_default_setup(char *s)
2883 {
2884 	default_hstate_size = memparse(s, &s);
2885 	return 1;
2886 }
2887 __setup("default_hugepagesz=", hugetlb_default_setup);
2888 
2889 static unsigned int cpuset_mems_nr(unsigned int *array)
2890 {
2891 	int node;
2892 	unsigned int nr = 0;
2893 
2894 	for_each_node_mask(node, cpuset_current_mems_allowed)
2895 		nr += array[node];
2896 
2897 	return nr;
2898 }
2899 
2900 #ifdef CONFIG_SYSCTL
2901 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2902 			 struct ctl_table *table, int write,
2903 			 void __user *buffer, size_t *length, loff_t *ppos)
2904 {
2905 	struct hstate *h = &default_hstate;
2906 	unsigned long tmp = h->max_huge_pages;
2907 	int ret;
2908 
2909 	if (!hugepages_supported())
2910 		return -EOPNOTSUPP;
2911 
2912 	table->data = &tmp;
2913 	table->maxlen = sizeof(unsigned long);
2914 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2915 	if (ret)
2916 		goto out;
2917 
2918 	if (write)
2919 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2920 						  NUMA_NO_NODE, tmp, *length);
2921 out:
2922 	return ret;
2923 }
2924 
2925 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2926 			  void __user *buffer, size_t *length, loff_t *ppos)
2927 {
2928 
2929 	return hugetlb_sysctl_handler_common(false, table, write,
2930 							buffer, length, ppos);
2931 }
2932 
2933 #ifdef CONFIG_NUMA
2934 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2935 			  void __user *buffer, size_t *length, loff_t *ppos)
2936 {
2937 	return hugetlb_sysctl_handler_common(true, table, write,
2938 							buffer, length, ppos);
2939 }
2940 #endif /* CONFIG_NUMA */
2941 
2942 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2943 			void __user *buffer,
2944 			size_t *length, loff_t *ppos)
2945 {
2946 	struct hstate *h = &default_hstate;
2947 	unsigned long tmp;
2948 	int ret;
2949 
2950 	if (!hugepages_supported())
2951 		return -EOPNOTSUPP;
2952 
2953 	tmp = h->nr_overcommit_huge_pages;
2954 
2955 	if (write && hstate_is_gigantic(h))
2956 		return -EINVAL;
2957 
2958 	table->data = &tmp;
2959 	table->maxlen = sizeof(unsigned long);
2960 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2961 	if (ret)
2962 		goto out;
2963 
2964 	if (write) {
2965 		spin_lock(&hugetlb_lock);
2966 		h->nr_overcommit_huge_pages = tmp;
2967 		spin_unlock(&hugetlb_lock);
2968 	}
2969 out:
2970 	return ret;
2971 }
2972 
2973 #endif /* CONFIG_SYSCTL */
2974 
2975 void hugetlb_report_meminfo(struct seq_file *m)
2976 {
2977 	struct hstate *h;
2978 	unsigned long total = 0;
2979 
2980 	if (!hugepages_supported())
2981 		return;
2982 
2983 	for_each_hstate(h) {
2984 		unsigned long count = h->nr_huge_pages;
2985 
2986 		total += (PAGE_SIZE << huge_page_order(h)) * count;
2987 
2988 		if (h == &default_hstate)
2989 			seq_printf(m,
2990 				   "HugePages_Total:   %5lu\n"
2991 				   "HugePages_Free:    %5lu\n"
2992 				   "HugePages_Rsvd:    %5lu\n"
2993 				   "HugePages_Surp:    %5lu\n"
2994 				   "Hugepagesize:   %8lu kB\n",
2995 				   count,
2996 				   h->free_huge_pages,
2997 				   h->resv_huge_pages,
2998 				   h->surplus_huge_pages,
2999 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3000 	}
3001 
3002 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3003 }
3004 
3005 int hugetlb_report_node_meminfo(int nid, char *buf)
3006 {
3007 	struct hstate *h = &default_hstate;
3008 	if (!hugepages_supported())
3009 		return 0;
3010 	return sprintf(buf,
3011 		"Node %d HugePages_Total: %5u\n"
3012 		"Node %d HugePages_Free:  %5u\n"
3013 		"Node %d HugePages_Surp:  %5u\n",
3014 		nid, h->nr_huge_pages_node[nid],
3015 		nid, h->free_huge_pages_node[nid],
3016 		nid, h->surplus_huge_pages_node[nid]);
3017 }
3018 
3019 void hugetlb_show_meminfo(void)
3020 {
3021 	struct hstate *h;
3022 	int nid;
3023 
3024 	if (!hugepages_supported())
3025 		return;
3026 
3027 	for_each_node_state(nid, N_MEMORY)
3028 		for_each_hstate(h)
3029 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3030 				nid,
3031 				h->nr_huge_pages_node[nid],
3032 				h->free_huge_pages_node[nid],
3033 				h->surplus_huge_pages_node[nid],
3034 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3035 }
3036 
3037 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3038 {
3039 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3040 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3041 }
3042 
3043 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3044 unsigned long hugetlb_total_pages(void)
3045 {
3046 	struct hstate *h;
3047 	unsigned long nr_total_pages = 0;
3048 
3049 	for_each_hstate(h)
3050 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3051 	return nr_total_pages;
3052 }
3053 
3054 static int hugetlb_acct_memory(struct hstate *h, long delta)
3055 {
3056 	int ret = -ENOMEM;
3057 
3058 	spin_lock(&hugetlb_lock);
3059 	/*
3060 	 * When cpuset is configured, it breaks the strict hugetlb page
3061 	 * reservation as the accounting is done on a global variable. Such
3062 	 * reservation is completely rubbish in the presence of cpuset because
3063 	 * the reservation is not checked against page availability for the
3064 	 * current cpuset. Application can still potentially OOM'ed by kernel
3065 	 * with lack of free htlb page in cpuset that the task is in.
3066 	 * Attempt to enforce strict accounting with cpuset is almost
3067 	 * impossible (or too ugly) because cpuset is too fluid that
3068 	 * task or memory node can be dynamically moved between cpusets.
3069 	 *
3070 	 * The change of semantics for shared hugetlb mapping with cpuset is
3071 	 * undesirable. However, in order to preserve some of the semantics,
3072 	 * we fall back to check against current free page availability as
3073 	 * a best attempt and hopefully to minimize the impact of changing
3074 	 * semantics that cpuset has.
3075 	 */
3076 	if (delta > 0) {
3077 		if (gather_surplus_pages(h, delta) < 0)
3078 			goto out;
3079 
3080 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3081 			return_unused_surplus_pages(h, delta);
3082 			goto out;
3083 		}
3084 	}
3085 
3086 	ret = 0;
3087 	if (delta < 0)
3088 		return_unused_surplus_pages(h, (unsigned long) -delta);
3089 
3090 out:
3091 	spin_unlock(&hugetlb_lock);
3092 	return ret;
3093 }
3094 
3095 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3096 {
3097 	struct resv_map *resv = vma_resv_map(vma);
3098 
3099 	/*
3100 	 * This new VMA should share its siblings reservation map if present.
3101 	 * The VMA will only ever have a valid reservation map pointer where
3102 	 * it is being copied for another still existing VMA.  As that VMA
3103 	 * has a reference to the reservation map it cannot disappear until
3104 	 * after this open call completes.  It is therefore safe to take a
3105 	 * new reference here without additional locking.
3106 	 */
3107 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3108 		kref_get(&resv->refs);
3109 }
3110 
3111 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3112 {
3113 	struct hstate *h = hstate_vma(vma);
3114 	struct resv_map *resv = vma_resv_map(vma);
3115 	struct hugepage_subpool *spool = subpool_vma(vma);
3116 	unsigned long reserve, start, end;
3117 	long gbl_reserve;
3118 
3119 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3120 		return;
3121 
3122 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3123 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3124 
3125 	reserve = (end - start) - region_count(resv, start, end);
3126 
3127 	kref_put(&resv->refs, resv_map_release);
3128 
3129 	if (reserve) {
3130 		/*
3131 		 * Decrement reserve counts.  The global reserve count may be
3132 		 * adjusted if the subpool has a minimum size.
3133 		 */
3134 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3135 		hugetlb_acct_memory(h, -gbl_reserve);
3136 	}
3137 }
3138 
3139 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3140 {
3141 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3142 		return -EINVAL;
3143 	return 0;
3144 }
3145 
3146 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3147 {
3148 	struct hstate *hstate = hstate_vma(vma);
3149 
3150 	return 1UL << huge_page_shift(hstate);
3151 }
3152 
3153 /*
3154  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3155  * handle_mm_fault() to try to instantiate regular-sized pages in the
3156  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3157  * this far.
3158  */
3159 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3160 {
3161 	BUG();
3162 	return 0;
3163 }
3164 
3165 /*
3166  * When a new function is introduced to vm_operations_struct and added
3167  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3168  * This is because under System V memory model, mappings created via
3169  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3170  * their original vm_ops are overwritten with shm_vm_ops.
3171  */
3172 const struct vm_operations_struct hugetlb_vm_ops = {
3173 	.fault = hugetlb_vm_op_fault,
3174 	.open = hugetlb_vm_op_open,
3175 	.close = hugetlb_vm_op_close,
3176 	.split = hugetlb_vm_op_split,
3177 	.pagesize = hugetlb_vm_op_pagesize,
3178 };
3179 
3180 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3181 				int writable)
3182 {
3183 	pte_t entry;
3184 
3185 	if (writable) {
3186 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3187 					 vma->vm_page_prot)));
3188 	} else {
3189 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3190 					   vma->vm_page_prot));
3191 	}
3192 	entry = pte_mkyoung(entry);
3193 	entry = pte_mkhuge(entry);
3194 	entry = arch_make_huge_pte(entry, vma, page, writable);
3195 
3196 	return entry;
3197 }
3198 
3199 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3200 				   unsigned long address, pte_t *ptep)
3201 {
3202 	pte_t entry;
3203 
3204 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3205 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3206 		update_mmu_cache(vma, address, ptep);
3207 }
3208 
3209 bool is_hugetlb_entry_migration(pte_t pte)
3210 {
3211 	swp_entry_t swp;
3212 
3213 	if (huge_pte_none(pte) || pte_present(pte))
3214 		return false;
3215 	swp = pte_to_swp_entry(pte);
3216 	if (non_swap_entry(swp) && is_migration_entry(swp))
3217 		return true;
3218 	else
3219 		return false;
3220 }
3221 
3222 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3223 {
3224 	swp_entry_t swp;
3225 
3226 	if (huge_pte_none(pte) || pte_present(pte))
3227 		return 0;
3228 	swp = pte_to_swp_entry(pte);
3229 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3230 		return 1;
3231 	else
3232 		return 0;
3233 }
3234 
3235 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3236 			    struct vm_area_struct *vma)
3237 {
3238 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3239 	struct page *ptepage;
3240 	unsigned long addr;
3241 	int cow;
3242 	struct hstate *h = hstate_vma(vma);
3243 	unsigned long sz = huge_page_size(h);
3244 	struct mmu_notifier_range range;
3245 	int ret = 0;
3246 
3247 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3248 
3249 	if (cow) {
3250 		mmu_notifier_range_init(&range, src, vma->vm_start,
3251 					vma->vm_end);
3252 		mmu_notifier_invalidate_range_start(&range);
3253 	}
3254 
3255 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3256 		spinlock_t *src_ptl, *dst_ptl;
3257 		src_pte = huge_pte_offset(src, addr, sz);
3258 		if (!src_pte)
3259 			continue;
3260 		dst_pte = huge_pte_alloc(dst, addr, sz);
3261 		if (!dst_pte) {
3262 			ret = -ENOMEM;
3263 			break;
3264 		}
3265 
3266 		/*
3267 		 * If the pagetables are shared don't copy or take references.
3268 		 * dst_pte == src_pte is the common case of src/dest sharing.
3269 		 *
3270 		 * However, src could have 'unshared' and dst shares with
3271 		 * another vma.  If dst_pte !none, this implies sharing.
3272 		 * Check here before taking page table lock, and once again
3273 		 * after taking the lock below.
3274 		 */
3275 		dst_entry = huge_ptep_get(dst_pte);
3276 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3277 			continue;
3278 
3279 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3280 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3281 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3282 		entry = huge_ptep_get(src_pte);
3283 		dst_entry = huge_ptep_get(dst_pte);
3284 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3285 			/*
3286 			 * Skip if src entry none.  Also, skip in the
3287 			 * unlikely case dst entry !none as this implies
3288 			 * sharing with another vma.
3289 			 */
3290 			;
3291 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3292 				    is_hugetlb_entry_hwpoisoned(entry))) {
3293 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3294 
3295 			if (is_write_migration_entry(swp_entry) && cow) {
3296 				/*
3297 				 * COW mappings require pages in both
3298 				 * parent and child to be set to read.
3299 				 */
3300 				make_migration_entry_read(&swp_entry);
3301 				entry = swp_entry_to_pte(swp_entry);
3302 				set_huge_swap_pte_at(src, addr, src_pte,
3303 						     entry, sz);
3304 			}
3305 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3306 		} else {
3307 			if (cow) {
3308 				/*
3309 				 * No need to notify as we are downgrading page
3310 				 * table protection not changing it to point
3311 				 * to a new page.
3312 				 *
3313 				 * See Documentation/vm/mmu_notifier.rst
3314 				 */
3315 				huge_ptep_set_wrprotect(src, addr, src_pte);
3316 			}
3317 			entry = huge_ptep_get(src_pte);
3318 			ptepage = pte_page(entry);
3319 			get_page(ptepage);
3320 			page_dup_rmap(ptepage, true);
3321 			set_huge_pte_at(dst, addr, dst_pte, entry);
3322 			hugetlb_count_add(pages_per_huge_page(h), dst);
3323 		}
3324 		spin_unlock(src_ptl);
3325 		spin_unlock(dst_ptl);
3326 	}
3327 
3328 	if (cow)
3329 		mmu_notifier_invalidate_range_end(&range);
3330 
3331 	return ret;
3332 }
3333 
3334 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3335 			    unsigned long start, unsigned long end,
3336 			    struct page *ref_page)
3337 {
3338 	struct mm_struct *mm = vma->vm_mm;
3339 	unsigned long address;
3340 	pte_t *ptep;
3341 	pte_t pte;
3342 	spinlock_t *ptl;
3343 	struct page *page;
3344 	struct hstate *h = hstate_vma(vma);
3345 	unsigned long sz = huge_page_size(h);
3346 	struct mmu_notifier_range range;
3347 
3348 	WARN_ON(!is_vm_hugetlb_page(vma));
3349 	BUG_ON(start & ~huge_page_mask(h));
3350 	BUG_ON(end & ~huge_page_mask(h));
3351 
3352 	/*
3353 	 * This is a hugetlb vma, all the pte entries should point
3354 	 * to huge page.
3355 	 */
3356 	tlb_remove_check_page_size_change(tlb, sz);
3357 	tlb_start_vma(tlb, vma);
3358 
3359 	/*
3360 	 * If sharing possible, alert mmu notifiers of worst case.
3361 	 */
3362 	mmu_notifier_range_init(&range, mm, start, end);
3363 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3364 	mmu_notifier_invalidate_range_start(&range);
3365 	address = start;
3366 	for (; address < end; address += sz) {
3367 		ptep = huge_pte_offset(mm, address, sz);
3368 		if (!ptep)
3369 			continue;
3370 
3371 		ptl = huge_pte_lock(h, mm, ptep);
3372 		if (huge_pmd_unshare(mm, &address, ptep)) {
3373 			spin_unlock(ptl);
3374 			/*
3375 			 * We just unmapped a page of PMDs by clearing a PUD.
3376 			 * The caller's TLB flush range should cover this area.
3377 			 */
3378 			continue;
3379 		}
3380 
3381 		pte = huge_ptep_get(ptep);
3382 		if (huge_pte_none(pte)) {
3383 			spin_unlock(ptl);
3384 			continue;
3385 		}
3386 
3387 		/*
3388 		 * Migrating hugepage or HWPoisoned hugepage is already
3389 		 * unmapped and its refcount is dropped, so just clear pte here.
3390 		 */
3391 		if (unlikely(!pte_present(pte))) {
3392 			huge_pte_clear(mm, address, ptep, sz);
3393 			spin_unlock(ptl);
3394 			continue;
3395 		}
3396 
3397 		page = pte_page(pte);
3398 		/*
3399 		 * If a reference page is supplied, it is because a specific
3400 		 * page is being unmapped, not a range. Ensure the page we
3401 		 * are about to unmap is the actual page of interest.
3402 		 */
3403 		if (ref_page) {
3404 			if (page != ref_page) {
3405 				spin_unlock(ptl);
3406 				continue;
3407 			}
3408 			/*
3409 			 * Mark the VMA as having unmapped its page so that
3410 			 * future faults in this VMA will fail rather than
3411 			 * looking like data was lost
3412 			 */
3413 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3414 		}
3415 
3416 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3417 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3418 		if (huge_pte_dirty(pte))
3419 			set_page_dirty(page);
3420 
3421 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3422 		page_remove_rmap(page, true);
3423 
3424 		spin_unlock(ptl);
3425 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3426 		/*
3427 		 * Bail out after unmapping reference page if supplied
3428 		 */
3429 		if (ref_page)
3430 			break;
3431 	}
3432 	mmu_notifier_invalidate_range_end(&range);
3433 	tlb_end_vma(tlb, vma);
3434 }
3435 
3436 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3437 			  struct vm_area_struct *vma, unsigned long start,
3438 			  unsigned long end, struct page *ref_page)
3439 {
3440 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3441 
3442 	/*
3443 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3444 	 * test will fail on a vma being torn down, and not grab a page table
3445 	 * on its way out.  We're lucky that the flag has such an appropriate
3446 	 * name, and can in fact be safely cleared here. We could clear it
3447 	 * before the __unmap_hugepage_range above, but all that's necessary
3448 	 * is to clear it before releasing the i_mmap_rwsem. This works
3449 	 * because in the context this is called, the VMA is about to be
3450 	 * destroyed and the i_mmap_rwsem is held.
3451 	 */
3452 	vma->vm_flags &= ~VM_MAYSHARE;
3453 }
3454 
3455 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3456 			  unsigned long end, struct page *ref_page)
3457 {
3458 	struct mm_struct *mm;
3459 	struct mmu_gather tlb;
3460 	unsigned long tlb_start = start;
3461 	unsigned long tlb_end = end;
3462 
3463 	/*
3464 	 * If shared PMDs were possibly used within this vma range, adjust
3465 	 * start/end for worst case tlb flushing.
3466 	 * Note that we can not be sure if PMDs are shared until we try to
3467 	 * unmap pages.  However, we want to make sure TLB flushing covers
3468 	 * the largest possible range.
3469 	 */
3470 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3471 
3472 	mm = vma->vm_mm;
3473 
3474 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3475 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3476 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3477 }
3478 
3479 /*
3480  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3481  * mappping it owns the reserve page for. The intention is to unmap the page
3482  * from other VMAs and let the children be SIGKILLed if they are faulting the
3483  * same region.
3484  */
3485 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3486 			      struct page *page, unsigned long address)
3487 {
3488 	struct hstate *h = hstate_vma(vma);
3489 	struct vm_area_struct *iter_vma;
3490 	struct address_space *mapping;
3491 	pgoff_t pgoff;
3492 
3493 	/*
3494 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3495 	 * from page cache lookup which is in HPAGE_SIZE units.
3496 	 */
3497 	address = address & huge_page_mask(h);
3498 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3499 			vma->vm_pgoff;
3500 	mapping = vma->vm_file->f_mapping;
3501 
3502 	/*
3503 	 * Take the mapping lock for the duration of the table walk. As
3504 	 * this mapping should be shared between all the VMAs,
3505 	 * __unmap_hugepage_range() is called as the lock is already held
3506 	 */
3507 	i_mmap_lock_write(mapping);
3508 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3509 		/* Do not unmap the current VMA */
3510 		if (iter_vma == vma)
3511 			continue;
3512 
3513 		/*
3514 		 * Shared VMAs have their own reserves and do not affect
3515 		 * MAP_PRIVATE accounting but it is possible that a shared
3516 		 * VMA is using the same page so check and skip such VMAs.
3517 		 */
3518 		if (iter_vma->vm_flags & VM_MAYSHARE)
3519 			continue;
3520 
3521 		/*
3522 		 * Unmap the page from other VMAs without their own reserves.
3523 		 * They get marked to be SIGKILLed if they fault in these
3524 		 * areas. This is because a future no-page fault on this VMA
3525 		 * could insert a zeroed page instead of the data existing
3526 		 * from the time of fork. This would look like data corruption
3527 		 */
3528 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3529 			unmap_hugepage_range(iter_vma, address,
3530 					     address + huge_page_size(h), page);
3531 	}
3532 	i_mmap_unlock_write(mapping);
3533 }
3534 
3535 /*
3536  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3537  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3538  * cannot race with other handlers or page migration.
3539  * Keep the pte_same checks anyway to make transition from the mutex easier.
3540  */
3541 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3542 		       unsigned long address, pte_t *ptep,
3543 		       struct page *pagecache_page, spinlock_t *ptl)
3544 {
3545 	pte_t pte;
3546 	struct hstate *h = hstate_vma(vma);
3547 	struct page *old_page, *new_page;
3548 	int outside_reserve = 0;
3549 	vm_fault_t ret = 0;
3550 	unsigned long haddr = address & huge_page_mask(h);
3551 	struct mmu_notifier_range range;
3552 
3553 	pte = huge_ptep_get(ptep);
3554 	old_page = pte_page(pte);
3555 
3556 retry_avoidcopy:
3557 	/* If no-one else is actually using this page, avoid the copy
3558 	 * and just make the page writable */
3559 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3560 		page_move_anon_rmap(old_page, vma);
3561 		set_huge_ptep_writable(vma, haddr, ptep);
3562 		return 0;
3563 	}
3564 
3565 	/*
3566 	 * If the process that created a MAP_PRIVATE mapping is about to
3567 	 * perform a COW due to a shared page count, attempt to satisfy
3568 	 * the allocation without using the existing reserves. The pagecache
3569 	 * page is used to determine if the reserve at this address was
3570 	 * consumed or not. If reserves were used, a partial faulted mapping
3571 	 * at the time of fork() could consume its reserves on COW instead
3572 	 * of the full address range.
3573 	 */
3574 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3575 			old_page != pagecache_page)
3576 		outside_reserve = 1;
3577 
3578 	get_page(old_page);
3579 
3580 	/*
3581 	 * Drop page table lock as buddy allocator may be called. It will
3582 	 * be acquired again before returning to the caller, as expected.
3583 	 */
3584 	spin_unlock(ptl);
3585 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3586 
3587 	if (IS_ERR(new_page)) {
3588 		/*
3589 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3590 		 * it is due to references held by a child and an insufficient
3591 		 * huge page pool. To guarantee the original mappers
3592 		 * reliability, unmap the page from child processes. The child
3593 		 * may get SIGKILLed if it later faults.
3594 		 */
3595 		if (outside_reserve) {
3596 			put_page(old_page);
3597 			BUG_ON(huge_pte_none(pte));
3598 			unmap_ref_private(mm, vma, old_page, haddr);
3599 			BUG_ON(huge_pte_none(pte));
3600 			spin_lock(ptl);
3601 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3602 			if (likely(ptep &&
3603 				   pte_same(huge_ptep_get(ptep), pte)))
3604 				goto retry_avoidcopy;
3605 			/*
3606 			 * race occurs while re-acquiring page table
3607 			 * lock, and our job is done.
3608 			 */
3609 			return 0;
3610 		}
3611 
3612 		ret = vmf_error(PTR_ERR(new_page));
3613 		goto out_release_old;
3614 	}
3615 
3616 	/*
3617 	 * When the original hugepage is shared one, it does not have
3618 	 * anon_vma prepared.
3619 	 */
3620 	if (unlikely(anon_vma_prepare(vma))) {
3621 		ret = VM_FAULT_OOM;
3622 		goto out_release_all;
3623 	}
3624 
3625 	copy_user_huge_page(new_page, old_page, address, vma,
3626 			    pages_per_huge_page(h));
3627 	__SetPageUptodate(new_page);
3628 
3629 	mmu_notifier_range_init(&range, mm, haddr, haddr + huge_page_size(h));
3630 	mmu_notifier_invalidate_range_start(&range);
3631 
3632 	/*
3633 	 * Retake the page table lock to check for racing updates
3634 	 * before the page tables are altered
3635 	 */
3636 	spin_lock(ptl);
3637 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3638 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3639 		ClearPagePrivate(new_page);
3640 
3641 		/* Break COW */
3642 		huge_ptep_clear_flush(vma, haddr, ptep);
3643 		mmu_notifier_invalidate_range(mm, range.start, range.end);
3644 		set_huge_pte_at(mm, haddr, ptep,
3645 				make_huge_pte(vma, new_page, 1));
3646 		page_remove_rmap(old_page, true);
3647 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3648 		set_page_huge_active(new_page);
3649 		/* Make the old page be freed below */
3650 		new_page = old_page;
3651 	}
3652 	spin_unlock(ptl);
3653 	mmu_notifier_invalidate_range_end(&range);
3654 out_release_all:
3655 	restore_reserve_on_error(h, vma, haddr, new_page);
3656 	put_page(new_page);
3657 out_release_old:
3658 	put_page(old_page);
3659 
3660 	spin_lock(ptl); /* Caller expects lock to be held */
3661 	return ret;
3662 }
3663 
3664 /* Return the pagecache page at a given address within a VMA */
3665 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3666 			struct vm_area_struct *vma, unsigned long address)
3667 {
3668 	struct address_space *mapping;
3669 	pgoff_t idx;
3670 
3671 	mapping = vma->vm_file->f_mapping;
3672 	idx = vma_hugecache_offset(h, vma, address);
3673 
3674 	return find_lock_page(mapping, idx);
3675 }
3676 
3677 /*
3678  * Return whether there is a pagecache page to back given address within VMA.
3679  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3680  */
3681 static bool hugetlbfs_pagecache_present(struct hstate *h,
3682 			struct vm_area_struct *vma, unsigned long address)
3683 {
3684 	struct address_space *mapping;
3685 	pgoff_t idx;
3686 	struct page *page;
3687 
3688 	mapping = vma->vm_file->f_mapping;
3689 	idx = vma_hugecache_offset(h, vma, address);
3690 
3691 	page = find_get_page(mapping, idx);
3692 	if (page)
3693 		put_page(page);
3694 	return page != NULL;
3695 }
3696 
3697 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3698 			   pgoff_t idx)
3699 {
3700 	struct inode *inode = mapping->host;
3701 	struct hstate *h = hstate_inode(inode);
3702 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3703 
3704 	if (err)
3705 		return err;
3706 	ClearPagePrivate(page);
3707 
3708 	/*
3709 	 * set page dirty so that it will not be removed from cache/file
3710 	 * by non-hugetlbfs specific code paths.
3711 	 */
3712 	set_page_dirty(page);
3713 
3714 	spin_lock(&inode->i_lock);
3715 	inode->i_blocks += blocks_per_huge_page(h);
3716 	spin_unlock(&inode->i_lock);
3717 	return 0;
3718 }
3719 
3720 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3721 			struct vm_area_struct *vma,
3722 			struct address_space *mapping, pgoff_t idx,
3723 			unsigned long address, pte_t *ptep, unsigned int flags)
3724 {
3725 	struct hstate *h = hstate_vma(vma);
3726 	vm_fault_t ret = VM_FAULT_SIGBUS;
3727 	int anon_rmap = 0;
3728 	unsigned long size;
3729 	struct page *page;
3730 	pte_t new_pte;
3731 	spinlock_t *ptl;
3732 	unsigned long haddr = address & huge_page_mask(h);
3733 	bool new_page = false;
3734 
3735 	/*
3736 	 * Currently, we are forced to kill the process in the event the
3737 	 * original mapper has unmapped pages from the child due to a failed
3738 	 * COW. Warn that such a situation has occurred as it may not be obvious
3739 	 */
3740 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3741 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3742 			   current->pid);
3743 		return ret;
3744 	}
3745 
3746 	/*
3747 	 * Use page lock to guard against racing truncation
3748 	 * before we get page_table_lock.
3749 	 */
3750 retry:
3751 	page = find_lock_page(mapping, idx);
3752 	if (!page) {
3753 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3754 		if (idx >= size)
3755 			goto out;
3756 
3757 		/*
3758 		 * Check for page in userfault range
3759 		 */
3760 		if (userfaultfd_missing(vma)) {
3761 			u32 hash;
3762 			struct vm_fault vmf = {
3763 				.vma = vma,
3764 				.address = haddr,
3765 				.flags = flags,
3766 				/*
3767 				 * Hard to debug if it ends up being
3768 				 * used by a callee that assumes
3769 				 * something about the other
3770 				 * uninitialized fields... same as in
3771 				 * memory.c
3772 				 */
3773 			};
3774 
3775 			/*
3776 			 * hugetlb_fault_mutex must be dropped before
3777 			 * handling userfault.  Reacquire after handling
3778 			 * fault to make calling code simpler.
3779 			 */
3780 			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3781 							idx, haddr);
3782 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3783 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3784 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3785 			goto out;
3786 		}
3787 
3788 		page = alloc_huge_page(vma, haddr, 0);
3789 		if (IS_ERR(page)) {
3790 			ret = vmf_error(PTR_ERR(page));
3791 			goto out;
3792 		}
3793 		clear_huge_page(page, address, pages_per_huge_page(h));
3794 		__SetPageUptodate(page);
3795 		new_page = true;
3796 
3797 		if (vma->vm_flags & VM_MAYSHARE) {
3798 			int err = huge_add_to_page_cache(page, mapping, idx);
3799 			if (err) {
3800 				put_page(page);
3801 				if (err == -EEXIST)
3802 					goto retry;
3803 				goto out;
3804 			}
3805 		} else {
3806 			lock_page(page);
3807 			if (unlikely(anon_vma_prepare(vma))) {
3808 				ret = VM_FAULT_OOM;
3809 				goto backout_unlocked;
3810 			}
3811 			anon_rmap = 1;
3812 		}
3813 	} else {
3814 		/*
3815 		 * If memory error occurs between mmap() and fault, some process
3816 		 * don't have hwpoisoned swap entry for errored virtual address.
3817 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3818 		 */
3819 		if (unlikely(PageHWPoison(page))) {
3820 			ret = VM_FAULT_HWPOISON |
3821 				VM_FAULT_SET_HINDEX(hstate_index(h));
3822 			goto backout_unlocked;
3823 		}
3824 	}
3825 
3826 	/*
3827 	 * If we are going to COW a private mapping later, we examine the
3828 	 * pending reservations for this page now. This will ensure that
3829 	 * any allocations necessary to record that reservation occur outside
3830 	 * the spinlock.
3831 	 */
3832 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3833 		if (vma_needs_reservation(h, vma, haddr) < 0) {
3834 			ret = VM_FAULT_OOM;
3835 			goto backout_unlocked;
3836 		}
3837 		/* Just decrements count, does not deallocate */
3838 		vma_end_reservation(h, vma, haddr);
3839 	}
3840 
3841 	ptl = huge_pte_lock(h, mm, ptep);
3842 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3843 	if (idx >= size)
3844 		goto backout;
3845 
3846 	ret = 0;
3847 	if (!huge_pte_none(huge_ptep_get(ptep)))
3848 		goto backout;
3849 
3850 	if (anon_rmap) {
3851 		ClearPagePrivate(page);
3852 		hugepage_add_new_anon_rmap(page, vma, haddr);
3853 	} else
3854 		page_dup_rmap(page, true);
3855 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3856 				&& (vma->vm_flags & VM_SHARED)));
3857 	set_huge_pte_at(mm, haddr, ptep, new_pte);
3858 
3859 	hugetlb_count_add(pages_per_huge_page(h), mm);
3860 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3861 		/* Optimization, do the COW without a second fault */
3862 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3863 	}
3864 
3865 	spin_unlock(ptl);
3866 
3867 	/*
3868 	 * Only make newly allocated pages active.  Existing pages found
3869 	 * in the pagecache could be !page_huge_active() if they have been
3870 	 * isolated for migration.
3871 	 */
3872 	if (new_page)
3873 		set_page_huge_active(page);
3874 
3875 	unlock_page(page);
3876 out:
3877 	return ret;
3878 
3879 backout:
3880 	spin_unlock(ptl);
3881 backout_unlocked:
3882 	unlock_page(page);
3883 	restore_reserve_on_error(h, vma, haddr, page);
3884 	put_page(page);
3885 	goto out;
3886 }
3887 
3888 #ifdef CONFIG_SMP
3889 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3890 			    struct vm_area_struct *vma,
3891 			    struct address_space *mapping,
3892 			    pgoff_t idx, unsigned long address)
3893 {
3894 	unsigned long key[2];
3895 	u32 hash;
3896 
3897 	if (vma->vm_flags & VM_SHARED) {
3898 		key[0] = (unsigned long) mapping;
3899 		key[1] = idx;
3900 	} else {
3901 		key[0] = (unsigned long) mm;
3902 		key[1] = address >> huge_page_shift(h);
3903 	}
3904 
3905 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3906 
3907 	return hash & (num_fault_mutexes - 1);
3908 }
3909 #else
3910 /*
3911  * For uniprocesor systems we always use a single mutex, so just
3912  * return 0 and avoid the hashing overhead.
3913  */
3914 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3915 			    struct vm_area_struct *vma,
3916 			    struct address_space *mapping,
3917 			    pgoff_t idx, unsigned long address)
3918 {
3919 	return 0;
3920 }
3921 #endif
3922 
3923 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3924 			unsigned long address, unsigned int flags)
3925 {
3926 	pte_t *ptep, entry;
3927 	spinlock_t *ptl;
3928 	vm_fault_t ret;
3929 	u32 hash;
3930 	pgoff_t idx;
3931 	struct page *page = NULL;
3932 	struct page *pagecache_page = NULL;
3933 	struct hstate *h = hstate_vma(vma);
3934 	struct address_space *mapping;
3935 	int need_wait_lock = 0;
3936 	unsigned long haddr = address & huge_page_mask(h);
3937 
3938 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3939 	if (ptep) {
3940 		entry = huge_ptep_get(ptep);
3941 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3942 			migration_entry_wait_huge(vma, mm, ptep);
3943 			return 0;
3944 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3945 			return VM_FAULT_HWPOISON_LARGE |
3946 				VM_FAULT_SET_HINDEX(hstate_index(h));
3947 	} else {
3948 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3949 		if (!ptep)
3950 			return VM_FAULT_OOM;
3951 	}
3952 
3953 	mapping = vma->vm_file->f_mapping;
3954 	idx = vma_hugecache_offset(h, vma, haddr);
3955 
3956 	/*
3957 	 * Serialize hugepage allocation and instantiation, so that we don't
3958 	 * get spurious allocation failures if two CPUs race to instantiate
3959 	 * the same page in the page cache.
3960 	 */
3961 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
3962 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3963 
3964 	entry = huge_ptep_get(ptep);
3965 	if (huge_pte_none(entry)) {
3966 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3967 		goto out_mutex;
3968 	}
3969 
3970 	ret = 0;
3971 
3972 	/*
3973 	 * entry could be a migration/hwpoison entry at this point, so this
3974 	 * check prevents the kernel from going below assuming that we have
3975 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3976 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3977 	 * handle it.
3978 	 */
3979 	if (!pte_present(entry))
3980 		goto out_mutex;
3981 
3982 	/*
3983 	 * If we are going to COW the mapping later, we examine the pending
3984 	 * reservations for this page now. This will ensure that any
3985 	 * allocations necessary to record that reservation occur outside the
3986 	 * spinlock. For private mappings, we also lookup the pagecache
3987 	 * page now as it is used to determine if a reservation has been
3988 	 * consumed.
3989 	 */
3990 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3991 		if (vma_needs_reservation(h, vma, haddr) < 0) {
3992 			ret = VM_FAULT_OOM;
3993 			goto out_mutex;
3994 		}
3995 		/* Just decrements count, does not deallocate */
3996 		vma_end_reservation(h, vma, haddr);
3997 
3998 		if (!(vma->vm_flags & VM_MAYSHARE))
3999 			pagecache_page = hugetlbfs_pagecache_page(h,
4000 								vma, haddr);
4001 	}
4002 
4003 	ptl = huge_pte_lock(h, mm, ptep);
4004 
4005 	/* Check for a racing update before calling hugetlb_cow */
4006 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4007 		goto out_ptl;
4008 
4009 	/*
4010 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4011 	 * pagecache_page, so here we need take the former one
4012 	 * when page != pagecache_page or !pagecache_page.
4013 	 */
4014 	page = pte_page(entry);
4015 	if (page != pagecache_page)
4016 		if (!trylock_page(page)) {
4017 			need_wait_lock = 1;
4018 			goto out_ptl;
4019 		}
4020 
4021 	get_page(page);
4022 
4023 	if (flags & FAULT_FLAG_WRITE) {
4024 		if (!huge_pte_write(entry)) {
4025 			ret = hugetlb_cow(mm, vma, address, ptep,
4026 					  pagecache_page, ptl);
4027 			goto out_put_page;
4028 		}
4029 		entry = huge_pte_mkdirty(entry);
4030 	}
4031 	entry = pte_mkyoung(entry);
4032 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4033 						flags & FAULT_FLAG_WRITE))
4034 		update_mmu_cache(vma, haddr, ptep);
4035 out_put_page:
4036 	if (page != pagecache_page)
4037 		unlock_page(page);
4038 	put_page(page);
4039 out_ptl:
4040 	spin_unlock(ptl);
4041 
4042 	if (pagecache_page) {
4043 		unlock_page(pagecache_page);
4044 		put_page(pagecache_page);
4045 	}
4046 out_mutex:
4047 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4048 	/*
4049 	 * Generally it's safe to hold refcount during waiting page lock. But
4050 	 * here we just wait to defer the next page fault to avoid busy loop and
4051 	 * the page is not used after unlocked before returning from the current
4052 	 * page fault. So we are safe from accessing freed page, even if we wait
4053 	 * here without taking refcount.
4054 	 */
4055 	if (need_wait_lock)
4056 		wait_on_page_locked(page);
4057 	return ret;
4058 }
4059 
4060 /*
4061  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4062  * modifications for huge pages.
4063  */
4064 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4065 			    pte_t *dst_pte,
4066 			    struct vm_area_struct *dst_vma,
4067 			    unsigned long dst_addr,
4068 			    unsigned long src_addr,
4069 			    struct page **pagep)
4070 {
4071 	struct address_space *mapping;
4072 	pgoff_t idx;
4073 	unsigned long size;
4074 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4075 	struct hstate *h = hstate_vma(dst_vma);
4076 	pte_t _dst_pte;
4077 	spinlock_t *ptl;
4078 	int ret;
4079 	struct page *page;
4080 
4081 	if (!*pagep) {
4082 		ret = -ENOMEM;
4083 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4084 		if (IS_ERR(page))
4085 			goto out;
4086 
4087 		ret = copy_huge_page_from_user(page,
4088 						(const void __user *) src_addr,
4089 						pages_per_huge_page(h), false);
4090 
4091 		/* fallback to copy_from_user outside mmap_sem */
4092 		if (unlikely(ret)) {
4093 			ret = -ENOENT;
4094 			*pagep = page;
4095 			/* don't free the page */
4096 			goto out;
4097 		}
4098 	} else {
4099 		page = *pagep;
4100 		*pagep = NULL;
4101 	}
4102 
4103 	/*
4104 	 * The memory barrier inside __SetPageUptodate makes sure that
4105 	 * preceding stores to the page contents become visible before
4106 	 * the set_pte_at() write.
4107 	 */
4108 	__SetPageUptodate(page);
4109 
4110 	mapping = dst_vma->vm_file->f_mapping;
4111 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4112 
4113 	/*
4114 	 * If shared, add to page cache
4115 	 */
4116 	if (vm_shared) {
4117 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4118 		ret = -EFAULT;
4119 		if (idx >= size)
4120 			goto out_release_nounlock;
4121 
4122 		/*
4123 		 * Serialization between remove_inode_hugepages() and
4124 		 * huge_add_to_page_cache() below happens through the
4125 		 * hugetlb_fault_mutex_table that here must be hold by
4126 		 * the caller.
4127 		 */
4128 		ret = huge_add_to_page_cache(page, mapping, idx);
4129 		if (ret)
4130 			goto out_release_nounlock;
4131 	}
4132 
4133 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4134 	spin_lock(ptl);
4135 
4136 	/*
4137 	 * Recheck the i_size after holding PT lock to make sure not
4138 	 * to leave any page mapped (as page_mapped()) beyond the end
4139 	 * of the i_size (remove_inode_hugepages() is strict about
4140 	 * enforcing that). If we bail out here, we'll also leave a
4141 	 * page in the radix tree in the vm_shared case beyond the end
4142 	 * of the i_size, but remove_inode_hugepages() will take care
4143 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4144 	 */
4145 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4146 	ret = -EFAULT;
4147 	if (idx >= size)
4148 		goto out_release_unlock;
4149 
4150 	ret = -EEXIST;
4151 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4152 		goto out_release_unlock;
4153 
4154 	if (vm_shared) {
4155 		page_dup_rmap(page, true);
4156 	} else {
4157 		ClearPagePrivate(page);
4158 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4159 	}
4160 
4161 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4162 	if (dst_vma->vm_flags & VM_WRITE)
4163 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4164 	_dst_pte = pte_mkyoung(_dst_pte);
4165 
4166 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4167 
4168 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4169 					dst_vma->vm_flags & VM_WRITE);
4170 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4171 
4172 	/* No need to invalidate - it was non-present before */
4173 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4174 
4175 	spin_unlock(ptl);
4176 	set_page_huge_active(page);
4177 	if (vm_shared)
4178 		unlock_page(page);
4179 	ret = 0;
4180 out:
4181 	return ret;
4182 out_release_unlock:
4183 	spin_unlock(ptl);
4184 	if (vm_shared)
4185 		unlock_page(page);
4186 out_release_nounlock:
4187 	put_page(page);
4188 	goto out;
4189 }
4190 
4191 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4192 			 struct page **pages, struct vm_area_struct **vmas,
4193 			 unsigned long *position, unsigned long *nr_pages,
4194 			 long i, unsigned int flags, int *nonblocking)
4195 {
4196 	unsigned long pfn_offset;
4197 	unsigned long vaddr = *position;
4198 	unsigned long remainder = *nr_pages;
4199 	struct hstate *h = hstate_vma(vma);
4200 	int err = -EFAULT;
4201 
4202 	while (vaddr < vma->vm_end && remainder) {
4203 		pte_t *pte;
4204 		spinlock_t *ptl = NULL;
4205 		int absent;
4206 		struct page *page;
4207 
4208 		/*
4209 		 * If we have a pending SIGKILL, don't keep faulting pages and
4210 		 * potentially allocating memory.
4211 		 */
4212 		if (fatal_signal_pending(current)) {
4213 			remainder = 0;
4214 			break;
4215 		}
4216 
4217 		/*
4218 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4219 		 * each hugepage.  We have to make sure we get the
4220 		 * first, for the page indexing below to work.
4221 		 *
4222 		 * Note that page table lock is not held when pte is null.
4223 		 */
4224 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4225 				      huge_page_size(h));
4226 		if (pte)
4227 			ptl = huge_pte_lock(h, mm, pte);
4228 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4229 
4230 		/*
4231 		 * When coredumping, it suits get_dump_page if we just return
4232 		 * an error where there's an empty slot with no huge pagecache
4233 		 * to back it.  This way, we avoid allocating a hugepage, and
4234 		 * the sparse dumpfile avoids allocating disk blocks, but its
4235 		 * huge holes still show up with zeroes where they need to be.
4236 		 */
4237 		if (absent && (flags & FOLL_DUMP) &&
4238 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4239 			if (pte)
4240 				spin_unlock(ptl);
4241 			remainder = 0;
4242 			break;
4243 		}
4244 
4245 		/*
4246 		 * We need call hugetlb_fault for both hugepages under migration
4247 		 * (in which case hugetlb_fault waits for the migration,) and
4248 		 * hwpoisoned hugepages (in which case we need to prevent the
4249 		 * caller from accessing to them.) In order to do this, we use
4250 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4251 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4252 		 * both cases, and because we can't follow correct pages
4253 		 * directly from any kind of swap entries.
4254 		 */
4255 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4256 		    ((flags & FOLL_WRITE) &&
4257 		      !huge_pte_write(huge_ptep_get(pte)))) {
4258 			vm_fault_t ret;
4259 			unsigned int fault_flags = 0;
4260 
4261 			if (pte)
4262 				spin_unlock(ptl);
4263 			if (flags & FOLL_WRITE)
4264 				fault_flags |= FAULT_FLAG_WRITE;
4265 			if (nonblocking)
4266 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4267 			if (flags & FOLL_NOWAIT)
4268 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4269 					FAULT_FLAG_RETRY_NOWAIT;
4270 			if (flags & FOLL_TRIED) {
4271 				VM_WARN_ON_ONCE(fault_flags &
4272 						FAULT_FLAG_ALLOW_RETRY);
4273 				fault_flags |= FAULT_FLAG_TRIED;
4274 			}
4275 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4276 			if (ret & VM_FAULT_ERROR) {
4277 				err = vm_fault_to_errno(ret, flags);
4278 				remainder = 0;
4279 				break;
4280 			}
4281 			if (ret & VM_FAULT_RETRY) {
4282 				if (nonblocking &&
4283 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4284 					*nonblocking = 0;
4285 				*nr_pages = 0;
4286 				/*
4287 				 * VM_FAULT_RETRY must not return an
4288 				 * error, it will return zero
4289 				 * instead.
4290 				 *
4291 				 * No need to update "position" as the
4292 				 * caller will not check it after
4293 				 * *nr_pages is set to 0.
4294 				 */
4295 				return i;
4296 			}
4297 			continue;
4298 		}
4299 
4300 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4301 		page = pte_page(huge_ptep_get(pte));
4302 same_page:
4303 		if (pages) {
4304 			pages[i] = mem_map_offset(page, pfn_offset);
4305 			get_page(pages[i]);
4306 		}
4307 
4308 		if (vmas)
4309 			vmas[i] = vma;
4310 
4311 		vaddr += PAGE_SIZE;
4312 		++pfn_offset;
4313 		--remainder;
4314 		++i;
4315 		if (vaddr < vma->vm_end && remainder &&
4316 				pfn_offset < pages_per_huge_page(h)) {
4317 			/*
4318 			 * We use pfn_offset to avoid touching the pageframes
4319 			 * of this compound page.
4320 			 */
4321 			goto same_page;
4322 		}
4323 		spin_unlock(ptl);
4324 	}
4325 	*nr_pages = remainder;
4326 	/*
4327 	 * setting position is actually required only if remainder is
4328 	 * not zero but it's faster not to add a "if (remainder)"
4329 	 * branch.
4330 	 */
4331 	*position = vaddr;
4332 
4333 	return i ? i : err;
4334 }
4335 
4336 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4337 /*
4338  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4339  * implement this.
4340  */
4341 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4342 #endif
4343 
4344 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4345 		unsigned long address, unsigned long end, pgprot_t newprot)
4346 {
4347 	struct mm_struct *mm = vma->vm_mm;
4348 	unsigned long start = address;
4349 	pte_t *ptep;
4350 	pte_t pte;
4351 	struct hstate *h = hstate_vma(vma);
4352 	unsigned long pages = 0;
4353 	bool shared_pmd = false;
4354 	struct mmu_notifier_range range;
4355 
4356 	/*
4357 	 * In the case of shared PMDs, the area to flush could be beyond
4358 	 * start/end.  Set range.start/range.end to cover the maximum possible
4359 	 * range if PMD sharing is possible.
4360 	 */
4361 	mmu_notifier_range_init(&range, mm, start, end);
4362 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4363 
4364 	BUG_ON(address >= end);
4365 	flush_cache_range(vma, range.start, range.end);
4366 
4367 	mmu_notifier_invalidate_range_start(&range);
4368 	i_mmap_lock_write(vma->vm_file->f_mapping);
4369 	for (; address < end; address += huge_page_size(h)) {
4370 		spinlock_t *ptl;
4371 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4372 		if (!ptep)
4373 			continue;
4374 		ptl = huge_pte_lock(h, mm, ptep);
4375 		if (huge_pmd_unshare(mm, &address, ptep)) {
4376 			pages++;
4377 			spin_unlock(ptl);
4378 			shared_pmd = true;
4379 			continue;
4380 		}
4381 		pte = huge_ptep_get(ptep);
4382 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4383 			spin_unlock(ptl);
4384 			continue;
4385 		}
4386 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4387 			swp_entry_t entry = pte_to_swp_entry(pte);
4388 
4389 			if (is_write_migration_entry(entry)) {
4390 				pte_t newpte;
4391 
4392 				make_migration_entry_read(&entry);
4393 				newpte = swp_entry_to_pte(entry);
4394 				set_huge_swap_pte_at(mm, address, ptep,
4395 						     newpte, huge_page_size(h));
4396 				pages++;
4397 			}
4398 			spin_unlock(ptl);
4399 			continue;
4400 		}
4401 		if (!huge_pte_none(pte)) {
4402 			pte_t old_pte;
4403 
4404 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4405 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4406 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4407 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4408 			pages++;
4409 		}
4410 		spin_unlock(ptl);
4411 	}
4412 	/*
4413 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4414 	 * may have cleared our pud entry and done put_page on the page table:
4415 	 * once we release i_mmap_rwsem, another task can do the final put_page
4416 	 * and that page table be reused and filled with junk.  If we actually
4417 	 * did unshare a page of pmds, flush the range corresponding to the pud.
4418 	 */
4419 	if (shared_pmd)
4420 		flush_hugetlb_tlb_range(vma, range.start, range.end);
4421 	else
4422 		flush_hugetlb_tlb_range(vma, start, end);
4423 	/*
4424 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4425 	 * page table protection not changing it to point to a new page.
4426 	 *
4427 	 * See Documentation/vm/mmu_notifier.rst
4428 	 */
4429 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4430 	mmu_notifier_invalidate_range_end(&range);
4431 
4432 	return pages << h->order;
4433 }
4434 
4435 int hugetlb_reserve_pages(struct inode *inode,
4436 					long from, long to,
4437 					struct vm_area_struct *vma,
4438 					vm_flags_t vm_flags)
4439 {
4440 	long ret, chg;
4441 	struct hstate *h = hstate_inode(inode);
4442 	struct hugepage_subpool *spool = subpool_inode(inode);
4443 	struct resv_map *resv_map;
4444 	long gbl_reserve;
4445 
4446 	/* This should never happen */
4447 	if (from > to) {
4448 		VM_WARN(1, "%s called with a negative range\n", __func__);
4449 		return -EINVAL;
4450 	}
4451 
4452 	/*
4453 	 * Only apply hugepage reservation if asked. At fault time, an
4454 	 * attempt will be made for VM_NORESERVE to allocate a page
4455 	 * without using reserves
4456 	 */
4457 	if (vm_flags & VM_NORESERVE)
4458 		return 0;
4459 
4460 	/*
4461 	 * Shared mappings base their reservation on the number of pages that
4462 	 * are already allocated on behalf of the file. Private mappings need
4463 	 * to reserve the full area even if read-only as mprotect() may be
4464 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4465 	 */
4466 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4467 		resv_map = inode_resv_map(inode);
4468 
4469 		chg = region_chg(resv_map, from, to);
4470 
4471 	} else {
4472 		resv_map = resv_map_alloc();
4473 		if (!resv_map)
4474 			return -ENOMEM;
4475 
4476 		chg = to - from;
4477 
4478 		set_vma_resv_map(vma, resv_map);
4479 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4480 	}
4481 
4482 	if (chg < 0) {
4483 		ret = chg;
4484 		goto out_err;
4485 	}
4486 
4487 	/*
4488 	 * There must be enough pages in the subpool for the mapping. If
4489 	 * the subpool has a minimum size, there may be some global
4490 	 * reservations already in place (gbl_reserve).
4491 	 */
4492 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4493 	if (gbl_reserve < 0) {
4494 		ret = -ENOSPC;
4495 		goto out_err;
4496 	}
4497 
4498 	/*
4499 	 * Check enough hugepages are available for the reservation.
4500 	 * Hand the pages back to the subpool if there are not
4501 	 */
4502 	ret = hugetlb_acct_memory(h, gbl_reserve);
4503 	if (ret < 0) {
4504 		/* put back original number of pages, chg */
4505 		(void)hugepage_subpool_put_pages(spool, chg);
4506 		goto out_err;
4507 	}
4508 
4509 	/*
4510 	 * Account for the reservations made. Shared mappings record regions
4511 	 * that have reservations as they are shared by multiple VMAs.
4512 	 * When the last VMA disappears, the region map says how much
4513 	 * the reservation was and the page cache tells how much of
4514 	 * the reservation was consumed. Private mappings are per-VMA and
4515 	 * only the consumed reservations are tracked. When the VMA
4516 	 * disappears, the original reservation is the VMA size and the
4517 	 * consumed reservations are stored in the map. Hence, nothing
4518 	 * else has to be done for private mappings here
4519 	 */
4520 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4521 		long add = region_add(resv_map, from, to);
4522 
4523 		if (unlikely(chg > add)) {
4524 			/*
4525 			 * pages in this range were added to the reserve
4526 			 * map between region_chg and region_add.  This
4527 			 * indicates a race with alloc_huge_page.  Adjust
4528 			 * the subpool and reserve counts modified above
4529 			 * based on the difference.
4530 			 */
4531 			long rsv_adjust;
4532 
4533 			rsv_adjust = hugepage_subpool_put_pages(spool,
4534 								chg - add);
4535 			hugetlb_acct_memory(h, -rsv_adjust);
4536 		}
4537 	}
4538 	return 0;
4539 out_err:
4540 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4541 		/* Don't call region_abort if region_chg failed */
4542 		if (chg >= 0)
4543 			region_abort(resv_map, from, to);
4544 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4545 		kref_put(&resv_map->refs, resv_map_release);
4546 	return ret;
4547 }
4548 
4549 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4550 								long freed)
4551 {
4552 	struct hstate *h = hstate_inode(inode);
4553 	struct resv_map *resv_map = inode_resv_map(inode);
4554 	long chg = 0;
4555 	struct hugepage_subpool *spool = subpool_inode(inode);
4556 	long gbl_reserve;
4557 
4558 	if (resv_map) {
4559 		chg = region_del(resv_map, start, end);
4560 		/*
4561 		 * region_del() can fail in the rare case where a region
4562 		 * must be split and another region descriptor can not be
4563 		 * allocated.  If end == LONG_MAX, it will not fail.
4564 		 */
4565 		if (chg < 0)
4566 			return chg;
4567 	}
4568 
4569 	spin_lock(&inode->i_lock);
4570 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4571 	spin_unlock(&inode->i_lock);
4572 
4573 	/*
4574 	 * If the subpool has a minimum size, the number of global
4575 	 * reservations to be released may be adjusted.
4576 	 */
4577 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4578 	hugetlb_acct_memory(h, -gbl_reserve);
4579 
4580 	return 0;
4581 }
4582 
4583 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4584 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4585 				struct vm_area_struct *vma,
4586 				unsigned long addr, pgoff_t idx)
4587 {
4588 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4589 				svma->vm_start;
4590 	unsigned long sbase = saddr & PUD_MASK;
4591 	unsigned long s_end = sbase + PUD_SIZE;
4592 
4593 	/* Allow segments to share if only one is marked locked */
4594 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4595 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4596 
4597 	/*
4598 	 * match the virtual addresses, permission and the alignment of the
4599 	 * page table page.
4600 	 */
4601 	if (pmd_index(addr) != pmd_index(saddr) ||
4602 	    vm_flags != svm_flags ||
4603 	    sbase < svma->vm_start || svma->vm_end < s_end)
4604 		return 0;
4605 
4606 	return saddr;
4607 }
4608 
4609 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4610 {
4611 	unsigned long base = addr & PUD_MASK;
4612 	unsigned long end = base + PUD_SIZE;
4613 
4614 	/*
4615 	 * check on proper vm_flags and page table alignment
4616 	 */
4617 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4618 		return true;
4619 	return false;
4620 }
4621 
4622 /*
4623  * Determine if start,end range within vma could be mapped by shared pmd.
4624  * If yes, adjust start and end to cover range associated with possible
4625  * shared pmd mappings.
4626  */
4627 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4628 				unsigned long *start, unsigned long *end)
4629 {
4630 	unsigned long check_addr = *start;
4631 
4632 	if (!(vma->vm_flags & VM_MAYSHARE))
4633 		return;
4634 
4635 	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4636 		unsigned long a_start = check_addr & PUD_MASK;
4637 		unsigned long a_end = a_start + PUD_SIZE;
4638 
4639 		/*
4640 		 * If sharing is possible, adjust start/end if necessary.
4641 		 */
4642 		if (range_in_vma(vma, a_start, a_end)) {
4643 			if (a_start < *start)
4644 				*start = a_start;
4645 			if (a_end > *end)
4646 				*end = a_end;
4647 		}
4648 	}
4649 }
4650 
4651 /*
4652  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4653  * and returns the corresponding pte. While this is not necessary for the
4654  * !shared pmd case because we can allocate the pmd later as well, it makes the
4655  * code much cleaner. pmd allocation is essential for the shared case because
4656  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4657  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4658  * bad pmd for sharing.
4659  */
4660 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4661 {
4662 	struct vm_area_struct *vma = find_vma(mm, addr);
4663 	struct address_space *mapping = vma->vm_file->f_mapping;
4664 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4665 			vma->vm_pgoff;
4666 	struct vm_area_struct *svma;
4667 	unsigned long saddr;
4668 	pte_t *spte = NULL;
4669 	pte_t *pte;
4670 	spinlock_t *ptl;
4671 
4672 	if (!vma_shareable(vma, addr))
4673 		return (pte_t *)pmd_alloc(mm, pud, addr);
4674 
4675 	i_mmap_lock_write(mapping);
4676 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4677 		if (svma == vma)
4678 			continue;
4679 
4680 		saddr = page_table_shareable(svma, vma, addr, idx);
4681 		if (saddr) {
4682 			spte = huge_pte_offset(svma->vm_mm, saddr,
4683 					       vma_mmu_pagesize(svma));
4684 			if (spte) {
4685 				get_page(virt_to_page(spte));
4686 				break;
4687 			}
4688 		}
4689 	}
4690 
4691 	if (!spte)
4692 		goto out;
4693 
4694 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4695 	if (pud_none(*pud)) {
4696 		pud_populate(mm, pud,
4697 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4698 		mm_inc_nr_pmds(mm);
4699 	} else {
4700 		put_page(virt_to_page(spte));
4701 	}
4702 	spin_unlock(ptl);
4703 out:
4704 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4705 	i_mmap_unlock_write(mapping);
4706 	return pte;
4707 }
4708 
4709 /*
4710  * unmap huge page backed by shared pte.
4711  *
4712  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4713  * indicated by page_count > 1, unmap is achieved by clearing pud and
4714  * decrementing the ref count. If count == 1, the pte page is not shared.
4715  *
4716  * called with page table lock held.
4717  *
4718  * returns: 1 successfully unmapped a shared pte page
4719  *	    0 the underlying pte page is not shared, or it is the last user
4720  */
4721 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4722 {
4723 	pgd_t *pgd = pgd_offset(mm, *addr);
4724 	p4d_t *p4d = p4d_offset(pgd, *addr);
4725 	pud_t *pud = pud_offset(p4d, *addr);
4726 
4727 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4728 	if (page_count(virt_to_page(ptep)) == 1)
4729 		return 0;
4730 
4731 	pud_clear(pud);
4732 	put_page(virt_to_page(ptep));
4733 	mm_dec_nr_pmds(mm);
4734 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4735 	return 1;
4736 }
4737 #define want_pmd_share()	(1)
4738 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4739 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4740 {
4741 	return NULL;
4742 }
4743 
4744 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4745 {
4746 	return 0;
4747 }
4748 
4749 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4750 				unsigned long *start, unsigned long *end)
4751 {
4752 }
4753 #define want_pmd_share()	(0)
4754 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4755 
4756 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4757 pte_t *huge_pte_alloc(struct mm_struct *mm,
4758 			unsigned long addr, unsigned long sz)
4759 {
4760 	pgd_t *pgd;
4761 	p4d_t *p4d;
4762 	pud_t *pud;
4763 	pte_t *pte = NULL;
4764 
4765 	pgd = pgd_offset(mm, addr);
4766 	p4d = p4d_alloc(mm, pgd, addr);
4767 	if (!p4d)
4768 		return NULL;
4769 	pud = pud_alloc(mm, p4d, addr);
4770 	if (pud) {
4771 		if (sz == PUD_SIZE) {
4772 			pte = (pte_t *)pud;
4773 		} else {
4774 			BUG_ON(sz != PMD_SIZE);
4775 			if (want_pmd_share() && pud_none(*pud))
4776 				pte = huge_pmd_share(mm, addr, pud);
4777 			else
4778 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4779 		}
4780 	}
4781 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4782 
4783 	return pte;
4784 }
4785 
4786 /*
4787  * huge_pte_offset() - Walk the page table to resolve the hugepage
4788  * entry at address @addr
4789  *
4790  * Return: Pointer to page table or swap entry (PUD or PMD) for
4791  * address @addr, or NULL if a p*d_none() entry is encountered and the
4792  * size @sz doesn't match the hugepage size at this level of the page
4793  * table.
4794  */
4795 pte_t *huge_pte_offset(struct mm_struct *mm,
4796 		       unsigned long addr, unsigned long sz)
4797 {
4798 	pgd_t *pgd;
4799 	p4d_t *p4d;
4800 	pud_t *pud;
4801 	pmd_t *pmd;
4802 
4803 	pgd = pgd_offset(mm, addr);
4804 	if (!pgd_present(*pgd))
4805 		return NULL;
4806 	p4d = p4d_offset(pgd, addr);
4807 	if (!p4d_present(*p4d))
4808 		return NULL;
4809 
4810 	pud = pud_offset(p4d, addr);
4811 	if (sz != PUD_SIZE && pud_none(*pud))
4812 		return NULL;
4813 	/* hugepage or swap? */
4814 	if (pud_huge(*pud) || !pud_present(*pud))
4815 		return (pte_t *)pud;
4816 
4817 	pmd = pmd_offset(pud, addr);
4818 	if (sz != PMD_SIZE && pmd_none(*pmd))
4819 		return NULL;
4820 	/* hugepage or swap? */
4821 	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4822 		return (pte_t *)pmd;
4823 
4824 	return NULL;
4825 }
4826 
4827 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4828 
4829 /*
4830  * These functions are overwritable if your architecture needs its own
4831  * behavior.
4832  */
4833 struct page * __weak
4834 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4835 			      int write)
4836 {
4837 	return ERR_PTR(-EINVAL);
4838 }
4839 
4840 struct page * __weak
4841 follow_huge_pd(struct vm_area_struct *vma,
4842 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
4843 {
4844 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4845 	return NULL;
4846 }
4847 
4848 struct page * __weak
4849 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4850 		pmd_t *pmd, int flags)
4851 {
4852 	struct page *page = NULL;
4853 	spinlock_t *ptl;
4854 	pte_t pte;
4855 retry:
4856 	ptl = pmd_lockptr(mm, pmd);
4857 	spin_lock(ptl);
4858 	/*
4859 	 * make sure that the address range covered by this pmd is not
4860 	 * unmapped from other threads.
4861 	 */
4862 	if (!pmd_huge(*pmd))
4863 		goto out;
4864 	pte = huge_ptep_get((pte_t *)pmd);
4865 	if (pte_present(pte)) {
4866 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4867 		if (flags & FOLL_GET)
4868 			get_page(page);
4869 	} else {
4870 		if (is_hugetlb_entry_migration(pte)) {
4871 			spin_unlock(ptl);
4872 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4873 			goto retry;
4874 		}
4875 		/*
4876 		 * hwpoisoned entry is treated as no_page_table in
4877 		 * follow_page_mask().
4878 		 */
4879 	}
4880 out:
4881 	spin_unlock(ptl);
4882 	return page;
4883 }
4884 
4885 struct page * __weak
4886 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4887 		pud_t *pud, int flags)
4888 {
4889 	if (flags & FOLL_GET)
4890 		return NULL;
4891 
4892 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4893 }
4894 
4895 struct page * __weak
4896 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4897 {
4898 	if (flags & FOLL_GET)
4899 		return NULL;
4900 
4901 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4902 }
4903 
4904 bool isolate_huge_page(struct page *page, struct list_head *list)
4905 {
4906 	bool ret = true;
4907 
4908 	VM_BUG_ON_PAGE(!PageHead(page), page);
4909 	spin_lock(&hugetlb_lock);
4910 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4911 		ret = false;
4912 		goto unlock;
4913 	}
4914 	clear_page_huge_active(page);
4915 	list_move_tail(&page->lru, list);
4916 unlock:
4917 	spin_unlock(&hugetlb_lock);
4918 	return ret;
4919 }
4920 
4921 void putback_active_hugepage(struct page *page)
4922 {
4923 	VM_BUG_ON_PAGE(!PageHead(page), page);
4924 	spin_lock(&hugetlb_lock);
4925 	set_page_huge_active(page);
4926 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4927 	spin_unlock(&hugetlb_lock);
4928 	put_page(page);
4929 }
4930 
4931 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4932 {
4933 	struct hstate *h = page_hstate(oldpage);
4934 
4935 	hugetlb_cgroup_migrate(oldpage, newpage);
4936 	set_page_owner_migrate_reason(newpage, reason);
4937 
4938 	/*
4939 	 * transfer temporary state of the new huge page. This is
4940 	 * reverse to other transitions because the newpage is going to
4941 	 * be final while the old one will be freed so it takes over
4942 	 * the temporary status.
4943 	 *
4944 	 * Also note that we have to transfer the per-node surplus state
4945 	 * here as well otherwise the global surplus count will not match
4946 	 * the per-node's.
4947 	 */
4948 	if (PageHugeTemporary(newpage)) {
4949 		int old_nid = page_to_nid(oldpage);
4950 		int new_nid = page_to_nid(newpage);
4951 
4952 		SetPageHugeTemporary(oldpage);
4953 		ClearPageHugeTemporary(newpage);
4954 
4955 		spin_lock(&hugetlb_lock);
4956 		if (h->surplus_huge_pages_node[old_nid]) {
4957 			h->surplus_huge_pages_node[old_nid]--;
4958 			h->surplus_huge_pages_node[new_nid]++;
4959 		}
4960 		spin_unlock(&hugetlb_lock);
4961 	}
4962 }
4963