xref: /openbmc/linux/mm/hugetlb.c (revision ecfb9f40)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41 
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49 
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53 
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60 				1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65 	return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69 
70 __initdata LIST_HEAD(huge_boot_pages);
71 
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78 
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84 
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91 
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
99 {
100 	if (spool->count)
101 		return false;
102 	if (spool->max_hpages != -1)
103 		return spool->used_hpages == 0;
104 	if (spool->min_hpages != -1)
105 		return spool->rsv_hpages == spool->min_hpages;
106 
107 	return true;
108 }
109 
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111 						unsigned long irq_flags)
112 {
113 	spin_unlock_irqrestore(&spool->lock, irq_flags);
114 
115 	/* If no pages are used, and no other handles to the subpool
116 	 * remain, give up any reservations based on minimum size and
117 	 * free the subpool */
118 	if (subpool_is_free(spool)) {
119 		if (spool->min_hpages != -1)
120 			hugetlb_acct_memory(spool->hstate,
121 						-spool->min_hpages);
122 		kfree(spool);
123 	}
124 }
125 
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127 						long min_hpages)
128 {
129 	struct hugepage_subpool *spool;
130 
131 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
132 	if (!spool)
133 		return NULL;
134 
135 	spin_lock_init(&spool->lock);
136 	spool->count = 1;
137 	spool->max_hpages = max_hpages;
138 	spool->hstate = h;
139 	spool->min_hpages = min_hpages;
140 
141 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142 		kfree(spool);
143 		return NULL;
144 	}
145 	spool->rsv_hpages = min_hpages;
146 
147 	return spool;
148 }
149 
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
151 {
152 	unsigned long flags;
153 
154 	spin_lock_irqsave(&spool->lock, flags);
155 	BUG_ON(!spool->count);
156 	spool->count--;
157 	unlock_or_release_subpool(spool, flags);
158 }
159 
160 /*
161  * Subpool accounting for allocating and reserving pages.
162  * Return -ENOMEM if there are not enough resources to satisfy the
163  * request.  Otherwise, return the number of pages by which the
164  * global pools must be adjusted (upward).  The returned value may
165  * only be different than the passed value (delta) in the case where
166  * a subpool minimum size must be maintained.
167  */
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
169 				      long delta)
170 {
171 	long ret = delta;
172 
173 	if (!spool)
174 		return ret;
175 
176 	spin_lock_irq(&spool->lock);
177 
178 	if (spool->max_hpages != -1) {		/* maximum size accounting */
179 		if ((spool->used_hpages + delta) <= spool->max_hpages)
180 			spool->used_hpages += delta;
181 		else {
182 			ret = -ENOMEM;
183 			goto unlock_ret;
184 		}
185 	}
186 
187 	/* minimum size accounting */
188 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
189 		if (delta > spool->rsv_hpages) {
190 			/*
191 			 * Asking for more reserves than those already taken on
192 			 * behalf of subpool.  Return difference.
193 			 */
194 			ret = delta - spool->rsv_hpages;
195 			spool->rsv_hpages = 0;
196 		} else {
197 			ret = 0;	/* reserves already accounted for */
198 			spool->rsv_hpages -= delta;
199 		}
200 	}
201 
202 unlock_ret:
203 	spin_unlock_irq(&spool->lock);
204 	return ret;
205 }
206 
207 /*
208  * Subpool accounting for freeing and unreserving pages.
209  * Return the number of global page reservations that must be dropped.
210  * The return value may only be different than the passed value (delta)
211  * in the case where a subpool minimum size must be maintained.
212  */
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
214 				       long delta)
215 {
216 	long ret = delta;
217 	unsigned long flags;
218 
219 	if (!spool)
220 		return delta;
221 
222 	spin_lock_irqsave(&spool->lock, flags);
223 
224 	if (spool->max_hpages != -1)		/* maximum size accounting */
225 		spool->used_hpages -= delta;
226 
227 	 /* minimum size accounting */
228 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229 		if (spool->rsv_hpages + delta <= spool->min_hpages)
230 			ret = 0;
231 		else
232 			ret = spool->rsv_hpages + delta - spool->min_hpages;
233 
234 		spool->rsv_hpages += delta;
235 		if (spool->rsv_hpages > spool->min_hpages)
236 			spool->rsv_hpages = spool->min_hpages;
237 	}
238 
239 	/*
240 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
241 	 * quota reference, free it now.
242 	 */
243 	unlock_or_release_subpool(spool, flags);
244 
245 	return ret;
246 }
247 
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249 {
250 	return HUGETLBFS_SB(inode->i_sb)->spool;
251 }
252 
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254 {
255 	return subpool_inode(file_inode(vma->vm_file));
256 }
257 
258 /*
259  * hugetlb vma_lock helper routines
260  */
261 static bool __vma_shareable_lock(struct vm_area_struct *vma)
262 {
263 	return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
264 		vma->vm_private_data;
265 }
266 
267 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
268 {
269 	if (__vma_shareable_lock(vma)) {
270 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
271 
272 		down_read(&vma_lock->rw_sema);
273 	}
274 }
275 
276 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
277 {
278 	if (__vma_shareable_lock(vma)) {
279 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
280 
281 		up_read(&vma_lock->rw_sema);
282 	}
283 }
284 
285 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
286 {
287 	if (__vma_shareable_lock(vma)) {
288 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
289 
290 		down_write(&vma_lock->rw_sema);
291 	}
292 }
293 
294 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
295 {
296 	if (__vma_shareable_lock(vma)) {
297 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
298 
299 		up_write(&vma_lock->rw_sema);
300 	}
301 }
302 
303 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
304 {
305 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
306 
307 	if (!__vma_shareable_lock(vma))
308 		return 1;
309 
310 	return down_write_trylock(&vma_lock->rw_sema);
311 }
312 
313 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
314 {
315 	if (__vma_shareable_lock(vma)) {
316 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
317 
318 		lockdep_assert_held(&vma_lock->rw_sema);
319 	}
320 }
321 
322 void hugetlb_vma_lock_release(struct kref *kref)
323 {
324 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
325 			struct hugetlb_vma_lock, refs);
326 
327 	kfree(vma_lock);
328 }
329 
330 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
331 {
332 	struct vm_area_struct *vma = vma_lock->vma;
333 
334 	/*
335 	 * vma_lock structure may or not be released as a result of put,
336 	 * it certainly will no longer be attached to vma so clear pointer.
337 	 * Semaphore synchronizes access to vma_lock->vma field.
338 	 */
339 	vma_lock->vma = NULL;
340 	vma->vm_private_data = NULL;
341 	up_write(&vma_lock->rw_sema);
342 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
343 }
344 
345 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
346 {
347 	if (__vma_shareable_lock(vma)) {
348 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
349 
350 		__hugetlb_vma_unlock_write_put(vma_lock);
351 	}
352 }
353 
354 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
355 {
356 	/*
357 	 * Only present in sharable vmas.
358 	 */
359 	if (!vma || !__vma_shareable_lock(vma))
360 		return;
361 
362 	if (vma->vm_private_data) {
363 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
364 
365 		down_write(&vma_lock->rw_sema);
366 		__hugetlb_vma_unlock_write_put(vma_lock);
367 	}
368 }
369 
370 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
371 {
372 	struct hugetlb_vma_lock *vma_lock;
373 
374 	/* Only establish in (flags) sharable vmas */
375 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
376 		return;
377 
378 	/* Should never get here with non-NULL vm_private_data */
379 	if (vma->vm_private_data)
380 		return;
381 
382 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
383 	if (!vma_lock) {
384 		/*
385 		 * If we can not allocate structure, then vma can not
386 		 * participate in pmd sharing.  This is only a possible
387 		 * performance enhancement and memory saving issue.
388 		 * However, the lock is also used to synchronize page
389 		 * faults with truncation.  If the lock is not present,
390 		 * unlikely races could leave pages in a file past i_size
391 		 * until the file is removed.  Warn in the unlikely case of
392 		 * allocation failure.
393 		 */
394 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
395 		return;
396 	}
397 
398 	kref_init(&vma_lock->refs);
399 	init_rwsem(&vma_lock->rw_sema);
400 	vma_lock->vma = vma;
401 	vma->vm_private_data = vma_lock;
402 }
403 
404 /* Helper that removes a struct file_region from the resv_map cache and returns
405  * it for use.
406  */
407 static struct file_region *
408 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
409 {
410 	struct file_region *nrg;
411 
412 	VM_BUG_ON(resv->region_cache_count <= 0);
413 
414 	resv->region_cache_count--;
415 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
416 	list_del(&nrg->link);
417 
418 	nrg->from = from;
419 	nrg->to = to;
420 
421 	return nrg;
422 }
423 
424 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
425 					      struct file_region *rg)
426 {
427 #ifdef CONFIG_CGROUP_HUGETLB
428 	nrg->reservation_counter = rg->reservation_counter;
429 	nrg->css = rg->css;
430 	if (rg->css)
431 		css_get(rg->css);
432 #endif
433 }
434 
435 /* Helper that records hugetlb_cgroup uncharge info. */
436 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
437 						struct hstate *h,
438 						struct resv_map *resv,
439 						struct file_region *nrg)
440 {
441 #ifdef CONFIG_CGROUP_HUGETLB
442 	if (h_cg) {
443 		nrg->reservation_counter =
444 			&h_cg->rsvd_hugepage[hstate_index(h)];
445 		nrg->css = &h_cg->css;
446 		/*
447 		 * The caller will hold exactly one h_cg->css reference for the
448 		 * whole contiguous reservation region. But this area might be
449 		 * scattered when there are already some file_regions reside in
450 		 * it. As a result, many file_regions may share only one css
451 		 * reference. In order to ensure that one file_region must hold
452 		 * exactly one h_cg->css reference, we should do css_get for
453 		 * each file_region and leave the reference held by caller
454 		 * untouched.
455 		 */
456 		css_get(&h_cg->css);
457 		if (!resv->pages_per_hpage)
458 			resv->pages_per_hpage = pages_per_huge_page(h);
459 		/* pages_per_hpage should be the same for all entries in
460 		 * a resv_map.
461 		 */
462 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
463 	} else {
464 		nrg->reservation_counter = NULL;
465 		nrg->css = NULL;
466 	}
467 #endif
468 }
469 
470 static void put_uncharge_info(struct file_region *rg)
471 {
472 #ifdef CONFIG_CGROUP_HUGETLB
473 	if (rg->css)
474 		css_put(rg->css);
475 #endif
476 }
477 
478 static bool has_same_uncharge_info(struct file_region *rg,
479 				   struct file_region *org)
480 {
481 #ifdef CONFIG_CGROUP_HUGETLB
482 	return rg->reservation_counter == org->reservation_counter &&
483 	       rg->css == org->css;
484 
485 #else
486 	return true;
487 #endif
488 }
489 
490 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
491 {
492 	struct file_region *nrg, *prg;
493 
494 	prg = list_prev_entry(rg, link);
495 	if (&prg->link != &resv->regions && prg->to == rg->from &&
496 	    has_same_uncharge_info(prg, rg)) {
497 		prg->to = rg->to;
498 
499 		list_del(&rg->link);
500 		put_uncharge_info(rg);
501 		kfree(rg);
502 
503 		rg = prg;
504 	}
505 
506 	nrg = list_next_entry(rg, link);
507 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
508 	    has_same_uncharge_info(nrg, rg)) {
509 		nrg->from = rg->from;
510 
511 		list_del(&rg->link);
512 		put_uncharge_info(rg);
513 		kfree(rg);
514 	}
515 }
516 
517 static inline long
518 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
519 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
520 		     long *regions_needed)
521 {
522 	struct file_region *nrg;
523 
524 	if (!regions_needed) {
525 		nrg = get_file_region_entry_from_cache(map, from, to);
526 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
527 		list_add(&nrg->link, rg);
528 		coalesce_file_region(map, nrg);
529 	} else
530 		*regions_needed += 1;
531 
532 	return to - from;
533 }
534 
535 /*
536  * Must be called with resv->lock held.
537  *
538  * Calling this with regions_needed != NULL will count the number of pages
539  * to be added but will not modify the linked list. And regions_needed will
540  * indicate the number of file_regions needed in the cache to carry out to add
541  * the regions for this range.
542  */
543 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
544 				     struct hugetlb_cgroup *h_cg,
545 				     struct hstate *h, long *regions_needed)
546 {
547 	long add = 0;
548 	struct list_head *head = &resv->regions;
549 	long last_accounted_offset = f;
550 	struct file_region *iter, *trg = NULL;
551 	struct list_head *rg = NULL;
552 
553 	if (regions_needed)
554 		*regions_needed = 0;
555 
556 	/* In this loop, we essentially handle an entry for the range
557 	 * [last_accounted_offset, iter->from), at every iteration, with some
558 	 * bounds checking.
559 	 */
560 	list_for_each_entry_safe(iter, trg, head, link) {
561 		/* Skip irrelevant regions that start before our range. */
562 		if (iter->from < f) {
563 			/* If this region ends after the last accounted offset,
564 			 * then we need to update last_accounted_offset.
565 			 */
566 			if (iter->to > last_accounted_offset)
567 				last_accounted_offset = iter->to;
568 			continue;
569 		}
570 
571 		/* When we find a region that starts beyond our range, we've
572 		 * finished.
573 		 */
574 		if (iter->from >= t) {
575 			rg = iter->link.prev;
576 			break;
577 		}
578 
579 		/* Add an entry for last_accounted_offset -> iter->from, and
580 		 * update last_accounted_offset.
581 		 */
582 		if (iter->from > last_accounted_offset)
583 			add += hugetlb_resv_map_add(resv, iter->link.prev,
584 						    last_accounted_offset,
585 						    iter->from, h, h_cg,
586 						    regions_needed);
587 
588 		last_accounted_offset = iter->to;
589 	}
590 
591 	/* Handle the case where our range extends beyond
592 	 * last_accounted_offset.
593 	 */
594 	if (!rg)
595 		rg = head->prev;
596 	if (last_accounted_offset < t)
597 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
598 					    t, h, h_cg, regions_needed);
599 
600 	return add;
601 }
602 
603 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
604  */
605 static int allocate_file_region_entries(struct resv_map *resv,
606 					int regions_needed)
607 	__must_hold(&resv->lock)
608 {
609 	LIST_HEAD(allocated_regions);
610 	int to_allocate = 0, i = 0;
611 	struct file_region *trg = NULL, *rg = NULL;
612 
613 	VM_BUG_ON(regions_needed < 0);
614 
615 	/*
616 	 * Check for sufficient descriptors in the cache to accommodate
617 	 * the number of in progress add operations plus regions_needed.
618 	 *
619 	 * This is a while loop because when we drop the lock, some other call
620 	 * to region_add or region_del may have consumed some region_entries,
621 	 * so we keep looping here until we finally have enough entries for
622 	 * (adds_in_progress + regions_needed).
623 	 */
624 	while (resv->region_cache_count <
625 	       (resv->adds_in_progress + regions_needed)) {
626 		to_allocate = resv->adds_in_progress + regions_needed -
627 			      resv->region_cache_count;
628 
629 		/* At this point, we should have enough entries in the cache
630 		 * for all the existing adds_in_progress. We should only be
631 		 * needing to allocate for regions_needed.
632 		 */
633 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
634 
635 		spin_unlock(&resv->lock);
636 		for (i = 0; i < to_allocate; i++) {
637 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
638 			if (!trg)
639 				goto out_of_memory;
640 			list_add(&trg->link, &allocated_regions);
641 		}
642 
643 		spin_lock(&resv->lock);
644 
645 		list_splice(&allocated_regions, &resv->region_cache);
646 		resv->region_cache_count += to_allocate;
647 	}
648 
649 	return 0;
650 
651 out_of_memory:
652 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
653 		list_del(&rg->link);
654 		kfree(rg);
655 	}
656 	return -ENOMEM;
657 }
658 
659 /*
660  * Add the huge page range represented by [f, t) to the reserve
661  * map.  Regions will be taken from the cache to fill in this range.
662  * Sufficient regions should exist in the cache due to the previous
663  * call to region_chg with the same range, but in some cases the cache will not
664  * have sufficient entries due to races with other code doing region_add or
665  * region_del.  The extra needed entries will be allocated.
666  *
667  * regions_needed is the out value provided by a previous call to region_chg.
668  *
669  * Return the number of new huge pages added to the map.  This number is greater
670  * than or equal to zero.  If file_region entries needed to be allocated for
671  * this operation and we were not able to allocate, it returns -ENOMEM.
672  * region_add of regions of length 1 never allocate file_regions and cannot
673  * fail; region_chg will always allocate at least 1 entry and a region_add for
674  * 1 page will only require at most 1 entry.
675  */
676 static long region_add(struct resv_map *resv, long f, long t,
677 		       long in_regions_needed, struct hstate *h,
678 		       struct hugetlb_cgroup *h_cg)
679 {
680 	long add = 0, actual_regions_needed = 0;
681 
682 	spin_lock(&resv->lock);
683 retry:
684 
685 	/* Count how many regions are actually needed to execute this add. */
686 	add_reservation_in_range(resv, f, t, NULL, NULL,
687 				 &actual_regions_needed);
688 
689 	/*
690 	 * Check for sufficient descriptors in the cache to accommodate
691 	 * this add operation. Note that actual_regions_needed may be greater
692 	 * than in_regions_needed, as the resv_map may have been modified since
693 	 * the region_chg call. In this case, we need to make sure that we
694 	 * allocate extra entries, such that we have enough for all the
695 	 * existing adds_in_progress, plus the excess needed for this
696 	 * operation.
697 	 */
698 	if (actual_regions_needed > in_regions_needed &&
699 	    resv->region_cache_count <
700 		    resv->adds_in_progress +
701 			    (actual_regions_needed - in_regions_needed)) {
702 		/* region_add operation of range 1 should never need to
703 		 * allocate file_region entries.
704 		 */
705 		VM_BUG_ON(t - f <= 1);
706 
707 		if (allocate_file_region_entries(
708 			    resv, actual_regions_needed - in_regions_needed)) {
709 			return -ENOMEM;
710 		}
711 
712 		goto retry;
713 	}
714 
715 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
716 
717 	resv->adds_in_progress -= in_regions_needed;
718 
719 	spin_unlock(&resv->lock);
720 	return add;
721 }
722 
723 /*
724  * Examine the existing reserve map and determine how many
725  * huge pages in the specified range [f, t) are NOT currently
726  * represented.  This routine is called before a subsequent
727  * call to region_add that will actually modify the reserve
728  * map to add the specified range [f, t).  region_chg does
729  * not change the number of huge pages represented by the
730  * map.  A number of new file_region structures is added to the cache as a
731  * placeholder, for the subsequent region_add call to use. At least 1
732  * file_region structure is added.
733  *
734  * out_regions_needed is the number of regions added to the
735  * resv->adds_in_progress.  This value needs to be provided to a follow up call
736  * to region_add or region_abort for proper accounting.
737  *
738  * Returns the number of huge pages that need to be added to the existing
739  * reservation map for the range [f, t).  This number is greater or equal to
740  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
741  * is needed and can not be allocated.
742  */
743 static long region_chg(struct resv_map *resv, long f, long t,
744 		       long *out_regions_needed)
745 {
746 	long chg = 0;
747 
748 	spin_lock(&resv->lock);
749 
750 	/* Count how many hugepages in this range are NOT represented. */
751 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
752 				       out_regions_needed);
753 
754 	if (*out_regions_needed == 0)
755 		*out_regions_needed = 1;
756 
757 	if (allocate_file_region_entries(resv, *out_regions_needed))
758 		return -ENOMEM;
759 
760 	resv->adds_in_progress += *out_regions_needed;
761 
762 	spin_unlock(&resv->lock);
763 	return chg;
764 }
765 
766 /*
767  * Abort the in progress add operation.  The adds_in_progress field
768  * of the resv_map keeps track of the operations in progress between
769  * calls to region_chg and region_add.  Operations are sometimes
770  * aborted after the call to region_chg.  In such cases, region_abort
771  * is called to decrement the adds_in_progress counter. regions_needed
772  * is the value returned by the region_chg call, it is used to decrement
773  * the adds_in_progress counter.
774  *
775  * NOTE: The range arguments [f, t) are not needed or used in this
776  * routine.  They are kept to make reading the calling code easier as
777  * arguments will match the associated region_chg call.
778  */
779 static void region_abort(struct resv_map *resv, long f, long t,
780 			 long regions_needed)
781 {
782 	spin_lock(&resv->lock);
783 	VM_BUG_ON(!resv->region_cache_count);
784 	resv->adds_in_progress -= regions_needed;
785 	spin_unlock(&resv->lock);
786 }
787 
788 /*
789  * Delete the specified range [f, t) from the reserve map.  If the
790  * t parameter is LONG_MAX, this indicates that ALL regions after f
791  * should be deleted.  Locate the regions which intersect [f, t)
792  * and either trim, delete or split the existing regions.
793  *
794  * Returns the number of huge pages deleted from the reserve map.
795  * In the normal case, the return value is zero or more.  In the
796  * case where a region must be split, a new region descriptor must
797  * be allocated.  If the allocation fails, -ENOMEM will be returned.
798  * NOTE: If the parameter t == LONG_MAX, then we will never split
799  * a region and possibly return -ENOMEM.  Callers specifying
800  * t == LONG_MAX do not need to check for -ENOMEM error.
801  */
802 static long region_del(struct resv_map *resv, long f, long t)
803 {
804 	struct list_head *head = &resv->regions;
805 	struct file_region *rg, *trg;
806 	struct file_region *nrg = NULL;
807 	long del = 0;
808 
809 retry:
810 	spin_lock(&resv->lock);
811 	list_for_each_entry_safe(rg, trg, head, link) {
812 		/*
813 		 * Skip regions before the range to be deleted.  file_region
814 		 * ranges are normally of the form [from, to).  However, there
815 		 * may be a "placeholder" entry in the map which is of the form
816 		 * (from, to) with from == to.  Check for placeholder entries
817 		 * at the beginning of the range to be deleted.
818 		 */
819 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
820 			continue;
821 
822 		if (rg->from >= t)
823 			break;
824 
825 		if (f > rg->from && t < rg->to) { /* Must split region */
826 			/*
827 			 * Check for an entry in the cache before dropping
828 			 * lock and attempting allocation.
829 			 */
830 			if (!nrg &&
831 			    resv->region_cache_count > resv->adds_in_progress) {
832 				nrg = list_first_entry(&resv->region_cache,
833 							struct file_region,
834 							link);
835 				list_del(&nrg->link);
836 				resv->region_cache_count--;
837 			}
838 
839 			if (!nrg) {
840 				spin_unlock(&resv->lock);
841 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
842 				if (!nrg)
843 					return -ENOMEM;
844 				goto retry;
845 			}
846 
847 			del += t - f;
848 			hugetlb_cgroup_uncharge_file_region(
849 				resv, rg, t - f, false);
850 
851 			/* New entry for end of split region */
852 			nrg->from = t;
853 			nrg->to = rg->to;
854 
855 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
856 
857 			INIT_LIST_HEAD(&nrg->link);
858 
859 			/* Original entry is trimmed */
860 			rg->to = f;
861 
862 			list_add(&nrg->link, &rg->link);
863 			nrg = NULL;
864 			break;
865 		}
866 
867 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
868 			del += rg->to - rg->from;
869 			hugetlb_cgroup_uncharge_file_region(resv, rg,
870 							    rg->to - rg->from, true);
871 			list_del(&rg->link);
872 			kfree(rg);
873 			continue;
874 		}
875 
876 		if (f <= rg->from) {	/* Trim beginning of region */
877 			hugetlb_cgroup_uncharge_file_region(resv, rg,
878 							    t - rg->from, false);
879 
880 			del += t - rg->from;
881 			rg->from = t;
882 		} else {		/* Trim end of region */
883 			hugetlb_cgroup_uncharge_file_region(resv, rg,
884 							    rg->to - f, false);
885 
886 			del += rg->to - f;
887 			rg->to = f;
888 		}
889 	}
890 
891 	spin_unlock(&resv->lock);
892 	kfree(nrg);
893 	return del;
894 }
895 
896 /*
897  * A rare out of memory error was encountered which prevented removal of
898  * the reserve map region for a page.  The huge page itself was free'ed
899  * and removed from the page cache.  This routine will adjust the subpool
900  * usage count, and the global reserve count if needed.  By incrementing
901  * these counts, the reserve map entry which could not be deleted will
902  * appear as a "reserved" entry instead of simply dangling with incorrect
903  * counts.
904  */
905 void hugetlb_fix_reserve_counts(struct inode *inode)
906 {
907 	struct hugepage_subpool *spool = subpool_inode(inode);
908 	long rsv_adjust;
909 	bool reserved = false;
910 
911 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
912 	if (rsv_adjust > 0) {
913 		struct hstate *h = hstate_inode(inode);
914 
915 		if (!hugetlb_acct_memory(h, 1))
916 			reserved = true;
917 	} else if (!rsv_adjust) {
918 		reserved = true;
919 	}
920 
921 	if (!reserved)
922 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
923 }
924 
925 /*
926  * Count and return the number of huge pages in the reserve map
927  * that intersect with the range [f, t).
928  */
929 static long region_count(struct resv_map *resv, long f, long t)
930 {
931 	struct list_head *head = &resv->regions;
932 	struct file_region *rg;
933 	long chg = 0;
934 
935 	spin_lock(&resv->lock);
936 	/* Locate each segment we overlap with, and count that overlap. */
937 	list_for_each_entry(rg, head, link) {
938 		long seg_from;
939 		long seg_to;
940 
941 		if (rg->to <= f)
942 			continue;
943 		if (rg->from >= t)
944 			break;
945 
946 		seg_from = max(rg->from, f);
947 		seg_to = min(rg->to, t);
948 
949 		chg += seg_to - seg_from;
950 	}
951 	spin_unlock(&resv->lock);
952 
953 	return chg;
954 }
955 
956 /*
957  * Convert the address within this vma to the page offset within
958  * the mapping, in pagecache page units; huge pages here.
959  */
960 static pgoff_t vma_hugecache_offset(struct hstate *h,
961 			struct vm_area_struct *vma, unsigned long address)
962 {
963 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
964 			(vma->vm_pgoff >> huge_page_order(h));
965 }
966 
967 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
968 				     unsigned long address)
969 {
970 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
971 }
972 EXPORT_SYMBOL_GPL(linear_hugepage_index);
973 
974 /*
975  * Return the size of the pages allocated when backing a VMA. In the majority
976  * cases this will be same size as used by the page table entries.
977  */
978 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
979 {
980 	if (vma->vm_ops && vma->vm_ops->pagesize)
981 		return vma->vm_ops->pagesize(vma);
982 	return PAGE_SIZE;
983 }
984 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
985 
986 /*
987  * Return the page size being used by the MMU to back a VMA. In the majority
988  * of cases, the page size used by the kernel matches the MMU size. On
989  * architectures where it differs, an architecture-specific 'strong'
990  * version of this symbol is required.
991  */
992 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
993 {
994 	return vma_kernel_pagesize(vma);
995 }
996 
997 /*
998  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
999  * bits of the reservation map pointer, which are always clear due to
1000  * alignment.
1001  */
1002 #define HPAGE_RESV_OWNER    (1UL << 0)
1003 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1004 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1005 
1006 /*
1007  * These helpers are used to track how many pages are reserved for
1008  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1009  * is guaranteed to have their future faults succeed.
1010  *
1011  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1012  * the reserve counters are updated with the hugetlb_lock held. It is safe
1013  * to reset the VMA at fork() time as it is not in use yet and there is no
1014  * chance of the global counters getting corrupted as a result of the values.
1015  *
1016  * The private mapping reservation is represented in a subtly different
1017  * manner to a shared mapping.  A shared mapping has a region map associated
1018  * with the underlying file, this region map represents the backing file
1019  * pages which have ever had a reservation assigned which this persists even
1020  * after the page is instantiated.  A private mapping has a region map
1021  * associated with the original mmap which is attached to all VMAs which
1022  * reference it, this region map represents those offsets which have consumed
1023  * reservation ie. where pages have been instantiated.
1024  */
1025 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1026 {
1027 	return (unsigned long)vma->vm_private_data;
1028 }
1029 
1030 static void set_vma_private_data(struct vm_area_struct *vma,
1031 							unsigned long value)
1032 {
1033 	vma->vm_private_data = (void *)value;
1034 }
1035 
1036 static void
1037 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1038 					  struct hugetlb_cgroup *h_cg,
1039 					  struct hstate *h)
1040 {
1041 #ifdef CONFIG_CGROUP_HUGETLB
1042 	if (!h_cg || !h) {
1043 		resv_map->reservation_counter = NULL;
1044 		resv_map->pages_per_hpage = 0;
1045 		resv_map->css = NULL;
1046 	} else {
1047 		resv_map->reservation_counter =
1048 			&h_cg->rsvd_hugepage[hstate_index(h)];
1049 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1050 		resv_map->css = &h_cg->css;
1051 	}
1052 #endif
1053 }
1054 
1055 struct resv_map *resv_map_alloc(void)
1056 {
1057 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1058 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1059 
1060 	if (!resv_map || !rg) {
1061 		kfree(resv_map);
1062 		kfree(rg);
1063 		return NULL;
1064 	}
1065 
1066 	kref_init(&resv_map->refs);
1067 	spin_lock_init(&resv_map->lock);
1068 	INIT_LIST_HEAD(&resv_map->regions);
1069 
1070 	resv_map->adds_in_progress = 0;
1071 	/*
1072 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1073 	 * fields don't do cgroup accounting. On private mappings, these will be
1074 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1075 	 * reservations are to be un-charged from here.
1076 	 */
1077 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1078 
1079 	INIT_LIST_HEAD(&resv_map->region_cache);
1080 	list_add(&rg->link, &resv_map->region_cache);
1081 	resv_map->region_cache_count = 1;
1082 
1083 	return resv_map;
1084 }
1085 
1086 void resv_map_release(struct kref *ref)
1087 {
1088 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1089 	struct list_head *head = &resv_map->region_cache;
1090 	struct file_region *rg, *trg;
1091 
1092 	/* Clear out any active regions before we release the map. */
1093 	region_del(resv_map, 0, LONG_MAX);
1094 
1095 	/* ... and any entries left in the cache */
1096 	list_for_each_entry_safe(rg, trg, head, link) {
1097 		list_del(&rg->link);
1098 		kfree(rg);
1099 	}
1100 
1101 	VM_BUG_ON(resv_map->adds_in_progress);
1102 
1103 	kfree(resv_map);
1104 }
1105 
1106 static inline struct resv_map *inode_resv_map(struct inode *inode)
1107 {
1108 	/*
1109 	 * At inode evict time, i_mapping may not point to the original
1110 	 * address space within the inode.  This original address space
1111 	 * contains the pointer to the resv_map.  So, always use the
1112 	 * address space embedded within the inode.
1113 	 * The VERY common case is inode->mapping == &inode->i_data but,
1114 	 * this may not be true for device special inodes.
1115 	 */
1116 	return (struct resv_map *)(&inode->i_data)->private_data;
1117 }
1118 
1119 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1120 {
1121 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1122 	if (vma->vm_flags & VM_MAYSHARE) {
1123 		struct address_space *mapping = vma->vm_file->f_mapping;
1124 		struct inode *inode = mapping->host;
1125 
1126 		return inode_resv_map(inode);
1127 
1128 	} else {
1129 		return (struct resv_map *)(get_vma_private_data(vma) &
1130 							~HPAGE_RESV_MASK);
1131 	}
1132 }
1133 
1134 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1135 {
1136 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1137 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1138 
1139 	set_vma_private_data(vma, (get_vma_private_data(vma) &
1140 				HPAGE_RESV_MASK) | (unsigned long)map);
1141 }
1142 
1143 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1144 {
1145 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1146 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1147 
1148 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1149 }
1150 
1151 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1152 {
1153 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1154 
1155 	return (get_vma_private_data(vma) & flag) != 0;
1156 }
1157 
1158 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1159 {
1160 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1161 	/*
1162 	 * Clear vm_private_data
1163 	 * - For shared mappings this is a per-vma semaphore that may be
1164 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1165 	 *   Before clearing, make sure pointer is not associated with vma
1166 	 *   as this will leak the structure.  This is the case when called
1167 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1168 	 *   been called to allocate a new structure.
1169 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1170 	 *   not apply to children.  Faults generated by the children are
1171 	 *   not guaranteed to succeed, even if read-only.
1172 	 */
1173 	if (vma->vm_flags & VM_MAYSHARE) {
1174 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1175 
1176 		if (vma_lock && vma_lock->vma != vma)
1177 			vma->vm_private_data = NULL;
1178 	} else
1179 		vma->vm_private_data = NULL;
1180 }
1181 
1182 /*
1183  * Reset and decrement one ref on hugepage private reservation.
1184  * Called with mm->mmap_sem writer semaphore held.
1185  * This function should be only used by move_vma() and operate on
1186  * same sized vma. It should never come here with last ref on the
1187  * reservation.
1188  */
1189 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1190 {
1191 	/*
1192 	 * Clear the old hugetlb private page reservation.
1193 	 * It has already been transferred to new_vma.
1194 	 *
1195 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1196 	 * which copies vma into new_vma and unmaps vma. After the copy
1197 	 * operation both new_vma and vma share a reference to the resv_map
1198 	 * struct, and at that point vma is about to be unmapped. We don't
1199 	 * want to return the reservation to the pool at unmap of vma because
1200 	 * the reservation still lives on in new_vma, so simply decrement the
1201 	 * ref here and remove the resv_map reference from this vma.
1202 	 */
1203 	struct resv_map *reservations = vma_resv_map(vma);
1204 
1205 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1206 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1207 		kref_put(&reservations->refs, resv_map_release);
1208 	}
1209 
1210 	hugetlb_dup_vma_private(vma);
1211 }
1212 
1213 /* Returns true if the VMA has associated reserve pages */
1214 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1215 {
1216 	if (vma->vm_flags & VM_NORESERVE) {
1217 		/*
1218 		 * This address is already reserved by other process(chg == 0),
1219 		 * so, we should decrement reserved count. Without decrementing,
1220 		 * reserve count remains after releasing inode, because this
1221 		 * allocated page will go into page cache and is regarded as
1222 		 * coming from reserved pool in releasing step.  Currently, we
1223 		 * don't have any other solution to deal with this situation
1224 		 * properly, so add work-around here.
1225 		 */
1226 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1227 			return true;
1228 		else
1229 			return false;
1230 	}
1231 
1232 	/* Shared mappings always use reserves */
1233 	if (vma->vm_flags & VM_MAYSHARE) {
1234 		/*
1235 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1236 		 * be a region map for all pages.  The only situation where
1237 		 * there is no region map is if a hole was punched via
1238 		 * fallocate.  In this case, there really are no reserves to
1239 		 * use.  This situation is indicated if chg != 0.
1240 		 */
1241 		if (chg)
1242 			return false;
1243 		else
1244 			return true;
1245 	}
1246 
1247 	/*
1248 	 * Only the process that called mmap() has reserves for
1249 	 * private mappings.
1250 	 */
1251 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1252 		/*
1253 		 * Like the shared case above, a hole punch or truncate
1254 		 * could have been performed on the private mapping.
1255 		 * Examine the value of chg to determine if reserves
1256 		 * actually exist or were previously consumed.
1257 		 * Very Subtle - The value of chg comes from a previous
1258 		 * call to vma_needs_reserves().  The reserve map for
1259 		 * private mappings has different (opposite) semantics
1260 		 * than that of shared mappings.  vma_needs_reserves()
1261 		 * has already taken this difference in semantics into
1262 		 * account.  Therefore, the meaning of chg is the same
1263 		 * as in the shared case above.  Code could easily be
1264 		 * combined, but keeping it separate draws attention to
1265 		 * subtle differences.
1266 		 */
1267 		if (chg)
1268 			return false;
1269 		else
1270 			return true;
1271 	}
1272 
1273 	return false;
1274 }
1275 
1276 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1277 {
1278 	int nid = folio_nid(folio);
1279 
1280 	lockdep_assert_held(&hugetlb_lock);
1281 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1282 
1283 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1284 	h->free_huge_pages++;
1285 	h->free_huge_pages_node[nid]++;
1286 	folio_set_hugetlb_freed(folio);
1287 }
1288 
1289 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1290 {
1291 	struct page *page;
1292 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1293 
1294 	lockdep_assert_held(&hugetlb_lock);
1295 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1296 		if (pin && !is_longterm_pinnable_page(page))
1297 			continue;
1298 
1299 		if (PageHWPoison(page))
1300 			continue;
1301 
1302 		list_move(&page->lru, &h->hugepage_activelist);
1303 		set_page_refcounted(page);
1304 		ClearHPageFreed(page);
1305 		h->free_huge_pages--;
1306 		h->free_huge_pages_node[nid]--;
1307 		return page;
1308 	}
1309 
1310 	return NULL;
1311 }
1312 
1313 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1314 		nodemask_t *nmask)
1315 {
1316 	unsigned int cpuset_mems_cookie;
1317 	struct zonelist *zonelist;
1318 	struct zone *zone;
1319 	struct zoneref *z;
1320 	int node = NUMA_NO_NODE;
1321 
1322 	zonelist = node_zonelist(nid, gfp_mask);
1323 
1324 retry_cpuset:
1325 	cpuset_mems_cookie = read_mems_allowed_begin();
1326 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1327 		struct page *page;
1328 
1329 		if (!cpuset_zone_allowed(zone, gfp_mask))
1330 			continue;
1331 		/*
1332 		 * no need to ask again on the same node. Pool is node rather than
1333 		 * zone aware
1334 		 */
1335 		if (zone_to_nid(zone) == node)
1336 			continue;
1337 		node = zone_to_nid(zone);
1338 
1339 		page = dequeue_huge_page_node_exact(h, node);
1340 		if (page)
1341 			return page;
1342 	}
1343 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1344 		goto retry_cpuset;
1345 
1346 	return NULL;
1347 }
1348 
1349 static unsigned long available_huge_pages(struct hstate *h)
1350 {
1351 	return h->free_huge_pages - h->resv_huge_pages;
1352 }
1353 
1354 static struct page *dequeue_huge_page_vma(struct hstate *h,
1355 				struct vm_area_struct *vma,
1356 				unsigned long address, int avoid_reserve,
1357 				long chg)
1358 {
1359 	struct page *page = NULL;
1360 	struct mempolicy *mpol;
1361 	gfp_t gfp_mask;
1362 	nodemask_t *nodemask;
1363 	int nid;
1364 
1365 	/*
1366 	 * A child process with MAP_PRIVATE mappings created by their parent
1367 	 * have no page reserves. This check ensures that reservations are
1368 	 * not "stolen". The child may still get SIGKILLed
1369 	 */
1370 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1371 		goto err;
1372 
1373 	/* If reserves cannot be used, ensure enough pages are in the pool */
1374 	if (avoid_reserve && !available_huge_pages(h))
1375 		goto err;
1376 
1377 	gfp_mask = htlb_alloc_mask(h);
1378 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1379 
1380 	if (mpol_is_preferred_many(mpol)) {
1381 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1382 
1383 		/* Fallback to all nodes if page==NULL */
1384 		nodemask = NULL;
1385 	}
1386 
1387 	if (!page)
1388 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1389 
1390 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1391 		SetHPageRestoreReserve(page);
1392 		h->resv_huge_pages--;
1393 	}
1394 
1395 	mpol_cond_put(mpol);
1396 	return page;
1397 
1398 err:
1399 	return NULL;
1400 }
1401 
1402 /*
1403  * common helper functions for hstate_next_node_to_{alloc|free}.
1404  * We may have allocated or freed a huge page based on a different
1405  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1406  * be outside of *nodes_allowed.  Ensure that we use an allowed
1407  * node for alloc or free.
1408  */
1409 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1410 {
1411 	nid = next_node_in(nid, *nodes_allowed);
1412 	VM_BUG_ON(nid >= MAX_NUMNODES);
1413 
1414 	return nid;
1415 }
1416 
1417 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1418 {
1419 	if (!node_isset(nid, *nodes_allowed))
1420 		nid = next_node_allowed(nid, nodes_allowed);
1421 	return nid;
1422 }
1423 
1424 /*
1425  * returns the previously saved node ["this node"] from which to
1426  * allocate a persistent huge page for the pool and advance the
1427  * next node from which to allocate, handling wrap at end of node
1428  * mask.
1429  */
1430 static int hstate_next_node_to_alloc(struct hstate *h,
1431 					nodemask_t *nodes_allowed)
1432 {
1433 	int nid;
1434 
1435 	VM_BUG_ON(!nodes_allowed);
1436 
1437 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1438 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1439 
1440 	return nid;
1441 }
1442 
1443 /*
1444  * helper for remove_pool_huge_page() - return the previously saved
1445  * node ["this node"] from which to free a huge page.  Advance the
1446  * next node id whether or not we find a free huge page to free so
1447  * that the next attempt to free addresses the next node.
1448  */
1449 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1450 {
1451 	int nid;
1452 
1453 	VM_BUG_ON(!nodes_allowed);
1454 
1455 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1456 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1457 
1458 	return nid;
1459 }
1460 
1461 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1462 	for (nr_nodes = nodes_weight(*mask);				\
1463 		nr_nodes > 0 &&						\
1464 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1465 		nr_nodes--)
1466 
1467 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1468 	for (nr_nodes = nodes_weight(*mask);				\
1469 		nr_nodes > 0 &&						\
1470 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1471 		nr_nodes--)
1472 
1473 /* used to demote non-gigantic_huge pages as well */
1474 static void __destroy_compound_gigantic_folio(struct folio *folio,
1475 					unsigned int order, bool demote)
1476 {
1477 	int i;
1478 	int nr_pages = 1 << order;
1479 	struct page *p;
1480 
1481 	atomic_set(folio_mapcount_ptr(folio), 0);
1482 	atomic_set(folio_subpages_mapcount_ptr(folio), 0);
1483 	atomic_set(folio_pincount_ptr(folio), 0);
1484 
1485 	for (i = 1; i < nr_pages; i++) {
1486 		p = folio_page(folio, i);
1487 		p->mapping = NULL;
1488 		clear_compound_head(p);
1489 		if (!demote)
1490 			set_page_refcounted(p);
1491 	}
1492 
1493 	folio_set_compound_order(folio, 0);
1494 	__folio_clear_head(folio);
1495 }
1496 
1497 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1498 					unsigned int order)
1499 {
1500 	__destroy_compound_gigantic_folio(folio, order, true);
1501 }
1502 
1503 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1504 static void destroy_compound_gigantic_folio(struct folio *folio,
1505 					unsigned int order)
1506 {
1507 	__destroy_compound_gigantic_folio(folio, order, false);
1508 }
1509 
1510 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1511 {
1512 	/*
1513 	 * If the page isn't allocated using the cma allocator,
1514 	 * cma_release() returns false.
1515 	 */
1516 #ifdef CONFIG_CMA
1517 	int nid = folio_nid(folio);
1518 
1519 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1520 		return;
1521 #endif
1522 
1523 	free_contig_range(folio_pfn(folio), 1 << order);
1524 }
1525 
1526 #ifdef CONFIG_CONTIG_ALLOC
1527 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1528 		int nid, nodemask_t *nodemask)
1529 {
1530 	struct page *page;
1531 	unsigned long nr_pages = pages_per_huge_page(h);
1532 	if (nid == NUMA_NO_NODE)
1533 		nid = numa_mem_id();
1534 
1535 #ifdef CONFIG_CMA
1536 	{
1537 		int node;
1538 
1539 		if (hugetlb_cma[nid]) {
1540 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1541 					huge_page_order(h), true);
1542 			if (page)
1543 				return page_folio(page);
1544 		}
1545 
1546 		if (!(gfp_mask & __GFP_THISNODE)) {
1547 			for_each_node_mask(node, *nodemask) {
1548 				if (node == nid || !hugetlb_cma[node])
1549 					continue;
1550 
1551 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1552 						huge_page_order(h), true);
1553 				if (page)
1554 					return page_folio(page);
1555 			}
1556 		}
1557 	}
1558 #endif
1559 
1560 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1561 	return page ? page_folio(page) : NULL;
1562 }
1563 
1564 #else /* !CONFIG_CONTIG_ALLOC */
1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566 					int nid, nodemask_t *nodemask)
1567 {
1568 	return NULL;
1569 }
1570 #endif /* CONFIG_CONTIG_ALLOC */
1571 
1572 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1573 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1574 					int nid, nodemask_t *nodemask)
1575 {
1576 	return NULL;
1577 }
1578 static inline void free_gigantic_folio(struct folio *folio,
1579 						unsigned int order) { }
1580 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1581 						unsigned int order) { }
1582 #endif
1583 
1584 /*
1585  * Remove hugetlb folio from lists, and update dtor so that the folio appears
1586  * as just a compound page.
1587  *
1588  * A reference is held on the folio, except in the case of demote.
1589  *
1590  * Must be called with hugetlb lock held.
1591  */
1592 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1593 							bool adjust_surplus,
1594 							bool demote)
1595 {
1596 	int nid = folio_nid(folio);
1597 
1598 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1599 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1600 
1601 	lockdep_assert_held(&hugetlb_lock);
1602 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1603 		return;
1604 
1605 	list_del(&folio->lru);
1606 
1607 	if (folio_test_hugetlb_freed(folio)) {
1608 		h->free_huge_pages--;
1609 		h->free_huge_pages_node[nid]--;
1610 	}
1611 	if (adjust_surplus) {
1612 		h->surplus_huge_pages--;
1613 		h->surplus_huge_pages_node[nid]--;
1614 	}
1615 
1616 	/*
1617 	 * Very subtle
1618 	 *
1619 	 * For non-gigantic pages set the destructor to the normal compound
1620 	 * page dtor.  This is needed in case someone takes an additional
1621 	 * temporary ref to the page, and freeing is delayed until they drop
1622 	 * their reference.
1623 	 *
1624 	 * For gigantic pages set the destructor to the null dtor.  This
1625 	 * destructor will never be called.  Before freeing the gigantic
1626 	 * page destroy_compound_gigantic_folio will turn the folio into a
1627 	 * simple group of pages.  After this the destructor does not
1628 	 * apply.
1629 	 *
1630 	 * This handles the case where more than one ref is held when and
1631 	 * after update_and_free_hugetlb_folio is called.
1632 	 *
1633 	 * In the case of demote we do not ref count the page as it will soon
1634 	 * be turned into a page of smaller size.
1635 	 */
1636 	if (!demote)
1637 		folio_ref_unfreeze(folio, 1);
1638 	if (hstate_is_gigantic(h))
1639 		folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1640 	else
1641 		folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1642 
1643 	h->nr_huge_pages--;
1644 	h->nr_huge_pages_node[nid]--;
1645 }
1646 
1647 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1648 							bool adjust_surplus)
1649 {
1650 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1651 }
1652 
1653 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1654 							bool adjust_surplus)
1655 {
1656 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1657 }
1658 
1659 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1660 			     bool adjust_surplus)
1661 {
1662 	int zeroed;
1663 	int nid = folio_nid(folio);
1664 
1665 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1666 
1667 	lockdep_assert_held(&hugetlb_lock);
1668 
1669 	INIT_LIST_HEAD(&folio->lru);
1670 	h->nr_huge_pages++;
1671 	h->nr_huge_pages_node[nid]++;
1672 
1673 	if (adjust_surplus) {
1674 		h->surplus_huge_pages++;
1675 		h->surplus_huge_pages_node[nid]++;
1676 	}
1677 
1678 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1679 	folio_change_private(folio, NULL);
1680 	/*
1681 	 * We have to set hugetlb_vmemmap_optimized again as above
1682 	 * folio_change_private(folio, NULL) cleared it.
1683 	 */
1684 	folio_set_hugetlb_vmemmap_optimized(folio);
1685 
1686 	/*
1687 	 * This folio is about to be managed by the hugetlb allocator and
1688 	 * should have no users.  Drop our reference, and check for others
1689 	 * just in case.
1690 	 */
1691 	zeroed = folio_put_testzero(folio);
1692 	if (unlikely(!zeroed))
1693 		/*
1694 		 * It is VERY unlikely soneone else has taken a ref on
1695 		 * the page.  In this case, we simply return as the
1696 		 * hugetlb destructor (free_huge_page) will be called
1697 		 * when this other ref is dropped.
1698 		 */
1699 		return;
1700 
1701 	arch_clear_hugepage_flags(&folio->page);
1702 	enqueue_hugetlb_folio(h, folio);
1703 }
1704 
1705 static void __update_and_free_page(struct hstate *h, struct page *page)
1706 {
1707 	int i;
1708 	struct folio *folio = page_folio(page);
1709 	struct page *subpage;
1710 
1711 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1712 		return;
1713 
1714 	/*
1715 	 * If we don't know which subpages are hwpoisoned, we can't free
1716 	 * the hugepage, so it's leaked intentionally.
1717 	 */
1718 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1719 		return;
1720 
1721 	if (hugetlb_vmemmap_restore(h, page)) {
1722 		spin_lock_irq(&hugetlb_lock);
1723 		/*
1724 		 * If we cannot allocate vmemmap pages, just refuse to free the
1725 		 * page and put the page back on the hugetlb free list and treat
1726 		 * as a surplus page.
1727 		 */
1728 		add_hugetlb_folio(h, folio, true);
1729 		spin_unlock_irq(&hugetlb_lock);
1730 		return;
1731 	}
1732 
1733 	/*
1734 	 * Move PageHWPoison flag from head page to the raw error pages,
1735 	 * which makes any healthy subpages reusable.
1736 	 */
1737 	if (unlikely(folio_test_hwpoison(folio)))
1738 		hugetlb_clear_page_hwpoison(&folio->page);
1739 
1740 	for (i = 0; i < pages_per_huge_page(h); i++) {
1741 		subpage = folio_page(folio, i);
1742 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1743 				1 << PG_referenced | 1 << PG_dirty |
1744 				1 << PG_active | 1 << PG_private |
1745 				1 << PG_writeback);
1746 	}
1747 
1748 	/*
1749 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1750 	 * need to be given back to CMA in free_gigantic_folio.
1751 	 */
1752 	if (hstate_is_gigantic(h) ||
1753 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1754 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1755 		free_gigantic_folio(folio, huge_page_order(h));
1756 	} else {
1757 		__free_pages(page, huge_page_order(h));
1758 	}
1759 }
1760 
1761 /*
1762  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1763  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1764  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1765  * the vmemmap pages.
1766  *
1767  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1768  * freed and frees them one-by-one. As the page->mapping pointer is going
1769  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1770  * structure of a lockless linked list of huge pages to be freed.
1771  */
1772 static LLIST_HEAD(hpage_freelist);
1773 
1774 static void free_hpage_workfn(struct work_struct *work)
1775 {
1776 	struct llist_node *node;
1777 
1778 	node = llist_del_all(&hpage_freelist);
1779 
1780 	while (node) {
1781 		struct page *page;
1782 		struct hstate *h;
1783 
1784 		page = container_of((struct address_space **)node,
1785 				     struct page, mapping);
1786 		node = node->next;
1787 		page->mapping = NULL;
1788 		/*
1789 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1790 		 * is going to trigger because a previous call to
1791 		 * remove_hugetlb_folio() will call folio_set_compound_dtor
1792 		 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1793 		 * directly.
1794 		 */
1795 		h = size_to_hstate(page_size(page));
1796 
1797 		__update_and_free_page(h, page);
1798 
1799 		cond_resched();
1800 	}
1801 }
1802 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1803 
1804 static inline void flush_free_hpage_work(struct hstate *h)
1805 {
1806 	if (hugetlb_vmemmap_optimizable(h))
1807 		flush_work(&free_hpage_work);
1808 }
1809 
1810 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1811 				 bool atomic)
1812 {
1813 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1814 		__update_and_free_page(h, &folio->page);
1815 		return;
1816 	}
1817 
1818 	/*
1819 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1820 	 *
1821 	 * Only call schedule_work() if hpage_freelist is previously
1822 	 * empty. Otherwise, schedule_work() had been called but the workfn
1823 	 * hasn't retrieved the list yet.
1824 	 */
1825 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1826 		schedule_work(&free_hpage_work);
1827 }
1828 
1829 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1830 {
1831 	struct page *page, *t_page;
1832 	struct folio *folio;
1833 
1834 	list_for_each_entry_safe(page, t_page, list, lru) {
1835 		folio = page_folio(page);
1836 		update_and_free_hugetlb_folio(h, folio, false);
1837 		cond_resched();
1838 	}
1839 }
1840 
1841 struct hstate *size_to_hstate(unsigned long size)
1842 {
1843 	struct hstate *h;
1844 
1845 	for_each_hstate(h) {
1846 		if (huge_page_size(h) == size)
1847 			return h;
1848 	}
1849 	return NULL;
1850 }
1851 
1852 void free_huge_page(struct page *page)
1853 {
1854 	/*
1855 	 * Can't pass hstate in here because it is called from the
1856 	 * compound page destructor.
1857 	 */
1858 	struct folio *folio = page_folio(page);
1859 	struct hstate *h = folio_hstate(folio);
1860 	int nid = folio_nid(folio);
1861 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1862 	bool restore_reserve;
1863 	unsigned long flags;
1864 
1865 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1866 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1867 
1868 	hugetlb_set_folio_subpool(folio, NULL);
1869 	if (folio_test_anon(folio))
1870 		__ClearPageAnonExclusive(&folio->page);
1871 	folio->mapping = NULL;
1872 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1873 	folio_clear_hugetlb_restore_reserve(folio);
1874 
1875 	/*
1876 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1877 	 * reservation.  If the page was associated with a subpool, there
1878 	 * would have been a page reserved in the subpool before allocation
1879 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1880 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1881 	 * remove the reserved page from the subpool.
1882 	 */
1883 	if (!restore_reserve) {
1884 		/*
1885 		 * A return code of zero implies that the subpool will be
1886 		 * under its minimum size if the reservation is not restored
1887 		 * after page is free.  Therefore, force restore_reserve
1888 		 * operation.
1889 		 */
1890 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1891 			restore_reserve = true;
1892 	}
1893 
1894 	spin_lock_irqsave(&hugetlb_lock, flags);
1895 	folio_clear_hugetlb_migratable(folio);
1896 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1897 				     pages_per_huge_page(h), folio);
1898 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1899 					  pages_per_huge_page(h), folio);
1900 	if (restore_reserve)
1901 		h->resv_huge_pages++;
1902 
1903 	if (folio_test_hugetlb_temporary(folio)) {
1904 		remove_hugetlb_folio(h, folio, false);
1905 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1906 		update_and_free_hugetlb_folio(h, folio, true);
1907 	} else if (h->surplus_huge_pages_node[nid]) {
1908 		/* remove the page from active list */
1909 		remove_hugetlb_folio(h, folio, true);
1910 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1911 		update_and_free_hugetlb_folio(h, folio, true);
1912 	} else {
1913 		arch_clear_hugepage_flags(page);
1914 		enqueue_hugetlb_folio(h, folio);
1915 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1916 	}
1917 }
1918 
1919 /*
1920  * Must be called with the hugetlb lock held
1921  */
1922 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1923 {
1924 	lockdep_assert_held(&hugetlb_lock);
1925 	h->nr_huge_pages++;
1926 	h->nr_huge_pages_node[nid]++;
1927 }
1928 
1929 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1930 {
1931 	hugetlb_vmemmap_optimize(h, &folio->page);
1932 	INIT_LIST_HEAD(&folio->lru);
1933 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1934 	hugetlb_set_folio_subpool(folio, NULL);
1935 	set_hugetlb_cgroup(folio, NULL);
1936 	set_hugetlb_cgroup_rsvd(folio, NULL);
1937 }
1938 
1939 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1940 {
1941 	__prep_new_hugetlb_folio(h, folio);
1942 	spin_lock_irq(&hugetlb_lock);
1943 	__prep_account_new_huge_page(h, nid);
1944 	spin_unlock_irq(&hugetlb_lock);
1945 }
1946 
1947 static bool __prep_compound_gigantic_folio(struct folio *folio,
1948 					unsigned int order, bool demote)
1949 {
1950 	int i, j;
1951 	int nr_pages = 1 << order;
1952 	struct page *p;
1953 
1954 	__folio_clear_reserved(folio);
1955 	__folio_set_head(folio);
1956 	/* we rely on prep_new_hugetlb_folio to set the destructor */
1957 	folio_set_compound_order(folio, order);
1958 	for (i = 0; i < nr_pages; i++) {
1959 		p = folio_page(folio, i);
1960 
1961 		/*
1962 		 * For gigantic hugepages allocated through bootmem at
1963 		 * boot, it's safer to be consistent with the not-gigantic
1964 		 * hugepages and clear the PG_reserved bit from all tail pages
1965 		 * too.  Otherwise drivers using get_user_pages() to access tail
1966 		 * pages may get the reference counting wrong if they see
1967 		 * PG_reserved set on a tail page (despite the head page not
1968 		 * having PG_reserved set).  Enforcing this consistency between
1969 		 * head and tail pages allows drivers to optimize away a check
1970 		 * on the head page when they need know if put_page() is needed
1971 		 * after get_user_pages().
1972 		 */
1973 		if (i != 0)	/* head page cleared above */
1974 			__ClearPageReserved(p);
1975 		/*
1976 		 * Subtle and very unlikely
1977 		 *
1978 		 * Gigantic 'page allocators' such as memblock or cma will
1979 		 * return a set of pages with each page ref counted.  We need
1980 		 * to turn this set of pages into a compound page with tail
1981 		 * page ref counts set to zero.  Code such as speculative page
1982 		 * cache adding could take a ref on a 'to be' tail page.
1983 		 * We need to respect any increased ref count, and only set
1984 		 * the ref count to zero if count is currently 1.  If count
1985 		 * is not 1, we return an error.  An error return indicates
1986 		 * the set of pages can not be converted to a gigantic page.
1987 		 * The caller who allocated the pages should then discard the
1988 		 * pages using the appropriate free interface.
1989 		 *
1990 		 * In the case of demote, the ref count will be zero.
1991 		 */
1992 		if (!demote) {
1993 			if (!page_ref_freeze(p, 1)) {
1994 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1995 				goto out_error;
1996 			}
1997 		} else {
1998 			VM_BUG_ON_PAGE(page_count(p), p);
1999 		}
2000 		if (i != 0)
2001 			set_compound_head(p, &folio->page);
2002 	}
2003 	atomic_set(folio_mapcount_ptr(folio), -1);
2004 	atomic_set(folio_subpages_mapcount_ptr(folio), 0);
2005 	atomic_set(folio_pincount_ptr(folio), 0);
2006 	return true;
2007 
2008 out_error:
2009 	/* undo page modifications made above */
2010 	for (j = 0; j < i; j++) {
2011 		p = folio_page(folio, j);
2012 		if (j != 0)
2013 			clear_compound_head(p);
2014 		set_page_refcounted(p);
2015 	}
2016 	/* need to clear PG_reserved on remaining tail pages  */
2017 	for (; j < nr_pages; j++) {
2018 		p = folio_page(folio, j);
2019 		__ClearPageReserved(p);
2020 	}
2021 	folio_set_compound_order(folio, 0);
2022 	__folio_clear_head(folio);
2023 	return false;
2024 }
2025 
2026 static bool prep_compound_gigantic_folio(struct folio *folio,
2027 							unsigned int order)
2028 {
2029 	return __prep_compound_gigantic_folio(folio, order, false);
2030 }
2031 
2032 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2033 							unsigned int order)
2034 {
2035 	return __prep_compound_gigantic_folio(folio, order, true);
2036 }
2037 
2038 /*
2039  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2040  * transparent huge pages.  See the PageTransHuge() documentation for more
2041  * details.
2042  */
2043 int PageHuge(struct page *page)
2044 {
2045 	if (!PageCompound(page))
2046 		return 0;
2047 
2048 	page = compound_head(page);
2049 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
2050 }
2051 EXPORT_SYMBOL_GPL(PageHuge);
2052 
2053 /*
2054  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2055  * normal or transparent huge pages.
2056  */
2057 int PageHeadHuge(struct page *page_head)
2058 {
2059 	if (!PageHead(page_head))
2060 		return 0;
2061 
2062 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
2063 }
2064 EXPORT_SYMBOL_GPL(PageHeadHuge);
2065 
2066 /*
2067  * Find and lock address space (mapping) in write mode.
2068  *
2069  * Upon entry, the page is locked which means that page_mapping() is
2070  * stable.  Due to locking order, we can only trylock_write.  If we can
2071  * not get the lock, simply return NULL to caller.
2072  */
2073 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2074 {
2075 	struct address_space *mapping = page_mapping(hpage);
2076 
2077 	if (!mapping)
2078 		return mapping;
2079 
2080 	if (i_mmap_trylock_write(mapping))
2081 		return mapping;
2082 
2083 	return NULL;
2084 }
2085 
2086 pgoff_t hugetlb_basepage_index(struct page *page)
2087 {
2088 	struct page *page_head = compound_head(page);
2089 	pgoff_t index = page_index(page_head);
2090 	unsigned long compound_idx;
2091 
2092 	if (compound_order(page_head) >= MAX_ORDER)
2093 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2094 	else
2095 		compound_idx = page - page_head;
2096 
2097 	return (index << compound_order(page_head)) + compound_idx;
2098 }
2099 
2100 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2101 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2102 		nodemask_t *node_alloc_noretry)
2103 {
2104 	int order = huge_page_order(h);
2105 	struct page *page;
2106 	bool alloc_try_hard = true;
2107 	bool retry = true;
2108 
2109 	/*
2110 	 * By default we always try hard to allocate the page with
2111 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2112 	 * a loop (to adjust global huge page counts) and previous allocation
2113 	 * failed, do not continue to try hard on the same node.  Use the
2114 	 * node_alloc_noretry bitmap to manage this state information.
2115 	 */
2116 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2117 		alloc_try_hard = false;
2118 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2119 	if (alloc_try_hard)
2120 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2121 	if (nid == NUMA_NO_NODE)
2122 		nid = numa_mem_id();
2123 retry:
2124 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2125 
2126 	/* Freeze head page */
2127 	if (page && !page_ref_freeze(page, 1)) {
2128 		__free_pages(page, order);
2129 		if (retry) {	/* retry once */
2130 			retry = false;
2131 			goto retry;
2132 		}
2133 		/* WOW!  twice in a row. */
2134 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2135 		page = NULL;
2136 	}
2137 
2138 	/*
2139 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2140 	 * indicates an overall state change.  Clear bit so that we resume
2141 	 * normal 'try hard' allocations.
2142 	 */
2143 	if (node_alloc_noretry && page && !alloc_try_hard)
2144 		node_clear(nid, *node_alloc_noretry);
2145 
2146 	/*
2147 	 * If we tried hard to get a page but failed, set bit so that
2148 	 * subsequent attempts will not try as hard until there is an
2149 	 * overall state change.
2150 	 */
2151 	if (node_alloc_noretry && !page && alloc_try_hard)
2152 		node_set(nid, *node_alloc_noretry);
2153 
2154 	if (!page) {
2155 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2156 		return NULL;
2157 	}
2158 
2159 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2160 	return page_folio(page);
2161 }
2162 
2163 /*
2164  * Common helper to allocate a fresh hugetlb page. All specific allocators
2165  * should use this function to get new hugetlb pages
2166  *
2167  * Note that returned page is 'frozen':  ref count of head page and all tail
2168  * pages is zero.
2169  */
2170 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2171 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2172 		nodemask_t *node_alloc_noretry)
2173 {
2174 	struct folio *folio;
2175 	bool retry = false;
2176 
2177 retry:
2178 	if (hstate_is_gigantic(h))
2179 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2180 	else
2181 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2182 				nid, nmask, node_alloc_noretry);
2183 	if (!folio)
2184 		return NULL;
2185 	if (hstate_is_gigantic(h)) {
2186 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2187 			/*
2188 			 * Rare failure to convert pages to compound page.
2189 			 * Free pages and try again - ONCE!
2190 			 */
2191 			free_gigantic_folio(folio, huge_page_order(h));
2192 			if (!retry) {
2193 				retry = true;
2194 				goto retry;
2195 			}
2196 			return NULL;
2197 		}
2198 	}
2199 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2200 
2201 	return folio;
2202 }
2203 
2204 /*
2205  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2206  * manner.
2207  */
2208 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2209 				nodemask_t *node_alloc_noretry)
2210 {
2211 	struct folio *folio;
2212 	int nr_nodes, node;
2213 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2214 
2215 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2216 		folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2217 					nodes_allowed, node_alloc_noretry);
2218 		if (folio) {
2219 			free_huge_page(&folio->page); /* free it into the hugepage allocator */
2220 			return 1;
2221 		}
2222 	}
2223 
2224 	return 0;
2225 }
2226 
2227 /*
2228  * Remove huge page from pool from next node to free.  Attempt to keep
2229  * persistent huge pages more or less balanced over allowed nodes.
2230  * This routine only 'removes' the hugetlb page.  The caller must make
2231  * an additional call to free the page to low level allocators.
2232  * Called with hugetlb_lock locked.
2233  */
2234 static struct page *remove_pool_huge_page(struct hstate *h,
2235 						nodemask_t *nodes_allowed,
2236 						 bool acct_surplus)
2237 {
2238 	int nr_nodes, node;
2239 	struct page *page = NULL;
2240 	struct folio *folio;
2241 
2242 	lockdep_assert_held(&hugetlb_lock);
2243 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2244 		/*
2245 		 * If we're returning unused surplus pages, only examine
2246 		 * nodes with surplus pages.
2247 		 */
2248 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2249 		    !list_empty(&h->hugepage_freelists[node])) {
2250 			page = list_entry(h->hugepage_freelists[node].next,
2251 					  struct page, lru);
2252 			folio = page_folio(page);
2253 			remove_hugetlb_folio(h, folio, acct_surplus);
2254 			break;
2255 		}
2256 	}
2257 
2258 	return page;
2259 }
2260 
2261 /*
2262  * Dissolve a given free hugepage into free buddy pages. This function does
2263  * nothing for in-use hugepages and non-hugepages.
2264  * This function returns values like below:
2265  *
2266  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2267  *           when the system is under memory pressure and the feature of
2268  *           freeing unused vmemmap pages associated with each hugetlb page
2269  *           is enabled.
2270  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2271  *           (allocated or reserved.)
2272  *       0:  successfully dissolved free hugepages or the page is not a
2273  *           hugepage (considered as already dissolved)
2274  */
2275 int dissolve_free_huge_page(struct page *page)
2276 {
2277 	int rc = -EBUSY;
2278 	struct folio *folio = page_folio(page);
2279 
2280 retry:
2281 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2282 	if (!folio_test_hugetlb(folio))
2283 		return 0;
2284 
2285 	spin_lock_irq(&hugetlb_lock);
2286 	if (!folio_test_hugetlb(folio)) {
2287 		rc = 0;
2288 		goto out;
2289 	}
2290 
2291 	if (!folio_ref_count(folio)) {
2292 		struct hstate *h = folio_hstate(folio);
2293 		if (!available_huge_pages(h))
2294 			goto out;
2295 
2296 		/*
2297 		 * We should make sure that the page is already on the free list
2298 		 * when it is dissolved.
2299 		 */
2300 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2301 			spin_unlock_irq(&hugetlb_lock);
2302 			cond_resched();
2303 
2304 			/*
2305 			 * Theoretically, we should return -EBUSY when we
2306 			 * encounter this race. In fact, we have a chance
2307 			 * to successfully dissolve the page if we do a
2308 			 * retry. Because the race window is quite small.
2309 			 * If we seize this opportunity, it is an optimization
2310 			 * for increasing the success rate of dissolving page.
2311 			 */
2312 			goto retry;
2313 		}
2314 
2315 		remove_hugetlb_folio(h, folio, false);
2316 		h->max_huge_pages--;
2317 		spin_unlock_irq(&hugetlb_lock);
2318 
2319 		/*
2320 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2321 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2322 		 * free the page if it can not allocate required vmemmap.  We
2323 		 * need to adjust max_huge_pages if the page is not freed.
2324 		 * Attempt to allocate vmemmmap here so that we can take
2325 		 * appropriate action on failure.
2326 		 */
2327 		rc = hugetlb_vmemmap_restore(h, &folio->page);
2328 		if (!rc) {
2329 			update_and_free_hugetlb_folio(h, folio, false);
2330 		} else {
2331 			spin_lock_irq(&hugetlb_lock);
2332 			add_hugetlb_folio(h, folio, false);
2333 			h->max_huge_pages++;
2334 			spin_unlock_irq(&hugetlb_lock);
2335 		}
2336 
2337 		return rc;
2338 	}
2339 out:
2340 	spin_unlock_irq(&hugetlb_lock);
2341 	return rc;
2342 }
2343 
2344 /*
2345  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2346  * make specified memory blocks removable from the system.
2347  * Note that this will dissolve a free gigantic hugepage completely, if any
2348  * part of it lies within the given range.
2349  * Also note that if dissolve_free_huge_page() returns with an error, all
2350  * free hugepages that were dissolved before that error are lost.
2351  */
2352 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2353 {
2354 	unsigned long pfn;
2355 	struct page *page;
2356 	int rc = 0;
2357 	unsigned int order;
2358 	struct hstate *h;
2359 
2360 	if (!hugepages_supported())
2361 		return rc;
2362 
2363 	order = huge_page_order(&default_hstate);
2364 	for_each_hstate(h)
2365 		order = min(order, huge_page_order(h));
2366 
2367 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2368 		page = pfn_to_page(pfn);
2369 		rc = dissolve_free_huge_page(page);
2370 		if (rc)
2371 			break;
2372 	}
2373 
2374 	return rc;
2375 }
2376 
2377 /*
2378  * Allocates a fresh surplus page from the page allocator.
2379  */
2380 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2381 						int nid, nodemask_t *nmask)
2382 {
2383 	struct folio *folio = NULL;
2384 
2385 	if (hstate_is_gigantic(h))
2386 		return NULL;
2387 
2388 	spin_lock_irq(&hugetlb_lock);
2389 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2390 		goto out_unlock;
2391 	spin_unlock_irq(&hugetlb_lock);
2392 
2393 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2394 	if (!folio)
2395 		return NULL;
2396 
2397 	spin_lock_irq(&hugetlb_lock);
2398 	/*
2399 	 * We could have raced with the pool size change.
2400 	 * Double check that and simply deallocate the new page
2401 	 * if we would end up overcommiting the surpluses. Abuse
2402 	 * temporary page to workaround the nasty free_huge_page
2403 	 * codeflow
2404 	 */
2405 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2406 		folio_set_hugetlb_temporary(folio);
2407 		spin_unlock_irq(&hugetlb_lock);
2408 		free_huge_page(&folio->page);
2409 		return NULL;
2410 	}
2411 
2412 	h->surplus_huge_pages++;
2413 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2414 
2415 out_unlock:
2416 	spin_unlock_irq(&hugetlb_lock);
2417 
2418 	return &folio->page;
2419 }
2420 
2421 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2422 				     int nid, nodemask_t *nmask)
2423 {
2424 	struct folio *folio;
2425 
2426 	if (hstate_is_gigantic(h))
2427 		return NULL;
2428 
2429 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2430 	if (!folio)
2431 		return NULL;
2432 
2433 	/* fresh huge pages are frozen */
2434 	folio_ref_unfreeze(folio, 1);
2435 	/*
2436 	 * We do not account these pages as surplus because they are only
2437 	 * temporary and will be released properly on the last reference
2438 	 */
2439 	folio_set_hugetlb_temporary(folio);
2440 
2441 	return &folio->page;
2442 }
2443 
2444 /*
2445  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2446  */
2447 static
2448 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2449 		struct vm_area_struct *vma, unsigned long addr)
2450 {
2451 	struct page *page = NULL;
2452 	struct mempolicy *mpol;
2453 	gfp_t gfp_mask = htlb_alloc_mask(h);
2454 	int nid;
2455 	nodemask_t *nodemask;
2456 
2457 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2458 	if (mpol_is_preferred_many(mpol)) {
2459 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2460 
2461 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2462 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2463 
2464 		/* Fallback to all nodes if page==NULL */
2465 		nodemask = NULL;
2466 	}
2467 
2468 	if (!page)
2469 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2470 	mpol_cond_put(mpol);
2471 	return page;
2472 }
2473 
2474 /* page migration callback function */
2475 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2476 		nodemask_t *nmask, gfp_t gfp_mask)
2477 {
2478 	spin_lock_irq(&hugetlb_lock);
2479 	if (available_huge_pages(h)) {
2480 		struct page *page;
2481 
2482 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2483 		if (page) {
2484 			spin_unlock_irq(&hugetlb_lock);
2485 			return page;
2486 		}
2487 	}
2488 	spin_unlock_irq(&hugetlb_lock);
2489 
2490 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2491 }
2492 
2493 /* mempolicy aware migration callback */
2494 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2495 		unsigned long address)
2496 {
2497 	struct mempolicy *mpol;
2498 	nodemask_t *nodemask;
2499 	struct page *page;
2500 	gfp_t gfp_mask;
2501 	int node;
2502 
2503 	gfp_mask = htlb_alloc_mask(h);
2504 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2505 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2506 	mpol_cond_put(mpol);
2507 
2508 	return page;
2509 }
2510 
2511 /*
2512  * Increase the hugetlb pool such that it can accommodate a reservation
2513  * of size 'delta'.
2514  */
2515 static int gather_surplus_pages(struct hstate *h, long delta)
2516 	__must_hold(&hugetlb_lock)
2517 {
2518 	LIST_HEAD(surplus_list);
2519 	struct page *page, *tmp;
2520 	int ret;
2521 	long i;
2522 	long needed, allocated;
2523 	bool alloc_ok = true;
2524 
2525 	lockdep_assert_held(&hugetlb_lock);
2526 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2527 	if (needed <= 0) {
2528 		h->resv_huge_pages += delta;
2529 		return 0;
2530 	}
2531 
2532 	allocated = 0;
2533 
2534 	ret = -ENOMEM;
2535 retry:
2536 	spin_unlock_irq(&hugetlb_lock);
2537 	for (i = 0; i < needed; i++) {
2538 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2539 				NUMA_NO_NODE, NULL);
2540 		if (!page) {
2541 			alloc_ok = false;
2542 			break;
2543 		}
2544 		list_add(&page->lru, &surplus_list);
2545 		cond_resched();
2546 	}
2547 	allocated += i;
2548 
2549 	/*
2550 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2551 	 * because either resv_huge_pages or free_huge_pages may have changed.
2552 	 */
2553 	spin_lock_irq(&hugetlb_lock);
2554 	needed = (h->resv_huge_pages + delta) -
2555 			(h->free_huge_pages + allocated);
2556 	if (needed > 0) {
2557 		if (alloc_ok)
2558 			goto retry;
2559 		/*
2560 		 * We were not able to allocate enough pages to
2561 		 * satisfy the entire reservation so we free what
2562 		 * we've allocated so far.
2563 		 */
2564 		goto free;
2565 	}
2566 	/*
2567 	 * The surplus_list now contains _at_least_ the number of extra pages
2568 	 * needed to accommodate the reservation.  Add the appropriate number
2569 	 * of pages to the hugetlb pool and free the extras back to the buddy
2570 	 * allocator.  Commit the entire reservation here to prevent another
2571 	 * process from stealing the pages as they are added to the pool but
2572 	 * before they are reserved.
2573 	 */
2574 	needed += allocated;
2575 	h->resv_huge_pages += delta;
2576 	ret = 0;
2577 
2578 	/* Free the needed pages to the hugetlb pool */
2579 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2580 		if ((--needed) < 0)
2581 			break;
2582 		/* Add the page to the hugetlb allocator */
2583 		enqueue_hugetlb_folio(h, page_folio(page));
2584 	}
2585 free:
2586 	spin_unlock_irq(&hugetlb_lock);
2587 
2588 	/*
2589 	 * Free unnecessary surplus pages to the buddy allocator.
2590 	 * Pages have no ref count, call free_huge_page directly.
2591 	 */
2592 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2593 		free_huge_page(page);
2594 	spin_lock_irq(&hugetlb_lock);
2595 
2596 	return ret;
2597 }
2598 
2599 /*
2600  * This routine has two main purposes:
2601  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2602  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2603  *    to the associated reservation map.
2604  * 2) Free any unused surplus pages that may have been allocated to satisfy
2605  *    the reservation.  As many as unused_resv_pages may be freed.
2606  */
2607 static void return_unused_surplus_pages(struct hstate *h,
2608 					unsigned long unused_resv_pages)
2609 {
2610 	unsigned long nr_pages;
2611 	struct page *page;
2612 	LIST_HEAD(page_list);
2613 
2614 	lockdep_assert_held(&hugetlb_lock);
2615 	/* Uncommit the reservation */
2616 	h->resv_huge_pages -= unused_resv_pages;
2617 
2618 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2619 		goto out;
2620 
2621 	/*
2622 	 * Part (or even all) of the reservation could have been backed
2623 	 * by pre-allocated pages. Only free surplus pages.
2624 	 */
2625 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2626 
2627 	/*
2628 	 * We want to release as many surplus pages as possible, spread
2629 	 * evenly across all nodes with memory. Iterate across these nodes
2630 	 * until we can no longer free unreserved surplus pages. This occurs
2631 	 * when the nodes with surplus pages have no free pages.
2632 	 * remove_pool_huge_page() will balance the freed pages across the
2633 	 * on-line nodes with memory and will handle the hstate accounting.
2634 	 */
2635 	while (nr_pages--) {
2636 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2637 		if (!page)
2638 			goto out;
2639 
2640 		list_add(&page->lru, &page_list);
2641 	}
2642 
2643 out:
2644 	spin_unlock_irq(&hugetlb_lock);
2645 	update_and_free_pages_bulk(h, &page_list);
2646 	spin_lock_irq(&hugetlb_lock);
2647 }
2648 
2649 
2650 /*
2651  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2652  * are used by the huge page allocation routines to manage reservations.
2653  *
2654  * vma_needs_reservation is called to determine if the huge page at addr
2655  * within the vma has an associated reservation.  If a reservation is
2656  * needed, the value 1 is returned.  The caller is then responsible for
2657  * managing the global reservation and subpool usage counts.  After
2658  * the huge page has been allocated, vma_commit_reservation is called
2659  * to add the page to the reservation map.  If the page allocation fails,
2660  * the reservation must be ended instead of committed.  vma_end_reservation
2661  * is called in such cases.
2662  *
2663  * In the normal case, vma_commit_reservation returns the same value
2664  * as the preceding vma_needs_reservation call.  The only time this
2665  * is not the case is if a reserve map was changed between calls.  It
2666  * is the responsibility of the caller to notice the difference and
2667  * take appropriate action.
2668  *
2669  * vma_add_reservation is used in error paths where a reservation must
2670  * be restored when a newly allocated huge page must be freed.  It is
2671  * to be called after calling vma_needs_reservation to determine if a
2672  * reservation exists.
2673  *
2674  * vma_del_reservation is used in error paths where an entry in the reserve
2675  * map was created during huge page allocation and must be removed.  It is to
2676  * be called after calling vma_needs_reservation to determine if a reservation
2677  * exists.
2678  */
2679 enum vma_resv_mode {
2680 	VMA_NEEDS_RESV,
2681 	VMA_COMMIT_RESV,
2682 	VMA_END_RESV,
2683 	VMA_ADD_RESV,
2684 	VMA_DEL_RESV,
2685 };
2686 static long __vma_reservation_common(struct hstate *h,
2687 				struct vm_area_struct *vma, unsigned long addr,
2688 				enum vma_resv_mode mode)
2689 {
2690 	struct resv_map *resv;
2691 	pgoff_t idx;
2692 	long ret;
2693 	long dummy_out_regions_needed;
2694 
2695 	resv = vma_resv_map(vma);
2696 	if (!resv)
2697 		return 1;
2698 
2699 	idx = vma_hugecache_offset(h, vma, addr);
2700 	switch (mode) {
2701 	case VMA_NEEDS_RESV:
2702 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2703 		/* We assume that vma_reservation_* routines always operate on
2704 		 * 1 page, and that adding to resv map a 1 page entry can only
2705 		 * ever require 1 region.
2706 		 */
2707 		VM_BUG_ON(dummy_out_regions_needed != 1);
2708 		break;
2709 	case VMA_COMMIT_RESV:
2710 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2711 		/* region_add calls of range 1 should never fail. */
2712 		VM_BUG_ON(ret < 0);
2713 		break;
2714 	case VMA_END_RESV:
2715 		region_abort(resv, idx, idx + 1, 1);
2716 		ret = 0;
2717 		break;
2718 	case VMA_ADD_RESV:
2719 		if (vma->vm_flags & VM_MAYSHARE) {
2720 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2721 			/* region_add calls of range 1 should never fail. */
2722 			VM_BUG_ON(ret < 0);
2723 		} else {
2724 			region_abort(resv, idx, idx + 1, 1);
2725 			ret = region_del(resv, idx, idx + 1);
2726 		}
2727 		break;
2728 	case VMA_DEL_RESV:
2729 		if (vma->vm_flags & VM_MAYSHARE) {
2730 			region_abort(resv, idx, idx + 1, 1);
2731 			ret = region_del(resv, idx, idx + 1);
2732 		} else {
2733 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2734 			/* region_add calls of range 1 should never fail. */
2735 			VM_BUG_ON(ret < 0);
2736 		}
2737 		break;
2738 	default:
2739 		BUG();
2740 	}
2741 
2742 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2743 		return ret;
2744 	/*
2745 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2746 	 *
2747 	 * In most cases, reserves always exist for private mappings.
2748 	 * However, a file associated with mapping could have been
2749 	 * hole punched or truncated after reserves were consumed.
2750 	 * As subsequent fault on such a range will not use reserves.
2751 	 * Subtle - The reserve map for private mappings has the
2752 	 * opposite meaning than that of shared mappings.  If NO
2753 	 * entry is in the reserve map, it means a reservation exists.
2754 	 * If an entry exists in the reserve map, it means the
2755 	 * reservation has already been consumed.  As a result, the
2756 	 * return value of this routine is the opposite of the
2757 	 * value returned from reserve map manipulation routines above.
2758 	 */
2759 	if (ret > 0)
2760 		return 0;
2761 	if (ret == 0)
2762 		return 1;
2763 	return ret;
2764 }
2765 
2766 static long vma_needs_reservation(struct hstate *h,
2767 			struct vm_area_struct *vma, unsigned long addr)
2768 {
2769 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2770 }
2771 
2772 static long vma_commit_reservation(struct hstate *h,
2773 			struct vm_area_struct *vma, unsigned long addr)
2774 {
2775 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2776 }
2777 
2778 static void vma_end_reservation(struct hstate *h,
2779 			struct vm_area_struct *vma, unsigned long addr)
2780 {
2781 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2782 }
2783 
2784 static long vma_add_reservation(struct hstate *h,
2785 			struct vm_area_struct *vma, unsigned long addr)
2786 {
2787 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2788 }
2789 
2790 static long vma_del_reservation(struct hstate *h,
2791 			struct vm_area_struct *vma, unsigned long addr)
2792 {
2793 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2794 }
2795 
2796 /*
2797  * This routine is called to restore reservation information on error paths.
2798  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2799  * the hugetlb mutex should remain held when calling this routine.
2800  *
2801  * It handles two specific cases:
2802  * 1) A reservation was in place and the page consumed the reservation.
2803  *    HPageRestoreReserve is set in the page.
2804  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2805  *    not set.  However, alloc_huge_page always updates the reserve map.
2806  *
2807  * In case 1, free_huge_page later in the error path will increment the
2808  * global reserve count.  But, free_huge_page does not have enough context
2809  * to adjust the reservation map.  This case deals primarily with private
2810  * mappings.  Adjust the reserve map here to be consistent with global
2811  * reserve count adjustments to be made by free_huge_page.  Make sure the
2812  * reserve map indicates there is a reservation present.
2813  *
2814  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2815  */
2816 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2817 			unsigned long address, struct page *page)
2818 {
2819 	long rc = vma_needs_reservation(h, vma, address);
2820 
2821 	if (HPageRestoreReserve(page)) {
2822 		if (unlikely(rc < 0))
2823 			/*
2824 			 * Rare out of memory condition in reserve map
2825 			 * manipulation.  Clear HPageRestoreReserve so that
2826 			 * global reserve count will not be incremented
2827 			 * by free_huge_page.  This will make it appear
2828 			 * as though the reservation for this page was
2829 			 * consumed.  This may prevent the task from
2830 			 * faulting in the page at a later time.  This
2831 			 * is better than inconsistent global huge page
2832 			 * accounting of reserve counts.
2833 			 */
2834 			ClearHPageRestoreReserve(page);
2835 		else if (rc)
2836 			(void)vma_add_reservation(h, vma, address);
2837 		else
2838 			vma_end_reservation(h, vma, address);
2839 	} else {
2840 		if (!rc) {
2841 			/*
2842 			 * This indicates there is an entry in the reserve map
2843 			 * not added by alloc_huge_page.  We know it was added
2844 			 * before the alloc_huge_page call, otherwise
2845 			 * HPageRestoreReserve would be set on the page.
2846 			 * Remove the entry so that a subsequent allocation
2847 			 * does not consume a reservation.
2848 			 */
2849 			rc = vma_del_reservation(h, vma, address);
2850 			if (rc < 0)
2851 				/*
2852 				 * VERY rare out of memory condition.  Since
2853 				 * we can not delete the entry, set
2854 				 * HPageRestoreReserve so that the reserve
2855 				 * count will be incremented when the page
2856 				 * is freed.  This reserve will be consumed
2857 				 * on a subsequent allocation.
2858 				 */
2859 				SetHPageRestoreReserve(page);
2860 		} else if (rc < 0) {
2861 			/*
2862 			 * Rare out of memory condition from
2863 			 * vma_needs_reservation call.  Memory allocation is
2864 			 * only attempted if a new entry is needed.  Therefore,
2865 			 * this implies there is not an entry in the
2866 			 * reserve map.
2867 			 *
2868 			 * For shared mappings, no entry in the map indicates
2869 			 * no reservation.  We are done.
2870 			 */
2871 			if (!(vma->vm_flags & VM_MAYSHARE))
2872 				/*
2873 				 * For private mappings, no entry indicates
2874 				 * a reservation is present.  Since we can
2875 				 * not add an entry, set SetHPageRestoreReserve
2876 				 * on the page so reserve count will be
2877 				 * incremented when freed.  This reserve will
2878 				 * be consumed on a subsequent allocation.
2879 				 */
2880 				SetHPageRestoreReserve(page);
2881 		} else
2882 			/*
2883 			 * No reservation present, do nothing
2884 			 */
2885 			 vma_end_reservation(h, vma, address);
2886 	}
2887 }
2888 
2889 /*
2890  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2891  * the old one
2892  * @h: struct hstate old page belongs to
2893  * @old_folio: Old folio to dissolve
2894  * @list: List to isolate the page in case we need to
2895  * Returns 0 on success, otherwise negated error.
2896  */
2897 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2898 			struct folio *old_folio, struct list_head *list)
2899 {
2900 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2901 	int nid = folio_nid(old_folio);
2902 	struct folio *new_folio;
2903 	int ret = 0;
2904 
2905 	/*
2906 	 * Before dissolving the folio, we need to allocate a new one for the
2907 	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
2908 	 * by doing everything but actually updating counters and adding to
2909 	 * the pool.  This simplifies and let us do most of the processing
2910 	 * under the lock.
2911 	 */
2912 	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2913 	if (!new_folio)
2914 		return -ENOMEM;
2915 	__prep_new_hugetlb_folio(h, new_folio);
2916 
2917 retry:
2918 	spin_lock_irq(&hugetlb_lock);
2919 	if (!folio_test_hugetlb(old_folio)) {
2920 		/*
2921 		 * Freed from under us. Drop new_folio too.
2922 		 */
2923 		goto free_new;
2924 	} else if (folio_ref_count(old_folio)) {
2925 		/*
2926 		 * Someone has grabbed the folio, try to isolate it here.
2927 		 * Fail with -EBUSY if not possible.
2928 		 */
2929 		spin_unlock_irq(&hugetlb_lock);
2930 		ret = isolate_hugetlb(&old_folio->page, list);
2931 		spin_lock_irq(&hugetlb_lock);
2932 		goto free_new;
2933 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2934 		/*
2935 		 * Folio's refcount is 0 but it has not been enqueued in the
2936 		 * freelist yet. Race window is small, so we can succeed here if
2937 		 * we retry.
2938 		 */
2939 		spin_unlock_irq(&hugetlb_lock);
2940 		cond_resched();
2941 		goto retry;
2942 	} else {
2943 		/*
2944 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2945 		 * the freelist and decrease the counters. These will be
2946 		 * incremented again when calling __prep_account_new_huge_page()
2947 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2948 		 * remain stable since this happens under the lock.
2949 		 */
2950 		remove_hugetlb_folio(h, old_folio, false);
2951 
2952 		/*
2953 		 * Ref count on new_folio is already zero as it was dropped
2954 		 * earlier.  It can be directly added to the pool free list.
2955 		 */
2956 		__prep_account_new_huge_page(h, nid);
2957 		enqueue_hugetlb_folio(h, new_folio);
2958 
2959 		/*
2960 		 * Folio has been replaced, we can safely free the old one.
2961 		 */
2962 		spin_unlock_irq(&hugetlb_lock);
2963 		update_and_free_hugetlb_folio(h, old_folio, false);
2964 	}
2965 
2966 	return ret;
2967 
2968 free_new:
2969 	spin_unlock_irq(&hugetlb_lock);
2970 	/* Folio has a zero ref count, but needs a ref to be freed */
2971 	folio_ref_unfreeze(new_folio, 1);
2972 	update_and_free_hugetlb_folio(h, new_folio, false);
2973 
2974 	return ret;
2975 }
2976 
2977 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2978 {
2979 	struct hstate *h;
2980 	struct folio *folio = page_folio(page);
2981 	int ret = -EBUSY;
2982 
2983 	/*
2984 	 * The page might have been dissolved from under our feet, so make sure
2985 	 * to carefully check the state under the lock.
2986 	 * Return success when racing as if we dissolved the page ourselves.
2987 	 */
2988 	spin_lock_irq(&hugetlb_lock);
2989 	if (folio_test_hugetlb(folio)) {
2990 		h = folio_hstate(folio);
2991 	} else {
2992 		spin_unlock_irq(&hugetlb_lock);
2993 		return 0;
2994 	}
2995 	spin_unlock_irq(&hugetlb_lock);
2996 
2997 	/*
2998 	 * Fence off gigantic pages as there is a cyclic dependency between
2999 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3000 	 * of bailing out right away without further retrying.
3001 	 */
3002 	if (hstate_is_gigantic(h))
3003 		return -ENOMEM;
3004 
3005 	if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
3006 		ret = 0;
3007 	else if (!folio_ref_count(folio))
3008 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3009 
3010 	return ret;
3011 }
3012 
3013 struct page *alloc_huge_page(struct vm_area_struct *vma,
3014 				    unsigned long addr, int avoid_reserve)
3015 {
3016 	struct hugepage_subpool *spool = subpool_vma(vma);
3017 	struct hstate *h = hstate_vma(vma);
3018 	struct page *page;
3019 	struct folio *folio;
3020 	long map_chg, map_commit;
3021 	long gbl_chg;
3022 	int ret, idx;
3023 	struct hugetlb_cgroup *h_cg;
3024 	bool deferred_reserve;
3025 
3026 	idx = hstate_index(h);
3027 	/*
3028 	 * Examine the region/reserve map to determine if the process
3029 	 * has a reservation for the page to be allocated.  A return
3030 	 * code of zero indicates a reservation exists (no change).
3031 	 */
3032 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3033 	if (map_chg < 0)
3034 		return ERR_PTR(-ENOMEM);
3035 
3036 	/*
3037 	 * Processes that did not create the mapping will have no
3038 	 * reserves as indicated by the region/reserve map. Check
3039 	 * that the allocation will not exceed the subpool limit.
3040 	 * Allocations for MAP_NORESERVE mappings also need to be
3041 	 * checked against any subpool limit.
3042 	 */
3043 	if (map_chg || avoid_reserve) {
3044 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3045 		if (gbl_chg < 0) {
3046 			vma_end_reservation(h, vma, addr);
3047 			return ERR_PTR(-ENOSPC);
3048 		}
3049 
3050 		/*
3051 		 * Even though there was no reservation in the region/reserve
3052 		 * map, there could be reservations associated with the
3053 		 * subpool that can be used.  This would be indicated if the
3054 		 * return value of hugepage_subpool_get_pages() is zero.
3055 		 * However, if avoid_reserve is specified we still avoid even
3056 		 * the subpool reservations.
3057 		 */
3058 		if (avoid_reserve)
3059 			gbl_chg = 1;
3060 	}
3061 
3062 	/* If this allocation is not consuming a reservation, charge it now.
3063 	 */
3064 	deferred_reserve = map_chg || avoid_reserve;
3065 	if (deferred_reserve) {
3066 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3067 			idx, pages_per_huge_page(h), &h_cg);
3068 		if (ret)
3069 			goto out_subpool_put;
3070 	}
3071 
3072 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3073 	if (ret)
3074 		goto out_uncharge_cgroup_reservation;
3075 
3076 	spin_lock_irq(&hugetlb_lock);
3077 	/*
3078 	 * glb_chg is passed to indicate whether or not a page must be taken
3079 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3080 	 * a reservation exists for the allocation.
3081 	 */
3082 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
3083 	if (!page) {
3084 		spin_unlock_irq(&hugetlb_lock);
3085 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
3086 		if (!page)
3087 			goto out_uncharge_cgroup;
3088 		spin_lock_irq(&hugetlb_lock);
3089 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3090 			SetHPageRestoreReserve(page);
3091 			h->resv_huge_pages--;
3092 		}
3093 		list_add(&page->lru, &h->hugepage_activelist);
3094 		set_page_refcounted(page);
3095 		/* Fall through */
3096 	}
3097 	folio = page_folio(page);
3098 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
3099 	/* If allocation is not consuming a reservation, also store the
3100 	 * hugetlb_cgroup pointer on the page.
3101 	 */
3102 	if (deferred_reserve) {
3103 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3104 						  h_cg, page);
3105 	}
3106 
3107 	spin_unlock_irq(&hugetlb_lock);
3108 
3109 	hugetlb_set_page_subpool(page, spool);
3110 
3111 	map_commit = vma_commit_reservation(h, vma, addr);
3112 	if (unlikely(map_chg > map_commit)) {
3113 		/*
3114 		 * The page was added to the reservation map between
3115 		 * vma_needs_reservation and vma_commit_reservation.
3116 		 * This indicates a race with hugetlb_reserve_pages.
3117 		 * Adjust for the subpool count incremented above AND
3118 		 * in hugetlb_reserve_pages for the same page.  Also,
3119 		 * the reservation count added in hugetlb_reserve_pages
3120 		 * no longer applies.
3121 		 */
3122 		long rsv_adjust;
3123 
3124 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3125 		hugetlb_acct_memory(h, -rsv_adjust);
3126 		if (deferred_reserve)
3127 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3128 					pages_per_huge_page(h), folio);
3129 	}
3130 	return page;
3131 
3132 out_uncharge_cgroup:
3133 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3134 out_uncharge_cgroup_reservation:
3135 	if (deferred_reserve)
3136 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3137 						    h_cg);
3138 out_subpool_put:
3139 	if (map_chg || avoid_reserve)
3140 		hugepage_subpool_put_pages(spool, 1);
3141 	vma_end_reservation(h, vma, addr);
3142 	return ERR_PTR(-ENOSPC);
3143 }
3144 
3145 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3146 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3147 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3148 {
3149 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3150 	int nr_nodes, node;
3151 
3152 	/* do node specific alloc */
3153 	if (nid != NUMA_NO_NODE) {
3154 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3155 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3156 		if (!m)
3157 			return 0;
3158 		goto found;
3159 	}
3160 	/* allocate from next node when distributing huge pages */
3161 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3162 		m = memblock_alloc_try_nid_raw(
3163 				huge_page_size(h), huge_page_size(h),
3164 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3165 		/*
3166 		 * Use the beginning of the huge page to store the
3167 		 * huge_bootmem_page struct (until gather_bootmem
3168 		 * puts them into the mem_map).
3169 		 */
3170 		if (!m)
3171 			return 0;
3172 		goto found;
3173 	}
3174 
3175 found:
3176 	/* Put them into a private list first because mem_map is not up yet */
3177 	INIT_LIST_HEAD(&m->list);
3178 	list_add(&m->list, &huge_boot_pages);
3179 	m->hstate = h;
3180 	return 1;
3181 }
3182 
3183 /*
3184  * Put bootmem huge pages into the standard lists after mem_map is up.
3185  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3186  */
3187 static void __init gather_bootmem_prealloc(void)
3188 {
3189 	struct huge_bootmem_page *m;
3190 
3191 	list_for_each_entry(m, &huge_boot_pages, list) {
3192 		struct page *page = virt_to_page(m);
3193 		struct folio *folio = page_folio(page);
3194 		struct hstate *h = m->hstate;
3195 
3196 		VM_BUG_ON(!hstate_is_gigantic(h));
3197 		WARN_ON(folio_ref_count(folio) != 1);
3198 		if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3199 			WARN_ON(folio_test_reserved(folio));
3200 			prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3201 			free_huge_page(page); /* add to the hugepage allocator */
3202 		} else {
3203 			/* VERY unlikely inflated ref count on a tail page */
3204 			free_gigantic_folio(folio, huge_page_order(h));
3205 		}
3206 
3207 		/*
3208 		 * We need to restore the 'stolen' pages to totalram_pages
3209 		 * in order to fix confusing memory reports from free(1) and
3210 		 * other side-effects, like CommitLimit going negative.
3211 		 */
3212 		adjust_managed_page_count(page, pages_per_huge_page(h));
3213 		cond_resched();
3214 	}
3215 }
3216 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3217 {
3218 	unsigned long i;
3219 	char buf[32];
3220 
3221 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3222 		if (hstate_is_gigantic(h)) {
3223 			if (!alloc_bootmem_huge_page(h, nid))
3224 				break;
3225 		} else {
3226 			struct folio *folio;
3227 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3228 
3229 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3230 					&node_states[N_MEMORY], NULL);
3231 			if (!folio)
3232 				break;
3233 			free_huge_page(&folio->page); /* free it into the hugepage allocator */
3234 		}
3235 		cond_resched();
3236 	}
3237 	if (i == h->max_huge_pages_node[nid])
3238 		return;
3239 
3240 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3241 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3242 		h->max_huge_pages_node[nid], buf, nid, i);
3243 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3244 	h->max_huge_pages_node[nid] = i;
3245 }
3246 
3247 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3248 {
3249 	unsigned long i;
3250 	nodemask_t *node_alloc_noretry;
3251 	bool node_specific_alloc = false;
3252 
3253 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3254 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3255 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3256 		return;
3257 	}
3258 
3259 	/* do node specific alloc */
3260 	for_each_online_node(i) {
3261 		if (h->max_huge_pages_node[i] > 0) {
3262 			hugetlb_hstate_alloc_pages_onenode(h, i);
3263 			node_specific_alloc = true;
3264 		}
3265 	}
3266 
3267 	if (node_specific_alloc)
3268 		return;
3269 
3270 	/* below will do all node balanced alloc */
3271 	if (!hstate_is_gigantic(h)) {
3272 		/*
3273 		 * Bit mask controlling how hard we retry per-node allocations.
3274 		 * Ignore errors as lower level routines can deal with
3275 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3276 		 * time, we are likely in bigger trouble.
3277 		 */
3278 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3279 						GFP_KERNEL);
3280 	} else {
3281 		/* allocations done at boot time */
3282 		node_alloc_noretry = NULL;
3283 	}
3284 
3285 	/* bit mask controlling how hard we retry per-node allocations */
3286 	if (node_alloc_noretry)
3287 		nodes_clear(*node_alloc_noretry);
3288 
3289 	for (i = 0; i < h->max_huge_pages; ++i) {
3290 		if (hstate_is_gigantic(h)) {
3291 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3292 				break;
3293 		} else if (!alloc_pool_huge_page(h,
3294 					 &node_states[N_MEMORY],
3295 					 node_alloc_noretry))
3296 			break;
3297 		cond_resched();
3298 	}
3299 	if (i < h->max_huge_pages) {
3300 		char buf[32];
3301 
3302 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3303 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3304 			h->max_huge_pages, buf, i);
3305 		h->max_huge_pages = i;
3306 	}
3307 	kfree(node_alloc_noretry);
3308 }
3309 
3310 static void __init hugetlb_init_hstates(void)
3311 {
3312 	struct hstate *h, *h2;
3313 
3314 	for_each_hstate(h) {
3315 		/* oversize hugepages were init'ed in early boot */
3316 		if (!hstate_is_gigantic(h))
3317 			hugetlb_hstate_alloc_pages(h);
3318 
3319 		/*
3320 		 * Set demote order for each hstate.  Note that
3321 		 * h->demote_order is initially 0.
3322 		 * - We can not demote gigantic pages if runtime freeing
3323 		 *   is not supported, so skip this.
3324 		 * - If CMA allocation is possible, we can not demote
3325 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3326 		 */
3327 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3328 			continue;
3329 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3330 			continue;
3331 		for_each_hstate(h2) {
3332 			if (h2 == h)
3333 				continue;
3334 			if (h2->order < h->order &&
3335 			    h2->order > h->demote_order)
3336 				h->demote_order = h2->order;
3337 		}
3338 	}
3339 }
3340 
3341 static void __init report_hugepages(void)
3342 {
3343 	struct hstate *h;
3344 
3345 	for_each_hstate(h) {
3346 		char buf[32];
3347 
3348 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3349 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3350 			buf, h->free_huge_pages);
3351 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3352 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3353 	}
3354 }
3355 
3356 #ifdef CONFIG_HIGHMEM
3357 static void try_to_free_low(struct hstate *h, unsigned long count,
3358 						nodemask_t *nodes_allowed)
3359 {
3360 	int i;
3361 	LIST_HEAD(page_list);
3362 
3363 	lockdep_assert_held(&hugetlb_lock);
3364 	if (hstate_is_gigantic(h))
3365 		return;
3366 
3367 	/*
3368 	 * Collect pages to be freed on a list, and free after dropping lock
3369 	 */
3370 	for_each_node_mask(i, *nodes_allowed) {
3371 		struct page *page, *next;
3372 		struct list_head *freel = &h->hugepage_freelists[i];
3373 		list_for_each_entry_safe(page, next, freel, lru) {
3374 			if (count >= h->nr_huge_pages)
3375 				goto out;
3376 			if (PageHighMem(page))
3377 				continue;
3378 			remove_hugetlb_folio(h, page_folio(page), false);
3379 			list_add(&page->lru, &page_list);
3380 		}
3381 	}
3382 
3383 out:
3384 	spin_unlock_irq(&hugetlb_lock);
3385 	update_and_free_pages_bulk(h, &page_list);
3386 	spin_lock_irq(&hugetlb_lock);
3387 }
3388 #else
3389 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3390 						nodemask_t *nodes_allowed)
3391 {
3392 }
3393 #endif
3394 
3395 /*
3396  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3397  * balanced by operating on them in a round-robin fashion.
3398  * Returns 1 if an adjustment was made.
3399  */
3400 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3401 				int delta)
3402 {
3403 	int nr_nodes, node;
3404 
3405 	lockdep_assert_held(&hugetlb_lock);
3406 	VM_BUG_ON(delta != -1 && delta != 1);
3407 
3408 	if (delta < 0) {
3409 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3410 			if (h->surplus_huge_pages_node[node])
3411 				goto found;
3412 		}
3413 	} else {
3414 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3415 			if (h->surplus_huge_pages_node[node] <
3416 					h->nr_huge_pages_node[node])
3417 				goto found;
3418 		}
3419 	}
3420 	return 0;
3421 
3422 found:
3423 	h->surplus_huge_pages += delta;
3424 	h->surplus_huge_pages_node[node] += delta;
3425 	return 1;
3426 }
3427 
3428 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3429 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3430 			      nodemask_t *nodes_allowed)
3431 {
3432 	unsigned long min_count, ret;
3433 	struct page *page;
3434 	LIST_HEAD(page_list);
3435 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3436 
3437 	/*
3438 	 * Bit mask controlling how hard we retry per-node allocations.
3439 	 * If we can not allocate the bit mask, do not attempt to allocate
3440 	 * the requested huge pages.
3441 	 */
3442 	if (node_alloc_noretry)
3443 		nodes_clear(*node_alloc_noretry);
3444 	else
3445 		return -ENOMEM;
3446 
3447 	/*
3448 	 * resize_lock mutex prevents concurrent adjustments to number of
3449 	 * pages in hstate via the proc/sysfs interfaces.
3450 	 */
3451 	mutex_lock(&h->resize_lock);
3452 	flush_free_hpage_work(h);
3453 	spin_lock_irq(&hugetlb_lock);
3454 
3455 	/*
3456 	 * Check for a node specific request.
3457 	 * Changing node specific huge page count may require a corresponding
3458 	 * change to the global count.  In any case, the passed node mask
3459 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3460 	 */
3461 	if (nid != NUMA_NO_NODE) {
3462 		unsigned long old_count = count;
3463 
3464 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3465 		/*
3466 		 * User may have specified a large count value which caused the
3467 		 * above calculation to overflow.  In this case, they wanted
3468 		 * to allocate as many huge pages as possible.  Set count to
3469 		 * largest possible value to align with their intention.
3470 		 */
3471 		if (count < old_count)
3472 			count = ULONG_MAX;
3473 	}
3474 
3475 	/*
3476 	 * Gigantic pages runtime allocation depend on the capability for large
3477 	 * page range allocation.
3478 	 * If the system does not provide this feature, return an error when
3479 	 * the user tries to allocate gigantic pages but let the user free the
3480 	 * boottime allocated gigantic pages.
3481 	 */
3482 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3483 		if (count > persistent_huge_pages(h)) {
3484 			spin_unlock_irq(&hugetlb_lock);
3485 			mutex_unlock(&h->resize_lock);
3486 			NODEMASK_FREE(node_alloc_noretry);
3487 			return -EINVAL;
3488 		}
3489 		/* Fall through to decrease pool */
3490 	}
3491 
3492 	/*
3493 	 * Increase the pool size
3494 	 * First take pages out of surplus state.  Then make up the
3495 	 * remaining difference by allocating fresh huge pages.
3496 	 *
3497 	 * We might race with alloc_surplus_huge_page() here and be unable
3498 	 * to convert a surplus huge page to a normal huge page. That is
3499 	 * not critical, though, it just means the overall size of the
3500 	 * pool might be one hugepage larger than it needs to be, but
3501 	 * within all the constraints specified by the sysctls.
3502 	 */
3503 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3504 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3505 			break;
3506 	}
3507 
3508 	while (count > persistent_huge_pages(h)) {
3509 		/*
3510 		 * If this allocation races such that we no longer need the
3511 		 * page, free_huge_page will handle it by freeing the page
3512 		 * and reducing the surplus.
3513 		 */
3514 		spin_unlock_irq(&hugetlb_lock);
3515 
3516 		/* yield cpu to avoid soft lockup */
3517 		cond_resched();
3518 
3519 		ret = alloc_pool_huge_page(h, nodes_allowed,
3520 						node_alloc_noretry);
3521 		spin_lock_irq(&hugetlb_lock);
3522 		if (!ret)
3523 			goto out;
3524 
3525 		/* Bail for signals. Probably ctrl-c from user */
3526 		if (signal_pending(current))
3527 			goto out;
3528 	}
3529 
3530 	/*
3531 	 * Decrease the pool size
3532 	 * First return free pages to the buddy allocator (being careful
3533 	 * to keep enough around to satisfy reservations).  Then place
3534 	 * pages into surplus state as needed so the pool will shrink
3535 	 * to the desired size as pages become free.
3536 	 *
3537 	 * By placing pages into the surplus state independent of the
3538 	 * overcommit value, we are allowing the surplus pool size to
3539 	 * exceed overcommit. There are few sane options here. Since
3540 	 * alloc_surplus_huge_page() is checking the global counter,
3541 	 * though, we'll note that we're not allowed to exceed surplus
3542 	 * and won't grow the pool anywhere else. Not until one of the
3543 	 * sysctls are changed, or the surplus pages go out of use.
3544 	 */
3545 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3546 	min_count = max(count, min_count);
3547 	try_to_free_low(h, min_count, nodes_allowed);
3548 
3549 	/*
3550 	 * Collect pages to be removed on list without dropping lock
3551 	 */
3552 	while (min_count < persistent_huge_pages(h)) {
3553 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3554 		if (!page)
3555 			break;
3556 
3557 		list_add(&page->lru, &page_list);
3558 	}
3559 	/* free the pages after dropping lock */
3560 	spin_unlock_irq(&hugetlb_lock);
3561 	update_and_free_pages_bulk(h, &page_list);
3562 	flush_free_hpage_work(h);
3563 	spin_lock_irq(&hugetlb_lock);
3564 
3565 	while (count < persistent_huge_pages(h)) {
3566 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3567 			break;
3568 	}
3569 out:
3570 	h->max_huge_pages = persistent_huge_pages(h);
3571 	spin_unlock_irq(&hugetlb_lock);
3572 	mutex_unlock(&h->resize_lock);
3573 
3574 	NODEMASK_FREE(node_alloc_noretry);
3575 
3576 	return 0;
3577 }
3578 
3579 static int demote_free_huge_page(struct hstate *h, struct page *page)
3580 {
3581 	int i, nid = page_to_nid(page);
3582 	struct hstate *target_hstate;
3583 	struct folio *folio = page_folio(page);
3584 	struct page *subpage;
3585 	int rc = 0;
3586 
3587 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3588 
3589 	remove_hugetlb_folio_for_demote(h, folio, false);
3590 	spin_unlock_irq(&hugetlb_lock);
3591 
3592 	rc = hugetlb_vmemmap_restore(h, page);
3593 	if (rc) {
3594 		/* Allocation of vmemmmap failed, we can not demote page */
3595 		spin_lock_irq(&hugetlb_lock);
3596 		set_page_refcounted(page);
3597 		add_hugetlb_folio(h, page_folio(page), false);
3598 		return rc;
3599 	}
3600 
3601 	/*
3602 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3603 	 * sizes as it will not ref count pages.
3604 	 */
3605 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3606 
3607 	/*
3608 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3609 	 * Without the mutex, pages added to target hstate could be marked
3610 	 * as surplus.
3611 	 *
3612 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3613 	 * use the convention of always taking larger size hstate mutex first.
3614 	 */
3615 	mutex_lock(&target_hstate->resize_lock);
3616 	for (i = 0; i < pages_per_huge_page(h);
3617 				i += pages_per_huge_page(target_hstate)) {
3618 		subpage = nth_page(page, i);
3619 		folio = page_folio(subpage);
3620 		if (hstate_is_gigantic(target_hstate))
3621 			prep_compound_gigantic_folio_for_demote(folio,
3622 							target_hstate->order);
3623 		else
3624 			prep_compound_page(subpage, target_hstate->order);
3625 		set_page_private(subpage, 0);
3626 		prep_new_hugetlb_folio(target_hstate, folio, nid);
3627 		free_huge_page(subpage);
3628 	}
3629 	mutex_unlock(&target_hstate->resize_lock);
3630 
3631 	spin_lock_irq(&hugetlb_lock);
3632 
3633 	/*
3634 	 * Not absolutely necessary, but for consistency update max_huge_pages
3635 	 * based on pool changes for the demoted page.
3636 	 */
3637 	h->max_huge_pages--;
3638 	target_hstate->max_huge_pages +=
3639 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3640 
3641 	return rc;
3642 }
3643 
3644 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3645 	__must_hold(&hugetlb_lock)
3646 {
3647 	int nr_nodes, node;
3648 	struct page *page;
3649 
3650 	lockdep_assert_held(&hugetlb_lock);
3651 
3652 	/* We should never get here if no demote order */
3653 	if (!h->demote_order) {
3654 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3655 		return -EINVAL;		/* internal error */
3656 	}
3657 
3658 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3659 		list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3660 			if (PageHWPoison(page))
3661 				continue;
3662 
3663 			return demote_free_huge_page(h, page);
3664 		}
3665 	}
3666 
3667 	/*
3668 	 * Only way to get here is if all pages on free lists are poisoned.
3669 	 * Return -EBUSY so that caller will not retry.
3670 	 */
3671 	return -EBUSY;
3672 }
3673 
3674 #define HSTATE_ATTR_RO(_name) \
3675 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3676 
3677 #define HSTATE_ATTR_WO(_name) \
3678 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3679 
3680 #define HSTATE_ATTR(_name) \
3681 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3682 
3683 static struct kobject *hugepages_kobj;
3684 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3685 
3686 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3687 
3688 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3689 {
3690 	int i;
3691 
3692 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3693 		if (hstate_kobjs[i] == kobj) {
3694 			if (nidp)
3695 				*nidp = NUMA_NO_NODE;
3696 			return &hstates[i];
3697 		}
3698 
3699 	return kobj_to_node_hstate(kobj, nidp);
3700 }
3701 
3702 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3703 					struct kobj_attribute *attr, char *buf)
3704 {
3705 	struct hstate *h;
3706 	unsigned long nr_huge_pages;
3707 	int nid;
3708 
3709 	h = kobj_to_hstate(kobj, &nid);
3710 	if (nid == NUMA_NO_NODE)
3711 		nr_huge_pages = h->nr_huge_pages;
3712 	else
3713 		nr_huge_pages = h->nr_huge_pages_node[nid];
3714 
3715 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3716 }
3717 
3718 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3719 					   struct hstate *h, int nid,
3720 					   unsigned long count, size_t len)
3721 {
3722 	int err;
3723 	nodemask_t nodes_allowed, *n_mask;
3724 
3725 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3726 		return -EINVAL;
3727 
3728 	if (nid == NUMA_NO_NODE) {
3729 		/*
3730 		 * global hstate attribute
3731 		 */
3732 		if (!(obey_mempolicy &&
3733 				init_nodemask_of_mempolicy(&nodes_allowed)))
3734 			n_mask = &node_states[N_MEMORY];
3735 		else
3736 			n_mask = &nodes_allowed;
3737 	} else {
3738 		/*
3739 		 * Node specific request.  count adjustment happens in
3740 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3741 		 */
3742 		init_nodemask_of_node(&nodes_allowed, nid);
3743 		n_mask = &nodes_allowed;
3744 	}
3745 
3746 	err = set_max_huge_pages(h, count, nid, n_mask);
3747 
3748 	return err ? err : len;
3749 }
3750 
3751 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3752 					 struct kobject *kobj, const char *buf,
3753 					 size_t len)
3754 {
3755 	struct hstate *h;
3756 	unsigned long count;
3757 	int nid;
3758 	int err;
3759 
3760 	err = kstrtoul(buf, 10, &count);
3761 	if (err)
3762 		return err;
3763 
3764 	h = kobj_to_hstate(kobj, &nid);
3765 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3766 }
3767 
3768 static ssize_t nr_hugepages_show(struct kobject *kobj,
3769 				       struct kobj_attribute *attr, char *buf)
3770 {
3771 	return nr_hugepages_show_common(kobj, attr, buf);
3772 }
3773 
3774 static ssize_t nr_hugepages_store(struct kobject *kobj,
3775 	       struct kobj_attribute *attr, const char *buf, size_t len)
3776 {
3777 	return nr_hugepages_store_common(false, kobj, buf, len);
3778 }
3779 HSTATE_ATTR(nr_hugepages);
3780 
3781 #ifdef CONFIG_NUMA
3782 
3783 /*
3784  * hstate attribute for optionally mempolicy-based constraint on persistent
3785  * huge page alloc/free.
3786  */
3787 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3788 					   struct kobj_attribute *attr,
3789 					   char *buf)
3790 {
3791 	return nr_hugepages_show_common(kobj, attr, buf);
3792 }
3793 
3794 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3795 	       struct kobj_attribute *attr, const char *buf, size_t len)
3796 {
3797 	return nr_hugepages_store_common(true, kobj, buf, len);
3798 }
3799 HSTATE_ATTR(nr_hugepages_mempolicy);
3800 #endif
3801 
3802 
3803 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3804 					struct kobj_attribute *attr, char *buf)
3805 {
3806 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3807 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3808 }
3809 
3810 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3811 		struct kobj_attribute *attr, const char *buf, size_t count)
3812 {
3813 	int err;
3814 	unsigned long input;
3815 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3816 
3817 	if (hstate_is_gigantic(h))
3818 		return -EINVAL;
3819 
3820 	err = kstrtoul(buf, 10, &input);
3821 	if (err)
3822 		return err;
3823 
3824 	spin_lock_irq(&hugetlb_lock);
3825 	h->nr_overcommit_huge_pages = input;
3826 	spin_unlock_irq(&hugetlb_lock);
3827 
3828 	return count;
3829 }
3830 HSTATE_ATTR(nr_overcommit_hugepages);
3831 
3832 static ssize_t free_hugepages_show(struct kobject *kobj,
3833 					struct kobj_attribute *attr, char *buf)
3834 {
3835 	struct hstate *h;
3836 	unsigned long free_huge_pages;
3837 	int nid;
3838 
3839 	h = kobj_to_hstate(kobj, &nid);
3840 	if (nid == NUMA_NO_NODE)
3841 		free_huge_pages = h->free_huge_pages;
3842 	else
3843 		free_huge_pages = h->free_huge_pages_node[nid];
3844 
3845 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3846 }
3847 HSTATE_ATTR_RO(free_hugepages);
3848 
3849 static ssize_t resv_hugepages_show(struct kobject *kobj,
3850 					struct kobj_attribute *attr, char *buf)
3851 {
3852 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3853 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3854 }
3855 HSTATE_ATTR_RO(resv_hugepages);
3856 
3857 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3858 					struct kobj_attribute *attr, char *buf)
3859 {
3860 	struct hstate *h;
3861 	unsigned long surplus_huge_pages;
3862 	int nid;
3863 
3864 	h = kobj_to_hstate(kobj, &nid);
3865 	if (nid == NUMA_NO_NODE)
3866 		surplus_huge_pages = h->surplus_huge_pages;
3867 	else
3868 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3869 
3870 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3871 }
3872 HSTATE_ATTR_RO(surplus_hugepages);
3873 
3874 static ssize_t demote_store(struct kobject *kobj,
3875 	       struct kobj_attribute *attr, const char *buf, size_t len)
3876 {
3877 	unsigned long nr_demote;
3878 	unsigned long nr_available;
3879 	nodemask_t nodes_allowed, *n_mask;
3880 	struct hstate *h;
3881 	int err;
3882 	int nid;
3883 
3884 	err = kstrtoul(buf, 10, &nr_demote);
3885 	if (err)
3886 		return err;
3887 	h = kobj_to_hstate(kobj, &nid);
3888 
3889 	if (nid != NUMA_NO_NODE) {
3890 		init_nodemask_of_node(&nodes_allowed, nid);
3891 		n_mask = &nodes_allowed;
3892 	} else {
3893 		n_mask = &node_states[N_MEMORY];
3894 	}
3895 
3896 	/* Synchronize with other sysfs operations modifying huge pages */
3897 	mutex_lock(&h->resize_lock);
3898 	spin_lock_irq(&hugetlb_lock);
3899 
3900 	while (nr_demote) {
3901 		/*
3902 		 * Check for available pages to demote each time thorough the
3903 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3904 		 */
3905 		if (nid != NUMA_NO_NODE)
3906 			nr_available = h->free_huge_pages_node[nid];
3907 		else
3908 			nr_available = h->free_huge_pages;
3909 		nr_available -= h->resv_huge_pages;
3910 		if (!nr_available)
3911 			break;
3912 
3913 		err = demote_pool_huge_page(h, n_mask);
3914 		if (err)
3915 			break;
3916 
3917 		nr_demote--;
3918 	}
3919 
3920 	spin_unlock_irq(&hugetlb_lock);
3921 	mutex_unlock(&h->resize_lock);
3922 
3923 	if (err)
3924 		return err;
3925 	return len;
3926 }
3927 HSTATE_ATTR_WO(demote);
3928 
3929 static ssize_t demote_size_show(struct kobject *kobj,
3930 					struct kobj_attribute *attr, char *buf)
3931 {
3932 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3933 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3934 
3935 	return sysfs_emit(buf, "%lukB\n", demote_size);
3936 }
3937 
3938 static ssize_t demote_size_store(struct kobject *kobj,
3939 					struct kobj_attribute *attr,
3940 					const char *buf, size_t count)
3941 {
3942 	struct hstate *h, *demote_hstate;
3943 	unsigned long demote_size;
3944 	unsigned int demote_order;
3945 
3946 	demote_size = (unsigned long)memparse(buf, NULL);
3947 
3948 	demote_hstate = size_to_hstate(demote_size);
3949 	if (!demote_hstate)
3950 		return -EINVAL;
3951 	demote_order = demote_hstate->order;
3952 	if (demote_order < HUGETLB_PAGE_ORDER)
3953 		return -EINVAL;
3954 
3955 	/* demote order must be smaller than hstate order */
3956 	h = kobj_to_hstate(kobj, NULL);
3957 	if (demote_order >= h->order)
3958 		return -EINVAL;
3959 
3960 	/* resize_lock synchronizes access to demote size and writes */
3961 	mutex_lock(&h->resize_lock);
3962 	h->demote_order = demote_order;
3963 	mutex_unlock(&h->resize_lock);
3964 
3965 	return count;
3966 }
3967 HSTATE_ATTR(demote_size);
3968 
3969 static struct attribute *hstate_attrs[] = {
3970 	&nr_hugepages_attr.attr,
3971 	&nr_overcommit_hugepages_attr.attr,
3972 	&free_hugepages_attr.attr,
3973 	&resv_hugepages_attr.attr,
3974 	&surplus_hugepages_attr.attr,
3975 #ifdef CONFIG_NUMA
3976 	&nr_hugepages_mempolicy_attr.attr,
3977 #endif
3978 	NULL,
3979 };
3980 
3981 static const struct attribute_group hstate_attr_group = {
3982 	.attrs = hstate_attrs,
3983 };
3984 
3985 static struct attribute *hstate_demote_attrs[] = {
3986 	&demote_size_attr.attr,
3987 	&demote_attr.attr,
3988 	NULL,
3989 };
3990 
3991 static const struct attribute_group hstate_demote_attr_group = {
3992 	.attrs = hstate_demote_attrs,
3993 };
3994 
3995 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3996 				    struct kobject **hstate_kobjs,
3997 				    const struct attribute_group *hstate_attr_group)
3998 {
3999 	int retval;
4000 	int hi = hstate_index(h);
4001 
4002 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4003 	if (!hstate_kobjs[hi])
4004 		return -ENOMEM;
4005 
4006 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4007 	if (retval) {
4008 		kobject_put(hstate_kobjs[hi]);
4009 		hstate_kobjs[hi] = NULL;
4010 		return retval;
4011 	}
4012 
4013 	if (h->demote_order) {
4014 		retval = sysfs_create_group(hstate_kobjs[hi],
4015 					    &hstate_demote_attr_group);
4016 		if (retval) {
4017 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4018 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4019 			kobject_put(hstate_kobjs[hi]);
4020 			hstate_kobjs[hi] = NULL;
4021 			return retval;
4022 		}
4023 	}
4024 
4025 	return 0;
4026 }
4027 
4028 #ifdef CONFIG_NUMA
4029 static bool hugetlb_sysfs_initialized __ro_after_init;
4030 
4031 /*
4032  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4033  * with node devices in node_devices[] using a parallel array.  The array
4034  * index of a node device or _hstate == node id.
4035  * This is here to avoid any static dependency of the node device driver, in
4036  * the base kernel, on the hugetlb module.
4037  */
4038 struct node_hstate {
4039 	struct kobject		*hugepages_kobj;
4040 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4041 };
4042 static struct node_hstate node_hstates[MAX_NUMNODES];
4043 
4044 /*
4045  * A subset of global hstate attributes for node devices
4046  */
4047 static struct attribute *per_node_hstate_attrs[] = {
4048 	&nr_hugepages_attr.attr,
4049 	&free_hugepages_attr.attr,
4050 	&surplus_hugepages_attr.attr,
4051 	NULL,
4052 };
4053 
4054 static const struct attribute_group per_node_hstate_attr_group = {
4055 	.attrs = per_node_hstate_attrs,
4056 };
4057 
4058 /*
4059  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4060  * Returns node id via non-NULL nidp.
4061  */
4062 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4063 {
4064 	int nid;
4065 
4066 	for (nid = 0; nid < nr_node_ids; nid++) {
4067 		struct node_hstate *nhs = &node_hstates[nid];
4068 		int i;
4069 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4070 			if (nhs->hstate_kobjs[i] == kobj) {
4071 				if (nidp)
4072 					*nidp = nid;
4073 				return &hstates[i];
4074 			}
4075 	}
4076 
4077 	BUG();
4078 	return NULL;
4079 }
4080 
4081 /*
4082  * Unregister hstate attributes from a single node device.
4083  * No-op if no hstate attributes attached.
4084  */
4085 void hugetlb_unregister_node(struct node *node)
4086 {
4087 	struct hstate *h;
4088 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4089 
4090 	if (!nhs->hugepages_kobj)
4091 		return;		/* no hstate attributes */
4092 
4093 	for_each_hstate(h) {
4094 		int idx = hstate_index(h);
4095 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4096 
4097 		if (!hstate_kobj)
4098 			continue;
4099 		if (h->demote_order)
4100 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4101 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4102 		kobject_put(hstate_kobj);
4103 		nhs->hstate_kobjs[idx] = NULL;
4104 	}
4105 
4106 	kobject_put(nhs->hugepages_kobj);
4107 	nhs->hugepages_kobj = NULL;
4108 }
4109 
4110 
4111 /*
4112  * Register hstate attributes for a single node device.
4113  * No-op if attributes already registered.
4114  */
4115 void hugetlb_register_node(struct node *node)
4116 {
4117 	struct hstate *h;
4118 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4119 	int err;
4120 
4121 	if (!hugetlb_sysfs_initialized)
4122 		return;
4123 
4124 	if (nhs->hugepages_kobj)
4125 		return;		/* already allocated */
4126 
4127 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4128 							&node->dev.kobj);
4129 	if (!nhs->hugepages_kobj)
4130 		return;
4131 
4132 	for_each_hstate(h) {
4133 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4134 						nhs->hstate_kobjs,
4135 						&per_node_hstate_attr_group);
4136 		if (err) {
4137 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4138 				h->name, node->dev.id);
4139 			hugetlb_unregister_node(node);
4140 			break;
4141 		}
4142 	}
4143 }
4144 
4145 /*
4146  * hugetlb init time:  register hstate attributes for all registered node
4147  * devices of nodes that have memory.  All on-line nodes should have
4148  * registered their associated device by this time.
4149  */
4150 static void __init hugetlb_register_all_nodes(void)
4151 {
4152 	int nid;
4153 
4154 	for_each_online_node(nid)
4155 		hugetlb_register_node(node_devices[nid]);
4156 }
4157 #else	/* !CONFIG_NUMA */
4158 
4159 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4160 {
4161 	BUG();
4162 	if (nidp)
4163 		*nidp = -1;
4164 	return NULL;
4165 }
4166 
4167 static void hugetlb_register_all_nodes(void) { }
4168 
4169 #endif
4170 
4171 #ifdef CONFIG_CMA
4172 static void __init hugetlb_cma_check(void);
4173 #else
4174 static inline __init void hugetlb_cma_check(void)
4175 {
4176 }
4177 #endif
4178 
4179 static void __init hugetlb_sysfs_init(void)
4180 {
4181 	struct hstate *h;
4182 	int err;
4183 
4184 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4185 	if (!hugepages_kobj)
4186 		return;
4187 
4188 	for_each_hstate(h) {
4189 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4190 					 hstate_kobjs, &hstate_attr_group);
4191 		if (err)
4192 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4193 	}
4194 
4195 #ifdef CONFIG_NUMA
4196 	hugetlb_sysfs_initialized = true;
4197 #endif
4198 	hugetlb_register_all_nodes();
4199 }
4200 
4201 static int __init hugetlb_init(void)
4202 {
4203 	int i;
4204 
4205 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4206 			__NR_HPAGEFLAGS);
4207 
4208 	if (!hugepages_supported()) {
4209 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4210 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4211 		return 0;
4212 	}
4213 
4214 	/*
4215 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4216 	 * architectures depend on setup being done here.
4217 	 */
4218 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4219 	if (!parsed_default_hugepagesz) {
4220 		/*
4221 		 * If we did not parse a default huge page size, set
4222 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4223 		 * number of huge pages for this default size was implicitly
4224 		 * specified, set that here as well.
4225 		 * Note that the implicit setting will overwrite an explicit
4226 		 * setting.  A warning will be printed in this case.
4227 		 */
4228 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4229 		if (default_hstate_max_huge_pages) {
4230 			if (default_hstate.max_huge_pages) {
4231 				char buf[32];
4232 
4233 				string_get_size(huge_page_size(&default_hstate),
4234 					1, STRING_UNITS_2, buf, 32);
4235 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4236 					default_hstate.max_huge_pages, buf);
4237 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4238 					default_hstate_max_huge_pages);
4239 			}
4240 			default_hstate.max_huge_pages =
4241 				default_hstate_max_huge_pages;
4242 
4243 			for_each_online_node(i)
4244 				default_hstate.max_huge_pages_node[i] =
4245 					default_hugepages_in_node[i];
4246 		}
4247 	}
4248 
4249 	hugetlb_cma_check();
4250 	hugetlb_init_hstates();
4251 	gather_bootmem_prealloc();
4252 	report_hugepages();
4253 
4254 	hugetlb_sysfs_init();
4255 	hugetlb_cgroup_file_init();
4256 
4257 #ifdef CONFIG_SMP
4258 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4259 #else
4260 	num_fault_mutexes = 1;
4261 #endif
4262 	hugetlb_fault_mutex_table =
4263 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4264 			      GFP_KERNEL);
4265 	BUG_ON(!hugetlb_fault_mutex_table);
4266 
4267 	for (i = 0; i < num_fault_mutexes; i++)
4268 		mutex_init(&hugetlb_fault_mutex_table[i]);
4269 	return 0;
4270 }
4271 subsys_initcall(hugetlb_init);
4272 
4273 /* Overwritten by architectures with more huge page sizes */
4274 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4275 {
4276 	return size == HPAGE_SIZE;
4277 }
4278 
4279 void __init hugetlb_add_hstate(unsigned int order)
4280 {
4281 	struct hstate *h;
4282 	unsigned long i;
4283 
4284 	if (size_to_hstate(PAGE_SIZE << order)) {
4285 		return;
4286 	}
4287 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4288 	BUG_ON(order == 0);
4289 	h = &hstates[hugetlb_max_hstate++];
4290 	mutex_init(&h->resize_lock);
4291 	h->order = order;
4292 	h->mask = ~(huge_page_size(h) - 1);
4293 	for (i = 0; i < MAX_NUMNODES; ++i)
4294 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4295 	INIT_LIST_HEAD(&h->hugepage_activelist);
4296 	h->next_nid_to_alloc = first_memory_node;
4297 	h->next_nid_to_free = first_memory_node;
4298 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4299 					huge_page_size(h)/SZ_1K);
4300 
4301 	parsed_hstate = h;
4302 }
4303 
4304 bool __init __weak hugetlb_node_alloc_supported(void)
4305 {
4306 	return true;
4307 }
4308 
4309 static void __init hugepages_clear_pages_in_node(void)
4310 {
4311 	if (!hugetlb_max_hstate) {
4312 		default_hstate_max_huge_pages = 0;
4313 		memset(default_hugepages_in_node, 0,
4314 			sizeof(default_hugepages_in_node));
4315 	} else {
4316 		parsed_hstate->max_huge_pages = 0;
4317 		memset(parsed_hstate->max_huge_pages_node, 0,
4318 			sizeof(parsed_hstate->max_huge_pages_node));
4319 	}
4320 }
4321 
4322 /*
4323  * hugepages command line processing
4324  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4325  * specification.  If not, ignore the hugepages value.  hugepages can also
4326  * be the first huge page command line  option in which case it implicitly
4327  * specifies the number of huge pages for the default size.
4328  */
4329 static int __init hugepages_setup(char *s)
4330 {
4331 	unsigned long *mhp;
4332 	static unsigned long *last_mhp;
4333 	int node = NUMA_NO_NODE;
4334 	int count;
4335 	unsigned long tmp;
4336 	char *p = s;
4337 
4338 	if (!parsed_valid_hugepagesz) {
4339 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4340 		parsed_valid_hugepagesz = true;
4341 		return 1;
4342 	}
4343 
4344 	/*
4345 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4346 	 * yet, so this hugepages= parameter goes to the "default hstate".
4347 	 * Otherwise, it goes with the previously parsed hugepagesz or
4348 	 * default_hugepagesz.
4349 	 */
4350 	else if (!hugetlb_max_hstate)
4351 		mhp = &default_hstate_max_huge_pages;
4352 	else
4353 		mhp = &parsed_hstate->max_huge_pages;
4354 
4355 	if (mhp == last_mhp) {
4356 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4357 		return 1;
4358 	}
4359 
4360 	while (*p) {
4361 		count = 0;
4362 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4363 			goto invalid;
4364 		/* Parameter is node format */
4365 		if (p[count] == ':') {
4366 			if (!hugetlb_node_alloc_supported()) {
4367 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4368 				return 1;
4369 			}
4370 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4371 				goto invalid;
4372 			node = array_index_nospec(tmp, MAX_NUMNODES);
4373 			p += count + 1;
4374 			/* Parse hugepages */
4375 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4376 				goto invalid;
4377 			if (!hugetlb_max_hstate)
4378 				default_hugepages_in_node[node] = tmp;
4379 			else
4380 				parsed_hstate->max_huge_pages_node[node] = tmp;
4381 			*mhp += tmp;
4382 			/* Go to parse next node*/
4383 			if (p[count] == ',')
4384 				p += count + 1;
4385 			else
4386 				break;
4387 		} else {
4388 			if (p != s)
4389 				goto invalid;
4390 			*mhp = tmp;
4391 			break;
4392 		}
4393 	}
4394 
4395 	/*
4396 	 * Global state is always initialized later in hugetlb_init.
4397 	 * But we need to allocate gigantic hstates here early to still
4398 	 * use the bootmem allocator.
4399 	 */
4400 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4401 		hugetlb_hstate_alloc_pages(parsed_hstate);
4402 
4403 	last_mhp = mhp;
4404 
4405 	return 1;
4406 
4407 invalid:
4408 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4409 	hugepages_clear_pages_in_node();
4410 	return 1;
4411 }
4412 __setup("hugepages=", hugepages_setup);
4413 
4414 /*
4415  * hugepagesz command line processing
4416  * A specific huge page size can only be specified once with hugepagesz.
4417  * hugepagesz is followed by hugepages on the command line.  The global
4418  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4419  * hugepagesz argument was valid.
4420  */
4421 static int __init hugepagesz_setup(char *s)
4422 {
4423 	unsigned long size;
4424 	struct hstate *h;
4425 
4426 	parsed_valid_hugepagesz = false;
4427 	size = (unsigned long)memparse(s, NULL);
4428 
4429 	if (!arch_hugetlb_valid_size(size)) {
4430 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4431 		return 1;
4432 	}
4433 
4434 	h = size_to_hstate(size);
4435 	if (h) {
4436 		/*
4437 		 * hstate for this size already exists.  This is normally
4438 		 * an error, but is allowed if the existing hstate is the
4439 		 * default hstate.  More specifically, it is only allowed if
4440 		 * the number of huge pages for the default hstate was not
4441 		 * previously specified.
4442 		 */
4443 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4444 		    default_hstate.max_huge_pages) {
4445 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4446 			return 1;
4447 		}
4448 
4449 		/*
4450 		 * No need to call hugetlb_add_hstate() as hstate already
4451 		 * exists.  But, do set parsed_hstate so that a following
4452 		 * hugepages= parameter will be applied to this hstate.
4453 		 */
4454 		parsed_hstate = h;
4455 		parsed_valid_hugepagesz = true;
4456 		return 1;
4457 	}
4458 
4459 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4460 	parsed_valid_hugepagesz = true;
4461 	return 1;
4462 }
4463 __setup("hugepagesz=", hugepagesz_setup);
4464 
4465 /*
4466  * default_hugepagesz command line input
4467  * Only one instance of default_hugepagesz allowed on command line.
4468  */
4469 static int __init default_hugepagesz_setup(char *s)
4470 {
4471 	unsigned long size;
4472 	int i;
4473 
4474 	parsed_valid_hugepagesz = false;
4475 	if (parsed_default_hugepagesz) {
4476 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4477 		return 1;
4478 	}
4479 
4480 	size = (unsigned long)memparse(s, NULL);
4481 
4482 	if (!arch_hugetlb_valid_size(size)) {
4483 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4484 		return 1;
4485 	}
4486 
4487 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4488 	parsed_valid_hugepagesz = true;
4489 	parsed_default_hugepagesz = true;
4490 	default_hstate_idx = hstate_index(size_to_hstate(size));
4491 
4492 	/*
4493 	 * The number of default huge pages (for this size) could have been
4494 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4495 	 * then default_hstate_max_huge_pages is set.  If the default huge
4496 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4497 	 * allocated here from bootmem allocator.
4498 	 */
4499 	if (default_hstate_max_huge_pages) {
4500 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4501 		for_each_online_node(i)
4502 			default_hstate.max_huge_pages_node[i] =
4503 				default_hugepages_in_node[i];
4504 		if (hstate_is_gigantic(&default_hstate))
4505 			hugetlb_hstate_alloc_pages(&default_hstate);
4506 		default_hstate_max_huge_pages = 0;
4507 	}
4508 
4509 	return 1;
4510 }
4511 __setup("default_hugepagesz=", default_hugepagesz_setup);
4512 
4513 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4514 {
4515 #ifdef CONFIG_NUMA
4516 	struct mempolicy *mpol = get_task_policy(current);
4517 
4518 	/*
4519 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4520 	 * (from policy_nodemask) specifically for hugetlb case
4521 	 */
4522 	if (mpol->mode == MPOL_BIND &&
4523 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4524 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4525 		return &mpol->nodes;
4526 #endif
4527 	return NULL;
4528 }
4529 
4530 static unsigned int allowed_mems_nr(struct hstate *h)
4531 {
4532 	int node;
4533 	unsigned int nr = 0;
4534 	nodemask_t *mbind_nodemask;
4535 	unsigned int *array = h->free_huge_pages_node;
4536 	gfp_t gfp_mask = htlb_alloc_mask(h);
4537 
4538 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4539 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4540 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4541 			nr += array[node];
4542 	}
4543 
4544 	return nr;
4545 }
4546 
4547 #ifdef CONFIG_SYSCTL
4548 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4549 					  void *buffer, size_t *length,
4550 					  loff_t *ppos, unsigned long *out)
4551 {
4552 	struct ctl_table dup_table;
4553 
4554 	/*
4555 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4556 	 * can duplicate the @table and alter the duplicate of it.
4557 	 */
4558 	dup_table = *table;
4559 	dup_table.data = out;
4560 
4561 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4562 }
4563 
4564 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4565 			 struct ctl_table *table, int write,
4566 			 void *buffer, size_t *length, loff_t *ppos)
4567 {
4568 	struct hstate *h = &default_hstate;
4569 	unsigned long tmp = h->max_huge_pages;
4570 	int ret;
4571 
4572 	if (!hugepages_supported())
4573 		return -EOPNOTSUPP;
4574 
4575 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4576 					     &tmp);
4577 	if (ret)
4578 		goto out;
4579 
4580 	if (write)
4581 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4582 						  NUMA_NO_NODE, tmp, *length);
4583 out:
4584 	return ret;
4585 }
4586 
4587 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4588 			  void *buffer, size_t *length, loff_t *ppos)
4589 {
4590 
4591 	return hugetlb_sysctl_handler_common(false, table, write,
4592 							buffer, length, ppos);
4593 }
4594 
4595 #ifdef CONFIG_NUMA
4596 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4597 			  void *buffer, size_t *length, loff_t *ppos)
4598 {
4599 	return hugetlb_sysctl_handler_common(true, table, write,
4600 							buffer, length, ppos);
4601 }
4602 #endif /* CONFIG_NUMA */
4603 
4604 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4605 		void *buffer, size_t *length, loff_t *ppos)
4606 {
4607 	struct hstate *h = &default_hstate;
4608 	unsigned long tmp;
4609 	int ret;
4610 
4611 	if (!hugepages_supported())
4612 		return -EOPNOTSUPP;
4613 
4614 	tmp = h->nr_overcommit_huge_pages;
4615 
4616 	if (write && hstate_is_gigantic(h))
4617 		return -EINVAL;
4618 
4619 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4620 					     &tmp);
4621 	if (ret)
4622 		goto out;
4623 
4624 	if (write) {
4625 		spin_lock_irq(&hugetlb_lock);
4626 		h->nr_overcommit_huge_pages = tmp;
4627 		spin_unlock_irq(&hugetlb_lock);
4628 	}
4629 out:
4630 	return ret;
4631 }
4632 
4633 #endif /* CONFIG_SYSCTL */
4634 
4635 void hugetlb_report_meminfo(struct seq_file *m)
4636 {
4637 	struct hstate *h;
4638 	unsigned long total = 0;
4639 
4640 	if (!hugepages_supported())
4641 		return;
4642 
4643 	for_each_hstate(h) {
4644 		unsigned long count = h->nr_huge_pages;
4645 
4646 		total += huge_page_size(h) * count;
4647 
4648 		if (h == &default_hstate)
4649 			seq_printf(m,
4650 				   "HugePages_Total:   %5lu\n"
4651 				   "HugePages_Free:    %5lu\n"
4652 				   "HugePages_Rsvd:    %5lu\n"
4653 				   "HugePages_Surp:    %5lu\n"
4654 				   "Hugepagesize:   %8lu kB\n",
4655 				   count,
4656 				   h->free_huge_pages,
4657 				   h->resv_huge_pages,
4658 				   h->surplus_huge_pages,
4659 				   huge_page_size(h) / SZ_1K);
4660 	}
4661 
4662 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4663 }
4664 
4665 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4666 {
4667 	struct hstate *h = &default_hstate;
4668 
4669 	if (!hugepages_supported())
4670 		return 0;
4671 
4672 	return sysfs_emit_at(buf, len,
4673 			     "Node %d HugePages_Total: %5u\n"
4674 			     "Node %d HugePages_Free:  %5u\n"
4675 			     "Node %d HugePages_Surp:  %5u\n",
4676 			     nid, h->nr_huge_pages_node[nid],
4677 			     nid, h->free_huge_pages_node[nid],
4678 			     nid, h->surplus_huge_pages_node[nid]);
4679 }
4680 
4681 void hugetlb_show_meminfo_node(int nid)
4682 {
4683 	struct hstate *h;
4684 
4685 	if (!hugepages_supported())
4686 		return;
4687 
4688 	for_each_hstate(h)
4689 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4690 			nid,
4691 			h->nr_huge_pages_node[nid],
4692 			h->free_huge_pages_node[nid],
4693 			h->surplus_huge_pages_node[nid],
4694 			huge_page_size(h) / SZ_1K);
4695 }
4696 
4697 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4698 {
4699 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4700 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4701 }
4702 
4703 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4704 unsigned long hugetlb_total_pages(void)
4705 {
4706 	struct hstate *h;
4707 	unsigned long nr_total_pages = 0;
4708 
4709 	for_each_hstate(h)
4710 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4711 	return nr_total_pages;
4712 }
4713 
4714 static int hugetlb_acct_memory(struct hstate *h, long delta)
4715 {
4716 	int ret = -ENOMEM;
4717 
4718 	if (!delta)
4719 		return 0;
4720 
4721 	spin_lock_irq(&hugetlb_lock);
4722 	/*
4723 	 * When cpuset is configured, it breaks the strict hugetlb page
4724 	 * reservation as the accounting is done on a global variable. Such
4725 	 * reservation is completely rubbish in the presence of cpuset because
4726 	 * the reservation is not checked against page availability for the
4727 	 * current cpuset. Application can still potentially OOM'ed by kernel
4728 	 * with lack of free htlb page in cpuset that the task is in.
4729 	 * Attempt to enforce strict accounting with cpuset is almost
4730 	 * impossible (or too ugly) because cpuset is too fluid that
4731 	 * task or memory node can be dynamically moved between cpusets.
4732 	 *
4733 	 * The change of semantics for shared hugetlb mapping with cpuset is
4734 	 * undesirable. However, in order to preserve some of the semantics,
4735 	 * we fall back to check against current free page availability as
4736 	 * a best attempt and hopefully to minimize the impact of changing
4737 	 * semantics that cpuset has.
4738 	 *
4739 	 * Apart from cpuset, we also have memory policy mechanism that
4740 	 * also determines from which node the kernel will allocate memory
4741 	 * in a NUMA system. So similar to cpuset, we also should consider
4742 	 * the memory policy of the current task. Similar to the description
4743 	 * above.
4744 	 */
4745 	if (delta > 0) {
4746 		if (gather_surplus_pages(h, delta) < 0)
4747 			goto out;
4748 
4749 		if (delta > allowed_mems_nr(h)) {
4750 			return_unused_surplus_pages(h, delta);
4751 			goto out;
4752 		}
4753 	}
4754 
4755 	ret = 0;
4756 	if (delta < 0)
4757 		return_unused_surplus_pages(h, (unsigned long) -delta);
4758 
4759 out:
4760 	spin_unlock_irq(&hugetlb_lock);
4761 	return ret;
4762 }
4763 
4764 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4765 {
4766 	struct resv_map *resv = vma_resv_map(vma);
4767 
4768 	/*
4769 	 * HPAGE_RESV_OWNER indicates a private mapping.
4770 	 * This new VMA should share its siblings reservation map if present.
4771 	 * The VMA will only ever have a valid reservation map pointer where
4772 	 * it is being copied for another still existing VMA.  As that VMA
4773 	 * has a reference to the reservation map it cannot disappear until
4774 	 * after this open call completes.  It is therefore safe to take a
4775 	 * new reference here without additional locking.
4776 	 */
4777 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4778 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4779 		kref_get(&resv->refs);
4780 	}
4781 
4782 	/*
4783 	 * vma_lock structure for sharable mappings is vma specific.
4784 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4785 	 * new structure.  Before clearing, make sure vma_lock is not
4786 	 * for this vma.
4787 	 */
4788 	if (vma->vm_flags & VM_MAYSHARE) {
4789 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4790 
4791 		if (vma_lock) {
4792 			if (vma_lock->vma != vma) {
4793 				vma->vm_private_data = NULL;
4794 				hugetlb_vma_lock_alloc(vma);
4795 			} else
4796 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4797 		} else
4798 			hugetlb_vma_lock_alloc(vma);
4799 	}
4800 }
4801 
4802 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4803 {
4804 	struct hstate *h = hstate_vma(vma);
4805 	struct resv_map *resv;
4806 	struct hugepage_subpool *spool = subpool_vma(vma);
4807 	unsigned long reserve, start, end;
4808 	long gbl_reserve;
4809 
4810 	hugetlb_vma_lock_free(vma);
4811 
4812 	resv = vma_resv_map(vma);
4813 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4814 		return;
4815 
4816 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4817 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4818 
4819 	reserve = (end - start) - region_count(resv, start, end);
4820 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4821 	if (reserve) {
4822 		/*
4823 		 * Decrement reserve counts.  The global reserve count may be
4824 		 * adjusted if the subpool has a minimum size.
4825 		 */
4826 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4827 		hugetlb_acct_memory(h, -gbl_reserve);
4828 	}
4829 
4830 	kref_put(&resv->refs, resv_map_release);
4831 }
4832 
4833 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4834 {
4835 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4836 		return -EINVAL;
4837 	return 0;
4838 }
4839 
4840 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4841 {
4842 	return huge_page_size(hstate_vma(vma));
4843 }
4844 
4845 /*
4846  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4847  * handle_mm_fault() to try to instantiate regular-sized pages in the
4848  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4849  * this far.
4850  */
4851 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4852 {
4853 	BUG();
4854 	return 0;
4855 }
4856 
4857 /*
4858  * When a new function is introduced to vm_operations_struct and added
4859  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4860  * This is because under System V memory model, mappings created via
4861  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4862  * their original vm_ops are overwritten with shm_vm_ops.
4863  */
4864 const struct vm_operations_struct hugetlb_vm_ops = {
4865 	.fault = hugetlb_vm_op_fault,
4866 	.open = hugetlb_vm_op_open,
4867 	.close = hugetlb_vm_op_close,
4868 	.may_split = hugetlb_vm_op_split,
4869 	.pagesize = hugetlb_vm_op_pagesize,
4870 };
4871 
4872 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4873 				int writable)
4874 {
4875 	pte_t entry;
4876 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4877 
4878 	if (writable) {
4879 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4880 					 vma->vm_page_prot)));
4881 	} else {
4882 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4883 					   vma->vm_page_prot));
4884 	}
4885 	entry = pte_mkyoung(entry);
4886 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4887 
4888 	return entry;
4889 }
4890 
4891 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4892 				   unsigned long address, pte_t *ptep)
4893 {
4894 	pte_t entry;
4895 
4896 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4897 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4898 		update_mmu_cache(vma, address, ptep);
4899 }
4900 
4901 bool is_hugetlb_entry_migration(pte_t pte)
4902 {
4903 	swp_entry_t swp;
4904 
4905 	if (huge_pte_none(pte) || pte_present(pte))
4906 		return false;
4907 	swp = pte_to_swp_entry(pte);
4908 	if (is_migration_entry(swp))
4909 		return true;
4910 	else
4911 		return false;
4912 }
4913 
4914 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4915 {
4916 	swp_entry_t swp;
4917 
4918 	if (huge_pte_none(pte) || pte_present(pte))
4919 		return false;
4920 	swp = pte_to_swp_entry(pte);
4921 	if (is_hwpoison_entry(swp))
4922 		return true;
4923 	else
4924 		return false;
4925 }
4926 
4927 static void
4928 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4929 		     struct page *new_page)
4930 {
4931 	__SetPageUptodate(new_page);
4932 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4933 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4934 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4935 	SetHPageMigratable(new_page);
4936 }
4937 
4938 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4939 			    struct vm_area_struct *dst_vma,
4940 			    struct vm_area_struct *src_vma)
4941 {
4942 	pte_t *src_pte, *dst_pte, entry;
4943 	struct page *ptepage;
4944 	unsigned long addr;
4945 	bool cow = is_cow_mapping(src_vma->vm_flags);
4946 	struct hstate *h = hstate_vma(src_vma);
4947 	unsigned long sz = huge_page_size(h);
4948 	unsigned long npages = pages_per_huge_page(h);
4949 	struct mmu_notifier_range range;
4950 	unsigned long last_addr_mask;
4951 	int ret = 0;
4952 
4953 	if (cow) {
4954 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4955 					src_vma->vm_start,
4956 					src_vma->vm_end);
4957 		mmu_notifier_invalidate_range_start(&range);
4958 		mmap_assert_write_locked(src);
4959 		raw_write_seqcount_begin(&src->write_protect_seq);
4960 	} else {
4961 		/*
4962 		 * For shared mappings the vma lock must be held before
4963 		 * calling huge_pte_offset in the src vma. Otherwise, the
4964 		 * returned ptep could go away if part of a shared pmd and
4965 		 * another thread calls huge_pmd_unshare.
4966 		 */
4967 		hugetlb_vma_lock_read(src_vma);
4968 	}
4969 
4970 	last_addr_mask = hugetlb_mask_last_page(h);
4971 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4972 		spinlock_t *src_ptl, *dst_ptl;
4973 		src_pte = huge_pte_offset(src, addr, sz);
4974 		if (!src_pte) {
4975 			addr |= last_addr_mask;
4976 			continue;
4977 		}
4978 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4979 		if (!dst_pte) {
4980 			ret = -ENOMEM;
4981 			break;
4982 		}
4983 
4984 		/*
4985 		 * If the pagetables are shared don't copy or take references.
4986 		 *
4987 		 * dst_pte == src_pte is the common case of src/dest sharing.
4988 		 * However, src could have 'unshared' and dst shares with
4989 		 * another vma. So page_count of ptep page is checked instead
4990 		 * to reliably determine whether pte is shared.
4991 		 */
4992 		if (page_count(virt_to_page(dst_pte)) > 1) {
4993 			addr |= last_addr_mask;
4994 			continue;
4995 		}
4996 
4997 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4998 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4999 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5000 		entry = huge_ptep_get(src_pte);
5001 again:
5002 		if (huge_pte_none(entry)) {
5003 			/*
5004 			 * Skip if src entry none.
5005 			 */
5006 			;
5007 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5008 			bool uffd_wp = huge_pte_uffd_wp(entry);
5009 
5010 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
5011 				entry = huge_pte_clear_uffd_wp(entry);
5012 			set_huge_pte_at(dst, addr, dst_pte, entry);
5013 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5014 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5015 			bool uffd_wp = huge_pte_uffd_wp(entry);
5016 
5017 			if (!is_readable_migration_entry(swp_entry) && cow) {
5018 				/*
5019 				 * COW mappings require pages in both
5020 				 * parent and child to be set to read.
5021 				 */
5022 				swp_entry = make_readable_migration_entry(
5023 							swp_offset(swp_entry));
5024 				entry = swp_entry_to_pte(swp_entry);
5025 				if (userfaultfd_wp(src_vma) && uffd_wp)
5026 					entry = huge_pte_mkuffd_wp(entry);
5027 				set_huge_pte_at(src, addr, src_pte, entry);
5028 			}
5029 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
5030 				entry = huge_pte_clear_uffd_wp(entry);
5031 			set_huge_pte_at(dst, addr, dst_pte, entry);
5032 		} else if (unlikely(is_pte_marker(entry))) {
5033 			/*
5034 			 * We copy the pte marker only if the dst vma has
5035 			 * uffd-wp enabled.
5036 			 */
5037 			if (userfaultfd_wp(dst_vma))
5038 				set_huge_pte_at(dst, addr, dst_pte, entry);
5039 		} else {
5040 			entry = huge_ptep_get(src_pte);
5041 			ptepage = pte_page(entry);
5042 			get_page(ptepage);
5043 
5044 			/*
5045 			 * Failing to duplicate the anon rmap is a rare case
5046 			 * where we see pinned hugetlb pages while they're
5047 			 * prone to COW. We need to do the COW earlier during
5048 			 * fork.
5049 			 *
5050 			 * When pre-allocating the page or copying data, we
5051 			 * need to be without the pgtable locks since we could
5052 			 * sleep during the process.
5053 			 */
5054 			if (!PageAnon(ptepage)) {
5055 				page_dup_file_rmap(ptepage, true);
5056 			} else if (page_try_dup_anon_rmap(ptepage, true,
5057 							  src_vma)) {
5058 				pte_t src_pte_old = entry;
5059 				struct page *new;
5060 
5061 				spin_unlock(src_ptl);
5062 				spin_unlock(dst_ptl);
5063 				/* Do not use reserve as it's private owned */
5064 				new = alloc_huge_page(dst_vma, addr, 1);
5065 				if (IS_ERR(new)) {
5066 					put_page(ptepage);
5067 					ret = PTR_ERR(new);
5068 					break;
5069 				}
5070 				copy_user_huge_page(new, ptepage, addr, dst_vma,
5071 						    npages);
5072 				put_page(ptepage);
5073 
5074 				/* Install the new huge page if src pte stable */
5075 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5076 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5077 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5078 				entry = huge_ptep_get(src_pte);
5079 				if (!pte_same(src_pte_old, entry)) {
5080 					restore_reserve_on_error(h, dst_vma, addr,
5081 								new);
5082 					put_page(new);
5083 					/* huge_ptep of dst_pte won't change as in child */
5084 					goto again;
5085 				}
5086 				hugetlb_install_page(dst_vma, dst_pte, addr, new);
5087 				spin_unlock(src_ptl);
5088 				spin_unlock(dst_ptl);
5089 				continue;
5090 			}
5091 
5092 			if (cow) {
5093 				/*
5094 				 * No need to notify as we are downgrading page
5095 				 * table protection not changing it to point
5096 				 * to a new page.
5097 				 *
5098 				 * See Documentation/mm/mmu_notifier.rst
5099 				 */
5100 				huge_ptep_set_wrprotect(src, addr, src_pte);
5101 				entry = huge_pte_wrprotect(entry);
5102 			}
5103 
5104 			set_huge_pte_at(dst, addr, dst_pte, entry);
5105 			hugetlb_count_add(npages, dst);
5106 		}
5107 		spin_unlock(src_ptl);
5108 		spin_unlock(dst_ptl);
5109 	}
5110 
5111 	if (cow) {
5112 		raw_write_seqcount_end(&src->write_protect_seq);
5113 		mmu_notifier_invalidate_range_end(&range);
5114 	} else {
5115 		hugetlb_vma_unlock_read(src_vma);
5116 	}
5117 
5118 	return ret;
5119 }
5120 
5121 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5122 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5123 {
5124 	struct hstate *h = hstate_vma(vma);
5125 	struct mm_struct *mm = vma->vm_mm;
5126 	spinlock_t *src_ptl, *dst_ptl;
5127 	pte_t pte;
5128 
5129 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5130 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5131 
5132 	/*
5133 	 * We don't have to worry about the ordering of src and dst ptlocks
5134 	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
5135 	 */
5136 	if (src_ptl != dst_ptl)
5137 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5138 
5139 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5140 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
5141 
5142 	if (src_ptl != dst_ptl)
5143 		spin_unlock(src_ptl);
5144 	spin_unlock(dst_ptl);
5145 }
5146 
5147 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5148 			     struct vm_area_struct *new_vma,
5149 			     unsigned long old_addr, unsigned long new_addr,
5150 			     unsigned long len)
5151 {
5152 	struct hstate *h = hstate_vma(vma);
5153 	struct address_space *mapping = vma->vm_file->f_mapping;
5154 	unsigned long sz = huge_page_size(h);
5155 	struct mm_struct *mm = vma->vm_mm;
5156 	unsigned long old_end = old_addr + len;
5157 	unsigned long last_addr_mask;
5158 	pte_t *src_pte, *dst_pte;
5159 	struct mmu_notifier_range range;
5160 	bool shared_pmd = false;
5161 
5162 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5163 				old_end);
5164 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5165 	/*
5166 	 * In case of shared PMDs, we should cover the maximum possible
5167 	 * range.
5168 	 */
5169 	flush_cache_range(vma, range.start, range.end);
5170 
5171 	mmu_notifier_invalidate_range_start(&range);
5172 	last_addr_mask = hugetlb_mask_last_page(h);
5173 	/* Prevent race with file truncation */
5174 	hugetlb_vma_lock_write(vma);
5175 	i_mmap_lock_write(mapping);
5176 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5177 		src_pte = huge_pte_offset(mm, old_addr, sz);
5178 		if (!src_pte) {
5179 			old_addr |= last_addr_mask;
5180 			new_addr |= last_addr_mask;
5181 			continue;
5182 		}
5183 		if (huge_pte_none(huge_ptep_get(src_pte)))
5184 			continue;
5185 
5186 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5187 			shared_pmd = true;
5188 			old_addr |= last_addr_mask;
5189 			new_addr |= last_addr_mask;
5190 			continue;
5191 		}
5192 
5193 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5194 		if (!dst_pte)
5195 			break;
5196 
5197 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5198 	}
5199 
5200 	if (shared_pmd)
5201 		flush_tlb_range(vma, range.start, range.end);
5202 	else
5203 		flush_tlb_range(vma, old_end - len, old_end);
5204 	mmu_notifier_invalidate_range_end(&range);
5205 	i_mmap_unlock_write(mapping);
5206 	hugetlb_vma_unlock_write(vma);
5207 
5208 	return len + old_addr - old_end;
5209 }
5210 
5211 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5212 				   unsigned long start, unsigned long end,
5213 				   struct page *ref_page, zap_flags_t zap_flags)
5214 {
5215 	struct mm_struct *mm = vma->vm_mm;
5216 	unsigned long address;
5217 	pte_t *ptep;
5218 	pte_t pte;
5219 	spinlock_t *ptl;
5220 	struct page *page;
5221 	struct hstate *h = hstate_vma(vma);
5222 	unsigned long sz = huge_page_size(h);
5223 	unsigned long last_addr_mask;
5224 	bool force_flush = false;
5225 
5226 	WARN_ON(!is_vm_hugetlb_page(vma));
5227 	BUG_ON(start & ~huge_page_mask(h));
5228 	BUG_ON(end & ~huge_page_mask(h));
5229 
5230 	/*
5231 	 * This is a hugetlb vma, all the pte entries should point
5232 	 * to huge page.
5233 	 */
5234 	tlb_change_page_size(tlb, sz);
5235 	tlb_start_vma(tlb, vma);
5236 
5237 	last_addr_mask = hugetlb_mask_last_page(h);
5238 	address = start;
5239 	for (; address < end; address += sz) {
5240 		ptep = huge_pte_offset(mm, address, sz);
5241 		if (!ptep) {
5242 			address |= last_addr_mask;
5243 			continue;
5244 		}
5245 
5246 		ptl = huge_pte_lock(h, mm, ptep);
5247 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5248 			spin_unlock(ptl);
5249 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5250 			force_flush = true;
5251 			address |= last_addr_mask;
5252 			continue;
5253 		}
5254 
5255 		pte = huge_ptep_get(ptep);
5256 		if (huge_pte_none(pte)) {
5257 			spin_unlock(ptl);
5258 			continue;
5259 		}
5260 
5261 		/*
5262 		 * Migrating hugepage or HWPoisoned hugepage is already
5263 		 * unmapped and its refcount is dropped, so just clear pte here.
5264 		 */
5265 		if (unlikely(!pte_present(pte))) {
5266 			/*
5267 			 * If the pte was wr-protected by uffd-wp in any of the
5268 			 * swap forms, meanwhile the caller does not want to
5269 			 * drop the uffd-wp bit in this zap, then replace the
5270 			 * pte with a marker.
5271 			 */
5272 			if (pte_swp_uffd_wp_any(pte) &&
5273 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5274 				set_huge_pte_at(mm, address, ptep,
5275 						make_pte_marker(PTE_MARKER_UFFD_WP));
5276 			else
5277 				huge_pte_clear(mm, address, ptep, sz);
5278 			spin_unlock(ptl);
5279 			continue;
5280 		}
5281 
5282 		page = pte_page(pte);
5283 		/*
5284 		 * If a reference page is supplied, it is because a specific
5285 		 * page is being unmapped, not a range. Ensure the page we
5286 		 * are about to unmap is the actual page of interest.
5287 		 */
5288 		if (ref_page) {
5289 			if (page != ref_page) {
5290 				spin_unlock(ptl);
5291 				continue;
5292 			}
5293 			/*
5294 			 * Mark the VMA as having unmapped its page so that
5295 			 * future faults in this VMA will fail rather than
5296 			 * looking like data was lost
5297 			 */
5298 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5299 		}
5300 
5301 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5302 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5303 		if (huge_pte_dirty(pte))
5304 			set_page_dirty(page);
5305 		/* Leave a uffd-wp pte marker if needed */
5306 		if (huge_pte_uffd_wp(pte) &&
5307 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5308 			set_huge_pte_at(mm, address, ptep,
5309 					make_pte_marker(PTE_MARKER_UFFD_WP));
5310 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5311 		page_remove_rmap(page, vma, true);
5312 
5313 		spin_unlock(ptl);
5314 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5315 		/*
5316 		 * Bail out after unmapping reference page if supplied
5317 		 */
5318 		if (ref_page)
5319 			break;
5320 	}
5321 	tlb_end_vma(tlb, vma);
5322 
5323 	/*
5324 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5325 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5326 	 * guaranteed that the last refernece would not be dropped. But we must
5327 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5328 	 * dropped and the last reference to the shared PMDs page might be
5329 	 * dropped as well.
5330 	 *
5331 	 * In theory we could defer the freeing of the PMD pages as well, but
5332 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5333 	 * detect sharing, so we cannot defer the release of the page either.
5334 	 * Instead, do flush now.
5335 	 */
5336 	if (force_flush)
5337 		tlb_flush_mmu_tlbonly(tlb);
5338 }
5339 
5340 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5341 			  struct vm_area_struct *vma, unsigned long start,
5342 			  unsigned long end, struct page *ref_page,
5343 			  zap_flags_t zap_flags)
5344 {
5345 	hugetlb_vma_lock_write(vma);
5346 	i_mmap_lock_write(vma->vm_file->f_mapping);
5347 
5348 	/* mmu notification performed in caller */
5349 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5350 
5351 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5352 		/*
5353 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5354 		 * When the vma_lock is freed, this makes the vma ineligible
5355 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5356 		 * pmd sharing.  This is important as page tables for this
5357 		 * unmapped range will be asynchrously deleted.  If the page
5358 		 * tables are shared, there will be issues when accessed by
5359 		 * someone else.
5360 		 */
5361 		__hugetlb_vma_unlock_write_free(vma);
5362 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5363 	} else {
5364 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5365 		hugetlb_vma_unlock_write(vma);
5366 	}
5367 }
5368 
5369 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5370 			  unsigned long end, struct page *ref_page,
5371 			  zap_flags_t zap_flags)
5372 {
5373 	struct mmu_notifier_range range;
5374 	struct mmu_gather tlb;
5375 
5376 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
5377 				start, end);
5378 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5379 	mmu_notifier_invalidate_range_start(&range);
5380 	tlb_gather_mmu(&tlb, vma->vm_mm);
5381 
5382 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5383 
5384 	mmu_notifier_invalidate_range_end(&range);
5385 	tlb_finish_mmu(&tlb);
5386 }
5387 
5388 /*
5389  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5390  * mapping it owns the reserve page for. The intention is to unmap the page
5391  * from other VMAs and let the children be SIGKILLed if they are faulting the
5392  * same region.
5393  */
5394 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5395 			      struct page *page, unsigned long address)
5396 {
5397 	struct hstate *h = hstate_vma(vma);
5398 	struct vm_area_struct *iter_vma;
5399 	struct address_space *mapping;
5400 	pgoff_t pgoff;
5401 
5402 	/*
5403 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5404 	 * from page cache lookup which is in HPAGE_SIZE units.
5405 	 */
5406 	address = address & huge_page_mask(h);
5407 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5408 			vma->vm_pgoff;
5409 	mapping = vma->vm_file->f_mapping;
5410 
5411 	/*
5412 	 * Take the mapping lock for the duration of the table walk. As
5413 	 * this mapping should be shared between all the VMAs,
5414 	 * __unmap_hugepage_range() is called as the lock is already held
5415 	 */
5416 	i_mmap_lock_write(mapping);
5417 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5418 		/* Do not unmap the current VMA */
5419 		if (iter_vma == vma)
5420 			continue;
5421 
5422 		/*
5423 		 * Shared VMAs have their own reserves and do not affect
5424 		 * MAP_PRIVATE accounting but it is possible that a shared
5425 		 * VMA is using the same page so check and skip such VMAs.
5426 		 */
5427 		if (iter_vma->vm_flags & VM_MAYSHARE)
5428 			continue;
5429 
5430 		/*
5431 		 * Unmap the page from other VMAs without their own reserves.
5432 		 * They get marked to be SIGKILLed if they fault in these
5433 		 * areas. This is because a future no-page fault on this VMA
5434 		 * could insert a zeroed page instead of the data existing
5435 		 * from the time of fork. This would look like data corruption
5436 		 */
5437 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5438 			unmap_hugepage_range(iter_vma, address,
5439 					     address + huge_page_size(h), page, 0);
5440 	}
5441 	i_mmap_unlock_write(mapping);
5442 }
5443 
5444 /*
5445  * hugetlb_wp() should be called with page lock of the original hugepage held.
5446  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5447  * cannot race with other handlers or page migration.
5448  * Keep the pte_same checks anyway to make transition from the mutex easier.
5449  */
5450 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5451 		       unsigned long address, pte_t *ptep, unsigned int flags,
5452 		       struct page *pagecache_page, spinlock_t *ptl)
5453 {
5454 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5455 	pte_t pte;
5456 	struct hstate *h = hstate_vma(vma);
5457 	struct page *old_page, *new_page;
5458 	int outside_reserve = 0;
5459 	vm_fault_t ret = 0;
5460 	unsigned long haddr = address & huge_page_mask(h);
5461 	struct mmu_notifier_range range;
5462 
5463 	/*
5464 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5465 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5466 	 */
5467 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5468 		return VM_FAULT_SIGSEGV;
5469 
5470 	/* Let's take out MAP_SHARED mappings first. */
5471 	if (vma->vm_flags & VM_MAYSHARE) {
5472 		set_huge_ptep_writable(vma, haddr, ptep);
5473 		return 0;
5474 	}
5475 
5476 	pte = huge_ptep_get(ptep);
5477 	old_page = pte_page(pte);
5478 
5479 	delayacct_wpcopy_start();
5480 
5481 retry_avoidcopy:
5482 	/*
5483 	 * If no-one else is actually using this page, we're the exclusive
5484 	 * owner and can reuse this page.
5485 	 */
5486 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5487 		if (!PageAnonExclusive(old_page))
5488 			page_move_anon_rmap(old_page, vma);
5489 		if (likely(!unshare))
5490 			set_huge_ptep_writable(vma, haddr, ptep);
5491 
5492 		delayacct_wpcopy_end();
5493 		return 0;
5494 	}
5495 	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5496 		       old_page);
5497 
5498 	/*
5499 	 * If the process that created a MAP_PRIVATE mapping is about to
5500 	 * perform a COW due to a shared page count, attempt to satisfy
5501 	 * the allocation without using the existing reserves. The pagecache
5502 	 * page is used to determine if the reserve at this address was
5503 	 * consumed or not. If reserves were used, a partial faulted mapping
5504 	 * at the time of fork() could consume its reserves on COW instead
5505 	 * of the full address range.
5506 	 */
5507 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5508 			old_page != pagecache_page)
5509 		outside_reserve = 1;
5510 
5511 	get_page(old_page);
5512 
5513 	/*
5514 	 * Drop page table lock as buddy allocator may be called. It will
5515 	 * be acquired again before returning to the caller, as expected.
5516 	 */
5517 	spin_unlock(ptl);
5518 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5519 
5520 	if (IS_ERR(new_page)) {
5521 		/*
5522 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5523 		 * it is due to references held by a child and an insufficient
5524 		 * huge page pool. To guarantee the original mappers
5525 		 * reliability, unmap the page from child processes. The child
5526 		 * may get SIGKILLed if it later faults.
5527 		 */
5528 		if (outside_reserve) {
5529 			struct address_space *mapping = vma->vm_file->f_mapping;
5530 			pgoff_t idx;
5531 			u32 hash;
5532 
5533 			put_page(old_page);
5534 			/*
5535 			 * Drop hugetlb_fault_mutex and vma_lock before
5536 			 * unmapping.  unmapping needs to hold vma_lock
5537 			 * in write mode.  Dropping vma_lock in read mode
5538 			 * here is OK as COW mappings do not interact with
5539 			 * PMD sharing.
5540 			 *
5541 			 * Reacquire both after unmap operation.
5542 			 */
5543 			idx = vma_hugecache_offset(h, vma, haddr);
5544 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5545 			hugetlb_vma_unlock_read(vma);
5546 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5547 
5548 			unmap_ref_private(mm, vma, old_page, haddr);
5549 
5550 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5551 			hugetlb_vma_lock_read(vma);
5552 			spin_lock(ptl);
5553 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5554 			if (likely(ptep &&
5555 				   pte_same(huge_ptep_get(ptep), pte)))
5556 				goto retry_avoidcopy;
5557 			/*
5558 			 * race occurs while re-acquiring page table
5559 			 * lock, and our job is done.
5560 			 */
5561 			delayacct_wpcopy_end();
5562 			return 0;
5563 		}
5564 
5565 		ret = vmf_error(PTR_ERR(new_page));
5566 		goto out_release_old;
5567 	}
5568 
5569 	/*
5570 	 * When the original hugepage is shared one, it does not have
5571 	 * anon_vma prepared.
5572 	 */
5573 	if (unlikely(anon_vma_prepare(vma))) {
5574 		ret = VM_FAULT_OOM;
5575 		goto out_release_all;
5576 	}
5577 
5578 	copy_user_huge_page(new_page, old_page, address, vma,
5579 			    pages_per_huge_page(h));
5580 	__SetPageUptodate(new_page);
5581 
5582 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5583 				haddr + huge_page_size(h));
5584 	mmu_notifier_invalidate_range_start(&range);
5585 
5586 	/*
5587 	 * Retake the page table lock to check for racing updates
5588 	 * before the page tables are altered
5589 	 */
5590 	spin_lock(ptl);
5591 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5592 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5593 		/* Break COW or unshare */
5594 		huge_ptep_clear_flush(vma, haddr, ptep);
5595 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5596 		page_remove_rmap(old_page, vma, true);
5597 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5598 		set_huge_pte_at(mm, haddr, ptep,
5599 				make_huge_pte(vma, new_page, !unshare));
5600 		SetHPageMigratable(new_page);
5601 		/* Make the old page be freed below */
5602 		new_page = old_page;
5603 	}
5604 	spin_unlock(ptl);
5605 	mmu_notifier_invalidate_range_end(&range);
5606 out_release_all:
5607 	/*
5608 	 * No restore in case of successful pagetable update (Break COW or
5609 	 * unshare)
5610 	 */
5611 	if (new_page != old_page)
5612 		restore_reserve_on_error(h, vma, haddr, new_page);
5613 	put_page(new_page);
5614 out_release_old:
5615 	put_page(old_page);
5616 
5617 	spin_lock(ptl); /* Caller expects lock to be held */
5618 
5619 	delayacct_wpcopy_end();
5620 	return ret;
5621 }
5622 
5623 /*
5624  * Return whether there is a pagecache page to back given address within VMA.
5625  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5626  */
5627 static bool hugetlbfs_pagecache_present(struct hstate *h,
5628 			struct vm_area_struct *vma, unsigned long address)
5629 {
5630 	struct address_space *mapping;
5631 	pgoff_t idx;
5632 	struct page *page;
5633 
5634 	mapping = vma->vm_file->f_mapping;
5635 	idx = vma_hugecache_offset(h, vma, address);
5636 
5637 	page = find_get_page(mapping, idx);
5638 	if (page)
5639 		put_page(page);
5640 	return page != NULL;
5641 }
5642 
5643 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5644 			   pgoff_t idx)
5645 {
5646 	struct folio *folio = page_folio(page);
5647 	struct inode *inode = mapping->host;
5648 	struct hstate *h = hstate_inode(inode);
5649 	int err;
5650 
5651 	__folio_set_locked(folio);
5652 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5653 
5654 	if (unlikely(err)) {
5655 		__folio_clear_locked(folio);
5656 		return err;
5657 	}
5658 	ClearHPageRestoreReserve(page);
5659 
5660 	/*
5661 	 * mark folio dirty so that it will not be removed from cache/file
5662 	 * by non-hugetlbfs specific code paths.
5663 	 */
5664 	folio_mark_dirty(folio);
5665 
5666 	spin_lock(&inode->i_lock);
5667 	inode->i_blocks += blocks_per_huge_page(h);
5668 	spin_unlock(&inode->i_lock);
5669 	return 0;
5670 }
5671 
5672 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5673 						  struct address_space *mapping,
5674 						  pgoff_t idx,
5675 						  unsigned int flags,
5676 						  unsigned long haddr,
5677 						  unsigned long addr,
5678 						  unsigned long reason)
5679 {
5680 	u32 hash;
5681 	struct vm_fault vmf = {
5682 		.vma = vma,
5683 		.address = haddr,
5684 		.real_address = addr,
5685 		.flags = flags,
5686 
5687 		/*
5688 		 * Hard to debug if it ends up being
5689 		 * used by a callee that assumes
5690 		 * something about the other
5691 		 * uninitialized fields... same as in
5692 		 * memory.c
5693 		 */
5694 	};
5695 
5696 	/*
5697 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5698 	 * userfault. Also mmap_lock could be dropped due to handling
5699 	 * userfault, any vma operation should be careful from here.
5700 	 */
5701 	hugetlb_vma_unlock_read(vma);
5702 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5703 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5704 	return handle_userfault(&vmf, reason);
5705 }
5706 
5707 /*
5708  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5709  * false if pte changed or is changing.
5710  */
5711 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5712 			       pte_t *ptep, pte_t old_pte)
5713 {
5714 	spinlock_t *ptl;
5715 	bool same;
5716 
5717 	ptl = huge_pte_lock(h, mm, ptep);
5718 	same = pte_same(huge_ptep_get(ptep), old_pte);
5719 	spin_unlock(ptl);
5720 
5721 	return same;
5722 }
5723 
5724 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5725 			struct vm_area_struct *vma,
5726 			struct address_space *mapping, pgoff_t idx,
5727 			unsigned long address, pte_t *ptep,
5728 			pte_t old_pte, unsigned int flags)
5729 {
5730 	struct hstate *h = hstate_vma(vma);
5731 	vm_fault_t ret = VM_FAULT_SIGBUS;
5732 	int anon_rmap = 0;
5733 	unsigned long size;
5734 	struct page *page;
5735 	pte_t new_pte;
5736 	spinlock_t *ptl;
5737 	unsigned long haddr = address & huge_page_mask(h);
5738 	bool new_page, new_pagecache_page = false;
5739 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5740 
5741 	/*
5742 	 * Currently, we are forced to kill the process in the event the
5743 	 * original mapper has unmapped pages from the child due to a failed
5744 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5745 	 * be obvious.
5746 	 */
5747 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5748 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5749 			   current->pid);
5750 		goto out;
5751 	}
5752 
5753 	/*
5754 	 * Use page lock to guard against racing truncation
5755 	 * before we get page_table_lock.
5756 	 */
5757 	new_page = false;
5758 	page = find_lock_page(mapping, idx);
5759 	if (!page) {
5760 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5761 		if (idx >= size)
5762 			goto out;
5763 		/* Check for page in userfault range */
5764 		if (userfaultfd_missing(vma)) {
5765 			/*
5766 			 * Since hugetlb_no_page() was examining pte
5767 			 * without pgtable lock, we need to re-test under
5768 			 * lock because the pte may not be stable and could
5769 			 * have changed from under us.  Try to detect
5770 			 * either changed or during-changing ptes and retry
5771 			 * properly when needed.
5772 			 *
5773 			 * Note that userfaultfd is actually fine with
5774 			 * false positives (e.g. caused by pte changed),
5775 			 * but not wrong logical events (e.g. caused by
5776 			 * reading a pte during changing).  The latter can
5777 			 * confuse the userspace, so the strictness is very
5778 			 * much preferred.  E.g., MISSING event should
5779 			 * never happen on the page after UFFDIO_COPY has
5780 			 * correctly installed the page and returned.
5781 			 */
5782 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5783 				ret = 0;
5784 				goto out;
5785 			}
5786 
5787 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5788 							haddr, address,
5789 							VM_UFFD_MISSING);
5790 		}
5791 
5792 		page = alloc_huge_page(vma, haddr, 0);
5793 		if (IS_ERR(page)) {
5794 			/*
5795 			 * Returning error will result in faulting task being
5796 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5797 			 * tasks from racing to fault in the same page which
5798 			 * could result in false unable to allocate errors.
5799 			 * Page migration does not take the fault mutex, but
5800 			 * does a clear then write of pte's under page table
5801 			 * lock.  Page fault code could race with migration,
5802 			 * notice the clear pte and try to allocate a page
5803 			 * here.  Before returning error, get ptl and make
5804 			 * sure there really is no pte entry.
5805 			 */
5806 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5807 				ret = vmf_error(PTR_ERR(page));
5808 			else
5809 				ret = 0;
5810 			goto out;
5811 		}
5812 		clear_huge_page(page, address, pages_per_huge_page(h));
5813 		__SetPageUptodate(page);
5814 		new_page = true;
5815 
5816 		if (vma->vm_flags & VM_MAYSHARE) {
5817 			int err = hugetlb_add_to_page_cache(page, mapping, idx);
5818 			if (err) {
5819 				/*
5820 				 * err can't be -EEXIST which implies someone
5821 				 * else consumed the reservation since hugetlb
5822 				 * fault mutex is held when add a hugetlb page
5823 				 * to the page cache. So it's safe to call
5824 				 * restore_reserve_on_error() here.
5825 				 */
5826 				restore_reserve_on_error(h, vma, haddr, page);
5827 				put_page(page);
5828 				goto out;
5829 			}
5830 			new_pagecache_page = true;
5831 		} else {
5832 			lock_page(page);
5833 			if (unlikely(anon_vma_prepare(vma))) {
5834 				ret = VM_FAULT_OOM;
5835 				goto backout_unlocked;
5836 			}
5837 			anon_rmap = 1;
5838 		}
5839 	} else {
5840 		/*
5841 		 * If memory error occurs between mmap() and fault, some process
5842 		 * don't have hwpoisoned swap entry for errored virtual address.
5843 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5844 		 */
5845 		if (unlikely(PageHWPoison(page))) {
5846 			ret = VM_FAULT_HWPOISON_LARGE |
5847 				VM_FAULT_SET_HINDEX(hstate_index(h));
5848 			goto backout_unlocked;
5849 		}
5850 
5851 		/* Check for page in userfault range. */
5852 		if (userfaultfd_minor(vma)) {
5853 			unlock_page(page);
5854 			put_page(page);
5855 			/* See comment in userfaultfd_missing() block above */
5856 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5857 				ret = 0;
5858 				goto out;
5859 			}
5860 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5861 							haddr, address,
5862 							VM_UFFD_MINOR);
5863 		}
5864 	}
5865 
5866 	/*
5867 	 * If we are going to COW a private mapping later, we examine the
5868 	 * pending reservations for this page now. This will ensure that
5869 	 * any allocations necessary to record that reservation occur outside
5870 	 * the spinlock.
5871 	 */
5872 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5873 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5874 			ret = VM_FAULT_OOM;
5875 			goto backout_unlocked;
5876 		}
5877 		/* Just decrements count, does not deallocate */
5878 		vma_end_reservation(h, vma, haddr);
5879 	}
5880 
5881 	ptl = huge_pte_lock(h, mm, ptep);
5882 	ret = 0;
5883 	/* If pte changed from under us, retry */
5884 	if (!pte_same(huge_ptep_get(ptep), old_pte))
5885 		goto backout;
5886 
5887 	if (anon_rmap)
5888 		hugepage_add_new_anon_rmap(page, vma, haddr);
5889 	else
5890 		page_dup_file_rmap(page, true);
5891 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5892 				&& (vma->vm_flags & VM_SHARED)));
5893 	/*
5894 	 * If this pte was previously wr-protected, keep it wr-protected even
5895 	 * if populated.
5896 	 */
5897 	if (unlikely(pte_marker_uffd_wp(old_pte)))
5898 		new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5899 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5900 
5901 	hugetlb_count_add(pages_per_huge_page(h), mm);
5902 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5903 		/* Optimization, do the COW without a second fault */
5904 		ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5905 	}
5906 
5907 	spin_unlock(ptl);
5908 
5909 	/*
5910 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5911 	 * found in the pagecache may not have HPageMigratableset if they have
5912 	 * been isolated for migration.
5913 	 */
5914 	if (new_page)
5915 		SetHPageMigratable(page);
5916 
5917 	unlock_page(page);
5918 out:
5919 	hugetlb_vma_unlock_read(vma);
5920 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5921 	return ret;
5922 
5923 backout:
5924 	spin_unlock(ptl);
5925 backout_unlocked:
5926 	if (new_page && !new_pagecache_page)
5927 		restore_reserve_on_error(h, vma, haddr, page);
5928 
5929 	unlock_page(page);
5930 	put_page(page);
5931 	goto out;
5932 }
5933 
5934 #ifdef CONFIG_SMP
5935 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5936 {
5937 	unsigned long key[2];
5938 	u32 hash;
5939 
5940 	key[0] = (unsigned long) mapping;
5941 	key[1] = idx;
5942 
5943 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5944 
5945 	return hash & (num_fault_mutexes - 1);
5946 }
5947 #else
5948 /*
5949  * For uniprocessor systems we always use a single mutex, so just
5950  * return 0 and avoid the hashing overhead.
5951  */
5952 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5953 {
5954 	return 0;
5955 }
5956 #endif
5957 
5958 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5959 			unsigned long address, unsigned int flags)
5960 {
5961 	pte_t *ptep, entry;
5962 	spinlock_t *ptl;
5963 	vm_fault_t ret;
5964 	u32 hash;
5965 	pgoff_t idx;
5966 	struct page *page = NULL;
5967 	struct page *pagecache_page = NULL;
5968 	struct hstate *h = hstate_vma(vma);
5969 	struct address_space *mapping;
5970 	int need_wait_lock = 0;
5971 	unsigned long haddr = address & huge_page_mask(h);
5972 
5973 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5974 	if (ptep) {
5975 		/*
5976 		 * Since we hold no locks, ptep could be stale.  That is
5977 		 * OK as we are only making decisions based on content and
5978 		 * not actually modifying content here.
5979 		 */
5980 		entry = huge_ptep_get(ptep);
5981 		if (unlikely(is_hugetlb_entry_migration(entry))) {
5982 			migration_entry_wait_huge(vma, ptep);
5983 			return 0;
5984 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5985 			return VM_FAULT_HWPOISON_LARGE |
5986 				VM_FAULT_SET_HINDEX(hstate_index(h));
5987 	}
5988 
5989 	/*
5990 	 * Serialize hugepage allocation and instantiation, so that we don't
5991 	 * get spurious allocation failures if two CPUs race to instantiate
5992 	 * the same page in the page cache.
5993 	 */
5994 	mapping = vma->vm_file->f_mapping;
5995 	idx = vma_hugecache_offset(h, vma, haddr);
5996 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5997 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5998 
5999 	/*
6000 	 * Acquire vma lock before calling huge_pte_alloc and hold
6001 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6002 	 * being called elsewhere and making the ptep no longer valid.
6003 	 *
6004 	 * ptep could have already be assigned via huge_pte_offset.  That
6005 	 * is OK, as huge_pte_alloc will return the same value unless
6006 	 * something has changed.
6007 	 */
6008 	hugetlb_vma_lock_read(vma);
6009 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6010 	if (!ptep) {
6011 		hugetlb_vma_unlock_read(vma);
6012 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6013 		return VM_FAULT_OOM;
6014 	}
6015 
6016 	entry = huge_ptep_get(ptep);
6017 	/* PTE markers should be handled the same way as none pte */
6018 	if (huge_pte_none_mostly(entry))
6019 		/*
6020 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6021 		 * mutex internally, which make us return immediately.
6022 		 */
6023 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6024 				      entry, flags);
6025 
6026 	ret = 0;
6027 
6028 	/*
6029 	 * entry could be a migration/hwpoison entry at this point, so this
6030 	 * check prevents the kernel from going below assuming that we have
6031 	 * an active hugepage in pagecache. This goto expects the 2nd page
6032 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6033 	 * properly handle it.
6034 	 */
6035 	if (!pte_present(entry))
6036 		goto out_mutex;
6037 
6038 	/*
6039 	 * If we are going to COW/unshare the mapping later, we examine the
6040 	 * pending reservations for this page now. This will ensure that any
6041 	 * allocations necessary to record that reservation occur outside the
6042 	 * spinlock. Also lookup the pagecache page now as it is used to
6043 	 * determine if a reservation has been consumed.
6044 	 */
6045 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6046 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6047 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6048 			ret = VM_FAULT_OOM;
6049 			goto out_mutex;
6050 		}
6051 		/* Just decrements count, does not deallocate */
6052 		vma_end_reservation(h, vma, haddr);
6053 
6054 		pagecache_page = find_lock_page(mapping, idx);
6055 	}
6056 
6057 	ptl = huge_pte_lock(h, mm, ptep);
6058 
6059 	/* Check for a racing update before calling hugetlb_wp() */
6060 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6061 		goto out_ptl;
6062 
6063 	/* Handle userfault-wp first, before trying to lock more pages */
6064 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6065 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6066 		struct vm_fault vmf = {
6067 			.vma = vma,
6068 			.address = haddr,
6069 			.real_address = address,
6070 			.flags = flags,
6071 		};
6072 
6073 		spin_unlock(ptl);
6074 		if (pagecache_page) {
6075 			unlock_page(pagecache_page);
6076 			put_page(pagecache_page);
6077 		}
6078 		hugetlb_vma_unlock_read(vma);
6079 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6080 		return handle_userfault(&vmf, VM_UFFD_WP);
6081 	}
6082 
6083 	/*
6084 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6085 	 * pagecache_page, so here we need take the former one
6086 	 * when page != pagecache_page or !pagecache_page.
6087 	 */
6088 	page = pte_page(entry);
6089 	if (page != pagecache_page)
6090 		if (!trylock_page(page)) {
6091 			need_wait_lock = 1;
6092 			goto out_ptl;
6093 		}
6094 
6095 	get_page(page);
6096 
6097 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6098 		if (!huge_pte_write(entry)) {
6099 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6100 					 pagecache_page, ptl);
6101 			goto out_put_page;
6102 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6103 			entry = huge_pte_mkdirty(entry);
6104 		}
6105 	}
6106 	entry = pte_mkyoung(entry);
6107 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6108 						flags & FAULT_FLAG_WRITE))
6109 		update_mmu_cache(vma, haddr, ptep);
6110 out_put_page:
6111 	if (page != pagecache_page)
6112 		unlock_page(page);
6113 	put_page(page);
6114 out_ptl:
6115 	spin_unlock(ptl);
6116 
6117 	if (pagecache_page) {
6118 		unlock_page(pagecache_page);
6119 		put_page(pagecache_page);
6120 	}
6121 out_mutex:
6122 	hugetlb_vma_unlock_read(vma);
6123 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6124 	/*
6125 	 * Generally it's safe to hold refcount during waiting page lock. But
6126 	 * here we just wait to defer the next page fault to avoid busy loop and
6127 	 * the page is not used after unlocked before returning from the current
6128 	 * page fault. So we are safe from accessing freed page, even if we wait
6129 	 * here without taking refcount.
6130 	 */
6131 	if (need_wait_lock)
6132 		wait_on_page_locked(page);
6133 	return ret;
6134 }
6135 
6136 #ifdef CONFIG_USERFAULTFD
6137 /*
6138  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
6139  * modifications for huge pages.
6140  */
6141 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6142 			    pte_t *dst_pte,
6143 			    struct vm_area_struct *dst_vma,
6144 			    unsigned long dst_addr,
6145 			    unsigned long src_addr,
6146 			    enum mcopy_atomic_mode mode,
6147 			    struct page **pagep,
6148 			    bool wp_copy)
6149 {
6150 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6151 	struct hstate *h = hstate_vma(dst_vma);
6152 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6153 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6154 	unsigned long size;
6155 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6156 	pte_t _dst_pte;
6157 	spinlock_t *ptl;
6158 	int ret = -ENOMEM;
6159 	struct page *page;
6160 	int writable;
6161 	bool page_in_pagecache = false;
6162 
6163 	if (is_continue) {
6164 		ret = -EFAULT;
6165 		page = find_lock_page(mapping, idx);
6166 		if (!page)
6167 			goto out;
6168 		page_in_pagecache = true;
6169 	} else if (!*pagep) {
6170 		/* If a page already exists, then it's UFFDIO_COPY for
6171 		 * a non-missing case. Return -EEXIST.
6172 		 */
6173 		if (vm_shared &&
6174 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6175 			ret = -EEXIST;
6176 			goto out;
6177 		}
6178 
6179 		page = alloc_huge_page(dst_vma, dst_addr, 0);
6180 		if (IS_ERR(page)) {
6181 			ret = -ENOMEM;
6182 			goto out;
6183 		}
6184 
6185 		ret = copy_huge_page_from_user(page,
6186 						(const void __user *) src_addr,
6187 						pages_per_huge_page(h), false);
6188 
6189 		/* fallback to copy_from_user outside mmap_lock */
6190 		if (unlikely(ret)) {
6191 			ret = -ENOENT;
6192 			/* Free the allocated page which may have
6193 			 * consumed a reservation.
6194 			 */
6195 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
6196 			put_page(page);
6197 
6198 			/* Allocate a temporary page to hold the copied
6199 			 * contents.
6200 			 */
6201 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6202 			if (!page) {
6203 				ret = -ENOMEM;
6204 				goto out;
6205 			}
6206 			*pagep = page;
6207 			/* Set the outparam pagep and return to the caller to
6208 			 * copy the contents outside the lock. Don't free the
6209 			 * page.
6210 			 */
6211 			goto out;
6212 		}
6213 	} else {
6214 		if (vm_shared &&
6215 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6216 			put_page(*pagep);
6217 			ret = -EEXIST;
6218 			*pagep = NULL;
6219 			goto out;
6220 		}
6221 
6222 		page = alloc_huge_page(dst_vma, dst_addr, 0);
6223 		if (IS_ERR(page)) {
6224 			put_page(*pagep);
6225 			ret = -ENOMEM;
6226 			*pagep = NULL;
6227 			goto out;
6228 		}
6229 		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6230 				    pages_per_huge_page(h));
6231 		put_page(*pagep);
6232 		*pagep = NULL;
6233 	}
6234 
6235 	/*
6236 	 * The memory barrier inside __SetPageUptodate makes sure that
6237 	 * preceding stores to the page contents become visible before
6238 	 * the set_pte_at() write.
6239 	 */
6240 	__SetPageUptodate(page);
6241 
6242 	/* Add shared, newly allocated pages to the page cache. */
6243 	if (vm_shared && !is_continue) {
6244 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6245 		ret = -EFAULT;
6246 		if (idx >= size)
6247 			goto out_release_nounlock;
6248 
6249 		/*
6250 		 * Serialization between remove_inode_hugepages() and
6251 		 * hugetlb_add_to_page_cache() below happens through the
6252 		 * hugetlb_fault_mutex_table that here must be hold by
6253 		 * the caller.
6254 		 */
6255 		ret = hugetlb_add_to_page_cache(page, mapping, idx);
6256 		if (ret)
6257 			goto out_release_nounlock;
6258 		page_in_pagecache = true;
6259 	}
6260 
6261 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6262 
6263 	ret = -EIO;
6264 	if (PageHWPoison(page))
6265 		goto out_release_unlock;
6266 
6267 	/*
6268 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6269 	 * registered, we firstly wr-protect a none pte which has no page cache
6270 	 * page backing it, then access the page.
6271 	 */
6272 	ret = -EEXIST;
6273 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6274 		goto out_release_unlock;
6275 
6276 	if (page_in_pagecache)
6277 		page_dup_file_rmap(page, true);
6278 	else
6279 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6280 
6281 	/*
6282 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6283 	 * with wp flag set, don't set pte write bit.
6284 	 */
6285 	if (wp_copy || (is_continue && !vm_shared))
6286 		writable = 0;
6287 	else
6288 		writable = dst_vma->vm_flags & VM_WRITE;
6289 
6290 	_dst_pte = make_huge_pte(dst_vma, page, writable);
6291 	/*
6292 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6293 	 * extremely important for hugetlbfs for now since swapping is not
6294 	 * supported, but we should still be clear in that this page cannot be
6295 	 * thrown away at will, even if write bit not set.
6296 	 */
6297 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6298 	_dst_pte = pte_mkyoung(_dst_pte);
6299 
6300 	if (wp_copy)
6301 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6302 
6303 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6304 
6305 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6306 
6307 	/* No need to invalidate - it was non-present before */
6308 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6309 
6310 	spin_unlock(ptl);
6311 	if (!is_continue)
6312 		SetHPageMigratable(page);
6313 	if (vm_shared || is_continue)
6314 		unlock_page(page);
6315 	ret = 0;
6316 out:
6317 	return ret;
6318 out_release_unlock:
6319 	spin_unlock(ptl);
6320 	if (vm_shared || is_continue)
6321 		unlock_page(page);
6322 out_release_nounlock:
6323 	if (!page_in_pagecache)
6324 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
6325 	put_page(page);
6326 	goto out;
6327 }
6328 #endif /* CONFIG_USERFAULTFD */
6329 
6330 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6331 				 int refs, struct page **pages,
6332 				 struct vm_area_struct **vmas)
6333 {
6334 	int nr;
6335 
6336 	for (nr = 0; nr < refs; nr++) {
6337 		if (likely(pages))
6338 			pages[nr] = nth_page(page, nr);
6339 		if (vmas)
6340 			vmas[nr] = vma;
6341 	}
6342 }
6343 
6344 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6345 					       unsigned int flags, pte_t *pte,
6346 					       bool *unshare)
6347 {
6348 	pte_t pteval = huge_ptep_get(pte);
6349 
6350 	*unshare = false;
6351 	if (is_swap_pte(pteval))
6352 		return true;
6353 	if (huge_pte_write(pteval))
6354 		return false;
6355 	if (flags & FOLL_WRITE)
6356 		return true;
6357 	if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6358 		*unshare = true;
6359 		return true;
6360 	}
6361 	return false;
6362 }
6363 
6364 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6365 				unsigned long address, unsigned int flags)
6366 {
6367 	struct hstate *h = hstate_vma(vma);
6368 	struct mm_struct *mm = vma->vm_mm;
6369 	unsigned long haddr = address & huge_page_mask(h);
6370 	struct page *page = NULL;
6371 	spinlock_t *ptl;
6372 	pte_t *pte, entry;
6373 
6374 	/*
6375 	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6376 	 * follow_hugetlb_page().
6377 	 */
6378 	if (WARN_ON_ONCE(flags & FOLL_PIN))
6379 		return NULL;
6380 
6381 retry:
6382 	pte = huge_pte_offset(mm, haddr, huge_page_size(h));
6383 	if (!pte)
6384 		return NULL;
6385 
6386 	ptl = huge_pte_lock(h, mm, pte);
6387 	entry = huge_ptep_get(pte);
6388 	if (pte_present(entry)) {
6389 		page = pte_page(entry) +
6390 				((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6391 		/*
6392 		 * Note that page may be a sub-page, and with vmemmap
6393 		 * optimizations the page struct may be read only.
6394 		 * try_grab_page() will increase the ref count on the
6395 		 * head page, so this will be OK.
6396 		 *
6397 		 * try_grab_page() should always be able to get the page here,
6398 		 * because we hold the ptl lock and have verified pte_present().
6399 		 */
6400 		if (try_grab_page(page, flags)) {
6401 			page = NULL;
6402 			goto out;
6403 		}
6404 	} else {
6405 		if (is_hugetlb_entry_migration(entry)) {
6406 			spin_unlock(ptl);
6407 			__migration_entry_wait_huge(pte, ptl);
6408 			goto retry;
6409 		}
6410 		/*
6411 		 * hwpoisoned entry is treated as no_page_table in
6412 		 * follow_page_mask().
6413 		 */
6414 	}
6415 out:
6416 	spin_unlock(ptl);
6417 	return page;
6418 }
6419 
6420 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6421 			 struct page **pages, struct vm_area_struct **vmas,
6422 			 unsigned long *position, unsigned long *nr_pages,
6423 			 long i, unsigned int flags, int *locked)
6424 {
6425 	unsigned long pfn_offset;
6426 	unsigned long vaddr = *position;
6427 	unsigned long remainder = *nr_pages;
6428 	struct hstate *h = hstate_vma(vma);
6429 	int err = -EFAULT, refs;
6430 
6431 	while (vaddr < vma->vm_end && remainder) {
6432 		pte_t *pte;
6433 		spinlock_t *ptl = NULL;
6434 		bool unshare = false;
6435 		int absent;
6436 		struct page *page;
6437 
6438 		/*
6439 		 * If we have a pending SIGKILL, don't keep faulting pages and
6440 		 * potentially allocating memory.
6441 		 */
6442 		if (fatal_signal_pending(current)) {
6443 			remainder = 0;
6444 			break;
6445 		}
6446 
6447 		/*
6448 		 * Some archs (sparc64, sh*) have multiple pte_ts to
6449 		 * each hugepage.  We have to make sure we get the
6450 		 * first, for the page indexing below to work.
6451 		 *
6452 		 * Note that page table lock is not held when pte is null.
6453 		 */
6454 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6455 				      huge_page_size(h));
6456 		if (pte)
6457 			ptl = huge_pte_lock(h, mm, pte);
6458 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
6459 
6460 		/*
6461 		 * When coredumping, it suits get_dump_page if we just return
6462 		 * an error where there's an empty slot with no huge pagecache
6463 		 * to back it.  This way, we avoid allocating a hugepage, and
6464 		 * the sparse dumpfile avoids allocating disk blocks, but its
6465 		 * huge holes still show up with zeroes where they need to be.
6466 		 */
6467 		if (absent && (flags & FOLL_DUMP) &&
6468 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6469 			if (pte)
6470 				spin_unlock(ptl);
6471 			remainder = 0;
6472 			break;
6473 		}
6474 
6475 		/*
6476 		 * We need call hugetlb_fault for both hugepages under migration
6477 		 * (in which case hugetlb_fault waits for the migration,) and
6478 		 * hwpoisoned hugepages (in which case we need to prevent the
6479 		 * caller from accessing to them.) In order to do this, we use
6480 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6481 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6482 		 * both cases, and because we can't follow correct pages
6483 		 * directly from any kind of swap entries.
6484 		 */
6485 		if (absent ||
6486 		    __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6487 			vm_fault_t ret;
6488 			unsigned int fault_flags = 0;
6489 
6490 			if (pte)
6491 				spin_unlock(ptl);
6492 			if (flags & FOLL_WRITE)
6493 				fault_flags |= FAULT_FLAG_WRITE;
6494 			else if (unshare)
6495 				fault_flags |= FAULT_FLAG_UNSHARE;
6496 			if (locked) {
6497 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6498 					FAULT_FLAG_KILLABLE;
6499 				if (flags & FOLL_INTERRUPTIBLE)
6500 					fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6501 			}
6502 			if (flags & FOLL_NOWAIT)
6503 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6504 					FAULT_FLAG_RETRY_NOWAIT;
6505 			if (flags & FOLL_TRIED) {
6506 				/*
6507 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6508 				 * FAULT_FLAG_TRIED can co-exist
6509 				 */
6510 				fault_flags |= FAULT_FLAG_TRIED;
6511 			}
6512 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6513 			if (ret & VM_FAULT_ERROR) {
6514 				err = vm_fault_to_errno(ret, flags);
6515 				remainder = 0;
6516 				break;
6517 			}
6518 			if (ret & VM_FAULT_RETRY) {
6519 				if (locked &&
6520 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6521 					*locked = 0;
6522 				*nr_pages = 0;
6523 				/*
6524 				 * VM_FAULT_RETRY must not return an
6525 				 * error, it will return zero
6526 				 * instead.
6527 				 *
6528 				 * No need to update "position" as the
6529 				 * caller will not check it after
6530 				 * *nr_pages is set to 0.
6531 				 */
6532 				return i;
6533 			}
6534 			continue;
6535 		}
6536 
6537 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6538 		page = pte_page(huge_ptep_get(pte));
6539 
6540 		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6541 			       !PageAnonExclusive(page), page);
6542 
6543 		/*
6544 		 * If subpage information not requested, update counters
6545 		 * and skip the same_page loop below.
6546 		 */
6547 		if (!pages && !vmas && !pfn_offset &&
6548 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6549 		    (remainder >= pages_per_huge_page(h))) {
6550 			vaddr += huge_page_size(h);
6551 			remainder -= pages_per_huge_page(h);
6552 			i += pages_per_huge_page(h);
6553 			spin_unlock(ptl);
6554 			continue;
6555 		}
6556 
6557 		/* vaddr may not be aligned to PAGE_SIZE */
6558 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6559 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6560 
6561 		if (pages || vmas)
6562 			record_subpages_vmas(nth_page(page, pfn_offset),
6563 					     vma, refs,
6564 					     likely(pages) ? pages + i : NULL,
6565 					     vmas ? vmas + i : NULL);
6566 
6567 		if (pages) {
6568 			/*
6569 			 * try_grab_folio() should always succeed here,
6570 			 * because: a) we hold the ptl lock, and b) we've just
6571 			 * checked that the huge page is present in the page
6572 			 * tables. If the huge page is present, then the tail
6573 			 * pages must also be present. The ptl prevents the
6574 			 * head page and tail pages from being rearranged in
6575 			 * any way. As this is hugetlb, the pages will never
6576 			 * be p2pdma or not longterm pinable. So this page
6577 			 * must be available at this point, unless the page
6578 			 * refcount overflowed:
6579 			 */
6580 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6581 							 flags))) {
6582 				spin_unlock(ptl);
6583 				remainder = 0;
6584 				err = -ENOMEM;
6585 				break;
6586 			}
6587 		}
6588 
6589 		vaddr += (refs << PAGE_SHIFT);
6590 		remainder -= refs;
6591 		i += refs;
6592 
6593 		spin_unlock(ptl);
6594 	}
6595 	*nr_pages = remainder;
6596 	/*
6597 	 * setting position is actually required only if remainder is
6598 	 * not zero but it's faster not to add a "if (remainder)"
6599 	 * branch.
6600 	 */
6601 	*position = vaddr;
6602 
6603 	return i ? i : err;
6604 }
6605 
6606 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6607 		unsigned long address, unsigned long end,
6608 		pgprot_t newprot, unsigned long cp_flags)
6609 {
6610 	struct mm_struct *mm = vma->vm_mm;
6611 	unsigned long start = address;
6612 	pte_t *ptep;
6613 	pte_t pte;
6614 	struct hstate *h = hstate_vma(vma);
6615 	unsigned long pages = 0, psize = huge_page_size(h);
6616 	bool shared_pmd = false;
6617 	struct mmu_notifier_range range;
6618 	unsigned long last_addr_mask;
6619 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6620 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6621 
6622 	/*
6623 	 * In the case of shared PMDs, the area to flush could be beyond
6624 	 * start/end.  Set range.start/range.end to cover the maximum possible
6625 	 * range if PMD sharing is possible.
6626 	 */
6627 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6628 				0, vma, mm, start, end);
6629 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6630 
6631 	BUG_ON(address >= end);
6632 	flush_cache_range(vma, range.start, range.end);
6633 
6634 	mmu_notifier_invalidate_range_start(&range);
6635 	hugetlb_vma_lock_write(vma);
6636 	i_mmap_lock_write(vma->vm_file->f_mapping);
6637 	last_addr_mask = hugetlb_mask_last_page(h);
6638 	for (; address < end; address += psize) {
6639 		spinlock_t *ptl;
6640 		ptep = huge_pte_offset(mm, address, psize);
6641 		if (!ptep) {
6642 			address |= last_addr_mask;
6643 			continue;
6644 		}
6645 		ptl = huge_pte_lock(h, mm, ptep);
6646 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6647 			/*
6648 			 * When uffd-wp is enabled on the vma, unshare
6649 			 * shouldn't happen at all.  Warn about it if it
6650 			 * happened due to some reason.
6651 			 */
6652 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6653 			pages++;
6654 			spin_unlock(ptl);
6655 			shared_pmd = true;
6656 			address |= last_addr_mask;
6657 			continue;
6658 		}
6659 		pte = huge_ptep_get(ptep);
6660 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6661 			spin_unlock(ptl);
6662 			continue;
6663 		}
6664 		if (unlikely(is_hugetlb_entry_migration(pte))) {
6665 			swp_entry_t entry = pte_to_swp_entry(pte);
6666 			struct page *page = pfn_swap_entry_to_page(entry);
6667 
6668 			if (!is_readable_migration_entry(entry)) {
6669 				pte_t newpte;
6670 
6671 				if (PageAnon(page))
6672 					entry = make_readable_exclusive_migration_entry(
6673 								swp_offset(entry));
6674 				else
6675 					entry = make_readable_migration_entry(
6676 								swp_offset(entry));
6677 				newpte = swp_entry_to_pte(entry);
6678 				if (uffd_wp)
6679 					newpte = pte_swp_mkuffd_wp(newpte);
6680 				else if (uffd_wp_resolve)
6681 					newpte = pte_swp_clear_uffd_wp(newpte);
6682 				set_huge_pte_at(mm, address, ptep, newpte);
6683 				pages++;
6684 			}
6685 			spin_unlock(ptl);
6686 			continue;
6687 		}
6688 		if (unlikely(pte_marker_uffd_wp(pte))) {
6689 			/*
6690 			 * This is changing a non-present pte into a none pte,
6691 			 * no need for huge_ptep_modify_prot_start/commit().
6692 			 */
6693 			if (uffd_wp_resolve)
6694 				huge_pte_clear(mm, address, ptep, psize);
6695 		}
6696 		if (!huge_pte_none(pte)) {
6697 			pte_t old_pte;
6698 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6699 
6700 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6701 			pte = huge_pte_modify(old_pte, newprot);
6702 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6703 			if (uffd_wp)
6704 				pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6705 			else if (uffd_wp_resolve)
6706 				pte = huge_pte_clear_uffd_wp(pte);
6707 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6708 			pages++;
6709 		} else {
6710 			/* None pte */
6711 			if (unlikely(uffd_wp))
6712 				/* Safe to modify directly (none->non-present). */
6713 				set_huge_pte_at(mm, address, ptep,
6714 						make_pte_marker(PTE_MARKER_UFFD_WP));
6715 		}
6716 		spin_unlock(ptl);
6717 	}
6718 	/*
6719 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6720 	 * may have cleared our pud entry and done put_page on the page table:
6721 	 * once we release i_mmap_rwsem, another task can do the final put_page
6722 	 * and that page table be reused and filled with junk.  If we actually
6723 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6724 	 */
6725 	if (shared_pmd)
6726 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6727 	else
6728 		flush_hugetlb_tlb_range(vma, start, end);
6729 	/*
6730 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6731 	 * page table protection not changing it to point to a new page.
6732 	 *
6733 	 * See Documentation/mm/mmu_notifier.rst
6734 	 */
6735 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6736 	hugetlb_vma_unlock_write(vma);
6737 	mmu_notifier_invalidate_range_end(&range);
6738 
6739 	return pages << h->order;
6740 }
6741 
6742 /* Return true if reservation was successful, false otherwise.  */
6743 bool hugetlb_reserve_pages(struct inode *inode,
6744 					long from, long to,
6745 					struct vm_area_struct *vma,
6746 					vm_flags_t vm_flags)
6747 {
6748 	long chg, add = -1;
6749 	struct hstate *h = hstate_inode(inode);
6750 	struct hugepage_subpool *spool = subpool_inode(inode);
6751 	struct resv_map *resv_map;
6752 	struct hugetlb_cgroup *h_cg = NULL;
6753 	long gbl_reserve, regions_needed = 0;
6754 
6755 	/* This should never happen */
6756 	if (from > to) {
6757 		VM_WARN(1, "%s called with a negative range\n", __func__);
6758 		return false;
6759 	}
6760 
6761 	/*
6762 	 * vma specific semaphore used for pmd sharing and fault/truncation
6763 	 * synchronization
6764 	 */
6765 	hugetlb_vma_lock_alloc(vma);
6766 
6767 	/*
6768 	 * Only apply hugepage reservation if asked. At fault time, an
6769 	 * attempt will be made for VM_NORESERVE to allocate a page
6770 	 * without using reserves
6771 	 */
6772 	if (vm_flags & VM_NORESERVE)
6773 		return true;
6774 
6775 	/*
6776 	 * Shared mappings base their reservation on the number of pages that
6777 	 * are already allocated on behalf of the file. Private mappings need
6778 	 * to reserve the full area even if read-only as mprotect() may be
6779 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6780 	 */
6781 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6782 		/*
6783 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6784 		 * called for inodes for which resv_maps were created (see
6785 		 * hugetlbfs_get_inode).
6786 		 */
6787 		resv_map = inode_resv_map(inode);
6788 
6789 		chg = region_chg(resv_map, from, to, &regions_needed);
6790 	} else {
6791 		/* Private mapping. */
6792 		resv_map = resv_map_alloc();
6793 		if (!resv_map)
6794 			goto out_err;
6795 
6796 		chg = to - from;
6797 
6798 		set_vma_resv_map(vma, resv_map);
6799 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6800 	}
6801 
6802 	if (chg < 0)
6803 		goto out_err;
6804 
6805 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6806 				chg * pages_per_huge_page(h), &h_cg) < 0)
6807 		goto out_err;
6808 
6809 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6810 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6811 		 * of the resv_map.
6812 		 */
6813 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6814 	}
6815 
6816 	/*
6817 	 * There must be enough pages in the subpool for the mapping. If
6818 	 * the subpool has a minimum size, there may be some global
6819 	 * reservations already in place (gbl_reserve).
6820 	 */
6821 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6822 	if (gbl_reserve < 0)
6823 		goto out_uncharge_cgroup;
6824 
6825 	/*
6826 	 * Check enough hugepages are available for the reservation.
6827 	 * Hand the pages back to the subpool if there are not
6828 	 */
6829 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6830 		goto out_put_pages;
6831 
6832 	/*
6833 	 * Account for the reservations made. Shared mappings record regions
6834 	 * that have reservations as they are shared by multiple VMAs.
6835 	 * When the last VMA disappears, the region map says how much
6836 	 * the reservation was and the page cache tells how much of
6837 	 * the reservation was consumed. Private mappings are per-VMA and
6838 	 * only the consumed reservations are tracked. When the VMA
6839 	 * disappears, the original reservation is the VMA size and the
6840 	 * consumed reservations are stored in the map. Hence, nothing
6841 	 * else has to be done for private mappings here
6842 	 */
6843 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6844 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6845 
6846 		if (unlikely(add < 0)) {
6847 			hugetlb_acct_memory(h, -gbl_reserve);
6848 			goto out_put_pages;
6849 		} else if (unlikely(chg > add)) {
6850 			/*
6851 			 * pages in this range were added to the reserve
6852 			 * map between region_chg and region_add.  This
6853 			 * indicates a race with alloc_huge_page.  Adjust
6854 			 * the subpool and reserve counts modified above
6855 			 * based on the difference.
6856 			 */
6857 			long rsv_adjust;
6858 
6859 			/*
6860 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6861 			 * reference to h_cg->css. See comment below for detail.
6862 			 */
6863 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6864 				hstate_index(h),
6865 				(chg - add) * pages_per_huge_page(h), h_cg);
6866 
6867 			rsv_adjust = hugepage_subpool_put_pages(spool,
6868 								chg - add);
6869 			hugetlb_acct_memory(h, -rsv_adjust);
6870 		} else if (h_cg) {
6871 			/*
6872 			 * The file_regions will hold their own reference to
6873 			 * h_cg->css. So we should release the reference held
6874 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6875 			 * done.
6876 			 */
6877 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6878 		}
6879 	}
6880 	return true;
6881 
6882 out_put_pages:
6883 	/* put back original number of pages, chg */
6884 	(void)hugepage_subpool_put_pages(spool, chg);
6885 out_uncharge_cgroup:
6886 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6887 					    chg * pages_per_huge_page(h), h_cg);
6888 out_err:
6889 	hugetlb_vma_lock_free(vma);
6890 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6891 		/* Only call region_abort if the region_chg succeeded but the
6892 		 * region_add failed or didn't run.
6893 		 */
6894 		if (chg >= 0 && add < 0)
6895 			region_abort(resv_map, from, to, regions_needed);
6896 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6897 		kref_put(&resv_map->refs, resv_map_release);
6898 	return false;
6899 }
6900 
6901 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6902 								long freed)
6903 {
6904 	struct hstate *h = hstate_inode(inode);
6905 	struct resv_map *resv_map = inode_resv_map(inode);
6906 	long chg = 0;
6907 	struct hugepage_subpool *spool = subpool_inode(inode);
6908 	long gbl_reserve;
6909 
6910 	/*
6911 	 * Since this routine can be called in the evict inode path for all
6912 	 * hugetlbfs inodes, resv_map could be NULL.
6913 	 */
6914 	if (resv_map) {
6915 		chg = region_del(resv_map, start, end);
6916 		/*
6917 		 * region_del() can fail in the rare case where a region
6918 		 * must be split and another region descriptor can not be
6919 		 * allocated.  If end == LONG_MAX, it will not fail.
6920 		 */
6921 		if (chg < 0)
6922 			return chg;
6923 	}
6924 
6925 	spin_lock(&inode->i_lock);
6926 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6927 	spin_unlock(&inode->i_lock);
6928 
6929 	/*
6930 	 * If the subpool has a minimum size, the number of global
6931 	 * reservations to be released may be adjusted.
6932 	 *
6933 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6934 	 * won't go negative.
6935 	 */
6936 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6937 	hugetlb_acct_memory(h, -gbl_reserve);
6938 
6939 	return 0;
6940 }
6941 
6942 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6943 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6944 				struct vm_area_struct *vma,
6945 				unsigned long addr, pgoff_t idx)
6946 {
6947 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6948 				svma->vm_start;
6949 	unsigned long sbase = saddr & PUD_MASK;
6950 	unsigned long s_end = sbase + PUD_SIZE;
6951 
6952 	/* Allow segments to share if only one is marked locked */
6953 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6954 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6955 
6956 	/*
6957 	 * match the virtual addresses, permission and the alignment of the
6958 	 * page table page.
6959 	 *
6960 	 * Also, vma_lock (vm_private_data) is required for sharing.
6961 	 */
6962 	if (pmd_index(addr) != pmd_index(saddr) ||
6963 	    vm_flags != svm_flags ||
6964 	    !range_in_vma(svma, sbase, s_end) ||
6965 	    !svma->vm_private_data)
6966 		return 0;
6967 
6968 	return saddr;
6969 }
6970 
6971 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6972 {
6973 	unsigned long start = addr & PUD_MASK;
6974 	unsigned long end = start + PUD_SIZE;
6975 
6976 #ifdef CONFIG_USERFAULTFD
6977 	if (uffd_disable_huge_pmd_share(vma))
6978 		return false;
6979 #endif
6980 	/*
6981 	 * check on proper vm_flags and page table alignment
6982 	 */
6983 	if (!(vma->vm_flags & VM_MAYSHARE))
6984 		return false;
6985 	if (!vma->vm_private_data)	/* vma lock required for sharing */
6986 		return false;
6987 	if (!range_in_vma(vma, start, end))
6988 		return false;
6989 	return true;
6990 }
6991 
6992 /*
6993  * Determine if start,end range within vma could be mapped by shared pmd.
6994  * If yes, adjust start and end to cover range associated with possible
6995  * shared pmd mappings.
6996  */
6997 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6998 				unsigned long *start, unsigned long *end)
6999 {
7000 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7001 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7002 
7003 	/*
7004 	 * vma needs to span at least one aligned PUD size, and the range
7005 	 * must be at least partially within in.
7006 	 */
7007 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7008 		(*end <= v_start) || (*start >= v_end))
7009 		return;
7010 
7011 	/* Extend the range to be PUD aligned for a worst case scenario */
7012 	if (*start > v_start)
7013 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7014 
7015 	if (*end < v_end)
7016 		*end = ALIGN(*end, PUD_SIZE);
7017 }
7018 
7019 /*
7020  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7021  * and returns the corresponding pte. While this is not necessary for the
7022  * !shared pmd case because we can allocate the pmd later as well, it makes the
7023  * code much cleaner. pmd allocation is essential for the shared case because
7024  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7025  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7026  * bad pmd for sharing.
7027  */
7028 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7029 		      unsigned long addr, pud_t *pud)
7030 {
7031 	struct address_space *mapping = vma->vm_file->f_mapping;
7032 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7033 			vma->vm_pgoff;
7034 	struct vm_area_struct *svma;
7035 	unsigned long saddr;
7036 	pte_t *spte = NULL;
7037 	pte_t *pte;
7038 	spinlock_t *ptl;
7039 
7040 	i_mmap_lock_read(mapping);
7041 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7042 		if (svma == vma)
7043 			continue;
7044 
7045 		saddr = page_table_shareable(svma, vma, addr, idx);
7046 		if (saddr) {
7047 			spte = huge_pte_offset(svma->vm_mm, saddr,
7048 					       vma_mmu_pagesize(svma));
7049 			if (spte) {
7050 				get_page(virt_to_page(spte));
7051 				break;
7052 			}
7053 		}
7054 	}
7055 
7056 	if (!spte)
7057 		goto out;
7058 
7059 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7060 	if (pud_none(*pud)) {
7061 		pud_populate(mm, pud,
7062 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7063 		mm_inc_nr_pmds(mm);
7064 	} else {
7065 		put_page(virt_to_page(spte));
7066 	}
7067 	spin_unlock(ptl);
7068 out:
7069 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7070 	i_mmap_unlock_read(mapping);
7071 	return pte;
7072 }
7073 
7074 /*
7075  * unmap huge page backed by shared pte.
7076  *
7077  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7078  * indicated by page_count > 1, unmap is achieved by clearing pud and
7079  * decrementing the ref count. If count == 1, the pte page is not shared.
7080  *
7081  * Called with page table lock held.
7082  *
7083  * returns: 1 successfully unmapped a shared pte page
7084  *	    0 the underlying pte page is not shared, or it is the last user
7085  */
7086 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7087 					unsigned long addr, pte_t *ptep)
7088 {
7089 	pgd_t *pgd = pgd_offset(mm, addr);
7090 	p4d_t *p4d = p4d_offset(pgd, addr);
7091 	pud_t *pud = pud_offset(p4d, addr);
7092 
7093 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7094 	hugetlb_vma_assert_locked(vma);
7095 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7096 	if (page_count(virt_to_page(ptep)) == 1)
7097 		return 0;
7098 
7099 	pud_clear(pud);
7100 	put_page(virt_to_page(ptep));
7101 	mm_dec_nr_pmds(mm);
7102 	return 1;
7103 }
7104 
7105 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7106 
7107 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7108 		      unsigned long addr, pud_t *pud)
7109 {
7110 	return NULL;
7111 }
7112 
7113 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7114 				unsigned long addr, pte_t *ptep)
7115 {
7116 	return 0;
7117 }
7118 
7119 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7120 				unsigned long *start, unsigned long *end)
7121 {
7122 }
7123 
7124 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7125 {
7126 	return false;
7127 }
7128 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7129 
7130 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7131 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7132 			unsigned long addr, unsigned long sz)
7133 {
7134 	pgd_t *pgd;
7135 	p4d_t *p4d;
7136 	pud_t *pud;
7137 	pte_t *pte = NULL;
7138 
7139 	pgd = pgd_offset(mm, addr);
7140 	p4d = p4d_alloc(mm, pgd, addr);
7141 	if (!p4d)
7142 		return NULL;
7143 	pud = pud_alloc(mm, p4d, addr);
7144 	if (pud) {
7145 		if (sz == PUD_SIZE) {
7146 			pte = (pte_t *)pud;
7147 		} else {
7148 			BUG_ON(sz != PMD_SIZE);
7149 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7150 				pte = huge_pmd_share(mm, vma, addr, pud);
7151 			else
7152 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7153 		}
7154 	}
7155 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7156 
7157 	return pte;
7158 }
7159 
7160 /*
7161  * huge_pte_offset() - Walk the page table to resolve the hugepage
7162  * entry at address @addr
7163  *
7164  * Return: Pointer to page table entry (PUD or PMD) for
7165  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7166  * size @sz doesn't match the hugepage size at this level of the page
7167  * table.
7168  */
7169 pte_t *huge_pte_offset(struct mm_struct *mm,
7170 		       unsigned long addr, unsigned long sz)
7171 {
7172 	pgd_t *pgd;
7173 	p4d_t *p4d;
7174 	pud_t *pud;
7175 	pmd_t *pmd;
7176 
7177 	pgd = pgd_offset(mm, addr);
7178 	if (!pgd_present(*pgd))
7179 		return NULL;
7180 	p4d = p4d_offset(pgd, addr);
7181 	if (!p4d_present(*p4d))
7182 		return NULL;
7183 
7184 	pud = pud_offset(p4d, addr);
7185 	if (sz == PUD_SIZE)
7186 		/* must be pud huge, non-present or none */
7187 		return (pte_t *)pud;
7188 	if (!pud_present(*pud))
7189 		return NULL;
7190 	/* must have a valid entry and size to go further */
7191 
7192 	pmd = pmd_offset(pud, addr);
7193 	/* must be pmd huge, non-present or none */
7194 	return (pte_t *)pmd;
7195 }
7196 
7197 /*
7198  * Return a mask that can be used to update an address to the last huge
7199  * page in a page table page mapping size.  Used to skip non-present
7200  * page table entries when linearly scanning address ranges.  Architectures
7201  * with unique huge page to page table relationships can define their own
7202  * version of this routine.
7203  */
7204 unsigned long hugetlb_mask_last_page(struct hstate *h)
7205 {
7206 	unsigned long hp_size = huge_page_size(h);
7207 
7208 	if (hp_size == PUD_SIZE)
7209 		return P4D_SIZE - PUD_SIZE;
7210 	else if (hp_size == PMD_SIZE)
7211 		return PUD_SIZE - PMD_SIZE;
7212 	else
7213 		return 0UL;
7214 }
7215 
7216 #else
7217 
7218 /* See description above.  Architectures can provide their own version. */
7219 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7220 {
7221 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7222 	if (huge_page_size(h) == PMD_SIZE)
7223 		return PUD_SIZE - PMD_SIZE;
7224 #endif
7225 	return 0UL;
7226 }
7227 
7228 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7229 
7230 /*
7231  * These functions are overwritable if your architecture needs its own
7232  * behavior.
7233  */
7234 int isolate_hugetlb(struct page *page, struct list_head *list)
7235 {
7236 	int ret = 0;
7237 
7238 	spin_lock_irq(&hugetlb_lock);
7239 	if (!PageHeadHuge(page) ||
7240 	    !HPageMigratable(page) ||
7241 	    !get_page_unless_zero(page)) {
7242 		ret = -EBUSY;
7243 		goto unlock;
7244 	}
7245 	ClearHPageMigratable(page);
7246 	list_move_tail(&page->lru, list);
7247 unlock:
7248 	spin_unlock_irq(&hugetlb_lock);
7249 	return ret;
7250 }
7251 
7252 int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
7253 {
7254 	int ret = 0;
7255 
7256 	*hugetlb = false;
7257 	spin_lock_irq(&hugetlb_lock);
7258 	if (PageHeadHuge(page)) {
7259 		*hugetlb = true;
7260 		if (HPageFreed(page))
7261 			ret = 0;
7262 		else if (HPageMigratable(page) || unpoison)
7263 			ret = get_page_unless_zero(page);
7264 		else
7265 			ret = -EBUSY;
7266 	}
7267 	spin_unlock_irq(&hugetlb_lock);
7268 	return ret;
7269 }
7270 
7271 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7272 				bool *migratable_cleared)
7273 {
7274 	int ret;
7275 
7276 	spin_lock_irq(&hugetlb_lock);
7277 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7278 	spin_unlock_irq(&hugetlb_lock);
7279 	return ret;
7280 }
7281 
7282 void putback_active_hugepage(struct page *page)
7283 {
7284 	spin_lock_irq(&hugetlb_lock);
7285 	SetHPageMigratable(page);
7286 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7287 	spin_unlock_irq(&hugetlb_lock);
7288 	put_page(page);
7289 }
7290 
7291 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7292 {
7293 	struct hstate *h = folio_hstate(old_folio);
7294 
7295 	hugetlb_cgroup_migrate(old_folio, new_folio);
7296 	set_page_owner_migrate_reason(&new_folio->page, reason);
7297 
7298 	/*
7299 	 * transfer temporary state of the new hugetlb folio. This is
7300 	 * reverse to other transitions because the newpage is going to
7301 	 * be final while the old one will be freed so it takes over
7302 	 * the temporary status.
7303 	 *
7304 	 * Also note that we have to transfer the per-node surplus state
7305 	 * here as well otherwise the global surplus count will not match
7306 	 * the per-node's.
7307 	 */
7308 	if (folio_test_hugetlb_temporary(new_folio)) {
7309 		int old_nid = folio_nid(old_folio);
7310 		int new_nid = folio_nid(new_folio);
7311 
7312 		folio_set_hugetlb_temporary(old_folio);
7313 		folio_clear_hugetlb_temporary(new_folio);
7314 
7315 
7316 		/*
7317 		 * There is no need to transfer the per-node surplus state
7318 		 * when we do not cross the node.
7319 		 */
7320 		if (new_nid == old_nid)
7321 			return;
7322 		spin_lock_irq(&hugetlb_lock);
7323 		if (h->surplus_huge_pages_node[old_nid]) {
7324 			h->surplus_huge_pages_node[old_nid]--;
7325 			h->surplus_huge_pages_node[new_nid]++;
7326 		}
7327 		spin_unlock_irq(&hugetlb_lock);
7328 	}
7329 }
7330 
7331 /*
7332  * This function will unconditionally remove all the shared pmd pgtable entries
7333  * within the specific vma for a hugetlbfs memory range.
7334  */
7335 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7336 {
7337 	struct hstate *h = hstate_vma(vma);
7338 	unsigned long sz = huge_page_size(h);
7339 	struct mm_struct *mm = vma->vm_mm;
7340 	struct mmu_notifier_range range;
7341 	unsigned long address, start, end;
7342 	spinlock_t *ptl;
7343 	pte_t *ptep;
7344 
7345 	if (!(vma->vm_flags & VM_MAYSHARE))
7346 		return;
7347 
7348 	start = ALIGN(vma->vm_start, PUD_SIZE);
7349 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7350 
7351 	if (start >= end)
7352 		return;
7353 
7354 	flush_cache_range(vma, start, end);
7355 	/*
7356 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7357 	 * we have already done the PUD_SIZE alignment.
7358 	 */
7359 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7360 				start, end);
7361 	mmu_notifier_invalidate_range_start(&range);
7362 	hugetlb_vma_lock_write(vma);
7363 	i_mmap_lock_write(vma->vm_file->f_mapping);
7364 	for (address = start; address < end; address += PUD_SIZE) {
7365 		ptep = huge_pte_offset(mm, address, sz);
7366 		if (!ptep)
7367 			continue;
7368 		ptl = huge_pte_lock(h, mm, ptep);
7369 		huge_pmd_unshare(mm, vma, address, ptep);
7370 		spin_unlock(ptl);
7371 	}
7372 	flush_hugetlb_tlb_range(vma, start, end);
7373 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7374 	hugetlb_vma_unlock_write(vma);
7375 	/*
7376 	 * No need to call mmu_notifier_invalidate_range(), see
7377 	 * Documentation/mm/mmu_notifier.rst.
7378 	 */
7379 	mmu_notifier_invalidate_range_end(&range);
7380 }
7381 
7382 #ifdef CONFIG_CMA
7383 static bool cma_reserve_called __initdata;
7384 
7385 static int __init cmdline_parse_hugetlb_cma(char *p)
7386 {
7387 	int nid, count = 0;
7388 	unsigned long tmp;
7389 	char *s = p;
7390 
7391 	while (*s) {
7392 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7393 			break;
7394 
7395 		if (s[count] == ':') {
7396 			if (tmp >= MAX_NUMNODES)
7397 				break;
7398 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7399 
7400 			s += count + 1;
7401 			tmp = memparse(s, &s);
7402 			hugetlb_cma_size_in_node[nid] = tmp;
7403 			hugetlb_cma_size += tmp;
7404 
7405 			/*
7406 			 * Skip the separator if have one, otherwise
7407 			 * break the parsing.
7408 			 */
7409 			if (*s == ',')
7410 				s++;
7411 			else
7412 				break;
7413 		} else {
7414 			hugetlb_cma_size = memparse(p, &p);
7415 			break;
7416 		}
7417 	}
7418 
7419 	return 0;
7420 }
7421 
7422 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7423 
7424 void __init hugetlb_cma_reserve(int order)
7425 {
7426 	unsigned long size, reserved, per_node;
7427 	bool node_specific_cma_alloc = false;
7428 	int nid;
7429 
7430 	cma_reserve_called = true;
7431 
7432 	if (!hugetlb_cma_size)
7433 		return;
7434 
7435 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7436 		if (hugetlb_cma_size_in_node[nid] == 0)
7437 			continue;
7438 
7439 		if (!node_online(nid)) {
7440 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7441 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7442 			hugetlb_cma_size_in_node[nid] = 0;
7443 			continue;
7444 		}
7445 
7446 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7447 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7448 				nid, (PAGE_SIZE << order) / SZ_1M);
7449 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7450 			hugetlb_cma_size_in_node[nid] = 0;
7451 		} else {
7452 			node_specific_cma_alloc = true;
7453 		}
7454 	}
7455 
7456 	/* Validate the CMA size again in case some invalid nodes specified. */
7457 	if (!hugetlb_cma_size)
7458 		return;
7459 
7460 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7461 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7462 			(PAGE_SIZE << order) / SZ_1M);
7463 		hugetlb_cma_size = 0;
7464 		return;
7465 	}
7466 
7467 	if (!node_specific_cma_alloc) {
7468 		/*
7469 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7470 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7471 		 */
7472 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7473 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7474 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7475 	}
7476 
7477 	reserved = 0;
7478 	for_each_online_node(nid) {
7479 		int res;
7480 		char name[CMA_MAX_NAME];
7481 
7482 		if (node_specific_cma_alloc) {
7483 			if (hugetlb_cma_size_in_node[nid] == 0)
7484 				continue;
7485 
7486 			size = hugetlb_cma_size_in_node[nid];
7487 		} else {
7488 			size = min(per_node, hugetlb_cma_size - reserved);
7489 		}
7490 
7491 		size = round_up(size, PAGE_SIZE << order);
7492 
7493 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7494 		/*
7495 		 * Note that 'order per bit' is based on smallest size that
7496 		 * may be returned to CMA allocator in the case of
7497 		 * huge page demotion.
7498 		 */
7499 		res = cma_declare_contiguous_nid(0, size, 0,
7500 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7501 						 0, false, name,
7502 						 &hugetlb_cma[nid], nid);
7503 		if (res) {
7504 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7505 				res, nid);
7506 			continue;
7507 		}
7508 
7509 		reserved += size;
7510 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7511 			size / SZ_1M, nid);
7512 
7513 		if (reserved >= hugetlb_cma_size)
7514 			break;
7515 	}
7516 
7517 	if (!reserved)
7518 		/*
7519 		 * hugetlb_cma_size is used to determine if allocations from
7520 		 * cma are possible.  Set to zero if no cma regions are set up.
7521 		 */
7522 		hugetlb_cma_size = 0;
7523 }
7524 
7525 static void __init hugetlb_cma_check(void)
7526 {
7527 	if (!hugetlb_cma_size || cma_reserve_called)
7528 		return;
7529 
7530 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7531 }
7532 
7533 #endif /* CONFIG_CMA */
7534