1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 38 #include <asm/page.h> 39 #include <asm/pgalloc.h> 40 #include <asm/tlb.h> 41 42 #include <linux/io.h> 43 #include <linux/hugetlb.h> 44 #include <linux/hugetlb_cgroup.h> 45 #include <linux/node.h> 46 #include <linux/page_owner.h> 47 #include "internal.h" 48 #include "hugetlb_vmemmap.h" 49 50 int hugetlb_max_hstate __read_mostly; 51 unsigned int default_hstate_idx; 52 struct hstate hstates[HUGE_MAX_HSTATE]; 53 54 #ifdef CONFIG_CMA 55 static struct cma *hugetlb_cma[MAX_NUMNODES]; 56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 58 { 59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 60 1 << order); 61 } 62 #else 63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 64 { 65 return false; 66 } 67 #endif 68 static unsigned long hugetlb_cma_size __initdata; 69 70 __initdata LIST_HEAD(huge_boot_pages); 71 72 /* for command line parsing */ 73 static struct hstate * __initdata parsed_hstate; 74 static unsigned long __initdata default_hstate_max_huge_pages; 75 static bool __initdata parsed_valid_hugepagesz = true; 76 static bool __initdata parsed_default_hugepagesz; 77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 78 79 /* 80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 81 * free_huge_pages, and surplus_huge_pages. 82 */ 83 DEFINE_SPINLOCK(hugetlb_lock); 84 85 /* 86 * Serializes faults on the same logical page. This is used to 87 * prevent spurious OOMs when the hugepage pool is fully utilized. 88 */ 89 static int num_fault_mutexes; 90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 91 92 /* Forward declaration */ 93 static int hugetlb_acct_memory(struct hstate *h, long delta); 94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 98 unsigned long start, unsigned long end); 99 100 static inline bool subpool_is_free(struct hugepage_subpool *spool) 101 { 102 if (spool->count) 103 return false; 104 if (spool->max_hpages != -1) 105 return spool->used_hpages == 0; 106 if (spool->min_hpages != -1) 107 return spool->rsv_hpages == spool->min_hpages; 108 109 return true; 110 } 111 112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 113 unsigned long irq_flags) 114 { 115 spin_unlock_irqrestore(&spool->lock, irq_flags); 116 117 /* If no pages are used, and no other handles to the subpool 118 * remain, give up any reservations based on minimum size and 119 * free the subpool */ 120 if (subpool_is_free(spool)) { 121 if (spool->min_hpages != -1) 122 hugetlb_acct_memory(spool->hstate, 123 -spool->min_hpages); 124 kfree(spool); 125 } 126 } 127 128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 129 long min_hpages) 130 { 131 struct hugepage_subpool *spool; 132 133 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 134 if (!spool) 135 return NULL; 136 137 spin_lock_init(&spool->lock); 138 spool->count = 1; 139 spool->max_hpages = max_hpages; 140 spool->hstate = h; 141 spool->min_hpages = min_hpages; 142 143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 144 kfree(spool); 145 return NULL; 146 } 147 spool->rsv_hpages = min_hpages; 148 149 return spool; 150 } 151 152 void hugepage_put_subpool(struct hugepage_subpool *spool) 153 { 154 unsigned long flags; 155 156 spin_lock_irqsave(&spool->lock, flags); 157 BUG_ON(!spool->count); 158 spool->count--; 159 unlock_or_release_subpool(spool, flags); 160 } 161 162 /* 163 * Subpool accounting for allocating and reserving pages. 164 * Return -ENOMEM if there are not enough resources to satisfy the 165 * request. Otherwise, return the number of pages by which the 166 * global pools must be adjusted (upward). The returned value may 167 * only be different than the passed value (delta) in the case where 168 * a subpool minimum size must be maintained. 169 */ 170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 171 long delta) 172 { 173 long ret = delta; 174 175 if (!spool) 176 return ret; 177 178 spin_lock_irq(&spool->lock); 179 180 if (spool->max_hpages != -1) { /* maximum size accounting */ 181 if ((spool->used_hpages + delta) <= spool->max_hpages) 182 spool->used_hpages += delta; 183 else { 184 ret = -ENOMEM; 185 goto unlock_ret; 186 } 187 } 188 189 /* minimum size accounting */ 190 if (spool->min_hpages != -1 && spool->rsv_hpages) { 191 if (delta > spool->rsv_hpages) { 192 /* 193 * Asking for more reserves than those already taken on 194 * behalf of subpool. Return difference. 195 */ 196 ret = delta - spool->rsv_hpages; 197 spool->rsv_hpages = 0; 198 } else { 199 ret = 0; /* reserves already accounted for */ 200 spool->rsv_hpages -= delta; 201 } 202 } 203 204 unlock_ret: 205 spin_unlock_irq(&spool->lock); 206 return ret; 207 } 208 209 /* 210 * Subpool accounting for freeing and unreserving pages. 211 * Return the number of global page reservations that must be dropped. 212 * The return value may only be different than the passed value (delta) 213 * in the case where a subpool minimum size must be maintained. 214 */ 215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 216 long delta) 217 { 218 long ret = delta; 219 unsigned long flags; 220 221 if (!spool) 222 return delta; 223 224 spin_lock_irqsave(&spool->lock, flags); 225 226 if (spool->max_hpages != -1) /* maximum size accounting */ 227 spool->used_hpages -= delta; 228 229 /* minimum size accounting */ 230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 231 if (spool->rsv_hpages + delta <= spool->min_hpages) 232 ret = 0; 233 else 234 ret = spool->rsv_hpages + delta - spool->min_hpages; 235 236 spool->rsv_hpages += delta; 237 if (spool->rsv_hpages > spool->min_hpages) 238 spool->rsv_hpages = spool->min_hpages; 239 } 240 241 /* 242 * If hugetlbfs_put_super couldn't free spool due to an outstanding 243 * quota reference, free it now. 244 */ 245 unlock_or_release_subpool(spool, flags); 246 247 return ret; 248 } 249 250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 251 { 252 return HUGETLBFS_SB(inode->i_sb)->spool; 253 } 254 255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 256 { 257 return subpool_inode(file_inode(vma->vm_file)); 258 } 259 260 /* 261 * hugetlb vma_lock helper routines 262 */ 263 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 264 { 265 if (__vma_shareable_lock(vma)) { 266 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 267 268 down_read(&vma_lock->rw_sema); 269 } 270 } 271 272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 273 { 274 if (__vma_shareable_lock(vma)) { 275 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 276 277 up_read(&vma_lock->rw_sema); 278 } 279 } 280 281 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 282 { 283 if (__vma_shareable_lock(vma)) { 284 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 285 286 down_write(&vma_lock->rw_sema); 287 } 288 } 289 290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 291 { 292 if (__vma_shareable_lock(vma)) { 293 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 294 295 up_write(&vma_lock->rw_sema); 296 } 297 } 298 299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 300 { 301 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 302 303 if (!__vma_shareable_lock(vma)) 304 return 1; 305 306 return down_write_trylock(&vma_lock->rw_sema); 307 } 308 309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 310 { 311 if (__vma_shareable_lock(vma)) { 312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 313 314 lockdep_assert_held(&vma_lock->rw_sema); 315 } 316 } 317 318 void hugetlb_vma_lock_release(struct kref *kref) 319 { 320 struct hugetlb_vma_lock *vma_lock = container_of(kref, 321 struct hugetlb_vma_lock, refs); 322 323 kfree(vma_lock); 324 } 325 326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 327 { 328 struct vm_area_struct *vma = vma_lock->vma; 329 330 /* 331 * vma_lock structure may or not be released as a result of put, 332 * it certainly will no longer be attached to vma so clear pointer. 333 * Semaphore synchronizes access to vma_lock->vma field. 334 */ 335 vma_lock->vma = NULL; 336 vma->vm_private_data = NULL; 337 up_write(&vma_lock->rw_sema); 338 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 339 } 340 341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 342 { 343 if (__vma_shareable_lock(vma)) { 344 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 345 346 __hugetlb_vma_unlock_write_put(vma_lock); 347 } 348 } 349 350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 351 { 352 /* 353 * Only present in sharable vmas. 354 */ 355 if (!vma || !__vma_shareable_lock(vma)) 356 return; 357 358 if (vma->vm_private_data) { 359 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 360 361 down_write(&vma_lock->rw_sema); 362 __hugetlb_vma_unlock_write_put(vma_lock); 363 } 364 } 365 366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 367 { 368 struct hugetlb_vma_lock *vma_lock; 369 370 /* Only establish in (flags) sharable vmas */ 371 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 372 return; 373 374 /* Should never get here with non-NULL vm_private_data */ 375 if (vma->vm_private_data) 376 return; 377 378 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 379 if (!vma_lock) { 380 /* 381 * If we can not allocate structure, then vma can not 382 * participate in pmd sharing. This is only a possible 383 * performance enhancement and memory saving issue. 384 * However, the lock is also used to synchronize page 385 * faults with truncation. If the lock is not present, 386 * unlikely races could leave pages in a file past i_size 387 * until the file is removed. Warn in the unlikely case of 388 * allocation failure. 389 */ 390 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 391 return; 392 } 393 394 kref_init(&vma_lock->refs); 395 init_rwsem(&vma_lock->rw_sema); 396 vma_lock->vma = vma; 397 vma->vm_private_data = vma_lock; 398 } 399 400 /* Helper that removes a struct file_region from the resv_map cache and returns 401 * it for use. 402 */ 403 static struct file_region * 404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 405 { 406 struct file_region *nrg; 407 408 VM_BUG_ON(resv->region_cache_count <= 0); 409 410 resv->region_cache_count--; 411 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 412 list_del(&nrg->link); 413 414 nrg->from = from; 415 nrg->to = to; 416 417 return nrg; 418 } 419 420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 421 struct file_region *rg) 422 { 423 #ifdef CONFIG_CGROUP_HUGETLB 424 nrg->reservation_counter = rg->reservation_counter; 425 nrg->css = rg->css; 426 if (rg->css) 427 css_get(rg->css); 428 #endif 429 } 430 431 /* Helper that records hugetlb_cgroup uncharge info. */ 432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 433 struct hstate *h, 434 struct resv_map *resv, 435 struct file_region *nrg) 436 { 437 #ifdef CONFIG_CGROUP_HUGETLB 438 if (h_cg) { 439 nrg->reservation_counter = 440 &h_cg->rsvd_hugepage[hstate_index(h)]; 441 nrg->css = &h_cg->css; 442 /* 443 * The caller will hold exactly one h_cg->css reference for the 444 * whole contiguous reservation region. But this area might be 445 * scattered when there are already some file_regions reside in 446 * it. As a result, many file_regions may share only one css 447 * reference. In order to ensure that one file_region must hold 448 * exactly one h_cg->css reference, we should do css_get for 449 * each file_region and leave the reference held by caller 450 * untouched. 451 */ 452 css_get(&h_cg->css); 453 if (!resv->pages_per_hpage) 454 resv->pages_per_hpage = pages_per_huge_page(h); 455 /* pages_per_hpage should be the same for all entries in 456 * a resv_map. 457 */ 458 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 459 } else { 460 nrg->reservation_counter = NULL; 461 nrg->css = NULL; 462 } 463 #endif 464 } 465 466 static void put_uncharge_info(struct file_region *rg) 467 { 468 #ifdef CONFIG_CGROUP_HUGETLB 469 if (rg->css) 470 css_put(rg->css); 471 #endif 472 } 473 474 static bool has_same_uncharge_info(struct file_region *rg, 475 struct file_region *org) 476 { 477 #ifdef CONFIG_CGROUP_HUGETLB 478 return rg->reservation_counter == org->reservation_counter && 479 rg->css == org->css; 480 481 #else 482 return true; 483 #endif 484 } 485 486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 487 { 488 struct file_region *nrg, *prg; 489 490 prg = list_prev_entry(rg, link); 491 if (&prg->link != &resv->regions && prg->to == rg->from && 492 has_same_uncharge_info(prg, rg)) { 493 prg->to = rg->to; 494 495 list_del(&rg->link); 496 put_uncharge_info(rg); 497 kfree(rg); 498 499 rg = prg; 500 } 501 502 nrg = list_next_entry(rg, link); 503 if (&nrg->link != &resv->regions && nrg->from == rg->to && 504 has_same_uncharge_info(nrg, rg)) { 505 nrg->from = rg->from; 506 507 list_del(&rg->link); 508 put_uncharge_info(rg); 509 kfree(rg); 510 } 511 } 512 513 static inline long 514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 515 long to, struct hstate *h, struct hugetlb_cgroup *cg, 516 long *regions_needed) 517 { 518 struct file_region *nrg; 519 520 if (!regions_needed) { 521 nrg = get_file_region_entry_from_cache(map, from, to); 522 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 523 list_add(&nrg->link, rg); 524 coalesce_file_region(map, nrg); 525 } else 526 *regions_needed += 1; 527 528 return to - from; 529 } 530 531 /* 532 * Must be called with resv->lock held. 533 * 534 * Calling this with regions_needed != NULL will count the number of pages 535 * to be added but will not modify the linked list. And regions_needed will 536 * indicate the number of file_regions needed in the cache to carry out to add 537 * the regions for this range. 538 */ 539 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 540 struct hugetlb_cgroup *h_cg, 541 struct hstate *h, long *regions_needed) 542 { 543 long add = 0; 544 struct list_head *head = &resv->regions; 545 long last_accounted_offset = f; 546 struct file_region *iter, *trg = NULL; 547 struct list_head *rg = NULL; 548 549 if (regions_needed) 550 *regions_needed = 0; 551 552 /* In this loop, we essentially handle an entry for the range 553 * [last_accounted_offset, iter->from), at every iteration, with some 554 * bounds checking. 555 */ 556 list_for_each_entry_safe(iter, trg, head, link) { 557 /* Skip irrelevant regions that start before our range. */ 558 if (iter->from < f) { 559 /* If this region ends after the last accounted offset, 560 * then we need to update last_accounted_offset. 561 */ 562 if (iter->to > last_accounted_offset) 563 last_accounted_offset = iter->to; 564 continue; 565 } 566 567 /* When we find a region that starts beyond our range, we've 568 * finished. 569 */ 570 if (iter->from >= t) { 571 rg = iter->link.prev; 572 break; 573 } 574 575 /* Add an entry for last_accounted_offset -> iter->from, and 576 * update last_accounted_offset. 577 */ 578 if (iter->from > last_accounted_offset) 579 add += hugetlb_resv_map_add(resv, iter->link.prev, 580 last_accounted_offset, 581 iter->from, h, h_cg, 582 regions_needed); 583 584 last_accounted_offset = iter->to; 585 } 586 587 /* Handle the case where our range extends beyond 588 * last_accounted_offset. 589 */ 590 if (!rg) 591 rg = head->prev; 592 if (last_accounted_offset < t) 593 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 594 t, h, h_cg, regions_needed); 595 596 return add; 597 } 598 599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 600 */ 601 static int allocate_file_region_entries(struct resv_map *resv, 602 int regions_needed) 603 __must_hold(&resv->lock) 604 { 605 LIST_HEAD(allocated_regions); 606 int to_allocate = 0, i = 0; 607 struct file_region *trg = NULL, *rg = NULL; 608 609 VM_BUG_ON(regions_needed < 0); 610 611 /* 612 * Check for sufficient descriptors in the cache to accommodate 613 * the number of in progress add operations plus regions_needed. 614 * 615 * This is a while loop because when we drop the lock, some other call 616 * to region_add or region_del may have consumed some region_entries, 617 * so we keep looping here until we finally have enough entries for 618 * (adds_in_progress + regions_needed). 619 */ 620 while (resv->region_cache_count < 621 (resv->adds_in_progress + regions_needed)) { 622 to_allocate = resv->adds_in_progress + regions_needed - 623 resv->region_cache_count; 624 625 /* At this point, we should have enough entries in the cache 626 * for all the existing adds_in_progress. We should only be 627 * needing to allocate for regions_needed. 628 */ 629 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 630 631 spin_unlock(&resv->lock); 632 for (i = 0; i < to_allocate; i++) { 633 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 634 if (!trg) 635 goto out_of_memory; 636 list_add(&trg->link, &allocated_regions); 637 } 638 639 spin_lock(&resv->lock); 640 641 list_splice(&allocated_regions, &resv->region_cache); 642 resv->region_cache_count += to_allocate; 643 } 644 645 return 0; 646 647 out_of_memory: 648 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 649 list_del(&rg->link); 650 kfree(rg); 651 } 652 return -ENOMEM; 653 } 654 655 /* 656 * Add the huge page range represented by [f, t) to the reserve 657 * map. Regions will be taken from the cache to fill in this range. 658 * Sufficient regions should exist in the cache due to the previous 659 * call to region_chg with the same range, but in some cases the cache will not 660 * have sufficient entries due to races with other code doing region_add or 661 * region_del. The extra needed entries will be allocated. 662 * 663 * regions_needed is the out value provided by a previous call to region_chg. 664 * 665 * Return the number of new huge pages added to the map. This number is greater 666 * than or equal to zero. If file_region entries needed to be allocated for 667 * this operation and we were not able to allocate, it returns -ENOMEM. 668 * region_add of regions of length 1 never allocate file_regions and cannot 669 * fail; region_chg will always allocate at least 1 entry and a region_add for 670 * 1 page will only require at most 1 entry. 671 */ 672 static long region_add(struct resv_map *resv, long f, long t, 673 long in_regions_needed, struct hstate *h, 674 struct hugetlb_cgroup *h_cg) 675 { 676 long add = 0, actual_regions_needed = 0; 677 678 spin_lock(&resv->lock); 679 retry: 680 681 /* Count how many regions are actually needed to execute this add. */ 682 add_reservation_in_range(resv, f, t, NULL, NULL, 683 &actual_regions_needed); 684 685 /* 686 * Check for sufficient descriptors in the cache to accommodate 687 * this add operation. Note that actual_regions_needed may be greater 688 * than in_regions_needed, as the resv_map may have been modified since 689 * the region_chg call. In this case, we need to make sure that we 690 * allocate extra entries, such that we have enough for all the 691 * existing adds_in_progress, plus the excess needed for this 692 * operation. 693 */ 694 if (actual_regions_needed > in_regions_needed && 695 resv->region_cache_count < 696 resv->adds_in_progress + 697 (actual_regions_needed - in_regions_needed)) { 698 /* region_add operation of range 1 should never need to 699 * allocate file_region entries. 700 */ 701 VM_BUG_ON(t - f <= 1); 702 703 if (allocate_file_region_entries( 704 resv, actual_regions_needed - in_regions_needed)) { 705 return -ENOMEM; 706 } 707 708 goto retry; 709 } 710 711 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 712 713 resv->adds_in_progress -= in_regions_needed; 714 715 spin_unlock(&resv->lock); 716 return add; 717 } 718 719 /* 720 * Examine the existing reserve map and determine how many 721 * huge pages in the specified range [f, t) are NOT currently 722 * represented. This routine is called before a subsequent 723 * call to region_add that will actually modify the reserve 724 * map to add the specified range [f, t). region_chg does 725 * not change the number of huge pages represented by the 726 * map. A number of new file_region structures is added to the cache as a 727 * placeholder, for the subsequent region_add call to use. At least 1 728 * file_region structure is added. 729 * 730 * out_regions_needed is the number of regions added to the 731 * resv->adds_in_progress. This value needs to be provided to a follow up call 732 * to region_add or region_abort for proper accounting. 733 * 734 * Returns the number of huge pages that need to be added to the existing 735 * reservation map for the range [f, t). This number is greater or equal to 736 * zero. -ENOMEM is returned if a new file_region structure or cache entry 737 * is needed and can not be allocated. 738 */ 739 static long region_chg(struct resv_map *resv, long f, long t, 740 long *out_regions_needed) 741 { 742 long chg = 0; 743 744 spin_lock(&resv->lock); 745 746 /* Count how many hugepages in this range are NOT represented. */ 747 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 748 out_regions_needed); 749 750 if (*out_regions_needed == 0) 751 *out_regions_needed = 1; 752 753 if (allocate_file_region_entries(resv, *out_regions_needed)) 754 return -ENOMEM; 755 756 resv->adds_in_progress += *out_regions_needed; 757 758 spin_unlock(&resv->lock); 759 return chg; 760 } 761 762 /* 763 * Abort the in progress add operation. The adds_in_progress field 764 * of the resv_map keeps track of the operations in progress between 765 * calls to region_chg and region_add. Operations are sometimes 766 * aborted after the call to region_chg. In such cases, region_abort 767 * is called to decrement the adds_in_progress counter. regions_needed 768 * is the value returned by the region_chg call, it is used to decrement 769 * the adds_in_progress counter. 770 * 771 * NOTE: The range arguments [f, t) are not needed or used in this 772 * routine. They are kept to make reading the calling code easier as 773 * arguments will match the associated region_chg call. 774 */ 775 static void region_abort(struct resv_map *resv, long f, long t, 776 long regions_needed) 777 { 778 spin_lock(&resv->lock); 779 VM_BUG_ON(!resv->region_cache_count); 780 resv->adds_in_progress -= regions_needed; 781 spin_unlock(&resv->lock); 782 } 783 784 /* 785 * Delete the specified range [f, t) from the reserve map. If the 786 * t parameter is LONG_MAX, this indicates that ALL regions after f 787 * should be deleted. Locate the regions which intersect [f, t) 788 * and either trim, delete or split the existing regions. 789 * 790 * Returns the number of huge pages deleted from the reserve map. 791 * In the normal case, the return value is zero or more. In the 792 * case where a region must be split, a new region descriptor must 793 * be allocated. If the allocation fails, -ENOMEM will be returned. 794 * NOTE: If the parameter t == LONG_MAX, then we will never split 795 * a region and possibly return -ENOMEM. Callers specifying 796 * t == LONG_MAX do not need to check for -ENOMEM error. 797 */ 798 static long region_del(struct resv_map *resv, long f, long t) 799 { 800 struct list_head *head = &resv->regions; 801 struct file_region *rg, *trg; 802 struct file_region *nrg = NULL; 803 long del = 0; 804 805 retry: 806 spin_lock(&resv->lock); 807 list_for_each_entry_safe(rg, trg, head, link) { 808 /* 809 * Skip regions before the range to be deleted. file_region 810 * ranges are normally of the form [from, to). However, there 811 * may be a "placeholder" entry in the map which is of the form 812 * (from, to) with from == to. Check for placeholder entries 813 * at the beginning of the range to be deleted. 814 */ 815 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 816 continue; 817 818 if (rg->from >= t) 819 break; 820 821 if (f > rg->from && t < rg->to) { /* Must split region */ 822 /* 823 * Check for an entry in the cache before dropping 824 * lock and attempting allocation. 825 */ 826 if (!nrg && 827 resv->region_cache_count > resv->adds_in_progress) { 828 nrg = list_first_entry(&resv->region_cache, 829 struct file_region, 830 link); 831 list_del(&nrg->link); 832 resv->region_cache_count--; 833 } 834 835 if (!nrg) { 836 spin_unlock(&resv->lock); 837 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 838 if (!nrg) 839 return -ENOMEM; 840 goto retry; 841 } 842 843 del += t - f; 844 hugetlb_cgroup_uncharge_file_region( 845 resv, rg, t - f, false); 846 847 /* New entry for end of split region */ 848 nrg->from = t; 849 nrg->to = rg->to; 850 851 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 852 853 INIT_LIST_HEAD(&nrg->link); 854 855 /* Original entry is trimmed */ 856 rg->to = f; 857 858 list_add(&nrg->link, &rg->link); 859 nrg = NULL; 860 break; 861 } 862 863 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 864 del += rg->to - rg->from; 865 hugetlb_cgroup_uncharge_file_region(resv, rg, 866 rg->to - rg->from, true); 867 list_del(&rg->link); 868 kfree(rg); 869 continue; 870 } 871 872 if (f <= rg->from) { /* Trim beginning of region */ 873 hugetlb_cgroup_uncharge_file_region(resv, rg, 874 t - rg->from, false); 875 876 del += t - rg->from; 877 rg->from = t; 878 } else { /* Trim end of region */ 879 hugetlb_cgroup_uncharge_file_region(resv, rg, 880 rg->to - f, false); 881 882 del += rg->to - f; 883 rg->to = f; 884 } 885 } 886 887 spin_unlock(&resv->lock); 888 kfree(nrg); 889 return del; 890 } 891 892 /* 893 * A rare out of memory error was encountered which prevented removal of 894 * the reserve map region for a page. The huge page itself was free'ed 895 * and removed from the page cache. This routine will adjust the subpool 896 * usage count, and the global reserve count if needed. By incrementing 897 * these counts, the reserve map entry which could not be deleted will 898 * appear as a "reserved" entry instead of simply dangling with incorrect 899 * counts. 900 */ 901 void hugetlb_fix_reserve_counts(struct inode *inode) 902 { 903 struct hugepage_subpool *spool = subpool_inode(inode); 904 long rsv_adjust; 905 bool reserved = false; 906 907 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 908 if (rsv_adjust > 0) { 909 struct hstate *h = hstate_inode(inode); 910 911 if (!hugetlb_acct_memory(h, 1)) 912 reserved = true; 913 } else if (!rsv_adjust) { 914 reserved = true; 915 } 916 917 if (!reserved) 918 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 919 } 920 921 /* 922 * Count and return the number of huge pages in the reserve map 923 * that intersect with the range [f, t). 924 */ 925 static long region_count(struct resv_map *resv, long f, long t) 926 { 927 struct list_head *head = &resv->regions; 928 struct file_region *rg; 929 long chg = 0; 930 931 spin_lock(&resv->lock); 932 /* Locate each segment we overlap with, and count that overlap. */ 933 list_for_each_entry(rg, head, link) { 934 long seg_from; 935 long seg_to; 936 937 if (rg->to <= f) 938 continue; 939 if (rg->from >= t) 940 break; 941 942 seg_from = max(rg->from, f); 943 seg_to = min(rg->to, t); 944 945 chg += seg_to - seg_from; 946 } 947 spin_unlock(&resv->lock); 948 949 return chg; 950 } 951 952 /* 953 * Convert the address within this vma to the page offset within 954 * the mapping, in pagecache page units; huge pages here. 955 */ 956 static pgoff_t vma_hugecache_offset(struct hstate *h, 957 struct vm_area_struct *vma, unsigned long address) 958 { 959 return ((address - vma->vm_start) >> huge_page_shift(h)) + 960 (vma->vm_pgoff >> huge_page_order(h)); 961 } 962 963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 964 unsigned long address) 965 { 966 return vma_hugecache_offset(hstate_vma(vma), vma, address); 967 } 968 EXPORT_SYMBOL_GPL(linear_hugepage_index); 969 970 /* 971 * Return the size of the pages allocated when backing a VMA. In the majority 972 * cases this will be same size as used by the page table entries. 973 */ 974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 975 { 976 if (vma->vm_ops && vma->vm_ops->pagesize) 977 return vma->vm_ops->pagesize(vma); 978 return PAGE_SIZE; 979 } 980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 981 982 /* 983 * Return the page size being used by the MMU to back a VMA. In the majority 984 * of cases, the page size used by the kernel matches the MMU size. On 985 * architectures where it differs, an architecture-specific 'strong' 986 * version of this symbol is required. 987 */ 988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 989 { 990 return vma_kernel_pagesize(vma); 991 } 992 993 /* 994 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 995 * bits of the reservation map pointer, which are always clear due to 996 * alignment. 997 */ 998 #define HPAGE_RESV_OWNER (1UL << 0) 999 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1001 1002 /* 1003 * These helpers are used to track how many pages are reserved for 1004 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1005 * is guaranteed to have their future faults succeed. 1006 * 1007 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1008 * the reserve counters are updated with the hugetlb_lock held. It is safe 1009 * to reset the VMA at fork() time as it is not in use yet and there is no 1010 * chance of the global counters getting corrupted as a result of the values. 1011 * 1012 * The private mapping reservation is represented in a subtly different 1013 * manner to a shared mapping. A shared mapping has a region map associated 1014 * with the underlying file, this region map represents the backing file 1015 * pages which have ever had a reservation assigned which this persists even 1016 * after the page is instantiated. A private mapping has a region map 1017 * associated with the original mmap which is attached to all VMAs which 1018 * reference it, this region map represents those offsets which have consumed 1019 * reservation ie. where pages have been instantiated. 1020 */ 1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1022 { 1023 return (unsigned long)vma->vm_private_data; 1024 } 1025 1026 static void set_vma_private_data(struct vm_area_struct *vma, 1027 unsigned long value) 1028 { 1029 vma->vm_private_data = (void *)value; 1030 } 1031 1032 static void 1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1034 struct hugetlb_cgroup *h_cg, 1035 struct hstate *h) 1036 { 1037 #ifdef CONFIG_CGROUP_HUGETLB 1038 if (!h_cg || !h) { 1039 resv_map->reservation_counter = NULL; 1040 resv_map->pages_per_hpage = 0; 1041 resv_map->css = NULL; 1042 } else { 1043 resv_map->reservation_counter = 1044 &h_cg->rsvd_hugepage[hstate_index(h)]; 1045 resv_map->pages_per_hpage = pages_per_huge_page(h); 1046 resv_map->css = &h_cg->css; 1047 } 1048 #endif 1049 } 1050 1051 struct resv_map *resv_map_alloc(void) 1052 { 1053 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1054 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1055 1056 if (!resv_map || !rg) { 1057 kfree(resv_map); 1058 kfree(rg); 1059 return NULL; 1060 } 1061 1062 kref_init(&resv_map->refs); 1063 spin_lock_init(&resv_map->lock); 1064 INIT_LIST_HEAD(&resv_map->regions); 1065 1066 resv_map->adds_in_progress = 0; 1067 /* 1068 * Initialize these to 0. On shared mappings, 0's here indicate these 1069 * fields don't do cgroup accounting. On private mappings, these will be 1070 * re-initialized to the proper values, to indicate that hugetlb cgroup 1071 * reservations are to be un-charged from here. 1072 */ 1073 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1074 1075 INIT_LIST_HEAD(&resv_map->region_cache); 1076 list_add(&rg->link, &resv_map->region_cache); 1077 resv_map->region_cache_count = 1; 1078 1079 return resv_map; 1080 } 1081 1082 void resv_map_release(struct kref *ref) 1083 { 1084 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1085 struct list_head *head = &resv_map->region_cache; 1086 struct file_region *rg, *trg; 1087 1088 /* Clear out any active regions before we release the map. */ 1089 region_del(resv_map, 0, LONG_MAX); 1090 1091 /* ... and any entries left in the cache */ 1092 list_for_each_entry_safe(rg, trg, head, link) { 1093 list_del(&rg->link); 1094 kfree(rg); 1095 } 1096 1097 VM_BUG_ON(resv_map->adds_in_progress); 1098 1099 kfree(resv_map); 1100 } 1101 1102 static inline struct resv_map *inode_resv_map(struct inode *inode) 1103 { 1104 /* 1105 * At inode evict time, i_mapping may not point to the original 1106 * address space within the inode. This original address space 1107 * contains the pointer to the resv_map. So, always use the 1108 * address space embedded within the inode. 1109 * The VERY common case is inode->mapping == &inode->i_data but, 1110 * this may not be true for device special inodes. 1111 */ 1112 return (struct resv_map *)(&inode->i_data)->private_data; 1113 } 1114 1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1116 { 1117 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1118 if (vma->vm_flags & VM_MAYSHARE) { 1119 struct address_space *mapping = vma->vm_file->f_mapping; 1120 struct inode *inode = mapping->host; 1121 1122 return inode_resv_map(inode); 1123 1124 } else { 1125 return (struct resv_map *)(get_vma_private_data(vma) & 1126 ~HPAGE_RESV_MASK); 1127 } 1128 } 1129 1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1131 { 1132 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1133 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1134 1135 set_vma_private_data(vma, (get_vma_private_data(vma) & 1136 HPAGE_RESV_MASK) | (unsigned long)map); 1137 } 1138 1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1140 { 1141 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1142 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1143 1144 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1145 } 1146 1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1148 { 1149 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1150 1151 return (get_vma_private_data(vma) & flag) != 0; 1152 } 1153 1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1155 { 1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1157 /* 1158 * Clear vm_private_data 1159 * - For shared mappings this is a per-vma semaphore that may be 1160 * allocated in a subsequent call to hugetlb_vm_op_open. 1161 * Before clearing, make sure pointer is not associated with vma 1162 * as this will leak the structure. This is the case when called 1163 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1164 * been called to allocate a new structure. 1165 * - For MAP_PRIVATE mappings, this is the reserve map which does 1166 * not apply to children. Faults generated by the children are 1167 * not guaranteed to succeed, even if read-only. 1168 */ 1169 if (vma->vm_flags & VM_MAYSHARE) { 1170 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1171 1172 if (vma_lock && vma_lock->vma != vma) 1173 vma->vm_private_data = NULL; 1174 } else 1175 vma->vm_private_data = NULL; 1176 } 1177 1178 /* 1179 * Reset and decrement one ref on hugepage private reservation. 1180 * Called with mm->mmap_lock writer semaphore held. 1181 * This function should be only used by move_vma() and operate on 1182 * same sized vma. It should never come here with last ref on the 1183 * reservation. 1184 */ 1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1186 { 1187 /* 1188 * Clear the old hugetlb private page reservation. 1189 * It has already been transferred to new_vma. 1190 * 1191 * During a mremap() operation of a hugetlb vma we call move_vma() 1192 * which copies vma into new_vma and unmaps vma. After the copy 1193 * operation both new_vma and vma share a reference to the resv_map 1194 * struct, and at that point vma is about to be unmapped. We don't 1195 * want to return the reservation to the pool at unmap of vma because 1196 * the reservation still lives on in new_vma, so simply decrement the 1197 * ref here and remove the resv_map reference from this vma. 1198 */ 1199 struct resv_map *reservations = vma_resv_map(vma); 1200 1201 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1202 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1203 kref_put(&reservations->refs, resv_map_release); 1204 } 1205 1206 hugetlb_dup_vma_private(vma); 1207 } 1208 1209 /* Returns true if the VMA has associated reserve pages */ 1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1211 { 1212 if (vma->vm_flags & VM_NORESERVE) { 1213 /* 1214 * This address is already reserved by other process(chg == 0), 1215 * so, we should decrement reserved count. Without decrementing, 1216 * reserve count remains after releasing inode, because this 1217 * allocated page will go into page cache and is regarded as 1218 * coming from reserved pool in releasing step. Currently, we 1219 * don't have any other solution to deal with this situation 1220 * properly, so add work-around here. 1221 */ 1222 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1223 return true; 1224 else 1225 return false; 1226 } 1227 1228 /* Shared mappings always use reserves */ 1229 if (vma->vm_flags & VM_MAYSHARE) { 1230 /* 1231 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1232 * be a region map for all pages. The only situation where 1233 * there is no region map is if a hole was punched via 1234 * fallocate. In this case, there really are no reserves to 1235 * use. This situation is indicated if chg != 0. 1236 */ 1237 if (chg) 1238 return false; 1239 else 1240 return true; 1241 } 1242 1243 /* 1244 * Only the process that called mmap() has reserves for 1245 * private mappings. 1246 */ 1247 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1248 /* 1249 * Like the shared case above, a hole punch or truncate 1250 * could have been performed on the private mapping. 1251 * Examine the value of chg to determine if reserves 1252 * actually exist or were previously consumed. 1253 * Very Subtle - The value of chg comes from a previous 1254 * call to vma_needs_reserves(). The reserve map for 1255 * private mappings has different (opposite) semantics 1256 * than that of shared mappings. vma_needs_reserves() 1257 * has already taken this difference in semantics into 1258 * account. Therefore, the meaning of chg is the same 1259 * as in the shared case above. Code could easily be 1260 * combined, but keeping it separate draws attention to 1261 * subtle differences. 1262 */ 1263 if (chg) 1264 return false; 1265 else 1266 return true; 1267 } 1268 1269 return false; 1270 } 1271 1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1273 { 1274 int nid = folio_nid(folio); 1275 1276 lockdep_assert_held(&hugetlb_lock); 1277 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1278 1279 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1280 h->free_huge_pages++; 1281 h->free_huge_pages_node[nid]++; 1282 folio_set_hugetlb_freed(folio); 1283 } 1284 1285 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1286 { 1287 struct page *page; 1288 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1289 1290 lockdep_assert_held(&hugetlb_lock); 1291 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1292 if (pin && !is_longterm_pinnable_page(page)) 1293 continue; 1294 1295 if (PageHWPoison(page)) 1296 continue; 1297 1298 list_move(&page->lru, &h->hugepage_activelist); 1299 set_page_refcounted(page); 1300 ClearHPageFreed(page); 1301 h->free_huge_pages--; 1302 h->free_huge_pages_node[nid]--; 1303 return page; 1304 } 1305 1306 return NULL; 1307 } 1308 1309 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1310 nodemask_t *nmask) 1311 { 1312 unsigned int cpuset_mems_cookie; 1313 struct zonelist *zonelist; 1314 struct zone *zone; 1315 struct zoneref *z; 1316 int node = NUMA_NO_NODE; 1317 1318 zonelist = node_zonelist(nid, gfp_mask); 1319 1320 retry_cpuset: 1321 cpuset_mems_cookie = read_mems_allowed_begin(); 1322 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1323 struct page *page; 1324 1325 if (!cpuset_zone_allowed(zone, gfp_mask)) 1326 continue; 1327 /* 1328 * no need to ask again on the same node. Pool is node rather than 1329 * zone aware 1330 */ 1331 if (zone_to_nid(zone) == node) 1332 continue; 1333 node = zone_to_nid(zone); 1334 1335 page = dequeue_huge_page_node_exact(h, node); 1336 if (page) 1337 return page; 1338 } 1339 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1340 goto retry_cpuset; 1341 1342 return NULL; 1343 } 1344 1345 static unsigned long available_huge_pages(struct hstate *h) 1346 { 1347 return h->free_huge_pages - h->resv_huge_pages; 1348 } 1349 1350 static struct page *dequeue_huge_page_vma(struct hstate *h, 1351 struct vm_area_struct *vma, 1352 unsigned long address, int avoid_reserve, 1353 long chg) 1354 { 1355 struct page *page = NULL; 1356 struct mempolicy *mpol; 1357 gfp_t gfp_mask; 1358 nodemask_t *nodemask; 1359 int nid; 1360 1361 /* 1362 * A child process with MAP_PRIVATE mappings created by their parent 1363 * have no page reserves. This check ensures that reservations are 1364 * not "stolen". The child may still get SIGKILLed 1365 */ 1366 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1367 goto err; 1368 1369 /* If reserves cannot be used, ensure enough pages are in the pool */ 1370 if (avoid_reserve && !available_huge_pages(h)) 1371 goto err; 1372 1373 gfp_mask = htlb_alloc_mask(h); 1374 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1375 1376 if (mpol_is_preferred_many(mpol)) { 1377 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1378 1379 /* Fallback to all nodes if page==NULL */ 1380 nodemask = NULL; 1381 } 1382 1383 if (!page) 1384 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1385 1386 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1387 SetHPageRestoreReserve(page); 1388 h->resv_huge_pages--; 1389 } 1390 1391 mpol_cond_put(mpol); 1392 return page; 1393 1394 err: 1395 return NULL; 1396 } 1397 1398 /* 1399 * common helper functions for hstate_next_node_to_{alloc|free}. 1400 * We may have allocated or freed a huge page based on a different 1401 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1402 * be outside of *nodes_allowed. Ensure that we use an allowed 1403 * node for alloc or free. 1404 */ 1405 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1406 { 1407 nid = next_node_in(nid, *nodes_allowed); 1408 VM_BUG_ON(nid >= MAX_NUMNODES); 1409 1410 return nid; 1411 } 1412 1413 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1414 { 1415 if (!node_isset(nid, *nodes_allowed)) 1416 nid = next_node_allowed(nid, nodes_allowed); 1417 return nid; 1418 } 1419 1420 /* 1421 * returns the previously saved node ["this node"] from which to 1422 * allocate a persistent huge page for the pool and advance the 1423 * next node from which to allocate, handling wrap at end of node 1424 * mask. 1425 */ 1426 static int hstate_next_node_to_alloc(struct hstate *h, 1427 nodemask_t *nodes_allowed) 1428 { 1429 int nid; 1430 1431 VM_BUG_ON(!nodes_allowed); 1432 1433 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1434 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1435 1436 return nid; 1437 } 1438 1439 /* 1440 * helper for remove_pool_huge_page() - return the previously saved 1441 * node ["this node"] from which to free a huge page. Advance the 1442 * next node id whether or not we find a free huge page to free so 1443 * that the next attempt to free addresses the next node. 1444 */ 1445 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1446 { 1447 int nid; 1448 1449 VM_BUG_ON(!nodes_allowed); 1450 1451 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1452 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1453 1454 return nid; 1455 } 1456 1457 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1458 for (nr_nodes = nodes_weight(*mask); \ 1459 nr_nodes > 0 && \ 1460 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1461 nr_nodes--) 1462 1463 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1464 for (nr_nodes = nodes_weight(*mask); \ 1465 nr_nodes > 0 && \ 1466 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1467 nr_nodes--) 1468 1469 /* used to demote non-gigantic_huge pages as well */ 1470 static void __destroy_compound_gigantic_folio(struct folio *folio, 1471 unsigned int order, bool demote) 1472 { 1473 int i; 1474 int nr_pages = 1 << order; 1475 struct page *p; 1476 1477 atomic_set(folio_mapcount_ptr(folio), 0); 1478 atomic_set(folio_subpages_mapcount_ptr(folio), 0); 1479 atomic_set(folio_pincount_ptr(folio), 0); 1480 1481 for (i = 1; i < nr_pages; i++) { 1482 p = folio_page(folio, i); 1483 p->mapping = NULL; 1484 clear_compound_head(p); 1485 if (!demote) 1486 set_page_refcounted(p); 1487 } 1488 1489 folio_set_order(folio, 0); 1490 __folio_clear_head(folio); 1491 } 1492 1493 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1494 unsigned int order) 1495 { 1496 __destroy_compound_gigantic_folio(folio, order, true); 1497 } 1498 1499 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1500 static void destroy_compound_gigantic_folio(struct folio *folio, 1501 unsigned int order) 1502 { 1503 __destroy_compound_gigantic_folio(folio, order, false); 1504 } 1505 1506 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1507 { 1508 /* 1509 * If the page isn't allocated using the cma allocator, 1510 * cma_release() returns false. 1511 */ 1512 #ifdef CONFIG_CMA 1513 int nid = folio_nid(folio); 1514 1515 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1516 return; 1517 #endif 1518 1519 free_contig_range(folio_pfn(folio), 1 << order); 1520 } 1521 1522 #ifdef CONFIG_CONTIG_ALLOC 1523 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1524 int nid, nodemask_t *nodemask) 1525 { 1526 struct page *page; 1527 unsigned long nr_pages = pages_per_huge_page(h); 1528 if (nid == NUMA_NO_NODE) 1529 nid = numa_mem_id(); 1530 1531 #ifdef CONFIG_CMA 1532 { 1533 int node; 1534 1535 if (hugetlb_cma[nid]) { 1536 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1537 huge_page_order(h), true); 1538 if (page) 1539 return page_folio(page); 1540 } 1541 1542 if (!(gfp_mask & __GFP_THISNODE)) { 1543 for_each_node_mask(node, *nodemask) { 1544 if (node == nid || !hugetlb_cma[node]) 1545 continue; 1546 1547 page = cma_alloc(hugetlb_cma[node], nr_pages, 1548 huge_page_order(h), true); 1549 if (page) 1550 return page_folio(page); 1551 } 1552 } 1553 } 1554 #endif 1555 1556 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1557 return page ? page_folio(page) : NULL; 1558 } 1559 1560 #else /* !CONFIG_CONTIG_ALLOC */ 1561 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1562 int nid, nodemask_t *nodemask) 1563 { 1564 return NULL; 1565 } 1566 #endif /* CONFIG_CONTIG_ALLOC */ 1567 1568 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1569 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1570 int nid, nodemask_t *nodemask) 1571 { 1572 return NULL; 1573 } 1574 static inline void free_gigantic_folio(struct folio *folio, 1575 unsigned int order) { } 1576 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1577 unsigned int order) { } 1578 #endif 1579 1580 /* 1581 * Remove hugetlb folio from lists, and update dtor so that the folio appears 1582 * as just a compound page. 1583 * 1584 * A reference is held on the folio, except in the case of demote. 1585 * 1586 * Must be called with hugetlb lock held. 1587 */ 1588 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1589 bool adjust_surplus, 1590 bool demote) 1591 { 1592 int nid = folio_nid(folio); 1593 1594 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1595 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1596 1597 lockdep_assert_held(&hugetlb_lock); 1598 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1599 return; 1600 1601 list_del(&folio->lru); 1602 1603 if (folio_test_hugetlb_freed(folio)) { 1604 h->free_huge_pages--; 1605 h->free_huge_pages_node[nid]--; 1606 } 1607 if (adjust_surplus) { 1608 h->surplus_huge_pages--; 1609 h->surplus_huge_pages_node[nid]--; 1610 } 1611 1612 /* 1613 * Very subtle 1614 * 1615 * For non-gigantic pages set the destructor to the normal compound 1616 * page dtor. This is needed in case someone takes an additional 1617 * temporary ref to the page, and freeing is delayed until they drop 1618 * their reference. 1619 * 1620 * For gigantic pages set the destructor to the null dtor. This 1621 * destructor will never be called. Before freeing the gigantic 1622 * page destroy_compound_gigantic_folio will turn the folio into a 1623 * simple group of pages. After this the destructor does not 1624 * apply. 1625 * 1626 * This handles the case where more than one ref is held when and 1627 * after update_and_free_hugetlb_folio is called. 1628 * 1629 * In the case of demote we do not ref count the page as it will soon 1630 * be turned into a page of smaller size. 1631 */ 1632 if (!demote) 1633 folio_ref_unfreeze(folio, 1); 1634 if (hstate_is_gigantic(h)) 1635 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR); 1636 else 1637 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR); 1638 1639 h->nr_huge_pages--; 1640 h->nr_huge_pages_node[nid]--; 1641 } 1642 1643 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1644 bool adjust_surplus) 1645 { 1646 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1647 } 1648 1649 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1650 bool adjust_surplus) 1651 { 1652 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1653 } 1654 1655 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1656 bool adjust_surplus) 1657 { 1658 int zeroed; 1659 int nid = folio_nid(folio); 1660 1661 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1662 1663 lockdep_assert_held(&hugetlb_lock); 1664 1665 INIT_LIST_HEAD(&folio->lru); 1666 h->nr_huge_pages++; 1667 h->nr_huge_pages_node[nid]++; 1668 1669 if (adjust_surplus) { 1670 h->surplus_huge_pages++; 1671 h->surplus_huge_pages_node[nid]++; 1672 } 1673 1674 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); 1675 folio_change_private(folio, NULL); 1676 /* 1677 * We have to set hugetlb_vmemmap_optimized again as above 1678 * folio_change_private(folio, NULL) cleared it. 1679 */ 1680 folio_set_hugetlb_vmemmap_optimized(folio); 1681 1682 /* 1683 * This folio is about to be managed by the hugetlb allocator and 1684 * should have no users. Drop our reference, and check for others 1685 * just in case. 1686 */ 1687 zeroed = folio_put_testzero(folio); 1688 if (unlikely(!zeroed)) 1689 /* 1690 * It is VERY unlikely soneone else has taken a ref on 1691 * the page. In this case, we simply return as the 1692 * hugetlb destructor (free_huge_page) will be called 1693 * when this other ref is dropped. 1694 */ 1695 return; 1696 1697 arch_clear_hugepage_flags(&folio->page); 1698 enqueue_hugetlb_folio(h, folio); 1699 } 1700 1701 static void __update_and_free_page(struct hstate *h, struct page *page) 1702 { 1703 int i; 1704 struct folio *folio = page_folio(page); 1705 struct page *subpage; 1706 1707 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1708 return; 1709 1710 /* 1711 * If we don't know which subpages are hwpoisoned, we can't free 1712 * the hugepage, so it's leaked intentionally. 1713 */ 1714 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1715 return; 1716 1717 if (hugetlb_vmemmap_restore(h, page)) { 1718 spin_lock_irq(&hugetlb_lock); 1719 /* 1720 * If we cannot allocate vmemmap pages, just refuse to free the 1721 * page and put the page back on the hugetlb free list and treat 1722 * as a surplus page. 1723 */ 1724 add_hugetlb_folio(h, folio, true); 1725 spin_unlock_irq(&hugetlb_lock); 1726 return; 1727 } 1728 1729 /* 1730 * Move PageHWPoison flag from head page to the raw error pages, 1731 * which makes any healthy subpages reusable. 1732 */ 1733 if (unlikely(folio_test_hwpoison(folio))) 1734 hugetlb_clear_page_hwpoison(&folio->page); 1735 1736 for (i = 0; i < pages_per_huge_page(h); i++) { 1737 subpage = folio_page(folio, i); 1738 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1739 1 << PG_referenced | 1 << PG_dirty | 1740 1 << PG_active | 1 << PG_private | 1741 1 << PG_writeback); 1742 } 1743 1744 /* 1745 * Non-gigantic pages demoted from CMA allocated gigantic pages 1746 * need to be given back to CMA in free_gigantic_folio. 1747 */ 1748 if (hstate_is_gigantic(h) || 1749 hugetlb_cma_folio(folio, huge_page_order(h))) { 1750 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1751 free_gigantic_folio(folio, huge_page_order(h)); 1752 } else { 1753 __free_pages(page, huge_page_order(h)); 1754 } 1755 } 1756 1757 /* 1758 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1759 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1760 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1761 * the vmemmap pages. 1762 * 1763 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1764 * freed and frees them one-by-one. As the page->mapping pointer is going 1765 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1766 * structure of a lockless linked list of huge pages to be freed. 1767 */ 1768 static LLIST_HEAD(hpage_freelist); 1769 1770 static void free_hpage_workfn(struct work_struct *work) 1771 { 1772 struct llist_node *node; 1773 1774 node = llist_del_all(&hpage_freelist); 1775 1776 while (node) { 1777 struct page *page; 1778 struct hstate *h; 1779 1780 page = container_of((struct address_space **)node, 1781 struct page, mapping); 1782 node = node->next; 1783 page->mapping = NULL; 1784 /* 1785 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() 1786 * is going to trigger because a previous call to 1787 * remove_hugetlb_folio() will call folio_set_compound_dtor 1788 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate() 1789 * directly. 1790 */ 1791 h = size_to_hstate(page_size(page)); 1792 1793 __update_and_free_page(h, page); 1794 1795 cond_resched(); 1796 } 1797 } 1798 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1799 1800 static inline void flush_free_hpage_work(struct hstate *h) 1801 { 1802 if (hugetlb_vmemmap_optimizable(h)) 1803 flush_work(&free_hpage_work); 1804 } 1805 1806 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1807 bool atomic) 1808 { 1809 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1810 __update_and_free_page(h, &folio->page); 1811 return; 1812 } 1813 1814 /* 1815 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1816 * 1817 * Only call schedule_work() if hpage_freelist is previously 1818 * empty. Otherwise, schedule_work() had been called but the workfn 1819 * hasn't retrieved the list yet. 1820 */ 1821 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1822 schedule_work(&free_hpage_work); 1823 } 1824 1825 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1826 { 1827 struct page *page, *t_page; 1828 struct folio *folio; 1829 1830 list_for_each_entry_safe(page, t_page, list, lru) { 1831 folio = page_folio(page); 1832 update_and_free_hugetlb_folio(h, folio, false); 1833 cond_resched(); 1834 } 1835 } 1836 1837 struct hstate *size_to_hstate(unsigned long size) 1838 { 1839 struct hstate *h; 1840 1841 for_each_hstate(h) { 1842 if (huge_page_size(h) == size) 1843 return h; 1844 } 1845 return NULL; 1846 } 1847 1848 void free_huge_page(struct page *page) 1849 { 1850 /* 1851 * Can't pass hstate in here because it is called from the 1852 * compound page destructor. 1853 */ 1854 struct folio *folio = page_folio(page); 1855 struct hstate *h = folio_hstate(folio); 1856 int nid = folio_nid(folio); 1857 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1858 bool restore_reserve; 1859 unsigned long flags; 1860 1861 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1862 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1863 1864 hugetlb_set_folio_subpool(folio, NULL); 1865 if (folio_test_anon(folio)) 1866 __ClearPageAnonExclusive(&folio->page); 1867 folio->mapping = NULL; 1868 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1869 folio_clear_hugetlb_restore_reserve(folio); 1870 1871 /* 1872 * If HPageRestoreReserve was set on page, page allocation consumed a 1873 * reservation. If the page was associated with a subpool, there 1874 * would have been a page reserved in the subpool before allocation 1875 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1876 * reservation, do not call hugepage_subpool_put_pages() as this will 1877 * remove the reserved page from the subpool. 1878 */ 1879 if (!restore_reserve) { 1880 /* 1881 * A return code of zero implies that the subpool will be 1882 * under its minimum size if the reservation is not restored 1883 * after page is free. Therefore, force restore_reserve 1884 * operation. 1885 */ 1886 if (hugepage_subpool_put_pages(spool, 1) == 0) 1887 restore_reserve = true; 1888 } 1889 1890 spin_lock_irqsave(&hugetlb_lock, flags); 1891 folio_clear_hugetlb_migratable(folio); 1892 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1893 pages_per_huge_page(h), folio); 1894 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1895 pages_per_huge_page(h), folio); 1896 if (restore_reserve) 1897 h->resv_huge_pages++; 1898 1899 if (folio_test_hugetlb_temporary(folio)) { 1900 remove_hugetlb_folio(h, folio, false); 1901 spin_unlock_irqrestore(&hugetlb_lock, flags); 1902 update_and_free_hugetlb_folio(h, folio, true); 1903 } else if (h->surplus_huge_pages_node[nid]) { 1904 /* remove the page from active list */ 1905 remove_hugetlb_folio(h, folio, true); 1906 spin_unlock_irqrestore(&hugetlb_lock, flags); 1907 update_and_free_hugetlb_folio(h, folio, true); 1908 } else { 1909 arch_clear_hugepage_flags(page); 1910 enqueue_hugetlb_folio(h, folio); 1911 spin_unlock_irqrestore(&hugetlb_lock, flags); 1912 } 1913 } 1914 1915 /* 1916 * Must be called with the hugetlb lock held 1917 */ 1918 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1919 { 1920 lockdep_assert_held(&hugetlb_lock); 1921 h->nr_huge_pages++; 1922 h->nr_huge_pages_node[nid]++; 1923 } 1924 1925 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1926 { 1927 hugetlb_vmemmap_optimize(h, &folio->page); 1928 INIT_LIST_HEAD(&folio->lru); 1929 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); 1930 hugetlb_set_folio_subpool(folio, NULL); 1931 set_hugetlb_cgroup(folio, NULL); 1932 set_hugetlb_cgroup_rsvd(folio, NULL); 1933 } 1934 1935 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1936 { 1937 __prep_new_hugetlb_folio(h, folio); 1938 spin_lock_irq(&hugetlb_lock); 1939 __prep_account_new_huge_page(h, nid); 1940 spin_unlock_irq(&hugetlb_lock); 1941 } 1942 1943 static bool __prep_compound_gigantic_folio(struct folio *folio, 1944 unsigned int order, bool demote) 1945 { 1946 int i, j; 1947 int nr_pages = 1 << order; 1948 struct page *p; 1949 1950 __folio_clear_reserved(folio); 1951 __folio_set_head(folio); 1952 /* we rely on prep_new_hugetlb_folio to set the destructor */ 1953 folio_set_order(folio, order); 1954 for (i = 0; i < nr_pages; i++) { 1955 p = folio_page(folio, i); 1956 1957 /* 1958 * For gigantic hugepages allocated through bootmem at 1959 * boot, it's safer to be consistent with the not-gigantic 1960 * hugepages and clear the PG_reserved bit from all tail pages 1961 * too. Otherwise drivers using get_user_pages() to access tail 1962 * pages may get the reference counting wrong if they see 1963 * PG_reserved set on a tail page (despite the head page not 1964 * having PG_reserved set). Enforcing this consistency between 1965 * head and tail pages allows drivers to optimize away a check 1966 * on the head page when they need know if put_page() is needed 1967 * after get_user_pages(). 1968 */ 1969 if (i != 0) /* head page cleared above */ 1970 __ClearPageReserved(p); 1971 /* 1972 * Subtle and very unlikely 1973 * 1974 * Gigantic 'page allocators' such as memblock or cma will 1975 * return a set of pages with each page ref counted. We need 1976 * to turn this set of pages into a compound page with tail 1977 * page ref counts set to zero. Code such as speculative page 1978 * cache adding could take a ref on a 'to be' tail page. 1979 * We need to respect any increased ref count, and only set 1980 * the ref count to zero if count is currently 1. If count 1981 * is not 1, we return an error. An error return indicates 1982 * the set of pages can not be converted to a gigantic page. 1983 * The caller who allocated the pages should then discard the 1984 * pages using the appropriate free interface. 1985 * 1986 * In the case of demote, the ref count will be zero. 1987 */ 1988 if (!demote) { 1989 if (!page_ref_freeze(p, 1)) { 1990 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 1991 goto out_error; 1992 } 1993 } else { 1994 VM_BUG_ON_PAGE(page_count(p), p); 1995 } 1996 if (i != 0) 1997 set_compound_head(p, &folio->page); 1998 } 1999 atomic_set(folio_mapcount_ptr(folio), -1); 2000 atomic_set(folio_subpages_mapcount_ptr(folio), 0); 2001 atomic_set(folio_pincount_ptr(folio), 0); 2002 return true; 2003 2004 out_error: 2005 /* undo page modifications made above */ 2006 for (j = 0; j < i; j++) { 2007 p = folio_page(folio, j); 2008 if (j != 0) 2009 clear_compound_head(p); 2010 set_page_refcounted(p); 2011 } 2012 /* need to clear PG_reserved on remaining tail pages */ 2013 for (; j < nr_pages; j++) { 2014 p = folio_page(folio, j); 2015 __ClearPageReserved(p); 2016 } 2017 folio_set_order(folio, 0); 2018 __folio_clear_head(folio); 2019 return false; 2020 } 2021 2022 static bool prep_compound_gigantic_folio(struct folio *folio, 2023 unsigned int order) 2024 { 2025 return __prep_compound_gigantic_folio(folio, order, false); 2026 } 2027 2028 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2029 unsigned int order) 2030 { 2031 return __prep_compound_gigantic_folio(folio, order, true); 2032 } 2033 2034 /* 2035 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 2036 * transparent huge pages. See the PageTransHuge() documentation for more 2037 * details. 2038 */ 2039 int PageHuge(struct page *page) 2040 { 2041 if (!PageCompound(page)) 2042 return 0; 2043 2044 page = compound_head(page); 2045 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 2046 } 2047 EXPORT_SYMBOL_GPL(PageHuge); 2048 2049 /* 2050 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 2051 * normal or transparent huge pages. 2052 */ 2053 int PageHeadHuge(struct page *page_head) 2054 { 2055 if (!PageHead(page_head)) 2056 return 0; 2057 2058 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 2059 } 2060 EXPORT_SYMBOL_GPL(PageHeadHuge); 2061 2062 /* 2063 * Find and lock address space (mapping) in write mode. 2064 * 2065 * Upon entry, the page is locked which means that page_mapping() is 2066 * stable. Due to locking order, we can only trylock_write. If we can 2067 * not get the lock, simply return NULL to caller. 2068 */ 2069 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 2070 { 2071 struct address_space *mapping = page_mapping(hpage); 2072 2073 if (!mapping) 2074 return mapping; 2075 2076 if (i_mmap_trylock_write(mapping)) 2077 return mapping; 2078 2079 return NULL; 2080 } 2081 2082 pgoff_t hugetlb_basepage_index(struct page *page) 2083 { 2084 struct page *page_head = compound_head(page); 2085 pgoff_t index = page_index(page_head); 2086 unsigned long compound_idx; 2087 2088 if (compound_order(page_head) >= MAX_ORDER) 2089 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 2090 else 2091 compound_idx = page - page_head; 2092 2093 return (index << compound_order(page_head)) + compound_idx; 2094 } 2095 2096 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2097 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2098 nodemask_t *node_alloc_noretry) 2099 { 2100 int order = huge_page_order(h); 2101 struct page *page; 2102 bool alloc_try_hard = true; 2103 bool retry = true; 2104 2105 /* 2106 * By default we always try hard to allocate the page with 2107 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 2108 * a loop (to adjust global huge page counts) and previous allocation 2109 * failed, do not continue to try hard on the same node. Use the 2110 * node_alloc_noretry bitmap to manage this state information. 2111 */ 2112 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2113 alloc_try_hard = false; 2114 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2115 if (alloc_try_hard) 2116 gfp_mask |= __GFP_RETRY_MAYFAIL; 2117 if (nid == NUMA_NO_NODE) 2118 nid = numa_mem_id(); 2119 retry: 2120 page = __alloc_pages(gfp_mask, order, nid, nmask); 2121 2122 /* Freeze head page */ 2123 if (page && !page_ref_freeze(page, 1)) { 2124 __free_pages(page, order); 2125 if (retry) { /* retry once */ 2126 retry = false; 2127 goto retry; 2128 } 2129 /* WOW! twice in a row. */ 2130 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 2131 page = NULL; 2132 } 2133 2134 /* 2135 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 2136 * indicates an overall state change. Clear bit so that we resume 2137 * normal 'try hard' allocations. 2138 */ 2139 if (node_alloc_noretry && page && !alloc_try_hard) 2140 node_clear(nid, *node_alloc_noretry); 2141 2142 /* 2143 * If we tried hard to get a page but failed, set bit so that 2144 * subsequent attempts will not try as hard until there is an 2145 * overall state change. 2146 */ 2147 if (node_alloc_noretry && !page && alloc_try_hard) 2148 node_set(nid, *node_alloc_noretry); 2149 2150 if (!page) { 2151 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2152 return NULL; 2153 } 2154 2155 __count_vm_event(HTLB_BUDDY_PGALLOC); 2156 return page_folio(page); 2157 } 2158 2159 /* 2160 * Common helper to allocate a fresh hugetlb page. All specific allocators 2161 * should use this function to get new hugetlb pages 2162 * 2163 * Note that returned page is 'frozen': ref count of head page and all tail 2164 * pages is zero. 2165 */ 2166 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2167 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2168 nodemask_t *node_alloc_noretry) 2169 { 2170 struct folio *folio; 2171 bool retry = false; 2172 2173 retry: 2174 if (hstate_is_gigantic(h)) 2175 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2176 else 2177 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2178 nid, nmask, node_alloc_noretry); 2179 if (!folio) 2180 return NULL; 2181 if (hstate_is_gigantic(h)) { 2182 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2183 /* 2184 * Rare failure to convert pages to compound page. 2185 * Free pages and try again - ONCE! 2186 */ 2187 free_gigantic_folio(folio, huge_page_order(h)); 2188 if (!retry) { 2189 retry = true; 2190 goto retry; 2191 } 2192 return NULL; 2193 } 2194 } 2195 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2196 2197 return folio; 2198 } 2199 2200 /* 2201 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2202 * manner. 2203 */ 2204 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2205 nodemask_t *node_alloc_noretry) 2206 { 2207 struct folio *folio; 2208 int nr_nodes, node; 2209 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2210 2211 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2212 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2213 nodes_allowed, node_alloc_noretry); 2214 if (folio) { 2215 free_huge_page(&folio->page); /* free it into the hugepage allocator */ 2216 return 1; 2217 } 2218 } 2219 2220 return 0; 2221 } 2222 2223 /* 2224 * Remove huge page from pool from next node to free. Attempt to keep 2225 * persistent huge pages more or less balanced over allowed nodes. 2226 * This routine only 'removes' the hugetlb page. The caller must make 2227 * an additional call to free the page to low level allocators. 2228 * Called with hugetlb_lock locked. 2229 */ 2230 static struct page *remove_pool_huge_page(struct hstate *h, 2231 nodemask_t *nodes_allowed, 2232 bool acct_surplus) 2233 { 2234 int nr_nodes, node; 2235 struct page *page = NULL; 2236 struct folio *folio; 2237 2238 lockdep_assert_held(&hugetlb_lock); 2239 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2240 /* 2241 * If we're returning unused surplus pages, only examine 2242 * nodes with surplus pages. 2243 */ 2244 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2245 !list_empty(&h->hugepage_freelists[node])) { 2246 page = list_entry(h->hugepage_freelists[node].next, 2247 struct page, lru); 2248 folio = page_folio(page); 2249 remove_hugetlb_folio(h, folio, acct_surplus); 2250 break; 2251 } 2252 } 2253 2254 return page; 2255 } 2256 2257 /* 2258 * Dissolve a given free hugepage into free buddy pages. This function does 2259 * nothing for in-use hugepages and non-hugepages. 2260 * This function returns values like below: 2261 * 2262 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2263 * when the system is under memory pressure and the feature of 2264 * freeing unused vmemmap pages associated with each hugetlb page 2265 * is enabled. 2266 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2267 * (allocated or reserved.) 2268 * 0: successfully dissolved free hugepages or the page is not a 2269 * hugepage (considered as already dissolved) 2270 */ 2271 int dissolve_free_huge_page(struct page *page) 2272 { 2273 int rc = -EBUSY; 2274 struct folio *folio = page_folio(page); 2275 2276 retry: 2277 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2278 if (!folio_test_hugetlb(folio)) 2279 return 0; 2280 2281 spin_lock_irq(&hugetlb_lock); 2282 if (!folio_test_hugetlb(folio)) { 2283 rc = 0; 2284 goto out; 2285 } 2286 2287 if (!folio_ref_count(folio)) { 2288 struct hstate *h = folio_hstate(folio); 2289 if (!available_huge_pages(h)) 2290 goto out; 2291 2292 /* 2293 * We should make sure that the page is already on the free list 2294 * when it is dissolved. 2295 */ 2296 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2297 spin_unlock_irq(&hugetlb_lock); 2298 cond_resched(); 2299 2300 /* 2301 * Theoretically, we should return -EBUSY when we 2302 * encounter this race. In fact, we have a chance 2303 * to successfully dissolve the page if we do a 2304 * retry. Because the race window is quite small. 2305 * If we seize this opportunity, it is an optimization 2306 * for increasing the success rate of dissolving page. 2307 */ 2308 goto retry; 2309 } 2310 2311 remove_hugetlb_folio(h, folio, false); 2312 h->max_huge_pages--; 2313 spin_unlock_irq(&hugetlb_lock); 2314 2315 /* 2316 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2317 * before freeing the page. update_and_free_hugtlb_folio will fail to 2318 * free the page if it can not allocate required vmemmap. We 2319 * need to adjust max_huge_pages if the page is not freed. 2320 * Attempt to allocate vmemmmap here so that we can take 2321 * appropriate action on failure. 2322 */ 2323 rc = hugetlb_vmemmap_restore(h, &folio->page); 2324 if (!rc) { 2325 update_and_free_hugetlb_folio(h, folio, false); 2326 } else { 2327 spin_lock_irq(&hugetlb_lock); 2328 add_hugetlb_folio(h, folio, false); 2329 h->max_huge_pages++; 2330 spin_unlock_irq(&hugetlb_lock); 2331 } 2332 2333 return rc; 2334 } 2335 out: 2336 spin_unlock_irq(&hugetlb_lock); 2337 return rc; 2338 } 2339 2340 /* 2341 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2342 * make specified memory blocks removable from the system. 2343 * Note that this will dissolve a free gigantic hugepage completely, if any 2344 * part of it lies within the given range. 2345 * Also note that if dissolve_free_huge_page() returns with an error, all 2346 * free hugepages that were dissolved before that error are lost. 2347 */ 2348 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2349 { 2350 unsigned long pfn; 2351 struct page *page; 2352 int rc = 0; 2353 unsigned int order; 2354 struct hstate *h; 2355 2356 if (!hugepages_supported()) 2357 return rc; 2358 2359 order = huge_page_order(&default_hstate); 2360 for_each_hstate(h) 2361 order = min(order, huge_page_order(h)); 2362 2363 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2364 page = pfn_to_page(pfn); 2365 rc = dissolve_free_huge_page(page); 2366 if (rc) 2367 break; 2368 } 2369 2370 return rc; 2371 } 2372 2373 /* 2374 * Allocates a fresh surplus page from the page allocator. 2375 */ 2376 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 2377 int nid, nodemask_t *nmask) 2378 { 2379 struct folio *folio = NULL; 2380 2381 if (hstate_is_gigantic(h)) 2382 return NULL; 2383 2384 spin_lock_irq(&hugetlb_lock); 2385 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2386 goto out_unlock; 2387 spin_unlock_irq(&hugetlb_lock); 2388 2389 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2390 if (!folio) 2391 return NULL; 2392 2393 spin_lock_irq(&hugetlb_lock); 2394 /* 2395 * We could have raced with the pool size change. 2396 * Double check that and simply deallocate the new page 2397 * if we would end up overcommiting the surpluses. Abuse 2398 * temporary page to workaround the nasty free_huge_page 2399 * codeflow 2400 */ 2401 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2402 folio_set_hugetlb_temporary(folio); 2403 spin_unlock_irq(&hugetlb_lock); 2404 free_huge_page(&folio->page); 2405 return NULL; 2406 } 2407 2408 h->surplus_huge_pages++; 2409 h->surplus_huge_pages_node[folio_nid(folio)]++; 2410 2411 out_unlock: 2412 spin_unlock_irq(&hugetlb_lock); 2413 2414 return &folio->page; 2415 } 2416 2417 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 2418 int nid, nodemask_t *nmask) 2419 { 2420 struct folio *folio; 2421 2422 if (hstate_is_gigantic(h)) 2423 return NULL; 2424 2425 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2426 if (!folio) 2427 return NULL; 2428 2429 /* fresh huge pages are frozen */ 2430 folio_ref_unfreeze(folio, 1); 2431 /* 2432 * We do not account these pages as surplus because they are only 2433 * temporary and will be released properly on the last reference 2434 */ 2435 folio_set_hugetlb_temporary(folio); 2436 2437 return &folio->page; 2438 } 2439 2440 /* 2441 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2442 */ 2443 static 2444 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 2445 struct vm_area_struct *vma, unsigned long addr) 2446 { 2447 struct page *page = NULL; 2448 struct mempolicy *mpol; 2449 gfp_t gfp_mask = htlb_alloc_mask(h); 2450 int nid; 2451 nodemask_t *nodemask; 2452 2453 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2454 if (mpol_is_preferred_many(mpol)) { 2455 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2456 2457 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2458 page = alloc_surplus_huge_page(h, gfp, nid, nodemask); 2459 2460 /* Fallback to all nodes if page==NULL */ 2461 nodemask = NULL; 2462 } 2463 2464 if (!page) 2465 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 2466 mpol_cond_put(mpol); 2467 return page; 2468 } 2469 2470 /* page migration callback function */ 2471 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 2472 nodemask_t *nmask, gfp_t gfp_mask) 2473 { 2474 spin_lock_irq(&hugetlb_lock); 2475 if (available_huge_pages(h)) { 2476 struct page *page; 2477 2478 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 2479 if (page) { 2480 spin_unlock_irq(&hugetlb_lock); 2481 return page; 2482 } 2483 } 2484 spin_unlock_irq(&hugetlb_lock); 2485 2486 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2487 } 2488 2489 /* mempolicy aware migration callback */ 2490 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2491 unsigned long address) 2492 { 2493 struct mempolicy *mpol; 2494 nodemask_t *nodemask; 2495 struct page *page; 2496 gfp_t gfp_mask; 2497 int node; 2498 2499 gfp_mask = htlb_alloc_mask(h); 2500 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2501 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2502 mpol_cond_put(mpol); 2503 2504 return page; 2505 } 2506 2507 /* 2508 * Increase the hugetlb pool such that it can accommodate a reservation 2509 * of size 'delta'. 2510 */ 2511 static int gather_surplus_pages(struct hstate *h, long delta) 2512 __must_hold(&hugetlb_lock) 2513 { 2514 LIST_HEAD(surplus_list); 2515 struct page *page, *tmp; 2516 int ret; 2517 long i; 2518 long needed, allocated; 2519 bool alloc_ok = true; 2520 2521 lockdep_assert_held(&hugetlb_lock); 2522 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2523 if (needed <= 0) { 2524 h->resv_huge_pages += delta; 2525 return 0; 2526 } 2527 2528 allocated = 0; 2529 2530 ret = -ENOMEM; 2531 retry: 2532 spin_unlock_irq(&hugetlb_lock); 2533 for (i = 0; i < needed; i++) { 2534 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2535 NUMA_NO_NODE, NULL); 2536 if (!page) { 2537 alloc_ok = false; 2538 break; 2539 } 2540 list_add(&page->lru, &surplus_list); 2541 cond_resched(); 2542 } 2543 allocated += i; 2544 2545 /* 2546 * After retaking hugetlb_lock, we need to recalculate 'needed' 2547 * because either resv_huge_pages or free_huge_pages may have changed. 2548 */ 2549 spin_lock_irq(&hugetlb_lock); 2550 needed = (h->resv_huge_pages + delta) - 2551 (h->free_huge_pages + allocated); 2552 if (needed > 0) { 2553 if (alloc_ok) 2554 goto retry; 2555 /* 2556 * We were not able to allocate enough pages to 2557 * satisfy the entire reservation so we free what 2558 * we've allocated so far. 2559 */ 2560 goto free; 2561 } 2562 /* 2563 * The surplus_list now contains _at_least_ the number of extra pages 2564 * needed to accommodate the reservation. Add the appropriate number 2565 * of pages to the hugetlb pool and free the extras back to the buddy 2566 * allocator. Commit the entire reservation here to prevent another 2567 * process from stealing the pages as they are added to the pool but 2568 * before they are reserved. 2569 */ 2570 needed += allocated; 2571 h->resv_huge_pages += delta; 2572 ret = 0; 2573 2574 /* Free the needed pages to the hugetlb pool */ 2575 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2576 if ((--needed) < 0) 2577 break; 2578 /* Add the page to the hugetlb allocator */ 2579 enqueue_hugetlb_folio(h, page_folio(page)); 2580 } 2581 free: 2582 spin_unlock_irq(&hugetlb_lock); 2583 2584 /* 2585 * Free unnecessary surplus pages to the buddy allocator. 2586 * Pages have no ref count, call free_huge_page directly. 2587 */ 2588 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2589 free_huge_page(page); 2590 spin_lock_irq(&hugetlb_lock); 2591 2592 return ret; 2593 } 2594 2595 /* 2596 * This routine has two main purposes: 2597 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2598 * in unused_resv_pages. This corresponds to the prior adjustments made 2599 * to the associated reservation map. 2600 * 2) Free any unused surplus pages that may have been allocated to satisfy 2601 * the reservation. As many as unused_resv_pages may be freed. 2602 */ 2603 static void return_unused_surplus_pages(struct hstate *h, 2604 unsigned long unused_resv_pages) 2605 { 2606 unsigned long nr_pages; 2607 struct page *page; 2608 LIST_HEAD(page_list); 2609 2610 lockdep_assert_held(&hugetlb_lock); 2611 /* Uncommit the reservation */ 2612 h->resv_huge_pages -= unused_resv_pages; 2613 2614 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2615 goto out; 2616 2617 /* 2618 * Part (or even all) of the reservation could have been backed 2619 * by pre-allocated pages. Only free surplus pages. 2620 */ 2621 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2622 2623 /* 2624 * We want to release as many surplus pages as possible, spread 2625 * evenly across all nodes with memory. Iterate across these nodes 2626 * until we can no longer free unreserved surplus pages. This occurs 2627 * when the nodes with surplus pages have no free pages. 2628 * remove_pool_huge_page() will balance the freed pages across the 2629 * on-line nodes with memory and will handle the hstate accounting. 2630 */ 2631 while (nr_pages--) { 2632 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2633 if (!page) 2634 goto out; 2635 2636 list_add(&page->lru, &page_list); 2637 } 2638 2639 out: 2640 spin_unlock_irq(&hugetlb_lock); 2641 update_and_free_pages_bulk(h, &page_list); 2642 spin_lock_irq(&hugetlb_lock); 2643 } 2644 2645 2646 /* 2647 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2648 * are used by the huge page allocation routines to manage reservations. 2649 * 2650 * vma_needs_reservation is called to determine if the huge page at addr 2651 * within the vma has an associated reservation. If a reservation is 2652 * needed, the value 1 is returned. The caller is then responsible for 2653 * managing the global reservation and subpool usage counts. After 2654 * the huge page has been allocated, vma_commit_reservation is called 2655 * to add the page to the reservation map. If the page allocation fails, 2656 * the reservation must be ended instead of committed. vma_end_reservation 2657 * is called in such cases. 2658 * 2659 * In the normal case, vma_commit_reservation returns the same value 2660 * as the preceding vma_needs_reservation call. The only time this 2661 * is not the case is if a reserve map was changed between calls. It 2662 * is the responsibility of the caller to notice the difference and 2663 * take appropriate action. 2664 * 2665 * vma_add_reservation is used in error paths where a reservation must 2666 * be restored when a newly allocated huge page must be freed. It is 2667 * to be called after calling vma_needs_reservation to determine if a 2668 * reservation exists. 2669 * 2670 * vma_del_reservation is used in error paths where an entry in the reserve 2671 * map was created during huge page allocation and must be removed. It is to 2672 * be called after calling vma_needs_reservation to determine if a reservation 2673 * exists. 2674 */ 2675 enum vma_resv_mode { 2676 VMA_NEEDS_RESV, 2677 VMA_COMMIT_RESV, 2678 VMA_END_RESV, 2679 VMA_ADD_RESV, 2680 VMA_DEL_RESV, 2681 }; 2682 static long __vma_reservation_common(struct hstate *h, 2683 struct vm_area_struct *vma, unsigned long addr, 2684 enum vma_resv_mode mode) 2685 { 2686 struct resv_map *resv; 2687 pgoff_t idx; 2688 long ret; 2689 long dummy_out_regions_needed; 2690 2691 resv = vma_resv_map(vma); 2692 if (!resv) 2693 return 1; 2694 2695 idx = vma_hugecache_offset(h, vma, addr); 2696 switch (mode) { 2697 case VMA_NEEDS_RESV: 2698 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2699 /* We assume that vma_reservation_* routines always operate on 2700 * 1 page, and that adding to resv map a 1 page entry can only 2701 * ever require 1 region. 2702 */ 2703 VM_BUG_ON(dummy_out_regions_needed != 1); 2704 break; 2705 case VMA_COMMIT_RESV: 2706 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2707 /* region_add calls of range 1 should never fail. */ 2708 VM_BUG_ON(ret < 0); 2709 break; 2710 case VMA_END_RESV: 2711 region_abort(resv, idx, idx + 1, 1); 2712 ret = 0; 2713 break; 2714 case VMA_ADD_RESV: 2715 if (vma->vm_flags & VM_MAYSHARE) { 2716 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2717 /* region_add calls of range 1 should never fail. */ 2718 VM_BUG_ON(ret < 0); 2719 } else { 2720 region_abort(resv, idx, idx + 1, 1); 2721 ret = region_del(resv, idx, idx + 1); 2722 } 2723 break; 2724 case VMA_DEL_RESV: 2725 if (vma->vm_flags & VM_MAYSHARE) { 2726 region_abort(resv, idx, idx + 1, 1); 2727 ret = region_del(resv, idx, idx + 1); 2728 } else { 2729 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2730 /* region_add calls of range 1 should never fail. */ 2731 VM_BUG_ON(ret < 0); 2732 } 2733 break; 2734 default: 2735 BUG(); 2736 } 2737 2738 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2739 return ret; 2740 /* 2741 * We know private mapping must have HPAGE_RESV_OWNER set. 2742 * 2743 * In most cases, reserves always exist for private mappings. 2744 * However, a file associated with mapping could have been 2745 * hole punched or truncated after reserves were consumed. 2746 * As subsequent fault on such a range will not use reserves. 2747 * Subtle - The reserve map for private mappings has the 2748 * opposite meaning than that of shared mappings. If NO 2749 * entry is in the reserve map, it means a reservation exists. 2750 * If an entry exists in the reserve map, it means the 2751 * reservation has already been consumed. As a result, the 2752 * return value of this routine is the opposite of the 2753 * value returned from reserve map manipulation routines above. 2754 */ 2755 if (ret > 0) 2756 return 0; 2757 if (ret == 0) 2758 return 1; 2759 return ret; 2760 } 2761 2762 static long vma_needs_reservation(struct hstate *h, 2763 struct vm_area_struct *vma, unsigned long addr) 2764 { 2765 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2766 } 2767 2768 static long vma_commit_reservation(struct hstate *h, 2769 struct vm_area_struct *vma, unsigned long addr) 2770 { 2771 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2772 } 2773 2774 static void vma_end_reservation(struct hstate *h, 2775 struct vm_area_struct *vma, unsigned long addr) 2776 { 2777 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2778 } 2779 2780 static long vma_add_reservation(struct hstate *h, 2781 struct vm_area_struct *vma, unsigned long addr) 2782 { 2783 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2784 } 2785 2786 static long vma_del_reservation(struct hstate *h, 2787 struct vm_area_struct *vma, unsigned long addr) 2788 { 2789 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2790 } 2791 2792 /* 2793 * This routine is called to restore reservation information on error paths. 2794 * It should ONLY be called for pages allocated via alloc_huge_page(), and 2795 * the hugetlb mutex should remain held when calling this routine. 2796 * 2797 * It handles two specific cases: 2798 * 1) A reservation was in place and the page consumed the reservation. 2799 * HPageRestoreReserve is set in the page. 2800 * 2) No reservation was in place for the page, so HPageRestoreReserve is 2801 * not set. However, alloc_huge_page always updates the reserve map. 2802 * 2803 * In case 1, free_huge_page later in the error path will increment the 2804 * global reserve count. But, free_huge_page does not have enough context 2805 * to adjust the reservation map. This case deals primarily with private 2806 * mappings. Adjust the reserve map here to be consistent with global 2807 * reserve count adjustments to be made by free_huge_page. Make sure the 2808 * reserve map indicates there is a reservation present. 2809 * 2810 * In case 2, simply undo reserve map modifications done by alloc_huge_page. 2811 */ 2812 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2813 unsigned long address, struct page *page) 2814 { 2815 long rc = vma_needs_reservation(h, vma, address); 2816 2817 if (HPageRestoreReserve(page)) { 2818 if (unlikely(rc < 0)) 2819 /* 2820 * Rare out of memory condition in reserve map 2821 * manipulation. Clear HPageRestoreReserve so that 2822 * global reserve count will not be incremented 2823 * by free_huge_page. This will make it appear 2824 * as though the reservation for this page was 2825 * consumed. This may prevent the task from 2826 * faulting in the page at a later time. This 2827 * is better than inconsistent global huge page 2828 * accounting of reserve counts. 2829 */ 2830 ClearHPageRestoreReserve(page); 2831 else if (rc) 2832 (void)vma_add_reservation(h, vma, address); 2833 else 2834 vma_end_reservation(h, vma, address); 2835 } else { 2836 if (!rc) { 2837 /* 2838 * This indicates there is an entry in the reserve map 2839 * not added by alloc_huge_page. We know it was added 2840 * before the alloc_huge_page call, otherwise 2841 * HPageRestoreReserve would be set on the page. 2842 * Remove the entry so that a subsequent allocation 2843 * does not consume a reservation. 2844 */ 2845 rc = vma_del_reservation(h, vma, address); 2846 if (rc < 0) 2847 /* 2848 * VERY rare out of memory condition. Since 2849 * we can not delete the entry, set 2850 * HPageRestoreReserve so that the reserve 2851 * count will be incremented when the page 2852 * is freed. This reserve will be consumed 2853 * on a subsequent allocation. 2854 */ 2855 SetHPageRestoreReserve(page); 2856 } else if (rc < 0) { 2857 /* 2858 * Rare out of memory condition from 2859 * vma_needs_reservation call. Memory allocation is 2860 * only attempted if a new entry is needed. Therefore, 2861 * this implies there is not an entry in the 2862 * reserve map. 2863 * 2864 * For shared mappings, no entry in the map indicates 2865 * no reservation. We are done. 2866 */ 2867 if (!(vma->vm_flags & VM_MAYSHARE)) 2868 /* 2869 * For private mappings, no entry indicates 2870 * a reservation is present. Since we can 2871 * not add an entry, set SetHPageRestoreReserve 2872 * on the page so reserve count will be 2873 * incremented when freed. This reserve will 2874 * be consumed on a subsequent allocation. 2875 */ 2876 SetHPageRestoreReserve(page); 2877 } else 2878 /* 2879 * No reservation present, do nothing 2880 */ 2881 vma_end_reservation(h, vma, address); 2882 } 2883 } 2884 2885 /* 2886 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2887 * the old one 2888 * @h: struct hstate old page belongs to 2889 * @old_folio: Old folio to dissolve 2890 * @list: List to isolate the page in case we need to 2891 * Returns 0 on success, otherwise negated error. 2892 */ 2893 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2894 struct folio *old_folio, struct list_head *list) 2895 { 2896 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2897 int nid = folio_nid(old_folio); 2898 struct folio *new_folio; 2899 int ret = 0; 2900 2901 /* 2902 * Before dissolving the folio, we need to allocate a new one for the 2903 * pool to remain stable. Here, we allocate the folio and 'prep' it 2904 * by doing everything but actually updating counters and adding to 2905 * the pool. This simplifies and let us do most of the processing 2906 * under the lock. 2907 */ 2908 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); 2909 if (!new_folio) 2910 return -ENOMEM; 2911 __prep_new_hugetlb_folio(h, new_folio); 2912 2913 retry: 2914 spin_lock_irq(&hugetlb_lock); 2915 if (!folio_test_hugetlb(old_folio)) { 2916 /* 2917 * Freed from under us. Drop new_folio too. 2918 */ 2919 goto free_new; 2920 } else if (folio_ref_count(old_folio)) { 2921 /* 2922 * Someone has grabbed the folio, try to isolate it here. 2923 * Fail with -EBUSY if not possible. 2924 */ 2925 spin_unlock_irq(&hugetlb_lock); 2926 ret = isolate_hugetlb(&old_folio->page, list); 2927 spin_lock_irq(&hugetlb_lock); 2928 goto free_new; 2929 } else if (!folio_test_hugetlb_freed(old_folio)) { 2930 /* 2931 * Folio's refcount is 0 but it has not been enqueued in the 2932 * freelist yet. Race window is small, so we can succeed here if 2933 * we retry. 2934 */ 2935 spin_unlock_irq(&hugetlb_lock); 2936 cond_resched(); 2937 goto retry; 2938 } else { 2939 /* 2940 * Ok, old_folio is still a genuine free hugepage. Remove it from 2941 * the freelist and decrease the counters. These will be 2942 * incremented again when calling __prep_account_new_huge_page() 2943 * and enqueue_hugetlb_folio() for new_folio. The counters will 2944 * remain stable since this happens under the lock. 2945 */ 2946 remove_hugetlb_folio(h, old_folio, false); 2947 2948 /* 2949 * Ref count on new_folio is already zero as it was dropped 2950 * earlier. It can be directly added to the pool free list. 2951 */ 2952 __prep_account_new_huge_page(h, nid); 2953 enqueue_hugetlb_folio(h, new_folio); 2954 2955 /* 2956 * Folio has been replaced, we can safely free the old one. 2957 */ 2958 spin_unlock_irq(&hugetlb_lock); 2959 update_and_free_hugetlb_folio(h, old_folio, false); 2960 } 2961 2962 return ret; 2963 2964 free_new: 2965 spin_unlock_irq(&hugetlb_lock); 2966 /* Folio has a zero ref count, but needs a ref to be freed */ 2967 folio_ref_unfreeze(new_folio, 1); 2968 update_and_free_hugetlb_folio(h, new_folio, false); 2969 2970 return ret; 2971 } 2972 2973 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2974 { 2975 struct hstate *h; 2976 struct folio *folio = page_folio(page); 2977 int ret = -EBUSY; 2978 2979 /* 2980 * The page might have been dissolved from under our feet, so make sure 2981 * to carefully check the state under the lock. 2982 * Return success when racing as if we dissolved the page ourselves. 2983 */ 2984 spin_lock_irq(&hugetlb_lock); 2985 if (folio_test_hugetlb(folio)) { 2986 h = folio_hstate(folio); 2987 } else { 2988 spin_unlock_irq(&hugetlb_lock); 2989 return 0; 2990 } 2991 spin_unlock_irq(&hugetlb_lock); 2992 2993 /* 2994 * Fence off gigantic pages as there is a cyclic dependency between 2995 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2996 * of bailing out right away without further retrying. 2997 */ 2998 if (hstate_is_gigantic(h)) 2999 return -ENOMEM; 3000 3001 if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list)) 3002 ret = 0; 3003 else if (!folio_ref_count(folio)) 3004 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3005 3006 return ret; 3007 } 3008 3009 struct page *alloc_huge_page(struct vm_area_struct *vma, 3010 unsigned long addr, int avoid_reserve) 3011 { 3012 struct hugepage_subpool *spool = subpool_vma(vma); 3013 struct hstate *h = hstate_vma(vma); 3014 struct page *page; 3015 struct folio *folio; 3016 long map_chg, map_commit; 3017 long gbl_chg; 3018 int ret, idx; 3019 struct hugetlb_cgroup *h_cg; 3020 bool deferred_reserve; 3021 3022 idx = hstate_index(h); 3023 /* 3024 * Examine the region/reserve map to determine if the process 3025 * has a reservation for the page to be allocated. A return 3026 * code of zero indicates a reservation exists (no change). 3027 */ 3028 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3029 if (map_chg < 0) 3030 return ERR_PTR(-ENOMEM); 3031 3032 /* 3033 * Processes that did not create the mapping will have no 3034 * reserves as indicated by the region/reserve map. Check 3035 * that the allocation will not exceed the subpool limit. 3036 * Allocations for MAP_NORESERVE mappings also need to be 3037 * checked against any subpool limit. 3038 */ 3039 if (map_chg || avoid_reserve) { 3040 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3041 if (gbl_chg < 0) { 3042 vma_end_reservation(h, vma, addr); 3043 return ERR_PTR(-ENOSPC); 3044 } 3045 3046 /* 3047 * Even though there was no reservation in the region/reserve 3048 * map, there could be reservations associated with the 3049 * subpool that can be used. This would be indicated if the 3050 * return value of hugepage_subpool_get_pages() is zero. 3051 * However, if avoid_reserve is specified we still avoid even 3052 * the subpool reservations. 3053 */ 3054 if (avoid_reserve) 3055 gbl_chg = 1; 3056 } 3057 3058 /* If this allocation is not consuming a reservation, charge it now. 3059 */ 3060 deferred_reserve = map_chg || avoid_reserve; 3061 if (deferred_reserve) { 3062 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3063 idx, pages_per_huge_page(h), &h_cg); 3064 if (ret) 3065 goto out_subpool_put; 3066 } 3067 3068 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3069 if (ret) 3070 goto out_uncharge_cgroup_reservation; 3071 3072 spin_lock_irq(&hugetlb_lock); 3073 /* 3074 * glb_chg is passed to indicate whether or not a page must be taken 3075 * from the global free pool (global change). gbl_chg == 0 indicates 3076 * a reservation exists for the allocation. 3077 */ 3078 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 3079 if (!page) { 3080 spin_unlock_irq(&hugetlb_lock); 3081 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 3082 if (!page) 3083 goto out_uncharge_cgroup; 3084 spin_lock_irq(&hugetlb_lock); 3085 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3086 SetHPageRestoreReserve(page); 3087 h->resv_huge_pages--; 3088 } 3089 list_add(&page->lru, &h->hugepage_activelist); 3090 set_page_refcounted(page); 3091 /* Fall through */ 3092 } 3093 folio = page_folio(page); 3094 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 3095 /* If allocation is not consuming a reservation, also store the 3096 * hugetlb_cgroup pointer on the page. 3097 */ 3098 if (deferred_reserve) { 3099 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3100 h_cg, page); 3101 } 3102 3103 spin_unlock_irq(&hugetlb_lock); 3104 3105 hugetlb_set_page_subpool(page, spool); 3106 3107 map_commit = vma_commit_reservation(h, vma, addr); 3108 if (unlikely(map_chg > map_commit)) { 3109 /* 3110 * The page was added to the reservation map between 3111 * vma_needs_reservation and vma_commit_reservation. 3112 * This indicates a race with hugetlb_reserve_pages. 3113 * Adjust for the subpool count incremented above AND 3114 * in hugetlb_reserve_pages for the same page. Also, 3115 * the reservation count added in hugetlb_reserve_pages 3116 * no longer applies. 3117 */ 3118 long rsv_adjust; 3119 3120 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3121 hugetlb_acct_memory(h, -rsv_adjust); 3122 if (deferred_reserve) 3123 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3124 pages_per_huge_page(h), folio); 3125 } 3126 return page; 3127 3128 out_uncharge_cgroup: 3129 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3130 out_uncharge_cgroup_reservation: 3131 if (deferred_reserve) 3132 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3133 h_cg); 3134 out_subpool_put: 3135 if (map_chg || avoid_reserve) 3136 hugepage_subpool_put_pages(spool, 1); 3137 vma_end_reservation(h, vma, addr); 3138 return ERR_PTR(-ENOSPC); 3139 } 3140 3141 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3142 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3143 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3144 { 3145 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3146 int nr_nodes, node; 3147 3148 /* do node specific alloc */ 3149 if (nid != NUMA_NO_NODE) { 3150 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3151 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3152 if (!m) 3153 return 0; 3154 goto found; 3155 } 3156 /* allocate from next node when distributing huge pages */ 3157 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3158 m = memblock_alloc_try_nid_raw( 3159 huge_page_size(h), huge_page_size(h), 3160 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3161 /* 3162 * Use the beginning of the huge page to store the 3163 * huge_bootmem_page struct (until gather_bootmem 3164 * puts them into the mem_map). 3165 */ 3166 if (!m) 3167 return 0; 3168 goto found; 3169 } 3170 3171 found: 3172 /* Put them into a private list first because mem_map is not up yet */ 3173 INIT_LIST_HEAD(&m->list); 3174 list_add(&m->list, &huge_boot_pages); 3175 m->hstate = h; 3176 return 1; 3177 } 3178 3179 /* 3180 * Put bootmem huge pages into the standard lists after mem_map is up. 3181 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3182 */ 3183 static void __init gather_bootmem_prealloc(void) 3184 { 3185 struct huge_bootmem_page *m; 3186 3187 list_for_each_entry(m, &huge_boot_pages, list) { 3188 struct page *page = virt_to_page(m); 3189 struct folio *folio = page_folio(page); 3190 struct hstate *h = m->hstate; 3191 3192 VM_BUG_ON(!hstate_is_gigantic(h)); 3193 WARN_ON(folio_ref_count(folio) != 1); 3194 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) { 3195 WARN_ON(folio_test_reserved(folio)); 3196 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 3197 free_huge_page(page); /* add to the hugepage allocator */ 3198 } else { 3199 /* VERY unlikely inflated ref count on a tail page */ 3200 free_gigantic_folio(folio, huge_page_order(h)); 3201 } 3202 3203 /* 3204 * We need to restore the 'stolen' pages to totalram_pages 3205 * in order to fix confusing memory reports from free(1) and 3206 * other side-effects, like CommitLimit going negative. 3207 */ 3208 adjust_managed_page_count(page, pages_per_huge_page(h)); 3209 cond_resched(); 3210 } 3211 } 3212 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3213 { 3214 unsigned long i; 3215 char buf[32]; 3216 3217 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3218 if (hstate_is_gigantic(h)) { 3219 if (!alloc_bootmem_huge_page(h, nid)) 3220 break; 3221 } else { 3222 struct folio *folio; 3223 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3224 3225 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3226 &node_states[N_MEMORY], NULL); 3227 if (!folio) 3228 break; 3229 free_huge_page(&folio->page); /* free it into the hugepage allocator */ 3230 } 3231 cond_resched(); 3232 } 3233 if (i == h->max_huge_pages_node[nid]) 3234 return; 3235 3236 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3237 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3238 h->max_huge_pages_node[nid], buf, nid, i); 3239 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3240 h->max_huge_pages_node[nid] = i; 3241 } 3242 3243 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3244 { 3245 unsigned long i; 3246 nodemask_t *node_alloc_noretry; 3247 bool node_specific_alloc = false; 3248 3249 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3250 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3251 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3252 return; 3253 } 3254 3255 /* do node specific alloc */ 3256 for_each_online_node(i) { 3257 if (h->max_huge_pages_node[i] > 0) { 3258 hugetlb_hstate_alloc_pages_onenode(h, i); 3259 node_specific_alloc = true; 3260 } 3261 } 3262 3263 if (node_specific_alloc) 3264 return; 3265 3266 /* below will do all node balanced alloc */ 3267 if (!hstate_is_gigantic(h)) { 3268 /* 3269 * Bit mask controlling how hard we retry per-node allocations. 3270 * Ignore errors as lower level routines can deal with 3271 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3272 * time, we are likely in bigger trouble. 3273 */ 3274 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3275 GFP_KERNEL); 3276 } else { 3277 /* allocations done at boot time */ 3278 node_alloc_noretry = NULL; 3279 } 3280 3281 /* bit mask controlling how hard we retry per-node allocations */ 3282 if (node_alloc_noretry) 3283 nodes_clear(*node_alloc_noretry); 3284 3285 for (i = 0; i < h->max_huge_pages; ++i) { 3286 if (hstate_is_gigantic(h)) { 3287 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3288 break; 3289 } else if (!alloc_pool_huge_page(h, 3290 &node_states[N_MEMORY], 3291 node_alloc_noretry)) 3292 break; 3293 cond_resched(); 3294 } 3295 if (i < h->max_huge_pages) { 3296 char buf[32]; 3297 3298 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3299 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3300 h->max_huge_pages, buf, i); 3301 h->max_huge_pages = i; 3302 } 3303 kfree(node_alloc_noretry); 3304 } 3305 3306 static void __init hugetlb_init_hstates(void) 3307 { 3308 struct hstate *h, *h2; 3309 3310 for_each_hstate(h) { 3311 /* oversize hugepages were init'ed in early boot */ 3312 if (!hstate_is_gigantic(h)) 3313 hugetlb_hstate_alloc_pages(h); 3314 3315 /* 3316 * Set demote order for each hstate. Note that 3317 * h->demote_order is initially 0. 3318 * - We can not demote gigantic pages if runtime freeing 3319 * is not supported, so skip this. 3320 * - If CMA allocation is possible, we can not demote 3321 * HUGETLB_PAGE_ORDER or smaller size pages. 3322 */ 3323 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3324 continue; 3325 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3326 continue; 3327 for_each_hstate(h2) { 3328 if (h2 == h) 3329 continue; 3330 if (h2->order < h->order && 3331 h2->order > h->demote_order) 3332 h->demote_order = h2->order; 3333 } 3334 } 3335 } 3336 3337 static void __init report_hugepages(void) 3338 { 3339 struct hstate *h; 3340 3341 for_each_hstate(h) { 3342 char buf[32]; 3343 3344 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3345 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3346 buf, h->free_huge_pages); 3347 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3348 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3349 } 3350 } 3351 3352 #ifdef CONFIG_HIGHMEM 3353 static void try_to_free_low(struct hstate *h, unsigned long count, 3354 nodemask_t *nodes_allowed) 3355 { 3356 int i; 3357 LIST_HEAD(page_list); 3358 3359 lockdep_assert_held(&hugetlb_lock); 3360 if (hstate_is_gigantic(h)) 3361 return; 3362 3363 /* 3364 * Collect pages to be freed on a list, and free after dropping lock 3365 */ 3366 for_each_node_mask(i, *nodes_allowed) { 3367 struct page *page, *next; 3368 struct list_head *freel = &h->hugepage_freelists[i]; 3369 list_for_each_entry_safe(page, next, freel, lru) { 3370 if (count >= h->nr_huge_pages) 3371 goto out; 3372 if (PageHighMem(page)) 3373 continue; 3374 remove_hugetlb_folio(h, page_folio(page), false); 3375 list_add(&page->lru, &page_list); 3376 } 3377 } 3378 3379 out: 3380 spin_unlock_irq(&hugetlb_lock); 3381 update_and_free_pages_bulk(h, &page_list); 3382 spin_lock_irq(&hugetlb_lock); 3383 } 3384 #else 3385 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3386 nodemask_t *nodes_allowed) 3387 { 3388 } 3389 #endif 3390 3391 /* 3392 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3393 * balanced by operating on them in a round-robin fashion. 3394 * Returns 1 if an adjustment was made. 3395 */ 3396 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3397 int delta) 3398 { 3399 int nr_nodes, node; 3400 3401 lockdep_assert_held(&hugetlb_lock); 3402 VM_BUG_ON(delta != -1 && delta != 1); 3403 3404 if (delta < 0) { 3405 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3406 if (h->surplus_huge_pages_node[node]) 3407 goto found; 3408 } 3409 } else { 3410 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3411 if (h->surplus_huge_pages_node[node] < 3412 h->nr_huge_pages_node[node]) 3413 goto found; 3414 } 3415 } 3416 return 0; 3417 3418 found: 3419 h->surplus_huge_pages += delta; 3420 h->surplus_huge_pages_node[node] += delta; 3421 return 1; 3422 } 3423 3424 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3425 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3426 nodemask_t *nodes_allowed) 3427 { 3428 unsigned long min_count, ret; 3429 struct page *page; 3430 LIST_HEAD(page_list); 3431 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3432 3433 /* 3434 * Bit mask controlling how hard we retry per-node allocations. 3435 * If we can not allocate the bit mask, do not attempt to allocate 3436 * the requested huge pages. 3437 */ 3438 if (node_alloc_noretry) 3439 nodes_clear(*node_alloc_noretry); 3440 else 3441 return -ENOMEM; 3442 3443 /* 3444 * resize_lock mutex prevents concurrent adjustments to number of 3445 * pages in hstate via the proc/sysfs interfaces. 3446 */ 3447 mutex_lock(&h->resize_lock); 3448 flush_free_hpage_work(h); 3449 spin_lock_irq(&hugetlb_lock); 3450 3451 /* 3452 * Check for a node specific request. 3453 * Changing node specific huge page count may require a corresponding 3454 * change to the global count. In any case, the passed node mask 3455 * (nodes_allowed) will restrict alloc/free to the specified node. 3456 */ 3457 if (nid != NUMA_NO_NODE) { 3458 unsigned long old_count = count; 3459 3460 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3461 /* 3462 * User may have specified a large count value which caused the 3463 * above calculation to overflow. In this case, they wanted 3464 * to allocate as many huge pages as possible. Set count to 3465 * largest possible value to align with their intention. 3466 */ 3467 if (count < old_count) 3468 count = ULONG_MAX; 3469 } 3470 3471 /* 3472 * Gigantic pages runtime allocation depend on the capability for large 3473 * page range allocation. 3474 * If the system does not provide this feature, return an error when 3475 * the user tries to allocate gigantic pages but let the user free the 3476 * boottime allocated gigantic pages. 3477 */ 3478 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3479 if (count > persistent_huge_pages(h)) { 3480 spin_unlock_irq(&hugetlb_lock); 3481 mutex_unlock(&h->resize_lock); 3482 NODEMASK_FREE(node_alloc_noretry); 3483 return -EINVAL; 3484 } 3485 /* Fall through to decrease pool */ 3486 } 3487 3488 /* 3489 * Increase the pool size 3490 * First take pages out of surplus state. Then make up the 3491 * remaining difference by allocating fresh huge pages. 3492 * 3493 * We might race with alloc_surplus_huge_page() here and be unable 3494 * to convert a surplus huge page to a normal huge page. That is 3495 * not critical, though, it just means the overall size of the 3496 * pool might be one hugepage larger than it needs to be, but 3497 * within all the constraints specified by the sysctls. 3498 */ 3499 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3500 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3501 break; 3502 } 3503 3504 while (count > persistent_huge_pages(h)) { 3505 /* 3506 * If this allocation races such that we no longer need the 3507 * page, free_huge_page will handle it by freeing the page 3508 * and reducing the surplus. 3509 */ 3510 spin_unlock_irq(&hugetlb_lock); 3511 3512 /* yield cpu to avoid soft lockup */ 3513 cond_resched(); 3514 3515 ret = alloc_pool_huge_page(h, nodes_allowed, 3516 node_alloc_noretry); 3517 spin_lock_irq(&hugetlb_lock); 3518 if (!ret) 3519 goto out; 3520 3521 /* Bail for signals. Probably ctrl-c from user */ 3522 if (signal_pending(current)) 3523 goto out; 3524 } 3525 3526 /* 3527 * Decrease the pool size 3528 * First return free pages to the buddy allocator (being careful 3529 * to keep enough around to satisfy reservations). Then place 3530 * pages into surplus state as needed so the pool will shrink 3531 * to the desired size as pages become free. 3532 * 3533 * By placing pages into the surplus state independent of the 3534 * overcommit value, we are allowing the surplus pool size to 3535 * exceed overcommit. There are few sane options here. Since 3536 * alloc_surplus_huge_page() is checking the global counter, 3537 * though, we'll note that we're not allowed to exceed surplus 3538 * and won't grow the pool anywhere else. Not until one of the 3539 * sysctls are changed, or the surplus pages go out of use. 3540 */ 3541 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3542 min_count = max(count, min_count); 3543 try_to_free_low(h, min_count, nodes_allowed); 3544 3545 /* 3546 * Collect pages to be removed on list without dropping lock 3547 */ 3548 while (min_count < persistent_huge_pages(h)) { 3549 page = remove_pool_huge_page(h, nodes_allowed, 0); 3550 if (!page) 3551 break; 3552 3553 list_add(&page->lru, &page_list); 3554 } 3555 /* free the pages after dropping lock */ 3556 spin_unlock_irq(&hugetlb_lock); 3557 update_and_free_pages_bulk(h, &page_list); 3558 flush_free_hpage_work(h); 3559 spin_lock_irq(&hugetlb_lock); 3560 3561 while (count < persistent_huge_pages(h)) { 3562 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3563 break; 3564 } 3565 out: 3566 h->max_huge_pages = persistent_huge_pages(h); 3567 spin_unlock_irq(&hugetlb_lock); 3568 mutex_unlock(&h->resize_lock); 3569 3570 NODEMASK_FREE(node_alloc_noretry); 3571 3572 return 0; 3573 } 3574 3575 static int demote_free_huge_page(struct hstate *h, struct page *page) 3576 { 3577 int i, nid = page_to_nid(page); 3578 struct hstate *target_hstate; 3579 struct folio *folio = page_folio(page); 3580 struct page *subpage; 3581 int rc = 0; 3582 3583 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3584 3585 remove_hugetlb_folio_for_demote(h, folio, false); 3586 spin_unlock_irq(&hugetlb_lock); 3587 3588 rc = hugetlb_vmemmap_restore(h, page); 3589 if (rc) { 3590 /* Allocation of vmemmmap failed, we can not demote page */ 3591 spin_lock_irq(&hugetlb_lock); 3592 set_page_refcounted(page); 3593 add_hugetlb_folio(h, page_folio(page), false); 3594 return rc; 3595 } 3596 3597 /* 3598 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3599 * sizes as it will not ref count pages. 3600 */ 3601 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3602 3603 /* 3604 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3605 * Without the mutex, pages added to target hstate could be marked 3606 * as surplus. 3607 * 3608 * Note that we already hold h->resize_lock. To prevent deadlock, 3609 * use the convention of always taking larger size hstate mutex first. 3610 */ 3611 mutex_lock(&target_hstate->resize_lock); 3612 for (i = 0; i < pages_per_huge_page(h); 3613 i += pages_per_huge_page(target_hstate)) { 3614 subpage = nth_page(page, i); 3615 folio = page_folio(subpage); 3616 if (hstate_is_gigantic(target_hstate)) 3617 prep_compound_gigantic_folio_for_demote(folio, 3618 target_hstate->order); 3619 else 3620 prep_compound_page(subpage, target_hstate->order); 3621 set_page_private(subpage, 0); 3622 prep_new_hugetlb_folio(target_hstate, folio, nid); 3623 free_huge_page(subpage); 3624 } 3625 mutex_unlock(&target_hstate->resize_lock); 3626 3627 spin_lock_irq(&hugetlb_lock); 3628 3629 /* 3630 * Not absolutely necessary, but for consistency update max_huge_pages 3631 * based on pool changes for the demoted page. 3632 */ 3633 h->max_huge_pages--; 3634 target_hstate->max_huge_pages += 3635 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3636 3637 return rc; 3638 } 3639 3640 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3641 __must_hold(&hugetlb_lock) 3642 { 3643 int nr_nodes, node; 3644 struct page *page; 3645 3646 lockdep_assert_held(&hugetlb_lock); 3647 3648 /* We should never get here if no demote order */ 3649 if (!h->demote_order) { 3650 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3651 return -EINVAL; /* internal error */ 3652 } 3653 3654 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3655 list_for_each_entry(page, &h->hugepage_freelists[node], lru) { 3656 if (PageHWPoison(page)) 3657 continue; 3658 3659 return demote_free_huge_page(h, page); 3660 } 3661 } 3662 3663 /* 3664 * Only way to get here is if all pages on free lists are poisoned. 3665 * Return -EBUSY so that caller will not retry. 3666 */ 3667 return -EBUSY; 3668 } 3669 3670 #define HSTATE_ATTR_RO(_name) \ 3671 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3672 3673 #define HSTATE_ATTR_WO(_name) \ 3674 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3675 3676 #define HSTATE_ATTR(_name) \ 3677 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3678 3679 static struct kobject *hugepages_kobj; 3680 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3681 3682 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3683 3684 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3685 { 3686 int i; 3687 3688 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3689 if (hstate_kobjs[i] == kobj) { 3690 if (nidp) 3691 *nidp = NUMA_NO_NODE; 3692 return &hstates[i]; 3693 } 3694 3695 return kobj_to_node_hstate(kobj, nidp); 3696 } 3697 3698 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3699 struct kobj_attribute *attr, char *buf) 3700 { 3701 struct hstate *h; 3702 unsigned long nr_huge_pages; 3703 int nid; 3704 3705 h = kobj_to_hstate(kobj, &nid); 3706 if (nid == NUMA_NO_NODE) 3707 nr_huge_pages = h->nr_huge_pages; 3708 else 3709 nr_huge_pages = h->nr_huge_pages_node[nid]; 3710 3711 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3712 } 3713 3714 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3715 struct hstate *h, int nid, 3716 unsigned long count, size_t len) 3717 { 3718 int err; 3719 nodemask_t nodes_allowed, *n_mask; 3720 3721 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3722 return -EINVAL; 3723 3724 if (nid == NUMA_NO_NODE) { 3725 /* 3726 * global hstate attribute 3727 */ 3728 if (!(obey_mempolicy && 3729 init_nodemask_of_mempolicy(&nodes_allowed))) 3730 n_mask = &node_states[N_MEMORY]; 3731 else 3732 n_mask = &nodes_allowed; 3733 } else { 3734 /* 3735 * Node specific request. count adjustment happens in 3736 * set_max_huge_pages() after acquiring hugetlb_lock. 3737 */ 3738 init_nodemask_of_node(&nodes_allowed, nid); 3739 n_mask = &nodes_allowed; 3740 } 3741 3742 err = set_max_huge_pages(h, count, nid, n_mask); 3743 3744 return err ? err : len; 3745 } 3746 3747 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3748 struct kobject *kobj, const char *buf, 3749 size_t len) 3750 { 3751 struct hstate *h; 3752 unsigned long count; 3753 int nid; 3754 int err; 3755 3756 err = kstrtoul(buf, 10, &count); 3757 if (err) 3758 return err; 3759 3760 h = kobj_to_hstate(kobj, &nid); 3761 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3762 } 3763 3764 static ssize_t nr_hugepages_show(struct kobject *kobj, 3765 struct kobj_attribute *attr, char *buf) 3766 { 3767 return nr_hugepages_show_common(kobj, attr, buf); 3768 } 3769 3770 static ssize_t nr_hugepages_store(struct kobject *kobj, 3771 struct kobj_attribute *attr, const char *buf, size_t len) 3772 { 3773 return nr_hugepages_store_common(false, kobj, buf, len); 3774 } 3775 HSTATE_ATTR(nr_hugepages); 3776 3777 #ifdef CONFIG_NUMA 3778 3779 /* 3780 * hstate attribute for optionally mempolicy-based constraint on persistent 3781 * huge page alloc/free. 3782 */ 3783 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3784 struct kobj_attribute *attr, 3785 char *buf) 3786 { 3787 return nr_hugepages_show_common(kobj, attr, buf); 3788 } 3789 3790 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3791 struct kobj_attribute *attr, const char *buf, size_t len) 3792 { 3793 return nr_hugepages_store_common(true, kobj, buf, len); 3794 } 3795 HSTATE_ATTR(nr_hugepages_mempolicy); 3796 #endif 3797 3798 3799 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3800 struct kobj_attribute *attr, char *buf) 3801 { 3802 struct hstate *h = kobj_to_hstate(kobj, NULL); 3803 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3804 } 3805 3806 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3807 struct kobj_attribute *attr, const char *buf, size_t count) 3808 { 3809 int err; 3810 unsigned long input; 3811 struct hstate *h = kobj_to_hstate(kobj, NULL); 3812 3813 if (hstate_is_gigantic(h)) 3814 return -EINVAL; 3815 3816 err = kstrtoul(buf, 10, &input); 3817 if (err) 3818 return err; 3819 3820 spin_lock_irq(&hugetlb_lock); 3821 h->nr_overcommit_huge_pages = input; 3822 spin_unlock_irq(&hugetlb_lock); 3823 3824 return count; 3825 } 3826 HSTATE_ATTR(nr_overcommit_hugepages); 3827 3828 static ssize_t free_hugepages_show(struct kobject *kobj, 3829 struct kobj_attribute *attr, char *buf) 3830 { 3831 struct hstate *h; 3832 unsigned long free_huge_pages; 3833 int nid; 3834 3835 h = kobj_to_hstate(kobj, &nid); 3836 if (nid == NUMA_NO_NODE) 3837 free_huge_pages = h->free_huge_pages; 3838 else 3839 free_huge_pages = h->free_huge_pages_node[nid]; 3840 3841 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3842 } 3843 HSTATE_ATTR_RO(free_hugepages); 3844 3845 static ssize_t resv_hugepages_show(struct kobject *kobj, 3846 struct kobj_attribute *attr, char *buf) 3847 { 3848 struct hstate *h = kobj_to_hstate(kobj, NULL); 3849 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3850 } 3851 HSTATE_ATTR_RO(resv_hugepages); 3852 3853 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3854 struct kobj_attribute *attr, char *buf) 3855 { 3856 struct hstate *h; 3857 unsigned long surplus_huge_pages; 3858 int nid; 3859 3860 h = kobj_to_hstate(kobj, &nid); 3861 if (nid == NUMA_NO_NODE) 3862 surplus_huge_pages = h->surplus_huge_pages; 3863 else 3864 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3865 3866 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3867 } 3868 HSTATE_ATTR_RO(surplus_hugepages); 3869 3870 static ssize_t demote_store(struct kobject *kobj, 3871 struct kobj_attribute *attr, const char *buf, size_t len) 3872 { 3873 unsigned long nr_demote; 3874 unsigned long nr_available; 3875 nodemask_t nodes_allowed, *n_mask; 3876 struct hstate *h; 3877 int err; 3878 int nid; 3879 3880 err = kstrtoul(buf, 10, &nr_demote); 3881 if (err) 3882 return err; 3883 h = kobj_to_hstate(kobj, &nid); 3884 3885 if (nid != NUMA_NO_NODE) { 3886 init_nodemask_of_node(&nodes_allowed, nid); 3887 n_mask = &nodes_allowed; 3888 } else { 3889 n_mask = &node_states[N_MEMORY]; 3890 } 3891 3892 /* Synchronize with other sysfs operations modifying huge pages */ 3893 mutex_lock(&h->resize_lock); 3894 spin_lock_irq(&hugetlb_lock); 3895 3896 while (nr_demote) { 3897 /* 3898 * Check for available pages to demote each time thorough the 3899 * loop as demote_pool_huge_page will drop hugetlb_lock. 3900 */ 3901 if (nid != NUMA_NO_NODE) 3902 nr_available = h->free_huge_pages_node[nid]; 3903 else 3904 nr_available = h->free_huge_pages; 3905 nr_available -= h->resv_huge_pages; 3906 if (!nr_available) 3907 break; 3908 3909 err = demote_pool_huge_page(h, n_mask); 3910 if (err) 3911 break; 3912 3913 nr_demote--; 3914 } 3915 3916 spin_unlock_irq(&hugetlb_lock); 3917 mutex_unlock(&h->resize_lock); 3918 3919 if (err) 3920 return err; 3921 return len; 3922 } 3923 HSTATE_ATTR_WO(demote); 3924 3925 static ssize_t demote_size_show(struct kobject *kobj, 3926 struct kobj_attribute *attr, char *buf) 3927 { 3928 struct hstate *h = kobj_to_hstate(kobj, NULL); 3929 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3930 3931 return sysfs_emit(buf, "%lukB\n", demote_size); 3932 } 3933 3934 static ssize_t demote_size_store(struct kobject *kobj, 3935 struct kobj_attribute *attr, 3936 const char *buf, size_t count) 3937 { 3938 struct hstate *h, *demote_hstate; 3939 unsigned long demote_size; 3940 unsigned int demote_order; 3941 3942 demote_size = (unsigned long)memparse(buf, NULL); 3943 3944 demote_hstate = size_to_hstate(demote_size); 3945 if (!demote_hstate) 3946 return -EINVAL; 3947 demote_order = demote_hstate->order; 3948 if (demote_order < HUGETLB_PAGE_ORDER) 3949 return -EINVAL; 3950 3951 /* demote order must be smaller than hstate order */ 3952 h = kobj_to_hstate(kobj, NULL); 3953 if (demote_order >= h->order) 3954 return -EINVAL; 3955 3956 /* resize_lock synchronizes access to demote size and writes */ 3957 mutex_lock(&h->resize_lock); 3958 h->demote_order = demote_order; 3959 mutex_unlock(&h->resize_lock); 3960 3961 return count; 3962 } 3963 HSTATE_ATTR(demote_size); 3964 3965 static struct attribute *hstate_attrs[] = { 3966 &nr_hugepages_attr.attr, 3967 &nr_overcommit_hugepages_attr.attr, 3968 &free_hugepages_attr.attr, 3969 &resv_hugepages_attr.attr, 3970 &surplus_hugepages_attr.attr, 3971 #ifdef CONFIG_NUMA 3972 &nr_hugepages_mempolicy_attr.attr, 3973 #endif 3974 NULL, 3975 }; 3976 3977 static const struct attribute_group hstate_attr_group = { 3978 .attrs = hstate_attrs, 3979 }; 3980 3981 static struct attribute *hstate_demote_attrs[] = { 3982 &demote_size_attr.attr, 3983 &demote_attr.attr, 3984 NULL, 3985 }; 3986 3987 static const struct attribute_group hstate_demote_attr_group = { 3988 .attrs = hstate_demote_attrs, 3989 }; 3990 3991 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3992 struct kobject **hstate_kobjs, 3993 const struct attribute_group *hstate_attr_group) 3994 { 3995 int retval; 3996 int hi = hstate_index(h); 3997 3998 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3999 if (!hstate_kobjs[hi]) 4000 return -ENOMEM; 4001 4002 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4003 if (retval) { 4004 kobject_put(hstate_kobjs[hi]); 4005 hstate_kobjs[hi] = NULL; 4006 return retval; 4007 } 4008 4009 if (h->demote_order) { 4010 retval = sysfs_create_group(hstate_kobjs[hi], 4011 &hstate_demote_attr_group); 4012 if (retval) { 4013 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4014 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4015 kobject_put(hstate_kobjs[hi]); 4016 hstate_kobjs[hi] = NULL; 4017 return retval; 4018 } 4019 } 4020 4021 return 0; 4022 } 4023 4024 #ifdef CONFIG_NUMA 4025 static bool hugetlb_sysfs_initialized __ro_after_init; 4026 4027 /* 4028 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4029 * with node devices in node_devices[] using a parallel array. The array 4030 * index of a node device or _hstate == node id. 4031 * This is here to avoid any static dependency of the node device driver, in 4032 * the base kernel, on the hugetlb module. 4033 */ 4034 struct node_hstate { 4035 struct kobject *hugepages_kobj; 4036 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4037 }; 4038 static struct node_hstate node_hstates[MAX_NUMNODES]; 4039 4040 /* 4041 * A subset of global hstate attributes for node devices 4042 */ 4043 static struct attribute *per_node_hstate_attrs[] = { 4044 &nr_hugepages_attr.attr, 4045 &free_hugepages_attr.attr, 4046 &surplus_hugepages_attr.attr, 4047 NULL, 4048 }; 4049 4050 static const struct attribute_group per_node_hstate_attr_group = { 4051 .attrs = per_node_hstate_attrs, 4052 }; 4053 4054 /* 4055 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4056 * Returns node id via non-NULL nidp. 4057 */ 4058 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4059 { 4060 int nid; 4061 4062 for (nid = 0; nid < nr_node_ids; nid++) { 4063 struct node_hstate *nhs = &node_hstates[nid]; 4064 int i; 4065 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4066 if (nhs->hstate_kobjs[i] == kobj) { 4067 if (nidp) 4068 *nidp = nid; 4069 return &hstates[i]; 4070 } 4071 } 4072 4073 BUG(); 4074 return NULL; 4075 } 4076 4077 /* 4078 * Unregister hstate attributes from a single node device. 4079 * No-op if no hstate attributes attached. 4080 */ 4081 void hugetlb_unregister_node(struct node *node) 4082 { 4083 struct hstate *h; 4084 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4085 4086 if (!nhs->hugepages_kobj) 4087 return; /* no hstate attributes */ 4088 4089 for_each_hstate(h) { 4090 int idx = hstate_index(h); 4091 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4092 4093 if (!hstate_kobj) 4094 continue; 4095 if (h->demote_order) 4096 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4097 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4098 kobject_put(hstate_kobj); 4099 nhs->hstate_kobjs[idx] = NULL; 4100 } 4101 4102 kobject_put(nhs->hugepages_kobj); 4103 nhs->hugepages_kobj = NULL; 4104 } 4105 4106 4107 /* 4108 * Register hstate attributes for a single node device. 4109 * No-op if attributes already registered. 4110 */ 4111 void hugetlb_register_node(struct node *node) 4112 { 4113 struct hstate *h; 4114 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4115 int err; 4116 4117 if (!hugetlb_sysfs_initialized) 4118 return; 4119 4120 if (nhs->hugepages_kobj) 4121 return; /* already allocated */ 4122 4123 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4124 &node->dev.kobj); 4125 if (!nhs->hugepages_kobj) 4126 return; 4127 4128 for_each_hstate(h) { 4129 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4130 nhs->hstate_kobjs, 4131 &per_node_hstate_attr_group); 4132 if (err) { 4133 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4134 h->name, node->dev.id); 4135 hugetlb_unregister_node(node); 4136 break; 4137 } 4138 } 4139 } 4140 4141 /* 4142 * hugetlb init time: register hstate attributes for all registered node 4143 * devices of nodes that have memory. All on-line nodes should have 4144 * registered their associated device by this time. 4145 */ 4146 static void __init hugetlb_register_all_nodes(void) 4147 { 4148 int nid; 4149 4150 for_each_online_node(nid) 4151 hugetlb_register_node(node_devices[nid]); 4152 } 4153 #else /* !CONFIG_NUMA */ 4154 4155 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4156 { 4157 BUG(); 4158 if (nidp) 4159 *nidp = -1; 4160 return NULL; 4161 } 4162 4163 static void hugetlb_register_all_nodes(void) { } 4164 4165 #endif 4166 4167 #ifdef CONFIG_CMA 4168 static void __init hugetlb_cma_check(void); 4169 #else 4170 static inline __init void hugetlb_cma_check(void) 4171 { 4172 } 4173 #endif 4174 4175 static void __init hugetlb_sysfs_init(void) 4176 { 4177 struct hstate *h; 4178 int err; 4179 4180 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4181 if (!hugepages_kobj) 4182 return; 4183 4184 for_each_hstate(h) { 4185 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4186 hstate_kobjs, &hstate_attr_group); 4187 if (err) 4188 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4189 } 4190 4191 #ifdef CONFIG_NUMA 4192 hugetlb_sysfs_initialized = true; 4193 #endif 4194 hugetlb_register_all_nodes(); 4195 } 4196 4197 static int __init hugetlb_init(void) 4198 { 4199 int i; 4200 4201 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4202 __NR_HPAGEFLAGS); 4203 4204 if (!hugepages_supported()) { 4205 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4206 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4207 return 0; 4208 } 4209 4210 /* 4211 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4212 * architectures depend on setup being done here. 4213 */ 4214 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4215 if (!parsed_default_hugepagesz) { 4216 /* 4217 * If we did not parse a default huge page size, set 4218 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4219 * number of huge pages for this default size was implicitly 4220 * specified, set that here as well. 4221 * Note that the implicit setting will overwrite an explicit 4222 * setting. A warning will be printed in this case. 4223 */ 4224 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4225 if (default_hstate_max_huge_pages) { 4226 if (default_hstate.max_huge_pages) { 4227 char buf[32]; 4228 4229 string_get_size(huge_page_size(&default_hstate), 4230 1, STRING_UNITS_2, buf, 32); 4231 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4232 default_hstate.max_huge_pages, buf); 4233 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4234 default_hstate_max_huge_pages); 4235 } 4236 default_hstate.max_huge_pages = 4237 default_hstate_max_huge_pages; 4238 4239 for_each_online_node(i) 4240 default_hstate.max_huge_pages_node[i] = 4241 default_hugepages_in_node[i]; 4242 } 4243 } 4244 4245 hugetlb_cma_check(); 4246 hugetlb_init_hstates(); 4247 gather_bootmem_prealloc(); 4248 report_hugepages(); 4249 4250 hugetlb_sysfs_init(); 4251 hugetlb_cgroup_file_init(); 4252 4253 #ifdef CONFIG_SMP 4254 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4255 #else 4256 num_fault_mutexes = 1; 4257 #endif 4258 hugetlb_fault_mutex_table = 4259 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4260 GFP_KERNEL); 4261 BUG_ON(!hugetlb_fault_mutex_table); 4262 4263 for (i = 0; i < num_fault_mutexes; i++) 4264 mutex_init(&hugetlb_fault_mutex_table[i]); 4265 return 0; 4266 } 4267 subsys_initcall(hugetlb_init); 4268 4269 /* Overwritten by architectures with more huge page sizes */ 4270 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4271 { 4272 return size == HPAGE_SIZE; 4273 } 4274 4275 void __init hugetlb_add_hstate(unsigned int order) 4276 { 4277 struct hstate *h; 4278 unsigned long i; 4279 4280 if (size_to_hstate(PAGE_SIZE << order)) { 4281 return; 4282 } 4283 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4284 BUG_ON(order == 0); 4285 h = &hstates[hugetlb_max_hstate++]; 4286 mutex_init(&h->resize_lock); 4287 h->order = order; 4288 h->mask = ~(huge_page_size(h) - 1); 4289 for (i = 0; i < MAX_NUMNODES; ++i) 4290 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4291 INIT_LIST_HEAD(&h->hugepage_activelist); 4292 h->next_nid_to_alloc = first_memory_node; 4293 h->next_nid_to_free = first_memory_node; 4294 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4295 huge_page_size(h)/SZ_1K); 4296 4297 parsed_hstate = h; 4298 } 4299 4300 bool __init __weak hugetlb_node_alloc_supported(void) 4301 { 4302 return true; 4303 } 4304 4305 static void __init hugepages_clear_pages_in_node(void) 4306 { 4307 if (!hugetlb_max_hstate) { 4308 default_hstate_max_huge_pages = 0; 4309 memset(default_hugepages_in_node, 0, 4310 sizeof(default_hugepages_in_node)); 4311 } else { 4312 parsed_hstate->max_huge_pages = 0; 4313 memset(parsed_hstate->max_huge_pages_node, 0, 4314 sizeof(parsed_hstate->max_huge_pages_node)); 4315 } 4316 } 4317 4318 /* 4319 * hugepages command line processing 4320 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4321 * specification. If not, ignore the hugepages value. hugepages can also 4322 * be the first huge page command line option in which case it implicitly 4323 * specifies the number of huge pages for the default size. 4324 */ 4325 static int __init hugepages_setup(char *s) 4326 { 4327 unsigned long *mhp; 4328 static unsigned long *last_mhp; 4329 int node = NUMA_NO_NODE; 4330 int count; 4331 unsigned long tmp; 4332 char *p = s; 4333 4334 if (!parsed_valid_hugepagesz) { 4335 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4336 parsed_valid_hugepagesz = true; 4337 return 1; 4338 } 4339 4340 /* 4341 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4342 * yet, so this hugepages= parameter goes to the "default hstate". 4343 * Otherwise, it goes with the previously parsed hugepagesz or 4344 * default_hugepagesz. 4345 */ 4346 else if (!hugetlb_max_hstate) 4347 mhp = &default_hstate_max_huge_pages; 4348 else 4349 mhp = &parsed_hstate->max_huge_pages; 4350 4351 if (mhp == last_mhp) { 4352 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4353 return 1; 4354 } 4355 4356 while (*p) { 4357 count = 0; 4358 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4359 goto invalid; 4360 /* Parameter is node format */ 4361 if (p[count] == ':') { 4362 if (!hugetlb_node_alloc_supported()) { 4363 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4364 return 1; 4365 } 4366 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4367 goto invalid; 4368 node = array_index_nospec(tmp, MAX_NUMNODES); 4369 p += count + 1; 4370 /* Parse hugepages */ 4371 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4372 goto invalid; 4373 if (!hugetlb_max_hstate) 4374 default_hugepages_in_node[node] = tmp; 4375 else 4376 parsed_hstate->max_huge_pages_node[node] = tmp; 4377 *mhp += tmp; 4378 /* Go to parse next node*/ 4379 if (p[count] == ',') 4380 p += count + 1; 4381 else 4382 break; 4383 } else { 4384 if (p != s) 4385 goto invalid; 4386 *mhp = tmp; 4387 break; 4388 } 4389 } 4390 4391 /* 4392 * Global state is always initialized later in hugetlb_init. 4393 * But we need to allocate gigantic hstates here early to still 4394 * use the bootmem allocator. 4395 */ 4396 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4397 hugetlb_hstate_alloc_pages(parsed_hstate); 4398 4399 last_mhp = mhp; 4400 4401 return 1; 4402 4403 invalid: 4404 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4405 hugepages_clear_pages_in_node(); 4406 return 1; 4407 } 4408 __setup("hugepages=", hugepages_setup); 4409 4410 /* 4411 * hugepagesz command line processing 4412 * A specific huge page size can only be specified once with hugepagesz. 4413 * hugepagesz is followed by hugepages on the command line. The global 4414 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4415 * hugepagesz argument was valid. 4416 */ 4417 static int __init hugepagesz_setup(char *s) 4418 { 4419 unsigned long size; 4420 struct hstate *h; 4421 4422 parsed_valid_hugepagesz = false; 4423 size = (unsigned long)memparse(s, NULL); 4424 4425 if (!arch_hugetlb_valid_size(size)) { 4426 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4427 return 1; 4428 } 4429 4430 h = size_to_hstate(size); 4431 if (h) { 4432 /* 4433 * hstate for this size already exists. This is normally 4434 * an error, but is allowed if the existing hstate is the 4435 * default hstate. More specifically, it is only allowed if 4436 * the number of huge pages for the default hstate was not 4437 * previously specified. 4438 */ 4439 if (!parsed_default_hugepagesz || h != &default_hstate || 4440 default_hstate.max_huge_pages) { 4441 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4442 return 1; 4443 } 4444 4445 /* 4446 * No need to call hugetlb_add_hstate() as hstate already 4447 * exists. But, do set parsed_hstate so that a following 4448 * hugepages= parameter will be applied to this hstate. 4449 */ 4450 parsed_hstate = h; 4451 parsed_valid_hugepagesz = true; 4452 return 1; 4453 } 4454 4455 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4456 parsed_valid_hugepagesz = true; 4457 return 1; 4458 } 4459 __setup("hugepagesz=", hugepagesz_setup); 4460 4461 /* 4462 * default_hugepagesz command line input 4463 * Only one instance of default_hugepagesz allowed on command line. 4464 */ 4465 static int __init default_hugepagesz_setup(char *s) 4466 { 4467 unsigned long size; 4468 int i; 4469 4470 parsed_valid_hugepagesz = false; 4471 if (parsed_default_hugepagesz) { 4472 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4473 return 1; 4474 } 4475 4476 size = (unsigned long)memparse(s, NULL); 4477 4478 if (!arch_hugetlb_valid_size(size)) { 4479 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4480 return 1; 4481 } 4482 4483 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4484 parsed_valid_hugepagesz = true; 4485 parsed_default_hugepagesz = true; 4486 default_hstate_idx = hstate_index(size_to_hstate(size)); 4487 4488 /* 4489 * The number of default huge pages (for this size) could have been 4490 * specified as the first hugetlb parameter: hugepages=X. If so, 4491 * then default_hstate_max_huge_pages is set. If the default huge 4492 * page size is gigantic (>= MAX_ORDER), then the pages must be 4493 * allocated here from bootmem allocator. 4494 */ 4495 if (default_hstate_max_huge_pages) { 4496 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4497 for_each_online_node(i) 4498 default_hstate.max_huge_pages_node[i] = 4499 default_hugepages_in_node[i]; 4500 if (hstate_is_gigantic(&default_hstate)) 4501 hugetlb_hstate_alloc_pages(&default_hstate); 4502 default_hstate_max_huge_pages = 0; 4503 } 4504 4505 return 1; 4506 } 4507 __setup("default_hugepagesz=", default_hugepagesz_setup); 4508 4509 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4510 { 4511 #ifdef CONFIG_NUMA 4512 struct mempolicy *mpol = get_task_policy(current); 4513 4514 /* 4515 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4516 * (from policy_nodemask) specifically for hugetlb case 4517 */ 4518 if (mpol->mode == MPOL_BIND && 4519 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4520 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4521 return &mpol->nodes; 4522 #endif 4523 return NULL; 4524 } 4525 4526 static unsigned int allowed_mems_nr(struct hstate *h) 4527 { 4528 int node; 4529 unsigned int nr = 0; 4530 nodemask_t *mbind_nodemask; 4531 unsigned int *array = h->free_huge_pages_node; 4532 gfp_t gfp_mask = htlb_alloc_mask(h); 4533 4534 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4535 for_each_node_mask(node, cpuset_current_mems_allowed) { 4536 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4537 nr += array[node]; 4538 } 4539 4540 return nr; 4541 } 4542 4543 #ifdef CONFIG_SYSCTL 4544 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4545 void *buffer, size_t *length, 4546 loff_t *ppos, unsigned long *out) 4547 { 4548 struct ctl_table dup_table; 4549 4550 /* 4551 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4552 * can duplicate the @table and alter the duplicate of it. 4553 */ 4554 dup_table = *table; 4555 dup_table.data = out; 4556 4557 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4558 } 4559 4560 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4561 struct ctl_table *table, int write, 4562 void *buffer, size_t *length, loff_t *ppos) 4563 { 4564 struct hstate *h = &default_hstate; 4565 unsigned long tmp = h->max_huge_pages; 4566 int ret; 4567 4568 if (!hugepages_supported()) 4569 return -EOPNOTSUPP; 4570 4571 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4572 &tmp); 4573 if (ret) 4574 goto out; 4575 4576 if (write) 4577 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4578 NUMA_NO_NODE, tmp, *length); 4579 out: 4580 return ret; 4581 } 4582 4583 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4584 void *buffer, size_t *length, loff_t *ppos) 4585 { 4586 4587 return hugetlb_sysctl_handler_common(false, table, write, 4588 buffer, length, ppos); 4589 } 4590 4591 #ifdef CONFIG_NUMA 4592 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4593 void *buffer, size_t *length, loff_t *ppos) 4594 { 4595 return hugetlb_sysctl_handler_common(true, table, write, 4596 buffer, length, ppos); 4597 } 4598 #endif /* CONFIG_NUMA */ 4599 4600 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4601 void *buffer, size_t *length, loff_t *ppos) 4602 { 4603 struct hstate *h = &default_hstate; 4604 unsigned long tmp; 4605 int ret; 4606 4607 if (!hugepages_supported()) 4608 return -EOPNOTSUPP; 4609 4610 tmp = h->nr_overcommit_huge_pages; 4611 4612 if (write && hstate_is_gigantic(h)) 4613 return -EINVAL; 4614 4615 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4616 &tmp); 4617 if (ret) 4618 goto out; 4619 4620 if (write) { 4621 spin_lock_irq(&hugetlb_lock); 4622 h->nr_overcommit_huge_pages = tmp; 4623 spin_unlock_irq(&hugetlb_lock); 4624 } 4625 out: 4626 return ret; 4627 } 4628 4629 #endif /* CONFIG_SYSCTL */ 4630 4631 void hugetlb_report_meminfo(struct seq_file *m) 4632 { 4633 struct hstate *h; 4634 unsigned long total = 0; 4635 4636 if (!hugepages_supported()) 4637 return; 4638 4639 for_each_hstate(h) { 4640 unsigned long count = h->nr_huge_pages; 4641 4642 total += huge_page_size(h) * count; 4643 4644 if (h == &default_hstate) 4645 seq_printf(m, 4646 "HugePages_Total: %5lu\n" 4647 "HugePages_Free: %5lu\n" 4648 "HugePages_Rsvd: %5lu\n" 4649 "HugePages_Surp: %5lu\n" 4650 "Hugepagesize: %8lu kB\n", 4651 count, 4652 h->free_huge_pages, 4653 h->resv_huge_pages, 4654 h->surplus_huge_pages, 4655 huge_page_size(h) / SZ_1K); 4656 } 4657 4658 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4659 } 4660 4661 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4662 { 4663 struct hstate *h = &default_hstate; 4664 4665 if (!hugepages_supported()) 4666 return 0; 4667 4668 return sysfs_emit_at(buf, len, 4669 "Node %d HugePages_Total: %5u\n" 4670 "Node %d HugePages_Free: %5u\n" 4671 "Node %d HugePages_Surp: %5u\n", 4672 nid, h->nr_huge_pages_node[nid], 4673 nid, h->free_huge_pages_node[nid], 4674 nid, h->surplus_huge_pages_node[nid]); 4675 } 4676 4677 void hugetlb_show_meminfo_node(int nid) 4678 { 4679 struct hstate *h; 4680 4681 if (!hugepages_supported()) 4682 return; 4683 4684 for_each_hstate(h) 4685 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4686 nid, 4687 h->nr_huge_pages_node[nid], 4688 h->free_huge_pages_node[nid], 4689 h->surplus_huge_pages_node[nid], 4690 huge_page_size(h) / SZ_1K); 4691 } 4692 4693 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4694 { 4695 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4696 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 4697 } 4698 4699 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4700 unsigned long hugetlb_total_pages(void) 4701 { 4702 struct hstate *h; 4703 unsigned long nr_total_pages = 0; 4704 4705 for_each_hstate(h) 4706 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4707 return nr_total_pages; 4708 } 4709 4710 static int hugetlb_acct_memory(struct hstate *h, long delta) 4711 { 4712 int ret = -ENOMEM; 4713 4714 if (!delta) 4715 return 0; 4716 4717 spin_lock_irq(&hugetlb_lock); 4718 /* 4719 * When cpuset is configured, it breaks the strict hugetlb page 4720 * reservation as the accounting is done on a global variable. Such 4721 * reservation is completely rubbish in the presence of cpuset because 4722 * the reservation is not checked against page availability for the 4723 * current cpuset. Application can still potentially OOM'ed by kernel 4724 * with lack of free htlb page in cpuset that the task is in. 4725 * Attempt to enforce strict accounting with cpuset is almost 4726 * impossible (or too ugly) because cpuset is too fluid that 4727 * task or memory node can be dynamically moved between cpusets. 4728 * 4729 * The change of semantics for shared hugetlb mapping with cpuset is 4730 * undesirable. However, in order to preserve some of the semantics, 4731 * we fall back to check against current free page availability as 4732 * a best attempt and hopefully to minimize the impact of changing 4733 * semantics that cpuset has. 4734 * 4735 * Apart from cpuset, we also have memory policy mechanism that 4736 * also determines from which node the kernel will allocate memory 4737 * in a NUMA system. So similar to cpuset, we also should consider 4738 * the memory policy of the current task. Similar to the description 4739 * above. 4740 */ 4741 if (delta > 0) { 4742 if (gather_surplus_pages(h, delta) < 0) 4743 goto out; 4744 4745 if (delta > allowed_mems_nr(h)) { 4746 return_unused_surplus_pages(h, delta); 4747 goto out; 4748 } 4749 } 4750 4751 ret = 0; 4752 if (delta < 0) 4753 return_unused_surplus_pages(h, (unsigned long) -delta); 4754 4755 out: 4756 spin_unlock_irq(&hugetlb_lock); 4757 return ret; 4758 } 4759 4760 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4761 { 4762 struct resv_map *resv = vma_resv_map(vma); 4763 4764 /* 4765 * HPAGE_RESV_OWNER indicates a private mapping. 4766 * This new VMA should share its siblings reservation map if present. 4767 * The VMA will only ever have a valid reservation map pointer where 4768 * it is being copied for another still existing VMA. As that VMA 4769 * has a reference to the reservation map it cannot disappear until 4770 * after this open call completes. It is therefore safe to take a 4771 * new reference here without additional locking. 4772 */ 4773 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4774 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4775 kref_get(&resv->refs); 4776 } 4777 4778 /* 4779 * vma_lock structure for sharable mappings is vma specific. 4780 * Clear old pointer (if copied via vm_area_dup) and allocate 4781 * new structure. Before clearing, make sure vma_lock is not 4782 * for this vma. 4783 */ 4784 if (vma->vm_flags & VM_MAYSHARE) { 4785 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 4786 4787 if (vma_lock) { 4788 if (vma_lock->vma != vma) { 4789 vma->vm_private_data = NULL; 4790 hugetlb_vma_lock_alloc(vma); 4791 } else 4792 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 4793 } else 4794 hugetlb_vma_lock_alloc(vma); 4795 } 4796 } 4797 4798 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4799 { 4800 struct hstate *h = hstate_vma(vma); 4801 struct resv_map *resv; 4802 struct hugepage_subpool *spool = subpool_vma(vma); 4803 unsigned long reserve, start, end; 4804 long gbl_reserve; 4805 4806 hugetlb_vma_lock_free(vma); 4807 4808 resv = vma_resv_map(vma); 4809 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4810 return; 4811 4812 start = vma_hugecache_offset(h, vma, vma->vm_start); 4813 end = vma_hugecache_offset(h, vma, vma->vm_end); 4814 4815 reserve = (end - start) - region_count(resv, start, end); 4816 hugetlb_cgroup_uncharge_counter(resv, start, end); 4817 if (reserve) { 4818 /* 4819 * Decrement reserve counts. The global reserve count may be 4820 * adjusted if the subpool has a minimum size. 4821 */ 4822 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4823 hugetlb_acct_memory(h, -gbl_reserve); 4824 } 4825 4826 kref_put(&resv->refs, resv_map_release); 4827 } 4828 4829 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4830 { 4831 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4832 return -EINVAL; 4833 4834 /* 4835 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 4836 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 4837 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 4838 */ 4839 if (addr & ~PUD_MASK) { 4840 /* 4841 * hugetlb_vm_op_split is called right before we attempt to 4842 * split the VMA. We will need to unshare PMDs in the old and 4843 * new VMAs, so let's unshare before we split. 4844 */ 4845 unsigned long floor = addr & PUD_MASK; 4846 unsigned long ceil = floor + PUD_SIZE; 4847 4848 if (floor >= vma->vm_start && ceil <= vma->vm_end) 4849 hugetlb_unshare_pmds(vma, floor, ceil); 4850 } 4851 4852 return 0; 4853 } 4854 4855 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4856 { 4857 return huge_page_size(hstate_vma(vma)); 4858 } 4859 4860 /* 4861 * We cannot handle pagefaults against hugetlb pages at all. They cause 4862 * handle_mm_fault() to try to instantiate regular-sized pages in the 4863 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4864 * this far. 4865 */ 4866 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4867 { 4868 BUG(); 4869 return 0; 4870 } 4871 4872 /* 4873 * When a new function is introduced to vm_operations_struct and added 4874 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4875 * This is because under System V memory model, mappings created via 4876 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4877 * their original vm_ops are overwritten with shm_vm_ops. 4878 */ 4879 const struct vm_operations_struct hugetlb_vm_ops = { 4880 .fault = hugetlb_vm_op_fault, 4881 .open = hugetlb_vm_op_open, 4882 .close = hugetlb_vm_op_close, 4883 .may_split = hugetlb_vm_op_split, 4884 .pagesize = hugetlb_vm_op_pagesize, 4885 }; 4886 4887 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4888 int writable) 4889 { 4890 pte_t entry; 4891 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4892 4893 if (writable) { 4894 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4895 vma->vm_page_prot))); 4896 } else { 4897 entry = huge_pte_wrprotect(mk_huge_pte(page, 4898 vma->vm_page_prot)); 4899 } 4900 entry = pte_mkyoung(entry); 4901 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4902 4903 return entry; 4904 } 4905 4906 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4907 unsigned long address, pte_t *ptep) 4908 { 4909 pte_t entry; 4910 4911 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4912 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4913 update_mmu_cache(vma, address, ptep); 4914 } 4915 4916 bool is_hugetlb_entry_migration(pte_t pte) 4917 { 4918 swp_entry_t swp; 4919 4920 if (huge_pte_none(pte) || pte_present(pte)) 4921 return false; 4922 swp = pte_to_swp_entry(pte); 4923 if (is_migration_entry(swp)) 4924 return true; 4925 else 4926 return false; 4927 } 4928 4929 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4930 { 4931 swp_entry_t swp; 4932 4933 if (huge_pte_none(pte) || pte_present(pte)) 4934 return false; 4935 swp = pte_to_swp_entry(pte); 4936 if (is_hwpoison_entry(swp)) 4937 return true; 4938 else 4939 return false; 4940 } 4941 4942 static void 4943 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4944 struct page *new_page) 4945 { 4946 __SetPageUptodate(new_page); 4947 hugepage_add_new_anon_rmap(new_page, vma, addr); 4948 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 4949 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 4950 SetHPageMigratable(new_page); 4951 } 4952 4953 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 4954 struct vm_area_struct *dst_vma, 4955 struct vm_area_struct *src_vma) 4956 { 4957 pte_t *src_pte, *dst_pte, entry; 4958 struct page *ptepage; 4959 unsigned long addr; 4960 bool cow = is_cow_mapping(src_vma->vm_flags); 4961 struct hstate *h = hstate_vma(src_vma); 4962 unsigned long sz = huge_page_size(h); 4963 unsigned long npages = pages_per_huge_page(h); 4964 struct mmu_notifier_range range; 4965 unsigned long last_addr_mask; 4966 int ret = 0; 4967 4968 if (cow) { 4969 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src, 4970 src_vma->vm_start, 4971 src_vma->vm_end); 4972 mmu_notifier_invalidate_range_start(&range); 4973 mmap_assert_write_locked(src); 4974 raw_write_seqcount_begin(&src->write_protect_seq); 4975 } else { 4976 /* 4977 * For shared mappings the vma lock must be held before 4978 * calling hugetlb_walk() in the src vma. Otherwise, the 4979 * returned ptep could go away if part of a shared pmd and 4980 * another thread calls huge_pmd_unshare. 4981 */ 4982 hugetlb_vma_lock_read(src_vma); 4983 } 4984 4985 last_addr_mask = hugetlb_mask_last_page(h); 4986 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 4987 spinlock_t *src_ptl, *dst_ptl; 4988 src_pte = hugetlb_walk(src_vma, addr, sz); 4989 if (!src_pte) { 4990 addr |= last_addr_mask; 4991 continue; 4992 } 4993 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 4994 if (!dst_pte) { 4995 ret = -ENOMEM; 4996 break; 4997 } 4998 4999 /* 5000 * If the pagetables are shared don't copy or take references. 5001 * 5002 * dst_pte == src_pte is the common case of src/dest sharing. 5003 * However, src could have 'unshared' and dst shares with 5004 * another vma. So page_count of ptep page is checked instead 5005 * to reliably determine whether pte is shared. 5006 */ 5007 if (page_count(virt_to_page(dst_pte)) > 1) { 5008 addr |= last_addr_mask; 5009 continue; 5010 } 5011 5012 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5013 src_ptl = huge_pte_lockptr(h, src, src_pte); 5014 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5015 entry = huge_ptep_get(src_pte); 5016 again: 5017 if (huge_pte_none(entry)) { 5018 /* 5019 * Skip if src entry none. 5020 */ 5021 ; 5022 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5023 bool uffd_wp = huge_pte_uffd_wp(entry); 5024 5025 if (!userfaultfd_wp(dst_vma) && uffd_wp) 5026 entry = huge_pte_clear_uffd_wp(entry); 5027 set_huge_pte_at(dst, addr, dst_pte, entry); 5028 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5029 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5030 bool uffd_wp = huge_pte_uffd_wp(entry); 5031 5032 if (!is_readable_migration_entry(swp_entry) && cow) { 5033 /* 5034 * COW mappings require pages in both 5035 * parent and child to be set to read. 5036 */ 5037 swp_entry = make_readable_migration_entry( 5038 swp_offset(swp_entry)); 5039 entry = swp_entry_to_pte(swp_entry); 5040 if (userfaultfd_wp(src_vma) && uffd_wp) 5041 entry = huge_pte_mkuffd_wp(entry); 5042 set_huge_pte_at(src, addr, src_pte, entry); 5043 } 5044 if (!userfaultfd_wp(dst_vma) && uffd_wp) 5045 entry = huge_pte_clear_uffd_wp(entry); 5046 set_huge_pte_at(dst, addr, dst_pte, entry); 5047 } else if (unlikely(is_pte_marker(entry))) { 5048 /* No swap on hugetlb */ 5049 WARN_ON_ONCE( 5050 is_swapin_error_entry(pte_to_swp_entry(entry))); 5051 /* 5052 * We copy the pte marker only if the dst vma has 5053 * uffd-wp enabled. 5054 */ 5055 if (userfaultfd_wp(dst_vma)) 5056 set_huge_pte_at(dst, addr, dst_pte, entry); 5057 } else { 5058 entry = huge_ptep_get(src_pte); 5059 ptepage = pte_page(entry); 5060 get_page(ptepage); 5061 5062 /* 5063 * Failing to duplicate the anon rmap is a rare case 5064 * where we see pinned hugetlb pages while they're 5065 * prone to COW. We need to do the COW earlier during 5066 * fork. 5067 * 5068 * When pre-allocating the page or copying data, we 5069 * need to be without the pgtable locks since we could 5070 * sleep during the process. 5071 */ 5072 if (!PageAnon(ptepage)) { 5073 page_dup_file_rmap(ptepage, true); 5074 } else if (page_try_dup_anon_rmap(ptepage, true, 5075 src_vma)) { 5076 pte_t src_pte_old = entry; 5077 struct page *new; 5078 5079 spin_unlock(src_ptl); 5080 spin_unlock(dst_ptl); 5081 /* Do not use reserve as it's private owned */ 5082 new = alloc_huge_page(dst_vma, addr, 1); 5083 if (IS_ERR(new)) { 5084 put_page(ptepage); 5085 ret = PTR_ERR(new); 5086 break; 5087 } 5088 copy_user_huge_page(new, ptepage, addr, dst_vma, 5089 npages); 5090 put_page(ptepage); 5091 5092 /* Install the new huge page if src pte stable */ 5093 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5094 src_ptl = huge_pte_lockptr(h, src, src_pte); 5095 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5096 entry = huge_ptep_get(src_pte); 5097 if (!pte_same(src_pte_old, entry)) { 5098 restore_reserve_on_error(h, dst_vma, addr, 5099 new); 5100 put_page(new); 5101 /* huge_ptep of dst_pte won't change as in child */ 5102 goto again; 5103 } 5104 hugetlb_install_page(dst_vma, dst_pte, addr, new); 5105 spin_unlock(src_ptl); 5106 spin_unlock(dst_ptl); 5107 continue; 5108 } 5109 5110 if (cow) { 5111 /* 5112 * No need to notify as we are downgrading page 5113 * table protection not changing it to point 5114 * to a new page. 5115 * 5116 * See Documentation/mm/mmu_notifier.rst 5117 */ 5118 huge_ptep_set_wrprotect(src, addr, src_pte); 5119 entry = huge_pte_wrprotect(entry); 5120 } 5121 5122 set_huge_pte_at(dst, addr, dst_pte, entry); 5123 hugetlb_count_add(npages, dst); 5124 } 5125 spin_unlock(src_ptl); 5126 spin_unlock(dst_ptl); 5127 } 5128 5129 if (cow) { 5130 raw_write_seqcount_end(&src->write_protect_seq); 5131 mmu_notifier_invalidate_range_end(&range); 5132 } else { 5133 hugetlb_vma_unlock_read(src_vma); 5134 } 5135 5136 return ret; 5137 } 5138 5139 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5140 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) 5141 { 5142 struct hstate *h = hstate_vma(vma); 5143 struct mm_struct *mm = vma->vm_mm; 5144 spinlock_t *src_ptl, *dst_ptl; 5145 pte_t pte; 5146 5147 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5148 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5149 5150 /* 5151 * We don't have to worry about the ordering of src and dst ptlocks 5152 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5153 */ 5154 if (src_ptl != dst_ptl) 5155 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5156 5157 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5158 set_huge_pte_at(mm, new_addr, dst_pte, pte); 5159 5160 if (src_ptl != dst_ptl) 5161 spin_unlock(src_ptl); 5162 spin_unlock(dst_ptl); 5163 } 5164 5165 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5166 struct vm_area_struct *new_vma, 5167 unsigned long old_addr, unsigned long new_addr, 5168 unsigned long len) 5169 { 5170 struct hstate *h = hstate_vma(vma); 5171 struct address_space *mapping = vma->vm_file->f_mapping; 5172 unsigned long sz = huge_page_size(h); 5173 struct mm_struct *mm = vma->vm_mm; 5174 unsigned long old_end = old_addr + len; 5175 unsigned long last_addr_mask; 5176 pte_t *src_pte, *dst_pte; 5177 struct mmu_notifier_range range; 5178 bool shared_pmd = false; 5179 5180 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr, 5181 old_end); 5182 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5183 /* 5184 * In case of shared PMDs, we should cover the maximum possible 5185 * range. 5186 */ 5187 flush_cache_range(vma, range.start, range.end); 5188 5189 mmu_notifier_invalidate_range_start(&range); 5190 last_addr_mask = hugetlb_mask_last_page(h); 5191 /* Prevent race with file truncation */ 5192 hugetlb_vma_lock_write(vma); 5193 i_mmap_lock_write(mapping); 5194 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5195 src_pte = hugetlb_walk(vma, old_addr, sz); 5196 if (!src_pte) { 5197 old_addr |= last_addr_mask; 5198 new_addr |= last_addr_mask; 5199 continue; 5200 } 5201 if (huge_pte_none(huge_ptep_get(src_pte))) 5202 continue; 5203 5204 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5205 shared_pmd = true; 5206 old_addr |= last_addr_mask; 5207 new_addr |= last_addr_mask; 5208 continue; 5209 } 5210 5211 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5212 if (!dst_pte) 5213 break; 5214 5215 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); 5216 } 5217 5218 if (shared_pmd) 5219 flush_tlb_range(vma, range.start, range.end); 5220 else 5221 flush_tlb_range(vma, old_end - len, old_end); 5222 mmu_notifier_invalidate_range_end(&range); 5223 i_mmap_unlock_write(mapping); 5224 hugetlb_vma_unlock_write(vma); 5225 5226 return len + old_addr - old_end; 5227 } 5228 5229 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5230 unsigned long start, unsigned long end, 5231 struct page *ref_page, zap_flags_t zap_flags) 5232 { 5233 struct mm_struct *mm = vma->vm_mm; 5234 unsigned long address; 5235 pte_t *ptep; 5236 pte_t pte; 5237 spinlock_t *ptl; 5238 struct page *page; 5239 struct hstate *h = hstate_vma(vma); 5240 unsigned long sz = huge_page_size(h); 5241 unsigned long last_addr_mask; 5242 bool force_flush = false; 5243 5244 WARN_ON(!is_vm_hugetlb_page(vma)); 5245 BUG_ON(start & ~huge_page_mask(h)); 5246 BUG_ON(end & ~huge_page_mask(h)); 5247 5248 /* 5249 * This is a hugetlb vma, all the pte entries should point 5250 * to huge page. 5251 */ 5252 tlb_change_page_size(tlb, sz); 5253 tlb_start_vma(tlb, vma); 5254 5255 last_addr_mask = hugetlb_mask_last_page(h); 5256 address = start; 5257 for (; address < end; address += sz) { 5258 ptep = hugetlb_walk(vma, address, sz); 5259 if (!ptep) { 5260 address |= last_addr_mask; 5261 continue; 5262 } 5263 5264 ptl = huge_pte_lock(h, mm, ptep); 5265 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5266 spin_unlock(ptl); 5267 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5268 force_flush = true; 5269 address |= last_addr_mask; 5270 continue; 5271 } 5272 5273 pte = huge_ptep_get(ptep); 5274 if (huge_pte_none(pte)) { 5275 spin_unlock(ptl); 5276 continue; 5277 } 5278 5279 /* 5280 * Migrating hugepage or HWPoisoned hugepage is already 5281 * unmapped and its refcount is dropped, so just clear pte here. 5282 */ 5283 if (unlikely(!pte_present(pte))) { 5284 /* 5285 * If the pte was wr-protected by uffd-wp in any of the 5286 * swap forms, meanwhile the caller does not want to 5287 * drop the uffd-wp bit in this zap, then replace the 5288 * pte with a marker. 5289 */ 5290 if (pte_swp_uffd_wp_any(pte) && 5291 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5292 set_huge_pte_at(mm, address, ptep, 5293 make_pte_marker(PTE_MARKER_UFFD_WP)); 5294 else 5295 huge_pte_clear(mm, address, ptep, sz); 5296 spin_unlock(ptl); 5297 continue; 5298 } 5299 5300 page = pte_page(pte); 5301 /* 5302 * If a reference page is supplied, it is because a specific 5303 * page is being unmapped, not a range. Ensure the page we 5304 * are about to unmap is the actual page of interest. 5305 */ 5306 if (ref_page) { 5307 if (page != ref_page) { 5308 spin_unlock(ptl); 5309 continue; 5310 } 5311 /* 5312 * Mark the VMA as having unmapped its page so that 5313 * future faults in this VMA will fail rather than 5314 * looking like data was lost 5315 */ 5316 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5317 } 5318 5319 pte = huge_ptep_get_and_clear(mm, address, ptep); 5320 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5321 if (huge_pte_dirty(pte)) 5322 set_page_dirty(page); 5323 /* Leave a uffd-wp pte marker if needed */ 5324 if (huge_pte_uffd_wp(pte) && 5325 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5326 set_huge_pte_at(mm, address, ptep, 5327 make_pte_marker(PTE_MARKER_UFFD_WP)); 5328 hugetlb_count_sub(pages_per_huge_page(h), mm); 5329 page_remove_rmap(page, vma, true); 5330 5331 spin_unlock(ptl); 5332 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5333 /* 5334 * Bail out after unmapping reference page if supplied 5335 */ 5336 if (ref_page) 5337 break; 5338 } 5339 tlb_end_vma(tlb, vma); 5340 5341 /* 5342 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5343 * could defer the flush until now, since by holding i_mmap_rwsem we 5344 * guaranteed that the last refernece would not be dropped. But we must 5345 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5346 * dropped and the last reference to the shared PMDs page might be 5347 * dropped as well. 5348 * 5349 * In theory we could defer the freeing of the PMD pages as well, but 5350 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5351 * detect sharing, so we cannot defer the release of the page either. 5352 * Instead, do flush now. 5353 */ 5354 if (force_flush) 5355 tlb_flush_mmu_tlbonly(tlb); 5356 } 5357 5358 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5359 struct vm_area_struct *vma, unsigned long start, 5360 unsigned long end, struct page *ref_page, 5361 zap_flags_t zap_flags) 5362 { 5363 hugetlb_vma_lock_write(vma); 5364 i_mmap_lock_write(vma->vm_file->f_mapping); 5365 5366 /* mmu notification performed in caller */ 5367 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); 5368 5369 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5370 /* 5371 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5372 * When the vma_lock is freed, this makes the vma ineligible 5373 * for pmd sharing. And, i_mmap_rwsem is required to set up 5374 * pmd sharing. This is important as page tables for this 5375 * unmapped range will be asynchrously deleted. If the page 5376 * tables are shared, there will be issues when accessed by 5377 * someone else. 5378 */ 5379 __hugetlb_vma_unlock_write_free(vma); 5380 i_mmap_unlock_write(vma->vm_file->f_mapping); 5381 } else { 5382 i_mmap_unlock_write(vma->vm_file->f_mapping); 5383 hugetlb_vma_unlock_write(vma); 5384 } 5385 } 5386 5387 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5388 unsigned long end, struct page *ref_page, 5389 zap_flags_t zap_flags) 5390 { 5391 struct mmu_notifier_range range; 5392 struct mmu_gather tlb; 5393 5394 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 5395 start, end); 5396 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5397 mmu_notifier_invalidate_range_start(&range); 5398 tlb_gather_mmu(&tlb, vma->vm_mm); 5399 5400 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5401 5402 mmu_notifier_invalidate_range_end(&range); 5403 tlb_finish_mmu(&tlb); 5404 } 5405 5406 /* 5407 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5408 * mapping it owns the reserve page for. The intention is to unmap the page 5409 * from other VMAs and let the children be SIGKILLed if they are faulting the 5410 * same region. 5411 */ 5412 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5413 struct page *page, unsigned long address) 5414 { 5415 struct hstate *h = hstate_vma(vma); 5416 struct vm_area_struct *iter_vma; 5417 struct address_space *mapping; 5418 pgoff_t pgoff; 5419 5420 /* 5421 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5422 * from page cache lookup which is in HPAGE_SIZE units. 5423 */ 5424 address = address & huge_page_mask(h); 5425 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5426 vma->vm_pgoff; 5427 mapping = vma->vm_file->f_mapping; 5428 5429 /* 5430 * Take the mapping lock for the duration of the table walk. As 5431 * this mapping should be shared between all the VMAs, 5432 * __unmap_hugepage_range() is called as the lock is already held 5433 */ 5434 i_mmap_lock_write(mapping); 5435 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5436 /* Do not unmap the current VMA */ 5437 if (iter_vma == vma) 5438 continue; 5439 5440 /* 5441 * Shared VMAs have their own reserves and do not affect 5442 * MAP_PRIVATE accounting but it is possible that a shared 5443 * VMA is using the same page so check and skip such VMAs. 5444 */ 5445 if (iter_vma->vm_flags & VM_MAYSHARE) 5446 continue; 5447 5448 /* 5449 * Unmap the page from other VMAs without their own reserves. 5450 * They get marked to be SIGKILLed if they fault in these 5451 * areas. This is because a future no-page fault on this VMA 5452 * could insert a zeroed page instead of the data existing 5453 * from the time of fork. This would look like data corruption 5454 */ 5455 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5456 unmap_hugepage_range(iter_vma, address, 5457 address + huge_page_size(h), page, 0); 5458 } 5459 i_mmap_unlock_write(mapping); 5460 } 5461 5462 /* 5463 * hugetlb_wp() should be called with page lock of the original hugepage held. 5464 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5465 * cannot race with other handlers or page migration. 5466 * Keep the pte_same checks anyway to make transition from the mutex easier. 5467 */ 5468 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5469 unsigned long address, pte_t *ptep, unsigned int flags, 5470 struct page *pagecache_page, spinlock_t *ptl) 5471 { 5472 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5473 pte_t pte; 5474 struct hstate *h = hstate_vma(vma); 5475 struct page *old_page, *new_page; 5476 int outside_reserve = 0; 5477 vm_fault_t ret = 0; 5478 unsigned long haddr = address & huge_page_mask(h); 5479 struct mmu_notifier_range range; 5480 5481 /* 5482 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5483 * PTE mapped R/O such as maybe_mkwrite() would do. 5484 */ 5485 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5486 return VM_FAULT_SIGSEGV; 5487 5488 /* Let's take out MAP_SHARED mappings first. */ 5489 if (vma->vm_flags & VM_MAYSHARE) { 5490 set_huge_ptep_writable(vma, haddr, ptep); 5491 return 0; 5492 } 5493 5494 pte = huge_ptep_get(ptep); 5495 old_page = pte_page(pte); 5496 5497 delayacct_wpcopy_start(); 5498 5499 retry_avoidcopy: 5500 /* 5501 * If no-one else is actually using this page, we're the exclusive 5502 * owner and can reuse this page. 5503 */ 5504 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 5505 if (!PageAnonExclusive(old_page)) 5506 page_move_anon_rmap(old_page, vma); 5507 if (likely(!unshare)) 5508 set_huge_ptep_writable(vma, haddr, ptep); 5509 5510 delayacct_wpcopy_end(); 5511 return 0; 5512 } 5513 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page), 5514 old_page); 5515 5516 /* 5517 * If the process that created a MAP_PRIVATE mapping is about to 5518 * perform a COW due to a shared page count, attempt to satisfy 5519 * the allocation without using the existing reserves. The pagecache 5520 * page is used to determine if the reserve at this address was 5521 * consumed or not. If reserves were used, a partial faulted mapping 5522 * at the time of fork() could consume its reserves on COW instead 5523 * of the full address range. 5524 */ 5525 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5526 old_page != pagecache_page) 5527 outside_reserve = 1; 5528 5529 get_page(old_page); 5530 5531 /* 5532 * Drop page table lock as buddy allocator may be called. It will 5533 * be acquired again before returning to the caller, as expected. 5534 */ 5535 spin_unlock(ptl); 5536 new_page = alloc_huge_page(vma, haddr, outside_reserve); 5537 5538 if (IS_ERR(new_page)) { 5539 /* 5540 * If a process owning a MAP_PRIVATE mapping fails to COW, 5541 * it is due to references held by a child and an insufficient 5542 * huge page pool. To guarantee the original mappers 5543 * reliability, unmap the page from child processes. The child 5544 * may get SIGKILLed if it later faults. 5545 */ 5546 if (outside_reserve) { 5547 struct address_space *mapping = vma->vm_file->f_mapping; 5548 pgoff_t idx; 5549 u32 hash; 5550 5551 put_page(old_page); 5552 /* 5553 * Drop hugetlb_fault_mutex and vma_lock before 5554 * unmapping. unmapping needs to hold vma_lock 5555 * in write mode. Dropping vma_lock in read mode 5556 * here is OK as COW mappings do not interact with 5557 * PMD sharing. 5558 * 5559 * Reacquire both after unmap operation. 5560 */ 5561 idx = vma_hugecache_offset(h, vma, haddr); 5562 hash = hugetlb_fault_mutex_hash(mapping, idx); 5563 hugetlb_vma_unlock_read(vma); 5564 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5565 5566 unmap_ref_private(mm, vma, old_page, haddr); 5567 5568 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5569 hugetlb_vma_lock_read(vma); 5570 spin_lock(ptl); 5571 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5572 if (likely(ptep && 5573 pte_same(huge_ptep_get(ptep), pte))) 5574 goto retry_avoidcopy; 5575 /* 5576 * race occurs while re-acquiring page table 5577 * lock, and our job is done. 5578 */ 5579 delayacct_wpcopy_end(); 5580 return 0; 5581 } 5582 5583 ret = vmf_error(PTR_ERR(new_page)); 5584 goto out_release_old; 5585 } 5586 5587 /* 5588 * When the original hugepage is shared one, it does not have 5589 * anon_vma prepared. 5590 */ 5591 if (unlikely(anon_vma_prepare(vma))) { 5592 ret = VM_FAULT_OOM; 5593 goto out_release_all; 5594 } 5595 5596 copy_user_huge_page(new_page, old_page, address, vma, 5597 pages_per_huge_page(h)); 5598 __SetPageUptodate(new_page); 5599 5600 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 5601 haddr + huge_page_size(h)); 5602 mmu_notifier_invalidate_range_start(&range); 5603 5604 /* 5605 * Retake the page table lock to check for racing updates 5606 * before the page tables are altered 5607 */ 5608 spin_lock(ptl); 5609 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5610 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5611 /* Break COW or unshare */ 5612 huge_ptep_clear_flush(vma, haddr, ptep); 5613 mmu_notifier_invalidate_range(mm, range.start, range.end); 5614 page_remove_rmap(old_page, vma, true); 5615 hugepage_add_new_anon_rmap(new_page, vma, haddr); 5616 set_huge_pte_at(mm, haddr, ptep, 5617 make_huge_pte(vma, new_page, !unshare)); 5618 SetHPageMigratable(new_page); 5619 /* Make the old page be freed below */ 5620 new_page = old_page; 5621 } 5622 spin_unlock(ptl); 5623 mmu_notifier_invalidate_range_end(&range); 5624 out_release_all: 5625 /* 5626 * No restore in case of successful pagetable update (Break COW or 5627 * unshare) 5628 */ 5629 if (new_page != old_page) 5630 restore_reserve_on_error(h, vma, haddr, new_page); 5631 put_page(new_page); 5632 out_release_old: 5633 put_page(old_page); 5634 5635 spin_lock(ptl); /* Caller expects lock to be held */ 5636 5637 delayacct_wpcopy_end(); 5638 return ret; 5639 } 5640 5641 /* 5642 * Return whether there is a pagecache page to back given address within VMA. 5643 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 5644 */ 5645 static bool hugetlbfs_pagecache_present(struct hstate *h, 5646 struct vm_area_struct *vma, unsigned long address) 5647 { 5648 struct address_space *mapping; 5649 pgoff_t idx; 5650 struct page *page; 5651 5652 mapping = vma->vm_file->f_mapping; 5653 idx = vma_hugecache_offset(h, vma, address); 5654 5655 page = find_get_page(mapping, idx); 5656 if (page) 5657 put_page(page); 5658 return page != NULL; 5659 } 5660 5661 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping, 5662 pgoff_t idx) 5663 { 5664 struct folio *folio = page_folio(page); 5665 struct inode *inode = mapping->host; 5666 struct hstate *h = hstate_inode(inode); 5667 int err; 5668 5669 __folio_set_locked(folio); 5670 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5671 5672 if (unlikely(err)) { 5673 __folio_clear_locked(folio); 5674 return err; 5675 } 5676 ClearHPageRestoreReserve(page); 5677 5678 /* 5679 * mark folio dirty so that it will not be removed from cache/file 5680 * by non-hugetlbfs specific code paths. 5681 */ 5682 folio_mark_dirty(folio); 5683 5684 spin_lock(&inode->i_lock); 5685 inode->i_blocks += blocks_per_huge_page(h); 5686 spin_unlock(&inode->i_lock); 5687 return 0; 5688 } 5689 5690 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5691 struct address_space *mapping, 5692 pgoff_t idx, 5693 unsigned int flags, 5694 unsigned long haddr, 5695 unsigned long addr, 5696 unsigned long reason) 5697 { 5698 u32 hash; 5699 struct vm_fault vmf = { 5700 .vma = vma, 5701 .address = haddr, 5702 .real_address = addr, 5703 .flags = flags, 5704 5705 /* 5706 * Hard to debug if it ends up being 5707 * used by a callee that assumes 5708 * something about the other 5709 * uninitialized fields... same as in 5710 * memory.c 5711 */ 5712 }; 5713 5714 /* 5715 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5716 * userfault. Also mmap_lock could be dropped due to handling 5717 * userfault, any vma operation should be careful from here. 5718 */ 5719 hugetlb_vma_unlock_read(vma); 5720 hash = hugetlb_fault_mutex_hash(mapping, idx); 5721 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5722 return handle_userfault(&vmf, reason); 5723 } 5724 5725 /* 5726 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5727 * false if pte changed or is changing. 5728 */ 5729 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 5730 pte_t *ptep, pte_t old_pte) 5731 { 5732 spinlock_t *ptl; 5733 bool same; 5734 5735 ptl = huge_pte_lock(h, mm, ptep); 5736 same = pte_same(huge_ptep_get(ptep), old_pte); 5737 spin_unlock(ptl); 5738 5739 return same; 5740 } 5741 5742 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5743 struct vm_area_struct *vma, 5744 struct address_space *mapping, pgoff_t idx, 5745 unsigned long address, pte_t *ptep, 5746 pte_t old_pte, unsigned int flags) 5747 { 5748 struct hstate *h = hstate_vma(vma); 5749 vm_fault_t ret = VM_FAULT_SIGBUS; 5750 int anon_rmap = 0; 5751 unsigned long size; 5752 struct page *page; 5753 pte_t new_pte; 5754 spinlock_t *ptl; 5755 unsigned long haddr = address & huge_page_mask(h); 5756 bool new_page, new_pagecache_page = false; 5757 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 5758 5759 /* 5760 * Currently, we are forced to kill the process in the event the 5761 * original mapper has unmapped pages from the child due to a failed 5762 * COW/unsharing. Warn that such a situation has occurred as it may not 5763 * be obvious. 5764 */ 5765 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5766 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5767 current->pid); 5768 goto out; 5769 } 5770 5771 /* 5772 * Use page lock to guard against racing truncation 5773 * before we get page_table_lock. 5774 */ 5775 new_page = false; 5776 page = find_lock_page(mapping, idx); 5777 if (!page) { 5778 size = i_size_read(mapping->host) >> huge_page_shift(h); 5779 if (idx >= size) 5780 goto out; 5781 /* Check for page in userfault range */ 5782 if (userfaultfd_missing(vma)) { 5783 /* 5784 * Since hugetlb_no_page() was examining pte 5785 * without pgtable lock, we need to re-test under 5786 * lock because the pte may not be stable and could 5787 * have changed from under us. Try to detect 5788 * either changed or during-changing ptes and retry 5789 * properly when needed. 5790 * 5791 * Note that userfaultfd is actually fine with 5792 * false positives (e.g. caused by pte changed), 5793 * but not wrong logical events (e.g. caused by 5794 * reading a pte during changing). The latter can 5795 * confuse the userspace, so the strictness is very 5796 * much preferred. E.g., MISSING event should 5797 * never happen on the page after UFFDIO_COPY has 5798 * correctly installed the page and returned. 5799 */ 5800 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5801 ret = 0; 5802 goto out; 5803 } 5804 5805 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5806 haddr, address, 5807 VM_UFFD_MISSING); 5808 } 5809 5810 page = alloc_huge_page(vma, haddr, 0); 5811 if (IS_ERR(page)) { 5812 /* 5813 * Returning error will result in faulting task being 5814 * sent SIGBUS. The hugetlb fault mutex prevents two 5815 * tasks from racing to fault in the same page which 5816 * could result in false unable to allocate errors. 5817 * Page migration does not take the fault mutex, but 5818 * does a clear then write of pte's under page table 5819 * lock. Page fault code could race with migration, 5820 * notice the clear pte and try to allocate a page 5821 * here. Before returning error, get ptl and make 5822 * sure there really is no pte entry. 5823 */ 5824 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 5825 ret = vmf_error(PTR_ERR(page)); 5826 else 5827 ret = 0; 5828 goto out; 5829 } 5830 clear_huge_page(page, address, pages_per_huge_page(h)); 5831 __SetPageUptodate(page); 5832 new_page = true; 5833 5834 if (vma->vm_flags & VM_MAYSHARE) { 5835 int err = hugetlb_add_to_page_cache(page, mapping, idx); 5836 if (err) { 5837 /* 5838 * err can't be -EEXIST which implies someone 5839 * else consumed the reservation since hugetlb 5840 * fault mutex is held when add a hugetlb page 5841 * to the page cache. So it's safe to call 5842 * restore_reserve_on_error() here. 5843 */ 5844 restore_reserve_on_error(h, vma, haddr, page); 5845 put_page(page); 5846 goto out; 5847 } 5848 new_pagecache_page = true; 5849 } else { 5850 lock_page(page); 5851 if (unlikely(anon_vma_prepare(vma))) { 5852 ret = VM_FAULT_OOM; 5853 goto backout_unlocked; 5854 } 5855 anon_rmap = 1; 5856 } 5857 } else { 5858 /* 5859 * If memory error occurs between mmap() and fault, some process 5860 * don't have hwpoisoned swap entry for errored virtual address. 5861 * So we need to block hugepage fault by PG_hwpoison bit check. 5862 */ 5863 if (unlikely(PageHWPoison(page))) { 5864 ret = VM_FAULT_HWPOISON_LARGE | 5865 VM_FAULT_SET_HINDEX(hstate_index(h)); 5866 goto backout_unlocked; 5867 } 5868 5869 /* Check for page in userfault range. */ 5870 if (userfaultfd_minor(vma)) { 5871 unlock_page(page); 5872 put_page(page); 5873 /* See comment in userfaultfd_missing() block above */ 5874 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5875 ret = 0; 5876 goto out; 5877 } 5878 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5879 haddr, address, 5880 VM_UFFD_MINOR); 5881 } 5882 } 5883 5884 /* 5885 * If we are going to COW a private mapping later, we examine the 5886 * pending reservations for this page now. This will ensure that 5887 * any allocations necessary to record that reservation occur outside 5888 * the spinlock. 5889 */ 5890 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5891 if (vma_needs_reservation(h, vma, haddr) < 0) { 5892 ret = VM_FAULT_OOM; 5893 goto backout_unlocked; 5894 } 5895 /* Just decrements count, does not deallocate */ 5896 vma_end_reservation(h, vma, haddr); 5897 } 5898 5899 ptl = huge_pte_lock(h, mm, ptep); 5900 ret = 0; 5901 /* If pte changed from under us, retry */ 5902 if (!pte_same(huge_ptep_get(ptep), old_pte)) 5903 goto backout; 5904 5905 if (anon_rmap) 5906 hugepage_add_new_anon_rmap(page, vma, haddr); 5907 else 5908 page_dup_file_rmap(page, true); 5909 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 5910 && (vma->vm_flags & VM_SHARED))); 5911 /* 5912 * If this pte was previously wr-protected, keep it wr-protected even 5913 * if populated. 5914 */ 5915 if (unlikely(pte_marker_uffd_wp(old_pte))) 5916 new_pte = huge_pte_mkuffd_wp(new_pte); 5917 set_huge_pte_at(mm, haddr, ptep, new_pte); 5918 5919 hugetlb_count_add(pages_per_huge_page(h), mm); 5920 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5921 /* Optimization, do the COW without a second fault */ 5922 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl); 5923 } 5924 5925 spin_unlock(ptl); 5926 5927 /* 5928 * Only set HPageMigratable in newly allocated pages. Existing pages 5929 * found in the pagecache may not have HPageMigratableset if they have 5930 * been isolated for migration. 5931 */ 5932 if (new_page) 5933 SetHPageMigratable(page); 5934 5935 unlock_page(page); 5936 out: 5937 hugetlb_vma_unlock_read(vma); 5938 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5939 return ret; 5940 5941 backout: 5942 spin_unlock(ptl); 5943 backout_unlocked: 5944 if (new_page && !new_pagecache_page) 5945 restore_reserve_on_error(h, vma, haddr, page); 5946 5947 unlock_page(page); 5948 put_page(page); 5949 goto out; 5950 } 5951 5952 #ifdef CONFIG_SMP 5953 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5954 { 5955 unsigned long key[2]; 5956 u32 hash; 5957 5958 key[0] = (unsigned long) mapping; 5959 key[1] = idx; 5960 5961 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 5962 5963 return hash & (num_fault_mutexes - 1); 5964 } 5965 #else 5966 /* 5967 * For uniprocessor systems we always use a single mutex, so just 5968 * return 0 and avoid the hashing overhead. 5969 */ 5970 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5971 { 5972 return 0; 5973 } 5974 #endif 5975 5976 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 5977 unsigned long address, unsigned int flags) 5978 { 5979 pte_t *ptep, entry; 5980 spinlock_t *ptl; 5981 vm_fault_t ret; 5982 u32 hash; 5983 pgoff_t idx; 5984 struct page *page = NULL; 5985 struct page *pagecache_page = NULL; 5986 struct hstate *h = hstate_vma(vma); 5987 struct address_space *mapping; 5988 int need_wait_lock = 0; 5989 unsigned long haddr = address & huge_page_mask(h); 5990 5991 /* 5992 * Serialize hugepage allocation and instantiation, so that we don't 5993 * get spurious allocation failures if two CPUs race to instantiate 5994 * the same page in the page cache. 5995 */ 5996 mapping = vma->vm_file->f_mapping; 5997 idx = vma_hugecache_offset(h, vma, haddr); 5998 hash = hugetlb_fault_mutex_hash(mapping, idx); 5999 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6000 6001 /* 6002 * Acquire vma lock before calling huge_pte_alloc and hold 6003 * until finished with ptep. This prevents huge_pmd_unshare from 6004 * being called elsewhere and making the ptep no longer valid. 6005 */ 6006 hugetlb_vma_lock_read(vma); 6007 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 6008 if (!ptep) { 6009 hugetlb_vma_unlock_read(vma); 6010 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6011 return VM_FAULT_OOM; 6012 } 6013 6014 entry = huge_ptep_get(ptep); 6015 /* PTE markers should be handled the same way as none pte */ 6016 if (huge_pte_none_mostly(entry)) 6017 /* 6018 * hugetlb_no_page will drop vma lock and hugetlb fault 6019 * mutex internally, which make us return immediately. 6020 */ 6021 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 6022 entry, flags); 6023 6024 ret = 0; 6025 6026 /* 6027 * entry could be a migration/hwpoison entry at this point, so this 6028 * check prevents the kernel from going below assuming that we have 6029 * an active hugepage in pagecache. This goto expects the 2nd page 6030 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 6031 * properly handle it. 6032 */ 6033 if (!pte_present(entry)) { 6034 if (unlikely(is_hugetlb_entry_migration(entry))) { 6035 /* 6036 * Release the hugetlb fault lock now, but retain 6037 * the vma lock, because it is needed to guard the 6038 * huge_pte_lockptr() later in 6039 * migration_entry_wait_huge(). The vma lock will 6040 * be released there. 6041 */ 6042 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6043 migration_entry_wait_huge(vma, ptep); 6044 return 0; 6045 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 6046 ret = VM_FAULT_HWPOISON_LARGE | 6047 VM_FAULT_SET_HINDEX(hstate_index(h)); 6048 goto out_mutex; 6049 } 6050 6051 /* 6052 * If we are going to COW/unshare the mapping later, we examine the 6053 * pending reservations for this page now. This will ensure that any 6054 * allocations necessary to record that reservation occur outside the 6055 * spinlock. Also lookup the pagecache page now as it is used to 6056 * determine if a reservation has been consumed. 6057 */ 6058 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6059 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 6060 if (vma_needs_reservation(h, vma, haddr) < 0) { 6061 ret = VM_FAULT_OOM; 6062 goto out_mutex; 6063 } 6064 /* Just decrements count, does not deallocate */ 6065 vma_end_reservation(h, vma, haddr); 6066 6067 pagecache_page = find_lock_page(mapping, idx); 6068 } 6069 6070 ptl = huge_pte_lock(h, mm, ptep); 6071 6072 /* Check for a racing update before calling hugetlb_wp() */ 6073 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 6074 goto out_ptl; 6075 6076 /* Handle userfault-wp first, before trying to lock more pages */ 6077 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 6078 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 6079 struct vm_fault vmf = { 6080 .vma = vma, 6081 .address = haddr, 6082 .real_address = address, 6083 .flags = flags, 6084 }; 6085 6086 spin_unlock(ptl); 6087 if (pagecache_page) { 6088 unlock_page(pagecache_page); 6089 put_page(pagecache_page); 6090 } 6091 hugetlb_vma_unlock_read(vma); 6092 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6093 return handle_userfault(&vmf, VM_UFFD_WP); 6094 } 6095 6096 /* 6097 * hugetlb_wp() requires page locks of pte_page(entry) and 6098 * pagecache_page, so here we need take the former one 6099 * when page != pagecache_page or !pagecache_page. 6100 */ 6101 page = pte_page(entry); 6102 if (page != pagecache_page) 6103 if (!trylock_page(page)) { 6104 need_wait_lock = 1; 6105 goto out_ptl; 6106 } 6107 6108 get_page(page); 6109 6110 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6111 if (!huge_pte_write(entry)) { 6112 ret = hugetlb_wp(mm, vma, address, ptep, flags, 6113 pagecache_page, ptl); 6114 goto out_put_page; 6115 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6116 entry = huge_pte_mkdirty(entry); 6117 } 6118 } 6119 entry = pte_mkyoung(entry); 6120 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 6121 flags & FAULT_FLAG_WRITE)) 6122 update_mmu_cache(vma, haddr, ptep); 6123 out_put_page: 6124 if (page != pagecache_page) 6125 unlock_page(page); 6126 put_page(page); 6127 out_ptl: 6128 spin_unlock(ptl); 6129 6130 if (pagecache_page) { 6131 unlock_page(pagecache_page); 6132 put_page(pagecache_page); 6133 } 6134 out_mutex: 6135 hugetlb_vma_unlock_read(vma); 6136 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6137 /* 6138 * Generally it's safe to hold refcount during waiting page lock. But 6139 * here we just wait to defer the next page fault to avoid busy loop and 6140 * the page is not used after unlocked before returning from the current 6141 * page fault. So we are safe from accessing freed page, even if we wait 6142 * here without taking refcount. 6143 */ 6144 if (need_wait_lock) 6145 wait_on_page_locked(page); 6146 return ret; 6147 } 6148 6149 #ifdef CONFIG_USERFAULTFD 6150 /* 6151 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 6152 * modifications for huge pages. 6153 */ 6154 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 6155 pte_t *dst_pte, 6156 struct vm_area_struct *dst_vma, 6157 unsigned long dst_addr, 6158 unsigned long src_addr, 6159 enum mcopy_atomic_mode mode, 6160 struct page **pagep, 6161 bool wp_copy) 6162 { 6163 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 6164 struct hstate *h = hstate_vma(dst_vma); 6165 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6166 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6167 unsigned long size; 6168 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6169 pte_t _dst_pte; 6170 spinlock_t *ptl; 6171 int ret = -ENOMEM; 6172 struct page *page; 6173 int writable; 6174 bool page_in_pagecache = false; 6175 6176 if (is_continue) { 6177 ret = -EFAULT; 6178 page = find_lock_page(mapping, idx); 6179 if (!page) 6180 goto out; 6181 page_in_pagecache = true; 6182 } else if (!*pagep) { 6183 /* If a page already exists, then it's UFFDIO_COPY for 6184 * a non-missing case. Return -EEXIST. 6185 */ 6186 if (vm_shared && 6187 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6188 ret = -EEXIST; 6189 goto out; 6190 } 6191 6192 page = alloc_huge_page(dst_vma, dst_addr, 0); 6193 if (IS_ERR(page)) { 6194 ret = -ENOMEM; 6195 goto out; 6196 } 6197 6198 ret = copy_huge_page_from_user(page, 6199 (const void __user *) src_addr, 6200 pages_per_huge_page(h), false); 6201 6202 /* fallback to copy_from_user outside mmap_lock */ 6203 if (unlikely(ret)) { 6204 ret = -ENOENT; 6205 /* Free the allocated page which may have 6206 * consumed a reservation. 6207 */ 6208 restore_reserve_on_error(h, dst_vma, dst_addr, page); 6209 put_page(page); 6210 6211 /* Allocate a temporary page to hold the copied 6212 * contents. 6213 */ 6214 page = alloc_huge_page_vma(h, dst_vma, dst_addr); 6215 if (!page) { 6216 ret = -ENOMEM; 6217 goto out; 6218 } 6219 *pagep = page; 6220 /* Set the outparam pagep and return to the caller to 6221 * copy the contents outside the lock. Don't free the 6222 * page. 6223 */ 6224 goto out; 6225 } 6226 } else { 6227 if (vm_shared && 6228 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6229 put_page(*pagep); 6230 ret = -EEXIST; 6231 *pagep = NULL; 6232 goto out; 6233 } 6234 6235 page = alloc_huge_page(dst_vma, dst_addr, 0); 6236 if (IS_ERR(page)) { 6237 put_page(*pagep); 6238 ret = -ENOMEM; 6239 *pagep = NULL; 6240 goto out; 6241 } 6242 copy_user_huge_page(page, *pagep, dst_addr, dst_vma, 6243 pages_per_huge_page(h)); 6244 put_page(*pagep); 6245 *pagep = NULL; 6246 } 6247 6248 /* 6249 * The memory barrier inside __SetPageUptodate makes sure that 6250 * preceding stores to the page contents become visible before 6251 * the set_pte_at() write. 6252 */ 6253 __SetPageUptodate(page); 6254 6255 /* Add shared, newly allocated pages to the page cache. */ 6256 if (vm_shared && !is_continue) { 6257 size = i_size_read(mapping->host) >> huge_page_shift(h); 6258 ret = -EFAULT; 6259 if (idx >= size) 6260 goto out_release_nounlock; 6261 6262 /* 6263 * Serialization between remove_inode_hugepages() and 6264 * hugetlb_add_to_page_cache() below happens through the 6265 * hugetlb_fault_mutex_table that here must be hold by 6266 * the caller. 6267 */ 6268 ret = hugetlb_add_to_page_cache(page, mapping, idx); 6269 if (ret) 6270 goto out_release_nounlock; 6271 page_in_pagecache = true; 6272 } 6273 6274 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6275 6276 ret = -EIO; 6277 if (PageHWPoison(page)) 6278 goto out_release_unlock; 6279 6280 /* 6281 * We allow to overwrite a pte marker: consider when both MISSING|WP 6282 * registered, we firstly wr-protect a none pte which has no page cache 6283 * page backing it, then access the page. 6284 */ 6285 ret = -EEXIST; 6286 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6287 goto out_release_unlock; 6288 6289 if (page_in_pagecache) 6290 page_dup_file_rmap(page, true); 6291 else 6292 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 6293 6294 /* 6295 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6296 * with wp flag set, don't set pte write bit. 6297 */ 6298 if (wp_copy || (is_continue && !vm_shared)) 6299 writable = 0; 6300 else 6301 writable = dst_vma->vm_flags & VM_WRITE; 6302 6303 _dst_pte = make_huge_pte(dst_vma, page, writable); 6304 /* 6305 * Always mark UFFDIO_COPY page dirty; note that this may not be 6306 * extremely important for hugetlbfs for now since swapping is not 6307 * supported, but we should still be clear in that this page cannot be 6308 * thrown away at will, even if write bit not set. 6309 */ 6310 _dst_pte = huge_pte_mkdirty(_dst_pte); 6311 _dst_pte = pte_mkyoung(_dst_pte); 6312 6313 if (wp_copy) 6314 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6315 6316 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 6317 6318 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6319 6320 /* No need to invalidate - it was non-present before */ 6321 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6322 6323 spin_unlock(ptl); 6324 if (!is_continue) 6325 SetHPageMigratable(page); 6326 if (vm_shared || is_continue) 6327 unlock_page(page); 6328 ret = 0; 6329 out: 6330 return ret; 6331 out_release_unlock: 6332 spin_unlock(ptl); 6333 if (vm_shared || is_continue) 6334 unlock_page(page); 6335 out_release_nounlock: 6336 if (!page_in_pagecache) 6337 restore_reserve_on_error(h, dst_vma, dst_addr, page); 6338 put_page(page); 6339 goto out; 6340 } 6341 #endif /* CONFIG_USERFAULTFD */ 6342 6343 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 6344 int refs, struct page **pages, 6345 struct vm_area_struct **vmas) 6346 { 6347 int nr; 6348 6349 for (nr = 0; nr < refs; nr++) { 6350 if (likely(pages)) 6351 pages[nr] = nth_page(page, nr); 6352 if (vmas) 6353 vmas[nr] = vma; 6354 } 6355 } 6356 6357 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma, 6358 unsigned int flags, pte_t *pte, 6359 bool *unshare) 6360 { 6361 pte_t pteval = huge_ptep_get(pte); 6362 6363 *unshare = false; 6364 if (is_swap_pte(pteval)) 6365 return true; 6366 if (huge_pte_write(pteval)) 6367 return false; 6368 if (flags & FOLL_WRITE) 6369 return true; 6370 if (gup_must_unshare(vma, flags, pte_page(pteval))) { 6371 *unshare = true; 6372 return true; 6373 } 6374 return false; 6375 } 6376 6377 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 6378 unsigned long address, unsigned int flags) 6379 { 6380 struct hstate *h = hstate_vma(vma); 6381 struct mm_struct *mm = vma->vm_mm; 6382 unsigned long haddr = address & huge_page_mask(h); 6383 struct page *page = NULL; 6384 spinlock_t *ptl; 6385 pte_t *pte, entry; 6386 6387 /* 6388 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via 6389 * follow_hugetlb_page(). 6390 */ 6391 if (WARN_ON_ONCE(flags & FOLL_PIN)) 6392 return NULL; 6393 6394 hugetlb_vma_lock_read(vma); 6395 pte = hugetlb_walk(vma, haddr, huge_page_size(h)); 6396 if (!pte) 6397 goto out_unlock; 6398 6399 ptl = huge_pte_lock(h, mm, pte); 6400 entry = huge_ptep_get(pte); 6401 if (pte_present(entry)) { 6402 page = pte_page(entry) + 6403 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT); 6404 /* 6405 * Note that page may be a sub-page, and with vmemmap 6406 * optimizations the page struct may be read only. 6407 * try_grab_page() will increase the ref count on the 6408 * head page, so this will be OK. 6409 * 6410 * try_grab_page() should always be able to get the page here, 6411 * because we hold the ptl lock and have verified pte_present(). 6412 */ 6413 if (try_grab_page(page, flags)) { 6414 page = NULL; 6415 goto out; 6416 } 6417 } 6418 out: 6419 spin_unlock(ptl); 6420 out_unlock: 6421 hugetlb_vma_unlock_read(vma); 6422 return page; 6423 } 6424 6425 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 6426 struct page **pages, struct vm_area_struct **vmas, 6427 unsigned long *position, unsigned long *nr_pages, 6428 long i, unsigned int flags, int *locked) 6429 { 6430 unsigned long pfn_offset; 6431 unsigned long vaddr = *position; 6432 unsigned long remainder = *nr_pages; 6433 struct hstate *h = hstate_vma(vma); 6434 int err = -EFAULT, refs; 6435 6436 while (vaddr < vma->vm_end && remainder) { 6437 pte_t *pte; 6438 spinlock_t *ptl = NULL; 6439 bool unshare = false; 6440 int absent; 6441 struct page *page; 6442 6443 /* 6444 * If we have a pending SIGKILL, don't keep faulting pages and 6445 * potentially allocating memory. 6446 */ 6447 if (fatal_signal_pending(current)) { 6448 remainder = 0; 6449 break; 6450 } 6451 6452 hugetlb_vma_lock_read(vma); 6453 /* 6454 * Some archs (sparc64, sh*) have multiple pte_ts to 6455 * each hugepage. We have to make sure we get the 6456 * first, for the page indexing below to work. 6457 * 6458 * Note that page table lock is not held when pte is null. 6459 */ 6460 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h), 6461 huge_page_size(h)); 6462 if (pte) 6463 ptl = huge_pte_lock(h, mm, pte); 6464 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 6465 6466 /* 6467 * When coredumping, it suits get_dump_page if we just return 6468 * an error where there's an empty slot with no huge pagecache 6469 * to back it. This way, we avoid allocating a hugepage, and 6470 * the sparse dumpfile avoids allocating disk blocks, but its 6471 * huge holes still show up with zeroes where they need to be. 6472 */ 6473 if (absent && (flags & FOLL_DUMP) && 6474 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 6475 if (pte) 6476 spin_unlock(ptl); 6477 hugetlb_vma_unlock_read(vma); 6478 remainder = 0; 6479 break; 6480 } 6481 6482 /* 6483 * We need call hugetlb_fault for both hugepages under migration 6484 * (in which case hugetlb_fault waits for the migration,) and 6485 * hwpoisoned hugepages (in which case we need to prevent the 6486 * caller from accessing to them.) In order to do this, we use 6487 * here is_swap_pte instead of is_hugetlb_entry_migration and 6488 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 6489 * both cases, and because we can't follow correct pages 6490 * directly from any kind of swap entries. 6491 */ 6492 if (absent || 6493 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) { 6494 vm_fault_t ret; 6495 unsigned int fault_flags = 0; 6496 6497 if (pte) 6498 spin_unlock(ptl); 6499 hugetlb_vma_unlock_read(vma); 6500 6501 if (flags & FOLL_WRITE) 6502 fault_flags |= FAULT_FLAG_WRITE; 6503 else if (unshare) 6504 fault_flags |= FAULT_FLAG_UNSHARE; 6505 if (locked) { 6506 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6507 FAULT_FLAG_KILLABLE; 6508 if (flags & FOLL_INTERRUPTIBLE) 6509 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 6510 } 6511 if (flags & FOLL_NOWAIT) 6512 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6513 FAULT_FLAG_RETRY_NOWAIT; 6514 if (flags & FOLL_TRIED) { 6515 /* 6516 * Note: FAULT_FLAG_ALLOW_RETRY and 6517 * FAULT_FLAG_TRIED can co-exist 6518 */ 6519 fault_flags |= FAULT_FLAG_TRIED; 6520 } 6521 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 6522 if (ret & VM_FAULT_ERROR) { 6523 err = vm_fault_to_errno(ret, flags); 6524 remainder = 0; 6525 break; 6526 } 6527 if (ret & VM_FAULT_RETRY) { 6528 if (locked && 6529 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 6530 *locked = 0; 6531 *nr_pages = 0; 6532 /* 6533 * VM_FAULT_RETRY must not return an 6534 * error, it will return zero 6535 * instead. 6536 * 6537 * No need to update "position" as the 6538 * caller will not check it after 6539 * *nr_pages is set to 0. 6540 */ 6541 return i; 6542 } 6543 continue; 6544 } 6545 6546 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 6547 page = pte_page(huge_ptep_get(pte)); 6548 6549 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 6550 !PageAnonExclusive(page), page); 6551 6552 /* 6553 * If subpage information not requested, update counters 6554 * and skip the same_page loop below. 6555 */ 6556 if (!pages && !vmas && !pfn_offset && 6557 (vaddr + huge_page_size(h) < vma->vm_end) && 6558 (remainder >= pages_per_huge_page(h))) { 6559 vaddr += huge_page_size(h); 6560 remainder -= pages_per_huge_page(h); 6561 i += pages_per_huge_page(h); 6562 spin_unlock(ptl); 6563 hugetlb_vma_unlock_read(vma); 6564 continue; 6565 } 6566 6567 /* vaddr may not be aligned to PAGE_SIZE */ 6568 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, 6569 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); 6570 6571 if (pages || vmas) 6572 record_subpages_vmas(nth_page(page, pfn_offset), 6573 vma, refs, 6574 likely(pages) ? pages + i : NULL, 6575 vmas ? vmas + i : NULL); 6576 6577 if (pages) { 6578 /* 6579 * try_grab_folio() should always succeed here, 6580 * because: a) we hold the ptl lock, and b) we've just 6581 * checked that the huge page is present in the page 6582 * tables. If the huge page is present, then the tail 6583 * pages must also be present. The ptl prevents the 6584 * head page and tail pages from being rearranged in 6585 * any way. As this is hugetlb, the pages will never 6586 * be p2pdma or not longterm pinable. So this page 6587 * must be available at this point, unless the page 6588 * refcount overflowed: 6589 */ 6590 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, 6591 flags))) { 6592 spin_unlock(ptl); 6593 hugetlb_vma_unlock_read(vma); 6594 remainder = 0; 6595 err = -ENOMEM; 6596 break; 6597 } 6598 } 6599 6600 vaddr += (refs << PAGE_SHIFT); 6601 remainder -= refs; 6602 i += refs; 6603 6604 spin_unlock(ptl); 6605 hugetlb_vma_unlock_read(vma); 6606 } 6607 *nr_pages = remainder; 6608 /* 6609 * setting position is actually required only if remainder is 6610 * not zero but it's faster not to add a "if (remainder)" 6611 * branch. 6612 */ 6613 *position = vaddr; 6614 6615 return i ? i : err; 6616 } 6617 6618 long hugetlb_change_protection(struct vm_area_struct *vma, 6619 unsigned long address, unsigned long end, 6620 pgprot_t newprot, unsigned long cp_flags) 6621 { 6622 struct mm_struct *mm = vma->vm_mm; 6623 unsigned long start = address; 6624 pte_t *ptep; 6625 pte_t pte; 6626 struct hstate *h = hstate_vma(vma); 6627 long pages = 0, psize = huge_page_size(h); 6628 bool shared_pmd = false; 6629 struct mmu_notifier_range range; 6630 unsigned long last_addr_mask; 6631 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6632 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6633 6634 /* 6635 * In the case of shared PMDs, the area to flush could be beyond 6636 * start/end. Set range.start/range.end to cover the maximum possible 6637 * range if PMD sharing is possible. 6638 */ 6639 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6640 0, vma, mm, start, end); 6641 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6642 6643 BUG_ON(address >= end); 6644 flush_cache_range(vma, range.start, range.end); 6645 6646 mmu_notifier_invalidate_range_start(&range); 6647 hugetlb_vma_lock_write(vma); 6648 i_mmap_lock_write(vma->vm_file->f_mapping); 6649 last_addr_mask = hugetlb_mask_last_page(h); 6650 for (; address < end; address += psize) { 6651 spinlock_t *ptl; 6652 ptep = hugetlb_walk(vma, address, psize); 6653 if (!ptep) { 6654 if (!uffd_wp) { 6655 address |= last_addr_mask; 6656 continue; 6657 } 6658 /* 6659 * Userfaultfd wr-protect requires pgtable 6660 * pre-allocations to install pte markers. 6661 */ 6662 ptep = huge_pte_alloc(mm, vma, address, psize); 6663 if (!ptep) { 6664 pages = -ENOMEM; 6665 break; 6666 } 6667 } 6668 ptl = huge_pte_lock(h, mm, ptep); 6669 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6670 /* 6671 * When uffd-wp is enabled on the vma, unshare 6672 * shouldn't happen at all. Warn about it if it 6673 * happened due to some reason. 6674 */ 6675 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6676 pages++; 6677 spin_unlock(ptl); 6678 shared_pmd = true; 6679 address |= last_addr_mask; 6680 continue; 6681 } 6682 pte = huge_ptep_get(ptep); 6683 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6684 /* Nothing to do. */ 6685 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6686 swp_entry_t entry = pte_to_swp_entry(pte); 6687 struct page *page = pfn_swap_entry_to_page(entry); 6688 pte_t newpte = pte; 6689 6690 if (is_writable_migration_entry(entry)) { 6691 if (PageAnon(page)) 6692 entry = make_readable_exclusive_migration_entry( 6693 swp_offset(entry)); 6694 else 6695 entry = make_readable_migration_entry( 6696 swp_offset(entry)); 6697 newpte = swp_entry_to_pte(entry); 6698 pages++; 6699 } 6700 6701 if (uffd_wp) 6702 newpte = pte_swp_mkuffd_wp(newpte); 6703 else if (uffd_wp_resolve) 6704 newpte = pte_swp_clear_uffd_wp(newpte); 6705 if (!pte_same(pte, newpte)) 6706 set_huge_pte_at(mm, address, ptep, newpte); 6707 } else if (unlikely(is_pte_marker(pte))) { 6708 /* No other markers apply for now. */ 6709 WARN_ON_ONCE(!pte_marker_uffd_wp(pte)); 6710 if (uffd_wp_resolve) 6711 /* Safe to modify directly (non-present->none). */ 6712 huge_pte_clear(mm, address, ptep, psize); 6713 } else if (!huge_pte_none(pte)) { 6714 pte_t old_pte; 6715 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6716 6717 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6718 pte = huge_pte_modify(old_pte, newprot); 6719 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6720 if (uffd_wp) 6721 pte = huge_pte_mkuffd_wp(pte); 6722 else if (uffd_wp_resolve) 6723 pte = huge_pte_clear_uffd_wp(pte); 6724 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6725 pages++; 6726 } else { 6727 /* None pte */ 6728 if (unlikely(uffd_wp)) 6729 /* Safe to modify directly (none->non-present). */ 6730 set_huge_pte_at(mm, address, ptep, 6731 make_pte_marker(PTE_MARKER_UFFD_WP)); 6732 } 6733 spin_unlock(ptl); 6734 } 6735 /* 6736 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6737 * may have cleared our pud entry and done put_page on the page table: 6738 * once we release i_mmap_rwsem, another task can do the final put_page 6739 * and that page table be reused and filled with junk. If we actually 6740 * did unshare a page of pmds, flush the range corresponding to the pud. 6741 */ 6742 if (shared_pmd) 6743 flush_hugetlb_tlb_range(vma, range.start, range.end); 6744 else 6745 flush_hugetlb_tlb_range(vma, start, end); 6746 /* 6747 * No need to call mmu_notifier_invalidate_range() we are downgrading 6748 * page table protection not changing it to point to a new page. 6749 * 6750 * See Documentation/mm/mmu_notifier.rst 6751 */ 6752 i_mmap_unlock_write(vma->vm_file->f_mapping); 6753 hugetlb_vma_unlock_write(vma); 6754 mmu_notifier_invalidate_range_end(&range); 6755 6756 return pages > 0 ? (pages << h->order) : pages; 6757 } 6758 6759 /* Return true if reservation was successful, false otherwise. */ 6760 bool hugetlb_reserve_pages(struct inode *inode, 6761 long from, long to, 6762 struct vm_area_struct *vma, 6763 vm_flags_t vm_flags) 6764 { 6765 long chg = -1, add = -1; 6766 struct hstate *h = hstate_inode(inode); 6767 struct hugepage_subpool *spool = subpool_inode(inode); 6768 struct resv_map *resv_map; 6769 struct hugetlb_cgroup *h_cg = NULL; 6770 long gbl_reserve, regions_needed = 0; 6771 6772 /* This should never happen */ 6773 if (from > to) { 6774 VM_WARN(1, "%s called with a negative range\n", __func__); 6775 return false; 6776 } 6777 6778 /* 6779 * vma specific semaphore used for pmd sharing and fault/truncation 6780 * synchronization 6781 */ 6782 hugetlb_vma_lock_alloc(vma); 6783 6784 /* 6785 * Only apply hugepage reservation if asked. At fault time, an 6786 * attempt will be made for VM_NORESERVE to allocate a page 6787 * without using reserves 6788 */ 6789 if (vm_flags & VM_NORESERVE) 6790 return true; 6791 6792 /* 6793 * Shared mappings base their reservation on the number of pages that 6794 * are already allocated on behalf of the file. Private mappings need 6795 * to reserve the full area even if read-only as mprotect() may be 6796 * called to make the mapping read-write. Assume !vma is a shm mapping 6797 */ 6798 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6799 /* 6800 * resv_map can not be NULL as hugetlb_reserve_pages is only 6801 * called for inodes for which resv_maps were created (see 6802 * hugetlbfs_get_inode). 6803 */ 6804 resv_map = inode_resv_map(inode); 6805 6806 chg = region_chg(resv_map, from, to, ®ions_needed); 6807 } else { 6808 /* Private mapping. */ 6809 resv_map = resv_map_alloc(); 6810 if (!resv_map) 6811 goto out_err; 6812 6813 chg = to - from; 6814 6815 set_vma_resv_map(vma, resv_map); 6816 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6817 } 6818 6819 if (chg < 0) 6820 goto out_err; 6821 6822 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6823 chg * pages_per_huge_page(h), &h_cg) < 0) 6824 goto out_err; 6825 6826 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6827 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6828 * of the resv_map. 6829 */ 6830 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6831 } 6832 6833 /* 6834 * There must be enough pages in the subpool for the mapping. If 6835 * the subpool has a minimum size, there may be some global 6836 * reservations already in place (gbl_reserve). 6837 */ 6838 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6839 if (gbl_reserve < 0) 6840 goto out_uncharge_cgroup; 6841 6842 /* 6843 * Check enough hugepages are available for the reservation. 6844 * Hand the pages back to the subpool if there are not 6845 */ 6846 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6847 goto out_put_pages; 6848 6849 /* 6850 * Account for the reservations made. Shared mappings record regions 6851 * that have reservations as they are shared by multiple VMAs. 6852 * When the last VMA disappears, the region map says how much 6853 * the reservation was and the page cache tells how much of 6854 * the reservation was consumed. Private mappings are per-VMA and 6855 * only the consumed reservations are tracked. When the VMA 6856 * disappears, the original reservation is the VMA size and the 6857 * consumed reservations are stored in the map. Hence, nothing 6858 * else has to be done for private mappings here 6859 */ 6860 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6861 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6862 6863 if (unlikely(add < 0)) { 6864 hugetlb_acct_memory(h, -gbl_reserve); 6865 goto out_put_pages; 6866 } else if (unlikely(chg > add)) { 6867 /* 6868 * pages in this range were added to the reserve 6869 * map between region_chg and region_add. This 6870 * indicates a race with alloc_huge_page. Adjust 6871 * the subpool and reserve counts modified above 6872 * based on the difference. 6873 */ 6874 long rsv_adjust; 6875 6876 /* 6877 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6878 * reference to h_cg->css. See comment below for detail. 6879 */ 6880 hugetlb_cgroup_uncharge_cgroup_rsvd( 6881 hstate_index(h), 6882 (chg - add) * pages_per_huge_page(h), h_cg); 6883 6884 rsv_adjust = hugepage_subpool_put_pages(spool, 6885 chg - add); 6886 hugetlb_acct_memory(h, -rsv_adjust); 6887 } else if (h_cg) { 6888 /* 6889 * The file_regions will hold their own reference to 6890 * h_cg->css. So we should release the reference held 6891 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6892 * done. 6893 */ 6894 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6895 } 6896 } 6897 return true; 6898 6899 out_put_pages: 6900 /* put back original number of pages, chg */ 6901 (void)hugepage_subpool_put_pages(spool, chg); 6902 out_uncharge_cgroup: 6903 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6904 chg * pages_per_huge_page(h), h_cg); 6905 out_err: 6906 hugetlb_vma_lock_free(vma); 6907 if (!vma || vma->vm_flags & VM_MAYSHARE) 6908 /* Only call region_abort if the region_chg succeeded but the 6909 * region_add failed or didn't run. 6910 */ 6911 if (chg >= 0 && add < 0) 6912 region_abort(resv_map, from, to, regions_needed); 6913 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 6914 kref_put(&resv_map->refs, resv_map_release); 6915 return false; 6916 } 6917 6918 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6919 long freed) 6920 { 6921 struct hstate *h = hstate_inode(inode); 6922 struct resv_map *resv_map = inode_resv_map(inode); 6923 long chg = 0; 6924 struct hugepage_subpool *spool = subpool_inode(inode); 6925 long gbl_reserve; 6926 6927 /* 6928 * Since this routine can be called in the evict inode path for all 6929 * hugetlbfs inodes, resv_map could be NULL. 6930 */ 6931 if (resv_map) { 6932 chg = region_del(resv_map, start, end); 6933 /* 6934 * region_del() can fail in the rare case where a region 6935 * must be split and another region descriptor can not be 6936 * allocated. If end == LONG_MAX, it will not fail. 6937 */ 6938 if (chg < 0) 6939 return chg; 6940 } 6941 6942 spin_lock(&inode->i_lock); 6943 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6944 spin_unlock(&inode->i_lock); 6945 6946 /* 6947 * If the subpool has a minimum size, the number of global 6948 * reservations to be released may be adjusted. 6949 * 6950 * Note that !resv_map implies freed == 0. So (chg - freed) 6951 * won't go negative. 6952 */ 6953 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6954 hugetlb_acct_memory(h, -gbl_reserve); 6955 6956 return 0; 6957 } 6958 6959 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6960 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6961 struct vm_area_struct *vma, 6962 unsigned long addr, pgoff_t idx) 6963 { 6964 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6965 svma->vm_start; 6966 unsigned long sbase = saddr & PUD_MASK; 6967 unsigned long s_end = sbase + PUD_SIZE; 6968 6969 /* Allow segments to share if only one is marked locked */ 6970 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 6971 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 6972 6973 /* 6974 * match the virtual addresses, permission and the alignment of the 6975 * page table page. 6976 * 6977 * Also, vma_lock (vm_private_data) is required for sharing. 6978 */ 6979 if (pmd_index(addr) != pmd_index(saddr) || 6980 vm_flags != svm_flags || 6981 !range_in_vma(svma, sbase, s_end) || 6982 !svma->vm_private_data) 6983 return 0; 6984 6985 return saddr; 6986 } 6987 6988 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6989 { 6990 unsigned long start = addr & PUD_MASK; 6991 unsigned long end = start + PUD_SIZE; 6992 6993 #ifdef CONFIG_USERFAULTFD 6994 if (uffd_disable_huge_pmd_share(vma)) 6995 return false; 6996 #endif 6997 /* 6998 * check on proper vm_flags and page table alignment 6999 */ 7000 if (!(vma->vm_flags & VM_MAYSHARE)) 7001 return false; 7002 if (!vma->vm_private_data) /* vma lock required for sharing */ 7003 return false; 7004 if (!range_in_vma(vma, start, end)) 7005 return false; 7006 return true; 7007 } 7008 7009 /* 7010 * Determine if start,end range within vma could be mapped by shared pmd. 7011 * If yes, adjust start and end to cover range associated with possible 7012 * shared pmd mappings. 7013 */ 7014 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7015 unsigned long *start, unsigned long *end) 7016 { 7017 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7018 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7019 7020 /* 7021 * vma needs to span at least one aligned PUD size, and the range 7022 * must be at least partially within in. 7023 */ 7024 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7025 (*end <= v_start) || (*start >= v_end)) 7026 return; 7027 7028 /* Extend the range to be PUD aligned for a worst case scenario */ 7029 if (*start > v_start) 7030 *start = ALIGN_DOWN(*start, PUD_SIZE); 7031 7032 if (*end < v_end) 7033 *end = ALIGN(*end, PUD_SIZE); 7034 } 7035 7036 /* 7037 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7038 * and returns the corresponding pte. While this is not necessary for the 7039 * !shared pmd case because we can allocate the pmd later as well, it makes the 7040 * code much cleaner. pmd allocation is essential for the shared case because 7041 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7042 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7043 * bad pmd for sharing. 7044 */ 7045 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7046 unsigned long addr, pud_t *pud) 7047 { 7048 struct address_space *mapping = vma->vm_file->f_mapping; 7049 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7050 vma->vm_pgoff; 7051 struct vm_area_struct *svma; 7052 unsigned long saddr; 7053 pte_t *spte = NULL; 7054 pte_t *pte; 7055 spinlock_t *ptl; 7056 7057 i_mmap_lock_read(mapping); 7058 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7059 if (svma == vma) 7060 continue; 7061 7062 saddr = page_table_shareable(svma, vma, addr, idx); 7063 if (saddr) { 7064 spte = hugetlb_walk(svma, saddr, 7065 vma_mmu_pagesize(svma)); 7066 if (spte) { 7067 get_page(virt_to_page(spte)); 7068 break; 7069 } 7070 } 7071 } 7072 7073 if (!spte) 7074 goto out; 7075 7076 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 7077 if (pud_none(*pud)) { 7078 pud_populate(mm, pud, 7079 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7080 mm_inc_nr_pmds(mm); 7081 } else { 7082 put_page(virt_to_page(spte)); 7083 } 7084 spin_unlock(ptl); 7085 out: 7086 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7087 i_mmap_unlock_read(mapping); 7088 return pte; 7089 } 7090 7091 /* 7092 * unmap huge page backed by shared pte. 7093 * 7094 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7095 * indicated by page_count > 1, unmap is achieved by clearing pud and 7096 * decrementing the ref count. If count == 1, the pte page is not shared. 7097 * 7098 * Called with page table lock held. 7099 * 7100 * returns: 1 successfully unmapped a shared pte page 7101 * 0 the underlying pte page is not shared, or it is the last user 7102 */ 7103 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7104 unsigned long addr, pte_t *ptep) 7105 { 7106 pgd_t *pgd = pgd_offset(mm, addr); 7107 p4d_t *p4d = p4d_offset(pgd, addr); 7108 pud_t *pud = pud_offset(p4d, addr); 7109 7110 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7111 hugetlb_vma_assert_locked(vma); 7112 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7113 if (page_count(virt_to_page(ptep)) == 1) 7114 return 0; 7115 7116 pud_clear(pud); 7117 put_page(virt_to_page(ptep)); 7118 mm_dec_nr_pmds(mm); 7119 return 1; 7120 } 7121 7122 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7123 7124 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7125 unsigned long addr, pud_t *pud) 7126 { 7127 return NULL; 7128 } 7129 7130 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7131 unsigned long addr, pte_t *ptep) 7132 { 7133 return 0; 7134 } 7135 7136 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7137 unsigned long *start, unsigned long *end) 7138 { 7139 } 7140 7141 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7142 { 7143 return false; 7144 } 7145 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7146 7147 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7148 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7149 unsigned long addr, unsigned long sz) 7150 { 7151 pgd_t *pgd; 7152 p4d_t *p4d; 7153 pud_t *pud; 7154 pte_t *pte = NULL; 7155 7156 pgd = pgd_offset(mm, addr); 7157 p4d = p4d_alloc(mm, pgd, addr); 7158 if (!p4d) 7159 return NULL; 7160 pud = pud_alloc(mm, p4d, addr); 7161 if (pud) { 7162 if (sz == PUD_SIZE) { 7163 pte = (pte_t *)pud; 7164 } else { 7165 BUG_ON(sz != PMD_SIZE); 7166 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7167 pte = huge_pmd_share(mm, vma, addr, pud); 7168 else 7169 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7170 } 7171 } 7172 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 7173 7174 return pte; 7175 } 7176 7177 /* 7178 * huge_pte_offset() - Walk the page table to resolve the hugepage 7179 * entry at address @addr 7180 * 7181 * Return: Pointer to page table entry (PUD or PMD) for 7182 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7183 * size @sz doesn't match the hugepage size at this level of the page 7184 * table. 7185 */ 7186 pte_t *huge_pte_offset(struct mm_struct *mm, 7187 unsigned long addr, unsigned long sz) 7188 { 7189 pgd_t *pgd; 7190 p4d_t *p4d; 7191 pud_t *pud; 7192 pmd_t *pmd; 7193 7194 pgd = pgd_offset(mm, addr); 7195 if (!pgd_present(*pgd)) 7196 return NULL; 7197 p4d = p4d_offset(pgd, addr); 7198 if (!p4d_present(*p4d)) 7199 return NULL; 7200 7201 pud = pud_offset(p4d, addr); 7202 if (sz == PUD_SIZE) 7203 /* must be pud huge, non-present or none */ 7204 return (pte_t *)pud; 7205 if (!pud_present(*pud)) 7206 return NULL; 7207 /* must have a valid entry and size to go further */ 7208 7209 pmd = pmd_offset(pud, addr); 7210 /* must be pmd huge, non-present or none */ 7211 return (pte_t *)pmd; 7212 } 7213 7214 /* 7215 * Return a mask that can be used to update an address to the last huge 7216 * page in a page table page mapping size. Used to skip non-present 7217 * page table entries when linearly scanning address ranges. Architectures 7218 * with unique huge page to page table relationships can define their own 7219 * version of this routine. 7220 */ 7221 unsigned long hugetlb_mask_last_page(struct hstate *h) 7222 { 7223 unsigned long hp_size = huge_page_size(h); 7224 7225 if (hp_size == PUD_SIZE) 7226 return P4D_SIZE - PUD_SIZE; 7227 else if (hp_size == PMD_SIZE) 7228 return PUD_SIZE - PMD_SIZE; 7229 else 7230 return 0UL; 7231 } 7232 7233 #else 7234 7235 /* See description above. Architectures can provide their own version. */ 7236 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7237 { 7238 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7239 if (huge_page_size(h) == PMD_SIZE) 7240 return PUD_SIZE - PMD_SIZE; 7241 #endif 7242 return 0UL; 7243 } 7244 7245 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7246 7247 /* 7248 * These functions are overwritable if your architecture needs its own 7249 * behavior. 7250 */ 7251 int isolate_hugetlb(struct page *page, struct list_head *list) 7252 { 7253 int ret = 0; 7254 7255 spin_lock_irq(&hugetlb_lock); 7256 if (!PageHeadHuge(page) || 7257 !HPageMigratable(page) || 7258 !get_page_unless_zero(page)) { 7259 ret = -EBUSY; 7260 goto unlock; 7261 } 7262 ClearHPageMigratable(page); 7263 list_move_tail(&page->lru, list); 7264 unlock: 7265 spin_unlock_irq(&hugetlb_lock); 7266 return ret; 7267 } 7268 7269 int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison) 7270 { 7271 int ret = 0; 7272 7273 *hugetlb = false; 7274 spin_lock_irq(&hugetlb_lock); 7275 if (PageHeadHuge(page)) { 7276 *hugetlb = true; 7277 if (HPageFreed(page)) 7278 ret = 0; 7279 else if (HPageMigratable(page) || unpoison) 7280 ret = get_page_unless_zero(page); 7281 else 7282 ret = -EBUSY; 7283 } 7284 spin_unlock_irq(&hugetlb_lock); 7285 return ret; 7286 } 7287 7288 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7289 bool *migratable_cleared) 7290 { 7291 int ret; 7292 7293 spin_lock_irq(&hugetlb_lock); 7294 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7295 spin_unlock_irq(&hugetlb_lock); 7296 return ret; 7297 } 7298 7299 void putback_active_hugepage(struct page *page) 7300 { 7301 spin_lock_irq(&hugetlb_lock); 7302 SetHPageMigratable(page); 7303 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 7304 spin_unlock_irq(&hugetlb_lock); 7305 put_page(page); 7306 } 7307 7308 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7309 { 7310 struct hstate *h = folio_hstate(old_folio); 7311 7312 hugetlb_cgroup_migrate(old_folio, new_folio); 7313 set_page_owner_migrate_reason(&new_folio->page, reason); 7314 7315 /* 7316 * transfer temporary state of the new hugetlb folio. This is 7317 * reverse to other transitions because the newpage is going to 7318 * be final while the old one will be freed so it takes over 7319 * the temporary status. 7320 * 7321 * Also note that we have to transfer the per-node surplus state 7322 * here as well otherwise the global surplus count will not match 7323 * the per-node's. 7324 */ 7325 if (folio_test_hugetlb_temporary(new_folio)) { 7326 int old_nid = folio_nid(old_folio); 7327 int new_nid = folio_nid(new_folio); 7328 7329 folio_set_hugetlb_temporary(old_folio); 7330 folio_clear_hugetlb_temporary(new_folio); 7331 7332 7333 /* 7334 * There is no need to transfer the per-node surplus state 7335 * when we do not cross the node. 7336 */ 7337 if (new_nid == old_nid) 7338 return; 7339 spin_lock_irq(&hugetlb_lock); 7340 if (h->surplus_huge_pages_node[old_nid]) { 7341 h->surplus_huge_pages_node[old_nid]--; 7342 h->surplus_huge_pages_node[new_nid]++; 7343 } 7344 spin_unlock_irq(&hugetlb_lock); 7345 } 7346 } 7347 7348 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7349 unsigned long start, 7350 unsigned long end) 7351 { 7352 struct hstate *h = hstate_vma(vma); 7353 unsigned long sz = huge_page_size(h); 7354 struct mm_struct *mm = vma->vm_mm; 7355 struct mmu_notifier_range range; 7356 unsigned long address; 7357 spinlock_t *ptl; 7358 pte_t *ptep; 7359 7360 if (!(vma->vm_flags & VM_MAYSHARE)) 7361 return; 7362 7363 if (start >= end) 7364 return; 7365 7366 flush_cache_range(vma, start, end); 7367 /* 7368 * No need to call adjust_range_if_pmd_sharing_possible(), because 7369 * we have already done the PUD_SIZE alignment. 7370 */ 7371 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 7372 start, end); 7373 mmu_notifier_invalidate_range_start(&range); 7374 hugetlb_vma_lock_write(vma); 7375 i_mmap_lock_write(vma->vm_file->f_mapping); 7376 for (address = start; address < end; address += PUD_SIZE) { 7377 ptep = hugetlb_walk(vma, address, sz); 7378 if (!ptep) 7379 continue; 7380 ptl = huge_pte_lock(h, mm, ptep); 7381 huge_pmd_unshare(mm, vma, address, ptep); 7382 spin_unlock(ptl); 7383 } 7384 flush_hugetlb_tlb_range(vma, start, end); 7385 i_mmap_unlock_write(vma->vm_file->f_mapping); 7386 hugetlb_vma_unlock_write(vma); 7387 /* 7388 * No need to call mmu_notifier_invalidate_range(), see 7389 * Documentation/mm/mmu_notifier.rst. 7390 */ 7391 mmu_notifier_invalidate_range_end(&range); 7392 } 7393 7394 /* 7395 * This function will unconditionally remove all the shared pmd pgtable entries 7396 * within the specific vma for a hugetlbfs memory range. 7397 */ 7398 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7399 { 7400 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7401 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7402 } 7403 7404 #ifdef CONFIG_CMA 7405 static bool cma_reserve_called __initdata; 7406 7407 static int __init cmdline_parse_hugetlb_cma(char *p) 7408 { 7409 int nid, count = 0; 7410 unsigned long tmp; 7411 char *s = p; 7412 7413 while (*s) { 7414 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7415 break; 7416 7417 if (s[count] == ':') { 7418 if (tmp >= MAX_NUMNODES) 7419 break; 7420 nid = array_index_nospec(tmp, MAX_NUMNODES); 7421 7422 s += count + 1; 7423 tmp = memparse(s, &s); 7424 hugetlb_cma_size_in_node[nid] = tmp; 7425 hugetlb_cma_size += tmp; 7426 7427 /* 7428 * Skip the separator if have one, otherwise 7429 * break the parsing. 7430 */ 7431 if (*s == ',') 7432 s++; 7433 else 7434 break; 7435 } else { 7436 hugetlb_cma_size = memparse(p, &p); 7437 break; 7438 } 7439 } 7440 7441 return 0; 7442 } 7443 7444 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7445 7446 void __init hugetlb_cma_reserve(int order) 7447 { 7448 unsigned long size, reserved, per_node; 7449 bool node_specific_cma_alloc = false; 7450 int nid; 7451 7452 cma_reserve_called = true; 7453 7454 if (!hugetlb_cma_size) 7455 return; 7456 7457 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7458 if (hugetlb_cma_size_in_node[nid] == 0) 7459 continue; 7460 7461 if (!node_online(nid)) { 7462 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7463 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7464 hugetlb_cma_size_in_node[nid] = 0; 7465 continue; 7466 } 7467 7468 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7469 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7470 nid, (PAGE_SIZE << order) / SZ_1M); 7471 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7472 hugetlb_cma_size_in_node[nid] = 0; 7473 } else { 7474 node_specific_cma_alloc = true; 7475 } 7476 } 7477 7478 /* Validate the CMA size again in case some invalid nodes specified. */ 7479 if (!hugetlb_cma_size) 7480 return; 7481 7482 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7483 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7484 (PAGE_SIZE << order) / SZ_1M); 7485 hugetlb_cma_size = 0; 7486 return; 7487 } 7488 7489 if (!node_specific_cma_alloc) { 7490 /* 7491 * If 3 GB area is requested on a machine with 4 numa nodes, 7492 * let's allocate 1 GB on first three nodes and ignore the last one. 7493 */ 7494 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7495 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7496 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7497 } 7498 7499 reserved = 0; 7500 for_each_online_node(nid) { 7501 int res; 7502 char name[CMA_MAX_NAME]; 7503 7504 if (node_specific_cma_alloc) { 7505 if (hugetlb_cma_size_in_node[nid] == 0) 7506 continue; 7507 7508 size = hugetlb_cma_size_in_node[nid]; 7509 } else { 7510 size = min(per_node, hugetlb_cma_size - reserved); 7511 } 7512 7513 size = round_up(size, PAGE_SIZE << order); 7514 7515 snprintf(name, sizeof(name), "hugetlb%d", nid); 7516 /* 7517 * Note that 'order per bit' is based on smallest size that 7518 * may be returned to CMA allocator in the case of 7519 * huge page demotion. 7520 */ 7521 res = cma_declare_contiguous_nid(0, size, 0, 7522 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7523 0, false, name, 7524 &hugetlb_cma[nid], nid); 7525 if (res) { 7526 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7527 res, nid); 7528 continue; 7529 } 7530 7531 reserved += size; 7532 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7533 size / SZ_1M, nid); 7534 7535 if (reserved >= hugetlb_cma_size) 7536 break; 7537 } 7538 7539 if (!reserved) 7540 /* 7541 * hugetlb_cma_size is used to determine if allocations from 7542 * cma are possible. Set to zero if no cma regions are set up. 7543 */ 7544 hugetlb_cma_size = 0; 7545 } 7546 7547 static void __init hugetlb_cma_check(void) 7548 { 7549 if (!hugetlb_cma_size || cma_reserve_called) 7550 return; 7551 7552 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7553 } 7554 7555 #endif /* CONFIG_CMA */ 7556