xref: /openbmc/linux/mm/hugetlb.c (revision e9adcfec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41 
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49 
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53 
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60 				1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65 	return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69 
70 __initdata LIST_HEAD(huge_boot_pages);
71 
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78 
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84 
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91 
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 		unsigned long start, unsigned long end);
99 
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102 	if (spool->count)
103 		return false;
104 	if (spool->max_hpages != -1)
105 		return spool->used_hpages == 0;
106 	if (spool->min_hpages != -1)
107 		return spool->rsv_hpages == spool->min_hpages;
108 
109 	return true;
110 }
111 
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 						unsigned long irq_flags)
114 {
115 	spin_unlock_irqrestore(&spool->lock, irq_flags);
116 
117 	/* If no pages are used, and no other handles to the subpool
118 	 * remain, give up any reservations based on minimum size and
119 	 * free the subpool */
120 	if (subpool_is_free(spool)) {
121 		if (spool->min_hpages != -1)
122 			hugetlb_acct_memory(spool->hstate,
123 						-spool->min_hpages);
124 		kfree(spool);
125 	}
126 }
127 
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 						long min_hpages)
130 {
131 	struct hugepage_subpool *spool;
132 
133 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134 	if (!spool)
135 		return NULL;
136 
137 	spin_lock_init(&spool->lock);
138 	spool->count = 1;
139 	spool->max_hpages = max_hpages;
140 	spool->hstate = h;
141 	spool->min_hpages = min_hpages;
142 
143 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144 		kfree(spool);
145 		return NULL;
146 	}
147 	spool->rsv_hpages = min_hpages;
148 
149 	return spool;
150 }
151 
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154 	unsigned long flags;
155 
156 	spin_lock_irqsave(&spool->lock, flags);
157 	BUG_ON(!spool->count);
158 	spool->count--;
159 	unlock_or_release_subpool(spool, flags);
160 }
161 
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171 				      long delta)
172 {
173 	long ret = delta;
174 
175 	if (!spool)
176 		return ret;
177 
178 	spin_lock_irq(&spool->lock);
179 
180 	if (spool->max_hpages != -1) {		/* maximum size accounting */
181 		if ((spool->used_hpages + delta) <= spool->max_hpages)
182 			spool->used_hpages += delta;
183 		else {
184 			ret = -ENOMEM;
185 			goto unlock_ret;
186 		}
187 	}
188 
189 	/* minimum size accounting */
190 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 		if (delta > spool->rsv_hpages) {
192 			/*
193 			 * Asking for more reserves than those already taken on
194 			 * behalf of subpool.  Return difference.
195 			 */
196 			ret = delta - spool->rsv_hpages;
197 			spool->rsv_hpages = 0;
198 		} else {
199 			ret = 0;	/* reserves already accounted for */
200 			spool->rsv_hpages -= delta;
201 		}
202 	}
203 
204 unlock_ret:
205 	spin_unlock_irq(&spool->lock);
206 	return ret;
207 }
208 
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216 				       long delta)
217 {
218 	long ret = delta;
219 	unsigned long flags;
220 
221 	if (!spool)
222 		return delta;
223 
224 	spin_lock_irqsave(&spool->lock, flags);
225 
226 	if (spool->max_hpages != -1)		/* maximum size accounting */
227 		spool->used_hpages -= delta;
228 
229 	 /* minimum size accounting */
230 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 		if (spool->rsv_hpages + delta <= spool->min_hpages)
232 			ret = 0;
233 		else
234 			ret = spool->rsv_hpages + delta - spool->min_hpages;
235 
236 		spool->rsv_hpages += delta;
237 		if (spool->rsv_hpages > spool->min_hpages)
238 			spool->rsv_hpages = spool->min_hpages;
239 	}
240 
241 	/*
242 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 	 * quota reference, free it now.
244 	 */
245 	unlock_or_release_subpool(spool, flags);
246 
247 	return ret;
248 }
249 
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252 	return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254 
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257 	return subpool_inode(file_inode(vma->vm_file));
258 }
259 
260 /*
261  * hugetlb vma_lock helper routines
262  */
263 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
264 {
265 	if (__vma_shareable_lock(vma)) {
266 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
267 
268 		down_read(&vma_lock->rw_sema);
269 	}
270 }
271 
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
273 {
274 	if (__vma_shareable_lock(vma)) {
275 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
276 
277 		up_read(&vma_lock->rw_sema);
278 	}
279 }
280 
281 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
282 {
283 	if (__vma_shareable_lock(vma)) {
284 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285 
286 		down_write(&vma_lock->rw_sema);
287 	}
288 }
289 
290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
291 {
292 	if (__vma_shareable_lock(vma)) {
293 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
294 
295 		up_write(&vma_lock->rw_sema);
296 	}
297 }
298 
299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
300 {
301 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
302 
303 	if (!__vma_shareable_lock(vma))
304 		return 1;
305 
306 	return down_write_trylock(&vma_lock->rw_sema);
307 }
308 
309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
310 {
311 	if (__vma_shareable_lock(vma)) {
312 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313 
314 		lockdep_assert_held(&vma_lock->rw_sema);
315 	}
316 }
317 
318 void hugetlb_vma_lock_release(struct kref *kref)
319 {
320 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
321 			struct hugetlb_vma_lock, refs);
322 
323 	kfree(vma_lock);
324 }
325 
326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
327 {
328 	struct vm_area_struct *vma = vma_lock->vma;
329 
330 	/*
331 	 * vma_lock structure may or not be released as a result of put,
332 	 * it certainly will no longer be attached to vma so clear pointer.
333 	 * Semaphore synchronizes access to vma_lock->vma field.
334 	 */
335 	vma_lock->vma = NULL;
336 	vma->vm_private_data = NULL;
337 	up_write(&vma_lock->rw_sema);
338 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
339 }
340 
341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
342 {
343 	if (__vma_shareable_lock(vma)) {
344 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
345 
346 		__hugetlb_vma_unlock_write_put(vma_lock);
347 	}
348 }
349 
350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
351 {
352 	/*
353 	 * Only present in sharable vmas.
354 	 */
355 	if (!vma || !__vma_shareable_lock(vma))
356 		return;
357 
358 	if (vma->vm_private_data) {
359 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
360 
361 		down_write(&vma_lock->rw_sema);
362 		__hugetlb_vma_unlock_write_put(vma_lock);
363 	}
364 }
365 
366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
367 {
368 	struct hugetlb_vma_lock *vma_lock;
369 
370 	/* Only establish in (flags) sharable vmas */
371 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
372 		return;
373 
374 	/* Should never get here with non-NULL vm_private_data */
375 	if (vma->vm_private_data)
376 		return;
377 
378 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
379 	if (!vma_lock) {
380 		/*
381 		 * If we can not allocate structure, then vma can not
382 		 * participate in pmd sharing.  This is only a possible
383 		 * performance enhancement and memory saving issue.
384 		 * However, the lock is also used to synchronize page
385 		 * faults with truncation.  If the lock is not present,
386 		 * unlikely races could leave pages in a file past i_size
387 		 * until the file is removed.  Warn in the unlikely case of
388 		 * allocation failure.
389 		 */
390 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
391 		return;
392 	}
393 
394 	kref_init(&vma_lock->refs);
395 	init_rwsem(&vma_lock->rw_sema);
396 	vma_lock->vma = vma;
397 	vma->vm_private_data = vma_lock;
398 }
399 
400 /* Helper that removes a struct file_region from the resv_map cache and returns
401  * it for use.
402  */
403 static struct file_region *
404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
405 {
406 	struct file_region *nrg;
407 
408 	VM_BUG_ON(resv->region_cache_count <= 0);
409 
410 	resv->region_cache_count--;
411 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412 	list_del(&nrg->link);
413 
414 	nrg->from = from;
415 	nrg->to = to;
416 
417 	return nrg;
418 }
419 
420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421 					      struct file_region *rg)
422 {
423 #ifdef CONFIG_CGROUP_HUGETLB
424 	nrg->reservation_counter = rg->reservation_counter;
425 	nrg->css = rg->css;
426 	if (rg->css)
427 		css_get(rg->css);
428 #endif
429 }
430 
431 /* Helper that records hugetlb_cgroup uncharge info. */
432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
433 						struct hstate *h,
434 						struct resv_map *resv,
435 						struct file_region *nrg)
436 {
437 #ifdef CONFIG_CGROUP_HUGETLB
438 	if (h_cg) {
439 		nrg->reservation_counter =
440 			&h_cg->rsvd_hugepage[hstate_index(h)];
441 		nrg->css = &h_cg->css;
442 		/*
443 		 * The caller will hold exactly one h_cg->css reference for the
444 		 * whole contiguous reservation region. But this area might be
445 		 * scattered when there are already some file_regions reside in
446 		 * it. As a result, many file_regions may share only one css
447 		 * reference. In order to ensure that one file_region must hold
448 		 * exactly one h_cg->css reference, we should do css_get for
449 		 * each file_region and leave the reference held by caller
450 		 * untouched.
451 		 */
452 		css_get(&h_cg->css);
453 		if (!resv->pages_per_hpage)
454 			resv->pages_per_hpage = pages_per_huge_page(h);
455 		/* pages_per_hpage should be the same for all entries in
456 		 * a resv_map.
457 		 */
458 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
459 	} else {
460 		nrg->reservation_counter = NULL;
461 		nrg->css = NULL;
462 	}
463 #endif
464 }
465 
466 static void put_uncharge_info(struct file_region *rg)
467 {
468 #ifdef CONFIG_CGROUP_HUGETLB
469 	if (rg->css)
470 		css_put(rg->css);
471 #endif
472 }
473 
474 static bool has_same_uncharge_info(struct file_region *rg,
475 				   struct file_region *org)
476 {
477 #ifdef CONFIG_CGROUP_HUGETLB
478 	return rg->reservation_counter == org->reservation_counter &&
479 	       rg->css == org->css;
480 
481 #else
482 	return true;
483 #endif
484 }
485 
486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
487 {
488 	struct file_region *nrg, *prg;
489 
490 	prg = list_prev_entry(rg, link);
491 	if (&prg->link != &resv->regions && prg->to == rg->from &&
492 	    has_same_uncharge_info(prg, rg)) {
493 		prg->to = rg->to;
494 
495 		list_del(&rg->link);
496 		put_uncharge_info(rg);
497 		kfree(rg);
498 
499 		rg = prg;
500 	}
501 
502 	nrg = list_next_entry(rg, link);
503 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504 	    has_same_uncharge_info(nrg, rg)) {
505 		nrg->from = rg->from;
506 
507 		list_del(&rg->link);
508 		put_uncharge_info(rg);
509 		kfree(rg);
510 	}
511 }
512 
513 static inline long
514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
516 		     long *regions_needed)
517 {
518 	struct file_region *nrg;
519 
520 	if (!regions_needed) {
521 		nrg = get_file_region_entry_from_cache(map, from, to);
522 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523 		list_add(&nrg->link, rg);
524 		coalesce_file_region(map, nrg);
525 	} else
526 		*regions_needed += 1;
527 
528 	return to - from;
529 }
530 
531 /*
532  * Must be called with resv->lock held.
533  *
534  * Calling this with regions_needed != NULL will count the number of pages
535  * to be added but will not modify the linked list. And regions_needed will
536  * indicate the number of file_regions needed in the cache to carry out to add
537  * the regions for this range.
538  */
539 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540 				     struct hugetlb_cgroup *h_cg,
541 				     struct hstate *h, long *regions_needed)
542 {
543 	long add = 0;
544 	struct list_head *head = &resv->regions;
545 	long last_accounted_offset = f;
546 	struct file_region *iter, *trg = NULL;
547 	struct list_head *rg = NULL;
548 
549 	if (regions_needed)
550 		*regions_needed = 0;
551 
552 	/* In this loop, we essentially handle an entry for the range
553 	 * [last_accounted_offset, iter->from), at every iteration, with some
554 	 * bounds checking.
555 	 */
556 	list_for_each_entry_safe(iter, trg, head, link) {
557 		/* Skip irrelevant regions that start before our range. */
558 		if (iter->from < f) {
559 			/* If this region ends after the last accounted offset,
560 			 * then we need to update last_accounted_offset.
561 			 */
562 			if (iter->to > last_accounted_offset)
563 				last_accounted_offset = iter->to;
564 			continue;
565 		}
566 
567 		/* When we find a region that starts beyond our range, we've
568 		 * finished.
569 		 */
570 		if (iter->from >= t) {
571 			rg = iter->link.prev;
572 			break;
573 		}
574 
575 		/* Add an entry for last_accounted_offset -> iter->from, and
576 		 * update last_accounted_offset.
577 		 */
578 		if (iter->from > last_accounted_offset)
579 			add += hugetlb_resv_map_add(resv, iter->link.prev,
580 						    last_accounted_offset,
581 						    iter->from, h, h_cg,
582 						    regions_needed);
583 
584 		last_accounted_offset = iter->to;
585 	}
586 
587 	/* Handle the case where our range extends beyond
588 	 * last_accounted_offset.
589 	 */
590 	if (!rg)
591 		rg = head->prev;
592 	if (last_accounted_offset < t)
593 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594 					    t, h, h_cg, regions_needed);
595 
596 	return add;
597 }
598 
599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
600  */
601 static int allocate_file_region_entries(struct resv_map *resv,
602 					int regions_needed)
603 	__must_hold(&resv->lock)
604 {
605 	LIST_HEAD(allocated_regions);
606 	int to_allocate = 0, i = 0;
607 	struct file_region *trg = NULL, *rg = NULL;
608 
609 	VM_BUG_ON(regions_needed < 0);
610 
611 	/*
612 	 * Check for sufficient descriptors in the cache to accommodate
613 	 * the number of in progress add operations plus regions_needed.
614 	 *
615 	 * This is a while loop because when we drop the lock, some other call
616 	 * to region_add or region_del may have consumed some region_entries,
617 	 * so we keep looping here until we finally have enough entries for
618 	 * (adds_in_progress + regions_needed).
619 	 */
620 	while (resv->region_cache_count <
621 	       (resv->adds_in_progress + regions_needed)) {
622 		to_allocate = resv->adds_in_progress + regions_needed -
623 			      resv->region_cache_count;
624 
625 		/* At this point, we should have enough entries in the cache
626 		 * for all the existing adds_in_progress. We should only be
627 		 * needing to allocate for regions_needed.
628 		 */
629 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
630 
631 		spin_unlock(&resv->lock);
632 		for (i = 0; i < to_allocate; i++) {
633 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
634 			if (!trg)
635 				goto out_of_memory;
636 			list_add(&trg->link, &allocated_regions);
637 		}
638 
639 		spin_lock(&resv->lock);
640 
641 		list_splice(&allocated_regions, &resv->region_cache);
642 		resv->region_cache_count += to_allocate;
643 	}
644 
645 	return 0;
646 
647 out_of_memory:
648 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
649 		list_del(&rg->link);
650 		kfree(rg);
651 	}
652 	return -ENOMEM;
653 }
654 
655 /*
656  * Add the huge page range represented by [f, t) to the reserve
657  * map.  Regions will be taken from the cache to fill in this range.
658  * Sufficient regions should exist in the cache due to the previous
659  * call to region_chg with the same range, but in some cases the cache will not
660  * have sufficient entries due to races with other code doing region_add or
661  * region_del.  The extra needed entries will be allocated.
662  *
663  * regions_needed is the out value provided by a previous call to region_chg.
664  *
665  * Return the number of new huge pages added to the map.  This number is greater
666  * than or equal to zero.  If file_region entries needed to be allocated for
667  * this operation and we were not able to allocate, it returns -ENOMEM.
668  * region_add of regions of length 1 never allocate file_regions and cannot
669  * fail; region_chg will always allocate at least 1 entry and a region_add for
670  * 1 page will only require at most 1 entry.
671  */
672 static long region_add(struct resv_map *resv, long f, long t,
673 		       long in_regions_needed, struct hstate *h,
674 		       struct hugetlb_cgroup *h_cg)
675 {
676 	long add = 0, actual_regions_needed = 0;
677 
678 	spin_lock(&resv->lock);
679 retry:
680 
681 	/* Count how many regions are actually needed to execute this add. */
682 	add_reservation_in_range(resv, f, t, NULL, NULL,
683 				 &actual_regions_needed);
684 
685 	/*
686 	 * Check for sufficient descriptors in the cache to accommodate
687 	 * this add operation. Note that actual_regions_needed may be greater
688 	 * than in_regions_needed, as the resv_map may have been modified since
689 	 * the region_chg call. In this case, we need to make sure that we
690 	 * allocate extra entries, such that we have enough for all the
691 	 * existing adds_in_progress, plus the excess needed for this
692 	 * operation.
693 	 */
694 	if (actual_regions_needed > in_regions_needed &&
695 	    resv->region_cache_count <
696 		    resv->adds_in_progress +
697 			    (actual_regions_needed - in_regions_needed)) {
698 		/* region_add operation of range 1 should never need to
699 		 * allocate file_region entries.
700 		 */
701 		VM_BUG_ON(t - f <= 1);
702 
703 		if (allocate_file_region_entries(
704 			    resv, actual_regions_needed - in_regions_needed)) {
705 			return -ENOMEM;
706 		}
707 
708 		goto retry;
709 	}
710 
711 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
712 
713 	resv->adds_in_progress -= in_regions_needed;
714 
715 	spin_unlock(&resv->lock);
716 	return add;
717 }
718 
719 /*
720  * Examine the existing reserve map and determine how many
721  * huge pages in the specified range [f, t) are NOT currently
722  * represented.  This routine is called before a subsequent
723  * call to region_add that will actually modify the reserve
724  * map to add the specified range [f, t).  region_chg does
725  * not change the number of huge pages represented by the
726  * map.  A number of new file_region structures is added to the cache as a
727  * placeholder, for the subsequent region_add call to use. At least 1
728  * file_region structure is added.
729  *
730  * out_regions_needed is the number of regions added to the
731  * resv->adds_in_progress.  This value needs to be provided to a follow up call
732  * to region_add or region_abort for proper accounting.
733  *
734  * Returns the number of huge pages that need to be added to the existing
735  * reservation map for the range [f, t).  This number is greater or equal to
736  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
737  * is needed and can not be allocated.
738  */
739 static long region_chg(struct resv_map *resv, long f, long t,
740 		       long *out_regions_needed)
741 {
742 	long chg = 0;
743 
744 	spin_lock(&resv->lock);
745 
746 	/* Count how many hugepages in this range are NOT represented. */
747 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
748 				       out_regions_needed);
749 
750 	if (*out_regions_needed == 0)
751 		*out_regions_needed = 1;
752 
753 	if (allocate_file_region_entries(resv, *out_regions_needed))
754 		return -ENOMEM;
755 
756 	resv->adds_in_progress += *out_regions_needed;
757 
758 	spin_unlock(&resv->lock);
759 	return chg;
760 }
761 
762 /*
763  * Abort the in progress add operation.  The adds_in_progress field
764  * of the resv_map keeps track of the operations in progress between
765  * calls to region_chg and region_add.  Operations are sometimes
766  * aborted after the call to region_chg.  In such cases, region_abort
767  * is called to decrement the adds_in_progress counter. regions_needed
768  * is the value returned by the region_chg call, it is used to decrement
769  * the adds_in_progress counter.
770  *
771  * NOTE: The range arguments [f, t) are not needed or used in this
772  * routine.  They are kept to make reading the calling code easier as
773  * arguments will match the associated region_chg call.
774  */
775 static void region_abort(struct resv_map *resv, long f, long t,
776 			 long regions_needed)
777 {
778 	spin_lock(&resv->lock);
779 	VM_BUG_ON(!resv->region_cache_count);
780 	resv->adds_in_progress -= regions_needed;
781 	spin_unlock(&resv->lock);
782 }
783 
784 /*
785  * Delete the specified range [f, t) from the reserve map.  If the
786  * t parameter is LONG_MAX, this indicates that ALL regions after f
787  * should be deleted.  Locate the regions which intersect [f, t)
788  * and either trim, delete or split the existing regions.
789  *
790  * Returns the number of huge pages deleted from the reserve map.
791  * In the normal case, the return value is zero or more.  In the
792  * case where a region must be split, a new region descriptor must
793  * be allocated.  If the allocation fails, -ENOMEM will be returned.
794  * NOTE: If the parameter t == LONG_MAX, then we will never split
795  * a region and possibly return -ENOMEM.  Callers specifying
796  * t == LONG_MAX do not need to check for -ENOMEM error.
797  */
798 static long region_del(struct resv_map *resv, long f, long t)
799 {
800 	struct list_head *head = &resv->regions;
801 	struct file_region *rg, *trg;
802 	struct file_region *nrg = NULL;
803 	long del = 0;
804 
805 retry:
806 	spin_lock(&resv->lock);
807 	list_for_each_entry_safe(rg, trg, head, link) {
808 		/*
809 		 * Skip regions before the range to be deleted.  file_region
810 		 * ranges are normally of the form [from, to).  However, there
811 		 * may be a "placeholder" entry in the map which is of the form
812 		 * (from, to) with from == to.  Check for placeholder entries
813 		 * at the beginning of the range to be deleted.
814 		 */
815 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
816 			continue;
817 
818 		if (rg->from >= t)
819 			break;
820 
821 		if (f > rg->from && t < rg->to) { /* Must split region */
822 			/*
823 			 * Check for an entry in the cache before dropping
824 			 * lock and attempting allocation.
825 			 */
826 			if (!nrg &&
827 			    resv->region_cache_count > resv->adds_in_progress) {
828 				nrg = list_first_entry(&resv->region_cache,
829 							struct file_region,
830 							link);
831 				list_del(&nrg->link);
832 				resv->region_cache_count--;
833 			}
834 
835 			if (!nrg) {
836 				spin_unlock(&resv->lock);
837 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
838 				if (!nrg)
839 					return -ENOMEM;
840 				goto retry;
841 			}
842 
843 			del += t - f;
844 			hugetlb_cgroup_uncharge_file_region(
845 				resv, rg, t - f, false);
846 
847 			/* New entry for end of split region */
848 			nrg->from = t;
849 			nrg->to = rg->to;
850 
851 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
852 
853 			INIT_LIST_HEAD(&nrg->link);
854 
855 			/* Original entry is trimmed */
856 			rg->to = f;
857 
858 			list_add(&nrg->link, &rg->link);
859 			nrg = NULL;
860 			break;
861 		}
862 
863 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864 			del += rg->to - rg->from;
865 			hugetlb_cgroup_uncharge_file_region(resv, rg,
866 							    rg->to - rg->from, true);
867 			list_del(&rg->link);
868 			kfree(rg);
869 			continue;
870 		}
871 
872 		if (f <= rg->from) {	/* Trim beginning of region */
873 			hugetlb_cgroup_uncharge_file_region(resv, rg,
874 							    t - rg->from, false);
875 
876 			del += t - rg->from;
877 			rg->from = t;
878 		} else {		/* Trim end of region */
879 			hugetlb_cgroup_uncharge_file_region(resv, rg,
880 							    rg->to - f, false);
881 
882 			del += rg->to - f;
883 			rg->to = f;
884 		}
885 	}
886 
887 	spin_unlock(&resv->lock);
888 	kfree(nrg);
889 	return del;
890 }
891 
892 /*
893  * A rare out of memory error was encountered which prevented removal of
894  * the reserve map region for a page.  The huge page itself was free'ed
895  * and removed from the page cache.  This routine will adjust the subpool
896  * usage count, and the global reserve count if needed.  By incrementing
897  * these counts, the reserve map entry which could not be deleted will
898  * appear as a "reserved" entry instead of simply dangling with incorrect
899  * counts.
900  */
901 void hugetlb_fix_reserve_counts(struct inode *inode)
902 {
903 	struct hugepage_subpool *spool = subpool_inode(inode);
904 	long rsv_adjust;
905 	bool reserved = false;
906 
907 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908 	if (rsv_adjust > 0) {
909 		struct hstate *h = hstate_inode(inode);
910 
911 		if (!hugetlb_acct_memory(h, 1))
912 			reserved = true;
913 	} else if (!rsv_adjust) {
914 		reserved = true;
915 	}
916 
917 	if (!reserved)
918 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
919 }
920 
921 /*
922  * Count and return the number of huge pages in the reserve map
923  * that intersect with the range [f, t).
924  */
925 static long region_count(struct resv_map *resv, long f, long t)
926 {
927 	struct list_head *head = &resv->regions;
928 	struct file_region *rg;
929 	long chg = 0;
930 
931 	spin_lock(&resv->lock);
932 	/* Locate each segment we overlap with, and count that overlap. */
933 	list_for_each_entry(rg, head, link) {
934 		long seg_from;
935 		long seg_to;
936 
937 		if (rg->to <= f)
938 			continue;
939 		if (rg->from >= t)
940 			break;
941 
942 		seg_from = max(rg->from, f);
943 		seg_to = min(rg->to, t);
944 
945 		chg += seg_to - seg_from;
946 	}
947 	spin_unlock(&resv->lock);
948 
949 	return chg;
950 }
951 
952 /*
953  * Convert the address within this vma to the page offset within
954  * the mapping, in pagecache page units; huge pages here.
955  */
956 static pgoff_t vma_hugecache_offset(struct hstate *h,
957 			struct vm_area_struct *vma, unsigned long address)
958 {
959 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
960 			(vma->vm_pgoff >> huge_page_order(h));
961 }
962 
963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964 				     unsigned long address)
965 {
966 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
967 }
968 EXPORT_SYMBOL_GPL(linear_hugepage_index);
969 
970 /*
971  * Return the size of the pages allocated when backing a VMA. In the majority
972  * cases this will be same size as used by the page table entries.
973  */
974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
975 {
976 	if (vma->vm_ops && vma->vm_ops->pagesize)
977 		return vma->vm_ops->pagesize(vma);
978 	return PAGE_SIZE;
979 }
980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
981 
982 /*
983  * Return the page size being used by the MMU to back a VMA. In the majority
984  * of cases, the page size used by the kernel matches the MMU size. On
985  * architectures where it differs, an architecture-specific 'strong'
986  * version of this symbol is required.
987  */
988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
989 {
990 	return vma_kernel_pagesize(vma);
991 }
992 
993 /*
994  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
995  * bits of the reservation map pointer, which are always clear due to
996  * alignment.
997  */
998 #define HPAGE_RESV_OWNER    (1UL << 0)
999 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1001 
1002 /*
1003  * These helpers are used to track how many pages are reserved for
1004  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005  * is guaranteed to have their future faults succeed.
1006  *
1007  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008  * the reserve counters are updated with the hugetlb_lock held. It is safe
1009  * to reset the VMA at fork() time as it is not in use yet and there is no
1010  * chance of the global counters getting corrupted as a result of the values.
1011  *
1012  * The private mapping reservation is represented in a subtly different
1013  * manner to a shared mapping.  A shared mapping has a region map associated
1014  * with the underlying file, this region map represents the backing file
1015  * pages which have ever had a reservation assigned which this persists even
1016  * after the page is instantiated.  A private mapping has a region map
1017  * associated with the original mmap which is attached to all VMAs which
1018  * reference it, this region map represents those offsets which have consumed
1019  * reservation ie. where pages have been instantiated.
1020  */
1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1022 {
1023 	return (unsigned long)vma->vm_private_data;
1024 }
1025 
1026 static void set_vma_private_data(struct vm_area_struct *vma,
1027 							unsigned long value)
1028 {
1029 	vma->vm_private_data = (void *)value;
1030 }
1031 
1032 static void
1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034 					  struct hugetlb_cgroup *h_cg,
1035 					  struct hstate *h)
1036 {
1037 #ifdef CONFIG_CGROUP_HUGETLB
1038 	if (!h_cg || !h) {
1039 		resv_map->reservation_counter = NULL;
1040 		resv_map->pages_per_hpage = 0;
1041 		resv_map->css = NULL;
1042 	} else {
1043 		resv_map->reservation_counter =
1044 			&h_cg->rsvd_hugepage[hstate_index(h)];
1045 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1046 		resv_map->css = &h_cg->css;
1047 	}
1048 #endif
1049 }
1050 
1051 struct resv_map *resv_map_alloc(void)
1052 {
1053 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1055 
1056 	if (!resv_map || !rg) {
1057 		kfree(resv_map);
1058 		kfree(rg);
1059 		return NULL;
1060 	}
1061 
1062 	kref_init(&resv_map->refs);
1063 	spin_lock_init(&resv_map->lock);
1064 	INIT_LIST_HEAD(&resv_map->regions);
1065 
1066 	resv_map->adds_in_progress = 0;
1067 	/*
1068 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1069 	 * fields don't do cgroup accounting. On private mappings, these will be
1070 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1071 	 * reservations are to be un-charged from here.
1072 	 */
1073 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1074 
1075 	INIT_LIST_HEAD(&resv_map->region_cache);
1076 	list_add(&rg->link, &resv_map->region_cache);
1077 	resv_map->region_cache_count = 1;
1078 
1079 	return resv_map;
1080 }
1081 
1082 void resv_map_release(struct kref *ref)
1083 {
1084 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085 	struct list_head *head = &resv_map->region_cache;
1086 	struct file_region *rg, *trg;
1087 
1088 	/* Clear out any active regions before we release the map. */
1089 	region_del(resv_map, 0, LONG_MAX);
1090 
1091 	/* ... and any entries left in the cache */
1092 	list_for_each_entry_safe(rg, trg, head, link) {
1093 		list_del(&rg->link);
1094 		kfree(rg);
1095 	}
1096 
1097 	VM_BUG_ON(resv_map->adds_in_progress);
1098 
1099 	kfree(resv_map);
1100 }
1101 
1102 static inline struct resv_map *inode_resv_map(struct inode *inode)
1103 {
1104 	/*
1105 	 * At inode evict time, i_mapping may not point to the original
1106 	 * address space within the inode.  This original address space
1107 	 * contains the pointer to the resv_map.  So, always use the
1108 	 * address space embedded within the inode.
1109 	 * The VERY common case is inode->mapping == &inode->i_data but,
1110 	 * this may not be true for device special inodes.
1111 	 */
1112 	return (struct resv_map *)(&inode->i_data)->private_data;
1113 }
1114 
1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1116 {
1117 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118 	if (vma->vm_flags & VM_MAYSHARE) {
1119 		struct address_space *mapping = vma->vm_file->f_mapping;
1120 		struct inode *inode = mapping->host;
1121 
1122 		return inode_resv_map(inode);
1123 
1124 	} else {
1125 		return (struct resv_map *)(get_vma_private_data(vma) &
1126 							~HPAGE_RESV_MASK);
1127 	}
1128 }
1129 
1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1131 {
1132 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1134 
1135 	set_vma_private_data(vma, (get_vma_private_data(vma) &
1136 				HPAGE_RESV_MASK) | (unsigned long)map);
1137 }
1138 
1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1140 {
1141 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1143 
1144 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1145 }
1146 
1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1148 {
1149 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150 
1151 	return (get_vma_private_data(vma) & flag) != 0;
1152 }
1153 
1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1155 {
1156 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157 	/*
1158 	 * Clear vm_private_data
1159 	 * - For shared mappings this is a per-vma semaphore that may be
1160 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1161 	 *   Before clearing, make sure pointer is not associated with vma
1162 	 *   as this will leak the structure.  This is the case when called
1163 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164 	 *   been called to allocate a new structure.
1165 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1166 	 *   not apply to children.  Faults generated by the children are
1167 	 *   not guaranteed to succeed, even if read-only.
1168 	 */
1169 	if (vma->vm_flags & VM_MAYSHARE) {
1170 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1171 
1172 		if (vma_lock && vma_lock->vma != vma)
1173 			vma->vm_private_data = NULL;
1174 	} else
1175 		vma->vm_private_data = NULL;
1176 }
1177 
1178 /*
1179  * Reset and decrement one ref on hugepage private reservation.
1180  * Called with mm->mmap_lock writer semaphore held.
1181  * This function should be only used by move_vma() and operate on
1182  * same sized vma. It should never come here with last ref on the
1183  * reservation.
1184  */
1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1186 {
1187 	/*
1188 	 * Clear the old hugetlb private page reservation.
1189 	 * It has already been transferred to new_vma.
1190 	 *
1191 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1192 	 * which copies vma into new_vma and unmaps vma. After the copy
1193 	 * operation both new_vma and vma share a reference to the resv_map
1194 	 * struct, and at that point vma is about to be unmapped. We don't
1195 	 * want to return the reservation to the pool at unmap of vma because
1196 	 * the reservation still lives on in new_vma, so simply decrement the
1197 	 * ref here and remove the resv_map reference from this vma.
1198 	 */
1199 	struct resv_map *reservations = vma_resv_map(vma);
1200 
1201 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203 		kref_put(&reservations->refs, resv_map_release);
1204 	}
1205 
1206 	hugetlb_dup_vma_private(vma);
1207 }
1208 
1209 /* Returns true if the VMA has associated reserve pages */
1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1211 {
1212 	if (vma->vm_flags & VM_NORESERVE) {
1213 		/*
1214 		 * This address is already reserved by other process(chg == 0),
1215 		 * so, we should decrement reserved count. Without decrementing,
1216 		 * reserve count remains after releasing inode, because this
1217 		 * allocated page will go into page cache and is regarded as
1218 		 * coming from reserved pool in releasing step.  Currently, we
1219 		 * don't have any other solution to deal with this situation
1220 		 * properly, so add work-around here.
1221 		 */
1222 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1223 			return true;
1224 		else
1225 			return false;
1226 	}
1227 
1228 	/* Shared mappings always use reserves */
1229 	if (vma->vm_flags & VM_MAYSHARE) {
1230 		/*
1231 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1232 		 * be a region map for all pages.  The only situation where
1233 		 * there is no region map is if a hole was punched via
1234 		 * fallocate.  In this case, there really are no reserves to
1235 		 * use.  This situation is indicated if chg != 0.
1236 		 */
1237 		if (chg)
1238 			return false;
1239 		else
1240 			return true;
1241 	}
1242 
1243 	/*
1244 	 * Only the process that called mmap() has reserves for
1245 	 * private mappings.
1246 	 */
1247 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1248 		/*
1249 		 * Like the shared case above, a hole punch or truncate
1250 		 * could have been performed on the private mapping.
1251 		 * Examine the value of chg to determine if reserves
1252 		 * actually exist or were previously consumed.
1253 		 * Very Subtle - The value of chg comes from a previous
1254 		 * call to vma_needs_reserves().  The reserve map for
1255 		 * private mappings has different (opposite) semantics
1256 		 * than that of shared mappings.  vma_needs_reserves()
1257 		 * has already taken this difference in semantics into
1258 		 * account.  Therefore, the meaning of chg is the same
1259 		 * as in the shared case above.  Code could easily be
1260 		 * combined, but keeping it separate draws attention to
1261 		 * subtle differences.
1262 		 */
1263 		if (chg)
1264 			return false;
1265 		else
1266 			return true;
1267 	}
1268 
1269 	return false;
1270 }
1271 
1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1273 {
1274 	int nid = folio_nid(folio);
1275 
1276 	lockdep_assert_held(&hugetlb_lock);
1277 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1278 
1279 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280 	h->free_huge_pages++;
1281 	h->free_huge_pages_node[nid]++;
1282 	folio_set_hugetlb_freed(folio);
1283 }
1284 
1285 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1286 {
1287 	struct page *page;
1288 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1289 
1290 	lockdep_assert_held(&hugetlb_lock);
1291 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1292 		if (pin && !is_longterm_pinnable_page(page))
1293 			continue;
1294 
1295 		if (PageHWPoison(page))
1296 			continue;
1297 
1298 		list_move(&page->lru, &h->hugepage_activelist);
1299 		set_page_refcounted(page);
1300 		ClearHPageFreed(page);
1301 		h->free_huge_pages--;
1302 		h->free_huge_pages_node[nid]--;
1303 		return page;
1304 	}
1305 
1306 	return NULL;
1307 }
1308 
1309 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1310 		nodemask_t *nmask)
1311 {
1312 	unsigned int cpuset_mems_cookie;
1313 	struct zonelist *zonelist;
1314 	struct zone *zone;
1315 	struct zoneref *z;
1316 	int node = NUMA_NO_NODE;
1317 
1318 	zonelist = node_zonelist(nid, gfp_mask);
1319 
1320 retry_cpuset:
1321 	cpuset_mems_cookie = read_mems_allowed_begin();
1322 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1323 		struct page *page;
1324 
1325 		if (!cpuset_zone_allowed(zone, gfp_mask))
1326 			continue;
1327 		/*
1328 		 * no need to ask again on the same node. Pool is node rather than
1329 		 * zone aware
1330 		 */
1331 		if (zone_to_nid(zone) == node)
1332 			continue;
1333 		node = zone_to_nid(zone);
1334 
1335 		page = dequeue_huge_page_node_exact(h, node);
1336 		if (page)
1337 			return page;
1338 	}
1339 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1340 		goto retry_cpuset;
1341 
1342 	return NULL;
1343 }
1344 
1345 static unsigned long available_huge_pages(struct hstate *h)
1346 {
1347 	return h->free_huge_pages - h->resv_huge_pages;
1348 }
1349 
1350 static struct page *dequeue_huge_page_vma(struct hstate *h,
1351 				struct vm_area_struct *vma,
1352 				unsigned long address, int avoid_reserve,
1353 				long chg)
1354 {
1355 	struct page *page = NULL;
1356 	struct mempolicy *mpol;
1357 	gfp_t gfp_mask;
1358 	nodemask_t *nodemask;
1359 	int nid;
1360 
1361 	/*
1362 	 * A child process with MAP_PRIVATE mappings created by their parent
1363 	 * have no page reserves. This check ensures that reservations are
1364 	 * not "stolen". The child may still get SIGKILLed
1365 	 */
1366 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1367 		goto err;
1368 
1369 	/* If reserves cannot be used, ensure enough pages are in the pool */
1370 	if (avoid_reserve && !available_huge_pages(h))
1371 		goto err;
1372 
1373 	gfp_mask = htlb_alloc_mask(h);
1374 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1375 
1376 	if (mpol_is_preferred_many(mpol)) {
1377 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1378 
1379 		/* Fallback to all nodes if page==NULL */
1380 		nodemask = NULL;
1381 	}
1382 
1383 	if (!page)
1384 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1385 
1386 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1387 		SetHPageRestoreReserve(page);
1388 		h->resv_huge_pages--;
1389 	}
1390 
1391 	mpol_cond_put(mpol);
1392 	return page;
1393 
1394 err:
1395 	return NULL;
1396 }
1397 
1398 /*
1399  * common helper functions for hstate_next_node_to_{alloc|free}.
1400  * We may have allocated or freed a huge page based on a different
1401  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1402  * be outside of *nodes_allowed.  Ensure that we use an allowed
1403  * node for alloc or free.
1404  */
1405 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1406 {
1407 	nid = next_node_in(nid, *nodes_allowed);
1408 	VM_BUG_ON(nid >= MAX_NUMNODES);
1409 
1410 	return nid;
1411 }
1412 
1413 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1414 {
1415 	if (!node_isset(nid, *nodes_allowed))
1416 		nid = next_node_allowed(nid, nodes_allowed);
1417 	return nid;
1418 }
1419 
1420 /*
1421  * returns the previously saved node ["this node"] from which to
1422  * allocate a persistent huge page for the pool and advance the
1423  * next node from which to allocate, handling wrap at end of node
1424  * mask.
1425  */
1426 static int hstate_next_node_to_alloc(struct hstate *h,
1427 					nodemask_t *nodes_allowed)
1428 {
1429 	int nid;
1430 
1431 	VM_BUG_ON(!nodes_allowed);
1432 
1433 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1434 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1435 
1436 	return nid;
1437 }
1438 
1439 /*
1440  * helper for remove_pool_huge_page() - return the previously saved
1441  * node ["this node"] from which to free a huge page.  Advance the
1442  * next node id whether or not we find a free huge page to free so
1443  * that the next attempt to free addresses the next node.
1444  */
1445 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1446 {
1447 	int nid;
1448 
1449 	VM_BUG_ON(!nodes_allowed);
1450 
1451 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1452 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1453 
1454 	return nid;
1455 }
1456 
1457 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1458 	for (nr_nodes = nodes_weight(*mask);				\
1459 		nr_nodes > 0 &&						\
1460 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1461 		nr_nodes--)
1462 
1463 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1464 	for (nr_nodes = nodes_weight(*mask);				\
1465 		nr_nodes > 0 &&						\
1466 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1467 		nr_nodes--)
1468 
1469 /* used to demote non-gigantic_huge pages as well */
1470 static void __destroy_compound_gigantic_folio(struct folio *folio,
1471 					unsigned int order, bool demote)
1472 {
1473 	int i;
1474 	int nr_pages = 1 << order;
1475 	struct page *p;
1476 
1477 	atomic_set(folio_mapcount_ptr(folio), 0);
1478 	atomic_set(folio_subpages_mapcount_ptr(folio), 0);
1479 	atomic_set(folio_pincount_ptr(folio), 0);
1480 
1481 	for (i = 1; i < nr_pages; i++) {
1482 		p = folio_page(folio, i);
1483 		p->mapping = NULL;
1484 		clear_compound_head(p);
1485 		if (!demote)
1486 			set_page_refcounted(p);
1487 	}
1488 
1489 	folio_set_order(folio, 0);
1490 	__folio_clear_head(folio);
1491 }
1492 
1493 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1494 					unsigned int order)
1495 {
1496 	__destroy_compound_gigantic_folio(folio, order, true);
1497 }
1498 
1499 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1500 static void destroy_compound_gigantic_folio(struct folio *folio,
1501 					unsigned int order)
1502 {
1503 	__destroy_compound_gigantic_folio(folio, order, false);
1504 }
1505 
1506 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1507 {
1508 	/*
1509 	 * If the page isn't allocated using the cma allocator,
1510 	 * cma_release() returns false.
1511 	 */
1512 #ifdef CONFIG_CMA
1513 	int nid = folio_nid(folio);
1514 
1515 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1516 		return;
1517 #endif
1518 
1519 	free_contig_range(folio_pfn(folio), 1 << order);
1520 }
1521 
1522 #ifdef CONFIG_CONTIG_ALLOC
1523 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1524 		int nid, nodemask_t *nodemask)
1525 {
1526 	struct page *page;
1527 	unsigned long nr_pages = pages_per_huge_page(h);
1528 	if (nid == NUMA_NO_NODE)
1529 		nid = numa_mem_id();
1530 
1531 #ifdef CONFIG_CMA
1532 	{
1533 		int node;
1534 
1535 		if (hugetlb_cma[nid]) {
1536 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1537 					huge_page_order(h), true);
1538 			if (page)
1539 				return page_folio(page);
1540 		}
1541 
1542 		if (!(gfp_mask & __GFP_THISNODE)) {
1543 			for_each_node_mask(node, *nodemask) {
1544 				if (node == nid || !hugetlb_cma[node])
1545 					continue;
1546 
1547 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1548 						huge_page_order(h), true);
1549 				if (page)
1550 					return page_folio(page);
1551 			}
1552 		}
1553 	}
1554 #endif
1555 
1556 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1557 	return page ? page_folio(page) : NULL;
1558 }
1559 
1560 #else /* !CONFIG_CONTIG_ALLOC */
1561 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1562 					int nid, nodemask_t *nodemask)
1563 {
1564 	return NULL;
1565 }
1566 #endif /* CONFIG_CONTIG_ALLOC */
1567 
1568 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1569 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1570 					int nid, nodemask_t *nodemask)
1571 {
1572 	return NULL;
1573 }
1574 static inline void free_gigantic_folio(struct folio *folio,
1575 						unsigned int order) { }
1576 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1577 						unsigned int order) { }
1578 #endif
1579 
1580 /*
1581  * Remove hugetlb folio from lists, and update dtor so that the folio appears
1582  * as just a compound page.
1583  *
1584  * A reference is held on the folio, except in the case of demote.
1585  *
1586  * Must be called with hugetlb lock held.
1587  */
1588 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1589 							bool adjust_surplus,
1590 							bool demote)
1591 {
1592 	int nid = folio_nid(folio);
1593 
1594 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1595 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1596 
1597 	lockdep_assert_held(&hugetlb_lock);
1598 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1599 		return;
1600 
1601 	list_del(&folio->lru);
1602 
1603 	if (folio_test_hugetlb_freed(folio)) {
1604 		h->free_huge_pages--;
1605 		h->free_huge_pages_node[nid]--;
1606 	}
1607 	if (adjust_surplus) {
1608 		h->surplus_huge_pages--;
1609 		h->surplus_huge_pages_node[nid]--;
1610 	}
1611 
1612 	/*
1613 	 * Very subtle
1614 	 *
1615 	 * For non-gigantic pages set the destructor to the normal compound
1616 	 * page dtor.  This is needed in case someone takes an additional
1617 	 * temporary ref to the page, and freeing is delayed until they drop
1618 	 * their reference.
1619 	 *
1620 	 * For gigantic pages set the destructor to the null dtor.  This
1621 	 * destructor will never be called.  Before freeing the gigantic
1622 	 * page destroy_compound_gigantic_folio will turn the folio into a
1623 	 * simple group of pages.  After this the destructor does not
1624 	 * apply.
1625 	 *
1626 	 * This handles the case where more than one ref is held when and
1627 	 * after update_and_free_hugetlb_folio is called.
1628 	 *
1629 	 * In the case of demote we do not ref count the page as it will soon
1630 	 * be turned into a page of smaller size.
1631 	 */
1632 	if (!demote)
1633 		folio_ref_unfreeze(folio, 1);
1634 	if (hstate_is_gigantic(h))
1635 		folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1636 	else
1637 		folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1638 
1639 	h->nr_huge_pages--;
1640 	h->nr_huge_pages_node[nid]--;
1641 }
1642 
1643 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1644 							bool adjust_surplus)
1645 {
1646 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1647 }
1648 
1649 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1650 							bool adjust_surplus)
1651 {
1652 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1653 }
1654 
1655 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1656 			     bool adjust_surplus)
1657 {
1658 	int zeroed;
1659 	int nid = folio_nid(folio);
1660 
1661 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1662 
1663 	lockdep_assert_held(&hugetlb_lock);
1664 
1665 	INIT_LIST_HEAD(&folio->lru);
1666 	h->nr_huge_pages++;
1667 	h->nr_huge_pages_node[nid]++;
1668 
1669 	if (adjust_surplus) {
1670 		h->surplus_huge_pages++;
1671 		h->surplus_huge_pages_node[nid]++;
1672 	}
1673 
1674 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1675 	folio_change_private(folio, NULL);
1676 	/*
1677 	 * We have to set hugetlb_vmemmap_optimized again as above
1678 	 * folio_change_private(folio, NULL) cleared it.
1679 	 */
1680 	folio_set_hugetlb_vmemmap_optimized(folio);
1681 
1682 	/*
1683 	 * This folio is about to be managed by the hugetlb allocator and
1684 	 * should have no users.  Drop our reference, and check for others
1685 	 * just in case.
1686 	 */
1687 	zeroed = folio_put_testzero(folio);
1688 	if (unlikely(!zeroed))
1689 		/*
1690 		 * It is VERY unlikely soneone else has taken a ref on
1691 		 * the page.  In this case, we simply return as the
1692 		 * hugetlb destructor (free_huge_page) will be called
1693 		 * when this other ref is dropped.
1694 		 */
1695 		return;
1696 
1697 	arch_clear_hugepage_flags(&folio->page);
1698 	enqueue_hugetlb_folio(h, folio);
1699 }
1700 
1701 static void __update_and_free_page(struct hstate *h, struct page *page)
1702 {
1703 	int i;
1704 	struct folio *folio = page_folio(page);
1705 	struct page *subpage;
1706 
1707 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1708 		return;
1709 
1710 	/*
1711 	 * If we don't know which subpages are hwpoisoned, we can't free
1712 	 * the hugepage, so it's leaked intentionally.
1713 	 */
1714 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1715 		return;
1716 
1717 	if (hugetlb_vmemmap_restore(h, page)) {
1718 		spin_lock_irq(&hugetlb_lock);
1719 		/*
1720 		 * If we cannot allocate vmemmap pages, just refuse to free the
1721 		 * page and put the page back on the hugetlb free list and treat
1722 		 * as a surplus page.
1723 		 */
1724 		add_hugetlb_folio(h, folio, true);
1725 		spin_unlock_irq(&hugetlb_lock);
1726 		return;
1727 	}
1728 
1729 	/*
1730 	 * Move PageHWPoison flag from head page to the raw error pages,
1731 	 * which makes any healthy subpages reusable.
1732 	 */
1733 	if (unlikely(folio_test_hwpoison(folio)))
1734 		hugetlb_clear_page_hwpoison(&folio->page);
1735 
1736 	for (i = 0; i < pages_per_huge_page(h); i++) {
1737 		subpage = folio_page(folio, i);
1738 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1739 				1 << PG_referenced | 1 << PG_dirty |
1740 				1 << PG_active | 1 << PG_private |
1741 				1 << PG_writeback);
1742 	}
1743 
1744 	/*
1745 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1746 	 * need to be given back to CMA in free_gigantic_folio.
1747 	 */
1748 	if (hstate_is_gigantic(h) ||
1749 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1750 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1751 		free_gigantic_folio(folio, huge_page_order(h));
1752 	} else {
1753 		__free_pages(page, huge_page_order(h));
1754 	}
1755 }
1756 
1757 /*
1758  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1759  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1760  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1761  * the vmemmap pages.
1762  *
1763  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1764  * freed and frees them one-by-one. As the page->mapping pointer is going
1765  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1766  * structure of a lockless linked list of huge pages to be freed.
1767  */
1768 static LLIST_HEAD(hpage_freelist);
1769 
1770 static void free_hpage_workfn(struct work_struct *work)
1771 {
1772 	struct llist_node *node;
1773 
1774 	node = llist_del_all(&hpage_freelist);
1775 
1776 	while (node) {
1777 		struct page *page;
1778 		struct hstate *h;
1779 
1780 		page = container_of((struct address_space **)node,
1781 				     struct page, mapping);
1782 		node = node->next;
1783 		page->mapping = NULL;
1784 		/*
1785 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1786 		 * is going to trigger because a previous call to
1787 		 * remove_hugetlb_folio() will call folio_set_compound_dtor
1788 		 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1789 		 * directly.
1790 		 */
1791 		h = size_to_hstate(page_size(page));
1792 
1793 		__update_and_free_page(h, page);
1794 
1795 		cond_resched();
1796 	}
1797 }
1798 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1799 
1800 static inline void flush_free_hpage_work(struct hstate *h)
1801 {
1802 	if (hugetlb_vmemmap_optimizable(h))
1803 		flush_work(&free_hpage_work);
1804 }
1805 
1806 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1807 				 bool atomic)
1808 {
1809 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1810 		__update_and_free_page(h, &folio->page);
1811 		return;
1812 	}
1813 
1814 	/*
1815 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1816 	 *
1817 	 * Only call schedule_work() if hpage_freelist is previously
1818 	 * empty. Otherwise, schedule_work() had been called but the workfn
1819 	 * hasn't retrieved the list yet.
1820 	 */
1821 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1822 		schedule_work(&free_hpage_work);
1823 }
1824 
1825 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1826 {
1827 	struct page *page, *t_page;
1828 	struct folio *folio;
1829 
1830 	list_for_each_entry_safe(page, t_page, list, lru) {
1831 		folio = page_folio(page);
1832 		update_and_free_hugetlb_folio(h, folio, false);
1833 		cond_resched();
1834 	}
1835 }
1836 
1837 struct hstate *size_to_hstate(unsigned long size)
1838 {
1839 	struct hstate *h;
1840 
1841 	for_each_hstate(h) {
1842 		if (huge_page_size(h) == size)
1843 			return h;
1844 	}
1845 	return NULL;
1846 }
1847 
1848 void free_huge_page(struct page *page)
1849 {
1850 	/*
1851 	 * Can't pass hstate in here because it is called from the
1852 	 * compound page destructor.
1853 	 */
1854 	struct folio *folio = page_folio(page);
1855 	struct hstate *h = folio_hstate(folio);
1856 	int nid = folio_nid(folio);
1857 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1858 	bool restore_reserve;
1859 	unsigned long flags;
1860 
1861 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1862 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1863 
1864 	hugetlb_set_folio_subpool(folio, NULL);
1865 	if (folio_test_anon(folio))
1866 		__ClearPageAnonExclusive(&folio->page);
1867 	folio->mapping = NULL;
1868 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1869 	folio_clear_hugetlb_restore_reserve(folio);
1870 
1871 	/*
1872 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1873 	 * reservation.  If the page was associated with a subpool, there
1874 	 * would have been a page reserved in the subpool before allocation
1875 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1876 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1877 	 * remove the reserved page from the subpool.
1878 	 */
1879 	if (!restore_reserve) {
1880 		/*
1881 		 * A return code of zero implies that the subpool will be
1882 		 * under its minimum size if the reservation is not restored
1883 		 * after page is free.  Therefore, force restore_reserve
1884 		 * operation.
1885 		 */
1886 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1887 			restore_reserve = true;
1888 	}
1889 
1890 	spin_lock_irqsave(&hugetlb_lock, flags);
1891 	folio_clear_hugetlb_migratable(folio);
1892 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1893 				     pages_per_huge_page(h), folio);
1894 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1895 					  pages_per_huge_page(h), folio);
1896 	if (restore_reserve)
1897 		h->resv_huge_pages++;
1898 
1899 	if (folio_test_hugetlb_temporary(folio)) {
1900 		remove_hugetlb_folio(h, folio, false);
1901 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1902 		update_and_free_hugetlb_folio(h, folio, true);
1903 	} else if (h->surplus_huge_pages_node[nid]) {
1904 		/* remove the page from active list */
1905 		remove_hugetlb_folio(h, folio, true);
1906 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1907 		update_and_free_hugetlb_folio(h, folio, true);
1908 	} else {
1909 		arch_clear_hugepage_flags(page);
1910 		enqueue_hugetlb_folio(h, folio);
1911 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1912 	}
1913 }
1914 
1915 /*
1916  * Must be called with the hugetlb lock held
1917  */
1918 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1919 {
1920 	lockdep_assert_held(&hugetlb_lock);
1921 	h->nr_huge_pages++;
1922 	h->nr_huge_pages_node[nid]++;
1923 }
1924 
1925 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1926 {
1927 	hugetlb_vmemmap_optimize(h, &folio->page);
1928 	INIT_LIST_HEAD(&folio->lru);
1929 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1930 	hugetlb_set_folio_subpool(folio, NULL);
1931 	set_hugetlb_cgroup(folio, NULL);
1932 	set_hugetlb_cgroup_rsvd(folio, NULL);
1933 }
1934 
1935 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1936 {
1937 	__prep_new_hugetlb_folio(h, folio);
1938 	spin_lock_irq(&hugetlb_lock);
1939 	__prep_account_new_huge_page(h, nid);
1940 	spin_unlock_irq(&hugetlb_lock);
1941 }
1942 
1943 static bool __prep_compound_gigantic_folio(struct folio *folio,
1944 					unsigned int order, bool demote)
1945 {
1946 	int i, j;
1947 	int nr_pages = 1 << order;
1948 	struct page *p;
1949 
1950 	__folio_clear_reserved(folio);
1951 	__folio_set_head(folio);
1952 	/* we rely on prep_new_hugetlb_folio to set the destructor */
1953 	folio_set_order(folio, order);
1954 	for (i = 0; i < nr_pages; i++) {
1955 		p = folio_page(folio, i);
1956 
1957 		/*
1958 		 * For gigantic hugepages allocated through bootmem at
1959 		 * boot, it's safer to be consistent with the not-gigantic
1960 		 * hugepages and clear the PG_reserved bit from all tail pages
1961 		 * too.  Otherwise drivers using get_user_pages() to access tail
1962 		 * pages may get the reference counting wrong if they see
1963 		 * PG_reserved set on a tail page (despite the head page not
1964 		 * having PG_reserved set).  Enforcing this consistency between
1965 		 * head and tail pages allows drivers to optimize away a check
1966 		 * on the head page when they need know if put_page() is needed
1967 		 * after get_user_pages().
1968 		 */
1969 		if (i != 0)	/* head page cleared above */
1970 			__ClearPageReserved(p);
1971 		/*
1972 		 * Subtle and very unlikely
1973 		 *
1974 		 * Gigantic 'page allocators' such as memblock or cma will
1975 		 * return a set of pages with each page ref counted.  We need
1976 		 * to turn this set of pages into a compound page with tail
1977 		 * page ref counts set to zero.  Code such as speculative page
1978 		 * cache adding could take a ref on a 'to be' tail page.
1979 		 * We need to respect any increased ref count, and only set
1980 		 * the ref count to zero if count is currently 1.  If count
1981 		 * is not 1, we return an error.  An error return indicates
1982 		 * the set of pages can not be converted to a gigantic page.
1983 		 * The caller who allocated the pages should then discard the
1984 		 * pages using the appropriate free interface.
1985 		 *
1986 		 * In the case of demote, the ref count will be zero.
1987 		 */
1988 		if (!demote) {
1989 			if (!page_ref_freeze(p, 1)) {
1990 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1991 				goto out_error;
1992 			}
1993 		} else {
1994 			VM_BUG_ON_PAGE(page_count(p), p);
1995 		}
1996 		if (i != 0)
1997 			set_compound_head(p, &folio->page);
1998 	}
1999 	atomic_set(folio_mapcount_ptr(folio), -1);
2000 	atomic_set(folio_subpages_mapcount_ptr(folio), 0);
2001 	atomic_set(folio_pincount_ptr(folio), 0);
2002 	return true;
2003 
2004 out_error:
2005 	/* undo page modifications made above */
2006 	for (j = 0; j < i; j++) {
2007 		p = folio_page(folio, j);
2008 		if (j != 0)
2009 			clear_compound_head(p);
2010 		set_page_refcounted(p);
2011 	}
2012 	/* need to clear PG_reserved on remaining tail pages  */
2013 	for (; j < nr_pages; j++) {
2014 		p = folio_page(folio, j);
2015 		__ClearPageReserved(p);
2016 	}
2017 	folio_set_order(folio, 0);
2018 	__folio_clear_head(folio);
2019 	return false;
2020 }
2021 
2022 static bool prep_compound_gigantic_folio(struct folio *folio,
2023 							unsigned int order)
2024 {
2025 	return __prep_compound_gigantic_folio(folio, order, false);
2026 }
2027 
2028 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2029 							unsigned int order)
2030 {
2031 	return __prep_compound_gigantic_folio(folio, order, true);
2032 }
2033 
2034 /*
2035  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2036  * transparent huge pages.  See the PageTransHuge() documentation for more
2037  * details.
2038  */
2039 int PageHuge(struct page *page)
2040 {
2041 	if (!PageCompound(page))
2042 		return 0;
2043 
2044 	page = compound_head(page);
2045 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
2046 }
2047 EXPORT_SYMBOL_GPL(PageHuge);
2048 
2049 /*
2050  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2051  * normal or transparent huge pages.
2052  */
2053 int PageHeadHuge(struct page *page_head)
2054 {
2055 	if (!PageHead(page_head))
2056 		return 0;
2057 
2058 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
2059 }
2060 EXPORT_SYMBOL_GPL(PageHeadHuge);
2061 
2062 /*
2063  * Find and lock address space (mapping) in write mode.
2064  *
2065  * Upon entry, the page is locked which means that page_mapping() is
2066  * stable.  Due to locking order, we can only trylock_write.  If we can
2067  * not get the lock, simply return NULL to caller.
2068  */
2069 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2070 {
2071 	struct address_space *mapping = page_mapping(hpage);
2072 
2073 	if (!mapping)
2074 		return mapping;
2075 
2076 	if (i_mmap_trylock_write(mapping))
2077 		return mapping;
2078 
2079 	return NULL;
2080 }
2081 
2082 pgoff_t hugetlb_basepage_index(struct page *page)
2083 {
2084 	struct page *page_head = compound_head(page);
2085 	pgoff_t index = page_index(page_head);
2086 	unsigned long compound_idx;
2087 
2088 	if (compound_order(page_head) >= MAX_ORDER)
2089 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2090 	else
2091 		compound_idx = page - page_head;
2092 
2093 	return (index << compound_order(page_head)) + compound_idx;
2094 }
2095 
2096 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2097 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2098 		nodemask_t *node_alloc_noretry)
2099 {
2100 	int order = huge_page_order(h);
2101 	struct page *page;
2102 	bool alloc_try_hard = true;
2103 	bool retry = true;
2104 
2105 	/*
2106 	 * By default we always try hard to allocate the page with
2107 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2108 	 * a loop (to adjust global huge page counts) and previous allocation
2109 	 * failed, do not continue to try hard on the same node.  Use the
2110 	 * node_alloc_noretry bitmap to manage this state information.
2111 	 */
2112 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2113 		alloc_try_hard = false;
2114 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2115 	if (alloc_try_hard)
2116 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2117 	if (nid == NUMA_NO_NODE)
2118 		nid = numa_mem_id();
2119 retry:
2120 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2121 
2122 	/* Freeze head page */
2123 	if (page && !page_ref_freeze(page, 1)) {
2124 		__free_pages(page, order);
2125 		if (retry) {	/* retry once */
2126 			retry = false;
2127 			goto retry;
2128 		}
2129 		/* WOW!  twice in a row. */
2130 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2131 		page = NULL;
2132 	}
2133 
2134 	/*
2135 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2136 	 * indicates an overall state change.  Clear bit so that we resume
2137 	 * normal 'try hard' allocations.
2138 	 */
2139 	if (node_alloc_noretry && page && !alloc_try_hard)
2140 		node_clear(nid, *node_alloc_noretry);
2141 
2142 	/*
2143 	 * If we tried hard to get a page but failed, set bit so that
2144 	 * subsequent attempts will not try as hard until there is an
2145 	 * overall state change.
2146 	 */
2147 	if (node_alloc_noretry && !page && alloc_try_hard)
2148 		node_set(nid, *node_alloc_noretry);
2149 
2150 	if (!page) {
2151 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2152 		return NULL;
2153 	}
2154 
2155 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2156 	return page_folio(page);
2157 }
2158 
2159 /*
2160  * Common helper to allocate a fresh hugetlb page. All specific allocators
2161  * should use this function to get new hugetlb pages
2162  *
2163  * Note that returned page is 'frozen':  ref count of head page and all tail
2164  * pages is zero.
2165  */
2166 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2167 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2168 		nodemask_t *node_alloc_noretry)
2169 {
2170 	struct folio *folio;
2171 	bool retry = false;
2172 
2173 retry:
2174 	if (hstate_is_gigantic(h))
2175 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2176 	else
2177 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2178 				nid, nmask, node_alloc_noretry);
2179 	if (!folio)
2180 		return NULL;
2181 	if (hstate_is_gigantic(h)) {
2182 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2183 			/*
2184 			 * Rare failure to convert pages to compound page.
2185 			 * Free pages and try again - ONCE!
2186 			 */
2187 			free_gigantic_folio(folio, huge_page_order(h));
2188 			if (!retry) {
2189 				retry = true;
2190 				goto retry;
2191 			}
2192 			return NULL;
2193 		}
2194 	}
2195 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2196 
2197 	return folio;
2198 }
2199 
2200 /*
2201  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2202  * manner.
2203  */
2204 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2205 				nodemask_t *node_alloc_noretry)
2206 {
2207 	struct folio *folio;
2208 	int nr_nodes, node;
2209 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2210 
2211 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2212 		folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2213 					nodes_allowed, node_alloc_noretry);
2214 		if (folio) {
2215 			free_huge_page(&folio->page); /* free it into the hugepage allocator */
2216 			return 1;
2217 		}
2218 	}
2219 
2220 	return 0;
2221 }
2222 
2223 /*
2224  * Remove huge page from pool from next node to free.  Attempt to keep
2225  * persistent huge pages more or less balanced over allowed nodes.
2226  * This routine only 'removes' the hugetlb page.  The caller must make
2227  * an additional call to free the page to low level allocators.
2228  * Called with hugetlb_lock locked.
2229  */
2230 static struct page *remove_pool_huge_page(struct hstate *h,
2231 						nodemask_t *nodes_allowed,
2232 						 bool acct_surplus)
2233 {
2234 	int nr_nodes, node;
2235 	struct page *page = NULL;
2236 	struct folio *folio;
2237 
2238 	lockdep_assert_held(&hugetlb_lock);
2239 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2240 		/*
2241 		 * If we're returning unused surplus pages, only examine
2242 		 * nodes with surplus pages.
2243 		 */
2244 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2245 		    !list_empty(&h->hugepage_freelists[node])) {
2246 			page = list_entry(h->hugepage_freelists[node].next,
2247 					  struct page, lru);
2248 			folio = page_folio(page);
2249 			remove_hugetlb_folio(h, folio, acct_surplus);
2250 			break;
2251 		}
2252 	}
2253 
2254 	return page;
2255 }
2256 
2257 /*
2258  * Dissolve a given free hugepage into free buddy pages. This function does
2259  * nothing for in-use hugepages and non-hugepages.
2260  * This function returns values like below:
2261  *
2262  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2263  *           when the system is under memory pressure and the feature of
2264  *           freeing unused vmemmap pages associated with each hugetlb page
2265  *           is enabled.
2266  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2267  *           (allocated or reserved.)
2268  *       0:  successfully dissolved free hugepages or the page is not a
2269  *           hugepage (considered as already dissolved)
2270  */
2271 int dissolve_free_huge_page(struct page *page)
2272 {
2273 	int rc = -EBUSY;
2274 	struct folio *folio = page_folio(page);
2275 
2276 retry:
2277 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2278 	if (!folio_test_hugetlb(folio))
2279 		return 0;
2280 
2281 	spin_lock_irq(&hugetlb_lock);
2282 	if (!folio_test_hugetlb(folio)) {
2283 		rc = 0;
2284 		goto out;
2285 	}
2286 
2287 	if (!folio_ref_count(folio)) {
2288 		struct hstate *h = folio_hstate(folio);
2289 		if (!available_huge_pages(h))
2290 			goto out;
2291 
2292 		/*
2293 		 * We should make sure that the page is already on the free list
2294 		 * when it is dissolved.
2295 		 */
2296 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2297 			spin_unlock_irq(&hugetlb_lock);
2298 			cond_resched();
2299 
2300 			/*
2301 			 * Theoretically, we should return -EBUSY when we
2302 			 * encounter this race. In fact, we have a chance
2303 			 * to successfully dissolve the page if we do a
2304 			 * retry. Because the race window is quite small.
2305 			 * If we seize this opportunity, it is an optimization
2306 			 * for increasing the success rate of dissolving page.
2307 			 */
2308 			goto retry;
2309 		}
2310 
2311 		remove_hugetlb_folio(h, folio, false);
2312 		h->max_huge_pages--;
2313 		spin_unlock_irq(&hugetlb_lock);
2314 
2315 		/*
2316 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2317 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2318 		 * free the page if it can not allocate required vmemmap.  We
2319 		 * need to adjust max_huge_pages if the page is not freed.
2320 		 * Attempt to allocate vmemmmap here so that we can take
2321 		 * appropriate action on failure.
2322 		 */
2323 		rc = hugetlb_vmemmap_restore(h, &folio->page);
2324 		if (!rc) {
2325 			update_and_free_hugetlb_folio(h, folio, false);
2326 		} else {
2327 			spin_lock_irq(&hugetlb_lock);
2328 			add_hugetlb_folio(h, folio, false);
2329 			h->max_huge_pages++;
2330 			spin_unlock_irq(&hugetlb_lock);
2331 		}
2332 
2333 		return rc;
2334 	}
2335 out:
2336 	spin_unlock_irq(&hugetlb_lock);
2337 	return rc;
2338 }
2339 
2340 /*
2341  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2342  * make specified memory blocks removable from the system.
2343  * Note that this will dissolve a free gigantic hugepage completely, if any
2344  * part of it lies within the given range.
2345  * Also note that if dissolve_free_huge_page() returns with an error, all
2346  * free hugepages that were dissolved before that error are lost.
2347  */
2348 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2349 {
2350 	unsigned long pfn;
2351 	struct page *page;
2352 	int rc = 0;
2353 	unsigned int order;
2354 	struct hstate *h;
2355 
2356 	if (!hugepages_supported())
2357 		return rc;
2358 
2359 	order = huge_page_order(&default_hstate);
2360 	for_each_hstate(h)
2361 		order = min(order, huge_page_order(h));
2362 
2363 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2364 		page = pfn_to_page(pfn);
2365 		rc = dissolve_free_huge_page(page);
2366 		if (rc)
2367 			break;
2368 	}
2369 
2370 	return rc;
2371 }
2372 
2373 /*
2374  * Allocates a fresh surplus page from the page allocator.
2375  */
2376 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2377 						int nid, nodemask_t *nmask)
2378 {
2379 	struct folio *folio = NULL;
2380 
2381 	if (hstate_is_gigantic(h))
2382 		return NULL;
2383 
2384 	spin_lock_irq(&hugetlb_lock);
2385 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2386 		goto out_unlock;
2387 	spin_unlock_irq(&hugetlb_lock);
2388 
2389 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2390 	if (!folio)
2391 		return NULL;
2392 
2393 	spin_lock_irq(&hugetlb_lock);
2394 	/*
2395 	 * We could have raced with the pool size change.
2396 	 * Double check that and simply deallocate the new page
2397 	 * if we would end up overcommiting the surpluses. Abuse
2398 	 * temporary page to workaround the nasty free_huge_page
2399 	 * codeflow
2400 	 */
2401 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2402 		folio_set_hugetlb_temporary(folio);
2403 		spin_unlock_irq(&hugetlb_lock);
2404 		free_huge_page(&folio->page);
2405 		return NULL;
2406 	}
2407 
2408 	h->surplus_huge_pages++;
2409 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2410 
2411 out_unlock:
2412 	spin_unlock_irq(&hugetlb_lock);
2413 
2414 	return &folio->page;
2415 }
2416 
2417 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2418 				     int nid, nodemask_t *nmask)
2419 {
2420 	struct folio *folio;
2421 
2422 	if (hstate_is_gigantic(h))
2423 		return NULL;
2424 
2425 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2426 	if (!folio)
2427 		return NULL;
2428 
2429 	/* fresh huge pages are frozen */
2430 	folio_ref_unfreeze(folio, 1);
2431 	/*
2432 	 * We do not account these pages as surplus because they are only
2433 	 * temporary and will be released properly on the last reference
2434 	 */
2435 	folio_set_hugetlb_temporary(folio);
2436 
2437 	return &folio->page;
2438 }
2439 
2440 /*
2441  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2442  */
2443 static
2444 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2445 		struct vm_area_struct *vma, unsigned long addr)
2446 {
2447 	struct page *page = NULL;
2448 	struct mempolicy *mpol;
2449 	gfp_t gfp_mask = htlb_alloc_mask(h);
2450 	int nid;
2451 	nodemask_t *nodemask;
2452 
2453 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2454 	if (mpol_is_preferred_many(mpol)) {
2455 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2456 
2457 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2458 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2459 
2460 		/* Fallback to all nodes if page==NULL */
2461 		nodemask = NULL;
2462 	}
2463 
2464 	if (!page)
2465 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2466 	mpol_cond_put(mpol);
2467 	return page;
2468 }
2469 
2470 /* page migration callback function */
2471 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2472 		nodemask_t *nmask, gfp_t gfp_mask)
2473 {
2474 	spin_lock_irq(&hugetlb_lock);
2475 	if (available_huge_pages(h)) {
2476 		struct page *page;
2477 
2478 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2479 		if (page) {
2480 			spin_unlock_irq(&hugetlb_lock);
2481 			return page;
2482 		}
2483 	}
2484 	spin_unlock_irq(&hugetlb_lock);
2485 
2486 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2487 }
2488 
2489 /* mempolicy aware migration callback */
2490 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2491 		unsigned long address)
2492 {
2493 	struct mempolicy *mpol;
2494 	nodemask_t *nodemask;
2495 	struct page *page;
2496 	gfp_t gfp_mask;
2497 	int node;
2498 
2499 	gfp_mask = htlb_alloc_mask(h);
2500 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2501 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2502 	mpol_cond_put(mpol);
2503 
2504 	return page;
2505 }
2506 
2507 /*
2508  * Increase the hugetlb pool such that it can accommodate a reservation
2509  * of size 'delta'.
2510  */
2511 static int gather_surplus_pages(struct hstate *h, long delta)
2512 	__must_hold(&hugetlb_lock)
2513 {
2514 	LIST_HEAD(surplus_list);
2515 	struct page *page, *tmp;
2516 	int ret;
2517 	long i;
2518 	long needed, allocated;
2519 	bool alloc_ok = true;
2520 
2521 	lockdep_assert_held(&hugetlb_lock);
2522 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2523 	if (needed <= 0) {
2524 		h->resv_huge_pages += delta;
2525 		return 0;
2526 	}
2527 
2528 	allocated = 0;
2529 
2530 	ret = -ENOMEM;
2531 retry:
2532 	spin_unlock_irq(&hugetlb_lock);
2533 	for (i = 0; i < needed; i++) {
2534 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2535 				NUMA_NO_NODE, NULL);
2536 		if (!page) {
2537 			alloc_ok = false;
2538 			break;
2539 		}
2540 		list_add(&page->lru, &surplus_list);
2541 		cond_resched();
2542 	}
2543 	allocated += i;
2544 
2545 	/*
2546 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2547 	 * because either resv_huge_pages or free_huge_pages may have changed.
2548 	 */
2549 	spin_lock_irq(&hugetlb_lock);
2550 	needed = (h->resv_huge_pages + delta) -
2551 			(h->free_huge_pages + allocated);
2552 	if (needed > 0) {
2553 		if (alloc_ok)
2554 			goto retry;
2555 		/*
2556 		 * We were not able to allocate enough pages to
2557 		 * satisfy the entire reservation so we free what
2558 		 * we've allocated so far.
2559 		 */
2560 		goto free;
2561 	}
2562 	/*
2563 	 * The surplus_list now contains _at_least_ the number of extra pages
2564 	 * needed to accommodate the reservation.  Add the appropriate number
2565 	 * of pages to the hugetlb pool and free the extras back to the buddy
2566 	 * allocator.  Commit the entire reservation here to prevent another
2567 	 * process from stealing the pages as they are added to the pool but
2568 	 * before they are reserved.
2569 	 */
2570 	needed += allocated;
2571 	h->resv_huge_pages += delta;
2572 	ret = 0;
2573 
2574 	/* Free the needed pages to the hugetlb pool */
2575 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2576 		if ((--needed) < 0)
2577 			break;
2578 		/* Add the page to the hugetlb allocator */
2579 		enqueue_hugetlb_folio(h, page_folio(page));
2580 	}
2581 free:
2582 	spin_unlock_irq(&hugetlb_lock);
2583 
2584 	/*
2585 	 * Free unnecessary surplus pages to the buddy allocator.
2586 	 * Pages have no ref count, call free_huge_page directly.
2587 	 */
2588 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2589 		free_huge_page(page);
2590 	spin_lock_irq(&hugetlb_lock);
2591 
2592 	return ret;
2593 }
2594 
2595 /*
2596  * This routine has two main purposes:
2597  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2598  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2599  *    to the associated reservation map.
2600  * 2) Free any unused surplus pages that may have been allocated to satisfy
2601  *    the reservation.  As many as unused_resv_pages may be freed.
2602  */
2603 static void return_unused_surplus_pages(struct hstate *h,
2604 					unsigned long unused_resv_pages)
2605 {
2606 	unsigned long nr_pages;
2607 	struct page *page;
2608 	LIST_HEAD(page_list);
2609 
2610 	lockdep_assert_held(&hugetlb_lock);
2611 	/* Uncommit the reservation */
2612 	h->resv_huge_pages -= unused_resv_pages;
2613 
2614 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2615 		goto out;
2616 
2617 	/*
2618 	 * Part (or even all) of the reservation could have been backed
2619 	 * by pre-allocated pages. Only free surplus pages.
2620 	 */
2621 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2622 
2623 	/*
2624 	 * We want to release as many surplus pages as possible, spread
2625 	 * evenly across all nodes with memory. Iterate across these nodes
2626 	 * until we can no longer free unreserved surplus pages. This occurs
2627 	 * when the nodes with surplus pages have no free pages.
2628 	 * remove_pool_huge_page() will balance the freed pages across the
2629 	 * on-line nodes with memory and will handle the hstate accounting.
2630 	 */
2631 	while (nr_pages--) {
2632 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2633 		if (!page)
2634 			goto out;
2635 
2636 		list_add(&page->lru, &page_list);
2637 	}
2638 
2639 out:
2640 	spin_unlock_irq(&hugetlb_lock);
2641 	update_and_free_pages_bulk(h, &page_list);
2642 	spin_lock_irq(&hugetlb_lock);
2643 }
2644 
2645 
2646 /*
2647  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2648  * are used by the huge page allocation routines to manage reservations.
2649  *
2650  * vma_needs_reservation is called to determine if the huge page at addr
2651  * within the vma has an associated reservation.  If a reservation is
2652  * needed, the value 1 is returned.  The caller is then responsible for
2653  * managing the global reservation and subpool usage counts.  After
2654  * the huge page has been allocated, vma_commit_reservation is called
2655  * to add the page to the reservation map.  If the page allocation fails,
2656  * the reservation must be ended instead of committed.  vma_end_reservation
2657  * is called in such cases.
2658  *
2659  * In the normal case, vma_commit_reservation returns the same value
2660  * as the preceding vma_needs_reservation call.  The only time this
2661  * is not the case is if a reserve map was changed between calls.  It
2662  * is the responsibility of the caller to notice the difference and
2663  * take appropriate action.
2664  *
2665  * vma_add_reservation is used in error paths where a reservation must
2666  * be restored when a newly allocated huge page must be freed.  It is
2667  * to be called after calling vma_needs_reservation to determine if a
2668  * reservation exists.
2669  *
2670  * vma_del_reservation is used in error paths where an entry in the reserve
2671  * map was created during huge page allocation and must be removed.  It is to
2672  * be called after calling vma_needs_reservation to determine if a reservation
2673  * exists.
2674  */
2675 enum vma_resv_mode {
2676 	VMA_NEEDS_RESV,
2677 	VMA_COMMIT_RESV,
2678 	VMA_END_RESV,
2679 	VMA_ADD_RESV,
2680 	VMA_DEL_RESV,
2681 };
2682 static long __vma_reservation_common(struct hstate *h,
2683 				struct vm_area_struct *vma, unsigned long addr,
2684 				enum vma_resv_mode mode)
2685 {
2686 	struct resv_map *resv;
2687 	pgoff_t idx;
2688 	long ret;
2689 	long dummy_out_regions_needed;
2690 
2691 	resv = vma_resv_map(vma);
2692 	if (!resv)
2693 		return 1;
2694 
2695 	idx = vma_hugecache_offset(h, vma, addr);
2696 	switch (mode) {
2697 	case VMA_NEEDS_RESV:
2698 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2699 		/* We assume that vma_reservation_* routines always operate on
2700 		 * 1 page, and that adding to resv map a 1 page entry can only
2701 		 * ever require 1 region.
2702 		 */
2703 		VM_BUG_ON(dummy_out_regions_needed != 1);
2704 		break;
2705 	case VMA_COMMIT_RESV:
2706 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2707 		/* region_add calls of range 1 should never fail. */
2708 		VM_BUG_ON(ret < 0);
2709 		break;
2710 	case VMA_END_RESV:
2711 		region_abort(resv, idx, idx + 1, 1);
2712 		ret = 0;
2713 		break;
2714 	case VMA_ADD_RESV:
2715 		if (vma->vm_flags & VM_MAYSHARE) {
2716 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2717 			/* region_add calls of range 1 should never fail. */
2718 			VM_BUG_ON(ret < 0);
2719 		} else {
2720 			region_abort(resv, idx, idx + 1, 1);
2721 			ret = region_del(resv, idx, idx + 1);
2722 		}
2723 		break;
2724 	case VMA_DEL_RESV:
2725 		if (vma->vm_flags & VM_MAYSHARE) {
2726 			region_abort(resv, idx, idx + 1, 1);
2727 			ret = region_del(resv, idx, idx + 1);
2728 		} else {
2729 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2730 			/* region_add calls of range 1 should never fail. */
2731 			VM_BUG_ON(ret < 0);
2732 		}
2733 		break;
2734 	default:
2735 		BUG();
2736 	}
2737 
2738 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2739 		return ret;
2740 	/*
2741 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2742 	 *
2743 	 * In most cases, reserves always exist for private mappings.
2744 	 * However, a file associated with mapping could have been
2745 	 * hole punched or truncated after reserves were consumed.
2746 	 * As subsequent fault on such a range will not use reserves.
2747 	 * Subtle - The reserve map for private mappings has the
2748 	 * opposite meaning than that of shared mappings.  If NO
2749 	 * entry is in the reserve map, it means a reservation exists.
2750 	 * If an entry exists in the reserve map, it means the
2751 	 * reservation has already been consumed.  As a result, the
2752 	 * return value of this routine is the opposite of the
2753 	 * value returned from reserve map manipulation routines above.
2754 	 */
2755 	if (ret > 0)
2756 		return 0;
2757 	if (ret == 0)
2758 		return 1;
2759 	return ret;
2760 }
2761 
2762 static long vma_needs_reservation(struct hstate *h,
2763 			struct vm_area_struct *vma, unsigned long addr)
2764 {
2765 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2766 }
2767 
2768 static long vma_commit_reservation(struct hstate *h,
2769 			struct vm_area_struct *vma, unsigned long addr)
2770 {
2771 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2772 }
2773 
2774 static void vma_end_reservation(struct hstate *h,
2775 			struct vm_area_struct *vma, unsigned long addr)
2776 {
2777 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2778 }
2779 
2780 static long vma_add_reservation(struct hstate *h,
2781 			struct vm_area_struct *vma, unsigned long addr)
2782 {
2783 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2784 }
2785 
2786 static long vma_del_reservation(struct hstate *h,
2787 			struct vm_area_struct *vma, unsigned long addr)
2788 {
2789 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2790 }
2791 
2792 /*
2793  * This routine is called to restore reservation information on error paths.
2794  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2795  * the hugetlb mutex should remain held when calling this routine.
2796  *
2797  * It handles two specific cases:
2798  * 1) A reservation was in place and the page consumed the reservation.
2799  *    HPageRestoreReserve is set in the page.
2800  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2801  *    not set.  However, alloc_huge_page always updates the reserve map.
2802  *
2803  * In case 1, free_huge_page later in the error path will increment the
2804  * global reserve count.  But, free_huge_page does not have enough context
2805  * to adjust the reservation map.  This case deals primarily with private
2806  * mappings.  Adjust the reserve map here to be consistent with global
2807  * reserve count adjustments to be made by free_huge_page.  Make sure the
2808  * reserve map indicates there is a reservation present.
2809  *
2810  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2811  */
2812 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2813 			unsigned long address, struct page *page)
2814 {
2815 	long rc = vma_needs_reservation(h, vma, address);
2816 
2817 	if (HPageRestoreReserve(page)) {
2818 		if (unlikely(rc < 0))
2819 			/*
2820 			 * Rare out of memory condition in reserve map
2821 			 * manipulation.  Clear HPageRestoreReserve so that
2822 			 * global reserve count will not be incremented
2823 			 * by free_huge_page.  This will make it appear
2824 			 * as though the reservation for this page was
2825 			 * consumed.  This may prevent the task from
2826 			 * faulting in the page at a later time.  This
2827 			 * is better than inconsistent global huge page
2828 			 * accounting of reserve counts.
2829 			 */
2830 			ClearHPageRestoreReserve(page);
2831 		else if (rc)
2832 			(void)vma_add_reservation(h, vma, address);
2833 		else
2834 			vma_end_reservation(h, vma, address);
2835 	} else {
2836 		if (!rc) {
2837 			/*
2838 			 * This indicates there is an entry in the reserve map
2839 			 * not added by alloc_huge_page.  We know it was added
2840 			 * before the alloc_huge_page call, otherwise
2841 			 * HPageRestoreReserve would be set on the page.
2842 			 * Remove the entry so that a subsequent allocation
2843 			 * does not consume a reservation.
2844 			 */
2845 			rc = vma_del_reservation(h, vma, address);
2846 			if (rc < 0)
2847 				/*
2848 				 * VERY rare out of memory condition.  Since
2849 				 * we can not delete the entry, set
2850 				 * HPageRestoreReserve so that the reserve
2851 				 * count will be incremented when the page
2852 				 * is freed.  This reserve will be consumed
2853 				 * on a subsequent allocation.
2854 				 */
2855 				SetHPageRestoreReserve(page);
2856 		} else if (rc < 0) {
2857 			/*
2858 			 * Rare out of memory condition from
2859 			 * vma_needs_reservation call.  Memory allocation is
2860 			 * only attempted if a new entry is needed.  Therefore,
2861 			 * this implies there is not an entry in the
2862 			 * reserve map.
2863 			 *
2864 			 * For shared mappings, no entry in the map indicates
2865 			 * no reservation.  We are done.
2866 			 */
2867 			if (!(vma->vm_flags & VM_MAYSHARE))
2868 				/*
2869 				 * For private mappings, no entry indicates
2870 				 * a reservation is present.  Since we can
2871 				 * not add an entry, set SetHPageRestoreReserve
2872 				 * on the page so reserve count will be
2873 				 * incremented when freed.  This reserve will
2874 				 * be consumed on a subsequent allocation.
2875 				 */
2876 				SetHPageRestoreReserve(page);
2877 		} else
2878 			/*
2879 			 * No reservation present, do nothing
2880 			 */
2881 			 vma_end_reservation(h, vma, address);
2882 	}
2883 }
2884 
2885 /*
2886  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2887  * the old one
2888  * @h: struct hstate old page belongs to
2889  * @old_folio: Old folio to dissolve
2890  * @list: List to isolate the page in case we need to
2891  * Returns 0 on success, otherwise negated error.
2892  */
2893 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2894 			struct folio *old_folio, struct list_head *list)
2895 {
2896 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2897 	int nid = folio_nid(old_folio);
2898 	struct folio *new_folio;
2899 	int ret = 0;
2900 
2901 	/*
2902 	 * Before dissolving the folio, we need to allocate a new one for the
2903 	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
2904 	 * by doing everything but actually updating counters and adding to
2905 	 * the pool.  This simplifies and let us do most of the processing
2906 	 * under the lock.
2907 	 */
2908 	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2909 	if (!new_folio)
2910 		return -ENOMEM;
2911 	__prep_new_hugetlb_folio(h, new_folio);
2912 
2913 retry:
2914 	spin_lock_irq(&hugetlb_lock);
2915 	if (!folio_test_hugetlb(old_folio)) {
2916 		/*
2917 		 * Freed from under us. Drop new_folio too.
2918 		 */
2919 		goto free_new;
2920 	} else if (folio_ref_count(old_folio)) {
2921 		/*
2922 		 * Someone has grabbed the folio, try to isolate it here.
2923 		 * Fail with -EBUSY if not possible.
2924 		 */
2925 		spin_unlock_irq(&hugetlb_lock);
2926 		ret = isolate_hugetlb(&old_folio->page, list);
2927 		spin_lock_irq(&hugetlb_lock);
2928 		goto free_new;
2929 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2930 		/*
2931 		 * Folio's refcount is 0 but it has not been enqueued in the
2932 		 * freelist yet. Race window is small, so we can succeed here if
2933 		 * we retry.
2934 		 */
2935 		spin_unlock_irq(&hugetlb_lock);
2936 		cond_resched();
2937 		goto retry;
2938 	} else {
2939 		/*
2940 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2941 		 * the freelist and decrease the counters. These will be
2942 		 * incremented again when calling __prep_account_new_huge_page()
2943 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2944 		 * remain stable since this happens under the lock.
2945 		 */
2946 		remove_hugetlb_folio(h, old_folio, false);
2947 
2948 		/*
2949 		 * Ref count on new_folio is already zero as it was dropped
2950 		 * earlier.  It can be directly added to the pool free list.
2951 		 */
2952 		__prep_account_new_huge_page(h, nid);
2953 		enqueue_hugetlb_folio(h, new_folio);
2954 
2955 		/*
2956 		 * Folio has been replaced, we can safely free the old one.
2957 		 */
2958 		spin_unlock_irq(&hugetlb_lock);
2959 		update_and_free_hugetlb_folio(h, old_folio, false);
2960 	}
2961 
2962 	return ret;
2963 
2964 free_new:
2965 	spin_unlock_irq(&hugetlb_lock);
2966 	/* Folio has a zero ref count, but needs a ref to be freed */
2967 	folio_ref_unfreeze(new_folio, 1);
2968 	update_and_free_hugetlb_folio(h, new_folio, false);
2969 
2970 	return ret;
2971 }
2972 
2973 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2974 {
2975 	struct hstate *h;
2976 	struct folio *folio = page_folio(page);
2977 	int ret = -EBUSY;
2978 
2979 	/*
2980 	 * The page might have been dissolved from under our feet, so make sure
2981 	 * to carefully check the state under the lock.
2982 	 * Return success when racing as if we dissolved the page ourselves.
2983 	 */
2984 	spin_lock_irq(&hugetlb_lock);
2985 	if (folio_test_hugetlb(folio)) {
2986 		h = folio_hstate(folio);
2987 	} else {
2988 		spin_unlock_irq(&hugetlb_lock);
2989 		return 0;
2990 	}
2991 	spin_unlock_irq(&hugetlb_lock);
2992 
2993 	/*
2994 	 * Fence off gigantic pages as there is a cyclic dependency between
2995 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2996 	 * of bailing out right away without further retrying.
2997 	 */
2998 	if (hstate_is_gigantic(h))
2999 		return -ENOMEM;
3000 
3001 	if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
3002 		ret = 0;
3003 	else if (!folio_ref_count(folio))
3004 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3005 
3006 	return ret;
3007 }
3008 
3009 struct page *alloc_huge_page(struct vm_area_struct *vma,
3010 				    unsigned long addr, int avoid_reserve)
3011 {
3012 	struct hugepage_subpool *spool = subpool_vma(vma);
3013 	struct hstate *h = hstate_vma(vma);
3014 	struct page *page;
3015 	struct folio *folio;
3016 	long map_chg, map_commit;
3017 	long gbl_chg;
3018 	int ret, idx;
3019 	struct hugetlb_cgroup *h_cg;
3020 	bool deferred_reserve;
3021 
3022 	idx = hstate_index(h);
3023 	/*
3024 	 * Examine the region/reserve map to determine if the process
3025 	 * has a reservation for the page to be allocated.  A return
3026 	 * code of zero indicates a reservation exists (no change).
3027 	 */
3028 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3029 	if (map_chg < 0)
3030 		return ERR_PTR(-ENOMEM);
3031 
3032 	/*
3033 	 * Processes that did not create the mapping will have no
3034 	 * reserves as indicated by the region/reserve map. Check
3035 	 * that the allocation will not exceed the subpool limit.
3036 	 * Allocations for MAP_NORESERVE mappings also need to be
3037 	 * checked against any subpool limit.
3038 	 */
3039 	if (map_chg || avoid_reserve) {
3040 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3041 		if (gbl_chg < 0) {
3042 			vma_end_reservation(h, vma, addr);
3043 			return ERR_PTR(-ENOSPC);
3044 		}
3045 
3046 		/*
3047 		 * Even though there was no reservation in the region/reserve
3048 		 * map, there could be reservations associated with the
3049 		 * subpool that can be used.  This would be indicated if the
3050 		 * return value of hugepage_subpool_get_pages() is zero.
3051 		 * However, if avoid_reserve is specified we still avoid even
3052 		 * the subpool reservations.
3053 		 */
3054 		if (avoid_reserve)
3055 			gbl_chg = 1;
3056 	}
3057 
3058 	/* If this allocation is not consuming a reservation, charge it now.
3059 	 */
3060 	deferred_reserve = map_chg || avoid_reserve;
3061 	if (deferred_reserve) {
3062 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3063 			idx, pages_per_huge_page(h), &h_cg);
3064 		if (ret)
3065 			goto out_subpool_put;
3066 	}
3067 
3068 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3069 	if (ret)
3070 		goto out_uncharge_cgroup_reservation;
3071 
3072 	spin_lock_irq(&hugetlb_lock);
3073 	/*
3074 	 * glb_chg is passed to indicate whether or not a page must be taken
3075 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3076 	 * a reservation exists for the allocation.
3077 	 */
3078 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
3079 	if (!page) {
3080 		spin_unlock_irq(&hugetlb_lock);
3081 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
3082 		if (!page)
3083 			goto out_uncharge_cgroup;
3084 		spin_lock_irq(&hugetlb_lock);
3085 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3086 			SetHPageRestoreReserve(page);
3087 			h->resv_huge_pages--;
3088 		}
3089 		list_add(&page->lru, &h->hugepage_activelist);
3090 		set_page_refcounted(page);
3091 		/* Fall through */
3092 	}
3093 	folio = page_folio(page);
3094 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
3095 	/* If allocation is not consuming a reservation, also store the
3096 	 * hugetlb_cgroup pointer on the page.
3097 	 */
3098 	if (deferred_reserve) {
3099 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3100 						  h_cg, page);
3101 	}
3102 
3103 	spin_unlock_irq(&hugetlb_lock);
3104 
3105 	hugetlb_set_page_subpool(page, spool);
3106 
3107 	map_commit = vma_commit_reservation(h, vma, addr);
3108 	if (unlikely(map_chg > map_commit)) {
3109 		/*
3110 		 * The page was added to the reservation map between
3111 		 * vma_needs_reservation and vma_commit_reservation.
3112 		 * This indicates a race with hugetlb_reserve_pages.
3113 		 * Adjust for the subpool count incremented above AND
3114 		 * in hugetlb_reserve_pages for the same page.  Also,
3115 		 * the reservation count added in hugetlb_reserve_pages
3116 		 * no longer applies.
3117 		 */
3118 		long rsv_adjust;
3119 
3120 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3121 		hugetlb_acct_memory(h, -rsv_adjust);
3122 		if (deferred_reserve)
3123 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3124 					pages_per_huge_page(h), folio);
3125 	}
3126 	return page;
3127 
3128 out_uncharge_cgroup:
3129 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3130 out_uncharge_cgroup_reservation:
3131 	if (deferred_reserve)
3132 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3133 						    h_cg);
3134 out_subpool_put:
3135 	if (map_chg || avoid_reserve)
3136 		hugepage_subpool_put_pages(spool, 1);
3137 	vma_end_reservation(h, vma, addr);
3138 	return ERR_PTR(-ENOSPC);
3139 }
3140 
3141 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3142 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3143 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3144 {
3145 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3146 	int nr_nodes, node;
3147 
3148 	/* do node specific alloc */
3149 	if (nid != NUMA_NO_NODE) {
3150 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3151 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3152 		if (!m)
3153 			return 0;
3154 		goto found;
3155 	}
3156 	/* allocate from next node when distributing huge pages */
3157 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3158 		m = memblock_alloc_try_nid_raw(
3159 				huge_page_size(h), huge_page_size(h),
3160 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3161 		/*
3162 		 * Use the beginning of the huge page to store the
3163 		 * huge_bootmem_page struct (until gather_bootmem
3164 		 * puts them into the mem_map).
3165 		 */
3166 		if (!m)
3167 			return 0;
3168 		goto found;
3169 	}
3170 
3171 found:
3172 	/* Put them into a private list first because mem_map is not up yet */
3173 	INIT_LIST_HEAD(&m->list);
3174 	list_add(&m->list, &huge_boot_pages);
3175 	m->hstate = h;
3176 	return 1;
3177 }
3178 
3179 /*
3180  * Put bootmem huge pages into the standard lists after mem_map is up.
3181  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3182  */
3183 static void __init gather_bootmem_prealloc(void)
3184 {
3185 	struct huge_bootmem_page *m;
3186 
3187 	list_for_each_entry(m, &huge_boot_pages, list) {
3188 		struct page *page = virt_to_page(m);
3189 		struct folio *folio = page_folio(page);
3190 		struct hstate *h = m->hstate;
3191 
3192 		VM_BUG_ON(!hstate_is_gigantic(h));
3193 		WARN_ON(folio_ref_count(folio) != 1);
3194 		if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3195 			WARN_ON(folio_test_reserved(folio));
3196 			prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3197 			free_huge_page(page); /* add to the hugepage allocator */
3198 		} else {
3199 			/* VERY unlikely inflated ref count on a tail page */
3200 			free_gigantic_folio(folio, huge_page_order(h));
3201 		}
3202 
3203 		/*
3204 		 * We need to restore the 'stolen' pages to totalram_pages
3205 		 * in order to fix confusing memory reports from free(1) and
3206 		 * other side-effects, like CommitLimit going negative.
3207 		 */
3208 		adjust_managed_page_count(page, pages_per_huge_page(h));
3209 		cond_resched();
3210 	}
3211 }
3212 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3213 {
3214 	unsigned long i;
3215 	char buf[32];
3216 
3217 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3218 		if (hstate_is_gigantic(h)) {
3219 			if (!alloc_bootmem_huge_page(h, nid))
3220 				break;
3221 		} else {
3222 			struct folio *folio;
3223 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3224 
3225 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3226 					&node_states[N_MEMORY], NULL);
3227 			if (!folio)
3228 				break;
3229 			free_huge_page(&folio->page); /* free it into the hugepage allocator */
3230 		}
3231 		cond_resched();
3232 	}
3233 	if (i == h->max_huge_pages_node[nid])
3234 		return;
3235 
3236 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3237 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3238 		h->max_huge_pages_node[nid], buf, nid, i);
3239 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3240 	h->max_huge_pages_node[nid] = i;
3241 }
3242 
3243 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3244 {
3245 	unsigned long i;
3246 	nodemask_t *node_alloc_noretry;
3247 	bool node_specific_alloc = false;
3248 
3249 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3250 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3251 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3252 		return;
3253 	}
3254 
3255 	/* do node specific alloc */
3256 	for_each_online_node(i) {
3257 		if (h->max_huge_pages_node[i] > 0) {
3258 			hugetlb_hstate_alloc_pages_onenode(h, i);
3259 			node_specific_alloc = true;
3260 		}
3261 	}
3262 
3263 	if (node_specific_alloc)
3264 		return;
3265 
3266 	/* below will do all node balanced alloc */
3267 	if (!hstate_is_gigantic(h)) {
3268 		/*
3269 		 * Bit mask controlling how hard we retry per-node allocations.
3270 		 * Ignore errors as lower level routines can deal with
3271 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3272 		 * time, we are likely in bigger trouble.
3273 		 */
3274 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3275 						GFP_KERNEL);
3276 	} else {
3277 		/* allocations done at boot time */
3278 		node_alloc_noretry = NULL;
3279 	}
3280 
3281 	/* bit mask controlling how hard we retry per-node allocations */
3282 	if (node_alloc_noretry)
3283 		nodes_clear(*node_alloc_noretry);
3284 
3285 	for (i = 0; i < h->max_huge_pages; ++i) {
3286 		if (hstate_is_gigantic(h)) {
3287 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3288 				break;
3289 		} else if (!alloc_pool_huge_page(h,
3290 					 &node_states[N_MEMORY],
3291 					 node_alloc_noretry))
3292 			break;
3293 		cond_resched();
3294 	}
3295 	if (i < h->max_huge_pages) {
3296 		char buf[32];
3297 
3298 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3299 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3300 			h->max_huge_pages, buf, i);
3301 		h->max_huge_pages = i;
3302 	}
3303 	kfree(node_alloc_noretry);
3304 }
3305 
3306 static void __init hugetlb_init_hstates(void)
3307 {
3308 	struct hstate *h, *h2;
3309 
3310 	for_each_hstate(h) {
3311 		/* oversize hugepages were init'ed in early boot */
3312 		if (!hstate_is_gigantic(h))
3313 			hugetlb_hstate_alloc_pages(h);
3314 
3315 		/*
3316 		 * Set demote order for each hstate.  Note that
3317 		 * h->demote_order is initially 0.
3318 		 * - We can not demote gigantic pages if runtime freeing
3319 		 *   is not supported, so skip this.
3320 		 * - If CMA allocation is possible, we can not demote
3321 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3322 		 */
3323 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3324 			continue;
3325 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3326 			continue;
3327 		for_each_hstate(h2) {
3328 			if (h2 == h)
3329 				continue;
3330 			if (h2->order < h->order &&
3331 			    h2->order > h->demote_order)
3332 				h->demote_order = h2->order;
3333 		}
3334 	}
3335 }
3336 
3337 static void __init report_hugepages(void)
3338 {
3339 	struct hstate *h;
3340 
3341 	for_each_hstate(h) {
3342 		char buf[32];
3343 
3344 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3345 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3346 			buf, h->free_huge_pages);
3347 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3348 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3349 	}
3350 }
3351 
3352 #ifdef CONFIG_HIGHMEM
3353 static void try_to_free_low(struct hstate *h, unsigned long count,
3354 						nodemask_t *nodes_allowed)
3355 {
3356 	int i;
3357 	LIST_HEAD(page_list);
3358 
3359 	lockdep_assert_held(&hugetlb_lock);
3360 	if (hstate_is_gigantic(h))
3361 		return;
3362 
3363 	/*
3364 	 * Collect pages to be freed on a list, and free after dropping lock
3365 	 */
3366 	for_each_node_mask(i, *nodes_allowed) {
3367 		struct page *page, *next;
3368 		struct list_head *freel = &h->hugepage_freelists[i];
3369 		list_for_each_entry_safe(page, next, freel, lru) {
3370 			if (count >= h->nr_huge_pages)
3371 				goto out;
3372 			if (PageHighMem(page))
3373 				continue;
3374 			remove_hugetlb_folio(h, page_folio(page), false);
3375 			list_add(&page->lru, &page_list);
3376 		}
3377 	}
3378 
3379 out:
3380 	spin_unlock_irq(&hugetlb_lock);
3381 	update_and_free_pages_bulk(h, &page_list);
3382 	spin_lock_irq(&hugetlb_lock);
3383 }
3384 #else
3385 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3386 						nodemask_t *nodes_allowed)
3387 {
3388 }
3389 #endif
3390 
3391 /*
3392  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3393  * balanced by operating on them in a round-robin fashion.
3394  * Returns 1 if an adjustment was made.
3395  */
3396 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3397 				int delta)
3398 {
3399 	int nr_nodes, node;
3400 
3401 	lockdep_assert_held(&hugetlb_lock);
3402 	VM_BUG_ON(delta != -1 && delta != 1);
3403 
3404 	if (delta < 0) {
3405 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3406 			if (h->surplus_huge_pages_node[node])
3407 				goto found;
3408 		}
3409 	} else {
3410 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3411 			if (h->surplus_huge_pages_node[node] <
3412 					h->nr_huge_pages_node[node])
3413 				goto found;
3414 		}
3415 	}
3416 	return 0;
3417 
3418 found:
3419 	h->surplus_huge_pages += delta;
3420 	h->surplus_huge_pages_node[node] += delta;
3421 	return 1;
3422 }
3423 
3424 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3425 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3426 			      nodemask_t *nodes_allowed)
3427 {
3428 	unsigned long min_count, ret;
3429 	struct page *page;
3430 	LIST_HEAD(page_list);
3431 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3432 
3433 	/*
3434 	 * Bit mask controlling how hard we retry per-node allocations.
3435 	 * If we can not allocate the bit mask, do not attempt to allocate
3436 	 * the requested huge pages.
3437 	 */
3438 	if (node_alloc_noretry)
3439 		nodes_clear(*node_alloc_noretry);
3440 	else
3441 		return -ENOMEM;
3442 
3443 	/*
3444 	 * resize_lock mutex prevents concurrent adjustments to number of
3445 	 * pages in hstate via the proc/sysfs interfaces.
3446 	 */
3447 	mutex_lock(&h->resize_lock);
3448 	flush_free_hpage_work(h);
3449 	spin_lock_irq(&hugetlb_lock);
3450 
3451 	/*
3452 	 * Check for a node specific request.
3453 	 * Changing node specific huge page count may require a corresponding
3454 	 * change to the global count.  In any case, the passed node mask
3455 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3456 	 */
3457 	if (nid != NUMA_NO_NODE) {
3458 		unsigned long old_count = count;
3459 
3460 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3461 		/*
3462 		 * User may have specified a large count value which caused the
3463 		 * above calculation to overflow.  In this case, they wanted
3464 		 * to allocate as many huge pages as possible.  Set count to
3465 		 * largest possible value to align with their intention.
3466 		 */
3467 		if (count < old_count)
3468 			count = ULONG_MAX;
3469 	}
3470 
3471 	/*
3472 	 * Gigantic pages runtime allocation depend on the capability for large
3473 	 * page range allocation.
3474 	 * If the system does not provide this feature, return an error when
3475 	 * the user tries to allocate gigantic pages but let the user free the
3476 	 * boottime allocated gigantic pages.
3477 	 */
3478 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3479 		if (count > persistent_huge_pages(h)) {
3480 			spin_unlock_irq(&hugetlb_lock);
3481 			mutex_unlock(&h->resize_lock);
3482 			NODEMASK_FREE(node_alloc_noretry);
3483 			return -EINVAL;
3484 		}
3485 		/* Fall through to decrease pool */
3486 	}
3487 
3488 	/*
3489 	 * Increase the pool size
3490 	 * First take pages out of surplus state.  Then make up the
3491 	 * remaining difference by allocating fresh huge pages.
3492 	 *
3493 	 * We might race with alloc_surplus_huge_page() here and be unable
3494 	 * to convert a surplus huge page to a normal huge page. That is
3495 	 * not critical, though, it just means the overall size of the
3496 	 * pool might be one hugepage larger than it needs to be, but
3497 	 * within all the constraints specified by the sysctls.
3498 	 */
3499 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3500 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3501 			break;
3502 	}
3503 
3504 	while (count > persistent_huge_pages(h)) {
3505 		/*
3506 		 * If this allocation races such that we no longer need the
3507 		 * page, free_huge_page will handle it by freeing the page
3508 		 * and reducing the surplus.
3509 		 */
3510 		spin_unlock_irq(&hugetlb_lock);
3511 
3512 		/* yield cpu to avoid soft lockup */
3513 		cond_resched();
3514 
3515 		ret = alloc_pool_huge_page(h, nodes_allowed,
3516 						node_alloc_noretry);
3517 		spin_lock_irq(&hugetlb_lock);
3518 		if (!ret)
3519 			goto out;
3520 
3521 		/* Bail for signals. Probably ctrl-c from user */
3522 		if (signal_pending(current))
3523 			goto out;
3524 	}
3525 
3526 	/*
3527 	 * Decrease the pool size
3528 	 * First return free pages to the buddy allocator (being careful
3529 	 * to keep enough around to satisfy reservations).  Then place
3530 	 * pages into surplus state as needed so the pool will shrink
3531 	 * to the desired size as pages become free.
3532 	 *
3533 	 * By placing pages into the surplus state independent of the
3534 	 * overcommit value, we are allowing the surplus pool size to
3535 	 * exceed overcommit. There are few sane options here. Since
3536 	 * alloc_surplus_huge_page() is checking the global counter,
3537 	 * though, we'll note that we're not allowed to exceed surplus
3538 	 * and won't grow the pool anywhere else. Not until one of the
3539 	 * sysctls are changed, or the surplus pages go out of use.
3540 	 */
3541 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3542 	min_count = max(count, min_count);
3543 	try_to_free_low(h, min_count, nodes_allowed);
3544 
3545 	/*
3546 	 * Collect pages to be removed on list without dropping lock
3547 	 */
3548 	while (min_count < persistent_huge_pages(h)) {
3549 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3550 		if (!page)
3551 			break;
3552 
3553 		list_add(&page->lru, &page_list);
3554 	}
3555 	/* free the pages after dropping lock */
3556 	spin_unlock_irq(&hugetlb_lock);
3557 	update_and_free_pages_bulk(h, &page_list);
3558 	flush_free_hpage_work(h);
3559 	spin_lock_irq(&hugetlb_lock);
3560 
3561 	while (count < persistent_huge_pages(h)) {
3562 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3563 			break;
3564 	}
3565 out:
3566 	h->max_huge_pages = persistent_huge_pages(h);
3567 	spin_unlock_irq(&hugetlb_lock);
3568 	mutex_unlock(&h->resize_lock);
3569 
3570 	NODEMASK_FREE(node_alloc_noretry);
3571 
3572 	return 0;
3573 }
3574 
3575 static int demote_free_huge_page(struct hstate *h, struct page *page)
3576 {
3577 	int i, nid = page_to_nid(page);
3578 	struct hstate *target_hstate;
3579 	struct folio *folio = page_folio(page);
3580 	struct page *subpage;
3581 	int rc = 0;
3582 
3583 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3584 
3585 	remove_hugetlb_folio_for_demote(h, folio, false);
3586 	spin_unlock_irq(&hugetlb_lock);
3587 
3588 	rc = hugetlb_vmemmap_restore(h, page);
3589 	if (rc) {
3590 		/* Allocation of vmemmmap failed, we can not demote page */
3591 		spin_lock_irq(&hugetlb_lock);
3592 		set_page_refcounted(page);
3593 		add_hugetlb_folio(h, page_folio(page), false);
3594 		return rc;
3595 	}
3596 
3597 	/*
3598 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3599 	 * sizes as it will not ref count pages.
3600 	 */
3601 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3602 
3603 	/*
3604 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3605 	 * Without the mutex, pages added to target hstate could be marked
3606 	 * as surplus.
3607 	 *
3608 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3609 	 * use the convention of always taking larger size hstate mutex first.
3610 	 */
3611 	mutex_lock(&target_hstate->resize_lock);
3612 	for (i = 0; i < pages_per_huge_page(h);
3613 				i += pages_per_huge_page(target_hstate)) {
3614 		subpage = nth_page(page, i);
3615 		folio = page_folio(subpage);
3616 		if (hstate_is_gigantic(target_hstate))
3617 			prep_compound_gigantic_folio_for_demote(folio,
3618 							target_hstate->order);
3619 		else
3620 			prep_compound_page(subpage, target_hstate->order);
3621 		set_page_private(subpage, 0);
3622 		prep_new_hugetlb_folio(target_hstate, folio, nid);
3623 		free_huge_page(subpage);
3624 	}
3625 	mutex_unlock(&target_hstate->resize_lock);
3626 
3627 	spin_lock_irq(&hugetlb_lock);
3628 
3629 	/*
3630 	 * Not absolutely necessary, but for consistency update max_huge_pages
3631 	 * based on pool changes for the demoted page.
3632 	 */
3633 	h->max_huge_pages--;
3634 	target_hstate->max_huge_pages +=
3635 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3636 
3637 	return rc;
3638 }
3639 
3640 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3641 	__must_hold(&hugetlb_lock)
3642 {
3643 	int nr_nodes, node;
3644 	struct page *page;
3645 
3646 	lockdep_assert_held(&hugetlb_lock);
3647 
3648 	/* We should never get here if no demote order */
3649 	if (!h->demote_order) {
3650 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3651 		return -EINVAL;		/* internal error */
3652 	}
3653 
3654 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3655 		list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3656 			if (PageHWPoison(page))
3657 				continue;
3658 
3659 			return demote_free_huge_page(h, page);
3660 		}
3661 	}
3662 
3663 	/*
3664 	 * Only way to get here is if all pages on free lists are poisoned.
3665 	 * Return -EBUSY so that caller will not retry.
3666 	 */
3667 	return -EBUSY;
3668 }
3669 
3670 #define HSTATE_ATTR_RO(_name) \
3671 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3672 
3673 #define HSTATE_ATTR_WO(_name) \
3674 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3675 
3676 #define HSTATE_ATTR(_name) \
3677 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3678 
3679 static struct kobject *hugepages_kobj;
3680 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3681 
3682 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3683 
3684 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3685 {
3686 	int i;
3687 
3688 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3689 		if (hstate_kobjs[i] == kobj) {
3690 			if (nidp)
3691 				*nidp = NUMA_NO_NODE;
3692 			return &hstates[i];
3693 		}
3694 
3695 	return kobj_to_node_hstate(kobj, nidp);
3696 }
3697 
3698 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3699 					struct kobj_attribute *attr, char *buf)
3700 {
3701 	struct hstate *h;
3702 	unsigned long nr_huge_pages;
3703 	int nid;
3704 
3705 	h = kobj_to_hstate(kobj, &nid);
3706 	if (nid == NUMA_NO_NODE)
3707 		nr_huge_pages = h->nr_huge_pages;
3708 	else
3709 		nr_huge_pages = h->nr_huge_pages_node[nid];
3710 
3711 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3712 }
3713 
3714 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3715 					   struct hstate *h, int nid,
3716 					   unsigned long count, size_t len)
3717 {
3718 	int err;
3719 	nodemask_t nodes_allowed, *n_mask;
3720 
3721 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3722 		return -EINVAL;
3723 
3724 	if (nid == NUMA_NO_NODE) {
3725 		/*
3726 		 * global hstate attribute
3727 		 */
3728 		if (!(obey_mempolicy &&
3729 				init_nodemask_of_mempolicy(&nodes_allowed)))
3730 			n_mask = &node_states[N_MEMORY];
3731 		else
3732 			n_mask = &nodes_allowed;
3733 	} else {
3734 		/*
3735 		 * Node specific request.  count adjustment happens in
3736 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3737 		 */
3738 		init_nodemask_of_node(&nodes_allowed, nid);
3739 		n_mask = &nodes_allowed;
3740 	}
3741 
3742 	err = set_max_huge_pages(h, count, nid, n_mask);
3743 
3744 	return err ? err : len;
3745 }
3746 
3747 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3748 					 struct kobject *kobj, const char *buf,
3749 					 size_t len)
3750 {
3751 	struct hstate *h;
3752 	unsigned long count;
3753 	int nid;
3754 	int err;
3755 
3756 	err = kstrtoul(buf, 10, &count);
3757 	if (err)
3758 		return err;
3759 
3760 	h = kobj_to_hstate(kobj, &nid);
3761 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3762 }
3763 
3764 static ssize_t nr_hugepages_show(struct kobject *kobj,
3765 				       struct kobj_attribute *attr, char *buf)
3766 {
3767 	return nr_hugepages_show_common(kobj, attr, buf);
3768 }
3769 
3770 static ssize_t nr_hugepages_store(struct kobject *kobj,
3771 	       struct kobj_attribute *attr, const char *buf, size_t len)
3772 {
3773 	return nr_hugepages_store_common(false, kobj, buf, len);
3774 }
3775 HSTATE_ATTR(nr_hugepages);
3776 
3777 #ifdef CONFIG_NUMA
3778 
3779 /*
3780  * hstate attribute for optionally mempolicy-based constraint on persistent
3781  * huge page alloc/free.
3782  */
3783 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3784 					   struct kobj_attribute *attr,
3785 					   char *buf)
3786 {
3787 	return nr_hugepages_show_common(kobj, attr, buf);
3788 }
3789 
3790 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3791 	       struct kobj_attribute *attr, const char *buf, size_t len)
3792 {
3793 	return nr_hugepages_store_common(true, kobj, buf, len);
3794 }
3795 HSTATE_ATTR(nr_hugepages_mempolicy);
3796 #endif
3797 
3798 
3799 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3800 					struct kobj_attribute *attr, char *buf)
3801 {
3802 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3803 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3804 }
3805 
3806 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3807 		struct kobj_attribute *attr, const char *buf, size_t count)
3808 {
3809 	int err;
3810 	unsigned long input;
3811 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3812 
3813 	if (hstate_is_gigantic(h))
3814 		return -EINVAL;
3815 
3816 	err = kstrtoul(buf, 10, &input);
3817 	if (err)
3818 		return err;
3819 
3820 	spin_lock_irq(&hugetlb_lock);
3821 	h->nr_overcommit_huge_pages = input;
3822 	spin_unlock_irq(&hugetlb_lock);
3823 
3824 	return count;
3825 }
3826 HSTATE_ATTR(nr_overcommit_hugepages);
3827 
3828 static ssize_t free_hugepages_show(struct kobject *kobj,
3829 					struct kobj_attribute *attr, char *buf)
3830 {
3831 	struct hstate *h;
3832 	unsigned long free_huge_pages;
3833 	int nid;
3834 
3835 	h = kobj_to_hstate(kobj, &nid);
3836 	if (nid == NUMA_NO_NODE)
3837 		free_huge_pages = h->free_huge_pages;
3838 	else
3839 		free_huge_pages = h->free_huge_pages_node[nid];
3840 
3841 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3842 }
3843 HSTATE_ATTR_RO(free_hugepages);
3844 
3845 static ssize_t resv_hugepages_show(struct kobject *kobj,
3846 					struct kobj_attribute *attr, char *buf)
3847 {
3848 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3849 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3850 }
3851 HSTATE_ATTR_RO(resv_hugepages);
3852 
3853 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3854 					struct kobj_attribute *attr, char *buf)
3855 {
3856 	struct hstate *h;
3857 	unsigned long surplus_huge_pages;
3858 	int nid;
3859 
3860 	h = kobj_to_hstate(kobj, &nid);
3861 	if (nid == NUMA_NO_NODE)
3862 		surplus_huge_pages = h->surplus_huge_pages;
3863 	else
3864 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3865 
3866 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3867 }
3868 HSTATE_ATTR_RO(surplus_hugepages);
3869 
3870 static ssize_t demote_store(struct kobject *kobj,
3871 	       struct kobj_attribute *attr, const char *buf, size_t len)
3872 {
3873 	unsigned long nr_demote;
3874 	unsigned long nr_available;
3875 	nodemask_t nodes_allowed, *n_mask;
3876 	struct hstate *h;
3877 	int err;
3878 	int nid;
3879 
3880 	err = kstrtoul(buf, 10, &nr_demote);
3881 	if (err)
3882 		return err;
3883 	h = kobj_to_hstate(kobj, &nid);
3884 
3885 	if (nid != NUMA_NO_NODE) {
3886 		init_nodemask_of_node(&nodes_allowed, nid);
3887 		n_mask = &nodes_allowed;
3888 	} else {
3889 		n_mask = &node_states[N_MEMORY];
3890 	}
3891 
3892 	/* Synchronize with other sysfs operations modifying huge pages */
3893 	mutex_lock(&h->resize_lock);
3894 	spin_lock_irq(&hugetlb_lock);
3895 
3896 	while (nr_demote) {
3897 		/*
3898 		 * Check for available pages to demote each time thorough the
3899 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3900 		 */
3901 		if (nid != NUMA_NO_NODE)
3902 			nr_available = h->free_huge_pages_node[nid];
3903 		else
3904 			nr_available = h->free_huge_pages;
3905 		nr_available -= h->resv_huge_pages;
3906 		if (!nr_available)
3907 			break;
3908 
3909 		err = demote_pool_huge_page(h, n_mask);
3910 		if (err)
3911 			break;
3912 
3913 		nr_demote--;
3914 	}
3915 
3916 	spin_unlock_irq(&hugetlb_lock);
3917 	mutex_unlock(&h->resize_lock);
3918 
3919 	if (err)
3920 		return err;
3921 	return len;
3922 }
3923 HSTATE_ATTR_WO(demote);
3924 
3925 static ssize_t demote_size_show(struct kobject *kobj,
3926 					struct kobj_attribute *attr, char *buf)
3927 {
3928 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3929 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3930 
3931 	return sysfs_emit(buf, "%lukB\n", demote_size);
3932 }
3933 
3934 static ssize_t demote_size_store(struct kobject *kobj,
3935 					struct kobj_attribute *attr,
3936 					const char *buf, size_t count)
3937 {
3938 	struct hstate *h, *demote_hstate;
3939 	unsigned long demote_size;
3940 	unsigned int demote_order;
3941 
3942 	demote_size = (unsigned long)memparse(buf, NULL);
3943 
3944 	demote_hstate = size_to_hstate(demote_size);
3945 	if (!demote_hstate)
3946 		return -EINVAL;
3947 	demote_order = demote_hstate->order;
3948 	if (demote_order < HUGETLB_PAGE_ORDER)
3949 		return -EINVAL;
3950 
3951 	/* demote order must be smaller than hstate order */
3952 	h = kobj_to_hstate(kobj, NULL);
3953 	if (demote_order >= h->order)
3954 		return -EINVAL;
3955 
3956 	/* resize_lock synchronizes access to demote size and writes */
3957 	mutex_lock(&h->resize_lock);
3958 	h->demote_order = demote_order;
3959 	mutex_unlock(&h->resize_lock);
3960 
3961 	return count;
3962 }
3963 HSTATE_ATTR(demote_size);
3964 
3965 static struct attribute *hstate_attrs[] = {
3966 	&nr_hugepages_attr.attr,
3967 	&nr_overcommit_hugepages_attr.attr,
3968 	&free_hugepages_attr.attr,
3969 	&resv_hugepages_attr.attr,
3970 	&surplus_hugepages_attr.attr,
3971 #ifdef CONFIG_NUMA
3972 	&nr_hugepages_mempolicy_attr.attr,
3973 #endif
3974 	NULL,
3975 };
3976 
3977 static const struct attribute_group hstate_attr_group = {
3978 	.attrs = hstate_attrs,
3979 };
3980 
3981 static struct attribute *hstate_demote_attrs[] = {
3982 	&demote_size_attr.attr,
3983 	&demote_attr.attr,
3984 	NULL,
3985 };
3986 
3987 static const struct attribute_group hstate_demote_attr_group = {
3988 	.attrs = hstate_demote_attrs,
3989 };
3990 
3991 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3992 				    struct kobject **hstate_kobjs,
3993 				    const struct attribute_group *hstate_attr_group)
3994 {
3995 	int retval;
3996 	int hi = hstate_index(h);
3997 
3998 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3999 	if (!hstate_kobjs[hi])
4000 		return -ENOMEM;
4001 
4002 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4003 	if (retval) {
4004 		kobject_put(hstate_kobjs[hi]);
4005 		hstate_kobjs[hi] = NULL;
4006 		return retval;
4007 	}
4008 
4009 	if (h->demote_order) {
4010 		retval = sysfs_create_group(hstate_kobjs[hi],
4011 					    &hstate_demote_attr_group);
4012 		if (retval) {
4013 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4014 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4015 			kobject_put(hstate_kobjs[hi]);
4016 			hstate_kobjs[hi] = NULL;
4017 			return retval;
4018 		}
4019 	}
4020 
4021 	return 0;
4022 }
4023 
4024 #ifdef CONFIG_NUMA
4025 static bool hugetlb_sysfs_initialized __ro_after_init;
4026 
4027 /*
4028  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4029  * with node devices in node_devices[] using a parallel array.  The array
4030  * index of a node device or _hstate == node id.
4031  * This is here to avoid any static dependency of the node device driver, in
4032  * the base kernel, on the hugetlb module.
4033  */
4034 struct node_hstate {
4035 	struct kobject		*hugepages_kobj;
4036 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4037 };
4038 static struct node_hstate node_hstates[MAX_NUMNODES];
4039 
4040 /*
4041  * A subset of global hstate attributes for node devices
4042  */
4043 static struct attribute *per_node_hstate_attrs[] = {
4044 	&nr_hugepages_attr.attr,
4045 	&free_hugepages_attr.attr,
4046 	&surplus_hugepages_attr.attr,
4047 	NULL,
4048 };
4049 
4050 static const struct attribute_group per_node_hstate_attr_group = {
4051 	.attrs = per_node_hstate_attrs,
4052 };
4053 
4054 /*
4055  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4056  * Returns node id via non-NULL nidp.
4057  */
4058 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4059 {
4060 	int nid;
4061 
4062 	for (nid = 0; nid < nr_node_ids; nid++) {
4063 		struct node_hstate *nhs = &node_hstates[nid];
4064 		int i;
4065 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4066 			if (nhs->hstate_kobjs[i] == kobj) {
4067 				if (nidp)
4068 					*nidp = nid;
4069 				return &hstates[i];
4070 			}
4071 	}
4072 
4073 	BUG();
4074 	return NULL;
4075 }
4076 
4077 /*
4078  * Unregister hstate attributes from a single node device.
4079  * No-op if no hstate attributes attached.
4080  */
4081 void hugetlb_unregister_node(struct node *node)
4082 {
4083 	struct hstate *h;
4084 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4085 
4086 	if (!nhs->hugepages_kobj)
4087 		return;		/* no hstate attributes */
4088 
4089 	for_each_hstate(h) {
4090 		int idx = hstate_index(h);
4091 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4092 
4093 		if (!hstate_kobj)
4094 			continue;
4095 		if (h->demote_order)
4096 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4097 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4098 		kobject_put(hstate_kobj);
4099 		nhs->hstate_kobjs[idx] = NULL;
4100 	}
4101 
4102 	kobject_put(nhs->hugepages_kobj);
4103 	nhs->hugepages_kobj = NULL;
4104 }
4105 
4106 
4107 /*
4108  * Register hstate attributes for a single node device.
4109  * No-op if attributes already registered.
4110  */
4111 void hugetlb_register_node(struct node *node)
4112 {
4113 	struct hstate *h;
4114 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4115 	int err;
4116 
4117 	if (!hugetlb_sysfs_initialized)
4118 		return;
4119 
4120 	if (nhs->hugepages_kobj)
4121 		return;		/* already allocated */
4122 
4123 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4124 							&node->dev.kobj);
4125 	if (!nhs->hugepages_kobj)
4126 		return;
4127 
4128 	for_each_hstate(h) {
4129 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4130 						nhs->hstate_kobjs,
4131 						&per_node_hstate_attr_group);
4132 		if (err) {
4133 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4134 				h->name, node->dev.id);
4135 			hugetlb_unregister_node(node);
4136 			break;
4137 		}
4138 	}
4139 }
4140 
4141 /*
4142  * hugetlb init time:  register hstate attributes for all registered node
4143  * devices of nodes that have memory.  All on-line nodes should have
4144  * registered their associated device by this time.
4145  */
4146 static void __init hugetlb_register_all_nodes(void)
4147 {
4148 	int nid;
4149 
4150 	for_each_online_node(nid)
4151 		hugetlb_register_node(node_devices[nid]);
4152 }
4153 #else	/* !CONFIG_NUMA */
4154 
4155 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4156 {
4157 	BUG();
4158 	if (nidp)
4159 		*nidp = -1;
4160 	return NULL;
4161 }
4162 
4163 static void hugetlb_register_all_nodes(void) { }
4164 
4165 #endif
4166 
4167 #ifdef CONFIG_CMA
4168 static void __init hugetlb_cma_check(void);
4169 #else
4170 static inline __init void hugetlb_cma_check(void)
4171 {
4172 }
4173 #endif
4174 
4175 static void __init hugetlb_sysfs_init(void)
4176 {
4177 	struct hstate *h;
4178 	int err;
4179 
4180 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4181 	if (!hugepages_kobj)
4182 		return;
4183 
4184 	for_each_hstate(h) {
4185 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4186 					 hstate_kobjs, &hstate_attr_group);
4187 		if (err)
4188 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4189 	}
4190 
4191 #ifdef CONFIG_NUMA
4192 	hugetlb_sysfs_initialized = true;
4193 #endif
4194 	hugetlb_register_all_nodes();
4195 }
4196 
4197 static int __init hugetlb_init(void)
4198 {
4199 	int i;
4200 
4201 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4202 			__NR_HPAGEFLAGS);
4203 
4204 	if (!hugepages_supported()) {
4205 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4206 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4207 		return 0;
4208 	}
4209 
4210 	/*
4211 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4212 	 * architectures depend on setup being done here.
4213 	 */
4214 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4215 	if (!parsed_default_hugepagesz) {
4216 		/*
4217 		 * If we did not parse a default huge page size, set
4218 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4219 		 * number of huge pages for this default size was implicitly
4220 		 * specified, set that here as well.
4221 		 * Note that the implicit setting will overwrite an explicit
4222 		 * setting.  A warning will be printed in this case.
4223 		 */
4224 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4225 		if (default_hstate_max_huge_pages) {
4226 			if (default_hstate.max_huge_pages) {
4227 				char buf[32];
4228 
4229 				string_get_size(huge_page_size(&default_hstate),
4230 					1, STRING_UNITS_2, buf, 32);
4231 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4232 					default_hstate.max_huge_pages, buf);
4233 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4234 					default_hstate_max_huge_pages);
4235 			}
4236 			default_hstate.max_huge_pages =
4237 				default_hstate_max_huge_pages;
4238 
4239 			for_each_online_node(i)
4240 				default_hstate.max_huge_pages_node[i] =
4241 					default_hugepages_in_node[i];
4242 		}
4243 	}
4244 
4245 	hugetlb_cma_check();
4246 	hugetlb_init_hstates();
4247 	gather_bootmem_prealloc();
4248 	report_hugepages();
4249 
4250 	hugetlb_sysfs_init();
4251 	hugetlb_cgroup_file_init();
4252 
4253 #ifdef CONFIG_SMP
4254 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4255 #else
4256 	num_fault_mutexes = 1;
4257 #endif
4258 	hugetlb_fault_mutex_table =
4259 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4260 			      GFP_KERNEL);
4261 	BUG_ON(!hugetlb_fault_mutex_table);
4262 
4263 	for (i = 0; i < num_fault_mutexes; i++)
4264 		mutex_init(&hugetlb_fault_mutex_table[i]);
4265 	return 0;
4266 }
4267 subsys_initcall(hugetlb_init);
4268 
4269 /* Overwritten by architectures with more huge page sizes */
4270 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4271 {
4272 	return size == HPAGE_SIZE;
4273 }
4274 
4275 void __init hugetlb_add_hstate(unsigned int order)
4276 {
4277 	struct hstate *h;
4278 	unsigned long i;
4279 
4280 	if (size_to_hstate(PAGE_SIZE << order)) {
4281 		return;
4282 	}
4283 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4284 	BUG_ON(order == 0);
4285 	h = &hstates[hugetlb_max_hstate++];
4286 	mutex_init(&h->resize_lock);
4287 	h->order = order;
4288 	h->mask = ~(huge_page_size(h) - 1);
4289 	for (i = 0; i < MAX_NUMNODES; ++i)
4290 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4291 	INIT_LIST_HEAD(&h->hugepage_activelist);
4292 	h->next_nid_to_alloc = first_memory_node;
4293 	h->next_nid_to_free = first_memory_node;
4294 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4295 					huge_page_size(h)/SZ_1K);
4296 
4297 	parsed_hstate = h;
4298 }
4299 
4300 bool __init __weak hugetlb_node_alloc_supported(void)
4301 {
4302 	return true;
4303 }
4304 
4305 static void __init hugepages_clear_pages_in_node(void)
4306 {
4307 	if (!hugetlb_max_hstate) {
4308 		default_hstate_max_huge_pages = 0;
4309 		memset(default_hugepages_in_node, 0,
4310 			sizeof(default_hugepages_in_node));
4311 	} else {
4312 		parsed_hstate->max_huge_pages = 0;
4313 		memset(parsed_hstate->max_huge_pages_node, 0,
4314 			sizeof(parsed_hstate->max_huge_pages_node));
4315 	}
4316 }
4317 
4318 /*
4319  * hugepages command line processing
4320  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4321  * specification.  If not, ignore the hugepages value.  hugepages can also
4322  * be the first huge page command line  option in which case it implicitly
4323  * specifies the number of huge pages for the default size.
4324  */
4325 static int __init hugepages_setup(char *s)
4326 {
4327 	unsigned long *mhp;
4328 	static unsigned long *last_mhp;
4329 	int node = NUMA_NO_NODE;
4330 	int count;
4331 	unsigned long tmp;
4332 	char *p = s;
4333 
4334 	if (!parsed_valid_hugepagesz) {
4335 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4336 		parsed_valid_hugepagesz = true;
4337 		return 1;
4338 	}
4339 
4340 	/*
4341 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4342 	 * yet, so this hugepages= parameter goes to the "default hstate".
4343 	 * Otherwise, it goes with the previously parsed hugepagesz or
4344 	 * default_hugepagesz.
4345 	 */
4346 	else if (!hugetlb_max_hstate)
4347 		mhp = &default_hstate_max_huge_pages;
4348 	else
4349 		mhp = &parsed_hstate->max_huge_pages;
4350 
4351 	if (mhp == last_mhp) {
4352 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4353 		return 1;
4354 	}
4355 
4356 	while (*p) {
4357 		count = 0;
4358 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4359 			goto invalid;
4360 		/* Parameter is node format */
4361 		if (p[count] == ':') {
4362 			if (!hugetlb_node_alloc_supported()) {
4363 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4364 				return 1;
4365 			}
4366 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4367 				goto invalid;
4368 			node = array_index_nospec(tmp, MAX_NUMNODES);
4369 			p += count + 1;
4370 			/* Parse hugepages */
4371 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4372 				goto invalid;
4373 			if (!hugetlb_max_hstate)
4374 				default_hugepages_in_node[node] = tmp;
4375 			else
4376 				parsed_hstate->max_huge_pages_node[node] = tmp;
4377 			*mhp += tmp;
4378 			/* Go to parse next node*/
4379 			if (p[count] == ',')
4380 				p += count + 1;
4381 			else
4382 				break;
4383 		} else {
4384 			if (p != s)
4385 				goto invalid;
4386 			*mhp = tmp;
4387 			break;
4388 		}
4389 	}
4390 
4391 	/*
4392 	 * Global state is always initialized later in hugetlb_init.
4393 	 * But we need to allocate gigantic hstates here early to still
4394 	 * use the bootmem allocator.
4395 	 */
4396 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4397 		hugetlb_hstate_alloc_pages(parsed_hstate);
4398 
4399 	last_mhp = mhp;
4400 
4401 	return 1;
4402 
4403 invalid:
4404 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4405 	hugepages_clear_pages_in_node();
4406 	return 1;
4407 }
4408 __setup("hugepages=", hugepages_setup);
4409 
4410 /*
4411  * hugepagesz command line processing
4412  * A specific huge page size can only be specified once with hugepagesz.
4413  * hugepagesz is followed by hugepages on the command line.  The global
4414  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4415  * hugepagesz argument was valid.
4416  */
4417 static int __init hugepagesz_setup(char *s)
4418 {
4419 	unsigned long size;
4420 	struct hstate *h;
4421 
4422 	parsed_valid_hugepagesz = false;
4423 	size = (unsigned long)memparse(s, NULL);
4424 
4425 	if (!arch_hugetlb_valid_size(size)) {
4426 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4427 		return 1;
4428 	}
4429 
4430 	h = size_to_hstate(size);
4431 	if (h) {
4432 		/*
4433 		 * hstate for this size already exists.  This is normally
4434 		 * an error, but is allowed if the existing hstate is the
4435 		 * default hstate.  More specifically, it is only allowed if
4436 		 * the number of huge pages for the default hstate was not
4437 		 * previously specified.
4438 		 */
4439 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4440 		    default_hstate.max_huge_pages) {
4441 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4442 			return 1;
4443 		}
4444 
4445 		/*
4446 		 * No need to call hugetlb_add_hstate() as hstate already
4447 		 * exists.  But, do set parsed_hstate so that a following
4448 		 * hugepages= parameter will be applied to this hstate.
4449 		 */
4450 		parsed_hstate = h;
4451 		parsed_valid_hugepagesz = true;
4452 		return 1;
4453 	}
4454 
4455 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4456 	parsed_valid_hugepagesz = true;
4457 	return 1;
4458 }
4459 __setup("hugepagesz=", hugepagesz_setup);
4460 
4461 /*
4462  * default_hugepagesz command line input
4463  * Only one instance of default_hugepagesz allowed on command line.
4464  */
4465 static int __init default_hugepagesz_setup(char *s)
4466 {
4467 	unsigned long size;
4468 	int i;
4469 
4470 	parsed_valid_hugepagesz = false;
4471 	if (parsed_default_hugepagesz) {
4472 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4473 		return 1;
4474 	}
4475 
4476 	size = (unsigned long)memparse(s, NULL);
4477 
4478 	if (!arch_hugetlb_valid_size(size)) {
4479 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4480 		return 1;
4481 	}
4482 
4483 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4484 	parsed_valid_hugepagesz = true;
4485 	parsed_default_hugepagesz = true;
4486 	default_hstate_idx = hstate_index(size_to_hstate(size));
4487 
4488 	/*
4489 	 * The number of default huge pages (for this size) could have been
4490 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4491 	 * then default_hstate_max_huge_pages is set.  If the default huge
4492 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4493 	 * allocated here from bootmem allocator.
4494 	 */
4495 	if (default_hstate_max_huge_pages) {
4496 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4497 		for_each_online_node(i)
4498 			default_hstate.max_huge_pages_node[i] =
4499 				default_hugepages_in_node[i];
4500 		if (hstate_is_gigantic(&default_hstate))
4501 			hugetlb_hstate_alloc_pages(&default_hstate);
4502 		default_hstate_max_huge_pages = 0;
4503 	}
4504 
4505 	return 1;
4506 }
4507 __setup("default_hugepagesz=", default_hugepagesz_setup);
4508 
4509 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4510 {
4511 #ifdef CONFIG_NUMA
4512 	struct mempolicy *mpol = get_task_policy(current);
4513 
4514 	/*
4515 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4516 	 * (from policy_nodemask) specifically for hugetlb case
4517 	 */
4518 	if (mpol->mode == MPOL_BIND &&
4519 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4520 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4521 		return &mpol->nodes;
4522 #endif
4523 	return NULL;
4524 }
4525 
4526 static unsigned int allowed_mems_nr(struct hstate *h)
4527 {
4528 	int node;
4529 	unsigned int nr = 0;
4530 	nodemask_t *mbind_nodemask;
4531 	unsigned int *array = h->free_huge_pages_node;
4532 	gfp_t gfp_mask = htlb_alloc_mask(h);
4533 
4534 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4535 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4536 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4537 			nr += array[node];
4538 	}
4539 
4540 	return nr;
4541 }
4542 
4543 #ifdef CONFIG_SYSCTL
4544 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4545 					  void *buffer, size_t *length,
4546 					  loff_t *ppos, unsigned long *out)
4547 {
4548 	struct ctl_table dup_table;
4549 
4550 	/*
4551 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4552 	 * can duplicate the @table and alter the duplicate of it.
4553 	 */
4554 	dup_table = *table;
4555 	dup_table.data = out;
4556 
4557 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4558 }
4559 
4560 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4561 			 struct ctl_table *table, int write,
4562 			 void *buffer, size_t *length, loff_t *ppos)
4563 {
4564 	struct hstate *h = &default_hstate;
4565 	unsigned long tmp = h->max_huge_pages;
4566 	int ret;
4567 
4568 	if (!hugepages_supported())
4569 		return -EOPNOTSUPP;
4570 
4571 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4572 					     &tmp);
4573 	if (ret)
4574 		goto out;
4575 
4576 	if (write)
4577 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4578 						  NUMA_NO_NODE, tmp, *length);
4579 out:
4580 	return ret;
4581 }
4582 
4583 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4584 			  void *buffer, size_t *length, loff_t *ppos)
4585 {
4586 
4587 	return hugetlb_sysctl_handler_common(false, table, write,
4588 							buffer, length, ppos);
4589 }
4590 
4591 #ifdef CONFIG_NUMA
4592 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4593 			  void *buffer, size_t *length, loff_t *ppos)
4594 {
4595 	return hugetlb_sysctl_handler_common(true, table, write,
4596 							buffer, length, ppos);
4597 }
4598 #endif /* CONFIG_NUMA */
4599 
4600 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4601 		void *buffer, size_t *length, loff_t *ppos)
4602 {
4603 	struct hstate *h = &default_hstate;
4604 	unsigned long tmp;
4605 	int ret;
4606 
4607 	if (!hugepages_supported())
4608 		return -EOPNOTSUPP;
4609 
4610 	tmp = h->nr_overcommit_huge_pages;
4611 
4612 	if (write && hstate_is_gigantic(h))
4613 		return -EINVAL;
4614 
4615 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4616 					     &tmp);
4617 	if (ret)
4618 		goto out;
4619 
4620 	if (write) {
4621 		spin_lock_irq(&hugetlb_lock);
4622 		h->nr_overcommit_huge_pages = tmp;
4623 		spin_unlock_irq(&hugetlb_lock);
4624 	}
4625 out:
4626 	return ret;
4627 }
4628 
4629 #endif /* CONFIG_SYSCTL */
4630 
4631 void hugetlb_report_meminfo(struct seq_file *m)
4632 {
4633 	struct hstate *h;
4634 	unsigned long total = 0;
4635 
4636 	if (!hugepages_supported())
4637 		return;
4638 
4639 	for_each_hstate(h) {
4640 		unsigned long count = h->nr_huge_pages;
4641 
4642 		total += huge_page_size(h) * count;
4643 
4644 		if (h == &default_hstate)
4645 			seq_printf(m,
4646 				   "HugePages_Total:   %5lu\n"
4647 				   "HugePages_Free:    %5lu\n"
4648 				   "HugePages_Rsvd:    %5lu\n"
4649 				   "HugePages_Surp:    %5lu\n"
4650 				   "Hugepagesize:   %8lu kB\n",
4651 				   count,
4652 				   h->free_huge_pages,
4653 				   h->resv_huge_pages,
4654 				   h->surplus_huge_pages,
4655 				   huge_page_size(h) / SZ_1K);
4656 	}
4657 
4658 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4659 }
4660 
4661 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4662 {
4663 	struct hstate *h = &default_hstate;
4664 
4665 	if (!hugepages_supported())
4666 		return 0;
4667 
4668 	return sysfs_emit_at(buf, len,
4669 			     "Node %d HugePages_Total: %5u\n"
4670 			     "Node %d HugePages_Free:  %5u\n"
4671 			     "Node %d HugePages_Surp:  %5u\n",
4672 			     nid, h->nr_huge_pages_node[nid],
4673 			     nid, h->free_huge_pages_node[nid],
4674 			     nid, h->surplus_huge_pages_node[nid]);
4675 }
4676 
4677 void hugetlb_show_meminfo_node(int nid)
4678 {
4679 	struct hstate *h;
4680 
4681 	if (!hugepages_supported())
4682 		return;
4683 
4684 	for_each_hstate(h)
4685 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4686 			nid,
4687 			h->nr_huge_pages_node[nid],
4688 			h->free_huge_pages_node[nid],
4689 			h->surplus_huge_pages_node[nid],
4690 			huge_page_size(h) / SZ_1K);
4691 }
4692 
4693 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4694 {
4695 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4696 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4697 }
4698 
4699 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4700 unsigned long hugetlb_total_pages(void)
4701 {
4702 	struct hstate *h;
4703 	unsigned long nr_total_pages = 0;
4704 
4705 	for_each_hstate(h)
4706 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4707 	return nr_total_pages;
4708 }
4709 
4710 static int hugetlb_acct_memory(struct hstate *h, long delta)
4711 {
4712 	int ret = -ENOMEM;
4713 
4714 	if (!delta)
4715 		return 0;
4716 
4717 	spin_lock_irq(&hugetlb_lock);
4718 	/*
4719 	 * When cpuset is configured, it breaks the strict hugetlb page
4720 	 * reservation as the accounting is done on a global variable. Such
4721 	 * reservation is completely rubbish in the presence of cpuset because
4722 	 * the reservation is not checked against page availability for the
4723 	 * current cpuset. Application can still potentially OOM'ed by kernel
4724 	 * with lack of free htlb page in cpuset that the task is in.
4725 	 * Attempt to enforce strict accounting with cpuset is almost
4726 	 * impossible (or too ugly) because cpuset is too fluid that
4727 	 * task or memory node can be dynamically moved between cpusets.
4728 	 *
4729 	 * The change of semantics for shared hugetlb mapping with cpuset is
4730 	 * undesirable. However, in order to preserve some of the semantics,
4731 	 * we fall back to check against current free page availability as
4732 	 * a best attempt and hopefully to minimize the impact of changing
4733 	 * semantics that cpuset has.
4734 	 *
4735 	 * Apart from cpuset, we also have memory policy mechanism that
4736 	 * also determines from which node the kernel will allocate memory
4737 	 * in a NUMA system. So similar to cpuset, we also should consider
4738 	 * the memory policy of the current task. Similar to the description
4739 	 * above.
4740 	 */
4741 	if (delta > 0) {
4742 		if (gather_surplus_pages(h, delta) < 0)
4743 			goto out;
4744 
4745 		if (delta > allowed_mems_nr(h)) {
4746 			return_unused_surplus_pages(h, delta);
4747 			goto out;
4748 		}
4749 	}
4750 
4751 	ret = 0;
4752 	if (delta < 0)
4753 		return_unused_surplus_pages(h, (unsigned long) -delta);
4754 
4755 out:
4756 	spin_unlock_irq(&hugetlb_lock);
4757 	return ret;
4758 }
4759 
4760 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4761 {
4762 	struct resv_map *resv = vma_resv_map(vma);
4763 
4764 	/*
4765 	 * HPAGE_RESV_OWNER indicates a private mapping.
4766 	 * This new VMA should share its siblings reservation map if present.
4767 	 * The VMA will only ever have a valid reservation map pointer where
4768 	 * it is being copied for another still existing VMA.  As that VMA
4769 	 * has a reference to the reservation map it cannot disappear until
4770 	 * after this open call completes.  It is therefore safe to take a
4771 	 * new reference here without additional locking.
4772 	 */
4773 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4774 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4775 		kref_get(&resv->refs);
4776 	}
4777 
4778 	/*
4779 	 * vma_lock structure for sharable mappings is vma specific.
4780 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4781 	 * new structure.  Before clearing, make sure vma_lock is not
4782 	 * for this vma.
4783 	 */
4784 	if (vma->vm_flags & VM_MAYSHARE) {
4785 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4786 
4787 		if (vma_lock) {
4788 			if (vma_lock->vma != vma) {
4789 				vma->vm_private_data = NULL;
4790 				hugetlb_vma_lock_alloc(vma);
4791 			} else
4792 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4793 		} else
4794 			hugetlb_vma_lock_alloc(vma);
4795 	}
4796 }
4797 
4798 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4799 {
4800 	struct hstate *h = hstate_vma(vma);
4801 	struct resv_map *resv;
4802 	struct hugepage_subpool *spool = subpool_vma(vma);
4803 	unsigned long reserve, start, end;
4804 	long gbl_reserve;
4805 
4806 	hugetlb_vma_lock_free(vma);
4807 
4808 	resv = vma_resv_map(vma);
4809 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4810 		return;
4811 
4812 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4813 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4814 
4815 	reserve = (end - start) - region_count(resv, start, end);
4816 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4817 	if (reserve) {
4818 		/*
4819 		 * Decrement reserve counts.  The global reserve count may be
4820 		 * adjusted if the subpool has a minimum size.
4821 		 */
4822 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4823 		hugetlb_acct_memory(h, -gbl_reserve);
4824 	}
4825 
4826 	kref_put(&resv->refs, resv_map_release);
4827 }
4828 
4829 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4830 {
4831 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4832 		return -EINVAL;
4833 
4834 	/*
4835 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4836 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4837 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4838 	 */
4839 	if (addr & ~PUD_MASK) {
4840 		/*
4841 		 * hugetlb_vm_op_split is called right before we attempt to
4842 		 * split the VMA. We will need to unshare PMDs in the old and
4843 		 * new VMAs, so let's unshare before we split.
4844 		 */
4845 		unsigned long floor = addr & PUD_MASK;
4846 		unsigned long ceil = floor + PUD_SIZE;
4847 
4848 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
4849 			hugetlb_unshare_pmds(vma, floor, ceil);
4850 	}
4851 
4852 	return 0;
4853 }
4854 
4855 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4856 {
4857 	return huge_page_size(hstate_vma(vma));
4858 }
4859 
4860 /*
4861  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4862  * handle_mm_fault() to try to instantiate regular-sized pages in the
4863  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4864  * this far.
4865  */
4866 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4867 {
4868 	BUG();
4869 	return 0;
4870 }
4871 
4872 /*
4873  * When a new function is introduced to vm_operations_struct and added
4874  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4875  * This is because under System V memory model, mappings created via
4876  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4877  * their original vm_ops are overwritten with shm_vm_ops.
4878  */
4879 const struct vm_operations_struct hugetlb_vm_ops = {
4880 	.fault = hugetlb_vm_op_fault,
4881 	.open = hugetlb_vm_op_open,
4882 	.close = hugetlb_vm_op_close,
4883 	.may_split = hugetlb_vm_op_split,
4884 	.pagesize = hugetlb_vm_op_pagesize,
4885 };
4886 
4887 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4888 				int writable)
4889 {
4890 	pte_t entry;
4891 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4892 
4893 	if (writable) {
4894 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4895 					 vma->vm_page_prot)));
4896 	} else {
4897 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4898 					   vma->vm_page_prot));
4899 	}
4900 	entry = pte_mkyoung(entry);
4901 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4902 
4903 	return entry;
4904 }
4905 
4906 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4907 				   unsigned long address, pte_t *ptep)
4908 {
4909 	pte_t entry;
4910 
4911 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4912 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4913 		update_mmu_cache(vma, address, ptep);
4914 }
4915 
4916 bool is_hugetlb_entry_migration(pte_t pte)
4917 {
4918 	swp_entry_t swp;
4919 
4920 	if (huge_pte_none(pte) || pte_present(pte))
4921 		return false;
4922 	swp = pte_to_swp_entry(pte);
4923 	if (is_migration_entry(swp))
4924 		return true;
4925 	else
4926 		return false;
4927 }
4928 
4929 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4930 {
4931 	swp_entry_t swp;
4932 
4933 	if (huge_pte_none(pte) || pte_present(pte))
4934 		return false;
4935 	swp = pte_to_swp_entry(pte);
4936 	if (is_hwpoison_entry(swp))
4937 		return true;
4938 	else
4939 		return false;
4940 }
4941 
4942 static void
4943 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4944 		     struct page *new_page)
4945 {
4946 	__SetPageUptodate(new_page);
4947 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4948 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4949 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4950 	SetHPageMigratable(new_page);
4951 }
4952 
4953 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4954 			    struct vm_area_struct *dst_vma,
4955 			    struct vm_area_struct *src_vma)
4956 {
4957 	pte_t *src_pte, *dst_pte, entry;
4958 	struct page *ptepage;
4959 	unsigned long addr;
4960 	bool cow = is_cow_mapping(src_vma->vm_flags);
4961 	struct hstate *h = hstate_vma(src_vma);
4962 	unsigned long sz = huge_page_size(h);
4963 	unsigned long npages = pages_per_huge_page(h);
4964 	struct mmu_notifier_range range;
4965 	unsigned long last_addr_mask;
4966 	int ret = 0;
4967 
4968 	if (cow) {
4969 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4970 					src_vma->vm_start,
4971 					src_vma->vm_end);
4972 		mmu_notifier_invalidate_range_start(&range);
4973 		mmap_assert_write_locked(src);
4974 		raw_write_seqcount_begin(&src->write_protect_seq);
4975 	} else {
4976 		/*
4977 		 * For shared mappings the vma lock must be held before
4978 		 * calling hugetlb_walk() in the src vma. Otherwise, the
4979 		 * returned ptep could go away if part of a shared pmd and
4980 		 * another thread calls huge_pmd_unshare.
4981 		 */
4982 		hugetlb_vma_lock_read(src_vma);
4983 	}
4984 
4985 	last_addr_mask = hugetlb_mask_last_page(h);
4986 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4987 		spinlock_t *src_ptl, *dst_ptl;
4988 		src_pte = hugetlb_walk(src_vma, addr, sz);
4989 		if (!src_pte) {
4990 			addr |= last_addr_mask;
4991 			continue;
4992 		}
4993 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4994 		if (!dst_pte) {
4995 			ret = -ENOMEM;
4996 			break;
4997 		}
4998 
4999 		/*
5000 		 * If the pagetables are shared don't copy or take references.
5001 		 *
5002 		 * dst_pte == src_pte is the common case of src/dest sharing.
5003 		 * However, src could have 'unshared' and dst shares with
5004 		 * another vma. So page_count of ptep page is checked instead
5005 		 * to reliably determine whether pte is shared.
5006 		 */
5007 		if (page_count(virt_to_page(dst_pte)) > 1) {
5008 			addr |= last_addr_mask;
5009 			continue;
5010 		}
5011 
5012 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5013 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5014 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5015 		entry = huge_ptep_get(src_pte);
5016 again:
5017 		if (huge_pte_none(entry)) {
5018 			/*
5019 			 * Skip if src entry none.
5020 			 */
5021 			;
5022 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5023 			bool uffd_wp = huge_pte_uffd_wp(entry);
5024 
5025 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
5026 				entry = huge_pte_clear_uffd_wp(entry);
5027 			set_huge_pte_at(dst, addr, dst_pte, entry);
5028 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5029 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5030 			bool uffd_wp = huge_pte_uffd_wp(entry);
5031 
5032 			if (!is_readable_migration_entry(swp_entry) && cow) {
5033 				/*
5034 				 * COW mappings require pages in both
5035 				 * parent and child to be set to read.
5036 				 */
5037 				swp_entry = make_readable_migration_entry(
5038 							swp_offset(swp_entry));
5039 				entry = swp_entry_to_pte(swp_entry);
5040 				if (userfaultfd_wp(src_vma) && uffd_wp)
5041 					entry = huge_pte_mkuffd_wp(entry);
5042 				set_huge_pte_at(src, addr, src_pte, entry);
5043 			}
5044 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
5045 				entry = huge_pte_clear_uffd_wp(entry);
5046 			set_huge_pte_at(dst, addr, dst_pte, entry);
5047 		} else if (unlikely(is_pte_marker(entry))) {
5048 			/* No swap on hugetlb */
5049 			WARN_ON_ONCE(
5050 			    is_swapin_error_entry(pte_to_swp_entry(entry)));
5051 			/*
5052 			 * We copy the pte marker only if the dst vma has
5053 			 * uffd-wp enabled.
5054 			 */
5055 			if (userfaultfd_wp(dst_vma))
5056 				set_huge_pte_at(dst, addr, dst_pte, entry);
5057 		} else {
5058 			entry = huge_ptep_get(src_pte);
5059 			ptepage = pte_page(entry);
5060 			get_page(ptepage);
5061 
5062 			/*
5063 			 * Failing to duplicate the anon rmap is a rare case
5064 			 * where we see pinned hugetlb pages while they're
5065 			 * prone to COW. We need to do the COW earlier during
5066 			 * fork.
5067 			 *
5068 			 * When pre-allocating the page or copying data, we
5069 			 * need to be without the pgtable locks since we could
5070 			 * sleep during the process.
5071 			 */
5072 			if (!PageAnon(ptepage)) {
5073 				page_dup_file_rmap(ptepage, true);
5074 			} else if (page_try_dup_anon_rmap(ptepage, true,
5075 							  src_vma)) {
5076 				pte_t src_pte_old = entry;
5077 				struct page *new;
5078 
5079 				spin_unlock(src_ptl);
5080 				spin_unlock(dst_ptl);
5081 				/* Do not use reserve as it's private owned */
5082 				new = alloc_huge_page(dst_vma, addr, 1);
5083 				if (IS_ERR(new)) {
5084 					put_page(ptepage);
5085 					ret = PTR_ERR(new);
5086 					break;
5087 				}
5088 				copy_user_huge_page(new, ptepage, addr, dst_vma,
5089 						    npages);
5090 				put_page(ptepage);
5091 
5092 				/* Install the new huge page if src pte stable */
5093 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5094 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5095 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5096 				entry = huge_ptep_get(src_pte);
5097 				if (!pte_same(src_pte_old, entry)) {
5098 					restore_reserve_on_error(h, dst_vma, addr,
5099 								new);
5100 					put_page(new);
5101 					/* huge_ptep of dst_pte won't change as in child */
5102 					goto again;
5103 				}
5104 				hugetlb_install_page(dst_vma, dst_pte, addr, new);
5105 				spin_unlock(src_ptl);
5106 				spin_unlock(dst_ptl);
5107 				continue;
5108 			}
5109 
5110 			if (cow) {
5111 				/*
5112 				 * No need to notify as we are downgrading page
5113 				 * table protection not changing it to point
5114 				 * to a new page.
5115 				 *
5116 				 * See Documentation/mm/mmu_notifier.rst
5117 				 */
5118 				huge_ptep_set_wrprotect(src, addr, src_pte);
5119 				entry = huge_pte_wrprotect(entry);
5120 			}
5121 
5122 			set_huge_pte_at(dst, addr, dst_pte, entry);
5123 			hugetlb_count_add(npages, dst);
5124 		}
5125 		spin_unlock(src_ptl);
5126 		spin_unlock(dst_ptl);
5127 	}
5128 
5129 	if (cow) {
5130 		raw_write_seqcount_end(&src->write_protect_seq);
5131 		mmu_notifier_invalidate_range_end(&range);
5132 	} else {
5133 		hugetlb_vma_unlock_read(src_vma);
5134 	}
5135 
5136 	return ret;
5137 }
5138 
5139 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5140 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5141 {
5142 	struct hstate *h = hstate_vma(vma);
5143 	struct mm_struct *mm = vma->vm_mm;
5144 	spinlock_t *src_ptl, *dst_ptl;
5145 	pte_t pte;
5146 
5147 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5148 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5149 
5150 	/*
5151 	 * We don't have to worry about the ordering of src and dst ptlocks
5152 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5153 	 */
5154 	if (src_ptl != dst_ptl)
5155 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5156 
5157 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5158 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
5159 
5160 	if (src_ptl != dst_ptl)
5161 		spin_unlock(src_ptl);
5162 	spin_unlock(dst_ptl);
5163 }
5164 
5165 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5166 			     struct vm_area_struct *new_vma,
5167 			     unsigned long old_addr, unsigned long new_addr,
5168 			     unsigned long len)
5169 {
5170 	struct hstate *h = hstate_vma(vma);
5171 	struct address_space *mapping = vma->vm_file->f_mapping;
5172 	unsigned long sz = huge_page_size(h);
5173 	struct mm_struct *mm = vma->vm_mm;
5174 	unsigned long old_end = old_addr + len;
5175 	unsigned long last_addr_mask;
5176 	pte_t *src_pte, *dst_pte;
5177 	struct mmu_notifier_range range;
5178 	bool shared_pmd = false;
5179 
5180 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5181 				old_end);
5182 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5183 	/*
5184 	 * In case of shared PMDs, we should cover the maximum possible
5185 	 * range.
5186 	 */
5187 	flush_cache_range(vma, range.start, range.end);
5188 
5189 	mmu_notifier_invalidate_range_start(&range);
5190 	last_addr_mask = hugetlb_mask_last_page(h);
5191 	/* Prevent race with file truncation */
5192 	hugetlb_vma_lock_write(vma);
5193 	i_mmap_lock_write(mapping);
5194 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5195 		src_pte = hugetlb_walk(vma, old_addr, sz);
5196 		if (!src_pte) {
5197 			old_addr |= last_addr_mask;
5198 			new_addr |= last_addr_mask;
5199 			continue;
5200 		}
5201 		if (huge_pte_none(huge_ptep_get(src_pte)))
5202 			continue;
5203 
5204 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5205 			shared_pmd = true;
5206 			old_addr |= last_addr_mask;
5207 			new_addr |= last_addr_mask;
5208 			continue;
5209 		}
5210 
5211 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5212 		if (!dst_pte)
5213 			break;
5214 
5215 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5216 	}
5217 
5218 	if (shared_pmd)
5219 		flush_tlb_range(vma, range.start, range.end);
5220 	else
5221 		flush_tlb_range(vma, old_end - len, old_end);
5222 	mmu_notifier_invalidate_range_end(&range);
5223 	i_mmap_unlock_write(mapping);
5224 	hugetlb_vma_unlock_write(vma);
5225 
5226 	return len + old_addr - old_end;
5227 }
5228 
5229 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5230 				   unsigned long start, unsigned long end,
5231 				   struct page *ref_page, zap_flags_t zap_flags)
5232 {
5233 	struct mm_struct *mm = vma->vm_mm;
5234 	unsigned long address;
5235 	pte_t *ptep;
5236 	pte_t pte;
5237 	spinlock_t *ptl;
5238 	struct page *page;
5239 	struct hstate *h = hstate_vma(vma);
5240 	unsigned long sz = huge_page_size(h);
5241 	unsigned long last_addr_mask;
5242 	bool force_flush = false;
5243 
5244 	WARN_ON(!is_vm_hugetlb_page(vma));
5245 	BUG_ON(start & ~huge_page_mask(h));
5246 	BUG_ON(end & ~huge_page_mask(h));
5247 
5248 	/*
5249 	 * This is a hugetlb vma, all the pte entries should point
5250 	 * to huge page.
5251 	 */
5252 	tlb_change_page_size(tlb, sz);
5253 	tlb_start_vma(tlb, vma);
5254 
5255 	last_addr_mask = hugetlb_mask_last_page(h);
5256 	address = start;
5257 	for (; address < end; address += sz) {
5258 		ptep = hugetlb_walk(vma, address, sz);
5259 		if (!ptep) {
5260 			address |= last_addr_mask;
5261 			continue;
5262 		}
5263 
5264 		ptl = huge_pte_lock(h, mm, ptep);
5265 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5266 			spin_unlock(ptl);
5267 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5268 			force_flush = true;
5269 			address |= last_addr_mask;
5270 			continue;
5271 		}
5272 
5273 		pte = huge_ptep_get(ptep);
5274 		if (huge_pte_none(pte)) {
5275 			spin_unlock(ptl);
5276 			continue;
5277 		}
5278 
5279 		/*
5280 		 * Migrating hugepage or HWPoisoned hugepage is already
5281 		 * unmapped and its refcount is dropped, so just clear pte here.
5282 		 */
5283 		if (unlikely(!pte_present(pte))) {
5284 			/*
5285 			 * If the pte was wr-protected by uffd-wp in any of the
5286 			 * swap forms, meanwhile the caller does not want to
5287 			 * drop the uffd-wp bit in this zap, then replace the
5288 			 * pte with a marker.
5289 			 */
5290 			if (pte_swp_uffd_wp_any(pte) &&
5291 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5292 				set_huge_pte_at(mm, address, ptep,
5293 						make_pte_marker(PTE_MARKER_UFFD_WP));
5294 			else
5295 				huge_pte_clear(mm, address, ptep, sz);
5296 			spin_unlock(ptl);
5297 			continue;
5298 		}
5299 
5300 		page = pte_page(pte);
5301 		/*
5302 		 * If a reference page is supplied, it is because a specific
5303 		 * page is being unmapped, not a range. Ensure the page we
5304 		 * are about to unmap is the actual page of interest.
5305 		 */
5306 		if (ref_page) {
5307 			if (page != ref_page) {
5308 				spin_unlock(ptl);
5309 				continue;
5310 			}
5311 			/*
5312 			 * Mark the VMA as having unmapped its page so that
5313 			 * future faults in this VMA will fail rather than
5314 			 * looking like data was lost
5315 			 */
5316 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5317 		}
5318 
5319 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5320 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5321 		if (huge_pte_dirty(pte))
5322 			set_page_dirty(page);
5323 		/* Leave a uffd-wp pte marker if needed */
5324 		if (huge_pte_uffd_wp(pte) &&
5325 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5326 			set_huge_pte_at(mm, address, ptep,
5327 					make_pte_marker(PTE_MARKER_UFFD_WP));
5328 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5329 		page_remove_rmap(page, vma, true);
5330 
5331 		spin_unlock(ptl);
5332 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5333 		/*
5334 		 * Bail out after unmapping reference page if supplied
5335 		 */
5336 		if (ref_page)
5337 			break;
5338 	}
5339 	tlb_end_vma(tlb, vma);
5340 
5341 	/*
5342 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5343 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5344 	 * guaranteed that the last refernece would not be dropped. But we must
5345 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5346 	 * dropped and the last reference to the shared PMDs page might be
5347 	 * dropped as well.
5348 	 *
5349 	 * In theory we could defer the freeing of the PMD pages as well, but
5350 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5351 	 * detect sharing, so we cannot defer the release of the page either.
5352 	 * Instead, do flush now.
5353 	 */
5354 	if (force_flush)
5355 		tlb_flush_mmu_tlbonly(tlb);
5356 }
5357 
5358 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5359 			  struct vm_area_struct *vma, unsigned long start,
5360 			  unsigned long end, struct page *ref_page,
5361 			  zap_flags_t zap_flags)
5362 {
5363 	hugetlb_vma_lock_write(vma);
5364 	i_mmap_lock_write(vma->vm_file->f_mapping);
5365 
5366 	/* mmu notification performed in caller */
5367 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5368 
5369 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5370 		/*
5371 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5372 		 * When the vma_lock is freed, this makes the vma ineligible
5373 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5374 		 * pmd sharing.  This is important as page tables for this
5375 		 * unmapped range will be asynchrously deleted.  If the page
5376 		 * tables are shared, there will be issues when accessed by
5377 		 * someone else.
5378 		 */
5379 		__hugetlb_vma_unlock_write_free(vma);
5380 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5381 	} else {
5382 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5383 		hugetlb_vma_unlock_write(vma);
5384 	}
5385 }
5386 
5387 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5388 			  unsigned long end, struct page *ref_page,
5389 			  zap_flags_t zap_flags)
5390 {
5391 	struct mmu_notifier_range range;
5392 	struct mmu_gather tlb;
5393 
5394 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
5395 				start, end);
5396 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5397 	mmu_notifier_invalidate_range_start(&range);
5398 	tlb_gather_mmu(&tlb, vma->vm_mm);
5399 
5400 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5401 
5402 	mmu_notifier_invalidate_range_end(&range);
5403 	tlb_finish_mmu(&tlb);
5404 }
5405 
5406 /*
5407  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5408  * mapping it owns the reserve page for. The intention is to unmap the page
5409  * from other VMAs and let the children be SIGKILLed if they are faulting the
5410  * same region.
5411  */
5412 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5413 			      struct page *page, unsigned long address)
5414 {
5415 	struct hstate *h = hstate_vma(vma);
5416 	struct vm_area_struct *iter_vma;
5417 	struct address_space *mapping;
5418 	pgoff_t pgoff;
5419 
5420 	/*
5421 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5422 	 * from page cache lookup which is in HPAGE_SIZE units.
5423 	 */
5424 	address = address & huge_page_mask(h);
5425 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5426 			vma->vm_pgoff;
5427 	mapping = vma->vm_file->f_mapping;
5428 
5429 	/*
5430 	 * Take the mapping lock for the duration of the table walk. As
5431 	 * this mapping should be shared between all the VMAs,
5432 	 * __unmap_hugepage_range() is called as the lock is already held
5433 	 */
5434 	i_mmap_lock_write(mapping);
5435 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5436 		/* Do not unmap the current VMA */
5437 		if (iter_vma == vma)
5438 			continue;
5439 
5440 		/*
5441 		 * Shared VMAs have their own reserves and do not affect
5442 		 * MAP_PRIVATE accounting but it is possible that a shared
5443 		 * VMA is using the same page so check and skip such VMAs.
5444 		 */
5445 		if (iter_vma->vm_flags & VM_MAYSHARE)
5446 			continue;
5447 
5448 		/*
5449 		 * Unmap the page from other VMAs without their own reserves.
5450 		 * They get marked to be SIGKILLed if they fault in these
5451 		 * areas. This is because a future no-page fault on this VMA
5452 		 * could insert a zeroed page instead of the data existing
5453 		 * from the time of fork. This would look like data corruption
5454 		 */
5455 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5456 			unmap_hugepage_range(iter_vma, address,
5457 					     address + huge_page_size(h), page, 0);
5458 	}
5459 	i_mmap_unlock_write(mapping);
5460 }
5461 
5462 /*
5463  * hugetlb_wp() should be called with page lock of the original hugepage held.
5464  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5465  * cannot race with other handlers or page migration.
5466  * Keep the pte_same checks anyway to make transition from the mutex easier.
5467  */
5468 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5469 		       unsigned long address, pte_t *ptep, unsigned int flags,
5470 		       struct page *pagecache_page, spinlock_t *ptl)
5471 {
5472 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5473 	pte_t pte;
5474 	struct hstate *h = hstate_vma(vma);
5475 	struct page *old_page, *new_page;
5476 	int outside_reserve = 0;
5477 	vm_fault_t ret = 0;
5478 	unsigned long haddr = address & huge_page_mask(h);
5479 	struct mmu_notifier_range range;
5480 
5481 	/*
5482 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5483 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5484 	 */
5485 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5486 		return VM_FAULT_SIGSEGV;
5487 
5488 	/* Let's take out MAP_SHARED mappings first. */
5489 	if (vma->vm_flags & VM_MAYSHARE) {
5490 		set_huge_ptep_writable(vma, haddr, ptep);
5491 		return 0;
5492 	}
5493 
5494 	pte = huge_ptep_get(ptep);
5495 	old_page = pte_page(pte);
5496 
5497 	delayacct_wpcopy_start();
5498 
5499 retry_avoidcopy:
5500 	/*
5501 	 * If no-one else is actually using this page, we're the exclusive
5502 	 * owner and can reuse this page.
5503 	 */
5504 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5505 		if (!PageAnonExclusive(old_page))
5506 			page_move_anon_rmap(old_page, vma);
5507 		if (likely(!unshare))
5508 			set_huge_ptep_writable(vma, haddr, ptep);
5509 
5510 		delayacct_wpcopy_end();
5511 		return 0;
5512 	}
5513 	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5514 		       old_page);
5515 
5516 	/*
5517 	 * If the process that created a MAP_PRIVATE mapping is about to
5518 	 * perform a COW due to a shared page count, attempt to satisfy
5519 	 * the allocation without using the existing reserves. The pagecache
5520 	 * page is used to determine if the reserve at this address was
5521 	 * consumed or not. If reserves were used, a partial faulted mapping
5522 	 * at the time of fork() could consume its reserves on COW instead
5523 	 * of the full address range.
5524 	 */
5525 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5526 			old_page != pagecache_page)
5527 		outside_reserve = 1;
5528 
5529 	get_page(old_page);
5530 
5531 	/*
5532 	 * Drop page table lock as buddy allocator may be called. It will
5533 	 * be acquired again before returning to the caller, as expected.
5534 	 */
5535 	spin_unlock(ptl);
5536 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5537 
5538 	if (IS_ERR(new_page)) {
5539 		/*
5540 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5541 		 * it is due to references held by a child and an insufficient
5542 		 * huge page pool. To guarantee the original mappers
5543 		 * reliability, unmap the page from child processes. The child
5544 		 * may get SIGKILLed if it later faults.
5545 		 */
5546 		if (outside_reserve) {
5547 			struct address_space *mapping = vma->vm_file->f_mapping;
5548 			pgoff_t idx;
5549 			u32 hash;
5550 
5551 			put_page(old_page);
5552 			/*
5553 			 * Drop hugetlb_fault_mutex and vma_lock before
5554 			 * unmapping.  unmapping needs to hold vma_lock
5555 			 * in write mode.  Dropping vma_lock in read mode
5556 			 * here is OK as COW mappings do not interact with
5557 			 * PMD sharing.
5558 			 *
5559 			 * Reacquire both after unmap operation.
5560 			 */
5561 			idx = vma_hugecache_offset(h, vma, haddr);
5562 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5563 			hugetlb_vma_unlock_read(vma);
5564 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5565 
5566 			unmap_ref_private(mm, vma, old_page, haddr);
5567 
5568 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5569 			hugetlb_vma_lock_read(vma);
5570 			spin_lock(ptl);
5571 			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5572 			if (likely(ptep &&
5573 				   pte_same(huge_ptep_get(ptep), pte)))
5574 				goto retry_avoidcopy;
5575 			/*
5576 			 * race occurs while re-acquiring page table
5577 			 * lock, and our job is done.
5578 			 */
5579 			delayacct_wpcopy_end();
5580 			return 0;
5581 		}
5582 
5583 		ret = vmf_error(PTR_ERR(new_page));
5584 		goto out_release_old;
5585 	}
5586 
5587 	/*
5588 	 * When the original hugepage is shared one, it does not have
5589 	 * anon_vma prepared.
5590 	 */
5591 	if (unlikely(anon_vma_prepare(vma))) {
5592 		ret = VM_FAULT_OOM;
5593 		goto out_release_all;
5594 	}
5595 
5596 	copy_user_huge_page(new_page, old_page, address, vma,
5597 			    pages_per_huge_page(h));
5598 	__SetPageUptodate(new_page);
5599 
5600 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5601 				haddr + huge_page_size(h));
5602 	mmu_notifier_invalidate_range_start(&range);
5603 
5604 	/*
5605 	 * Retake the page table lock to check for racing updates
5606 	 * before the page tables are altered
5607 	 */
5608 	spin_lock(ptl);
5609 	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5610 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5611 		/* Break COW or unshare */
5612 		huge_ptep_clear_flush(vma, haddr, ptep);
5613 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5614 		page_remove_rmap(old_page, vma, true);
5615 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5616 		set_huge_pte_at(mm, haddr, ptep,
5617 				make_huge_pte(vma, new_page, !unshare));
5618 		SetHPageMigratable(new_page);
5619 		/* Make the old page be freed below */
5620 		new_page = old_page;
5621 	}
5622 	spin_unlock(ptl);
5623 	mmu_notifier_invalidate_range_end(&range);
5624 out_release_all:
5625 	/*
5626 	 * No restore in case of successful pagetable update (Break COW or
5627 	 * unshare)
5628 	 */
5629 	if (new_page != old_page)
5630 		restore_reserve_on_error(h, vma, haddr, new_page);
5631 	put_page(new_page);
5632 out_release_old:
5633 	put_page(old_page);
5634 
5635 	spin_lock(ptl); /* Caller expects lock to be held */
5636 
5637 	delayacct_wpcopy_end();
5638 	return ret;
5639 }
5640 
5641 /*
5642  * Return whether there is a pagecache page to back given address within VMA.
5643  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5644  */
5645 static bool hugetlbfs_pagecache_present(struct hstate *h,
5646 			struct vm_area_struct *vma, unsigned long address)
5647 {
5648 	struct address_space *mapping;
5649 	pgoff_t idx;
5650 	struct page *page;
5651 
5652 	mapping = vma->vm_file->f_mapping;
5653 	idx = vma_hugecache_offset(h, vma, address);
5654 
5655 	page = find_get_page(mapping, idx);
5656 	if (page)
5657 		put_page(page);
5658 	return page != NULL;
5659 }
5660 
5661 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5662 			   pgoff_t idx)
5663 {
5664 	struct folio *folio = page_folio(page);
5665 	struct inode *inode = mapping->host;
5666 	struct hstate *h = hstate_inode(inode);
5667 	int err;
5668 
5669 	__folio_set_locked(folio);
5670 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5671 
5672 	if (unlikely(err)) {
5673 		__folio_clear_locked(folio);
5674 		return err;
5675 	}
5676 	ClearHPageRestoreReserve(page);
5677 
5678 	/*
5679 	 * mark folio dirty so that it will not be removed from cache/file
5680 	 * by non-hugetlbfs specific code paths.
5681 	 */
5682 	folio_mark_dirty(folio);
5683 
5684 	spin_lock(&inode->i_lock);
5685 	inode->i_blocks += blocks_per_huge_page(h);
5686 	spin_unlock(&inode->i_lock);
5687 	return 0;
5688 }
5689 
5690 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5691 						  struct address_space *mapping,
5692 						  pgoff_t idx,
5693 						  unsigned int flags,
5694 						  unsigned long haddr,
5695 						  unsigned long addr,
5696 						  unsigned long reason)
5697 {
5698 	u32 hash;
5699 	struct vm_fault vmf = {
5700 		.vma = vma,
5701 		.address = haddr,
5702 		.real_address = addr,
5703 		.flags = flags,
5704 
5705 		/*
5706 		 * Hard to debug if it ends up being
5707 		 * used by a callee that assumes
5708 		 * something about the other
5709 		 * uninitialized fields... same as in
5710 		 * memory.c
5711 		 */
5712 	};
5713 
5714 	/*
5715 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5716 	 * userfault. Also mmap_lock could be dropped due to handling
5717 	 * userfault, any vma operation should be careful from here.
5718 	 */
5719 	hugetlb_vma_unlock_read(vma);
5720 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5721 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5722 	return handle_userfault(&vmf, reason);
5723 }
5724 
5725 /*
5726  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5727  * false if pte changed or is changing.
5728  */
5729 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5730 			       pte_t *ptep, pte_t old_pte)
5731 {
5732 	spinlock_t *ptl;
5733 	bool same;
5734 
5735 	ptl = huge_pte_lock(h, mm, ptep);
5736 	same = pte_same(huge_ptep_get(ptep), old_pte);
5737 	spin_unlock(ptl);
5738 
5739 	return same;
5740 }
5741 
5742 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5743 			struct vm_area_struct *vma,
5744 			struct address_space *mapping, pgoff_t idx,
5745 			unsigned long address, pte_t *ptep,
5746 			pte_t old_pte, unsigned int flags)
5747 {
5748 	struct hstate *h = hstate_vma(vma);
5749 	vm_fault_t ret = VM_FAULT_SIGBUS;
5750 	int anon_rmap = 0;
5751 	unsigned long size;
5752 	struct page *page;
5753 	pte_t new_pte;
5754 	spinlock_t *ptl;
5755 	unsigned long haddr = address & huge_page_mask(h);
5756 	bool new_page, new_pagecache_page = false;
5757 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5758 
5759 	/*
5760 	 * Currently, we are forced to kill the process in the event the
5761 	 * original mapper has unmapped pages from the child due to a failed
5762 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5763 	 * be obvious.
5764 	 */
5765 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5766 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5767 			   current->pid);
5768 		goto out;
5769 	}
5770 
5771 	/*
5772 	 * Use page lock to guard against racing truncation
5773 	 * before we get page_table_lock.
5774 	 */
5775 	new_page = false;
5776 	page = find_lock_page(mapping, idx);
5777 	if (!page) {
5778 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5779 		if (idx >= size)
5780 			goto out;
5781 		/* Check for page in userfault range */
5782 		if (userfaultfd_missing(vma)) {
5783 			/*
5784 			 * Since hugetlb_no_page() was examining pte
5785 			 * without pgtable lock, we need to re-test under
5786 			 * lock because the pte may not be stable and could
5787 			 * have changed from under us.  Try to detect
5788 			 * either changed or during-changing ptes and retry
5789 			 * properly when needed.
5790 			 *
5791 			 * Note that userfaultfd is actually fine with
5792 			 * false positives (e.g. caused by pte changed),
5793 			 * but not wrong logical events (e.g. caused by
5794 			 * reading a pte during changing).  The latter can
5795 			 * confuse the userspace, so the strictness is very
5796 			 * much preferred.  E.g., MISSING event should
5797 			 * never happen on the page after UFFDIO_COPY has
5798 			 * correctly installed the page and returned.
5799 			 */
5800 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5801 				ret = 0;
5802 				goto out;
5803 			}
5804 
5805 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5806 							haddr, address,
5807 							VM_UFFD_MISSING);
5808 		}
5809 
5810 		page = alloc_huge_page(vma, haddr, 0);
5811 		if (IS_ERR(page)) {
5812 			/*
5813 			 * Returning error will result in faulting task being
5814 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5815 			 * tasks from racing to fault in the same page which
5816 			 * could result in false unable to allocate errors.
5817 			 * Page migration does not take the fault mutex, but
5818 			 * does a clear then write of pte's under page table
5819 			 * lock.  Page fault code could race with migration,
5820 			 * notice the clear pte and try to allocate a page
5821 			 * here.  Before returning error, get ptl and make
5822 			 * sure there really is no pte entry.
5823 			 */
5824 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5825 				ret = vmf_error(PTR_ERR(page));
5826 			else
5827 				ret = 0;
5828 			goto out;
5829 		}
5830 		clear_huge_page(page, address, pages_per_huge_page(h));
5831 		__SetPageUptodate(page);
5832 		new_page = true;
5833 
5834 		if (vma->vm_flags & VM_MAYSHARE) {
5835 			int err = hugetlb_add_to_page_cache(page, mapping, idx);
5836 			if (err) {
5837 				/*
5838 				 * err can't be -EEXIST which implies someone
5839 				 * else consumed the reservation since hugetlb
5840 				 * fault mutex is held when add a hugetlb page
5841 				 * to the page cache. So it's safe to call
5842 				 * restore_reserve_on_error() here.
5843 				 */
5844 				restore_reserve_on_error(h, vma, haddr, page);
5845 				put_page(page);
5846 				goto out;
5847 			}
5848 			new_pagecache_page = true;
5849 		} else {
5850 			lock_page(page);
5851 			if (unlikely(anon_vma_prepare(vma))) {
5852 				ret = VM_FAULT_OOM;
5853 				goto backout_unlocked;
5854 			}
5855 			anon_rmap = 1;
5856 		}
5857 	} else {
5858 		/*
5859 		 * If memory error occurs between mmap() and fault, some process
5860 		 * don't have hwpoisoned swap entry for errored virtual address.
5861 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5862 		 */
5863 		if (unlikely(PageHWPoison(page))) {
5864 			ret = VM_FAULT_HWPOISON_LARGE |
5865 				VM_FAULT_SET_HINDEX(hstate_index(h));
5866 			goto backout_unlocked;
5867 		}
5868 
5869 		/* Check for page in userfault range. */
5870 		if (userfaultfd_minor(vma)) {
5871 			unlock_page(page);
5872 			put_page(page);
5873 			/* See comment in userfaultfd_missing() block above */
5874 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5875 				ret = 0;
5876 				goto out;
5877 			}
5878 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5879 							haddr, address,
5880 							VM_UFFD_MINOR);
5881 		}
5882 	}
5883 
5884 	/*
5885 	 * If we are going to COW a private mapping later, we examine the
5886 	 * pending reservations for this page now. This will ensure that
5887 	 * any allocations necessary to record that reservation occur outside
5888 	 * the spinlock.
5889 	 */
5890 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5891 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5892 			ret = VM_FAULT_OOM;
5893 			goto backout_unlocked;
5894 		}
5895 		/* Just decrements count, does not deallocate */
5896 		vma_end_reservation(h, vma, haddr);
5897 	}
5898 
5899 	ptl = huge_pte_lock(h, mm, ptep);
5900 	ret = 0;
5901 	/* If pte changed from under us, retry */
5902 	if (!pte_same(huge_ptep_get(ptep), old_pte))
5903 		goto backout;
5904 
5905 	if (anon_rmap)
5906 		hugepage_add_new_anon_rmap(page, vma, haddr);
5907 	else
5908 		page_dup_file_rmap(page, true);
5909 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5910 				&& (vma->vm_flags & VM_SHARED)));
5911 	/*
5912 	 * If this pte was previously wr-protected, keep it wr-protected even
5913 	 * if populated.
5914 	 */
5915 	if (unlikely(pte_marker_uffd_wp(old_pte)))
5916 		new_pte = huge_pte_mkuffd_wp(new_pte);
5917 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5918 
5919 	hugetlb_count_add(pages_per_huge_page(h), mm);
5920 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5921 		/* Optimization, do the COW without a second fault */
5922 		ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5923 	}
5924 
5925 	spin_unlock(ptl);
5926 
5927 	/*
5928 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5929 	 * found in the pagecache may not have HPageMigratableset if they have
5930 	 * been isolated for migration.
5931 	 */
5932 	if (new_page)
5933 		SetHPageMigratable(page);
5934 
5935 	unlock_page(page);
5936 out:
5937 	hugetlb_vma_unlock_read(vma);
5938 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5939 	return ret;
5940 
5941 backout:
5942 	spin_unlock(ptl);
5943 backout_unlocked:
5944 	if (new_page && !new_pagecache_page)
5945 		restore_reserve_on_error(h, vma, haddr, page);
5946 
5947 	unlock_page(page);
5948 	put_page(page);
5949 	goto out;
5950 }
5951 
5952 #ifdef CONFIG_SMP
5953 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5954 {
5955 	unsigned long key[2];
5956 	u32 hash;
5957 
5958 	key[0] = (unsigned long) mapping;
5959 	key[1] = idx;
5960 
5961 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5962 
5963 	return hash & (num_fault_mutexes - 1);
5964 }
5965 #else
5966 /*
5967  * For uniprocessor systems we always use a single mutex, so just
5968  * return 0 and avoid the hashing overhead.
5969  */
5970 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5971 {
5972 	return 0;
5973 }
5974 #endif
5975 
5976 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5977 			unsigned long address, unsigned int flags)
5978 {
5979 	pte_t *ptep, entry;
5980 	spinlock_t *ptl;
5981 	vm_fault_t ret;
5982 	u32 hash;
5983 	pgoff_t idx;
5984 	struct page *page = NULL;
5985 	struct page *pagecache_page = NULL;
5986 	struct hstate *h = hstate_vma(vma);
5987 	struct address_space *mapping;
5988 	int need_wait_lock = 0;
5989 	unsigned long haddr = address & huge_page_mask(h);
5990 
5991 	/*
5992 	 * Serialize hugepage allocation and instantiation, so that we don't
5993 	 * get spurious allocation failures if two CPUs race to instantiate
5994 	 * the same page in the page cache.
5995 	 */
5996 	mapping = vma->vm_file->f_mapping;
5997 	idx = vma_hugecache_offset(h, vma, haddr);
5998 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5999 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6000 
6001 	/*
6002 	 * Acquire vma lock before calling huge_pte_alloc and hold
6003 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6004 	 * being called elsewhere and making the ptep no longer valid.
6005 	 */
6006 	hugetlb_vma_lock_read(vma);
6007 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6008 	if (!ptep) {
6009 		hugetlb_vma_unlock_read(vma);
6010 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6011 		return VM_FAULT_OOM;
6012 	}
6013 
6014 	entry = huge_ptep_get(ptep);
6015 	/* PTE markers should be handled the same way as none pte */
6016 	if (huge_pte_none_mostly(entry))
6017 		/*
6018 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6019 		 * mutex internally, which make us return immediately.
6020 		 */
6021 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6022 				      entry, flags);
6023 
6024 	ret = 0;
6025 
6026 	/*
6027 	 * entry could be a migration/hwpoison entry at this point, so this
6028 	 * check prevents the kernel from going below assuming that we have
6029 	 * an active hugepage in pagecache. This goto expects the 2nd page
6030 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6031 	 * properly handle it.
6032 	 */
6033 	if (!pte_present(entry)) {
6034 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6035 			/*
6036 			 * Release the hugetlb fault lock now, but retain
6037 			 * the vma lock, because it is needed to guard the
6038 			 * huge_pte_lockptr() later in
6039 			 * migration_entry_wait_huge(). The vma lock will
6040 			 * be released there.
6041 			 */
6042 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6043 			migration_entry_wait_huge(vma, ptep);
6044 			return 0;
6045 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6046 			ret = VM_FAULT_HWPOISON_LARGE |
6047 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6048 		goto out_mutex;
6049 	}
6050 
6051 	/*
6052 	 * If we are going to COW/unshare the mapping later, we examine the
6053 	 * pending reservations for this page now. This will ensure that any
6054 	 * allocations necessary to record that reservation occur outside the
6055 	 * spinlock. Also lookup the pagecache page now as it is used to
6056 	 * determine if a reservation has been consumed.
6057 	 */
6058 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6059 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6060 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6061 			ret = VM_FAULT_OOM;
6062 			goto out_mutex;
6063 		}
6064 		/* Just decrements count, does not deallocate */
6065 		vma_end_reservation(h, vma, haddr);
6066 
6067 		pagecache_page = find_lock_page(mapping, idx);
6068 	}
6069 
6070 	ptl = huge_pte_lock(h, mm, ptep);
6071 
6072 	/* Check for a racing update before calling hugetlb_wp() */
6073 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6074 		goto out_ptl;
6075 
6076 	/* Handle userfault-wp first, before trying to lock more pages */
6077 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6078 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6079 		struct vm_fault vmf = {
6080 			.vma = vma,
6081 			.address = haddr,
6082 			.real_address = address,
6083 			.flags = flags,
6084 		};
6085 
6086 		spin_unlock(ptl);
6087 		if (pagecache_page) {
6088 			unlock_page(pagecache_page);
6089 			put_page(pagecache_page);
6090 		}
6091 		hugetlb_vma_unlock_read(vma);
6092 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6093 		return handle_userfault(&vmf, VM_UFFD_WP);
6094 	}
6095 
6096 	/*
6097 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6098 	 * pagecache_page, so here we need take the former one
6099 	 * when page != pagecache_page or !pagecache_page.
6100 	 */
6101 	page = pte_page(entry);
6102 	if (page != pagecache_page)
6103 		if (!trylock_page(page)) {
6104 			need_wait_lock = 1;
6105 			goto out_ptl;
6106 		}
6107 
6108 	get_page(page);
6109 
6110 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6111 		if (!huge_pte_write(entry)) {
6112 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6113 					 pagecache_page, ptl);
6114 			goto out_put_page;
6115 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6116 			entry = huge_pte_mkdirty(entry);
6117 		}
6118 	}
6119 	entry = pte_mkyoung(entry);
6120 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6121 						flags & FAULT_FLAG_WRITE))
6122 		update_mmu_cache(vma, haddr, ptep);
6123 out_put_page:
6124 	if (page != pagecache_page)
6125 		unlock_page(page);
6126 	put_page(page);
6127 out_ptl:
6128 	spin_unlock(ptl);
6129 
6130 	if (pagecache_page) {
6131 		unlock_page(pagecache_page);
6132 		put_page(pagecache_page);
6133 	}
6134 out_mutex:
6135 	hugetlb_vma_unlock_read(vma);
6136 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6137 	/*
6138 	 * Generally it's safe to hold refcount during waiting page lock. But
6139 	 * here we just wait to defer the next page fault to avoid busy loop and
6140 	 * the page is not used after unlocked before returning from the current
6141 	 * page fault. So we are safe from accessing freed page, even if we wait
6142 	 * here without taking refcount.
6143 	 */
6144 	if (need_wait_lock)
6145 		wait_on_page_locked(page);
6146 	return ret;
6147 }
6148 
6149 #ifdef CONFIG_USERFAULTFD
6150 /*
6151  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
6152  * modifications for huge pages.
6153  */
6154 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6155 			    pte_t *dst_pte,
6156 			    struct vm_area_struct *dst_vma,
6157 			    unsigned long dst_addr,
6158 			    unsigned long src_addr,
6159 			    enum mcopy_atomic_mode mode,
6160 			    struct page **pagep,
6161 			    bool wp_copy)
6162 {
6163 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6164 	struct hstate *h = hstate_vma(dst_vma);
6165 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6166 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6167 	unsigned long size;
6168 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6169 	pte_t _dst_pte;
6170 	spinlock_t *ptl;
6171 	int ret = -ENOMEM;
6172 	struct page *page;
6173 	int writable;
6174 	bool page_in_pagecache = false;
6175 
6176 	if (is_continue) {
6177 		ret = -EFAULT;
6178 		page = find_lock_page(mapping, idx);
6179 		if (!page)
6180 			goto out;
6181 		page_in_pagecache = true;
6182 	} else if (!*pagep) {
6183 		/* If a page already exists, then it's UFFDIO_COPY for
6184 		 * a non-missing case. Return -EEXIST.
6185 		 */
6186 		if (vm_shared &&
6187 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6188 			ret = -EEXIST;
6189 			goto out;
6190 		}
6191 
6192 		page = alloc_huge_page(dst_vma, dst_addr, 0);
6193 		if (IS_ERR(page)) {
6194 			ret = -ENOMEM;
6195 			goto out;
6196 		}
6197 
6198 		ret = copy_huge_page_from_user(page,
6199 						(const void __user *) src_addr,
6200 						pages_per_huge_page(h), false);
6201 
6202 		/* fallback to copy_from_user outside mmap_lock */
6203 		if (unlikely(ret)) {
6204 			ret = -ENOENT;
6205 			/* Free the allocated page which may have
6206 			 * consumed a reservation.
6207 			 */
6208 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
6209 			put_page(page);
6210 
6211 			/* Allocate a temporary page to hold the copied
6212 			 * contents.
6213 			 */
6214 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6215 			if (!page) {
6216 				ret = -ENOMEM;
6217 				goto out;
6218 			}
6219 			*pagep = page;
6220 			/* Set the outparam pagep and return to the caller to
6221 			 * copy the contents outside the lock. Don't free the
6222 			 * page.
6223 			 */
6224 			goto out;
6225 		}
6226 	} else {
6227 		if (vm_shared &&
6228 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6229 			put_page(*pagep);
6230 			ret = -EEXIST;
6231 			*pagep = NULL;
6232 			goto out;
6233 		}
6234 
6235 		page = alloc_huge_page(dst_vma, dst_addr, 0);
6236 		if (IS_ERR(page)) {
6237 			put_page(*pagep);
6238 			ret = -ENOMEM;
6239 			*pagep = NULL;
6240 			goto out;
6241 		}
6242 		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6243 				    pages_per_huge_page(h));
6244 		put_page(*pagep);
6245 		*pagep = NULL;
6246 	}
6247 
6248 	/*
6249 	 * The memory barrier inside __SetPageUptodate makes sure that
6250 	 * preceding stores to the page contents become visible before
6251 	 * the set_pte_at() write.
6252 	 */
6253 	__SetPageUptodate(page);
6254 
6255 	/* Add shared, newly allocated pages to the page cache. */
6256 	if (vm_shared && !is_continue) {
6257 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6258 		ret = -EFAULT;
6259 		if (idx >= size)
6260 			goto out_release_nounlock;
6261 
6262 		/*
6263 		 * Serialization between remove_inode_hugepages() and
6264 		 * hugetlb_add_to_page_cache() below happens through the
6265 		 * hugetlb_fault_mutex_table that here must be hold by
6266 		 * the caller.
6267 		 */
6268 		ret = hugetlb_add_to_page_cache(page, mapping, idx);
6269 		if (ret)
6270 			goto out_release_nounlock;
6271 		page_in_pagecache = true;
6272 	}
6273 
6274 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6275 
6276 	ret = -EIO;
6277 	if (PageHWPoison(page))
6278 		goto out_release_unlock;
6279 
6280 	/*
6281 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6282 	 * registered, we firstly wr-protect a none pte which has no page cache
6283 	 * page backing it, then access the page.
6284 	 */
6285 	ret = -EEXIST;
6286 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6287 		goto out_release_unlock;
6288 
6289 	if (page_in_pagecache)
6290 		page_dup_file_rmap(page, true);
6291 	else
6292 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6293 
6294 	/*
6295 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6296 	 * with wp flag set, don't set pte write bit.
6297 	 */
6298 	if (wp_copy || (is_continue && !vm_shared))
6299 		writable = 0;
6300 	else
6301 		writable = dst_vma->vm_flags & VM_WRITE;
6302 
6303 	_dst_pte = make_huge_pte(dst_vma, page, writable);
6304 	/*
6305 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6306 	 * extremely important for hugetlbfs for now since swapping is not
6307 	 * supported, but we should still be clear in that this page cannot be
6308 	 * thrown away at will, even if write bit not set.
6309 	 */
6310 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6311 	_dst_pte = pte_mkyoung(_dst_pte);
6312 
6313 	if (wp_copy)
6314 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6315 
6316 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6317 
6318 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6319 
6320 	/* No need to invalidate - it was non-present before */
6321 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6322 
6323 	spin_unlock(ptl);
6324 	if (!is_continue)
6325 		SetHPageMigratable(page);
6326 	if (vm_shared || is_continue)
6327 		unlock_page(page);
6328 	ret = 0;
6329 out:
6330 	return ret;
6331 out_release_unlock:
6332 	spin_unlock(ptl);
6333 	if (vm_shared || is_continue)
6334 		unlock_page(page);
6335 out_release_nounlock:
6336 	if (!page_in_pagecache)
6337 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
6338 	put_page(page);
6339 	goto out;
6340 }
6341 #endif /* CONFIG_USERFAULTFD */
6342 
6343 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6344 				 int refs, struct page **pages,
6345 				 struct vm_area_struct **vmas)
6346 {
6347 	int nr;
6348 
6349 	for (nr = 0; nr < refs; nr++) {
6350 		if (likely(pages))
6351 			pages[nr] = nth_page(page, nr);
6352 		if (vmas)
6353 			vmas[nr] = vma;
6354 	}
6355 }
6356 
6357 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6358 					       unsigned int flags, pte_t *pte,
6359 					       bool *unshare)
6360 {
6361 	pte_t pteval = huge_ptep_get(pte);
6362 
6363 	*unshare = false;
6364 	if (is_swap_pte(pteval))
6365 		return true;
6366 	if (huge_pte_write(pteval))
6367 		return false;
6368 	if (flags & FOLL_WRITE)
6369 		return true;
6370 	if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6371 		*unshare = true;
6372 		return true;
6373 	}
6374 	return false;
6375 }
6376 
6377 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6378 				unsigned long address, unsigned int flags)
6379 {
6380 	struct hstate *h = hstate_vma(vma);
6381 	struct mm_struct *mm = vma->vm_mm;
6382 	unsigned long haddr = address & huge_page_mask(h);
6383 	struct page *page = NULL;
6384 	spinlock_t *ptl;
6385 	pte_t *pte, entry;
6386 
6387 	/*
6388 	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6389 	 * follow_hugetlb_page().
6390 	 */
6391 	if (WARN_ON_ONCE(flags & FOLL_PIN))
6392 		return NULL;
6393 
6394 	hugetlb_vma_lock_read(vma);
6395 	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6396 	if (!pte)
6397 		goto out_unlock;
6398 
6399 	ptl = huge_pte_lock(h, mm, pte);
6400 	entry = huge_ptep_get(pte);
6401 	if (pte_present(entry)) {
6402 		page = pte_page(entry) +
6403 				((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6404 		/*
6405 		 * Note that page may be a sub-page, and with vmemmap
6406 		 * optimizations the page struct may be read only.
6407 		 * try_grab_page() will increase the ref count on the
6408 		 * head page, so this will be OK.
6409 		 *
6410 		 * try_grab_page() should always be able to get the page here,
6411 		 * because we hold the ptl lock and have verified pte_present().
6412 		 */
6413 		if (try_grab_page(page, flags)) {
6414 			page = NULL;
6415 			goto out;
6416 		}
6417 	}
6418 out:
6419 	spin_unlock(ptl);
6420 out_unlock:
6421 	hugetlb_vma_unlock_read(vma);
6422 	return page;
6423 }
6424 
6425 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6426 			 struct page **pages, struct vm_area_struct **vmas,
6427 			 unsigned long *position, unsigned long *nr_pages,
6428 			 long i, unsigned int flags, int *locked)
6429 {
6430 	unsigned long pfn_offset;
6431 	unsigned long vaddr = *position;
6432 	unsigned long remainder = *nr_pages;
6433 	struct hstate *h = hstate_vma(vma);
6434 	int err = -EFAULT, refs;
6435 
6436 	while (vaddr < vma->vm_end && remainder) {
6437 		pte_t *pte;
6438 		spinlock_t *ptl = NULL;
6439 		bool unshare = false;
6440 		int absent;
6441 		struct page *page;
6442 
6443 		/*
6444 		 * If we have a pending SIGKILL, don't keep faulting pages and
6445 		 * potentially allocating memory.
6446 		 */
6447 		if (fatal_signal_pending(current)) {
6448 			remainder = 0;
6449 			break;
6450 		}
6451 
6452 		hugetlb_vma_lock_read(vma);
6453 		/*
6454 		 * Some archs (sparc64, sh*) have multiple pte_ts to
6455 		 * each hugepage.  We have to make sure we get the
6456 		 * first, for the page indexing below to work.
6457 		 *
6458 		 * Note that page table lock is not held when pte is null.
6459 		 */
6460 		pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6461 				   huge_page_size(h));
6462 		if (pte)
6463 			ptl = huge_pte_lock(h, mm, pte);
6464 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
6465 
6466 		/*
6467 		 * When coredumping, it suits get_dump_page if we just return
6468 		 * an error where there's an empty slot with no huge pagecache
6469 		 * to back it.  This way, we avoid allocating a hugepage, and
6470 		 * the sparse dumpfile avoids allocating disk blocks, but its
6471 		 * huge holes still show up with zeroes where they need to be.
6472 		 */
6473 		if (absent && (flags & FOLL_DUMP) &&
6474 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6475 			if (pte)
6476 				spin_unlock(ptl);
6477 			hugetlb_vma_unlock_read(vma);
6478 			remainder = 0;
6479 			break;
6480 		}
6481 
6482 		/*
6483 		 * We need call hugetlb_fault for both hugepages under migration
6484 		 * (in which case hugetlb_fault waits for the migration,) and
6485 		 * hwpoisoned hugepages (in which case we need to prevent the
6486 		 * caller from accessing to them.) In order to do this, we use
6487 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6488 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6489 		 * both cases, and because we can't follow correct pages
6490 		 * directly from any kind of swap entries.
6491 		 */
6492 		if (absent ||
6493 		    __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6494 			vm_fault_t ret;
6495 			unsigned int fault_flags = 0;
6496 
6497 			if (pte)
6498 				spin_unlock(ptl);
6499 			hugetlb_vma_unlock_read(vma);
6500 
6501 			if (flags & FOLL_WRITE)
6502 				fault_flags |= FAULT_FLAG_WRITE;
6503 			else if (unshare)
6504 				fault_flags |= FAULT_FLAG_UNSHARE;
6505 			if (locked) {
6506 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6507 					FAULT_FLAG_KILLABLE;
6508 				if (flags & FOLL_INTERRUPTIBLE)
6509 					fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6510 			}
6511 			if (flags & FOLL_NOWAIT)
6512 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6513 					FAULT_FLAG_RETRY_NOWAIT;
6514 			if (flags & FOLL_TRIED) {
6515 				/*
6516 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6517 				 * FAULT_FLAG_TRIED can co-exist
6518 				 */
6519 				fault_flags |= FAULT_FLAG_TRIED;
6520 			}
6521 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6522 			if (ret & VM_FAULT_ERROR) {
6523 				err = vm_fault_to_errno(ret, flags);
6524 				remainder = 0;
6525 				break;
6526 			}
6527 			if (ret & VM_FAULT_RETRY) {
6528 				if (locked &&
6529 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6530 					*locked = 0;
6531 				*nr_pages = 0;
6532 				/*
6533 				 * VM_FAULT_RETRY must not return an
6534 				 * error, it will return zero
6535 				 * instead.
6536 				 *
6537 				 * No need to update "position" as the
6538 				 * caller will not check it after
6539 				 * *nr_pages is set to 0.
6540 				 */
6541 				return i;
6542 			}
6543 			continue;
6544 		}
6545 
6546 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6547 		page = pte_page(huge_ptep_get(pte));
6548 
6549 		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6550 			       !PageAnonExclusive(page), page);
6551 
6552 		/*
6553 		 * If subpage information not requested, update counters
6554 		 * and skip the same_page loop below.
6555 		 */
6556 		if (!pages && !vmas && !pfn_offset &&
6557 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6558 		    (remainder >= pages_per_huge_page(h))) {
6559 			vaddr += huge_page_size(h);
6560 			remainder -= pages_per_huge_page(h);
6561 			i += pages_per_huge_page(h);
6562 			spin_unlock(ptl);
6563 			hugetlb_vma_unlock_read(vma);
6564 			continue;
6565 		}
6566 
6567 		/* vaddr may not be aligned to PAGE_SIZE */
6568 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6569 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6570 
6571 		if (pages || vmas)
6572 			record_subpages_vmas(nth_page(page, pfn_offset),
6573 					     vma, refs,
6574 					     likely(pages) ? pages + i : NULL,
6575 					     vmas ? vmas + i : NULL);
6576 
6577 		if (pages) {
6578 			/*
6579 			 * try_grab_folio() should always succeed here,
6580 			 * because: a) we hold the ptl lock, and b) we've just
6581 			 * checked that the huge page is present in the page
6582 			 * tables. If the huge page is present, then the tail
6583 			 * pages must also be present. The ptl prevents the
6584 			 * head page and tail pages from being rearranged in
6585 			 * any way. As this is hugetlb, the pages will never
6586 			 * be p2pdma or not longterm pinable. So this page
6587 			 * must be available at this point, unless the page
6588 			 * refcount overflowed:
6589 			 */
6590 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6591 							 flags))) {
6592 				spin_unlock(ptl);
6593 				hugetlb_vma_unlock_read(vma);
6594 				remainder = 0;
6595 				err = -ENOMEM;
6596 				break;
6597 			}
6598 		}
6599 
6600 		vaddr += (refs << PAGE_SHIFT);
6601 		remainder -= refs;
6602 		i += refs;
6603 
6604 		spin_unlock(ptl);
6605 		hugetlb_vma_unlock_read(vma);
6606 	}
6607 	*nr_pages = remainder;
6608 	/*
6609 	 * setting position is actually required only if remainder is
6610 	 * not zero but it's faster not to add a "if (remainder)"
6611 	 * branch.
6612 	 */
6613 	*position = vaddr;
6614 
6615 	return i ? i : err;
6616 }
6617 
6618 long hugetlb_change_protection(struct vm_area_struct *vma,
6619 		unsigned long address, unsigned long end,
6620 		pgprot_t newprot, unsigned long cp_flags)
6621 {
6622 	struct mm_struct *mm = vma->vm_mm;
6623 	unsigned long start = address;
6624 	pte_t *ptep;
6625 	pte_t pte;
6626 	struct hstate *h = hstate_vma(vma);
6627 	long pages = 0, psize = huge_page_size(h);
6628 	bool shared_pmd = false;
6629 	struct mmu_notifier_range range;
6630 	unsigned long last_addr_mask;
6631 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6632 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6633 
6634 	/*
6635 	 * In the case of shared PMDs, the area to flush could be beyond
6636 	 * start/end.  Set range.start/range.end to cover the maximum possible
6637 	 * range if PMD sharing is possible.
6638 	 */
6639 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6640 				0, vma, mm, start, end);
6641 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6642 
6643 	BUG_ON(address >= end);
6644 	flush_cache_range(vma, range.start, range.end);
6645 
6646 	mmu_notifier_invalidate_range_start(&range);
6647 	hugetlb_vma_lock_write(vma);
6648 	i_mmap_lock_write(vma->vm_file->f_mapping);
6649 	last_addr_mask = hugetlb_mask_last_page(h);
6650 	for (; address < end; address += psize) {
6651 		spinlock_t *ptl;
6652 		ptep = hugetlb_walk(vma, address, psize);
6653 		if (!ptep) {
6654 			if (!uffd_wp) {
6655 				address |= last_addr_mask;
6656 				continue;
6657 			}
6658 			/*
6659 			 * Userfaultfd wr-protect requires pgtable
6660 			 * pre-allocations to install pte markers.
6661 			 */
6662 			ptep = huge_pte_alloc(mm, vma, address, psize);
6663 			if (!ptep) {
6664 				pages = -ENOMEM;
6665 				break;
6666 			}
6667 		}
6668 		ptl = huge_pte_lock(h, mm, ptep);
6669 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6670 			/*
6671 			 * When uffd-wp is enabled on the vma, unshare
6672 			 * shouldn't happen at all.  Warn about it if it
6673 			 * happened due to some reason.
6674 			 */
6675 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6676 			pages++;
6677 			spin_unlock(ptl);
6678 			shared_pmd = true;
6679 			address |= last_addr_mask;
6680 			continue;
6681 		}
6682 		pte = huge_ptep_get(ptep);
6683 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6684 			/* Nothing to do. */
6685 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6686 			swp_entry_t entry = pte_to_swp_entry(pte);
6687 			struct page *page = pfn_swap_entry_to_page(entry);
6688 			pte_t newpte = pte;
6689 
6690 			if (is_writable_migration_entry(entry)) {
6691 				if (PageAnon(page))
6692 					entry = make_readable_exclusive_migration_entry(
6693 								swp_offset(entry));
6694 				else
6695 					entry = make_readable_migration_entry(
6696 								swp_offset(entry));
6697 				newpte = swp_entry_to_pte(entry);
6698 				pages++;
6699 			}
6700 
6701 			if (uffd_wp)
6702 				newpte = pte_swp_mkuffd_wp(newpte);
6703 			else if (uffd_wp_resolve)
6704 				newpte = pte_swp_clear_uffd_wp(newpte);
6705 			if (!pte_same(pte, newpte))
6706 				set_huge_pte_at(mm, address, ptep, newpte);
6707 		} else if (unlikely(is_pte_marker(pte))) {
6708 			/* No other markers apply for now. */
6709 			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6710 			if (uffd_wp_resolve)
6711 				/* Safe to modify directly (non-present->none). */
6712 				huge_pte_clear(mm, address, ptep, psize);
6713 		} else if (!huge_pte_none(pte)) {
6714 			pte_t old_pte;
6715 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6716 
6717 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6718 			pte = huge_pte_modify(old_pte, newprot);
6719 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6720 			if (uffd_wp)
6721 				pte = huge_pte_mkuffd_wp(pte);
6722 			else if (uffd_wp_resolve)
6723 				pte = huge_pte_clear_uffd_wp(pte);
6724 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6725 			pages++;
6726 		} else {
6727 			/* None pte */
6728 			if (unlikely(uffd_wp))
6729 				/* Safe to modify directly (none->non-present). */
6730 				set_huge_pte_at(mm, address, ptep,
6731 						make_pte_marker(PTE_MARKER_UFFD_WP));
6732 		}
6733 		spin_unlock(ptl);
6734 	}
6735 	/*
6736 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6737 	 * may have cleared our pud entry and done put_page on the page table:
6738 	 * once we release i_mmap_rwsem, another task can do the final put_page
6739 	 * and that page table be reused and filled with junk.  If we actually
6740 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6741 	 */
6742 	if (shared_pmd)
6743 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6744 	else
6745 		flush_hugetlb_tlb_range(vma, start, end);
6746 	/*
6747 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6748 	 * page table protection not changing it to point to a new page.
6749 	 *
6750 	 * See Documentation/mm/mmu_notifier.rst
6751 	 */
6752 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6753 	hugetlb_vma_unlock_write(vma);
6754 	mmu_notifier_invalidate_range_end(&range);
6755 
6756 	return pages > 0 ? (pages << h->order) : pages;
6757 }
6758 
6759 /* Return true if reservation was successful, false otherwise.  */
6760 bool hugetlb_reserve_pages(struct inode *inode,
6761 					long from, long to,
6762 					struct vm_area_struct *vma,
6763 					vm_flags_t vm_flags)
6764 {
6765 	long chg = -1, add = -1;
6766 	struct hstate *h = hstate_inode(inode);
6767 	struct hugepage_subpool *spool = subpool_inode(inode);
6768 	struct resv_map *resv_map;
6769 	struct hugetlb_cgroup *h_cg = NULL;
6770 	long gbl_reserve, regions_needed = 0;
6771 
6772 	/* This should never happen */
6773 	if (from > to) {
6774 		VM_WARN(1, "%s called with a negative range\n", __func__);
6775 		return false;
6776 	}
6777 
6778 	/*
6779 	 * vma specific semaphore used for pmd sharing and fault/truncation
6780 	 * synchronization
6781 	 */
6782 	hugetlb_vma_lock_alloc(vma);
6783 
6784 	/*
6785 	 * Only apply hugepage reservation if asked. At fault time, an
6786 	 * attempt will be made for VM_NORESERVE to allocate a page
6787 	 * without using reserves
6788 	 */
6789 	if (vm_flags & VM_NORESERVE)
6790 		return true;
6791 
6792 	/*
6793 	 * Shared mappings base their reservation on the number of pages that
6794 	 * are already allocated on behalf of the file. Private mappings need
6795 	 * to reserve the full area even if read-only as mprotect() may be
6796 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6797 	 */
6798 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6799 		/*
6800 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6801 		 * called for inodes for which resv_maps were created (see
6802 		 * hugetlbfs_get_inode).
6803 		 */
6804 		resv_map = inode_resv_map(inode);
6805 
6806 		chg = region_chg(resv_map, from, to, &regions_needed);
6807 	} else {
6808 		/* Private mapping. */
6809 		resv_map = resv_map_alloc();
6810 		if (!resv_map)
6811 			goto out_err;
6812 
6813 		chg = to - from;
6814 
6815 		set_vma_resv_map(vma, resv_map);
6816 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6817 	}
6818 
6819 	if (chg < 0)
6820 		goto out_err;
6821 
6822 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6823 				chg * pages_per_huge_page(h), &h_cg) < 0)
6824 		goto out_err;
6825 
6826 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6827 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6828 		 * of the resv_map.
6829 		 */
6830 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6831 	}
6832 
6833 	/*
6834 	 * There must be enough pages in the subpool for the mapping. If
6835 	 * the subpool has a minimum size, there may be some global
6836 	 * reservations already in place (gbl_reserve).
6837 	 */
6838 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6839 	if (gbl_reserve < 0)
6840 		goto out_uncharge_cgroup;
6841 
6842 	/*
6843 	 * Check enough hugepages are available for the reservation.
6844 	 * Hand the pages back to the subpool if there are not
6845 	 */
6846 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6847 		goto out_put_pages;
6848 
6849 	/*
6850 	 * Account for the reservations made. Shared mappings record regions
6851 	 * that have reservations as they are shared by multiple VMAs.
6852 	 * When the last VMA disappears, the region map says how much
6853 	 * the reservation was and the page cache tells how much of
6854 	 * the reservation was consumed. Private mappings are per-VMA and
6855 	 * only the consumed reservations are tracked. When the VMA
6856 	 * disappears, the original reservation is the VMA size and the
6857 	 * consumed reservations are stored in the map. Hence, nothing
6858 	 * else has to be done for private mappings here
6859 	 */
6860 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6861 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6862 
6863 		if (unlikely(add < 0)) {
6864 			hugetlb_acct_memory(h, -gbl_reserve);
6865 			goto out_put_pages;
6866 		} else if (unlikely(chg > add)) {
6867 			/*
6868 			 * pages in this range were added to the reserve
6869 			 * map between region_chg and region_add.  This
6870 			 * indicates a race with alloc_huge_page.  Adjust
6871 			 * the subpool and reserve counts modified above
6872 			 * based on the difference.
6873 			 */
6874 			long rsv_adjust;
6875 
6876 			/*
6877 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6878 			 * reference to h_cg->css. See comment below for detail.
6879 			 */
6880 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6881 				hstate_index(h),
6882 				(chg - add) * pages_per_huge_page(h), h_cg);
6883 
6884 			rsv_adjust = hugepage_subpool_put_pages(spool,
6885 								chg - add);
6886 			hugetlb_acct_memory(h, -rsv_adjust);
6887 		} else if (h_cg) {
6888 			/*
6889 			 * The file_regions will hold their own reference to
6890 			 * h_cg->css. So we should release the reference held
6891 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6892 			 * done.
6893 			 */
6894 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6895 		}
6896 	}
6897 	return true;
6898 
6899 out_put_pages:
6900 	/* put back original number of pages, chg */
6901 	(void)hugepage_subpool_put_pages(spool, chg);
6902 out_uncharge_cgroup:
6903 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6904 					    chg * pages_per_huge_page(h), h_cg);
6905 out_err:
6906 	hugetlb_vma_lock_free(vma);
6907 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6908 		/* Only call region_abort if the region_chg succeeded but the
6909 		 * region_add failed or didn't run.
6910 		 */
6911 		if (chg >= 0 && add < 0)
6912 			region_abort(resv_map, from, to, regions_needed);
6913 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6914 		kref_put(&resv_map->refs, resv_map_release);
6915 	return false;
6916 }
6917 
6918 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6919 								long freed)
6920 {
6921 	struct hstate *h = hstate_inode(inode);
6922 	struct resv_map *resv_map = inode_resv_map(inode);
6923 	long chg = 0;
6924 	struct hugepage_subpool *spool = subpool_inode(inode);
6925 	long gbl_reserve;
6926 
6927 	/*
6928 	 * Since this routine can be called in the evict inode path for all
6929 	 * hugetlbfs inodes, resv_map could be NULL.
6930 	 */
6931 	if (resv_map) {
6932 		chg = region_del(resv_map, start, end);
6933 		/*
6934 		 * region_del() can fail in the rare case where a region
6935 		 * must be split and another region descriptor can not be
6936 		 * allocated.  If end == LONG_MAX, it will not fail.
6937 		 */
6938 		if (chg < 0)
6939 			return chg;
6940 	}
6941 
6942 	spin_lock(&inode->i_lock);
6943 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6944 	spin_unlock(&inode->i_lock);
6945 
6946 	/*
6947 	 * If the subpool has a minimum size, the number of global
6948 	 * reservations to be released may be adjusted.
6949 	 *
6950 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6951 	 * won't go negative.
6952 	 */
6953 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6954 	hugetlb_acct_memory(h, -gbl_reserve);
6955 
6956 	return 0;
6957 }
6958 
6959 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6960 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6961 				struct vm_area_struct *vma,
6962 				unsigned long addr, pgoff_t idx)
6963 {
6964 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6965 				svma->vm_start;
6966 	unsigned long sbase = saddr & PUD_MASK;
6967 	unsigned long s_end = sbase + PUD_SIZE;
6968 
6969 	/* Allow segments to share if only one is marked locked */
6970 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6971 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6972 
6973 	/*
6974 	 * match the virtual addresses, permission and the alignment of the
6975 	 * page table page.
6976 	 *
6977 	 * Also, vma_lock (vm_private_data) is required for sharing.
6978 	 */
6979 	if (pmd_index(addr) != pmd_index(saddr) ||
6980 	    vm_flags != svm_flags ||
6981 	    !range_in_vma(svma, sbase, s_end) ||
6982 	    !svma->vm_private_data)
6983 		return 0;
6984 
6985 	return saddr;
6986 }
6987 
6988 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6989 {
6990 	unsigned long start = addr & PUD_MASK;
6991 	unsigned long end = start + PUD_SIZE;
6992 
6993 #ifdef CONFIG_USERFAULTFD
6994 	if (uffd_disable_huge_pmd_share(vma))
6995 		return false;
6996 #endif
6997 	/*
6998 	 * check on proper vm_flags and page table alignment
6999 	 */
7000 	if (!(vma->vm_flags & VM_MAYSHARE))
7001 		return false;
7002 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7003 		return false;
7004 	if (!range_in_vma(vma, start, end))
7005 		return false;
7006 	return true;
7007 }
7008 
7009 /*
7010  * Determine if start,end range within vma could be mapped by shared pmd.
7011  * If yes, adjust start and end to cover range associated with possible
7012  * shared pmd mappings.
7013  */
7014 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7015 				unsigned long *start, unsigned long *end)
7016 {
7017 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7018 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7019 
7020 	/*
7021 	 * vma needs to span at least one aligned PUD size, and the range
7022 	 * must be at least partially within in.
7023 	 */
7024 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7025 		(*end <= v_start) || (*start >= v_end))
7026 		return;
7027 
7028 	/* Extend the range to be PUD aligned for a worst case scenario */
7029 	if (*start > v_start)
7030 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7031 
7032 	if (*end < v_end)
7033 		*end = ALIGN(*end, PUD_SIZE);
7034 }
7035 
7036 /*
7037  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7038  * and returns the corresponding pte. While this is not necessary for the
7039  * !shared pmd case because we can allocate the pmd later as well, it makes the
7040  * code much cleaner. pmd allocation is essential for the shared case because
7041  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7042  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7043  * bad pmd for sharing.
7044  */
7045 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7046 		      unsigned long addr, pud_t *pud)
7047 {
7048 	struct address_space *mapping = vma->vm_file->f_mapping;
7049 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7050 			vma->vm_pgoff;
7051 	struct vm_area_struct *svma;
7052 	unsigned long saddr;
7053 	pte_t *spte = NULL;
7054 	pte_t *pte;
7055 	spinlock_t *ptl;
7056 
7057 	i_mmap_lock_read(mapping);
7058 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7059 		if (svma == vma)
7060 			continue;
7061 
7062 		saddr = page_table_shareable(svma, vma, addr, idx);
7063 		if (saddr) {
7064 			spte = hugetlb_walk(svma, saddr,
7065 					    vma_mmu_pagesize(svma));
7066 			if (spte) {
7067 				get_page(virt_to_page(spte));
7068 				break;
7069 			}
7070 		}
7071 	}
7072 
7073 	if (!spte)
7074 		goto out;
7075 
7076 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7077 	if (pud_none(*pud)) {
7078 		pud_populate(mm, pud,
7079 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7080 		mm_inc_nr_pmds(mm);
7081 	} else {
7082 		put_page(virt_to_page(spte));
7083 	}
7084 	spin_unlock(ptl);
7085 out:
7086 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7087 	i_mmap_unlock_read(mapping);
7088 	return pte;
7089 }
7090 
7091 /*
7092  * unmap huge page backed by shared pte.
7093  *
7094  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7095  * indicated by page_count > 1, unmap is achieved by clearing pud and
7096  * decrementing the ref count. If count == 1, the pte page is not shared.
7097  *
7098  * Called with page table lock held.
7099  *
7100  * returns: 1 successfully unmapped a shared pte page
7101  *	    0 the underlying pte page is not shared, or it is the last user
7102  */
7103 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7104 					unsigned long addr, pte_t *ptep)
7105 {
7106 	pgd_t *pgd = pgd_offset(mm, addr);
7107 	p4d_t *p4d = p4d_offset(pgd, addr);
7108 	pud_t *pud = pud_offset(p4d, addr);
7109 
7110 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7111 	hugetlb_vma_assert_locked(vma);
7112 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7113 	if (page_count(virt_to_page(ptep)) == 1)
7114 		return 0;
7115 
7116 	pud_clear(pud);
7117 	put_page(virt_to_page(ptep));
7118 	mm_dec_nr_pmds(mm);
7119 	return 1;
7120 }
7121 
7122 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7123 
7124 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7125 		      unsigned long addr, pud_t *pud)
7126 {
7127 	return NULL;
7128 }
7129 
7130 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7131 				unsigned long addr, pte_t *ptep)
7132 {
7133 	return 0;
7134 }
7135 
7136 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7137 				unsigned long *start, unsigned long *end)
7138 {
7139 }
7140 
7141 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7142 {
7143 	return false;
7144 }
7145 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7146 
7147 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7148 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7149 			unsigned long addr, unsigned long sz)
7150 {
7151 	pgd_t *pgd;
7152 	p4d_t *p4d;
7153 	pud_t *pud;
7154 	pte_t *pte = NULL;
7155 
7156 	pgd = pgd_offset(mm, addr);
7157 	p4d = p4d_alloc(mm, pgd, addr);
7158 	if (!p4d)
7159 		return NULL;
7160 	pud = pud_alloc(mm, p4d, addr);
7161 	if (pud) {
7162 		if (sz == PUD_SIZE) {
7163 			pte = (pte_t *)pud;
7164 		} else {
7165 			BUG_ON(sz != PMD_SIZE);
7166 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7167 				pte = huge_pmd_share(mm, vma, addr, pud);
7168 			else
7169 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7170 		}
7171 	}
7172 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7173 
7174 	return pte;
7175 }
7176 
7177 /*
7178  * huge_pte_offset() - Walk the page table to resolve the hugepage
7179  * entry at address @addr
7180  *
7181  * Return: Pointer to page table entry (PUD or PMD) for
7182  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7183  * size @sz doesn't match the hugepage size at this level of the page
7184  * table.
7185  */
7186 pte_t *huge_pte_offset(struct mm_struct *mm,
7187 		       unsigned long addr, unsigned long sz)
7188 {
7189 	pgd_t *pgd;
7190 	p4d_t *p4d;
7191 	pud_t *pud;
7192 	pmd_t *pmd;
7193 
7194 	pgd = pgd_offset(mm, addr);
7195 	if (!pgd_present(*pgd))
7196 		return NULL;
7197 	p4d = p4d_offset(pgd, addr);
7198 	if (!p4d_present(*p4d))
7199 		return NULL;
7200 
7201 	pud = pud_offset(p4d, addr);
7202 	if (sz == PUD_SIZE)
7203 		/* must be pud huge, non-present or none */
7204 		return (pte_t *)pud;
7205 	if (!pud_present(*pud))
7206 		return NULL;
7207 	/* must have a valid entry and size to go further */
7208 
7209 	pmd = pmd_offset(pud, addr);
7210 	/* must be pmd huge, non-present or none */
7211 	return (pte_t *)pmd;
7212 }
7213 
7214 /*
7215  * Return a mask that can be used to update an address to the last huge
7216  * page in a page table page mapping size.  Used to skip non-present
7217  * page table entries when linearly scanning address ranges.  Architectures
7218  * with unique huge page to page table relationships can define their own
7219  * version of this routine.
7220  */
7221 unsigned long hugetlb_mask_last_page(struct hstate *h)
7222 {
7223 	unsigned long hp_size = huge_page_size(h);
7224 
7225 	if (hp_size == PUD_SIZE)
7226 		return P4D_SIZE - PUD_SIZE;
7227 	else if (hp_size == PMD_SIZE)
7228 		return PUD_SIZE - PMD_SIZE;
7229 	else
7230 		return 0UL;
7231 }
7232 
7233 #else
7234 
7235 /* See description above.  Architectures can provide their own version. */
7236 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7237 {
7238 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7239 	if (huge_page_size(h) == PMD_SIZE)
7240 		return PUD_SIZE - PMD_SIZE;
7241 #endif
7242 	return 0UL;
7243 }
7244 
7245 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7246 
7247 /*
7248  * These functions are overwritable if your architecture needs its own
7249  * behavior.
7250  */
7251 int isolate_hugetlb(struct page *page, struct list_head *list)
7252 {
7253 	int ret = 0;
7254 
7255 	spin_lock_irq(&hugetlb_lock);
7256 	if (!PageHeadHuge(page) ||
7257 	    !HPageMigratable(page) ||
7258 	    !get_page_unless_zero(page)) {
7259 		ret = -EBUSY;
7260 		goto unlock;
7261 	}
7262 	ClearHPageMigratable(page);
7263 	list_move_tail(&page->lru, list);
7264 unlock:
7265 	spin_unlock_irq(&hugetlb_lock);
7266 	return ret;
7267 }
7268 
7269 int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
7270 {
7271 	int ret = 0;
7272 
7273 	*hugetlb = false;
7274 	spin_lock_irq(&hugetlb_lock);
7275 	if (PageHeadHuge(page)) {
7276 		*hugetlb = true;
7277 		if (HPageFreed(page))
7278 			ret = 0;
7279 		else if (HPageMigratable(page) || unpoison)
7280 			ret = get_page_unless_zero(page);
7281 		else
7282 			ret = -EBUSY;
7283 	}
7284 	spin_unlock_irq(&hugetlb_lock);
7285 	return ret;
7286 }
7287 
7288 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7289 				bool *migratable_cleared)
7290 {
7291 	int ret;
7292 
7293 	spin_lock_irq(&hugetlb_lock);
7294 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7295 	spin_unlock_irq(&hugetlb_lock);
7296 	return ret;
7297 }
7298 
7299 void putback_active_hugepage(struct page *page)
7300 {
7301 	spin_lock_irq(&hugetlb_lock);
7302 	SetHPageMigratable(page);
7303 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7304 	spin_unlock_irq(&hugetlb_lock);
7305 	put_page(page);
7306 }
7307 
7308 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7309 {
7310 	struct hstate *h = folio_hstate(old_folio);
7311 
7312 	hugetlb_cgroup_migrate(old_folio, new_folio);
7313 	set_page_owner_migrate_reason(&new_folio->page, reason);
7314 
7315 	/*
7316 	 * transfer temporary state of the new hugetlb folio. This is
7317 	 * reverse to other transitions because the newpage is going to
7318 	 * be final while the old one will be freed so it takes over
7319 	 * the temporary status.
7320 	 *
7321 	 * Also note that we have to transfer the per-node surplus state
7322 	 * here as well otherwise the global surplus count will not match
7323 	 * the per-node's.
7324 	 */
7325 	if (folio_test_hugetlb_temporary(new_folio)) {
7326 		int old_nid = folio_nid(old_folio);
7327 		int new_nid = folio_nid(new_folio);
7328 
7329 		folio_set_hugetlb_temporary(old_folio);
7330 		folio_clear_hugetlb_temporary(new_folio);
7331 
7332 
7333 		/*
7334 		 * There is no need to transfer the per-node surplus state
7335 		 * when we do not cross the node.
7336 		 */
7337 		if (new_nid == old_nid)
7338 			return;
7339 		spin_lock_irq(&hugetlb_lock);
7340 		if (h->surplus_huge_pages_node[old_nid]) {
7341 			h->surplus_huge_pages_node[old_nid]--;
7342 			h->surplus_huge_pages_node[new_nid]++;
7343 		}
7344 		spin_unlock_irq(&hugetlb_lock);
7345 	}
7346 }
7347 
7348 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7349 				   unsigned long start,
7350 				   unsigned long end)
7351 {
7352 	struct hstate *h = hstate_vma(vma);
7353 	unsigned long sz = huge_page_size(h);
7354 	struct mm_struct *mm = vma->vm_mm;
7355 	struct mmu_notifier_range range;
7356 	unsigned long address;
7357 	spinlock_t *ptl;
7358 	pte_t *ptep;
7359 
7360 	if (!(vma->vm_flags & VM_MAYSHARE))
7361 		return;
7362 
7363 	if (start >= end)
7364 		return;
7365 
7366 	flush_cache_range(vma, start, end);
7367 	/*
7368 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7369 	 * we have already done the PUD_SIZE alignment.
7370 	 */
7371 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7372 				start, end);
7373 	mmu_notifier_invalidate_range_start(&range);
7374 	hugetlb_vma_lock_write(vma);
7375 	i_mmap_lock_write(vma->vm_file->f_mapping);
7376 	for (address = start; address < end; address += PUD_SIZE) {
7377 		ptep = hugetlb_walk(vma, address, sz);
7378 		if (!ptep)
7379 			continue;
7380 		ptl = huge_pte_lock(h, mm, ptep);
7381 		huge_pmd_unshare(mm, vma, address, ptep);
7382 		spin_unlock(ptl);
7383 	}
7384 	flush_hugetlb_tlb_range(vma, start, end);
7385 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7386 	hugetlb_vma_unlock_write(vma);
7387 	/*
7388 	 * No need to call mmu_notifier_invalidate_range(), see
7389 	 * Documentation/mm/mmu_notifier.rst.
7390 	 */
7391 	mmu_notifier_invalidate_range_end(&range);
7392 }
7393 
7394 /*
7395  * This function will unconditionally remove all the shared pmd pgtable entries
7396  * within the specific vma for a hugetlbfs memory range.
7397  */
7398 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7399 {
7400 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7401 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7402 }
7403 
7404 #ifdef CONFIG_CMA
7405 static bool cma_reserve_called __initdata;
7406 
7407 static int __init cmdline_parse_hugetlb_cma(char *p)
7408 {
7409 	int nid, count = 0;
7410 	unsigned long tmp;
7411 	char *s = p;
7412 
7413 	while (*s) {
7414 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7415 			break;
7416 
7417 		if (s[count] == ':') {
7418 			if (tmp >= MAX_NUMNODES)
7419 				break;
7420 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7421 
7422 			s += count + 1;
7423 			tmp = memparse(s, &s);
7424 			hugetlb_cma_size_in_node[nid] = tmp;
7425 			hugetlb_cma_size += tmp;
7426 
7427 			/*
7428 			 * Skip the separator if have one, otherwise
7429 			 * break the parsing.
7430 			 */
7431 			if (*s == ',')
7432 				s++;
7433 			else
7434 				break;
7435 		} else {
7436 			hugetlb_cma_size = memparse(p, &p);
7437 			break;
7438 		}
7439 	}
7440 
7441 	return 0;
7442 }
7443 
7444 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7445 
7446 void __init hugetlb_cma_reserve(int order)
7447 {
7448 	unsigned long size, reserved, per_node;
7449 	bool node_specific_cma_alloc = false;
7450 	int nid;
7451 
7452 	cma_reserve_called = true;
7453 
7454 	if (!hugetlb_cma_size)
7455 		return;
7456 
7457 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7458 		if (hugetlb_cma_size_in_node[nid] == 0)
7459 			continue;
7460 
7461 		if (!node_online(nid)) {
7462 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7463 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7464 			hugetlb_cma_size_in_node[nid] = 0;
7465 			continue;
7466 		}
7467 
7468 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7469 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7470 				nid, (PAGE_SIZE << order) / SZ_1M);
7471 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7472 			hugetlb_cma_size_in_node[nid] = 0;
7473 		} else {
7474 			node_specific_cma_alloc = true;
7475 		}
7476 	}
7477 
7478 	/* Validate the CMA size again in case some invalid nodes specified. */
7479 	if (!hugetlb_cma_size)
7480 		return;
7481 
7482 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7483 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7484 			(PAGE_SIZE << order) / SZ_1M);
7485 		hugetlb_cma_size = 0;
7486 		return;
7487 	}
7488 
7489 	if (!node_specific_cma_alloc) {
7490 		/*
7491 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7492 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7493 		 */
7494 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7495 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7496 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7497 	}
7498 
7499 	reserved = 0;
7500 	for_each_online_node(nid) {
7501 		int res;
7502 		char name[CMA_MAX_NAME];
7503 
7504 		if (node_specific_cma_alloc) {
7505 			if (hugetlb_cma_size_in_node[nid] == 0)
7506 				continue;
7507 
7508 			size = hugetlb_cma_size_in_node[nid];
7509 		} else {
7510 			size = min(per_node, hugetlb_cma_size - reserved);
7511 		}
7512 
7513 		size = round_up(size, PAGE_SIZE << order);
7514 
7515 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7516 		/*
7517 		 * Note that 'order per bit' is based on smallest size that
7518 		 * may be returned to CMA allocator in the case of
7519 		 * huge page demotion.
7520 		 */
7521 		res = cma_declare_contiguous_nid(0, size, 0,
7522 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7523 						 0, false, name,
7524 						 &hugetlb_cma[nid], nid);
7525 		if (res) {
7526 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7527 				res, nid);
7528 			continue;
7529 		}
7530 
7531 		reserved += size;
7532 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7533 			size / SZ_1M, nid);
7534 
7535 		if (reserved >= hugetlb_cma_size)
7536 			break;
7537 	}
7538 
7539 	if (!reserved)
7540 		/*
7541 		 * hugetlb_cma_size is used to determine if allocations from
7542 		 * cma are possible.  Set to zero if no cma regions are set up.
7543 		 */
7544 		hugetlb_cma_size = 0;
7545 }
7546 
7547 static void __init hugetlb_cma_check(void)
7548 {
7549 	if (!hugetlb_cma_size || cma_reserve_called)
7550 		return;
7551 
7552 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7553 }
7554 
7555 #endif /* CONFIG_CMA */
7556