1 /* 2 * Generic hugetlb support. 3 * (C) William Irwin, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/rmap.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 25 #include <asm/page.h> 26 #include <asm/pgtable.h> 27 #include <asm/io.h> 28 29 #include <linux/hugetlb.h> 30 #include <linux/node.h> 31 #include "internal.h" 32 33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER; 35 unsigned long hugepages_treat_as_movable; 36 37 static int max_hstate; 38 unsigned int default_hstate_idx; 39 struct hstate hstates[HUGE_MAX_HSTATE]; 40 41 __initdata LIST_HEAD(huge_boot_pages); 42 43 /* for command line parsing */ 44 static struct hstate * __initdata parsed_hstate; 45 static unsigned long __initdata default_hstate_max_huge_pages; 46 static unsigned long __initdata default_hstate_size; 47 48 #define for_each_hstate(h) \ 49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) 50 51 /* 52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages 53 */ 54 static DEFINE_SPINLOCK(hugetlb_lock); 55 56 /* 57 * Region tracking -- allows tracking of reservations and instantiated pages 58 * across the pages in a mapping. 59 * 60 * The region data structures are protected by a combination of the mmap_sem 61 * and the hugetlb_instantion_mutex. To access or modify a region the caller 62 * must either hold the mmap_sem for write, or the mmap_sem for read and 63 * the hugetlb_instantiation mutex: 64 * 65 * down_write(&mm->mmap_sem); 66 * or 67 * down_read(&mm->mmap_sem); 68 * mutex_lock(&hugetlb_instantiation_mutex); 69 */ 70 struct file_region { 71 struct list_head link; 72 long from; 73 long to; 74 }; 75 76 static long region_add(struct list_head *head, long f, long t) 77 { 78 struct file_region *rg, *nrg, *trg; 79 80 /* Locate the region we are either in or before. */ 81 list_for_each_entry(rg, head, link) 82 if (f <= rg->to) 83 break; 84 85 /* Round our left edge to the current segment if it encloses us. */ 86 if (f > rg->from) 87 f = rg->from; 88 89 /* Check for and consume any regions we now overlap with. */ 90 nrg = rg; 91 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 92 if (&rg->link == head) 93 break; 94 if (rg->from > t) 95 break; 96 97 /* If this area reaches higher then extend our area to 98 * include it completely. If this is not the first area 99 * which we intend to reuse, free it. */ 100 if (rg->to > t) 101 t = rg->to; 102 if (rg != nrg) { 103 list_del(&rg->link); 104 kfree(rg); 105 } 106 } 107 nrg->from = f; 108 nrg->to = t; 109 return 0; 110 } 111 112 static long region_chg(struct list_head *head, long f, long t) 113 { 114 struct file_region *rg, *nrg; 115 long chg = 0; 116 117 /* Locate the region we are before or in. */ 118 list_for_each_entry(rg, head, link) 119 if (f <= rg->to) 120 break; 121 122 /* If we are below the current region then a new region is required. 123 * Subtle, allocate a new region at the position but make it zero 124 * size such that we can guarantee to record the reservation. */ 125 if (&rg->link == head || t < rg->from) { 126 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 127 if (!nrg) 128 return -ENOMEM; 129 nrg->from = f; 130 nrg->to = f; 131 INIT_LIST_HEAD(&nrg->link); 132 list_add(&nrg->link, rg->link.prev); 133 134 return t - f; 135 } 136 137 /* Round our left edge to the current segment if it encloses us. */ 138 if (f > rg->from) 139 f = rg->from; 140 chg = t - f; 141 142 /* Check for and consume any regions we now overlap with. */ 143 list_for_each_entry(rg, rg->link.prev, link) { 144 if (&rg->link == head) 145 break; 146 if (rg->from > t) 147 return chg; 148 149 /* We overlap with this area, if it extends futher than 150 * us then we must extend ourselves. Account for its 151 * existing reservation. */ 152 if (rg->to > t) { 153 chg += rg->to - t; 154 t = rg->to; 155 } 156 chg -= rg->to - rg->from; 157 } 158 return chg; 159 } 160 161 static long region_truncate(struct list_head *head, long end) 162 { 163 struct file_region *rg, *trg; 164 long chg = 0; 165 166 /* Locate the region we are either in or before. */ 167 list_for_each_entry(rg, head, link) 168 if (end <= rg->to) 169 break; 170 if (&rg->link == head) 171 return 0; 172 173 /* If we are in the middle of a region then adjust it. */ 174 if (end > rg->from) { 175 chg = rg->to - end; 176 rg->to = end; 177 rg = list_entry(rg->link.next, typeof(*rg), link); 178 } 179 180 /* Drop any remaining regions. */ 181 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 182 if (&rg->link == head) 183 break; 184 chg += rg->to - rg->from; 185 list_del(&rg->link); 186 kfree(rg); 187 } 188 return chg; 189 } 190 191 static long region_count(struct list_head *head, long f, long t) 192 { 193 struct file_region *rg; 194 long chg = 0; 195 196 /* Locate each segment we overlap with, and count that overlap. */ 197 list_for_each_entry(rg, head, link) { 198 int seg_from; 199 int seg_to; 200 201 if (rg->to <= f) 202 continue; 203 if (rg->from >= t) 204 break; 205 206 seg_from = max(rg->from, f); 207 seg_to = min(rg->to, t); 208 209 chg += seg_to - seg_from; 210 } 211 212 return chg; 213 } 214 215 /* 216 * Convert the address within this vma to the page offset within 217 * the mapping, in pagecache page units; huge pages here. 218 */ 219 static pgoff_t vma_hugecache_offset(struct hstate *h, 220 struct vm_area_struct *vma, unsigned long address) 221 { 222 return ((address - vma->vm_start) >> huge_page_shift(h)) + 223 (vma->vm_pgoff >> huge_page_order(h)); 224 } 225 226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 227 unsigned long address) 228 { 229 return vma_hugecache_offset(hstate_vma(vma), vma, address); 230 } 231 232 /* 233 * Return the size of the pages allocated when backing a VMA. In the majority 234 * cases this will be same size as used by the page table entries. 235 */ 236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 237 { 238 struct hstate *hstate; 239 240 if (!is_vm_hugetlb_page(vma)) 241 return PAGE_SIZE; 242 243 hstate = hstate_vma(vma); 244 245 return 1UL << (hstate->order + PAGE_SHIFT); 246 } 247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 248 249 /* 250 * Return the page size being used by the MMU to back a VMA. In the majority 251 * of cases, the page size used by the kernel matches the MMU size. On 252 * architectures where it differs, an architecture-specific version of this 253 * function is required. 254 */ 255 #ifndef vma_mmu_pagesize 256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 257 { 258 return vma_kernel_pagesize(vma); 259 } 260 #endif 261 262 /* 263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 264 * bits of the reservation map pointer, which are always clear due to 265 * alignment. 266 */ 267 #define HPAGE_RESV_OWNER (1UL << 0) 268 #define HPAGE_RESV_UNMAPPED (1UL << 1) 269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 270 271 /* 272 * These helpers are used to track how many pages are reserved for 273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 274 * is guaranteed to have their future faults succeed. 275 * 276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 277 * the reserve counters are updated with the hugetlb_lock held. It is safe 278 * to reset the VMA at fork() time as it is not in use yet and there is no 279 * chance of the global counters getting corrupted as a result of the values. 280 * 281 * The private mapping reservation is represented in a subtly different 282 * manner to a shared mapping. A shared mapping has a region map associated 283 * with the underlying file, this region map represents the backing file 284 * pages which have ever had a reservation assigned which this persists even 285 * after the page is instantiated. A private mapping has a region map 286 * associated with the original mmap which is attached to all VMAs which 287 * reference it, this region map represents those offsets which have consumed 288 * reservation ie. where pages have been instantiated. 289 */ 290 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 291 { 292 return (unsigned long)vma->vm_private_data; 293 } 294 295 static void set_vma_private_data(struct vm_area_struct *vma, 296 unsigned long value) 297 { 298 vma->vm_private_data = (void *)value; 299 } 300 301 struct resv_map { 302 struct kref refs; 303 struct list_head regions; 304 }; 305 306 static struct resv_map *resv_map_alloc(void) 307 { 308 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 309 if (!resv_map) 310 return NULL; 311 312 kref_init(&resv_map->refs); 313 INIT_LIST_HEAD(&resv_map->regions); 314 315 return resv_map; 316 } 317 318 static void resv_map_release(struct kref *ref) 319 { 320 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 321 322 /* Clear out any active regions before we release the map. */ 323 region_truncate(&resv_map->regions, 0); 324 kfree(resv_map); 325 } 326 327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 328 { 329 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 330 if (!(vma->vm_flags & VM_MAYSHARE)) 331 return (struct resv_map *)(get_vma_private_data(vma) & 332 ~HPAGE_RESV_MASK); 333 return NULL; 334 } 335 336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 337 { 338 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 340 341 set_vma_private_data(vma, (get_vma_private_data(vma) & 342 HPAGE_RESV_MASK) | (unsigned long)map); 343 } 344 345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 346 { 347 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 348 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 349 350 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 351 } 352 353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 354 { 355 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 356 357 return (get_vma_private_data(vma) & flag) != 0; 358 } 359 360 /* Decrement the reserved pages in the hugepage pool by one */ 361 static void decrement_hugepage_resv_vma(struct hstate *h, 362 struct vm_area_struct *vma) 363 { 364 if (vma->vm_flags & VM_NORESERVE) 365 return; 366 367 if (vma->vm_flags & VM_MAYSHARE) { 368 /* Shared mappings always use reserves */ 369 h->resv_huge_pages--; 370 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 371 /* 372 * Only the process that called mmap() has reserves for 373 * private mappings. 374 */ 375 h->resv_huge_pages--; 376 } 377 } 378 379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 381 { 382 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 383 if (!(vma->vm_flags & VM_MAYSHARE)) 384 vma->vm_private_data = (void *)0; 385 } 386 387 /* Returns true if the VMA has associated reserve pages */ 388 static int vma_has_reserves(struct vm_area_struct *vma) 389 { 390 if (vma->vm_flags & VM_MAYSHARE) 391 return 1; 392 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 393 return 1; 394 return 0; 395 } 396 397 static void copy_gigantic_page(struct page *dst, struct page *src) 398 { 399 int i; 400 struct hstate *h = page_hstate(src); 401 struct page *dst_base = dst; 402 struct page *src_base = src; 403 404 for (i = 0; i < pages_per_huge_page(h); ) { 405 cond_resched(); 406 copy_highpage(dst, src); 407 408 i++; 409 dst = mem_map_next(dst, dst_base, i); 410 src = mem_map_next(src, src_base, i); 411 } 412 } 413 414 void copy_huge_page(struct page *dst, struct page *src) 415 { 416 int i; 417 struct hstate *h = page_hstate(src); 418 419 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { 420 copy_gigantic_page(dst, src); 421 return; 422 } 423 424 might_sleep(); 425 for (i = 0; i < pages_per_huge_page(h); i++) { 426 cond_resched(); 427 copy_highpage(dst + i, src + i); 428 } 429 } 430 431 static void enqueue_huge_page(struct hstate *h, struct page *page) 432 { 433 int nid = page_to_nid(page); 434 list_add(&page->lru, &h->hugepage_freelists[nid]); 435 h->free_huge_pages++; 436 h->free_huge_pages_node[nid]++; 437 } 438 439 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 440 { 441 struct page *page; 442 443 if (list_empty(&h->hugepage_freelists[nid])) 444 return NULL; 445 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); 446 list_del(&page->lru); 447 set_page_refcounted(page); 448 h->free_huge_pages--; 449 h->free_huge_pages_node[nid]--; 450 return page; 451 } 452 453 static struct page *dequeue_huge_page_vma(struct hstate *h, 454 struct vm_area_struct *vma, 455 unsigned long address, int avoid_reserve) 456 { 457 struct page *page = NULL; 458 struct mempolicy *mpol; 459 nodemask_t *nodemask; 460 struct zonelist *zonelist; 461 struct zone *zone; 462 struct zoneref *z; 463 464 get_mems_allowed(); 465 zonelist = huge_zonelist(vma, address, 466 htlb_alloc_mask, &mpol, &nodemask); 467 /* 468 * A child process with MAP_PRIVATE mappings created by their parent 469 * have no page reserves. This check ensures that reservations are 470 * not "stolen". The child may still get SIGKILLed 471 */ 472 if (!vma_has_reserves(vma) && 473 h->free_huge_pages - h->resv_huge_pages == 0) 474 goto err; 475 476 /* If reserves cannot be used, ensure enough pages are in the pool */ 477 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 478 goto err;; 479 480 for_each_zone_zonelist_nodemask(zone, z, zonelist, 481 MAX_NR_ZONES - 1, nodemask) { 482 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) { 483 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 484 if (page) { 485 if (!avoid_reserve) 486 decrement_hugepage_resv_vma(h, vma); 487 break; 488 } 489 } 490 } 491 err: 492 mpol_cond_put(mpol); 493 put_mems_allowed(); 494 return page; 495 } 496 497 static void update_and_free_page(struct hstate *h, struct page *page) 498 { 499 int i; 500 501 VM_BUG_ON(h->order >= MAX_ORDER); 502 503 h->nr_huge_pages--; 504 h->nr_huge_pages_node[page_to_nid(page)]--; 505 for (i = 0; i < pages_per_huge_page(h); i++) { 506 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 507 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | 508 1 << PG_private | 1<< PG_writeback); 509 } 510 set_compound_page_dtor(page, NULL); 511 set_page_refcounted(page); 512 arch_release_hugepage(page); 513 __free_pages(page, huge_page_order(h)); 514 } 515 516 struct hstate *size_to_hstate(unsigned long size) 517 { 518 struct hstate *h; 519 520 for_each_hstate(h) { 521 if (huge_page_size(h) == size) 522 return h; 523 } 524 return NULL; 525 } 526 527 static void free_huge_page(struct page *page) 528 { 529 /* 530 * Can't pass hstate in here because it is called from the 531 * compound page destructor. 532 */ 533 struct hstate *h = page_hstate(page); 534 int nid = page_to_nid(page); 535 struct address_space *mapping; 536 537 mapping = (struct address_space *) page_private(page); 538 set_page_private(page, 0); 539 page->mapping = NULL; 540 BUG_ON(page_count(page)); 541 BUG_ON(page_mapcount(page)); 542 INIT_LIST_HEAD(&page->lru); 543 544 spin_lock(&hugetlb_lock); 545 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { 546 update_and_free_page(h, page); 547 h->surplus_huge_pages--; 548 h->surplus_huge_pages_node[nid]--; 549 } else { 550 enqueue_huge_page(h, page); 551 } 552 spin_unlock(&hugetlb_lock); 553 if (mapping) 554 hugetlb_put_quota(mapping, 1); 555 } 556 557 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 558 { 559 set_compound_page_dtor(page, free_huge_page); 560 spin_lock(&hugetlb_lock); 561 h->nr_huge_pages++; 562 h->nr_huge_pages_node[nid]++; 563 spin_unlock(&hugetlb_lock); 564 put_page(page); /* free it into the hugepage allocator */ 565 } 566 567 static void prep_compound_gigantic_page(struct page *page, unsigned long order) 568 { 569 int i; 570 int nr_pages = 1 << order; 571 struct page *p = page + 1; 572 573 /* we rely on prep_new_huge_page to set the destructor */ 574 set_compound_order(page, order); 575 __SetPageHead(page); 576 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 577 __SetPageTail(p); 578 p->first_page = page; 579 } 580 } 581 582 int PageHuge(struct page *page) 583 { 584 compound_page_dtor *dtor; 585 586 if (!PageCompound(page)) 587 return 0; 588 589 page = compound_head(page); 590 dtor = get_compound_page_dtor(page); 591 592 return dtor == free_huge_page; 593 } 594 595 EXPORT_SYMBOL_GPL(PageHuge); 596 597 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 598 { 599 struct page *page; 600 601 if (h->order >= MAX_ORDER) 602 return NULL; 603 604 page = alloc_pages_exact_node(nid, 605 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| 606 __GFP_REPEAT|__GFP_NOWARN, 607 huge_page_order(h)); 608 if (page) { 609 if (arch_prepare_hugepage(page)) { 610 __free_pages(page, huge_page_order(h)); 611 return NULL; 612 } 613 prep_new_huge_page(h, page, nid); 614 } 615 616 return page; 617 } 618 619 /* 620 * common helper functions for hstate_next_node_to_{alloc|free}. 621 * We may have allocated or freed a huge page based on a different 622 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 623 * be outside of *nodes_allowed. Ensure that we use an allowed 624 * node for alloc or free. 625 */ 626 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 627 { 628 nid = next_node(nid, *nodes_allowed); 629 if (nid == MAX_NUMNODES) 630 nid = first_node(*nodes_allowed); 631 VM_BUG_ON(nid >= MAX_NUMNODES); 632 633 return nid; 634 } 635 636 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 637 { 638 if (!node_isset(nid, *nodes_allowed)) 639 nid = next_node_allowed(nid, nodes_allowed); 640 return nid; 641 } 642 643 /* 644 * returns the previously saved node ["this node"] from which to 645 * allocate a persistent huge page for the pool and advance the 646 * next node from which to allocate, handling wrap at end of node 647 * mask. 648 */ 649 static int hstate_next_node_to_alloc(struct hstate *h, 650 nodemask_t *nodes_allowed) 651 { 652 int nid; 653 654 VM_BUG_ON(!nodes_allowed); 655 656 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 657 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 658 659 return nid; 660 } 661 662 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 663 { 664 struct page *page; 665 int start_nid; 666 int next_nid; 667 int ret = 0; 668 669 start_nid = hstate_next_node_to_alloc(h, nodes_allowed); 670 next_nid = start_nid; 671 672 do { 673 page = alloc_fresh_huge_page_node(h, next_nid); 674 if (page) { 675 ret = 1; 676 break; 677 } 678 next_nid = hstate_next_node_to_alloc(h, nodes_allowed); 679 } while (next_nid != start_nid); 680 681 if (ret) 682 count_vm_event(HTLB_BUDDY_PGALLOC); 683 else 684 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 685 686 return ret; 687 } 688 689 /* 690 * helper for free_pool_huge_page() - return the previously saved 691 * node ["this node"] from which to free a huge page. Advance the 692 * next node id whether or not we find a free huge page to free so 693 * that the next attempt to free addresses the next node. 694 */ 695 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 696 { 697 int nid; 698 699 VM_BUG_ON(!nodes_allowed); 700 701 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 702 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 703 704 return nid; 705 } 706 707 /* 708 * Free huge page from pool from next node to free. 709 * Attempt to keep persistent huge pages more or less 710 * balanced over allowed nodes. 711 * Called with hugetlb_lock locked. 712 */ 713 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 714 bool acct_surplus) 715 { 716 int start_nid; 717 int next_nid; 718 int ret = 0; 719 720 start_nid = hstate_next_node_to_free(h, nodes_allowed); 721 next_nid = start_nid; 722 723 do { 724 /* 725 * If we're returning unused surplus pages, only examine 726 * nodes with surplus pages. 727 */ 728 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) && 729 !list_empty(&h->hugepage_freelists[next_nid])) { 730 struct page *page = 731 list_entry(h->hugepage_freelists[next_nid].next, 732 struct page, lru); 733 list_del(&page->lru); 734 h->free_huge_pages--; 735 h->free_huge_pages_node[next_nid]--; 736 if (acct_surplus) { 737 h->surplus_huge_pages--; 738 h->surplus_huge_pages_node[next_nid]--; 739 } 740 update_and_free_page(h, page); 741 ret = 1; 742 break; 743 } 744 next_nid = hstate_next_node_to_free(h, nodes_allowed); 745 } while (next_nid != start_nid); 746 747 return ret; 748 } 749 750 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) 751 { 752 struct page *page; 753 unsigned int r_nid; 754 755 if (h->order >= MAX_ORDER) 756 return NULL; 757 758 /* 759 * Assume we will successfully allocate the surplus page to 760 * prevent racing processes from causing the surplus to exceed 761 * overcommit 762 * 763 * This however introduces a different race, where a process B 764 * tries to grow the static hugepage pool while alloc_pages() is 765 * called by process A. B will only examine the per-node 766 * counters in determining if surplus huge pages can be 767 * converted to normal huge pages in adjust_pool_surplus(). A 768 * won't be able to increment the per-node counter, until the 769 * lock is dropped by B, but B doesn't drop hugetlb_lock until 770 * no more huge pages can be converted from surplus to normal 771 * state (and doesn't try to convert again). Thus, we have a 772 * case where a surplus huge page exists, the pool is grown, and 773 * the surplus huge page still exists after, even though it 774 * should just have been converted to a normal huge page. This 775 * does not leak memory, though, as the hugepage will be freed 776 * once it is out of use. It also does not allow the counters to 777 * go out of whack in adjust_pool_surplus() as we don't modify 778 * the node values until we've gotten the hugepage and only the 779 * per-node value is checked there. 780 */ 781 spin_lock(&hugetlb_lock); 782 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 783 spin_unlock(&hugetlb_lock); 784 return NULL; 785 } else { 786 h->nr_huge_pages++; 787 h->surplus_huge_pages++; 788 } 789 spin_unlock(&hugetlb_lock); 790 791 if (nid == NUMA_NO_NODE) 792 page = alloc_pages(htlb_alloc_mask|__GFP_COMP| 793 __GFP_REPEAT|__GFP_NOWARN, 794 huge_page_order(h)); 795 else 796 page = alloc_pages_exact_node(nid, 797 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| 798 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); 799 800 if (page && arch_prepare_hugepage(page)) { 801 __free_pages(page, huge_page_order(h)); 802 return NULL; 803 } 804 805 spin_lock(&hugetlb_lock); 806 if (page) { 807 r_nid = page_to_nid(page); 808 set_compound_page_dtor(page, free_huge_page); 809 /* 810 * We incremented the global counters already 811 */ 812 h->nr_huge_pages_node[r_nid]++; 813 h->surplus_huge_pages_node[r_nid]++; 814 __count_vm_event(HTLB_BUDDY_PGALLOC); 815 } else { 816 h->nr_huge_pages--; 817 h->surplus_huge_pages--; 818 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 819 } 820 spin_unlock(&hugetlb_lock); 821 822 return page; 823 } 824 825 /* 826 * This allocation function is useful in the context where vma is irrelevant. 827 * E.g. soft-offlining uses this function because it only cares physical 828 * address of error page. 829 */ 830 struct page *alloc_huge_page_node(struct hstate *h, int nid) 831 { 832 struct page *page; 833 834 spin_lock(&hugetlb_lock); 835 page = dequeue_huge_page_node(h, nid); 836 spin_unlock(&hugetlb_lock); 837 838 if (!page) 839 page = alloc_buddy_huge_page(h, nid); 840 841 return page; 842 } 843 844 /* 845 * Increase the hugetlb pool such that it can accomodate a reservation 846 * of size 'delta'. 847 */ 848 static int gather_surplus_pages(struct hstate *h, int delta) 849 { 850 struct list_head surplus_list; 851 struct page *page, *tmp; 852 int ret, i; 853 int needed, allocated; 854 855 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 856 if (needed <= 0) { 857 h->resv_huge_pages += delta; 858 return 0; 859 } 860 861 allocated = 0; 862 INIT_LIST_HEAD(&surplus_list); 863 864 ret = -ENOMEM; 865 retry: 866 spin_unlock(&hugetlb_lock); 867 for (i = 0; i < needed; i++) { 868 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 869 if (!page) 870 /* 871 * We were not able to allocate enough pages to 872 * satisfy the entire reservation so we free what 873 * we've allocated so far. 874 */ 875 goto free; 876 877 list_add(&page->lru, &surplus_list); 878 } 879 allocated += needed; 880 881 /* 882 * After retaking hugetlb_lock, we need to recalculate 'needed' 883 * because either resv_huge_pages or free_huge_pages may have changed. 884 */ 885 spin_lock(&hugetlb_lock); 886 needed = (h->resv_huge_pages + delta) - 887 (h->free_huge_pages + allocated); 888 if (needed > 0) 889 goto retry; 890 891 /* 892 * The surplus_list now contains _at_least_ the number of extra pages 893 * needed to accomodate the reservation. Add the appropriate number 894 * of pages to the hugetlb pool and free the extras back to the buddy 895 * allocator. Commit the entire reservation here to prevent another 896 * process from stealing the pages as they are added to the pool but 897 * before they are reserved. 898 */ 899 needed += allocated; 900 h->resv_huge_pages += delta; 901 ret = 0; 902 903 spin_unlock(&hugetlb_lock); 904 /* Free the needed pages to the hugetlb pool */ 905 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 906 if ((--needed) < 0) 907 break; 908 list_del(&page->lru); 909 /* 910 * This page is now managed by the hugetlb allocator and has 911 * no users -- drop the buddy allocator's reference. 912 */ 913 put_page_testzero(page); 914 VM_BUG_ON(page_count(page)); 915 enqueue_huge_page(h, page); 916 } 917 918 /* Free unnecessary surplus pages to the buddy allocator */ 919 free: 920 if (!list_empty(&surplus_list)) { 921 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 922 list_del(&page->lru); 923 put_page(page); 924 } 925 } 926 spin_lock(&hugetlb_lock); 927 928 return ret; 929 } 930 931 /* 932 * When releasing a hugetlb pool reservation, any surplus pages that were 933 * allocated to satisfy the reservation must be explicitly freed if they were 934 * never used. 935 * Called with hugetlb_lock held. 936 */ 937 static void return_unused_surplus_pages(struct hstate *h, 938 unsigned long unused_resv_pages) 939 { 940 unsigned long nr_pages; 941 942 /* Uncommit the reservation */ 943 h->resv_huge_pages -= unused_resv_pages; 944 945 /* Cannot return gigantic pages currently */ 946 if (h->order >= MAX_ORDER) 947 return; 948 949 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 950 951 /* 952 * We want to release as many surplus pages as possible, spread 953 * evenly across all nodes with memory. Iterate across these nodes 954 * until we can no longer free unreserved surplus pages. This occurs 955 * when the nodes with surplus pages have no free pages. 956 * free_pool_huge_page() will balance the the freed pages across the 957 * on-line nodes with memory and will handle the hstate accounting. 958 */ 959 while (nr_pages--) { 960 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1)) 961 break; 962 } 963 } 964 965 /* 966 * Determine if the huge page at addr within the vma has an associated 967 * reservation. Where it does not we will need to logically increase 968 * reservation and actually increase quota before an allocation can occur. 969 * Where any new reservation would be required the reservation change is 970 * prepared, but not committed. Once the page has been quota'd allocated 971 * an instantiated the change should be committed via vma_commit_reservation. 972 * No action is required on failure. 973 */ 974 static long vma_needs_reservation(struct hstate *h, 975 struct vm_area_struct *vma, unsigned long addr) 976 { 977 struct address_space *mapping = vma->vm_file->f_mapping; 978 struct inode *inode = mapping->host; 979 980 if (vma->vm_flags & VM_MAYSHARE) { 981 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 982 return region_chg(&inode->i_mapping->private_list, 983 idx, idx + 1); 984 985 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 986 return 1; 987 988 } else { 989 long err; 990 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 991 struct resv_map *reservations = vma_resv_map(vma); 992 993 err = region_chg(&reservations->regions, idx, idx + 1); 994 if (err < 0) 995 return err; 996 return 0; 997 } 998 } 999 static void vma_commit_reservation(struct hstate *h, 1000 struct vm_area_struct *vma, unsigned long addr) 1001 { 1002 struct address_space *mapping = vma->vm_file->f_mapping; 1003 struct inode *inode = mapping->host; 1004 1005 if (vma->vm_flags & VM_MAYSHARE) { 1006 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1007 region_add(&inode->i_mapping->private_list, idx, idx + 1); 1008 1009 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1010 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1011 struct resv_map *reservations = vma_resv_map(vma); 1012 1013 /* Mark this page used in the map. */ 1014 region_add(&reservations->regions, idx, idx + 1); 1015 } 1016 } 1017 1018 static struct page *alloc_huge_page(struct vm_area_struct *vma, 1019 unsigned long addr, int avoid_reserve) 1020 { 1021 struct hstate *h = hstate_vma(vma); 1022 struct page *page; 1023 struct address_space *mapping = vma->vm_file->f_mapping; 1024 struct inode *inode = mapping->host; 1025 long chg; 1026 1027 /* 1028 * Processes that did not create the mapping will have no reserves and 1029 * will not have accounted against quota. Check that the quota can be 1030 * made before satisfying the allocation 1031 * MAP_NORESERVE mappings may also need pages and quota allocated 1032 * if no reserve mapping overlaps. 1033 */ 1034 chg = vma_needs_reservation(h, vma, addr); 1035 if (chg < 0) 1036 return ERR_PTR(chg); 1037 if (chg) 1038 if (hugetlb_get_quota(inode->i_mapping, chg)) 1039 return ERR_PTR(-ENOSPC); 1040 1041 spin_lock(&hugetlb_lock); 1042 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); 1043 spin_unlock(&hugetlb_lock); 1044 1045 if (!page) { 1046 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1047 if (!page) { 1048 hugetlb_put_quota(inode->i_mapping, chg); 1049 return ERR_PTR(-VM_FAULT_SIGBUS); 1050 } 1051 } 1052 1053 set_page_private(page, (unsigned long) mapping); 1054 1055 vma_commit_reservation(h, vma, addr); 1056 1057 return page; 1058 } 1059 1060 int __weak alloc_bootmem_huge_page(struct hstate *h) 1061 { 1062 struct huge_bootmem_page *m; 1063 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 1064 1065 while (nr_nodes) { 1066 void *addr; 1067 1068 addr = __alloc_bootmem_node_nopanic( 1069 NODE_DATA(hstate_next_node_to_alloc(h, 1070 &node_states[N_HIGH_MEMORY])), 1071 huge_page_size(h), huge_page_size(h), 0); 1072 1073 if (addr) { 1074 /* 1075 * Use the beginning of the huge page to store the 1076 * huge_bootmem_page struct (until gather_bootmem 1077 * puts them into the mem_map). 1078 */ 1079 m = addr; 1080 goto found; 1081 } 1082 nr_nodes--; 1083 } 1084 return 0; 1085 1086 found: 1087 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); 1088 /* Put them into a private list first because mem_map is not up yet */ 1089 list_add(&m->list, &huge_boot_pages); 1090 m->hstate = h; 1091 return 1; 1092 } 1093 1094 static void prep_compound_huge_page(struct page *page, int order) 1095 { 1096 if (unlikely(order > (MAX_ORDER - 1))) 1097 prep_compound_gigantic_page(page, order); 1098 else 1099 prep_compound_page(page, order); 1100 } 1101 1102 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1103 static void __init gather_bootmem_prealloc(void) 1104 { 1105 struct huge_bootmem_page *m; 1106 1107 list_for_each_entry(m, &huge_boot_pages, list) { 1108 struct page *page = virt_to_page(m); 1109 struct hstate *h = m->hstate; 1110 __ClearPageReserved(page); 1111 WARN_ON(page_count(page) != 1); 1112 prep_compound_huge_page(page, h->order); 1113 prep_new_huge_page(h, page, page_to_nid(page)); 1114 } 1115 } 1116 1117 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 1118 { 1119 unsigned long i; 1120 1121 for (i = 0; i < h->max_huge_pages; ++i) { 1122 if (h->order >= MAX_ORDER) { 1123 if (!alloc_bootmem_huge_page(h)) 1124 break; 1125 } else if (!alloc_fresh_huge_page(h, 1126 &node_states[N_HIGH_MEMORY])) 1127 break; 1128 } 1129 h->max_huge_pages = i; 1130 } 1131 1132 static void __init hugetlb_init_hstates(void) 1133 { 1134 struct hstate *h; 1135 1136 for_each_hstate(h) { 1137 /* oversize hugepages were init'ed in early boot */ 1138 if (h->order < MAX_ORDER) 1139 hugetlb_hstate_alloc_pages(h); 1140 } 1141 } 1142 1143 static char * __init memfmt(char *buf, unsigned long n) 1144 { 1145 if (n >= (1UL << 30)) 1146 sprintf(buf, "%lu GB", n >> 30); 1147 else if (n >= (1UL << 20)) 1148 sprintf(buf, "%lu MB", n >> 20); 1149 else 1150 sprintf(buf, "%lu KB", n >> 10); 1151 return buf; 1152 } 1153 1154 static void __init report_hugepages(void) 1155 { 1156 struct hstate *h; 1157 1158 for_each_hstate(h) { 1159 char buf[32]; 1160 printk(KERN_INFO "HugeTLB registered %s page size, " 1161 "pre-allocated %ld pages\n", 1162 memfmt(buf, huge_page_size(h)), 1163 h->free_huge_pages); 1164 } 1165 } 1166 1167 #ifdef CONFIG_HIGHMEM 1168 static void try_to_free_low(struct hstate *h, unsigned long count, 1169 nodemask_t *nodes_allowed) 1170 { 1171 int i; 1172 1173 if (h->order >= MAX_ORDER) 1174 return; 1175 1176 for_each_node_mask(i, *nodes_allowed) { 1177 struct page *page, *next; 1178 struct list_head *freel = &h->hugepage_freelists[i]; 1179 list_for_each_entry_safe(page, next, freel, lru) { 1180 if (count >= h->nr_huge_pages) 1181 return; 1182 if (PageHighMem(page)) 1183 continue; 1184 list_del(&page->lru); 1185 update_and_free_page(h, page); 1186 h->free_huge_pages--; 1187 h->free_huge_pages_node[page_to_nid(page)]--; 1188 } 1189 } 1190 } 1191 #else 1192 static inline void try_to_free_low(struct hstate *h, unsigned long count, 1193 nodemask_t *nodes_allowed) 1194 { 1195 } 1196 #endif 1197 1198 /* 1199 * Increment or decrement surplus_huge_pages. Keep node-specific counters 1200 * balanced by operating on them in a round-robin fashion. 1201 * Returns 1 if an adjustment was made. 1202 */ 1203 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 1204 int delta) 1205 { 1206 int start_nid, next_nid; 1207 int ret = 0; 1208 1209 VM_BUG_ON(delta != -1 && delta != 1); 1210 1211 if (delta < 0) 1212 start_nid = hstate_next_node_to_alloc(h, nodes_allowed); 1213 else 1214 start_nid = hstate_next_node_to_free(h, nodes_allowed); 1215 next_nid = start_nid; 1216 1217 do { 1218 int nid = next_nid; 1219 if (delta < 0) { 1220 /* 1221 * To shrink on this node, there must be a surplus page 1222 */ 1223 if (!h->surplus_huge_pages_node[nid]) { 1224 next_nid = hstate_next_node_to_alloc(h, 1225 nodes_allowed); 1226 continue; 1227 } 1228 } 1229 if (delta > 0) { 1230 /* 1231 * Surplus cannot exceed the total number of pages 1232 */ 1233 if (h->surplus_huge_pages_node[nid] >= 1234 h->nr_huge_pages_node[nid]) { 1235 next_nid = hstate_next_node_to_free(h, 1236 nodes_allowed); 1237 continue; 1238 } 1239 } 1240 1241 h->surplus_huge_pages += delta; 1242 h->surplus_huge_pages_node[nid] += delta; 1243 ret = 1; 1244 break; 1245 } while (next_nid != start_nid); 1246 1247 return ret; 1248 } 1249 1250 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 1251 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 1252 nodemask_t *nodes_allowed) 1253 { 1254 unsigned long min_count, ret; 1255 1256 if (h->order >= MAX_ORDER) 1257 return h->max_huge_pages; 1258 1259 /* 1260 * Increase the pool size 1261 * First take pages out of surplus state. Then make up the 1262 * remaining difference by allocating fresh huge pages. 1263 * 1264 * We might race with alloc_buddy_huge_page() here and be unable 1265 * to convert a surplus huge page to a normal huge page. That is 1266 * not critical, though, it just means the overall size of the 1267 * pool might be one hugepage larger than it needs to be, but 1268 * within all the constraints specified by the sysctls. 1269 */ 1270 spin_lock(&hugetlb_lock); 1271 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 1272 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 1273 break; 1274 } 1275 1276 while (count > persistent_huge_pages(h)) { 1277 /* 1278 * If this allocation races such that we no longer need the 1279 * page, free_huge_page will handle it by freeing the page 1280 * and reducing the surplus. 1281 */ 1282 spin_unlock(&hugetlb_lock); 1283 ret = alloc_fresh_huge_page(h, nodes_allowed); 1284 spin_lock(&hugetlb_lock); 1285 if (!ret) 1286 goto out; 1287 1288 /* Bail for signals. Probably ctrl-c from user */ 1289 if (signal_pending(current)) 1290 goto out; 1291 } 1292 1293 /* 1294 * Decrease the pool size 1295 * First return free pages to the buddy allocator (being careful 1296 * to keep enough around to satisfy reservations). Then place 1297 * pages into surplus state as needed so the pool will shrink 1298 * to the desired size as pages become free. 1299 * 1300 * By placing pages into the surplus state independent of the 1301 * overcommit value, we are allowing the surplus pool size to 1302 * exceed overcommit. There are few sane options here. Since 1303 * alloc_buddy_huge_page() is checking the global counter, 1304 * though, we'll note that we're not allowed to exceed surplus 1305 * and won't grow the pool anywhere else. Not until one of the 1306 * sysctls are changed, or the surplus pages go out of use. 1307 */ 1308 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 1309 min_count = max(count, min_count); 1310 try_to_free_low(h, min_count, nodes_allowed); 1311 while (min_count < persistent_huge_pages(h)) { 1312 if (!free_pool_huge_page(h, nodes_allowed, 0)) 1313 break; 1314 } 1315 while (count < persistent_huge_pages(h)) { 1316 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 1317 break; 1318 } 1319 out: 1320 ret = persistent_huge_pages(h); 1321 spin_unlock(&hugetlb_lock); 1322 return ret; 1323 } 1324 1325 #define HSTATE_ATTR_RO(_name) \ 1326 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1327 1328 #define HSTATE_ATTR(_name) \ 1329 static struct kobj_attribute _name##_attr = \ 1330 __ATTR(_name, 0644, _name##_show, _name##_store) 1331 1332 static struct kobject *hugepages_kobj; 1333 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1334 1335 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 1336 1337 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 1338 { 1339 int i; 1340 1341 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1342 if (hstate_kobjs[i] == kobj) { 1343 if (nidp) 1344 *nidp = NUMA_NO_NODE; 1345 return &hstates[i]; 1346 } 1347 1348 return kobj_to_node_hstate(kobj, nidp); 1349 } 1350 1351 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 1352 struct kobj_attribute *attr, char *buf) 1353 { 1354 struct hstate *h; 1355 unsigned long nr_huge_pages; 1356 int nid; 1357 1358 h = kobj_to_hstate(kobj, &nid); 1359 if (nid == NUMA_NO_NODE) 1360 nr_huge_pages = h->nr_huge_pages; 1361 else 1362 nr_huge_pages = h->nr_huge_pages_node[nid]; 1363 1364 return sprintf(buf, "%lu\n", nr_huge_pages); 1365 } 1366 1367 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 1368 struct kobject *kobj, struct kobj_attribute *attr, 1369 const char *buf, size_t len) 1370 { 1371 int err; 1372 int nid; 1373 unsigned long count; 1374 struct hstate *h; 1375 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 1376 1377 err = strict_strtoul(buf, 10, &count); 1378 if (err) 1379 goto out; 1380 1381 h = kobj_to_hstate(kobj, &nid); 1382 if (h->order >= MAX_ORDER) { 1383 err = -EINVAL; 1384 goto out; 1385 } 1386 1387 if (nid == NUMA_NO_NODE) { 1388 /* 1389 * global hstate attribute 1390 */ 1391 if (!(obey_mempolicy && 1392 init_nodemask_of_mempolicy(nodes_allowed))) { 1393 NODEMASK_FREE(nodes_allowed); 1394 nodes_allowed = &node_states[N_HIGH_MEMORY]; 1395 } 1396 } else if (nodes_allowed) { 1397 /* 1398 * per node hstate attribute: adjust count to global, 1399 * but restrict alloc/free to the specified node. 1400 */ 1401 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 1402 init_nodemask_of_node(nodes_allowed, nid); 1403 } else 1404 nodes_allowed = &node_states[N_HIGH_MEMORY]; 1405 1406 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 1407 1408 if (nodes_allowed != &node_states[N_HIGH_MEMORY]) 1409 NODEMASK_FREE(nodes_allowed); 1410 1411 return len; 1412 out: 1413 NODEMASK_FREE(nodes_allowed); 1414 return err; 1415 } 1416 1417 static ssize_t nr_hugepages_show(struct kobject *kobj, 1418 struct kobj_attribute *attr, char *buf) 1419 { 1420 return nr_hugepages_show_common(kobj, attr, buf); 1421 } 1422 1423 static ssize_t nr_hugepages_store(struct kobject *kobj, 1424 struct kobj_attribute *attr, const char *buf, size_t len) 1425 { 1426 return nr_hugepages_store_common(false, kobj, attr, buf, len); 1427 } 1428 HSTATE_ATTR(nr_hugepages); 1429 1430 #ifdef CONFIG_NUMA 1431 1432 /* 1433 * hstate attribute for optionally mempolicy-based constraint on persistent 1434 * huge page alloc/free. 1435 */ 1436 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 1437 struct kobj_attribute *attr, char *buf) 1438 { 1439 return nr_hugepages_show_common(kobj, attr, buf); 1440 } 1441 1442 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 1443 struct kobj_attribute *attr, const char *buf, size_t len) 1444 { 1445 return nr_hugepages_store_common(true, kobj, attr, buf, len); 1446 } 1447 HSTATE_ATTR(nr_hugepages_mempolicy); 1448 #endif 1449 1450 1451 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 1452 struct kobj_attribute *attr, char *buf) 1453 { 1454 struct hstate *h = kobj_to_hstate(kobj, NULL); 1455 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 1456 } 1457 1458 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 1459 struct kobj_attribute *attr, const char *buf, size_t count) 1460 { 1461 int err; 1462 unsigned long input; 1463 struct hstate *h = kobj_to_hstate(kobj, NULL); 1464 1465 if (h->order >= MAX_ORDER) 1466 return -EINVAL; 1467 1468 err = strict_strtoul(buf, 10, &input); 1469 if (err) 1470 return err; 1471 1472 spin_lock(&hugetlb_lock); 1473 h->nr_overcommit_huge_pages = input; 1474 spin_unlock(&hugetlb_lock); 1475 1476 return count; 1477 } 1478 HSTATE_ATTR(nr_overcommit_hugepages); 1479 1480 static ssize_t free_hugepages_show(struct kobject *kobj, 1481 struct kobj_attribute *attr, char *buf) 1482 { 1483 struct hstate *h; 1484 unsigned long free_huge_pages; 1485 int nid; 1486 1487 h = kobj_to_hstate(kobj, &nid); 1488 if (nid == NUMA_NO_NODE) 1489 free_huge_pages = h->free_huge_pages; 1490 else 1491 free_huge_pages = h->free_huge_pages_node[nid]; 1492 1493 return sprintf(buf, "%lu\n", free_huge_pages); 1494 } 1495 HSTATE_ATTR_RO(free_hugepages); 1496 1497 static ssize_t resv_hugepages_show(struct kobject *kobj, 1498 struct kobj_attribute *attr, char *buf) 1499 { 1500 struct hstate *h = kobj_to_hstate(kobj, NULL); 1501 return sprintf(buf, "%lu\n", h->resv_huge_pages); 1502 } 1503 HSTATE_ATTR_RO(resv_hugepages); 1504 1505 static ssize_t surplus_hugepages_show(struct kobject *kobj, 1506 struct kobj_attribute *attr, char *buf) 1507 { 1508 struct hstate *h; 1509 unsigned long surplus_huge_pages; 1510 int nid; 1511 1512 h = kobj_to_hstate(kobj, &nid); 1513 if (nid == NUMA_NO_NODE) 1514 surplus_huge_pages = h->surplus_huge_pages; 1515 else 1516 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 1517 1518 return sprintf(buf, "%lu\n", surplus_huge_pages); 1519 } 1520 HSTATE_ATTR_RO(surplus_hugepages); 1521 1522 static struct attribute *hstate_attrs[] = { 1523 &nr_hugepages_attr.attr, 1524 &nr_overcommit_hugepages_attr.attr, 1525 &free_hugepages_attr.attr, 1526 &resv_hugepages_attr.attr, 1527 &surplus_hugepages_attr.attr, 1528 #ifdef CONFIG_NUMA 1529 &nr_hugepages_mempolicy_attr.attr, 1530 #endif 1531 NULL, 1532 }; 1533 1534 static struct attribute_group hstate_attr_group = { 1535 .attrs = hstate_attrs, 1536 }; 1537 1538 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 1539 struct kobject **hstate_kobjs, 1540 struct attribute_group *hstate_attr_group) 1541 { 1542 int retval; 1543 int hi = h - hstates; 1544 1545 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 1546 if (!hstate_kobjs[hi]) 1547 return -ENOMEM; 1548 1549 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 1550 if (retval) 1551 kobject_put(hstate_kobjs[hi]); 1552 1553 return retval; 1554 } 1555 1556 static void __init hugetlb_sysfs_init(void) 1557 { 1558 struct hstate *h; 1559 int err; 1560 1561 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 1562 if (!hugepages_kobj) 1563 return; 1564 1565 for_each_hstate(h) { 1566 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 1567 hstate_kobjs, &hstate_attr_group); 1568 if (err) 1569 printk(KERN_ERR "Hugetlb: Unable to add hstate %s", 1570 h->name); 1571 } 1572 } 1573 1574 #ifdef CONFIG_NUMA 1575 1576 /* 1577 * node_hstate/s - associate per node hstate attributes, via their kobjects, 1578 * with node sysdevs in node_devices[] using a parallel array. The array 1579 * index of a node sysdev or _hstate == node id. 1580 * This is here to avoid any static dependency of the node sysdev driver, in 1581 * the base kernel, on the hugetlb module. 1582 */ 1583 struct node_hstate { 1584 struct kobject *hugepages_kobj; 1585 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1586 }; 1587 struct node_hstate node_hstates[MAX_NUMNODES]; 1588 1589 /* 1590 * A subset of global hstate attributes for node sysdevs 1591 */ 1592 static struct attribute *per_node_hstate_attrs[] = { 1593 &nr_hugepages_attr.attr, 1594 &free_hugepages_attr.attr, 1595 &surplus_hugepages_attr.attr, 1596 NULL, 1597 }; 1598 1599 static struct attribute_group per_node_hstate_attr_group = { 1600 .attrs = per_node_hstate_attrs, 1601 }; 1602 1603 /* 1604 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj. 1605 * Returns node id via non-NULL nidp. 1606 */ 1607 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1608 { 1609 int nid; 1610 1611 for (nid = 0; nid < nr_node_ids; nid++) { 1612 struct node_hstate *nhs = &node_hstates[nid]; 1613 int i; 1614 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1615 if (nhs->hstate_kobjs[i] == kobj) { 1616 if (nidp) 1617 *nidp = nid; 1618 return &hstates[i]; 1619 } 1620 } 1621 1622 BUG(); 1623 return NULL; 1624 } 1625 1626 /* 1627 * Unregister hstate attributes from a single node sysdev. 1628 * No-op if no hstate attributes attached. 1629 */ 1630 void hugetlb_unregister_node(struct node *node) 1631 { 1632 struct hstate *h; 1633 struct node_hstate *nhs = &node_hstates[node->sysdev.id]; 1634 1635 if (!nhs->hugepages_kobj) 1636 return; /* no hstate attributes */ 1637 1638 for_each_hstate(h) 1639 if (nhs->hstate_kobjs[h - hstates]) { 1640 kobject_put(nhs->hstate_kobjs[h - hstates]); 1641 nhs->hstate_kobjs[h - hstates] = NULL; 1642 } 1643 1644 kobject_put(nhs->hugepages_kobj); 1645 nhs->hugepages_kobj = NULL; 1646 } 1647 1648 /* 1649 * hugetlb module exit: unregister hstate attributes from node sysdevs 1650 * that have them. 1651 */ 1652 static void hugetlb_unregister_all_nodes(void) 1653 { 1654 int nid; 1655 1656 /* 1657 * disable node sysdev registrations. 1658 */ 1659 register_hugetlbfs_with_node(NULL, NULL); 1660 1661 /* 1662 * remove hstate attributes from any nodes that have them. 1663 */ 1664 for (nid = 0; nid < nr_node_ids; nid++) 1665 hugetlb_unregister_node(&node_devices[nid]); 1666 } 1667 1668 /* 1669 * Register hstate attributes for a single node sysdev. 1670 * No-op if attributes already registered. 1671 */ 1672 void hugetlb_register_node(struct node *node) 1673 { 1674 struct hstate *h; 1675 struct node_hstate *nhs = &node_hstates[node->sysdev.id]; 1676 int err; 1677 1678 if (nhs->hugepages_kobj) 1679 return; /* already allocated */ 1680 1681 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 1682 &node->sysdev.kobj); 1683 if (!nhs->hugepages_kobj) 1684 return; 1685 1686 for_each_hstate(h) { 1687 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 1688 nhs->hstate_kobjs, 1689 &per_node_hstate_attr_group); 1690 if (err) { 1691 printk(KERN_ERR "Hugetlb: Unable to add hstate %s" 1692 " for node %d\n", 1693 h->name, node->sysdev.id); 1694 hugetlb_unregister_node(node); 1695 break; 1696 } 1697 } 1698 } 1699 1700 /* 1701 * hugetlb init time: register hstate attributes for all registered node 1702 * sysdevs of nodes that have memory. All on-line nodes should have 1703 * registered their associated sysdev by this time. 1704 */ 1705 static void hugetlb_register_all_nodes(void) 1706 { 1707 int nid; 1708 1709 for_each_node_state(nid, N_HIGH_MEMORY) { 1710 struct node *node = &node_devices[nid]; 1711 if (node->sysdev.id == nid) 1712 hugetlb_register_node(node); 1713 } 1714 1715 /* 1716 * Let the node sysdev driver know we're here so it can 1717 * [un]register hstate attributes on node hotplug. 1718 */ 1719 register_hugetlbfs_with_node(hugetlb_register_node, 1720 hugetlb_unregister_node); 1721 } 1722 #else /* !CONFIG_NUMA */ 1723 1724 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1725 { 1726 BUG(); 1727 if (nidp) 1728 *nidp = -1; 1729 return NULL; 1730 } 1731 1732 static void hugetlb_unregister_all_nodes(void) { } 1733 1734 static void hugetlb_register_all_nodes(void) { } 1735 1736 #endif 1737 1738 static void __exit hugetlb_exit(void) 1739 { 1740 struct hstate *h; 1741 1742 hugetlb_unregister_all_nodes(); 1743 1744 for_each_hstate(h) { 1745 kobject_put(hstate_kobjs[h - hstates]); 1746 } 1747 1748 kobject_put(hugepages_kobj); 1749 } 1750 module_exit(hugetlb_exit); 1751 1752 static int __init hugetlb_init(void) 1753 { 1754 /* Some platform decide whether they support huge pages at boot 1755 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when 1756 * there is no such support 1757 */ 1758 if (HPAGE_SHIFT == 0) 1759 return 0; 1760 1761 if (!size_to_hstate(default_hstate_size)) { 1762 default_hstate_size = HPAGE_SIZE; 1763 if (!size_to_hstate(default_hstate_size)) 1764 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 1765 } 1766 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; 1767 if (default_hstate_max_huge_pages) 1768 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 1769 1770 hugetlb_init_hstates(); 1771 1772 gather_bootmem_prealloc(); 1773 1774 report_hugepages(); 1775 1776 hugetlb_sysfs_init(); 1777 1778 hugetlb_register_all_nodes(); 1779 1780 return 0; 1781 } 1782 module_init(hugetlb_init); 1783 1784 /* Should be called on processing a hugepagesz=... option */ 1785 void __init hugetlb_add_hstate(unsigned order) 1786 { 1787 struct hstate *h; 1788 unsigned long i; 1789 1790 if (size_to_hstate(PAGE_SIZE << order)) { 1791 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); 1792 return; 1793 } 1794 BUG_ON(max_hstate >= HUGE_MAX_HSTATE); 1795 BUG_ON(order == 0); 1796 h = &hstates[max_hstate++]; 1797 h->order = order; 1798 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 1799 h->nr_huge_pages = 0; 1800 h->free_huge_pages = 0; 1801 for (i = 0; i < MAX_NUMNODES; ++i) 1802 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 1803 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]); 1804 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]); 1805 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 1806 huge_page_size(h)/1024); 1807 1808 parsed_hstate = h; 1809 } 1810 1811 static int __init hugetlb_nrpages_setup(char *s) 1812 { 1813 unsigned long *mhp; 1814 static unsigned long *last_mhp; 1815 1816 /* 1817 * !max_hstate means we haven't parsed a hugepagesz= parameter yet, 1818 * so this hugepages= parameter goes to the "default hstate". 1819 */ 1820 if (!max_hstate) 1821 mhp = &default_hstate_max_huge_pages; 1822 else 1823 mhp = &parsed_hstate->max_huge_pages; 1824 1825 if (mhp == last_mhp) { 1826 printk(KERN_WARNING "hugepages= specified twice without " 1827 "interleaving hugepagesz=, ignoring\n"); 1828 return 1; 1829 } 1830 1831 if (sscanf(s, "%lu", mhp) <= 0) 1832 *mhp = 0; 1833 1834 /* 1835 * Global state is always initialized later in hugetlb_init. 1836 * But we need to allocate >= MAX_ORDER hstates here early to still 1837 * use the bootmem allocator. 1838 */ 1839 if (max_hstate && parsed_hstate->order >= MAX_ORDER) 1840 hugetlb_hstate_alloc_pages(parsed_hstate); 1841 1842 last_mhp = mhp; 1843 1844 return 1; 1845 } 1846 __setup("hugepages=", hugetlb_nrpages_setup); 1847 1848 static int __init hugetlb_default_setup(char *s) 1849 { 1850 default_hstate_size = memparse(s, &s); 1851 return 1; 1852 } 1853 __setup("default_hugepagesz=", hugetlb_default_setup); 1854 1855 static unsigned int cpuset_mems_nr(unsigned int *array) 1856 { 1857 int node; 1858 unsigned int nr = 0; 1859 1860 for_each_node_mask(node, cpuset_current_mems_allowed) 1861 nr += array[node]; 1862 1863 return nr; 1864 } 1865 1866 #ifdef CONFIG_SYSCTL 1867 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 1868 struct ctl_table *table, int write, 1869 void __user *buffer, size_t *length, loff_t *ppos) 1870 { 1871 struct hstate *h = &default_hstate; 1872 unsigned long tmp; 1873 int ret; 1874 1875 if (!write) 1876 tmp = h->max_huge_pages; 1877 1878 if (write && h->order >= MAX_ORDER) 1879 return -EINVAL; 1880 1881 table->data = &tmp; 1882 table->maxlen = sizeof(unsigned long); 1883 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 1884 if (ret) 1885 goto out; 1886 1887 if (write) { 1888 NODEMASK_ALLOC(nodemask_t, nodes_allowed, 1889 GFP_KERNEL | __GFP_NORETRY); 1890 if (!(obey_mempolicy && 1891 init_nodemask_of_mempolicy(nodes_allowed))) { 1892 NODEMASK_FREE(nodes_allowed); 1893 nodes_allowed = &node_states[N_HIGH_MEMORY]; 1894 } 1895 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); 1896 1897 if (nodes_allowed != &node_states[N_HIGH_MEMORY]) 1898 NODEMASK_FREE(nodes_allowed); 1899 } 1900 out: 1901 return ret; 1902 } 1903 1904 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 1905 void __user *buffer, size_t *length, loff_t *ppos) 1906 { 1907 1908 return hugetlb_sysctl_handler_common(false, table, write, 1909 buffer, length, ppos); 1910 } 1911 1912 #ifdef CONFIG_NUMA 1913 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 1914 void __user *buffer, size_t *length, loff_t *ppos) 1915 { 1916 return hugetlb_sysctl_handler_common(true, table, write, 1917 buffer, length, ppos); 1918 } 1919 #endif /* CONFIG_NUMA */ 1920 1921 int hugetlb_treat_movable_handler(struct ctl_table *table, int write, 1922 void __user *buffer, 1923 size_t *length, loff_t *ppos) 1924 { 1925 proc_dointvec(table, write, buffer, length, ppos); 1926 if (hugepages_treat_as_movable) 1927 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; 1928 else 1929 htlb_alloc_mask = GFP_HIGHUSER; 1930 return 0; 1931 } 1932 1933 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 1934 void __user *buffer, 1935 size_t *length, loff_t *ppos) 1936 { 1937 struct hstate *h = &default_hstate; 1938 unsigned long tmp; 1939 int ret; 1940 1941 if (!write) 1942 tmp = h->nr_overcommit_huge_pages; 1943 1944 if (write && h->order >= MAX_ORDER) 1945 return -EINVAL; 1946 1947 table->data = &tmp; 1948 table->maxlen = sizeof(unsigned long); 1949 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 1950 if (ret) 1951 goto out; 1952 1953 if (write) { 1954 spin_lock(&hugetlb_lock); 1955 h->nr_overcommit_huge_pages = tmp; 1956 spin_unlock(&hugetlb_lock); 1957 } 1958 out: 1959 return ret; 1960 } 1961 1962 #endif /* CONFIG_SYSCTL */ 1963 1964 void hugetlb_report_meminfo(struct seq_file *m) 1965 { 1966 struct hstate *h = &default_hstate; 1967 seq_printf(m, 1968 "HugePages_Total: %5lu\n" 1969 "HugePages_Free: %5lu\n" 1970 "HugePages_Rsvd: %5lu\n" 1971 "HugePages_Surp: %5lu\n" 1972 "Hugepagesize: %8lu kB\n", 1973 h->nr_huge_pages, 1974 h->free_huge_pages, 1975 h->resv_huge_pages, 1976 h->surplus_huge_pages, 1977 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 1978 } 1979 1980 int hugetlb_report_node_meminfo(int nid, char *buf) 1981 { 1982 struct hstate *h = &default_hstate; 1983 return sprintf(buf, 1984 "Node %d HugePages_Total: %5u\n" 1985 "Node %d HugePages_Free: %5u\n" 1986 "Node %d HugePages_Surp: %5u\n", 1987 nid, h->nr_huge_pages_node[nid], 1988 nid, h->free_huge_pages_node[nid], 1989 nid, h->surplus_huge_pages_node[nid]); 1990 } 1991 1992 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 1993 unsigned long hugetlb_total_pages(void) 1994 { 1995 struct hstate *h = &default_hstate; 1996 return h->nr_huge_pages * pages_per_huge_page(h); 1997 } 1998 1999 static int hugetlb_acct_memory(struct hstate *h, long delta) 2000 { 2001 int ret = -ENOMEM; 2002 2003 spin_lock(&hugetlb_lock); 2004 /* 2005 * When cpuset is configured, it breaks the strict hugetlb page 2006 * reservation as the accounting is done on a global variable. Such 2007 * reservation is completely rubbish in the presence of cpuset because 2008 * the reservation is not checked against page availability for the 2009 * current cpuset. Application can still potentially OOM'ed by kernel 2010 * with lack of free htlb page in cpuset that the task is in. 2011 * Attempt to enforce strict accounting with cpuset is almost 2012 * impossible (or too ugly) because cpuset is too fluid that 2013 * task or memory node can be dynamically moved between cpusets. 2014 * 2015 * The change of semantics for shared hugetlb mapping with cpuset is 2016 * undesirable. However, in order to preserve some of the semantics, 2017 * we fall back to check against current free page availability as 2018 * a best attempt and hopefully to minimize the impact of changing 2019 * semantics that cpuset has. 2020 */ 2021 if (delta > 0) { 2022 if (gather_surplus_pages(h, delta) < 0) 2023 goto out; 2024 2025 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2026 return_unused_surplus_pages(h, delta); 2027 goto out; 2028 } 2029 } 2030 2031 ret = 0; 2032 if (delta < 0) 2033 return_unused_surplus_pages(h, (unsigned long) -delta); 2034 2035 out: 2036 spin_unlock(&hugetlb_lock); 2037 return ret; 2038 } 2039 2040 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2041 { 2042 struct resv_map *reservations = vma_resv_map(vma); 2043 2044 /* 2045 * This new VMA should share its siblings reservation map if present. 2046 * The VMA will only ever have a valid reservation map pointer where 2047 * it is being copied for another still existing VMA. As that VMA 2048 * has a reference to the reservation map it cannot dissappear until 2049 * after this open call completes. It is therefore safe to take a 2050 * new reference here without additional locking. 2051 */ 2052 if (reservations) 2053 kref_get(&reservations->refs); 2054 } 2055 2056 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2057 { 2058 struct hstate *h = hstate_vma(vma); 2059 struct resv_map *reservations = vma_resv_map(vma); 2060 unsigned long reserve; 2061 unsigned long start; 2062 unsigned long end; 2063 2064 if (reservations) { 2065 start = vma_hugecache_offset(h, vma, vma->vm_start); 2066 end = vma_hugecache_offset(h, vma, vma->vm_end); 2067 2068 reserve = (end - start) - 2069 region_count(&reservations->regions, start, end); 2070 2071 kref_put(&reservations->refs, resv_map_release); 2072 2073 if (reserve) { 2074 hugetlb_acct_memory(h, -reserve); 2075 hugetlb_put_quota(vma->vm_file->f_mapping, reserve); 2076 } 2077 } 2078 } 2079 2080 /* 2081 * We cannot handle pagefaults against hugetlb pages at all. They cause 2082 * handle_mm_fault() to try to instantiate regular-sized pages in the 2083 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 2084 * this far. 2085 */ 2086 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2087 { 2088 BUG(); 2089 return 0; 2090 } 2091 2092 const struct vm_operations_struct hugetlb_vm_ops = { 2093 .fault = hugetlb_vm_op_fault, 2094 .open = hugetlb_vm_op_open, 2095 .close = hugetlb_vm_op_close, 2096 }; 2097 2098 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 2099 int writable) 2100 { 2101 pte_t entry; 2102 2103 if (writable) { 2104 entry = 2105 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); 2106 } else { 2107 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot)); 2108 } 2109 entry = pte_mkyoung(entry); 2110 entry = pte_mkhuge(entry); 2111 2112 return entry; 2113 } 2114 2115 static void set_huge_ptep_writable(struct vm_area_struct *vma, 2116 unsigned long address, pte_t *ptep) 2117 { 2118 pte_t entry; 2119 2120 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep))); 2121 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) { 2122 update_mmu_cache(vma, address, ptep); 2123 } 2124 } 2125 2126 2127 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 2128 struct vm_area_struct *vma) 2129 { 2130 pte_t *src_pte, *dst_pte, entry; 2131 struct page *ptepage; 2132 unsigned long addr; 2133 int cow; 2134 struct hstate *h = hstate_vma(vma); 2135 unsigned long sz = huge_page_size(h); 2136 2137 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 2138 2139 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 2140 src_pte = huge_pte_offset(src, addr); 2141 if (!src_pte) 2142 continue; 2143 dst_pte = huge_pte_alloc(dst, addr, sz); 2144 if (!dst_pte) 2145 goto nomem; 2146 2147 /* If the pagetables are shared don't copy or take references */ 2148 if (dst_pte == src_pte) 2149 continue; 2150 2151 spin_lock(&dst->page_table_lock); 2152 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); 2153 if (!huge_pte_none(huge_ptep_get(src_pte))) { 2154 if (cow) 2155 huge_ptep_set_wrprotect(src, addr, src_pte); 2156 entry = huge_ptep_get(src_pte); 2157 ptepage = pte_page(entry); 2158 get_page(ptepage); 2159 page_dup_rmap(ptepage); 2160 set_huge_pte_at(dst, addr, dst_pte, entry); 2161 } 2162 spin_unlock(&src->page_table_lock); 2163 spin_unlock(&dst->page_table_lock); 2164 } 2165 return 0; 2166 2167 nomem: 2168 return -ENOMEM; 2169 } 2170 2171 static int is_hugetlb_entry_migration(pte_t pte) 2172 { 2173 swp_entry_t swp; 2174 2175 if (huge_pte_none(pte) || pte_present(pte)) 2176 return 0; 2177 swp = pte_to_swp_entry(pte); 2178 if (non_swap_entry(swp) && is_migration_entry(swp)) { 2179 return 1; 2180 } else 2181 return 0; 2182 } 2183 2184 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 2185 { 2186 swp_entry_t swp; 2187 2188 if (huge_pte_none(pte) || pte_present(pte)) 2189 return 0; 2190 swp = pte_to_swp_entry(pte); 2191 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) { 2192 return 1; 2193 } else 2194 return 0; 2195 } 2196 2197 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 2198 unsigned long end, struct page *ref_page) 2199 { 2200 struct mm_struct *mm = vma->vm_mm; 2201 unsigned long address; 2202 pte_t *ptep; 2203 pte_t pte; 2204 struct page *page; 2205 struct page *tmp; 2206 struct hstate *h = hstate_vma(vma); 2207 unsigned long sz = huge_page_size(h); 2208 2209 /* 2210 * A page gathering list, protected by per file i_mmap_lock. The 2211 * lock is used to avoid list corruption from multiple unmapping 2212 * of the same page since we are using page->lru. 2213 */ 2214 LIST_HEAD(page_list); 2215 2216 WARN_ON(!is_vm_hugetlb_page(vma)); 2217 BUG_ON(start & ~huge_page_mask(h)); 2218 BUG_ON(end & ~huge_page_mask(h)); 2219 2220 mmu_notifier_invalidate_range_start(mm, start, end); 2221 spin_lock(&mm->page_table_lock); 2222 for (address = start; address < end; address += sz) { 2223 ptep = huge_pte_offset(mm, address); 2224 if (!ptep) 2225 continue; 2226 2227 if (huge_pmd_unshare(mm, &address, ptep)) 2228 continue; 2229 2230 /* 2231 * If a reference page is supplied, it is because a specific 2232 * page is being unmapped, not a range. Ensure the page we 2233 * are about to unmap is the actual page of interest. 2234 */ 2235 if (ref_page) { 2236 pte = huge_ptep_get(ptep); 2237 if (huge_pte_none(pte)) 2238 continue; 2239 page = pte_page(pte); 2240 if (page != ref_page) 2241 continue; 2242 2243 /* 2244 * Mark the VMA as having unmapped its page so that 2245 * future faults in this VMA will fail rather than 2246 * looking like data was lost 2247 */ 2248 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 2249 } 2250 2251 pte = huge_ptep_get_and_clear(mm, address, ptep); 2252 if (huge_pte_none(pte)) 2253 continue; 2254 2255 /* 2256 * HWPoisoned hugepage is already unmapped and dropped reference 2257 */ 2258 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) 2259 continue; 2260 2261 page = pte_page(pte); 2262 if (pte_dirty(pte)) 2263 set_page_dirty(page); 2264 list_add(&page->lru, &page_list); 2265 } 2266 spin_unlock(&mm->page_table_lock); 2267 flush_tlb_range(vma, start, end); 2268 mmu_notifier_invalidate_range_end(mm, start, end); 2269 list_for_each_entry_safe(page, tmp, &page_list, lru) { 2270 page_remove_rmap(page); 2271 list_del(&page->lru); 2272 put_page(page); 2273 } 2274 } 2275 2276 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 2277 unsigned long end, struct page *ref_page) 2278 { 2279 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 2280 __unmap_hugepage_range(vma, start, end, ref_page); 2281 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 2282 } 2283 2284 /* 2285 * This is called when the original mapper is failing to COW a MAP_PRIVATE 2286 * mappping it owns the reserve page for. The intention is to unmap the page 2287 * from other VMAs and let the children be SIGKILLed if they are faulting the 2288 * same region. 2289 */ 2290 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 2291 struct page *page, unsigned long address) 2292 { 2293 struct hstate *h = hstate_vma(vma); 2294 struct vm_area_struct *iter_vma; 2295 struct address_space *mapping; 2296 struct prio_tree_iter iter; 2297 pgoff_t pgoff; 2298 2299 /* 2300 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 2301 * from page cache lookup which is in HPAGE_SIZE units. 2302 */ 2303 address = address & huge_page_mask(h); 2304 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) 2305 + (vma->vm_pgoff >> PAGE_SHIFT); 2306 mapping = (struct address_space *)page_private(page); 2307 2308 /* 2309 * Take the mapping lock for the duration of the table walk. As 2310 * this mapping should be shared between all the VMAs, 2311 * __unmap_hugepage_range() is called as the lock is already held 2312 */ 2313 spin_lock(&mapping->i_mmap_lock); 2314 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 2315 /* Do not unmap the current VMA */ 2316 if (iter_vma == vma) 2317 continue; 2318 2319 /* 2320 * Unmap the page from other VMAs without their own reserves. 2321 * They get marked to be SIGKILLed if they fault in these 2322 * areas. This is because a future no-page fault on this VMA 2323 * could insert a zeroed page instead of the data existing 2324 * from the time of fork. This would look like data corruption 2325 */ 2326 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 2327 __unmap_hugepage_range(iter_vma, 2328 address, address + huge_page_size(h), 2329 page); 2330 } 2331 spin_unlock(&mapping->i_mmap_lock); 2332 2333 return 1; 2334 } 2335 2336 /* 2337 * Hugetlb_cow() should be called with page lock of the original hugepage held. 2338 */ 2339 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 2340 unsigned long address, pte_t *ptep, pte_t pte, 2341 struct page *pagecache_page) 2342 { 2343 struct hstate *h = hstate_vma(vma); 2344 struct page *old_page, *new_page; 2345 int avoidcopy; 2346 int outside_reserve = 0; 2347 2348 old_page = pte_page(pte); 2349 2350 retry_avoidcopy: 2351 /* If no-one else is actually using this page, avoid the copy 2352 * and just make the page writable */ 2353 avoidcopy = (page_mapcount(old_page) == 1); 2354 if (avoidcopy) { 2355 if (PageAnon(old_page)) 2356 page_move_anon_rmap(old_page, vma, address); 2357 set_huge_ptep_writable(vma, address, ptep); 2358 return 0; 2359 } 2360 2361 /* 2362 * If the process that created a MAP_PRIVATE mapping is about to 2363 * perform a COW due to a shared page count, attempt to satisfy 2364 * the allocation without using the existing reserves. The pagecache 2365 * page is used to determine if the reserve at this address was 2366 * consumed or not. If reserves were used, a partial faulted mapping 2367 * at the time of fork() could consume its reserves on COW instead 2368 * of the full address range. 2369 */ 2370 if (!(vma->vm_flags & VM_MAYSHARE) && 2371 is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 2372 old_page != pagecache_page) 2373 outside_reserve = 1; 2374 2375 page_cache_get(old_page); 2376 2377 /* Drop page_table_lock as buddy allocator may be called */ 2378 spin_unlock(&mm->page_table_lock); 2379 new_page = alloc_huge_page(vma, address, outside_reserve); 2380 2381 if (IS_ERR(new_page)) { 2382 page_cache_release(old_page); 2383 2384 /* 2385 * If a process owning a MAP_PRIVATE mapping fails to COW, 2386 * it is due to references held by a child and an insufficient 2387 * huge page pool. To guarantee the original mappers 2388 * reliability, unmap the page from child processes. The child 2389 * may get SIGKILLed if it later faults. 2390 */ 2391 if (outside_reserve) { 2392 BUG_ON(huge_pte_none(pte)); 2393 if (unmap_ref_private(mm, vma, old_page, address)) { 2394 BUG_ON(page_count(old_page) != 1); 2395 BUG_ON(huge_pte_none(pte)); 2396 spin_lock(&mm->page_table_lock); 2397 goto retry_avoidcopy; 2398 } 2399 WARN_ON_ONCE(1); 2400 } 2401 2402 /* Caller expects lock to be held */ 2403 spin_lock(&mm->page_table_lock); 2404 return -PTR_ERR(new_page); 2405 } 2406 2407 /* 2408 * When the original hugepage is shared one, it does not have 2409 * anon_vma prepared. 2410 */ 2411 if (unlikely(anon_vma_prepare(vma))) { 2412 /* Caller expects lock to be held */ 2413 spin_lock(&mm->page_table_lock); 2414 return VM_FAULT_OOM; 2415 } 2416 2417 copy_user_huge_page(new_page, old_page, address, vma, 2418 pages_per_huge_page(h)); 2419 __SetPageUptodate(new_page); 2420 2421 /* 2422 * Retake the page_table_lock to check for racing updates 2423 * before the page tables are altered 2424 */ 2425 spin_lock(&mm->page_table_lock); 2426 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2427 if (likely(pte_same(huge_ptep_get(ptep), pte))) { 2428 /* Break COW */ 2429 mmu_notifier_invalidate_range_start(mm, 2430 address & huge_page_mask(h), 2431 (address & huge_page_mask(h)) + huge_page_size(h)); 2432 huge_ptep_clear_flush(vma, address, ptep); 2433 set_huge_pte_at(mm, address, ptep, 2434 make_huge_pte(vma, new_page, 1)); 2435 page_remove_rmap(old_page); 2436 hugepage_add_new_anon_rmap(new_page, vma, address); 2437 /* Make the old page be freed below */ 2438 new_page = old_page; 2439 mmu_notifier_invalidate_range_end(mm, 2440 address & huge_page_mask(h), 2441 (address & huge_page_mask(h)) + huge_page_size(h)); 2442 } 2443 page_cache_release(new_page); 2444 page_cache_release(old_page); 2445 return 0; 2446 } 2447 2448 /* Return the pagecache page at a given address within a VMA */ 2449 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 2450 struct vm_area_struct *vma, unsigned long address) 2451 { 2452 struct address_space *mapping; 2453 pgoff_t idx; 2454 2455 mapping = vma->vm_file->f_mapping; 2456 idx = vma_hugecache_offset(h, vma, address); 2457 2458 return find_lock_page(mapping, idx); 2459 } 2460 2461 /* 2462 * Return whether there is a pagecache page to back given address within VMA. 2463 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 2464 */ 2465 static bool hugetlbfs_pagecache_present(struct hstate *h, 2466 struct vm_area_struct *vma, unsigned long address) 2467 { 2468 struct address_space *mapping; 2469 pgoff_t idx; 2470 struct page *page; 2471 2472 mapping = vma->vm_file->f_mapping; 2473 idx = vma_hugecache_offset(h, vma, address); 2474 2475 page = find_get_page(mapping, idx); 2476 if (page) 2477 put_page(page); 2478 return page != NULL; 2479 } 2480 2481 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 2482 unsigned long address, pte_t *ptep, unsigned int flags) 2483 { 2484 struct hstate *h = hstate_vma(vma); 2485 int ret = VM_FAULT_SIGBUS; 2486 pgoff_t idx; 2487 unsigned long size; 2488 struct page *page; 2489 struct address_space *mapping; 2490 pte_t new_pte; 2491 2492 /* 2493 * Currently, we are forced to kill the process in the event the 2494 * original mapper has unmapped pages from the child due to a failed 2495 * COW. Warn that such a situation has occured as it may not be obvious 2496 */ 2497 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 2498 printk(KERN_WARNING 2499 "PID %d killed due to inadequate hugepage pool\n", 2500 current->pid); 2501 return ret; 2502 } 2503 2504 mapping = vma->vm_file->f_mapping; 2505 idx = vma_hugecache_offset(h, vma, address); 2506 2507 /* 2508 * Use page lock to guard against racing truncation 2509 * before we get page_table_lock. 2510 */ 2511 retry: 2512 page = find_lock_page(mapping, idx); 2513 if (!page) { 2514 size = i_size_read(mapping->host) >> huge_page_shift(h); 2515 if (idx >= size) 2516 goto out; 2517 page = alloc_huge_page(vma, address, 0); 2518 if (IS_ERR(page)) { 2519 ret = -PTR_ERR(page); 2520 goto out; 2521 } 2522 clear_huge_page(page, address, pages_per_huge_page(h)); 2523 __SetPageUptodate(page); 2524 2525 if (vma->vm_flags & VM_MAYSHARE) { 2526 int err; 2527 struct inode *inode = mapping->host; 2528 2529 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 2530 if (err) { 2531 put_page(page); 2532 if (err == -EEXIST) 2533 goto retry; 2534 goto out; 2535 } 2536 2537 spin_lock(&inode->i_lock); 2538 inode->i_blocks += blocks_per_huge_page(h); 2539 spin_unlock(&inode->i_lock); 2540 page_dup_rmap(page); 2541 } else { 2542 lock_page(page); 2543 if (unlikely(anon_vma_prepare(vma))) { 2544 ret = VM_FAULT_OOM; 2545 goto backout_unlocked; 2546 } 2547 hugepage_add_new_anon_rmap(page, vma, address); 2548 } 2549 } else { 2550 /* 2551 * If memory error occurs between mmap() and fault, some process 2552 * don't have hwpoisoned swap entry for errored virtual address. 2553 * So we need to block hugepage fault by PG_hwpoison bit check. 2554 */ 2555 if (unlikely(PageHWPoison(page))) { 2556 ret = VM_FAULT_HWPOISON | 2557 VM_FAULT_SET_HINDEX(h - hstates); 2558 goto backout_unlocked; 2559 } 2560 page_dup_rmap(page); 2561 } 2562 2563 /* 2564 * If we are going to COW a private mapping later, we examine the 2565 * pending reservations for this page now. This will ensure that 2566 * any allocations necessary to record that reservation occur outside 2567 * the spinlock. 2568 */ 2569 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 2570 if (vma_needs_reservation(h, vma, address) < 0) { 2571 ret = VM_FAULT_OOM; 2572 goto backout_unlocked; 2573 } 2574 2575 spin_lock(&mm->page_table_lock); 2576 size = i_size_read(mapping->host) >> huge_page_shift(h); 2577 if (idx >= size) 2578 goto backout; 2579 2580 ret = 0; 2581 if (!huge_pte_none(huge_ptep_get(ptep))) 2582 goto backout; 2583 2584 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 2585 && (vma->vm_flags & VM_SHARED))); 2586 set_huge_pte_at(mm, address, ptep, new_pte); 2587 2588 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 2589 /* Optimization, do the COW without a second fault */ 2590 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); 2591 } 2592 2593 spin_unlock(&mm->page_table_lock); 2594 unlock_page(page); 2595 out: 2596 return ret; 2597 2598 backout: 2599 spin_unlock(&mm->page_table_lock); 2600 backout_unlocked: 2601 unlock_page(page); 2602 put_page(page); 2603 goto out; 2604 } 2605 2606 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2607 unsigned long address, unsigned int flags) 2608 { 2609 pte_t *ptep; 2610 pte_t entry; 2611 int ret; 2612 struct page *page = NULL; 2613 struct page *pagecache_page = NULL; 2614 static DEFINE_MUTEX(hugetlb_instantiation_mutex); 2615 struct hstate *h = hstate_vma(vma); 2616 2617 ptep = huge_pte_offset(mm, address); 2618 if (ptep) { 2619 entry = huge_ptep_get(ptep); 2620 if (unlikely(is_hugetlb_entry_migration(entry))) { 2621 migration_entry_wait(mm, (pmd_t *)ptep, address); 2622 return 0; 2623 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 2624 return VM_FAULT_HWPOISON_LARGE | 2625 VM_FAULT_SET_HINDEX(h - hstates); 2626 } 2627 2628 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 2629 if (!ptep) 2630 return VM_FAULT_OOM; 2631 2632 /* 2633 * Serialize hugepage allocation and instantiation, so that we don't 2634 * get spurious allocation failures if two CPUs race to instantiate 2635 * the same page in the page cache. 2636 */ 2637 mutex_lock(&hugetlb_instantiation_mutex); 2638 entry = huge_ptep_get(ptep); 2639 if (huge_pte_none(entry)) { 2640 ret = hugetlb_no_page(mm, vma, address, ptep, flags); 2641 goto out_mutex; 2642 } 2643 2644 ret = 0; 2645 2646 /* 2647 * If we are going to COW the mapping later, we examine the pending 2648 * reservations for this page now. This will ensure that any 2649 * allocations necessary to record that reservation occur outside the 2650 * spinlock. For private mappings, we also lookup the pagecache 2651 * page now as it is used to determine if a reservation has been 2652 * consumed. 2653 */ 2654 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) { 2655 if (vma_needs_reservation(h, vma, address) < 0) { 2656 ret = VM_FAULT_OOM; 2657 goto out_mutex; 2658 } 2659 2660 if (!(vma->vm_flags & VM_MAYSHARE)) 2661 pagecache_page = hugetlbfs_pagecache_page(h, 2662 vma, address); 2663 } 2664 2665 /* 2666 * hugetlb_cow() requires page locks of pte_page(entry) and 2667 * pagecache_page, so here we need take the former one 2668 * when page != pagecache_page or !pagecache_page. 2669 * Note that locking order is always pagecache_page -> page, 2670 * so no worry about deadlock. 2671 */ 2672 page = pte_page(entry); 2673 if (page != pagecache_page) 2674 lock_page(page); 2675 2676 spin_lock(&mm->page_table_lock); 2677 /* Check for a racing update before calling hugetlb_cow */ 2678 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 2679 goto out_page_table_lock; 2680 2681 2682 if (flags & FAULT_FLAG_WRITE) { 2683 if (!pte_write(entry)) { 2684 ret = hugetlb_cow(mm, vma, address, ptep, entry, 2685 pagecache_page); 2686 goto out_page_table_lock; 2687 } 2688 entry = pte_mkdirty(entry); 2689 } 2690 entry = pte_mkyoung(entry); 2691 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 2692 flags & FAULT_FLAG_WRITE)) 2693 update_mmu_cache(vma, address, ptep); 2694 2695 out_page_table_lock: 2696 spin_unlock(&mm->page_table_lock); 2697 2698 if (pagecache_page) { 2699 unlock_page(pagecache_page); 2700 put_page(pagecache_page); 2701 } 2702 if (page != pagecache_page) 2703 unlock_page(page); 2704 2705 out_mutex: 2706 mutex_unlock(&hugetlb_instantiation_mutex); 2707 2708 return ret; 2709 } 2710 2711 /* Can be overriden by architectures */ 2712 __attribute__((weak)) struct page * 2713 follow_huge_pud(struct mm_struct *mm, unsigned long address, 2714 pud_t *pud, int write) 2715 { 2716 BUG(); 2717 return NULL; 2718 } 2719 2720 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 2721 struct page **pages, struct vm_area_struct **vmas, 2722 unsigned long *position, int *length, int i, 2723 unsigned int flags) 2724 { 2725 unsigned long pfn_offset; 2726 unsigned long vaddr = *position; 2727 int remainder = *length; 2728 struct hstate *h = hstate_vma(vma); 2729 2730 spin_lock(&mm->page_table_lock); 2731 while (vaddr < vma->vm_end && remainder) { 2732 pte_t *pte; 2733 int absent; 2734 struct page *page; 2735 2736 /* 2737 * Some archs (sparc64, sh*) have multiple pte_ts to 2738 * each hugepage. We have to make sure we get the 2739 * first, for the page indexing below to work. 2740 */ 2741 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 2742 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 2743 2744 /* 2745 * When coredumping, it suits get_dump_page if we just return 2746 * an error where there's an empty slot with no huge pagecache 2747 * to back it. This way, we avoid allocating a hugepage, and 2748 * the sparse dumpfile avoids allocating disk blocks, but its 2749 * huge holes still show up with zeroes where they need to be. 2750 */ 2751 if (absent && (flags & FOLL_DUMP) && 2752 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 2753 remainder = 0; 2754 break; 2755 } 2756 2757 if (absent || 2758 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) { 2759 int ret; 2760 2761 spin_unlock(&mm->page_table_lock); 2762 ret = hugetlb_fault(mm, vma, vaddr, 2763 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 2764 spin_lock(&mm->page_table_lock); 2765 if (!(ret & VM_FAULT_ERROR)) 2766 continue; 2767 2768 remainder = 0; 2769 break; 2770 } 2771 2772 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 2773 page = pte_page(huge_ptep_get(pte)); 2774 same_page: 2775 if (pages) { 2776 pages[i] = mem_map_offset(page, pfn_offset); 2777 get_page(pages[i]); 2778 } 2779 2780 if (vmas) 2781 vmas[i] = vma; 2782 2783 vaddr += PAGE_SIZE; 2784 ++pfn_offset; 2785 --remainder; 2786 ++i; 2787 if (vaddr < vma->vm_end && remainder && 2788 pfn_offset < pages_per_huge_page(h)) { 2789 /* 2790 * We use pfn_offset to avoid touching the pageframes 2791 * of this compound page. 2792 */ 2793 goto same_page; 2794 } 2795 } 2796 spin_unlock(&mm->page_table_lock); 2797 *length = remainder; 2798 *position = vaddr; 2799 2800 return i ? i : -EFAULT; 2801 } 2802 2803 void hugetlb_change_protection(struct vm_area_struct *vma, 2804 unsigned long address, unsigned long end, pgprot_t newprot) 2805 { 2806 struct mm_struct *mm = vma->vm_mm; 2807 unsigned long start = address; 2808 pte_t *ptep; 2809 pte_t pte; 2810 struct hstate *h = hstate_vma(vma); 2811 2812 BUG_ON(address >= end); 2813 flush_cache_range(vma, address, end); 2814 2815 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 2816 spin_lock(&mm->page_table_lock); 2817 for (; address < end; address += huge_page_size(h)) { 2818 ptep = huge_pte_offset(mm, address); 2819 if (!ptep) 2820 continue; 2821 if (huge_pmd_unshare(mm, &address, ptep)) 2822 continue; 2823 if (!huge_pte_none(huge_ptep_get(ptep))) { 2824 pte = huge_ptep_get_and_clear(mm, address, ptep); 2825 pte = pte_mkhuge(pte_modify(pte, newprot)); 2826 set_huge_pte_at(mm, address, ptep, pte); 2827 } 2828 } 2829 spin_unlock(&mm->page_table_lock); 2830 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 2831 2832 flush_tlb_range(vma, start, end); 2833 } 2834 2835 int hugetlb_reserve_pages(struct inode *inode, 2836 long from, long to, 2837 struct vm_area_struct *vma, 2838 int acctflag) 2839 { 2840 long ret, chg; 2841 struct hstate *h = hstate_inode(inode); 2842 2843 /* 2844 * Only apply hugepage reservation if asked. At fault time, an 2845 * attempt will be made for VM_NORESERVE to allocate a page 2846 * and filesystem quota without using reserves 2847 */ 2848 if (acctflag & VM_NORESERVE) 2849 return 0; 2850 2851 /* 2852 * Shared mappings base their reservation on the number of pages that 2853 * are already allocated on behalf of the file. Private mappings need 2854 * to reserve the full area even if read-only as mprotect() may be 2855 * called to make the mapping read-write. Assume !vma is a shm mapping 2856 */ 2857 if (!vma || vma->vm_flags & VM_MAYSHARE) 2858 chg = region_chg(&inode->i_mapping->private_list, from, to); 2859 else { 2860 struct resv_map *resv_map = resv_map_alloc(); 2861 if (!resv_map) 2862 return -ENOMEM; 2863 2864 chg = to - from; 2865 2866 set_vma_resv_map(vma, resv_map); 2867 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 2868 } 2869 2870 if (chg < 0) 2871 return chg; 2872 2873 /* There must be enough filesystem quota for the mapping */ 2874 if (hugetlb_get_quota(inode->i_mapping, chg)) 2875 return -ENOSPC; 2876 2877 /* 2878 * Check enough hugepages are available for the reservation. 2879 * Hand back the quota if there are not 2880 */ 2881 ret = hugetlb_acct_memory(h, chg); 2882 if (ret < 0) { 2883 hugetlb_put_quota(inode->i_mapping, chg); 2884 return ret; 2885 } 2886 2887 /* 2888 * Account for the reservations made. Shared mappings record regions 2889 * that have reservations as they are shared by multiple VMAs. 2890 * When the last VMA disappears, the region map says how much 2891 * the reservation was and the page cache tells how much of 2892 * the reservation was consumed. Private mappings are per-VMA and 2893 * only the consumed reservations are tracked. When the VMA 2894 * disappears, the original reservation is the VMA size and the 2895 * consumed reservations are stored in the map. Hence, nothing 2896 * else has to be done for private mappings here 2897 */ 2898 if (!vma || vma->vm_flags & VM_MAYSHARE) 2899 region_add(&inode->i_mapping->private_list, from, to); 2900 return 0; 2901 } 2902 2903 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 2904 { 2905 struct hstate *h = hstate_inode(inode); 2906 long chg = region_truncate(&inode->i_mapping->private_list, offset); 2907 2908 spin_lock(&inode->i_lock); 2909 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 2910 spin_unlock(&inode->i_lock); 2911 2912 hugetlb_put_quota(inode->i_mapping, (chg - freed)); 2913 hugetlb_acct_memory(h, -(chg - freed)); 2914 } 2915 2916 #ifdef CONFIG_MEMORY_FAILURE 2917 2918 /* Should be called in hugetlb_lock */ 2919 static int is_hugepage_on_freelist(struct page *hpage) 2920 { 2921 struct page *page; 2922 struct page *tmp; 2923 struct hstate *h = page_hstate(hpage); 2924 int nid = page_to_nid(hpage); 2925 2926 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) 2927 if (page == hpage) 2928 return 1; 2929 return 0; 2930 } 2931 2932 /* 2933 * This function is called from memory failure code. 2934 * Assume the caller holds page lock of the head page. 2935 */ 2936 int dequeue_hwpoisoned_huge_page(struct page *hpage) 2937 { 2938 struct hstate *h = page_hstate(hpage); 2939 int nid = page_to_nid(hpage); 2940 int ret = -EBUSY; 2941 2942 spin_lock(&hugetlb_lock); 2943 if (is_hugepage_on_freelist(hpage)) { 2944 list_del(&hpage->lru); 2945 set_page_refcounted(hpage); 2946 h->free_huge_pages--; 2947 h->free_huge_pages_node[nid]--; 2948 ret = 0; 2949 } 2950 spin_unlock(&hugetlb_lock); 2951 return ret; 2952 } 2953 #endif 2954