xref: /openbmc/linux/mm/hugetlb.c (revision dea54fba)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/string_helpers.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/jhash.h>
27 
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31 
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include <linux/userfaultfd_k.h>
37 #include "internal.h"
38 
39 int hugepages_treat_as_movable;
40 
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44 /*
45  * Minimum page order among possible hugepage sizes, set to a proper value
46  * at boot time.
47  */
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
49 
50 __initdata LIST_HEAD(huge_boot_pages);
51 
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
57 
58 /*
59  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60  * free_huge_pages, and surplus_huge_pages.
61  */
62 DEFINE_SPINLOCK(hugetlb_lock);
63 
64 /*
65  * Serializes faults on the same logical page.  This is used to
66  * prevent spurious OOMs when the hugepage pool is fully utilized.
67  */
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70 
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
73 
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 {
76 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
77 
78 	spin_unlock(&spool->lock);
79 
80 	/* If no pages are used, and no other handles to the subpool
81 	 * remain, give up any reservations mased on minimum size and
82 	 * free the subpool */
83 	if (free) {
84 		if (spool->min_hpages != -1)
85 			hugetlb_acct_memory(spool->hstate,
86 						-spool->min_hpages);
87 		kfree(spool);
88 	}
89 }
90 
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 						long min_hpages)
93 {
94 	struct hugepage_subpool *spool;
95 
96 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 	if (!spool)
98 		return NULL;
99 
100 	spin_lock_init(&spool->lock);
101 	spool->count = 1;
102 	spool->max_hpages = max_hpages;
103 	spool->hstate = h;
104 	spool->min_hpages = min_hpages;
105 
106 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 		kfree(spool);
108 		return NULL;
109 	}
110 	spool->rsv_hpages = min_hpages;
111 
112 	return spool;
113 }
114 
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 {
117 	spin_lock(&spool->lock);
118 	BUG_ON(!spool->count);
119 	spool->count--;
120 	unlock_or_release_subpool(spool);
121 }
122 
123 /*
124  * Subpool accounting for allocating and reserving pages.
125  * Return -ENOMEM if there are not enough resources to satisfy the
126  * the request.  Otherwise, return the number of pages by which the
127  * global pools must be adjusted (upward).  The returned value may
128  * only be different than the passed value (delta) in the case where
129  * a subpool minimum size must be manitained.
130  */
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 				      long delta)
133 {
134 	long ret = delta;
135 
136 	if (!spool)
137 		return ret;
138 
139 	spin_lock(&spool->lock);
140 
141 	if (spool->max_hpages != -1) {		/* maximum size accounting */
142 		if ((spool->used_hpages + delta) <= spool->max_hpages)
143 			spool->used_hpages += delta;
144 		else {
145 			ret = -ENOMEM;
146 			goto unlock_ret;
147 		}
148 	}
149 
150 	/* minimum size accounting */
151 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 		if (delta > spool->rsv_hpages) {
153 			/*
154 			 * Asking for more reserves than those already taken on
155 			 * behalf of subpool.  Return difference.
156 			 */
157 			ret = delta - spool->rsv_hpages;
158 			spool->rsv_hpages = 0;
159 		} else {
160 			ret = 0;	/* reserves already accounted for */
161 			spool->rsv_hpages -= delta;
162 		}
163 	}
164 
165 unlock_ret:
166 	spin_unlock(&spool->lock);
167 	return ret;
168 }
169 
170 /*
171  * Subpool accounting for freeing and unreserving pages.
172  * Return the number of global page reservations that must be dropped.
173  * The return value may only be different than the passed value (delta)
174  * in the case where a subpool minimum size must be maintained.
175  */
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 				       long delta)
178 {
179 	long ret = delta;
180 
181 	if (!spool)
182 		return delta;
183 
184 	spin_lock(&spool->lock);
185 
186 	if (spool->max_hpages != -1)		/* maximum size accounting */
187 		spool->used_hpages -= delta;
188 
189 	 /* minimum size accounting */
190 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 		if (spool->rsv_hpages + delta <= spool->min_hpages)
192 			ret = 0;
193 		else
194 			ret = spool->rsv_hpages + delta - spool->min_hpages;
195 
196 		spool->rsv_hpages += delta;
197 		if (spool->rsv_hpages > spool->min_hpages)
198 			spool->rsv_hpages = spool->min_hpages;
199 	}
200 
201 	/*
202 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 	 * quota reference, free it now.
204 	 */
205 	unlock_or_release_subpool(spool);
206 
207 	return ret;
208 }
209 
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 {
212 	return HUGETLBFS_SB(inode->i_sb)->spool;
213 }
214 
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 {
217 	return subpool_inode(file_inode(vma->vm_file));
218 }
219 
220 /*
221  * Region tracking -- allows tracking of reservations and instantiated pages
222  *                    across the pages in a mapping.
223  *
224  * The region data structures are embedded into a resv_map and protected
225  * by a resv_map's lock.  The set of regions within the resv_map represent
226  * reservations for huge pages, or huge pages that have already been
227  * instantiated within the map.  The from and to elements are huge page
228  * indicies into the associated mapping.  from indicates the starting index
229  * of the region.  to represents the first index past the end of  the region.
230  *
231  * For example, a file region structure with from == 0 and to == 4 represents
232  * four huge pages in a mapping.  It is important to note that the to element
233  * represents the first element past the end of the region. This is used in
234  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235  *
236  * Interval notation of the form [from, to) will be used to indicate that
237  * the endpoint from is inclusive and to is exclusive.
238  */
239 struct file_region {
240 	struct list_head link;
241 	long from;
242 	long to;
243 };
244 
245 /*
246  * Add the huge page range represented by [f, t) to the reserve
247  * map.  In the normal case, existing regions will be expanded
248  * to accommodate the specified range.  Sufficient regions should
249  * exist for expansion due to the previous call to region_chg
250  * with the same range.  However, it is possible that region_del
251  * could have been called after region_chg and modifed the map
252  * in such a way that no region exists to be expanded.  In this
253  * case, pull a region descriptor from the cache associated with
254  * the map and use that for the new range.
255  *
256  * Return the number of new huge pages added to the map.  This
257  * number is greater than or equal to zero.
258  */
259 static long region_add(struct resv_map *resv, long f, long t)
260 {
261 	struct list_head *head = &resv->regions;
262 	struct file_region *rg, *nrg, *trg;
263 	long add = 0;
264 
265 	spin_lock(&resv->lock);
266 	/* Locate the region we are either in or before. */
267 	list_for_each_entry(rg, head, link)
268 		if (f <= rg->to)
269 			break;
270 
271 	/*
272 	 * If no region exists which can be expanded to include the
273 	 * specified range, the list must have been modified by an
274 	 * interleving call to region_del().  Pull a region descriptor
275 	 * from the cache and use it for this range.
276 	 */
277 	if (&rg->link == head || t < rg->from) {
278 		VM_BUG_ON(resv->region_cache_count <= 0);
279 
280 		resv->region_cache_count--;
281 		nrg = list_first_entry(&resv->region_cache, struct file_region,
282 					link);
283 		list_del(&nrg->link);
284 
285 		nrg->from = f;
286 		nrg->to = t;
287 		list_add(&nrg->link, rg->link.prev);
288 
289 		add += t - f;
290 		goto out_locked;
291 	}
292 
293 	/* Round our left edge to the current segment if it encloses us. */
294 	if (f > rg->from)
295 		f = rg->from;
296 
297 	/* Check for and consume any regions we now overlap with. */
298 	nrg = rg;
299 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 		if (&rg->link == head)
301 			break;
302 		if (rg->from > t)
303 			break;
304 
305 		/* If this area reaches higher then extend our area to
306 		 * include it completely.  If this is not the first area
307 		 * which we intend to reuse, free it. */
308 		if (rg->to > t)
309 			t = rg->to;
310 		if (rg != nrg) {
311 			/* Decrement return value by the deleted range.
312 			 * Another range will span this area so that by
313 			 * end of routine add will be >= zero
314 			 */
315 			add -= (rg->to - rg->from);
316 			list_del(&rg->link);
317 			kfree(rg);
318 		}
319 	}
320 
321 	add += (nrg->from - f);		/* Added to beginning of region */
322 	nrg->from = f;
323 	add += t - nrg->to;		/* Added to end of region */
324 	nrg->to = t;
325 
326 out_locked:
327 	resv->adds_in_progress--;
328 	spin_unlock(&resv->lock);
329 	VM_BUG_ON(add < 0);
330 	return add;
331 }
332 
333 /*
334  * Examine the existing reserve map and determine how many
335  * huge pages in the specified range [f, t) are NOT currently
336  * represented.  This routine is called before a subsequent
337  * call to region_add that will actually modify the reserve
338  * map to add the specified range [f, t).  region_chg does
339  * not change the number of huge pages represented by the
340  * map.  However, if the existing regions in the map can not
341  * be expanded to represent the new range, a new file_region
342  * structure is added to the map as a placeholder.  This is
343  * so that the subsequent region_add call will have all the
344  * regions it needs and will not fail.
345  *
346  * Upon entry, region_chg will also examine the cache of region descriptors
347  * associated with the map.  If there are not enough descriptors cached, one
348  * will be allocated for the in progress add operation.
349  *
350  * Returns the number of huge pages that need to be added to the existing
351  * reservation map for the range [f, t).  This number is greater or equal to
352  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
353  * is needed and can not be allocated.
354  */
355 static long region_chg(struct resv_map *resv, long f, long t)
356 {
357 	struct list_head *head = &resv->regions;
358 	struct file_region *rg, *nrg = NULL;
359 	long chg = 0;
360 
361 retry:
362 	spin_lock(&resv->lock);
363 retry_locked:
364 	resv->adds_in_progress++;
365 
366 	/*
367 	 * Check for sufficient descriptors in the cache to accommodate
368 	 * the number of in progress add operations.
369 	 */
370 	if (resv->adds_in_progress > resv->region_cache_count) {
371 		struct file_region *trg;
372 
373 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 		/* Must drop lock to allocate a new descriptor. */
375 		resv->adds_in_progress--;
376 		spin_unlock(&resv->lock);
377 
378 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 		if (!trg) {
380 			kfree(nrg);
381 			return -ENOMEM;
382 		}
383 
384 		spin_lock(&resv->lock);
385 		list_add(&trg->link, &resv->region_cache);
386 		resv->region_cache_count++;
387 		goto retry_locked;
388 	}
389 
390 	/* Locate the region we are before or in. */
391 	list_for_each_entry(rg, head, link)
392 		if (f <= rg->to)
393 			break;
394 
395 	/* If we are below the current region then a new region is required.
396 	 * Subtle, allocate a new region at the position but make it zero
397 	 * size such that we can guarantee to record the reservation. */
398 	if (&rg->link == head || t < rg->from) {
399 		if (!nrg) {
400 			resv->adds_in_progress--;
401 			spin_unlock(&resv->lock);
402 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 			if (!nrg)
404 				return -ENOMEM;
405 
406 			nrg->from = f;
407 			nrg->to   = f;
408 			INIT_LIST_HEAD(&nrg->link);
409 			goto retry;
410 		}
411 
412 		list_add(&nrg->link, rg->link.prev);
413 		chg = t - f;
414 		goto out_nrg;
415 	}
416 
417 	/* Round our left edge to the current segment if it encloses us. */
418 	if (f > rg->from)
419 		f = rg->from;
420 	chg = t - f;
421 
422 	/* Check for and consume any regions we now overlap with. */
423 	list_for_each_entry(rg, rg->link.prev, link) {
424 		if (&rg->link == head)
425 			break;
426 		if (rg->from > t)
427 			goto out;
428 
429 		/* We overlap with this area, if it extends further than
430 		 * us then we must extend ourselves.  Account for its
431 		 * existing reservation. */
432 		if (rg->to > t) {
433 			chg += rg->to - t;
434 			t = rg->to;
435 		}
436 		chg -= rg->to - rg->from;
437 	}
438 
439 out:
440 	spin_unlock(&resv->lock);
441 	/*  We already know we raced and no longer need the new region */
442 	kfree(nrg);
443 	return chg;
444 out_nrg:
445 	spin_unlock(&resv->lock);
446 	return chg;
447 }
448 
449 /*
450  * Abort the in progress add operation.  The adds_in_progress field
451  * of the resv_map keeps track of the operations in progress between
452  * calls to region_chg and region_add.  Operations are sometimes
453  * aborted after the call to region_chg.  In such cases, region_abort
454  * is called to decrement the adds_in_progress counter.
455  *
456  * NOTE: The range arguments [f, t) are not needed or used in this
457  * routine.  They are kept to make reading the calling code easier as
458  * arguments will match the associated region_chg call.
459  */
460 static void region_abort(struct resv_map *resv, long f, long t)
461 {
462 	spin_lock(&resv->lock);
463 	VM_BUG_ON(!resv->region_cache_count);
464 	resv->adds_in_progress--;
465 	spin_unlock(&resv->lock);
466 }
467 
468 /*
469  * Delete the specified range [f, t) from the reserve map.  If the
470  * t parameter is LONG_MAX, this indicates that ALL regions after f
471  * should be deleted.  Locate the regions which intersect [f, t)
472  * and either trim, delete or split the existing regions.
473  *
474  * Returns the number of huge pages deleted from the reserve map.
475  * In the normal case, the return value is zero or more.  In the
476  * case where a region must be split, a new region descriptor must
477  * be allocated.  If the allocation fails, -ENOMEM will be returned.
478  * NOTE: If the parameter t == LONG_MAX, then we will never split
479  * a region and possibly return -ENOMEM.  Callers specifying
480  * t == LONG_MAX do not need to check for -ENOMEM error.
481  */
482 static long region_del(struct resv_map *resv, long f, long t)
483 {
484 	struct list_head *head = &resv->regions;
485 	struct file_region *rg, *trg;
486 	struct file_region *nrg = NULL;
487 	long del = 0;
488 
489 retry:
490 	spin_lock(&resv->lock);
491 	list_for_each_entry_safe(rg, trg, head, link) {
492 		/*
493 		 * Skip regions before the range to be deleted.  file_region
494 		 * ranges are normally of the form [from, to).  However, there
495 		 * may be a "placeholder" entry in the map which is of the form
496 		 * (from, to) with from == to.  Check for placeholder entries
497 		 * at the beginning of the range to be deleted.
498 		 */
499 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500 			continue;
501 
502 		if (rg->from >= t)
503 			break;
504 
505 		if (f > rg->from && t < rg->to) { /* Must split region */
506 			/*
507 			 * Check for an entry in the cache before dropping
508 			 * lock and attempting allocation.
509 			 */
510 			if (!nrg &&
511 			    resv->region_cache_count > resv->adds_in_progress) {
512 				nrg = list_first_entry(&resv->region_cache,
513 							struct file_region,
514 							link);
515 				list_del(&nrg->link);
516 				resv->region_cache_count--;
517 			}
518 
519 			if (!nrg) {
520 				spin_unlock(&resv->lock);
521 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 				if (!nrg)
523 					return -ENOMEM;
524 				goto retry;
525 			}
526 
527 			del += t - f;
528 
529 			/* New entry for end of split region */
530 			nrg->from = t;
531 			nrg->to = rg->to;
532 			INIT_LIST_HEAD(&nrg->link);
533 
534 			/* Original entry is trimmed */
535 			rg->to = f;
536 
537 			list_add(&nrg->link, &rg->link);
538 			nrg = NULL;
539 			break;
540 		}
541 
542 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 			del += rg->to - rg->from;
544 			list_del(&rg->link);
545 			kfree(rg);
546 			continue;
547 		}
548 
549 		if (f <= rg->from) {	/* Trim beginning of region */
550 			del += t - rg->from;
551 			rg->from = t;
552 		} else {		/* Trim end of region */
553 			del += rg->to - f;
554 			rg->to = f;
555 		}
556 	}
557 
558 	spin_unlock(&resv->lock);
559 	kfree(nrg);
560 	return del;
561 }
562 
563 /*
564  * A rare out of memory error was encountered which prevented removal of
565  * the reserve map region for a page.  The huge page itself was free'ed
566  * and removed from the page cache.  This routine will adjust the subpool
567  * usage count, and the global reserve count if needed.  By incrementing
568  * these counts, the reserve map entry which could not be deleted will
569  * appear as a "reserved" entry instead of simply dangling with incorrect
570  * counts.
571  */
572 void hugetlb_fix_reserve_counts(struct inode *inode)
573 {
574 	struct hugepage_subpool *spool = subpool_inode(inode);
575 	long rsv_adjust;
576 
577 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 	if (rsv_adjust) {
579 		struct hstate *h = hstate_inode(inode);
580 
581 		hugetlb_acct_memory(h, 1);
582 	}
583 }
584 
585 /*
586  * Count and return the number of huge pages in the reserve map
587  * that intersect with the range [f, t).
588  */
589 static long region_count(struct resv_map *resv, long f, long t)
590 {
591 	struct list_head *head = &resv->regions;
592 	struct file_region *rg;
593 	long chg = 0;
594 
595 	spin_lock(&resv->lock);
596 	/* Locate each segment we overlap with, and count that overlap. */
597 	list_for_each_entry(rg, head, link) {
598 		long seg_from;
599 		long seg_to;
600 
601 		if (rg->to <= f)
602 			continue;
603 		if (rg->from >= t)
604 			break;
605 
606 		seg_from = max(rg->from, f);
607 		seg_to = min(rg->to, t);
608 
609 		chg += seg_to - seg_from;
610 	}
611 	spin_unlock(&resv->lock);
612 
613 	return chg;
614 }
615 
616 /*
617  * Convert the address within this vma to the page offset within
618  * the mapping, in pagecache page units; huge pages here.
619  */
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621 			struct vm_area_struct *vma, unsigned long address)
622 {
623 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 			(vma->vm_pgoff >> huge_page_order(h));
625 }
626 
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 				     unsigned long address)
629 {
630 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 }
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633 
634 /*
635  * Return the size of the pages allocated when backing a VMA. In the majority
636  * cases this will be same size as used by the page table entries.
637  */
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 {
640 	struct hstate *hstate;
641 
642 	if (!is_vm_hugetlb_page(vma))
643 		return PAGE_SIZE;
644 
645 	hstate = hstate_vma(vma);
646 
647 	return 1UL << huge_page_shift(hstate);
648 }
649 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650 
651 /*
652  * Return the page size being used by the MMU to back a VMA. In the majority
653  * of cases, the page size used by the kernel matches the MMU size. On
654  * architectures where it differs, an architecture-specific version of this
655  * function is required.
656  */
657 #ifndef vma_mmu_pagesize
658 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
659 {
660 	return vma_kernel_pagesize(vma);
661 }
662 #endif
663 
664 /*
665  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
666  * bits of the reservation map pointer, which are always clear due to
667  * alignment.
668  */
669 #define HPAGE_RESV_OWNER    (1UL << 0)
670 #define HPAGE_RESV_UNMAPPED (1UL << 1)
671 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672 
673 /*
674  * These helpers are used to track how many pages are reserved for
675  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
676  * is guaranteed to have their future faults succeed.
677  *
678  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
679  * the reserve counters are updated with the hugetlb_lock held. It is safe
680  * to reset the VMA at fork() time as it is not in use yet and there is no
681  * chance of the global counters getting corrupted as a result of the values.
682  *
683  * The private mapping reservation is represented in a subtly different
684  * manner to a shared mapping.  A shared mapping has a region map associated
685  * with the underlying file, this region map represents the backing file
686  * pages which have ever had a reservation assigned which this persists even
687  * after the page is instantiated.  A private mapping has a region map
688  * associated with the original mmap which is attached to all VMAs which
689  * reference it, this region map represents those offsets which have consumed
690  * reservation ie. where pages have been instantiated.
691  */
692 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
693 {
694 	return (unsigned long)vma->vm_private_data;
695 }
696 
697 static void set_vma_private_data(struct vm_area_struct *vma,
698 							unsigned long value)
699 {
700 	vma->vm_private_data = (void *)value;
701 }
702 
703 struct resv_map *resv_map_alloc(void)
704 {
705 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
706 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
707 
708 	if (!resv_map || !rg) {
709 		kfree(resv_map);
710 		kfree(rg);
711 		return NULL;
712 	}
713 
714 	kref_init(&resv_map->refs);
715 	spin_lock_init(&resv_map->lock);
716 	INIT_LIST_HEAD(&resv_map->regions);
717 
718 	resv_map->adds_in_progress = 0;
719 
720 	INIT_LIST_HEAD(&resv_map->region_cache);
721 	list_add(&rg->link, &resv_map->region_cache);
722 	resv_map->region_cache_count = 1;
723 
724 	return resv_map;
725 }
726 
727 void resv_map_release(struct kref *ref)
728 {
729 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
730 	struct list_head *head = &resv_map->region_cache;
731 	struct file_region *rg, *trg;
732 
733 	/* Clear out any active regions before we release the map. */
734 	region_del(resv_map, 0, LONG_MAX);
735 
736 	/* ... and any entries left in the cache */
737 	list_for_each_entry_safe(rg, trg, head, link) {
738 		list_del(&rg->link);
739 		kfree(rg);
740 	}
741 
742 	VM_BUG_ON(resv_map->adds_in_progress);
743 
744 	kfree(resv_map);
745 }
746 
747 static inline struct resv_map *inode_resv_map(struct inode *inode)
748 {
749 	return inode->i_mapping->private_data;
750 }
751 
752 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
753 {
754 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 	if (vma->vm_flags & VM_MAYSHARE) {
756 		struct address_space *mapping = vma->vm_file->f_mapping;
757 		struct inode *inode = mapping->host;
758 
759 		return inode_resv_map(inode);
760 
761 	} else {
762 		return (struct resv_map *)(get_vma_private_data(vma) &
763 							~HPAGE_RESV_MASK);
764 	}
765 }
766 
767 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
768 {
769 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
770 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
771 
772 	set_vma_private_data(vma, (get_vma_private_data(vma) &
773 				HPAGE_RESV_MASK) | (unsigned long)map);
774 }
775 
776 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
777 {
778 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
779 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
780 
781 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 }
783 
784 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
785 {
786 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
787 
788 	return (get_vma_private_data(vma) & flag) != 0;
789 }
790 
791 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
792 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
793 {
794 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
795 	if (!(vma->vm_flags & VM_MAYSHARE))
796 		vma->vm_private_data = (void *)0;
797 }
798 
799 /* Returns true if the VMA has associated reserve pages */
800 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
801 {
802 	if (vma->vm_flags & VM_NORESERVE) {
803 		/*
804 		 * This address is already reserved by other process(chg == 0),
805 		 * so, we should decrement reserved count. Without decrementing,
806 		 * reserve count remains after releasing inode, because this
807 		 * allocated page will go into page cache and is regarded as
808 		 * coming from reserved pool in releasing step.  Currently, we
809 		 * don't have any other solution to deal with this situation
810 		 * properly, so add work-around here.
811 		 */
812 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
813 			return true;
814 		else
815 			return false;
816 	}
817 
818 	/* Shared mappings always use reserves */
819 	if (vma->vm_flags & VM_MAYSHARE) {
820 		/*
821 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
822 		 * be a region map for all pages.  The only situation where
823 		 * there is no region map is if a hole was punched via
824 		 * fallocate.  In this case, there really are no reverves to
825 		 * use.  This situation is indicated if chg != 0.
826 		 */
827 		if (chg)
828 			return false;
829 		else
830 			return true;
831 	}
832 
833 	/*
834 	 * Only the process that called mmap() has reserves for
835 	 * private mappings.
836 	 */
837 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
838 		/*
839 		 * Like the shared case above, a hole punch or truncate
840 		 * could have been performed on the private mapping.
841 		 * Examine the value of chg to determine if reserves
842 		 * actually exist or were previously consumed.
843 		 * Very Subtle - The value of chg comes from a previous
844 		 * call to vma_needs_reserves().  The reserve map for
845 		 * private mappings has different (opposite) semantics
846 		 * than that of shared mappings.  vma_needs_reserves()
847 		 * has already taken this difference in semantics into
848 		 * account.  Therefore, the meaning of chg is the same
849 		 * as in the shared case above.  Code could easily be
850 		 * combined, but keeping it separate draws attention to
851 		 * subtle differences.
852 		 */
853 		if (chg)
854 			return false;
855 		else
856 			return true;
857 	}
858 
859 	return false;
860 }
861 
862 static void enqueue_huge_page(struct hstate *h, struct page *page)
863 {
864 	int nid = page_to_nid(page);
865 	list_move(&page->lru, &h->hugepage_freelists[nid]);
866 	h->free_huge_pages++;
867 	h->free_huge_pages_node[nid]++;
868 }
869 
870 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
871 {
872 	struct page *page;
873 
874 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
875 		if (!PageHWPoison(page))
876 			break;
877 	/*
878 	 * if 'non-isolated free hugepage' not found on the list,
879 	 * the allocation fails.
880 	 */
881 	if (&h->hugepage_freelists[nid] == &page->lru)
882 		return NULL;
883 	list_move(&page->lru, &h->hugepage_activelist);
884 	set_page_refcounted(page);
885 	h->free_huge_pages--;
886 	h->free_huge_pages_node[nid]--;
887 	return page;
888 }
889 
890 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
891 		nodemask_t *nmask)
892 {
893 	unsigned int cpuset_mems_cookie;
894 	struct zonelist *zonelist;
895 	struct zone *zone;
896 	struct zoneref *z;
897 	int node = -1;
898 
899 	zonelist = node_zonelist(nid, gfp_mask);
900 
901 retry_cpuset:
902 	cpuset_mems_cookie = read_mems_allowed_begin();
903 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
904 		struct page *page;
905 
906 		if (!cpuset_zone_allowed(zone, gfp_mask))
907 			continue;
908 		/*
909 		 * no need to ask again on the same node. Pool is node rather than
910 		 * zone aware
911 		 */
912 		if (zone_to_nid(zone) == node)
913 			continue;
914 		node = zone_to_nid(zone);
915 
916 		page = dequeue_huge_page_node_exact(h, node);
917 		if (page)
918 			return page;
919 	}
920 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
921 		goto retry_cpuset;
922 
923 	return NULL;
924 }
925 
926 /* Movability of hugepages depends on migration support. */
927 static inline gfp_t htlb_alloc_mask(struct hstate *h)
928 {
929 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
930 		return GFP_HIGHUSER_MOVABLE;
931 	else
932 		return GFP_HIGHUSER;
933 }
934 
935 static struct page *dequeue_huge_page_vma(struct hstate *h,
936 				struct vm_area_struct *vma,
937 				unsigned long address, int avoid_reserve,
938 				long chg)
939 {
940 	struct page *page;
941 	struct mempolicy *mpol;
942 	gfp_t gfp_mask;
943 	nodemask_t *nodemask;
944 	int nid;
945 
946 	/*
947 	 * A child process with MAP_PRIVATE mappings created by their parent
948 	 * have no page reserves. This check ensures that reservations are
949 	 * not "stolen". The child may still get SIGKILLed
950 	 */
951 	if (!vma_has_reserves(vma, chg) &&
952 			h->free_huge_pages - h->resv_huge_pages == 0)
953 		goto err;
954 
955 	/* If reserves cannot be used, ensure enough pages are in the pool */
956 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
957 		goto err;
958 
959 	gfp_mask = htlb_alloc_mask(h);
960 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
961 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
962 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
963 		SetPagePrivate(page);
964 		h->resv_huge_pages--;
965 	}
966 
967 	mpol_cond_put(mpol);
968 	return page;
969 
970 err:
971 	return NULL;
972 }
973 
974 /*
975  * common helper functions for hstate_next_node_to_{alloc|free}.
976  * We may have allocated or freed a huge page based on a different
977  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
978  * be outside of *nodes_allowed.  Ensure that we use an allowed
979  * node for alloc or free.
980  */
981 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
982 {
983 	nid = next_node_in(nid, *nodes_allowed);
984 	VM_BUG_ON(nid >= MAX_NUMNODES);
985 
986 	return nid;
987 }
988 
989 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
990 {
991 	if (!node_isset(nid, *nodes_allowed))
992 		nid = next_node_allowed(nid, nodes_allowed);
993 	return nid;
994 }
995 
996 /*
997  * returns the previously saved node ["this node"] from which to
998  * allocate a persistent huge page for the pool and advance the
999  * next node from which to allocate, handling wrap at end of node
1000  * mask.
1001  */
1002 static int hstate_next_node_to_alloc(struct hstate *h,
1003 					nodemask_t *nodes_allowed)
1004 {
1005 	int nid;
1006 
1007 	VM_BUG_ON(!nodes_allowed);
1008 
1009 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1010 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1011 
1012 	return nid;
1013 }
1014 
1015 /*
1016  * helper for free_pool_huge_page() - return the previously saved
1017  * node ["this node"] from which to free a huge page.  Advance the
1018  * next node id whether or not we find a free huge page to free so
1019  * that the next attempt to free addresses the next node.
1020  */
1021 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1022 {
1023 	int nid;
1024 
1025 	VM_BUG_ON(!nodes_allowed);
1026 
1027 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1028 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1029 
1030 	return nid;
1031 }
1032 
1033 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1034 	for (nr_nodes = nodes_weight(*mask);				\
1035 		nr_nodes > 0 &&						\
1036 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1037 		nr_nodes--)
1038 
1039 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1040 	for (nr_nodes = nodes_weight(*mask);				\
1041 		nr_nodes > 0 &&						\
1042 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1043 		nr_nodes--)
1044 
1045 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1046 static void destroy_compound_gigantic_page(struct page *page,
1047 					unsigned int order)
1048 {
1049 	int i;
1050 	int nr_pages = 1 << order;
1051 	struct page *p = page + 1;
1052 
1053 	atomic_set(compound_mapcount_ptr(page), 0);
1054 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1055 		clear_compound_head(p);
1056 		set_page_refcounted(p);
1057 	}
1058 
1059 	set_compound_order(page, 0);
1060 	__ClearPageHead(page);
1061 }
1062 
1063 static void free_gigantic_page(struct page *page, unsigned int order)
1064 {
1065 	free_contig_range(page_to_pfn(page), 1 << order);
1066 }
1067 
1068 static int __alloc_gigantic_page(unsigned long start_pfn,
1069 				unsigned long nr_pages)
1070 {
1071 	unsigned long end_pfn = start_pfn + nr_pages;
1072 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1073 				  GFP_KERNEL);
1074 }
1075 
1076 static bool pfn_range_valid_gigantic(struct zone *z,
1077 			unsigned long start_pfn, unsigned long nr_pages)
1078 {
1079 	unsigned long i, end_pfn = start_pfn + nr_pages;
1080 	struct page *page;
1081 
1082 	for (i = start_pfn; i < end_pfn; i++) {
1083 		if (!pfn_valid(i))
1084 			return false;
1085 
1086 		page = pfn_to_page(i);
1087 
1088 		if (page_zone(page) != z)
1089 			return false;
1090 
1091 		if (PageReserved(page))
1092 			return false;
1093 
1094 		if (page_count(page) > 0)
1095 			return false;
1096 
1097 		if (PageHuge(page))
1098 			return false;
1099 	}
1100 
1101 	return true;
1102 }
1103 
1104 static bool zone_spans_last_pfn(const struct zone *zone,
1105 			unsigned long start_pfn, unsigned long nr_pages)
1106 {
1107 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1108 	return zone_spans_pfn(zone, last_pfn);
1109 }
1110 
1111 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1112 {
1113 	unsigned long nr_pages = 1 << order;
1114 	unsigned long ret, pfn, flags;
1115 	struct zone *z;
1116 
1117 	z = NODE_DATA(nid)->node_zones;
1118 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1119 		spin_lock_irqsave(&z->lock, flags);
1120 
1121 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
1122 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1123 			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1124 				/*
1125 				 * We release the zone lock here because
1126 				 * alloc_contig_range() will also lock the zone
1127 				 * at some point. If there's an allocation
1128 				 * spinning on this lock, it may win the race
1129 				 * and cause alloc_contig_range() to fail...
1130 				 */
1131 				spin_unlock_irqrestore(&z->lock, flags);
1132 				ret = __alloc_gigantic_page(pfn, nr_pages);
1133 				if (!ret)
1134 					return pfn_to_page(pfn);
1135 				spin_lock_irqsave(&z->lock, flags);
1136 			}
1137 			pfn += nr_pages;
1138 		}
1139 
1140 		spin_unlock_irqrestore(&z->lock, flags);
1141 	}
1142 
1143 	return NULL;
1144 }
1145 
1146 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1147 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1148 
1149 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1150 {
1151 	struct page *page;
1152 
1153 	page = alloc_gigantic_page(nid, huge_page_order(h));
1154 	if (page) {
1155 		prep_compound_gigantic_page(page, huge_page_order(h));
1156 		prep_new_huge_page(h, page, nid);
1157 	}
1158 
1159 	return page;
1160 }
1161 
1162 static int alloc_fresh_gigantic_page(struct hstate *h,
1163 				nodemask_t *nodes_allowed)
1164 {
1165 	struct page *page = NULL;
1166 	int nr_nodes, node;
1167 
1168 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1169 		page = alloc_fresh_gigantic_page_node(h, node);
1170 		if (page)
1171 			return 1;
1172 	}
1173 
1174 	return 0;
1175 }
1176 
1177 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1178 static inline bool gigantic_page_supported(void) { return false; }
1179 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1180 static inline void destroy_compound_gigantic_page(struct page *page,
1181 						unsigned int order) { }
1182 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1183 					nodemask_t *nodes_allowed) { return 0; }
1184 #endif
1185 
1186 static void update_and_free_page(struct hstate *h, struct page *page)
1187 {
1188 	int i;
1189 
1190 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1191 		return;
1192 
1193 	h->nr_huge_pages--;
1194 	h->nr_huge_pages_node[page_to_nid(page)]--;
1195 	for (i = 0; i < pages_per_huge_page(h); i++) {
1196 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1197 				1 << PG_referenced | 1 << PG_dirty |
1198 				1 << PG_active | 1 << PG_private |
1199 				1 << PG_writeback);
1200 	}
1201 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1202 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1203 	set_page_refcounted(page);
1204 	if (hstate_is_gigantic(h)) {
1205 		destroy_compound_gigantic_page(page, huge_page_order(h));
1206 		free_gigantic_page(page, huge_page_order(h));
1207 	} else {
1208 		__free_pages(page, huge_page_order(h));
1209 	}
1210 }
1211 
1212 struct hstate *size_to_hstate(unsigned long size)
1213 {
1214 	struct hstate *h;
1215 
1216 	for_each_hstate(h) {
1217 		if (huge_page_size(h) == size)
1218 			return h;
1219 	}
1220 	return NULL;
1221 }
1222 
1223 /*
1224  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1225  * to hstate->hugepage_activelist.)
1226  *
1227  * This function can be called for tail pages, but never returns true for them.
1228  */
1229 bool page_huge_active(struct page *page)
1230 {
1231 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1232 	return PageHead(page) && PagePrivate(&page[1]);
1233 }
1234 
1235 /* never called for tail page */
1236 static void set_page_huge_active(struct page *page)
1237 {
1238 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1239 	SetPagePrivate(&page[1]);
1240 }
1241 
1242 static void clear_page_huge_active(struct page *page)
1243 {
1244 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1245 	ClearPagePrivate(&page[1]);
1246 }
1247 
1248 void free_huge_page(struct page *page)
1249 {
1250 	/*
1251 	 * Can't pass hstate in here because it is called from the
1252 	 * compound page destructor.
1253 	 */
1254 	struct hstate *h = page_hstate(page);
1255 	int nid = page_to_nid(page);
1256 	struct hugepage_subpool *spool =
1257 		(struct hugepage_subpool *)page_private(page);
1258 	bool restore_reserve;
1259 
1260 	set_page_private(page, 0);
1261 	page->mapping = NULL;
1262 	VM_BUG_ON_PAGE(page_count(page), page);
1263 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1264 	restore_reserve = PagePrivate(page);
1265 	ClearPagePrivate(page);
1266 
1267 	/*
1268 	 * A return code of zero implies that the subpool will be under its
1269 	 * minimum size if the reservation is not restored after page is free.
1270 	 * Therefore, force restore_reserve operation.
1271 	 */
1272 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1273 		restore_reserve = true;
1274 
1275 	spin_lock(&hugetlb_lock);
1276 	clear_page_huge_active(page);
1277 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1278 				     pages_per_huge_page(h), page);
1279 	if (restore_reserve)
1280 		h->resv_huge_pages++;
1281 
1282 	if (h->surplus_huge_pages_node[nid]) {
1283 		/* remove the page from active list */
1284 		list_del(&page->lru);
1285 		update_and_free_page(h, page);
1286 		h->surplus_huge_pages--;
1287 		h->surplus_huge_pages_node[nid]--;
1288 	} else {
1289 		arch_clear_hugepage_flags(page);
1290 		enqueue_huge_page(h, page);
1291 	}
1292 	spin_unlock(&hugetlb_lock);
1293 }
1294 
1295 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1296 {
1297 	INIT_LIST_HEAD(&page->lru);
1298 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1299 	spin_lock(&hugetlb_lock);
1300 	set_hugetlb_cgroup(page, NULL);
1301 	h->nr_huge_pages++;
1302 	h->nr_huge_pages_node[nid]++;
1303 	spin_unlock(&hugetlb_lock);
1304 	put_page(page); /* free it into the hugepage allocator */
1305 }
1306 
1307 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1308 {
1309 	int i;
1310 	int nr_pages = 1 << order;
1311 	struct page *p = page + 1;
1312 
1313 	/* we rely on prep_new_huge_page to set the destructor */
1314 	set_compound_order(page, order);
1315 	__ClearPageReserved(page);
1316 	__SetPageHead(page);
1317 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1318 		/*
1319 		 * For gigantic hugepages allocated through bootmem at
1320 		 * boot, it's safer to be consistent with the not-gigantic
1321 		 * hugepages and clear the PG_reserved bit from all tail pages
1322 		 * too.  Otherwse drivers using get_user_pages() to access tail
1323 		 * pages may get the reference counting wrong if they see
1324 		 * PG_reserved set on a tail page (despite the head page not
1325 		 * having PG_reserved set).  Enforcing this consistency between
1326 		 * head and tail pages allows drivers to optimize away a check
1327 		 * on the head page when they need know if put_page() is needed
1328 		 * after get_user_pages().
1329 		 */
1330 		__ClearPageReserved(p);
1331 		set_page_count(p, 0);
1332 		set_compound_head(p, page);
1333 	}
1334 	atomic_set(compound_mapcount_ptr(page), -1);
1335 }
1336 
1337 /*
1338  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1339  * transparent huge pages.  See the PageTransHuge() documentation for more
1340  * details.
1341  */
1342 int PageHuge(struct page *page)
1343 {
1344 	if (!PageCompound(page))
1345 		return 0;
1346 
1347 	page = compound_head(page);
1348 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1349 }
1350 EXPORT_SYMBOL_GPL(PageHuge);
1351 
1352 /*
1353  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1354  * normal or transparent huge pages.
1355  */
1356 int PageHeadHuge(struct page *page_head)
1357 {
1358 	if (!PageHead(page_head))
1359 		return 0;
1360 
1361 	return get_compound_page_dtor(page_head) == free_huge_page;
1362 }
1363 
1364 pgoff_t __basepage_index(struct page *page)
1365 {
1366 	struct page *page_head = compound_head(page);
1367 	pgoff_t index = page_index(page_head);
1368 	unsigned long compound_idx;
1369 
1370 	if (!PageHuge(page_head))
1371 		return page_index(page);
1372 
1373 	if (compound_order(page_head) >= MAX_ORDER)
1374 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1375 	else
1376 		compound_idx = page - page_head;
1377 
1378 	return (index << compound_order(page_head)) + compound_idx;
1379 }
1380 
1381 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1382 {
1383 	struct page *page;
1384 
1385 	page = __alloc_pages_node(nid,
1386 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1387 						__GFP_RETRY_MAYFAIL|__GFP_NOWARN,
1388 		huge_page_order(h));
1389 	if (page) {
1390 		prep_new_huge_page(h, page, nid);
1391 	}
1392 
1393 	return page;
1394 }
1395 
1396 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1397 {
1398 	struct page *page;
1399 	int nr_nodes, node;
1400 	int ret = 0;
1401 
1402 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1403 		page = alloc_fresh_huge_page_node(h, node);
1404 		if (page) {
1405 			ret = 1;
1406 			break;
1407 		}
1408 	}
1409 
1410 	if (ret)
1411 		count_vm_event(HTLB_BUDDY_PGALLOC);
1412 	else
1413 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1414 
1415 	return ret;
1416 }
1417 
1418 /*
1419  * Free huge page from pool from next node to free.
1420  * Attempt to keep persistent huge pages more or less
1421  * balanced over allowed nodes.
1422  * Called with hugetlb_lock locked.
1423  */
1424 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1425 							 bool acct_surplus)
1426 {
1427 	int nr_nodes, node;
1428 	int ret = 0;
1429 
1430 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1431 		/*
1432 		 * If we're returning unused surplus pages, only examine
1433 		 * nodes with surplus pages.
1434 		 */
1435 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1436 		    !list_empty(&h->hugepage_freelists[node])) {
1437 			struct page *page =
1438 				list_entry(h->hugepage_freelists[node].next,
1439 					  struct page, lru);
1440 			list_del(&page->lru);
1441 			h->free_huge_pages--;
1442 			h->free_huge_pages_node[node]--;
1443 			if (acct_surplus) {
1444 				h->surplus_huge_pages--;
1445 				h->surplus_huge_pages_node[node]--;
1446 			}
1447 			update_and_free_page(h, page);
1448 			ret = 1;
1449 			break;
1450 		}
1451 	}
1452 
1453 	return ret;
1454 }
1455 
1456 /*
1457  * Dissolve a given free hugepage into free buddy pages. This function does
1458  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1459  * number of free hugepages would be reduced below the number of reserved
1460  * hugepages.
1461  */
1462 int dissolve_free_huge_page(struct page *page)
1463 {
1464 	int rc = 0;
1465 
1466 	spin_lock(&hugetlb_lock);
1467 	if (PageHuge(page) && !page_count(page)) {
1468 		struct page *head = compound_head(page);
1469 		struct hstate *h = page_hstate(head);
1470 		int nid = page_to_nid(head);
1471 		if (h->free_huge_pages - h->resv_huge_pages == 0) {
1472 			rc = -EBUSY;
1473 			goto out;
1474 		}
1475 		/*
1476 		 * Move PageHWPoison flag from head page to the raw error page,
1477 		 * which makes any subpages rather than the error page reusable.
1478 		 */
1479 		if (PageHWPoison(head) && page != head) {
1480 			SetPageHWPoison(page);
1481 			ClearPageHWPoison(head);
1482 		}
1483 		list_del(&head->lru);
1484 		h->free_huge_pages--;
1485 		h->free_huge_pages_node[nid]--;
1486 		h->max_huge_pages--;
1487 		update_and_free_page(h, head);
1488 	}
1489 out:
1490 	spin_unlock(&hugetlb_lock);
1491 	return rc;
1492 }
1493 
1494 /*
1495  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1496  * make specified memory blocks removable from the system.
1497  * Note that this will dissolve a free gigantic hugepage completely, if any
1498  * part of it lies within the given range.
1499  * Also note that if dissolve_free_huge_page() returns with an error, all
1500  * free hugepages that were dissolved before that error are lost.
1501  */
1502 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1503 {
1504 	unsigned long pfn;
1505 	struct page *page;
1506 	int rc = 0;
1507 
1508 	if (!hugepages_supported())
1509 		return rc;
1510 
1511 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1512 		page = pfn_to_page(pfn);
1513 		if (PageHuge(page) && !page_count(page)) {
1514 			rc = dissolve_free_huge_page(page);
1515 			if (rc)
1516 				break;
1517 		}
1518 	}
1519 
1520 	return rc;
1521 }
1522 
1523 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1524 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1525 {
1526 	int order = huge_page_order(h);
1527 
1528 	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1529 	if (nid == NUMA_NO_NODE)
1530 		nid = numa_mem_id();
1531 	return __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1532 }
1533 
1534 static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
1535 		int nid, nodemask_t *nmask)
1536 {
1537 	struct page *page;
1538 	unsigned int r_nid;
1539 
1540 	if (hstate_is_gigantic(h))
1541 		return NULL;
1542 
1543 	/*
1544 	 * Assume we will successfully allocate the surplus page to
1545 	 * prevent racing processes from causing the surplus to exceed
1546 	 * overcommit
1547 	 *
1548 	 * This however introduces a different race, where a process B
1549 	 * tries to grow the static hugepage pool while alloc_pages() is
1550 	 * called by process A. B will only examine the per-node
1551 	 * counters in determining if surplus huge pages can be
1552 	 * converted to normal huge pages in adjust_pool_surplus(). A
1553 	 * won't be able to increment the per-node counter, until the
1554 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1555 	 * no more huge pages can be converted from surplus to normal
1556 	 * state (and doesn't try to convert again). Thus, we have a
1557 	 * case where a surplus huge page exists, the pool is grown, and
1558 	 * the surplus huge page still exists after, even though it
1559 	 * should just have been converted to a normal huge page. This
1560 	 * does not leak memory, though, as the hugepage will be freed
1561 	 * once it is out of use. It also does not allow the counters to
1562 	 * go out of whack in adjust_pool_surplus() as we don't modify
1563 	 * the node values until we've gotten the hugepage and only the
1564 	 * per-node value is checked there.
1565 	 */
1566 	spin_lock(&hugetlb_lock);
1567 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1568 		spin_unlock(&hugetlb_lock);
1569 		return NULL;
1570 	} else {
1571 		h->nr_huge_pages++;
1572 		h->surplus_huge_pages++;
1573 	}
1574 	spin_unlock(&hugetlb_lock);
1575 
1576 	page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
1577 
1578 	spin_lock(&hugetlb_lock);
1579 	if (page) {
1580 		INIT_LIST_HEAD(&page->lru);
1581 		r_nid = page_to_nid(page);
1582 		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1583 		set_hugetlb_cgroup(page, NULL);
1584 		/*
1585 		 * We incremented the global counters already
1586 		 */
1587 		h->nr_huge_pages_node[r_nid]++;
1588 		h->surplus_huge_pages_node[r_nid]++;
1589 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1590 	} else {
1591 		h->nr_huge_pages--;
1592 		h->surplus_huge_pages--;
1593 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1594 	}
1595 	spin_unlock(&hugetlb_lock);
1596 
1597 	return page;
1598 }
1599 
1600 /*
1601  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1602  */
1603 static
1604 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1605 		struct vm_area_struct *vma, unsigned long addr)
1606 {
1607 	struct page *page;
1608 	struct mempolicy *mpol;
1609 	gfp_t gfp_mask = htlb_alloc_mask(h);
1610 	int nid;
1611 	nodemask_t *nodemask;
1612 
1613 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1614 	page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
1615 	mpol_cond_put(mpol);
1616 
1617 	return page;
1618 }
1619 
1620 /*
1621  * This allocation function is useful in the context where vma is irrelevant.
1622  * E.g. soft-offlining uses this function because it only cares physical
1623  * address of error page.
1624  */
1625 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1626 {
1627 	gfp_t gfp_mask = htlb_alloc_mask(h);
1628 	struct page *page = NULL;
1629 
1630 	if (nid != NUMA_NO_NODE)
1631 		gfp_mask |= __GFP_THISNODE;
1632 
1633 	spin_lock(&hugetlb_lock);
1634 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1635 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1636 	spin_unlock(&hugetlb_lock);
1637 
1638 	if (!page)
1639 		page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
1640 
1641 	return page;
1642 }
1643 
1644 
1645 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1646 		nodemask_t *nmask)
1647 {
1648 	gfp_t gfp_mask = htlb_alloc_mask(h);
1649 
1650 	spin_lock(&hugetlb_lock);
1651 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1652 		struct page *page;
1653 
1654 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1655 		if (page) {
1656 			spin_unlock(&hugetlb_lock);
1657 			return page;
1658 		}
1659 	}
1660 	spin_unlock(&hugetlb_lock);
1661 
1662 	/* No reservations, try to overcommit */
1663 
1664 	return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
1665 }
1666 
1667 /*
1668  * Increase the hugetlb pool such that it can accommodate a reservation
1669  * of size 'delta'.
1670  */
1671 static int gather_surplus_pages(struct hstate *h, int delta)
1672 {
1673 	struct list_head surplus_list;
1674 	struct page *page, *tmp;
1675 	int ret, i;
1676 	int needed, allocated;
1677 	bool alloc_ok = true;
1678 
1679 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1680 	if (needed <= 0) {
1681 		h->resv_huge_pages += delta;
1682 		return 0;
1683 	}
1684 
1685 	allocated = 0;
1686 	INIT_LIST_HEAD(&surplus_list);
1687 
1688 	ret = -ENOMEM;
1689 retry:
1690 	spin_unlock(&hugetlb_lock);
1691 	for (i = 0; i < needed; i++) {
1692 		page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
1693 				NUMA_NO_NODE, NULL);
1694 		if (!page) {
1695 			alloc_ok = false;
1696 			break;
1697 		}
1698 		list_add(&page->lru, &surplus_list);
1699 		cond_resched();
1700 	}
1701 	allocated += i;
1702 
1703 	/*
1704 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1705 	 * because either resv_huge_pages or free_huge_pages may have changed.
1706 	 */
1707 	spin_lock(&hugetlb_lock);
1708 	needed = (h->resv_huge_pages + delta) -
1709 			(h->free_huge_pages + allocated);
1710 	if (needed > 0) {
1711 		if (alloc_ok)
1712 			goto retry;
1713 		/*
1714 		 * We were not able to allocate enough pages to
1715 		 * satisfy the entire reservation so we free what
1716 		 * we've allocated so far.
1717 		 */
1718 		goto free;
1719 	}
1720 	/*
1721 	 * The surplus_list now contains _at_least_ the number of extra pages
1722 	 * needed to accommodate the reservation.  Add the appropriate number
1723 	 * of pages to the hugetlb pool and free the extras back to the buddy
1724 	 * allocator.  Commit the entire reservation here to prevent another
1725 	 * process from stealing the pages as they are added to the pool but
1726 	 * before they are reserved.
1727 	 */
1728 	needed += allocated;
1729 	h->resv_huge_pages += delta;
1730 	ret = 0;
1731 
1732 	/* Free the needed pages to the hugetlb pool */
1733 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1734 		if ((--needed) < 0)
1735 			break;
1736 		/*
1737 		 * This page is now managed by the hugetlb allocator and has
1738 		 * no users -- drop the buddy allocator's reference.
1739 		 */
1740 		put_page_testzero(page);
1741 		VM_BUG_ON_PAGE(page_count(page), page);
1742 		enqueue_huge_page(h, page);
1743 	}
1744 free:
1745 	spin_unlock(&hugetlb_lock);
1746 
1747 	/* Free unnecessary surplus pages to the buddy allocator */
1748 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1749 		put_page(page);
1750 	spin_lock(&hugetlb_lock);
1751 
1752 	return ret;
1753 }
1754 
1755 /*
1756  * This routine has two main purposes:
1757  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1758  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1759  *    to the associated reservation map.
1760  * 2) Free any unused surplus pages that may have been allocated to satisfy
1761  *    the reservation.  As many as unused_resv_pages may be freed.
1762  *
1763  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1764  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1765  * we must make sure nobody else can claim pages we are in the process of
1766  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1767  * number of huge pages we plan to free when dropping the lock.
1768  */
1769 static void return_unused_surplus_pages(struct hstate *h,
1770 					unsigned long unused_resv_pages)
1771 {
1772 	unsigned long nr_pages;
1773 
1774 	/* Cannot return gigantic pages currently */
1775 	if (hstate_is_gigantic(h))
1776 		goto out;
1777 
1778 	/*
1779 	 * Part (or even all) of the reservation could have been backed
1780 	 * by pre-allocated pages. Only free surplus pages.
1781 	 */
1782 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1783 
1784 	/*
1785 	 * We want to release as many surplus pages as possible, spread
1786 	 * evenly across all nodes with memory. Iterate across these nodes
1787 	 * until we can no longer free unreserved surplus pages. This occurs
1788 	 * when the nodes with surplus pages have no free pages.
1789 	 * free_pool_huge_page() will balance the the freed pages across the
1790 	 * on-line nodes with memory and will handle the hstate accounting.
1791 	 *
1792 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1793 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1794 	 * to cover subsequent pages we may free.
1795 	 */
1796 	while (nr_pages--) {
1797 		h->resv_huge_pages--;
1798 		unused_resv_pages--;
1799 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1800 			goto out;
1801 		cond_resched_lock(&hugetlb_lock);
1802 	}
1803 
1804 out:
1805 	/* Fully uncommit the reservation */
1806 	h->resv_huge_pages -= unused_resv_pages;
1807 }
1808 
1809 
1810 /*
1811  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1812  * are used by the huge page allocation routines to manage reservations.
1813  *
1814  * vma_needs_reservation is called to determine if the huge page at addr
1815  * within the vma has an associated reservation.  If a reservation is
1816  * needed, the value 1 is returned.  The caller is then responsible for
1817  * managing the global reservation and subpool usage counts.  After
1818  * the huge page has been allocated, vma_commit_reservation is called
1819  * to add the page to the reservation map.  If the page allocation fails,
1820  * the reservation must be ended instead of committed.  vma_end_reservation
1821  * is called in such cases.
1822  *
1823  * In the normal case, vma_commit_reservation returns the same value
1824  * as the preceding vma_needs_reservation call.  The only time this
1825  * is not the case is if a reserve map was changed between calls.  It
1826  * is the responsibility of the caller to notice the difference and
1827  * take appropriate action.
1828  *
1829  * vma_add_reservation is used in error paths where a reservation must
1830  * be restored when a newly allocated huge page must be freed.  It is
1831  * to be called after calling vma_needs_reservation to determine if a
1832  * reservation exists.
1833  */
1834 enum vma_resv_mode {
1835 	VMA_NEEDS_RESV,
1836 	VMA_COMMIT_RESV,
1837 	VMA_END_RESV,
1838 	VMA_ADD_RESV,
1839 };
1840 static long __vma_reservation_common(struct hstate *h,
1841 				struct vm_area_struct *vma, unsigned long addr,
1842 				enum vma_resv_mode mode)
1843 {
1844 	struct resv_map *resv;
1845 	pgoff_t idx;
1846 	long ret;
1847 
1848 	resv = vma_resv_map(vma);
1849 	if (!resv)
1850 		return 1;
1851 
1852 	idx = vma_hugecache_offset(h, vma, addr);
1853 	switch (mode) {
1854 	case VMA_NEEDS_RESV:
1855 		ret = region_chg(resv, idx, idx + 1);
1856 		break;
1857 	case VMA_COMMIT_RESV:
1858 		ret = region_add(resv, idx, idx + 1);
1859 		break;
1860 	case VMA_END_RESV:
1861 		region_abort(resv, idx, idx + 1);
1862 		ret = 0;
1863 		break;
1864 	case VMA_ADD_RESV:
1865 		if (vma->vm_flags & VM_MAYSHARE)
1866 			ret = region_add(resv, idx, idx + 1);
1867 		else {
1868 			region_abort(resv, idx, idx + 1);
1869 			ret = region_del(resv, idx, idx + 1);
1870 		}
1871 		break;
1872 	default:
1873 		BUG();
1874 	}
1875 
1876 	if (vma->vm_flags & VM_MAYSHARE)
1877 		return ret;
1878 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1879 		/*
1880 		 * In most cases, reserves always exist for private mappings.
1881 		 * However, a file associated with mapping could have been
1882 		 * hole punched or truncated after reserves were consumed.
1883 		 * As subsequent fault on such a range will not use reserves.
1884 		 * Subtle - The reserve map for private mappings has the
1885 		 * opposite meaning than that of shared mappings.  If NO
1886 		 * entry is in the reserve map, it means a reservation exists.
1887 		 * If an entry exists in the reserve map, it means the
1888 		 * reservation has already been consumed.  As a result, the
1889 		 * return value of this routine is the opposite of the
1890 		 * value returned from reserve map manipulation routines above.
1891 		 */
1892 		if (ret)
1893 			return 0;
1894 		else
1895 			return 1;
1896 	}
1897 	else
1898 		return ret < 0 ? ret : 0;
1899 }
1900 
1901 static long vma_needs_reservation(struct hstate *h,
1902 			struct vm_area_struct *vma, unsigned long addr)
1903 {
1904 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1905 }
1906 
1907 static long vma_commit_reservation(struct hstate *h,
1908 			struct vm_area_struct *vma, unsigned long addr)
1909 {
1910 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1911 }
1912 
1913 static void vma_end_reservation(struct hstate *h,
1914 			struct vm_area_struct *vma, unsigned long addr)
1915 {
1916 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1917 }
1918 
1919 static long vma_add_reservation(struct hstate *h,
1920 			struct vm_area_struct *vma, unsigned long addr)
1921 {
1922 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1923 }
1924 
1925 /*
1926  * This routine is called to restore a reservation on error paths.  In the
1927  * specific error paths, a huge page was allocated (via alloc_huge_page)
1928  * and is about to be freed.  If a reservation for the page existed,
1929  * alloc_huge_page would have consumed the reservation and set PagePrivate
1930  * in the newly allocated page.  When the page is freed via free_huge_page,
1931  * the global reservation count will be incremented if PagePrivate is set.
1932  * However, free_huge_page can not adjust the reserve map.  Adjust the
1933  * reserve map here to be consistent with global reserve count adjustments
1934  * to be made by free_huge_page.
1935  */
1936 static void restore_reserve_on_error(struct hstate *h,
1937 			struct vm_area_struct *vma, unsigned long address,
1938 			struct page *page)
1939 {
1940 	if (unlikely(PagePrivate(page))) {
1941 		long rc = vma_needs_reservation(h, vma, address);
1942 
1943 		if (unlikely(rc < 0)) {
1944 			/*
1945 			 * Rare out of memory condition in reserve map
1946 			 * manipulation.  Clear PagePrivate so that
1947 			 * global reserve count will not be incremented
1948 			 * by free_huge_page.  This will make it appear
1949 			 * as though the reservation for this page was
1950 			 * consumed.  This may prevent the task from
1951 			 * faulting in the page at a later time.  This
1952 			 * is better than inconsistent global huge page
1953 			 * accounting of reserve counts.
1954 			 */
1955 			ClearPagePrivate(page);
1956 		} else if (rc) {
1957 			rc = vma_add_reservation(h, vma, address);
1958 			if (unlikely(rc < 0))
1959 				/*
1960 				 * See above comment about rare out of
1961 				 * memory condition.
1962 				 */
1963 				ClearPagePrivate(page);
1964 		} else
1965 			vma_end_reservation(h, vma, address);
1966 	}
1967 }
1968 
1969 struct page *alloc_huge_page(struct vm_area_struct *vma,
1970 				    unsigned long addr, int avoid_reserve)
1971 {
1972 	struct hugepage_subpool *spool = subpool_vma(vma);
1973 	struct hstate *h = hstate_vma(vma);
1974 	struct page *page;
1975 	long map_chg, map_commit;
1976 	long gbl_chg;
1977 	int ret, idx;
1978 	struct hugetlb_cgroup *h_cg;
1979 
1980 	idx = hstate_index(h);
1981 	/*
1982 	 * Examine the region/reserve map to determine if the process
1983 	 * has a reservation for the page to be allocated.  A return
1984 	 * code of zero indicates a reservation exists (no change).
1985 	 */
1986 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1987 	if (map_chg < 0)
1988 		return ERR_PTR(-ENOMEM);
1989 
1990 	/*
1991 	 * Processes that did not create the mapping will have no
1992 	 * reserves as indicated by the region/reserve map. Check
1993 	 * that the allocation will not exceed the subpool limit.
1994 	 * Allocations for MAP_NORESERVE mappings also need to be
1995 	 * checked against any subpool limit.
1996 	 */
1997 	if (map_chg || avoid_reserve) {
1998 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
1999 		if (gbl_chg < 0) {
2000 			vma_end_reservation(h, vma, addr);
2001 			return ERR_PTR(-ENOSPC);
2002 		}
2003 
2004 		/*
2005 		 * Even though there was no reservation in the region/reserve
2006 		 * map, there could be reservations associated with the
2007 		 * subpool that can be used.  This would be indicated if the
2008 		 * return value of hugepage_subpool_get_pages() is zero.
2009 		 * However, if avoid_reserve is specified we still avoid even
2010 		 * the subpool reservations.
2011 		 */
2012 		if (avoid_reserve)
2013 			gbl_chg = 1;
2014 	}
2015 
2016 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2017 	if (ret)
2018 		goto out_subpool_put;
2019 
2020 	spin_lock(&hugetlb_lock);
2021 	/*
2022 	 * glb_chg is passed to indicate whether or not a page must be taken
2023 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2024 	 * a reservation exists for the allocation.
2025 	 */
2026 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2027 	if (!page) {
2028 		spin_unlock(&hugetlb_lock);
2029 		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2030 		if (!page)
2031 			goto out_uncharge_cgroup;
2032 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2033 			SetPagePrivate(page);
2034 			h->resv_huge_pages--;
2035 		}
2036 		spin_lock(&hugetlb_lock);
2037 		list_move(&page->lru, &h->hugepage_activelist);
2038 		/* Fall through */
2039 	}
2040 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2041 	spin_unlock(&hugetlb_lock);
2042 
2043 	set_page_private(page, (unsigned long)spool);
2044 
2045 	map_commit = vma_commit_reservation(h, vma, addr);
2046 	if (unlikely(map_chg > map_commit)) {
2047 		/*
2048 		 * The page was added to the reservation map between
2049 		 * vma_needs_reservation and vma_commit_reservation.
2050 		 * This indicates a race with hugetlb_reserve_pages.
2051 		 * Adjust for the subpool count incremented above AND
2052 		 * in hugetlb_reserve_pages for the same page.  Also,
2053 		 * the reservation count added in hugetlb_reserve_pages
2054 		 * no longer applies.
2055 		 */
2056 		long rsv_adjust;
2057 
2058 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2059 		hugetlb_acct_memory(h, -rsv_adjust);
2060 	}
2061 	return page;
2062 
2063 out_uncharge_cgroup:
2064 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2065 out_subpool_put:
2066 	if (map_chg || avoid_reserve)
2067 		hugepage_subpool_put_pages(spool, 1);
2068 	vma_end_reservation(h, vma, addr);
2069 	return ERR_PTR(-ENOSPC);
2070 }
2071 
2072 /*
2073  * alloc_huge_page()'s wrapper which simply returns the page if allocation
2074  * succeeds, otherwise NULL. This function is called from new_vma_page(),
2075  * where no ERR_VALUE is expected to be returned.
2076  */
2077 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2078 				unsigned long addr, int avoid_reserve)
2079 {
2080 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2081 	if (IS_ERR(page))
2082 		page = NULL;
2083 	return page;
2084 }
2085 
2086 int __weak alloc_bootmem_huge_page(struct hstate *h)
2087 {
2088 	struct huge_bootmem_page *m;
2089 	int nr_nodes, node;
2090 
2091 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2092 		void *addr;
2093 
2094 		addr = memblock_virt_alloc_try_nid_nopanic(
2095 				huge_page_size(h), huge_page_size(h),
2096 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2097 		if (addr) {
2098 			/*
2099 			 * Use the beginning of the huge page to store the
2100 			 * huge_bootmem_page struct (until gather_bootmem
2101 			 * puts them into the mem_map).
2102 			 */
2103 			m = addr;
2104 			goto found;
2105 		}
2106 	}
2107 	return 0;
2108 
2109 found:
2110 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2111 	/* Put them into a private list first because mem_map is not up yet */
2112 	list_add(&m->list, &huge_boot_pages);
2113 	m->hstate = h;
2114 	return 1;
2115 }
2116 
2117 static void __init prep_compound_huge_page(struct page *page,
2118 		unsigned int order)
2119 {
2120 	if (unlikely(order > (MAX_ORDER - 1)))
2121 		prep_compound_gigantic_page(page, order);
2122 	else
2123 		prep_compound_page(page, order);
2124 }
2125 
2126 /* Put bootmem huge pages into the standard lists after mem_map is up */
2127 static void __init gather_bootmem_prealloc(void)
2128 {
2129 	struct huge_bootmem_page *m;
2130 
2131 	list_for_each_entry(m, &huge_boot_pages, list) {
2132 		struct hstate *h = m->hstate;
2133 		struct page *page;
2134 
2135 #ifdef CONFIG_HIGHMEM
2136 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2137 		memblock_free_late(__pa(m),
2138 				   sizeof(struct huge_bootmem_page));
2139 #else
2140 		page = virt_to_page(m);
2141 #endif
2142 		WARN_ON(page_count(page) != 1);
2143 		prep_compound_huge_page(page, h->order);
2144 		WARN_ON(PageReserved(page));
2145 		prep_new_huge_page(h, page, page_to_nid(page));
2146 		/*
2147 		 * If we had gigantic hugepages allocated at boot time, we need
2148 		 * to restore the 'stolen' pages to totalram_pages in order to
2149 		 * fix confusing memory reports from free(1) and another
2150 		 * side-effects, like CommitLimit going negative.
2151 		 */
2152 		if (hstate_is_gigantic(h))
2153 			adjust_managed_page_count(page, 1 << h->order);
2154 	}
2155 }
2156 
2157 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2158 {
2159 	unsigned long i;
2160 
2161 	for (i = 0; i < h->max_huge_pages; ++i) {
2162 		if (hstate_is_gigantic(h)) {
2163 			if (!alloc_bootmem_huge_page(h))
2164 				break;
2165 		} else if (!alloc_fresh_huge_page(h,
2166 					 &node_states[N_MEMORY]))
2167 			break;
2168 		cond_resched();
2169 	}
2170 	if (i < h->max_huge_pages) {
2171 		char buf[32];
2172 
2173 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2174 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2175 			h->max_huge_pages, buf, i);
2176 		h->max_huge_pages = i;
2177 	}
2178 }
2179 
2180 static void __init hugetlb_init_hstates(void)
2181 {
2182 	struct hstate *h;
2183 
2184 	for_each_hstate(h) {
2185 		if (minimum_order > huge_page_order(h))
2186 			minimum_order = huge_page_order(h);
2187 
2188 		/* oversize hugepages were init'ed in early boot */
2189 		if (!hstate_is_gigantic(h))
2190 			hugetlb_hstate_alloc_pages(h);
2191 	}
2192 	VM_BUG_ON(minimum_order == UINT_MAX);
2193 }
2194 
2195 static void __init report_hugepages(void)
2196 {
2197 	struct hstate *h;
2198 
2199 	for_each_hstate(h) {
2200 		char buf[32];
2201 
2202 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2203 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2204 			buf, h->free_huge_pages);
2205 	}
2206 }
2207 
2208 #ifdef CONFIG_HIGHMEM
2209 static void try_to_free_low(struct hstate *h, unsigned long count,
2210 						nodemask_t *nodes_allowed)
2211 {
2212 	int i;
2213 
2214 	if (hstate_is_gigantic(h))
2215 		return;
2216 
2217 	for_each_node_mask(i, *nodes_allowed) {
2218 		struct page *page, *next;
2219 		struct list_head *freel = &h->hugepage_freelists[i];
2220 		list_for_each_entry_safe(page, next, freel, lru) {
2221 			if (count >= h->nr_huge_pages)
2222 				return;
2223 			if (PageHighMem(page))
2224 				continue;
2225 			list_del(&page->lru);
2226 			update_and_free_page(h, page);
2227 			h->free_huge_pages--;
2228 			h->free_huge_pages_node[page_to_nid(page)]--;
2229 		}
2230 	}
2231 }
2232 #else
2233 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2234 						nodemask_t *nodes_allowed)
2235 {
2236 }
2237 #endif
2238 
2239 /*
2240  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2241  * balanced by operating on them in a round-robin fashion.
2242  * Returns 1 if an adjustment was made.
2243  */
2244 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2245 				int delta)
2246 {
2247 	int nr_nodes, node;
2248 
2249 	VM_BUG_ON(delta != -1 && delta != 1);
2250 
2251 	if (delta < 0) {
2252 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2253 			if (h->surplus_huge_pages_node[node])
2254 				goto found;
2255 		}
2256 	} else {
2257 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2258 			if (h->surplus_huge_pages_node[node] <
2259 					h->nr_huge_pages_node[node])
2260 				goto found;
2261 		}
2262 	}
2263 	return 0;
2264 
2265 found:
2266 	h->surplus_huge_pages += delta;
2267 	h->surplus_huge_pages_node[node] += delta;
2268 	return 1;
2269 }
2270 
2271 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2272 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2273 						nodemask_t *nodes_allowed)
2274 {
2275 	unsigned long min_count, ret;
2276 
2277 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2278 		return h->max_huge_pages;
2279 
2280 	/*
2281 	 * Increase the pool size
2282 	 * First take pages out of surplus state.  Then make up the
2283 	 * remaining difference by allocating fresh huge pages.
2284 	 *
2285 	 * We might race with __alloc_buddy_huge_page() here and be unable
2286 	 * to convert a surplus huge page to a normal huge page. That is
2287 	 * not critical, though, it just means the overall size of the
2288 	 * pool might be one hugepage larger than it needs to be, but
2289 	 * within all the constraints specified by the sysctls.
2290 	 */
2291 	spin_lock(&hugetlb_lock);
2292 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2293 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2294 			break;
2295 	}
2296 
2297 	while (count > persistent_huge_pages(h)) {
2298 		/*
2299 		 * If this allocation races such that we no longer need the
2300 		 * page, free_huge_page will handle it by freeing the page
2301 		 * and reducing the surplus.
2302 		 */
2303 		spin_unlock(&hugetlb_lock);
2304 
2305 		/* yield cpu to avoid soft lockup */
2306 		cond_resched();
2307 
2308 		if (hstate_is_gigantic(h))
2309 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2310 		else
2311 			ret = alloc_fresh_huge_page(h, nodes_allowed);
2312 		spin_lock(&hugetlb_lock);
2313 		if (!ret)
2314 			goto out;
2315 
2316 		/* Bail for signals. Probably ctrl-c from user */
2317 		if (signal_pending(current))
2318 			goto out;
2319 	}
2320 
2321 	/*
2322 	 * Decrease the pool size
2323 	 * First return free pages to the buddy allocator (being careful
2324 	 * to keep enough around to satisfy reservations).  Then place
2325 	 * pages into surplus state as needed so the pool will shrink
2326 	 * to the desired size as pages become free.
2327 	 *
2328 	 * By placing pages into the surplus state independent of the
2329 	 * overcommit value, we are allowing the surplus pool size to
2330 	 * exceed overcommit. There are few sane options here. Since
2331 	 * __alloc_buddy_huge_page() is checking the global counter,
2332 	 * though, we'll note that we're not allowed to exceed surplus
2333 	 * and won't grow the pool anywhere else. Not until one of the
2334 	 * sysctls are changed, or the surplus pages go out of use.
2335 	 */
2336 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2337 	min_count = max(count, min_count);
2338 	try_to_free_low(h, min_count, nodes_allowed);
2339 	while (min_count < persistent_huge_pages(h)) {
2340 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2341 			break;
2342 		cond_resched_lock(&hugetlb_lock);
2343 	}
2344 	while (count < persistent_huge_pages(h)) {
2345 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2346 			break;
2347 	}
2348 out:
2349 	ret = persistent_huge_pages(h);
2350 	spin_unlock(&hugetlb_lock);
2351 	return ret;
2352 }
2353 
2354 #define HSTATE_ATTR_RO(_name) \
2355 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2356 
2357 #define HSTATE_ATTR(_name) \
2358 	static struct kobj_attribute _name##_attr = \
2359 		__ATTR(_name, 0644, _name##_show, _name##_store)
2360 
2361 static struct kobject *hugepages_kobj;
2362 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2363 
2364 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2365 
2366 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2367 {
2368 	int i;
2369 
2370 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2371 		if (hstate_kobjs[i] == kobj) {
2372 			if (nidp)
2373 				*nidp = NUMA_NO_NODE;
2374 			return &hstates[i];
2375 		}
2376 
2377 	return kobj_to_node_hstate(kobj, nidp);
2378 }
2379 
2380 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2381 					struct kobj_attribute *attr, char *buf)
2382 {
2383 	struct hstate *h;
2384 	unsigned long nr_huge_pages;
2385 	int nid;
2386 
2387 	h = kobj_to_hstate(kobj, &nid);
2388 	if (nid == NUMA_NO_NODE)
2389 		nr_huge_pages = h->nr_huge_pages;
2390 	else
2391 		nr_huge_pages = h->nr_huge_pages_node[nid];
2392 
2393 	return sprintf(buf, "%lu\n", nr_huge_pages);
2394 }
2395 
2396 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2397 					   struct hstate *h, int nid,
2398 					   unsigned long count, size_t len)
2399 {
2400 	int err;
2401 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2402 
2403 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2404 		err = -EINVAL;
2405 		goto out;
2406 	}
2407 
2408 	if (nid == NUMA_NO_NODE) {
2409 		/*
2410 		 * global hstate attribute
2411 		 */
2412 		if (!(obey_mempolicy &&
2413 				init_nodemask_of_mempolicy(nodes_allowed))) {
2414 			NODEMASK_FREE(nodes_allowed);
2415 			nodes_allowed = &node_states[N_MEMORY];
2416 		}
2417 	} else if (nodes_allowed) {
2418 		/*
2419 		 * per node hstate attribute: adjust count to global,
2420 		 * but restrict alloc/free to the specified node.
2421 		 */
2422 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2423 		init_nodemask_of_node(nodes_allowed, nid);
2424 	} else
2425 		nodes_allowed = &node_states[N_MEMORY];
2426 
2427 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2428 
2429 	if (nodes_allowed != &node_states[N_MEMORY])
2430 		NODEMASK_FREE(nodes_allowed);
2431 
2432 	return len;
2433 out:
2434 	NODEMASK_FREE(nodes_allowed);
2435 	return err;
2436 }
2437 
2438 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2439 					 struct kobject *kobj, const char *buf,
2440 					 size_t len)
2441 {
2442 	struct hstate *h;
2443 	unsigned long count;
2444 	int nid;
2445 	int err;
2446 
2447 	err = kstrtoul(buf, 10, &count);
2448 	if (err)
2449 		return err;
2450 
2451 	h = kobj_to_hstate(kobj, &nid);
2452 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2453 }
2454 
2455 static ssize_t nr_hugepages_show(struct kobject *kobj,
2456 				       struct kobj_attribute *attr, char *buf)
2457 {
2458 	return nr_hugepages_show_common(kobj, attr, buf);
2459 }
2460 
2461 static ssize_t nr_hugepages_store(struct kobject *kobj,
2462 	       struct kobj_attribute *attr, const char *buf, size_t len)
2463 {
2464 	return nr_hugepages_store_common(false, kobj, buf, len);
2465 }
2466 HSTATE_ATTR(nr_hugepages);
2467 
2468 #ifdef CONFIG_NUMA
2469 
2470 /*
2471  * hstate attribute for optionally mempolicy-based constraint on persistent
2472  * huge page alloc/free.
2473  */
2474 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2475 				       struct kobj_attribute *attr, char *buf)
2476 {
2477 	return nr_hugepages_show_common(kobj, attr, buf);
2478 }
2479 
2480 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2481 	       struct kobj_attribute *attr, const char *buf, size_t len)
2482 {
2483 	return nr_hugepages_store_common(true, kobj, buf, len);
2484 }
2485 HSTATE_ATTR(nr_hugepages_mempolicy);
2486 #endif
2487 
2488 
2489 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2490 					struct kobj_attribute *attr, char *buf)
2491 {
2492 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2493 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2494 }
2495 
2496 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2497 		struct kobj_attribute *attr, const char *buf, size_t count)
2498 {
2499 	int err;
2500 	unsigned long input;
2501 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2502 
2503 	if (hstate_is_gigantic(h))
2504 		return -EINVAL;
2505 
2506 	err = kstrtoul(buf, 10, &input);
2507 	if (err)
2508 		return err;
2509 
2510 	spin_lock(&hugetlb_lock);
2511 	h->nr_overcommit_huge_pages = input;
2512 	spin_unlock(&hugetlb_lock);
2513 
2514 	return count;
2515 }
2516 HSTATE_ATTR(nr_overcommit_hugepages);
2517 
2518 static ssize_t free_hugepages_show(struct kobject *kobj,
2519 					struct kobj_attribute *attr, char *buf)
2520 {
2521 	struct hstate *h;
2522 	unsigned long free_huge_pages;
2523 	int nid;
2524 
2525 	h = kobj_to_hstate(kobj, &nid);
2526 	if (nid == NUMA_NO_NODE)
2527 		free_huge_pages = h->free_huge_pages;
2528 	else
2529 		free_huge_pages = h->free_huge_pages_node[nid];
2530 
2531 	return sprintf(buf, "%lu\n", free_huge_pages);
2532 }
2533 HSTATE_ATTR_RO(free_hugepages);
2534 
2535 static ssize_t resv_hugepages_show(struct kobject *kobj,
2536 					struct kobj_attribute *attr, char *buf)
2537 {
2538 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2539 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2540 }
2541 HSTATE_ATTR_RO(resv_hugepages);
2542 
2543 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2544 					struct kobj_attribute *attr, char *buf)
2545 {
2546 	struct hstate *h;
2547 	unsigned long surplus_huge_pages;
2548 	int nid;
2549 
2550 	h = kobj_to_hstate(kobj, &nid);
2551 	if (nid == NUMA_NO_NODE)
2552 		surplus_huge_pages = h->surplus_huge_pages;
2553 	else
2554 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2555 
2556 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2557 }
2558 HSTATE_ATTR_RO(surplus_hugepages);
2559 
2560 static struct attribute *hstate_attrs[] = {
2561 	&nr_hugepages_attr.attr,
2562 	&nr_overcommit_hugepages_attr.attr,
2563 	&free_hugepages_attr.attr,
2564 	&resv_hugepages_attr.attr,
2565 	&surplus_hugepages_attr.attr,
2566 #ifdef CONFIG_NUMA
2567 	&nr_hugepages_mempolicy_attr.attr,
2568 #endif
2569 	NULL,
2570 };
2571 
2572 static struct attribute_group hstate_attr_group = {
2573 	.attrs = hstate_attrs,
2574 };
2575 
2576 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2577 				    struct kobject **hstate_kobjs,
2578 				    struct attribute_group *hstate_attr_group)
2579 {
2580 	int retval;
2581 	int hi = hstate_index(h);
2582 
2583 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2584 	if (!hstate_kobjs[hi])
2585 		return -ENOMEM;
2586 
2587 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2588 	if (retval)
2589 		kobject_put(hstate_kobjs[hi]);
2590 
2591 	return retval;
2592 }
2593 
2594 static void __init hugetlb_sysfs_init(void)
2595 {
2596 	struct hstate *h;
2597 	int err;
2598 
2599 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2600 	if (!hugepages_kobj)
2601 		return;
2602 
2603 	for_each_hstate(h) {
2604 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2605 					 hstate_kobjs, &hstate_attr_group);
2606 		if (err)
2607 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2608 	}
2609 }
2610 
2611 #ifdef CONFIG_NUMA
2612 
2613 /*
2614  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2615  * with node devices in node_devices[] using a parallel array.  The array
2616  * index of a node device or _hstate == node id.
2617  * This is here to avoid any static dependency of the node device driver, in
2618  * the base kernel, on the hugetlb module.
2619  */
2620 struct node_hstate {
2621 	struct kobject		*hugepages_kobj;
2622 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2623 };
2624 static struct node_hstate node_hstates[MAX_NUMNODES];
2625 
2626 /*
2627  * A subset of global hstate attributes for node devices
2628  */
2629 static struct attribute *per_node_hstate_attrs[] = {
2630 	&nr_hugepages_attr.attr,
2631 	&free_hugepages_attr.attr,
2632 	&surplus_hugepages_attr.attr,
2633 	NULL,
2634 };
2635 
2636 static struct attribute_group per_node_hstate_attr_group = {
2637 	.attrs = per_node_hstate_attrs,
2638 };
2639 
2640 /*
2641  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2642  * Returns node id via non-NULL nidp.
2643  */
2644 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2645 {
2646 	int nid;
2647 
2648 	for (nid = 0; nid < nr_node_ids; nid++) {
2649 		struct node_hstate *nhs = &node_hstates[nid];
2650 		int i;
2651 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2652 			if (nhs->hstate_kobjs[i] == kobj) {
2653 				if (nidp)
2654 					*nidp = nid;
2655 				return &hstates[i];
2656 			}
2657 	}
2658 
2659 	BUG();
2660 	return NULL;
2661 }
2662 
2663 /*
2664  * Unregister hstate attributes from a single node device.
2665  * No-op if no hstate attributes attached.
2666  */
2667 static void hugetlb_unregister_node(struct node *node)
2668 {
2669 	struct hstate *h;
2670 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2671 
2672 	if (!nhs->hugepages_kobj)
2673 		return;		/* no hstate attributes */
2674 
2675 	for_each_hstate(h) {
2676 		int idx = hstate_index(h);
2677 		if (nhs->hstate_kobjs[idx]) {
2678 			kobject_put(nhs->hstate_kobjs[idx]);
2679 			nhs->hstate_kobjs[idx] = NULL;
2680 		}
2681 	}
2682 
2683 	kobject_put(nhs->hugepages_kobj);
2684 	nhs->hugepages_kobj = NULL;
2685 }
2686 
2687 
2688 /*
2689  * Register hstate attributes for a single node device.
2690  * No-op if attributes already registered.
2691  */
2692 static void hugetlb_register_node(struct node *node)
2693 {
2694 	struct hstate *h;
2695 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2696 	int err;
2697 
2698 	if (nhs->hugepages_kobj)
2699 		return;		/* already allocated */
2700 
2701 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2702 							&node->dev.kobj);
2703 	if (!nhs->hugepages_kobj)
2704 		return;
2705 
2706 	for_each_hstate(h) {
2707 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2708 						nhs->hstate_kobjs,
2709 						&per_node_hstate_attr_group);
2710 		if (err) {
2711 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2712 				h->name, node->dev.id);
2713 			hugetlb_unregister_node(node);
2714 			break;
2715 		}
2716 	}
2717 }
2718 
2719 /*
2720  * hugetlb init time:  register hstate attributes for all registered node
2721  * devices of nodes that have memory.  All on-line nodes should have
2722  * registered their associated device by this time.
2723  */
2724 static void __init hugetlb_register_all_nodes(void)
2725 {
2726 	int nid;
2727 
2728 	for_each_node_state(nid, N_MEMORY) {
2729 		struct node *node = node_devices[nid];
2730 		if (node->dev.id == nid)
2731 			hugetlb_register_node(node);
2732 	}
2733 
2734 	/*
2735 	 * Let the node device driver know we're here so it can
2736 	 * [un]register hstate attributes on node hotplug.
2737 	 */
2738 	register_hugetlbfs_with_node(hugetlb_register_node,
2739 				     hugetlb_unregister_node);
2740 }
2741 #else	/* !CONFIG_NUMA */
2742 
2743 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2744 {
2745 	BUG();
2746 	if (nidp)
2747 		*nidp = -1;
2748 	return NULL;
2749 }
2750 
2751 static void hugetlb_register_all_nodes(void) { }
2752 
2753 #endif
2754 
2755 static int __init hugetlb_init(void)
2756 {
2757 	int i;
2758 
2759 	if (!hugepages_supported())
2760 		return 0;
2761 
2762 	if (!size_to_hstate(default_hstate_size)) {
2763 		if (default_hstate_size != 0) {
2764 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2765 			       default_hstate_size, HPAGE_SIZE);
2766 		}
2767 
2768 		default_hstate_size = HPAGE_SIZE;
2769 		if (!size_to_hstate(default_hstate_size))
2770 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2771 	}
2772 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2773 	if (default_hstate_max_huge_pages) {
2774 		if (!default_hstate.max_huge_pages)
2775 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2776 	}
2777 
2778 	hugetlb_init_hstates();
2779 	gather_bootmem_prealloc();
2780 	report_hugepages();
2781 
2782 	hugetlb_sysfs_init();
2783 	hugetlb_register_all_nodes();
2784 	hugetlb_cgroup_file_init();
2785 
2786 #ifdef CONFIG_SMP
2787 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2788 #else
2789 	num_fault_mutexes = 1;
2790 #endif
2791 	hugetlb_fault_mutex_table =
2792 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2793 	BUG_ON(!hugetlb_fault_mutex_table);
2794 
2795 	for (i = 0; i < num_fault_mutexes; i++)
2796 		mutex_init(&hugetlb_fault_mutex_table[i]);
2797 	return 0;
2798 }
2799 subsys_initcall(hugetlb_init);
2800 
2801 /* Should be called on processing a hugepagesz=... option */
2802 void __init hugetlb_bad_size(void)
2803 {
2804 	parsed_valid_hugepagesz = false;
2805 }
2806 
2807 void __init hugetlb_add_hstate(unsigned int order)
2808 {
2809 	struct hstate *h;
2810 	unsigned long i;
2811 
2812 	if (size_to_hstate(PAGE_SIZE << order)) {
2813 		pr_warn("hugepagesz= specified twice, ignoring\n");
2814 		return;
2815 	}
2816 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2817 	BUG_ON(order == 0);
2818 	h = &hstates[hugetlb_max_hstate++];
2819 	h->order = order;
2820 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2821 	h->nr_huge_pages = 0;
2822 	h->free_huge_pages = 0;
2823 	for (i = 0; i < MAX_NUMNODES; ++i)
2824 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2825 	INIT_LIST_HEAD(&h->hugepage_activelist);
2826 	h->next_nid_to_alloc = first_memory_node;
2827 	h->next_nid_to_free = first_memory_node;
2828 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2829 					huge_page_size(h)/1024);
2830 
2831 	parsed_hstate = h;
2832 }
2833 
2834 static int __init hugetlb_nrpages_setup(char *s)
2835 {
2836 	unsigned long *mhp;
2837 	static unsigned long *last_mhp;
2838 
2839 	if (!parsed_valid_hugepagesz) {
2840 		pr_warn("hugepages = %s preceded by "
2841 			"an unsupported hugepagesz, ignoring\n", s);
2842 		parsed_valid_hugepagesz = true;
2843 		return 1;
2844 	}
2845 	/*
2846 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2847 	 * so this hugepages= parameter goes to the "default hstate".
2848 	 */
2849 	else if (!hugetlb_max_hstate)
2850 		mhp = &default_hstate_max_huge_pages;
2851 	else
2852 		mhp = &parsed_hstate->max_huge_pages;
2853 
2854 	if (mhp == last_mhp) {
2855 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2856 		return 1;
2857 	}
2858 
2859 	if (sscanf(s, "%lu", mhp) <= 0)
2860 		*mhp = 0;
2861 
2862 	/*
2863 	 * Global state is always initialized later in hugetlb_init.
2864 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2865 	 * use the bootmem allocator.
2866 	 */
2867 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2868 		hugetlb_hstate_alloc_pages(parsed_hstate);
2869 
2870 	last_mhp = mhp;
2871 
2872 	return 1;
2873 }
2874 __setup("hugepages=", hugetlb_nrpages_setup);
2875 
2876 static int __init hugetlb_default_setup(char *s)
2877 {
2878 	default_hstate_size = memparse(s, &s);
2879 	return 1;
2880 }
2881 __setup("default_hugepagesz=", hugetlb_default_setup);
2882 
2883 static unsigned int cpuset_mems_nr(unsigned int *array)
2884 {
2885 	int node;
2886 	unsigned int nr = 0;
2887 
2888 	for_each_node_mask(node, cpuset_current_mems_allowed)
2889 		nr += array[node];
2890 
2891 	return nr;
2892 }
2893 
2894 #ifdef CONFIG_SYSCTL
2895 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2896 			 struct ctl_table *table, int write,
2897 			 void __user *buffer, size_t *length, loff_t *ppos)
2898 {
2899 	struct hstate *h = &default_hstate;
2900 	unsigned long tmp = h->max_huge_pages;
2901 	int ret;
2902 
2903 	if (!hugepages_supported())
2904 		return -EOPNOTSUPP;
2905 
2906 	table->data = &tmp;
2907 	table->maxlen = sizeof(unsigned long);
2908 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2909 	if (ret)
2910 		goto out;
2911 
2912 	if (write)
2913 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2914 						  NUMA_NO_NODE, tmp, *length);
2915 out:
2916 	return ret;
2917 }
2918 
2919 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2920 			  void __user *buffer, size_t *length, loff_t *ppos)
2921 {
2922 
2923 	return hugetlb_sysctl_handler_common(false, table, write,
2924 							buffer, length, ppos);
2925 }
2926 
2927 #ifdef CONFIG_NUMA
2928 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2929 			  void __user *buffer, size_t *length, loff_t *ppos)
2930 {
2931 	return hugetlb_sysctl_handler_common(true, table, write,
2932 							buffer, length, ppos);
2933 }
2934 #endif /* CONFIG_NUMA */
2935 
2936 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2937 			void __user *buffer,
2938 			size_t *length, loff_t *ppos)
2939 {
2940 	struct hstate *h = &default_hstate;
2941 	unsigned long tmp;
2942 	int ret;
2943 
2944 	if (!hugepages_supported())
2945 		return -EOPNOTSUPP;
2946 
2947 	tmp = h->nr_overcommit_huge_pages;
2948 
2949 	if (write && hstate_is_gigantic(h))
2950 		return -EINVAL;
2951 
2952 	table->data = &tmp;
2953 	table->maxlen = sizeof(unsigned long);
2954 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2955 	if (ret)
2956 		goto out;
2957 
2958 	if (write) {
2959 		spin_lock(&hugetlb_lock);
2960 		h->nr_overcommit_huge_pages = tmp;
2961 		spin_unlock(&hugetlb_lock);
2962 	}
2963 out:
2964 	return ret;
2965 }
2966 
2967 #endif /* CONFIG_SYSCTL */
2968 
2969 void hugetlb_report_meminfo(struct seq_file *m)
2970 {
2971 	struct hstate *h = &default_hstate;
2972 	if (!hugepages_supported())
2973 		return;
2974 	seq_printf(m,
2975 			"HugePages_Total:   %5lu\n"
2976 			"HugePages_Free:    %5lu\n"
2977 			"HugePages_Rsvd:    %5lu\n"
2978 			"HugePages_Surp:    %5lu\n"
2979 			"Hugepagesize:   %8lu kB\n",
2980 			h->nr_huge_pages,
2981 			h->free_huge_pages,
2982 			h->resv_huge_pages,
2983 			h->surplus_huge_pages,
2984 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2985 }
2986 
2987 int hugetlb_report_node_meminfo(int nid, char *buf)
2988 {
2989 	struct hstate *h = &default_hstate;
2990 	if (!hugepages_supported())
2991 		return 0;
2992 	return sprintf(buf,
2993 		"Node %d HugePages_Total: %5u\n"
2994 		"Node %d HugePages_Free:  %5u\n"
2995 		"Node %d HugePages_Surp:  %5u\n",
2996 		nid, h->nr_huge_pages_node[nid],
2997 		nid, h->free_huge_pages_node[nid],
2998 		nid, h->surplus_huge_pages_node[nid]);
2999 }
3000 
3001 void hugetlb_show_meminfo(void)
3002 {
3003 	struct hstate *h;
3004 	int nid;
3005 
3006 	if (!hugepages_supported())
3007 		return;
3008 
3009 	for_each_node_state(nid, N_MEMORY)
3010 		for_each_hstate(h)
3011 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3012 				nid,
3013 				h->nr_huge_pages_node[nid],
3014 				h->free_huge_pages_node[nid],
3015 				h->surplus_huge_pages_node[nid],
3016 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3017 }
3018 
3019 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3020 {
3021 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3022 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3023 }
3024 
3025 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3026 unsigned long hugetlb_total_pages(void)
3027 {
3028 	struct hstate *h;
3029 	unsigned long nr_total_pages = 0;
3030 
3031 	for_each_hstate(h)
3032 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3033 	return nr_total_pages;
3034 }
3035 
3036 static int hugetlb_acct_memory(struct hstate *h, long delta)
3037 {
3038 	int ret = -ENOMEM;
3039 
3040 	spin_lock(&hugetlb_lock);
3041 	/*
3042 	 * When cpuset is configured, it breaks the strict hugetlb page
3043 	 * reservation as the accounting is done on a global variable. Such
3044 	 * reservation is completely rubbish in the presence of cpuset because
3045 	 * the reservation is not checked against page availability for the
3046 	 * current cpuset. Application can still potentially OOM'ed by kernel
3047 	 * with lack of free htlb page in cpuset that the task is in.
3048 	 * Attempt to enforce strict accounting with cpuset is almost
3049 	 * impossible (or too ugly) because cpuset is too fluid that
3050 	 * task or memory node can be dynamically moved between cpusets.
3051 	 *
3052 	 * The change of semantics for shared hugetlb mapping with cpuset is
3053 	 * undesirable. However, in order to preserve some of the semantics,
3054 	 * we fall back to check against current free page availability as
3055 	 * a best attempt and hopefully to minimize the impact of changing
3056 	 * semantics that cpuset has.
3057 	 */
3058 	if (delta > 0) {
3059 		if (gather_surplus_pages(h, delta) < 0)
3060 			goto out;
3061 
3062 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3063 			return_unused_surplus_pages(h, delta);
3064 			goto out;
3065 		}
3066 	}
3067 
3068 	ret = 0;
3069 	if (delta < 0)
3070 		return_unused_surplus_pages(h, (unsigned long) -delta);
3071 
3072 out:
3073 	spin_unlock(&hugetlb_lock);
3074 	return ret;
3075 }
3076 
3077 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3078 {
3079 	struct resv_map *resv = vma_resv_map(vma);
3080 
3081 	/*
3082 	 * This new VMA should share its siblings reservation map if present.
3083 	 * The VMA will only ever have a valid reservation map pointer where
3084 	 * it is being copied for another still existing VMA.  As that VMA
3085 	 * has a reference to the reservation map it cannot disappear until
3086 	 * after this open call completes.  It is therefore safe to take a
3087 	 * new reference here without additional locking.
3088 	 */
3089 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3090 		kref_get(&resv->refs);
3091 }
3092 
3093 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3094 {
3095 	struct hstate *h = hstate_vma(vma);
3096 	struct resv_map *resv = vma_resv_map(vma);
3097 	struct hugepage_subpool *spool = subpool_vma(vma);
3098 	unsigned long reserve, start, end;
3099 	long gbl_reserve;
3100 
3101 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3102 		return;
3103 
3104 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3105 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3106 
3107 	reserve = (end - start) - region_count(resv, start, end);
3108 
3109 	kref_put(&resv->refs, resv_map_release);
3110 
3111 	if (reserve) {
3112 		/*
3113 		 * Decrement reserve counts.  The global reserve count may be
3114 		 * adjusted if the subpool has a minimum size.
3115 		 */
3116 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3117 		hugetlb_acct_memory(h, -gbl_reserve);
3118 	}
3119 }
3120 
3121 /*
3122  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3123  * handle_mm_fault() to try to instantiate regular-sized pages in the
3124  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3125  * this far.
3126  */
3127 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3128 {
3129 	BUG();
3130 	return 0;
3131 }
3132 
3133 const struct vm_operations_struct hugetlb_vm_ops = {
3134 	.fault = hugetlb_vm_op_fault,
3135 	.open = hugetlb_vm_op_open,
3136 	.close = hugetlb_vm_op_close,
3137 };
3138 
3139 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3140 				int writable)
3141 {
3142 	pte_t entry;
3143 
3144 	if (writable) {
3145 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3146 					 vma->vm_page_prot)));
3147 	} else {
3148 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3149 					   vma->vm_page_prot));
3150 	}
3151 	entry = pte_mkyoung(entry);
3152 	entry = pte_mkhuge(entry);
3153 	entry = arch_make_huge_pte(entry, vma, page, writable);
3154 
3155 	return entry;
3156 }
3157 
3158 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3159 				   unsigned long address, pte_t *ptep)
3160 {
3161 	pte_t entry;
3162 
3163 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3164 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3165 		update_mmu_cache(vma, address, ptep);
3166 }
3167 
3168 bool is_hugetlb_entry_migration(pte_t pte)
3169 {
3170 	swp_entry_t swp;
3171 
3172 	if (huge_pte_none(pte) || pte_present(pte))
3173 		return false;
3174 	swp = pte_to_swp_entry(pte);
3175 	if (non_swap_entry(swp) && is_migration_entry(swp))
3176 		return true;
3177 	else
3178 		return false;
3179 }
3180 
3181 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3182 {
3183 	swp_entry_t swp;
3184 
3185 	if (huge_pte_none(pte) || pte_present(pte))
3186 		return 0;
3187 	swp = pte_to_swp_entry(pte);
3188 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3189 		return 1;
3190 	else
3191 		return 0;
3192 }
3193 
3194 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3195 			    struct vm_area_struct *vma)
3196 {
3197 	pte_t *src_pte, *dst_pte, entry;
3198 	struct page *ptepage;
3199 	unsigned long addr;
3200 	int cow;
3201 	struct hstate *h = hstate_vma(vma);
3202 	unsigned long sz = huge_page_size(h);
3203 	unsigned long mmun_start;	/* For mmu_notifiers */
3204 	unsigned long mmun_end;		/* For mmu_notifiers */
3205 	int ret = 0;
3206 
3207 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3208 
3209 	mmun_start = vma->vm_start;
3210 	mmun_end = vma->vm_end;
3211 	if (cow)
3212 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3213 
3214 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3215 		spinlock_t *src_ptl, *dst_ptl;
3216 		src_pte = huge_pte_offset(src, addr, sz);
3217 		if (!src_pte)
3218 			continue;
3219 		dst_pte = huge_pte_alloc(dst, addr, sz);
3220 		if (!dst_pte) {
3221 			ret = -ENOMEM;
3222 			break;
3223 		}
3224 
3225 		/* If the pagetables are shared don't copy or take references */
3226 		if (dst_pte == src_pte)
3227 			continue;
3228 
3229 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3230 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3231 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3232 		entry = huge_ptep_get(src_pte);
3233 		if (huge_pte_none(entry)) { /* skip none entry */
3234 			;
3235 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3236 				    is_hugetlb_entry_hwpoisoned(entry))) {
3237 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3238 
3239 			if (is_write_migration_entry(swp_entry) && cow) {
3240 				/*
3241 				 * COW mappings require pages in both
3242 				 * parent and child to be set to read.
3243 				 */
3244 				make_migration_entry_read(&swp_entry);
3245 				entry = swp_entry_to_pte(swp_entry);
3246 				set_huge_swap_pte_at(src, addr, src_pte,
3247 						     entry, sz);
3248 			}
3249 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3250 		} else {
3251 			if (cow) {
3252 				huge_ptep_set_wrprotect(src, addr, src_pte);
3253 				mmu_notifier_invalidate_range(src, mmun_start,
3254 								   mmun_end);
3255 			}
3256 			entry = huge_ptep_get(src_pte);
3257 			ptepage = pte_page(entry);
3258 			get_page(ptepage);
3259 			page_dup_rmap(ptepage, true);
3260 			set_huge_pte_at(dst, addr, dst_pte, entry);
3261 			hugetlb_count_add(pages_per_huge_page(h), dst);
3262 		}
3263 		spin_unlock(src_ptl);
3264 		spin_unlock(dst_ptl);
3265 	}
3266 
3267 	if (cow)
3268 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3269 
3270 	return ret;
3271 }
3272 
3273 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3274 			    unsigned long start, unsigned long end,
3275 			    struct page *ref_page)
3276 {
3277 	struct mm_struct *mm = vma->vm_mm;
3278 	unsigned long address;
3279 	pte_t *ptep;
3280 	pte_t pte;
3281 	spinlock_t *ptl;
3282 	struct page *page;
3283 	struct hstate *h = hstate_vma(vma);
3284 	unsigned long sz = huge_page_size(h);
3285 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3286 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3287 
3288 	WARN_ON(!is_vm_hugetlb_page(vma));
3289 	BUG_ON(start & ~huge_page_mask(h));
3290 	BUG_ON(end & ~huge_page_mask(h));
3291 
3292 	/*
3293 	 * This is a hugetlb vma, all the pte entries should point
3294 	 * to huge page.
3295 	 */
3296 	tlb_remove_check_page_size_change(tlb, sz);
3297 	tlb_start_vma(tlb, vma);
3298 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3299 	address = start;
3300 	for (; address < end; address += sz) {
3301 		ptep = huge_pte_offset(mm, address, sz);
3302 		if (!ptep)
3303 			continue;
3304 
3305 		ptl = huge_pte_lock(h, mm, ptep);
3306 		if (huge_pmd_unshare(mm, &address, ptep)) {
3307 			spin_unlock(ptl);
3308 			continue;
3309 		}
3310 
3311 		pte = huge_ptep_get(ptep);
3312 		if (huge_pte_none(pte)) {
3313 			spin_unlock(ptl);
3314 			continue;
3315 		}
3316 
3317 		/*
3318 		 * Migrating hugepage or HWPoisoned hugepage is already
3319 		 * unmapped and its refcount is dropped, so just clear pte here.
3320 		 */
3321 		if (unlikely(!pte_present(pte))) {
3322 			huge_pte_clear(mm, address, ptep, sz);
3323 			spin_unlock(ptl);
3324 			continue;
3325 		}
3326 
3327 		page = pte_page(pte);
3328 		/*
3329 		 * If a reference page is supplied, it is because a specific
3330 		 * page is being unmapped, not a range. Ensure the page we
3331 		 * are about to unmap is the actual page of interest.
3332 		 */
3333 		if (ref_page) {
3334 			if (page != ref_page) {
3335 				spin_unlock(ptl);
3336 				continue;
3337 			}
3338 			/*
3339 			 * Mark the VMA as having unmapped its page so that
3340 			 * future faults in this VMA will fail rather than
3341 			 * looking like data was lost
3342 			 */
3343 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3344 		}
3345 
3346 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3347 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3348 		if (huge_pte_dirty(pte))
3349 			set_page_dirty(page);
3350 
3351 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3352 		page_remove_rmap(page, true);
3353 
3354 		spin_unlock(ptl);
3355 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3356 		/*
3357 		 * Bail out after unmapping reference page if supplied
3358 		 */
3359 		if (ref_page)
3360 			break;
3361 	}
3362 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3363 	tlb_end_vma(tlb, vma);
3364 }
3365 
3366 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3367 			  struct vm_area_struct *vma, unsigned long start,
3368 			  unsigned long end, struct page *ref_page)
3369 {
3370 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3371 
3372 	/*
3373 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3374 	 * test will fail on a vma being torn down, and not grab a page table
3375 	 * on its way out.  We're lucky that the flag has such an appropriate
3376 	 * name, and can in fact be safely cleared here. We could clear it
3377 	 * before the __unmap_hugepage_range above, but all that's necessary
3378 	 * is to clear it before releasing the i_mmap_rwsem. This works
3379 	 * because in the context this is called, the VMA is about to be
3380 	 * destroyed and the i_mmap_rwsem is held.
3381 	 */
3382 	vma->vm_flags &= ~VM_MAYSHARE;
3383 }
3384 
3385 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3386 			  unsigned long end, struct page *ref_page)
3387 {
3388 	struct mm_struct *mm;
3389 	struct mmu_gather tlb;
3390 
3391 	mm = vma->vm_mm;
3392 
3393 	tlb_gather_mmu(&tlb, mm, start, end);
3394 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3395 	tlb_finish_mmu(&tlb, start, end);
3396 }
3397 
3398 /*
3399  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3400  * mappping it owns the reserve page for. The intention is to unmap the page
3401  * from other VMAs and let the children be SIGKILLed if they are faulting the
3402  * same region.
3403  */
3404 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3405 			      struct page *page, unsigned long address)
3406 {
3407 	struct hstate *h = hstate_vma(vma);
3408 	struct vm_area_struct *iter_vma;
3409 	struct address_space *mapping;
3410 	pgoff_t pgoff;
3411 
3412 	/*
3413 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3414 	 * from page cache lookup which is in HPAGE_SIZE units.
3415 	 */
3416 	address = address & huge_page_mask(h);
3417 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3418 			vma->vm_pgoff;
3419 	mapping = vma->vm_file->f_mapping;
3420 
3421 	/*
3422 	 * Take the mapping lock for the duration of the table walk. As
3423 	 * this mapping should be shared between all the VMAs,
3424 	 * __unmap_hugepage_range() is called as the lock is already held
3425 	 */
3426 	i_mmap_lock_write(mapping);
3427 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3428 		/* Do not unmap the current VMA */
3429 		if (iter_vma == vma)
3430 			continue;
3431 
3432 		/*
3433 		 * Shared VMAs have their own reserves and do not affect
3434 		 * MAP_PRIVATE accounting but it is possible that a shared
3435 		 * VMA is using the same page so check and skip such VMAs.
3436 		 */
3437 		if (iter_vma->vm_flags & VM_MAYSHARE)
3438 			continue;
3439 
3440 		/*
3441 		 * Unmap the page from other VMAs without their own reserves.
3442 		 * They get marked to be SIGKILLed if they fault in these
3443 		 * areas. This is because a future no-page fault on this VMA
3444 		 * could insert a zeroed page instead of the data existing
3445 		 * from the time of fork. This would look like data corruption
3446 		 */
3447 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3448 			unmap_hugepage_range(iter_vma, address,
3449 					     address + huge_page_size(h), page);
3450 	}
3451 	i_mmap_unlock_write(mapping);
3452 }
3453 
3454 /*
3455  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3456  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3457  * cannot race with other handlers or page migration.
3458  * Keep the pte_same checks anyway to make transition from the mutex easier.
3459  */
3460 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3461 		       unsigned long address, pte_t *ptep,
3462 		       struct page *pagecache_page, spinlock_t *ptl)
3463 {
3464 	pte_t pte;
3465 	struct hstate *h = hstate_vma(vma);
3466 	struct page *old_page, *new_page;
3467 	int ret = 0, outside_reserve = 0;
3468 	unsigned long mmun_start;	/* For mmu_notifiers */
3469 	unsigned long mmun_end;		/* For mmu_notifiers */
3470 
3471 	pte = huge_ptep_get(ptep);
3472 	old_page = pte_page(pte);
3473 
3474 retry_avoidcopy:
3475 	/* If no-one else is actually using this page, avoid the copy
3476 	 * and just make the page writable */
3477 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3478 		page_move_anon_rmap(old_page, vma);
3479 		set_huge_ptep_writable(vma, address, ptep);
3480 		return 0;
3481 	}
3482 
3483 	/*
3484 	 * If the process that created a MAP_PRIVATE mapping is about to
3485 	 * perform a COW due to a shared page count, attempt to satisfy
3486 	 * the allocation without using the existing reserves. The pagecache
3487 	 * page is used to determine if the reserve at this address was
3488 	 * consumed or not. If reserves were used, a partial faulted mapping
3489 	 * at the time of fork() could consume its reserves on COW instead
3490 	 * of the full address range.
3491 	 */
3492 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3493 			old_page != pagecache_page)
3494 		outside_reserve = 1;
3495 
3496 	get_page(old_page);
3497 
3498 	/*
3499 	 * Drop page table lock as buddy allocator may be called. It will
3500 	 * be acquired again before returning to the caller, as expected.
3501 	 */
3502 	spin_unlock(ptl);
3503 	new_page = alloc_huge_page(vma, address, outside_reserve);
3504 
3505 	if (IS_ERR(new_page)) {
3506 		/*
3507 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3508 		 * it is due to references held by a child and an insufficient
3509 		 * huge page pool. To guarantee the original mappers
3510 		 * reliability, unmap the page from child processes. The child
3511 		 * may get SIGKILLed if it later faults.
3512 		 */
3513 		if (outside_reserve) {
3514 			put_page(old_page);
3515 			BUG_ON(huge_pte_none(pte));
3516 			unmap_ref_private(mm, vma, old_page, address);
3517 			BUG_ON(huge_pte_none(pte));
3518 			spin_lock(ptl);
3519 			ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3520 					       huge_page_size(h));
3521 			if (likely(ptep &&
3522 				   pte_same(huge_ptep_get(ptep), pte)))
3523 				goto retry_avoidcopy;
3524 			/*
3525 			 * race occurs while re-acquiring page table
3526 			 * lock, and our job is done.
3527 			 */
3528 			return 0;
3529 		}
3530 
3531 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3532 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3533 		goto out_release_old;
3534 	}
3535 
3536 	/*
3537 	 * When the original hugepage is shared one, it does not have
3538 	 * anon_vma prepared.
3539 	 */
3540 	if (unlikely(anon_vma_prepare(vma))) {
3541 		ret = VM_FAULT_OOM;
3542 		goto out_release_all;
3543 	}
3544 
3545 	copy_user_huge_page(new_page, old_page, address, vma,
3546 			    pages_per_huge_page(h));
3547 	__SetPageUptodate(new_page);
3548 	set_page_huge_active(new_page);
3549 
3550 	mmun_start = address & huge_page_mask(h);
3551 	mmun_end = mmun_start + huge_page_size(h);
3552 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3553 
3554 	/*
3555 	 * Retake the page table lock to check for racing updates
3556 	 * before the page tables are altered
3557 	 */
3558 	spin_lock(ptl);
3559 	ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3560 			       huge_page_size(h));
3561 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3562 		ClearPagePrivate(new_page);
3563 
3564 		/* Break COW */
3565 		huge_ptep_clear_flush(vma, address, ptep);
3566 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3567 		set_huge_pte_at(mm, address, ptep,
3568 				make_huge_pte(vma, new_page, 1));
3569 		page_remove_rmap(old_page, true);
3570 		hugepage_add_new_anon_rmap(new_page, vma, address);
3571 		/* Make the old page be freed below */
3572 		new_page = old_page;
3573 	}
3574 	spin_unlock(ptl);
3575 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3576 out_release_all:
3577 	restore_reserve_on_error(h, vma, address, new_page);
3578 	put_page(new_page);
3579 out_release_old:
3580 	put_page(old_page);
3581 
3582 	spin_lock(ptl); /* Caller expects lock to be held */
3583 	return ret;
3584 }
3585 
3586 /* Return the pagecache page at a given address within a VMA */
3587 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3588 			struct vm_area_struct *vma, unsigned long address)
3589 {
3590 	struct address_space *mapping;
3591 	pgoff_t idx;
3592 
3593 	mapping = vma->vm_file->f_mapping;
3594 	idx = vma_hugecache_offset(h, vma, address);
3595 
3596 	return find_lock_page(mapping, idx);
3597 }
3598 
3599 /*
3600  * Return whether there is a pagecache page to back given address within VMA.
3601  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3602  */
3603 static bool hugetlbfs_pagecache_present(struct hstate *h,
3604 			struct vm_area_struct *vma, unsigned long address)
3605 {
3606 	struct address_space *mapping;
3607 	pgoff_t idx;
3608 	struct page *page;
3609 
3610 	mapping = vma->vm_file->f_mapping;
3611 	idx = vma_hugecache_offset(h, vma, address);
3612 
3613 	page = find_get_page(mapping, idx);
3614 	if (page)
3615 		put_page(page);
3616 	return page != NULL;
3617 }
3618 
3619 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3620 			   pgoff_t idx)
3621 {
3622 	struct inode *inode = mapping->host;
3623 	struct hstate *h = hstate_inode(inode);
3624 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3625 
3626 	if (err)
3627 		return err;
3628 	ClearPagePrivate(page);
3629 
3630 	spin_lock(&inode->i_lock);
3631 	inode->i_blocks += blocks_per_huge_page(h);
3632 	spin_unlock(&inode->i_lock);
3633 	return 0;
3634 }
3635 
3636 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3637 			   struct address_space *mapping, pgoff_t idx,
3638 			   unsigned long address, pte_t *ptep, unsigned int flags)
3639 {
3640 	struct hstate *h = hstate_vma(vma);
3641 	int ret = VM_FAULT_SIGBUS;
3642 	int anon_rmap = 0;
3643 	unsigned long size;
3644 	struct page *page;
3645 	pte_t new_pte;
3646 	spinlock_t *ptl;
3647 
3648 	/*
3649 	 * Currently, we are forced to kill the process in the event the
3650 	 * original mapper has unmapped pages from the child due to a failed
3651 	 * COW. Warn that such a situation has occurred as it may not be obvious
3652 	 */
3653 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3654 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3655 			   current->pid);
3656 		return ret;
3657 	}
3658 
3659 	/*
3660 	 * Use page lock to guard against racing truncation
3661 	 * before we get page_table_lock.
3662 	 */
3663 retry:
3664 	page = find_lock_page(mapping, idx);
3665 	if (!page) {
3666 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3667 		if (idx >= size)
3668 			goto out;
3669 
3670 		/*
3671 		 * Check for page in userfault range
3672 		 */
3673 		if (userfaultfd_missing(vma)) {
3674 			u32 hash;
3675 			struct vm_fault vmf = {
3676 				.vma = vma,
3677 				.address = address,
3678 				.flags = flags,
3679 				/*
3680 				 * Hard to debug if it ends up being
3681 				 * used by a callee that assumes
3682 				 * something about the other
3683 				 * uninitialized fields... same as in
3684 				 * memory.c
3685 				 */
3686 			};
3687 
3688 			/*
3689 			 * hugetlb_fault_mutex must be dropped before
3690 			 * handling userfault.  Reacquire after handling
3691 			 * fault to make calling code simpler.
3692 			 */
3693 			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3694 							idx, address);
3695 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3696 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3697 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3698 			goto out;
3699 		}
3700 
3701 		page = alloc_huge_page(vma, address, 0);
3702 		if (IS_ERR(page)) {
3703 			ret = PTR_ERR(page);
3704 			if (ret == -ENOMEM)
3705 				ret = VM_FAULT_OOM;
3706 			else
3707 				ret = VM_FAULT_SIGBUS;
3708 			goto out;
3709 		}
3710 		clear_huge_page(page, address, pages_per_huge_page(h));
3711 		__SetPageUptodate(page);
3712 		set_page_huge_active(page);
3713 
3714 		if (vma->vm_flags & VM_MAYSHARE) {
3715 			int err = huge_add_to_page_cache(page, mapping, idx);
3716 			if (err) {
3717 				put_page(page);
3718 				if (err == -EEXIST)
3719 					goto retry;
3720 				goto out;
3721 			}
3722 		} else {
3723 			lock_page(page);
3724 			if (unlikely(anon_vma_prepare(vma))) {
3725 				ret = VM_FAULT_OOM;
3726 				goto backout_unlocked;
3727 			}
3728 			anon_rmap = 1;
3729 		}
3730 	} else {
3731 		/*
3732 		 * If memory error occurs between mmap() and fault, some process
3733 		 * don't have hwpoisoned swap entry for errored virtual address.
3734 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3735 		 */
3736 		if (unlikely(PageHWPoison(page))) {
3737 			ret = VM_FAULT_HWPOISON |
3738 				VM_FAULT_SET_HINDEX(hstate_index(h));
3739 			goto backout_unlocked;
3740 		}
3741 	}
3742 
3743 	/*
3744 	 * If we are going to COW a private mapping later, we examine the
3745 	 * pending reservations for this page now. This will ensure that
3746 	 * any allocations necessary to record that reservation occur outside
3747 	 * the spinlock.
3748 	 */
3749 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3750 		if (vma_needs_reservation(h, vma, address) < 0) {
3751 			ret = VM_FAULT_OOM;
3752 			goto backout_unlocked;
3753 		}
3754 		/* Just decrements count, does not deallocate */
3755 		vma_end_reservation(h, vma, address);
3756 	}
3757 
3758 	ptl = huge_pte_lock(h, mm, ptep);
3759 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3760 	if (idx >= size)
3761 		goto backout;
3762 
3763 	ret = 0;
3764 	if (!huge_pte_none(huge_ptep_get(ptep)))
3765 		goto backout;
3766 
3767 	if (anon_rmap) {
3768 		ClearPagePrivate(page);
3769 		hugepage_add_new_anon_rmap(page, vma, address);
3770 	} else
3771 		page_dup_rmap(page, true);
3772 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3773 				&& (vma->vm_flags & VM_SHARED)));
3774 	set_huge_pte_at(mm, address, ptep, new_pte);
3775 
3776 	hugetlb_count_add(pages_per_huge_page(h), mm);
3777 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3778 		/* Optimization, do the COW without a second fault */
3779 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3780 	}
3781 
3782 	spin_unlock(ptl);
3783 	unlock_page(page);
3784 out:
3785 	return ret;
3786 
3787 backout:
3788 	spin_unlock(ptl);
3789 backout_unlocked:
3790 	unlock_page(page);
3791 	restore_reserve_on_error(h, vma, address, page);
3792 	put_page(page);
3793 	goto out;
3794 }
3795 
3796 #ifdef CONFIG_SMP
3797 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3798 			    struct vm_area_struct *vma,
3799 			    struct address_space *mapping,
3800 			    pgoff_t idx, unsigned long address)
3801 {
3802 	unsigned long key[2];
3803 	u32 hash;
3804 
3805 	if (vma->vm_flags & VM_SHARED) {
3806 		key[0] = (unsigned long) mapping;
3807 		key[1] = idx;
3808 	} else {
3809 		key[0] = (unsigned long) mm;
3810 		key[1] = address >> huge_page_shift(h);
3811 	}
3812 
3813 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3814 
3815 	return hash & (num_fault_mutexes - 1);
3816 }
3817 #else
3818 /*
3819  * For uniprocesor systems we always use a single mutex, so just
3820  * return 0 and avoid the hashing overhead.
3821  */
3822 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3823 			    struct vm_area_struct *vma,
3824 			    struct address_space *mapping,
3825 			    pgoff_t idx, unsigned long address)
3826 {
3827 	return 0;
3828 }
3829 #endif
3830 
3831 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3832 			unsigned long address, unsigned int flags)
3833 {
3834 	pte_t *ptep, entry;
3835 	spinlock_t *ptl;
3836 	int ret;
3837 	u32 hash;
3838 	pgoff_t idx;
3839 	struct page *page = NULL;
3840 	struct page *pagecache_page = NULL;
3841 	struct hstate *h = hstate_vma(vma);
3842 	struct address_space *mapping;
3843 	int need_wait_lock = 0;
3844 
3845 	address &= huge_page_mask(h);
3846 
3847 	ptep = huge_pte_offset(mm, address, huge_page_size(h));
3848 	if (ptep) {
3849 		entry = huge_ptep_get(ptep);
3850 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3851 			migration_entry_wait_huge(vma, mm, ptep);
3852 			return 0;
3853 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3854 			return VM_FAULT_HWPOISON_LARGE |
3855 				VM_FAULT_SET_HINDEX(hstate_index(h));
3856 	} else {
3857 		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3858 		if (!ptep)
3859 			return VM_FAULT_OOM;
3860 	}
3861 
3862 	mapping = vma->vm_file->f_mapping;
3863 	idx = vma_hugecache_offset(h, vma, address);
3864 
3865 	/*
3866 	 * Serialize hugepage allocation and instantiation, so that we don't
3867 	 * get spurious allocation failures if two CPUs race to instantiate
3868 	 * the same page in the page cache.
3869 	 */
3870 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3871 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3872 
3873 	entry = huge_ptep_get(ptep);
3874 	if (huge_pte_none(entry)) {
3875 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3876 		goto out_mutex;
3877 	}
3878 
3879 	ret = 0;
3880 
3881 	/*
3882 	 * entry could be a migration/hwpoison entry at this point, so this
3883 	 * check prevents the kernel from going below assuming that we have
3884 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3885 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3886 	 * handle it.
3887 	 */
3888 	if (!pte_present(entry))
3889 		goto out_mutex;
3890 
3891 	/*
3892 	 * If we are going to COW the mapping later, we examine the pending
3893 	 * reservations for this page now. This will ensure that any
3894 	 * allocations necessary to record that reservation occur outside the
3895 	 * spinlock. For private mappings, we also lookup the pagecache
3896 	 * page now as it is used to determine if a reservation has been
3897 	 * consumed.
3898 	 */
3899 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3900 		if (vma_needs_reservation(h, vma, address) < 0) {
3901 			ret = VM_FAULT_OOM;
3902 			goto out_mutex;
3903 		}
3904 		/* Just decrements count, does not deallocate */
3905 		vma_end_reservation(h, vma, address);
3906 
3907 		if (!(vma->vm_flags & VM_MAYSHARE))
3908 			pagecache_page = hugetlbfs_pagecache_page(h,
3909 								vma, address);
3910 	}
3911 
3912 	ptl = huge_pte_lock(h, mm, ptep);
3913 
3914 	/* Check for a racing update before calling hugetlb_cow */
3915 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3916 		goto out_ptl;
3917 
3918 	/*
3919 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3920 	 * pagecache_page, so here we need take the former one
3921 	 * when page != pagecache_page or !pagecache_page.
3922 	 */
3923 	page = pte_page(entry);
3924 	if (page != pagecache_page)
3925 		if (!trylock_page(page)) {
3926 			need_wait_lock = 1;
3927 			goto out_ptl;
3928 		}
3929 
3930 	get_page(page);
3931 
3932 	if (flags & FAULT_FLAG_WRITE) {
3933 		if (!huge_pte_write(entry)) {
3934 			ret = hugetlb_cow(mm, vma, address, ptep,
3935 					  pagecache_page, ptl);
3936 			goto out_put_page;
3937 		}
3938 		entry = huge_pte_mkdirty(entry);
3939 	}
3940 	entry = pte_mkyoung(entry);
3941 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3942 						flags & FAULT_FLAG_WRITE))
3943 		update_mmu_cache(vma, address, ptep);
3944 out_put_page:
3945 	if (page != pagecache_page)
3946 		unlock_page(page);
3947 	put_page(page);
3948 out_ptl:
3949 	spin_unlock(ptl);
3950 
3951 	if (pagecache_page) {
3952 		unlock_page(pagecache_page);
3953 		put_page(pagecache_page);
3954 	}
3955 out_mutex:
3956 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3957 	/*
3958 	 * Generally it's safe to hold refcount during waiting page lock. But
3959 	 * here we just wait to defer the next page fault to avoid busy loop and
3960 	 * the page is not used after unlocked before returning from the current
3961 	 * page fault. So we are safe from accessing freed page, even if we wait
3962 	 * here without taking refcount.
3963 	 */
3964 	if (need_wait_lock)
3965 		wait_on_page_locked(page);
3966 	return ret;
3967 }
3968 
3969 /*
3970  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
3971  * modifications for huge pages.
3972  */
3973 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3974 			    pte_t *dst_pte,
3975 			    struct vm_area_struct *dst_vma,
3976 			    unsigned long dst_addr,
3977 			    unsigned long src_addr,
3978 			    struct page **pagep)
3979 {
3980 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
3981 	struct hstate *h = hstate_vma(dst_vma);
3982 	pte_t _dst_pte;
3983 	spinlock_t *ptl;
3984 	int ret;
3985 	struct page *page;
3986 
3987 	if (!*pagep) {
3988 		ret = -ENOMEM;
3989 		page = alloc_huge_page(dst_vma, dst_addr, 0);
3990 		if (IS_ERR(page))
3991 			goto out;
3992 
3993 		ret = copy_huge_page_from_user(page,
3994 						(const void __user *) src_addr,
3995 						pages_per_huge_page(h), false);
3996 
3997 		/* fallback to copy_from_user outside mmap_sem */
3998 		if (unlikely(ret)) {
3999 			ret = -EFAULT;
4000 			*pagep = page;
4001 			/* don't free the page */
4002 			goto out;
4003 		}
4004 	} else {
4005 		page = *pagep;
4006 		*pagep = NULL;
4007 	}
4008 
4009 	/*
4010 	 * The memory barrier inside __SetPageUptodate makes sure that
4011 	 * preceding stores to the page contents become visible before
4012 	 * the set_pte_at() write.
4013 	 */
4014 	__SetPageUptodate(page);
4015 	set_page_huge_active(page);
4016 
4017 	/*
4018 	 * If shared, add to page cache
4019 	 */
4020 	if (vm_shared) {
4021 		struct address_space *mapping = dst_vma->vm_file->f_mapping;
4022 		pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4023 
4024 		ret = huge_add_to_page_cache(page, mapping, idx);
4025 		if (ret)
4026 			goto out_release_nounlock;
4027 	}
4028 
4029 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4030 	spin_lock(ptl);
4031 
4032 	ret = -EEXIST;
4033 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4034 		goto out_release_unlock;
4035 
4036 	if (vm_shared) {
4037 		page_dup_rmap(page, true);
4038 	} else {
4039 		ClearPagePrivate(page);
4040 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4041 	}
4042 
4043 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4044 	if (dst_vma->vm_flags & VM_WRITE)
4045 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4046 	_dst_pte = pte_mkyoung(_dst_pte);
4047 
4048 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4049 
4050 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4051 					dst_vma->vm_flags & VM_WRITE);
4052 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4053 
4054 	/* No need to invalidate - it was non-present before */
4055 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4056 
4057 	spin_unlock(ptl);
4058 	if (vm_shared)
4059 		unlock_page(page);
4060 	ret = 0;
4061 out:
4062 	return ret;
4063 out_release_unlock:
4064 	spin_unlock(ptl);
4065 	if (vm_shared)
4066 		unlock_page(page);
4067 out_release_nounlock:
4068 	put_page(page);
4069 	goto out;
4070 }
4071 
4072 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4073 			 struct page **pages, struct vm_area_struct **vmas,
4074 			 unsigned long *position, unsigned long *nr_pages,
4075 			 long i, unsigned int flags, int *nonblocking)
4076 {
4077 	unsigned long pfn_offset;
4078 	unsigned long vaddr = *position;
4079 	unsigned long remainder = *nr_pages;
4080 	struct hstate *h = hstate_vma(vma);
4081 	int err = -EFAULT;
4082 
4083 	while (vaddr < vma->vm_end && remainder) {
4084 		pte_t *pte;
4085 		spinlock_t *ptl = NULL;
4086 		int absent;
4087 		struct page *page;
4088 
4089 		/*
4090 		 * If we have a pending SIGKILL, don't keep faulting pages and
4091 		 * potentially allocating memory.
4092 		 */
4093 		if (unlikely(fatal_signal_pending(current))) {
4094 			remainder = 0;
4095 			break;
4096 		}
4097 
4098 		/*
4099 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4100 		 * each hugepage.  We have to make sure we get the
4101 		 * first, for the page indexing below to work.
4102 		 *
4103 		 * Note that page table lock is not held when pte is null.
4104 		 */
4105 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4106 				      huge_page_size(h));
4107 		if (pte)
4108 			ptl = huge_pte_lock(h, mm, pte);
4109 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4110 
4111 		/*
4112 		 * When coredumping, it suits get_dump_page if we just return
4113 		 * an error where there's an empty slot with no huge pagecache
4114 		 * to back it.  This way, we avoid allocating a hugepage, and
4115 		 * the sparse dumpfile avoids allocating disk blocks, but its
4116 		 * huge holes still show up with zeroes where they need to be.
4117 		 */
4118 		if (absent && (flags & FOLL_DUMP) &&
4119 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4120 			if (pte)
4121 				spin_unlock(ptl);
4122 			remainder = 0;
4123 			break;
4124 		}
4125 
4126 		/*
4127 		 * We need call hugetlb_fault for both hugepages under migration
4128 		 * (in which case hugetlb_fault waits for the migration,) and
4129 		 * hwpoisoned hugepages (in which case we need to prevent the
4130 		 * caller from accessing to them.) In order to do this, we use
4131 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4132 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4133 		 * both cases, and because we can't follow correct pages
4134 		 * directly from any kind of swap entries.
4135 		 */
4136 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4137 		    ((flags & FOLL_WRITE) &&
4138 		      !huge_pte_write(huge_ptep_get(pte)))) {
4139 			int ret;
4140 			unsigned int fault_flags = 0;
4141 
4142 			if (pte)
4143 				spin_unlock(ptl);
4144 			if (flags & FOLL_WRITE)
4145 				fault_flags |= FAULT_FLAG_WRITE;
4146 			if (nonblocking)
4147 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4148 			if (flags & FOLL_NOWAIT)
4149 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4150 					FAULT_FLAG_RETRY_NOWAIT;
4151 			if (flags & FOLL_TRIED) {
4152 				VM_WARN_ON_ONCE(fault_flags &
4153 						FAULT_FLAG_ALLOW_RETRY);
4154 				fault_flags |= FAULT_FLAG_TRIED;
4155 			}
4156 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4157 			if (ret & VM_FAULT_ERROR) {
4158 				err = vm_fault_to_errno(ret, flags);
4159 				remainder = 0;
4160 				break;
4161 			}
4162 			if (ret & VM_FAULT_RETRY) {
4163 				if (nonblocking)
4164 					*nonblocking = 0;
4165 				*nr_pages = 0;
4166 				/*
4167 				 * VM_FAULT_RETRY must not return an
4168 				 * error, it will return zero
4169 				 * instead.
4170 				 *
4171 				 * No need to update "position" as the
4172 				 * caller will not check it after
4173 				 * *nr_pages is set to 0.
4174 				 */
4175 				return i;
4176 			}
4177 			continue;
4178 		}
4179 
4180 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4181 		page = pte_page(huge_ptep_get(pte));
4182 same_page:
4183 		if (pages) {
4184 			pages[i] = mem_map_offset(page, pfn_offset);
4185 			get_page(pages[i]);
4186 		}
4187 
4188 		if (vmas)
4189 			vmas[i] = vma;
4190 
4191 		vaddr += PAGE_SIZE;
4192 		++pfn_offset;
4193 		--remainder;
4194 		++i;
4195 		if (vaddr < vma->vm_end && remainder &&
4196 				pfn_offset < pages_per_huge_page(h)) {
4197 			/*
4198 			 * We use pfn_offset to avoid touching the pageframes
4199 			 * of this compound page.
4200 			 */
4201 			goto same_page;
4202 		}
4203 		spin_unlock(ptl);
4204 	}
4205 	*nr_pages = remainder;
4206 	/*
4207 	 * setting position is actually required only if remainder is
4208 	 * not zero but it's faster not to add a "if (remainder)"
4209 	 * branch.
4210 	 */
4211 	*position = vaddr;
4212 
4213 	return i ? i : err;
4214 }
4215 
4216 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4217 /*
4218  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4219  * implement this.
4220  */
4221 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4222 #endif
4223 
4224 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4225 		unsigned long address, unsigned long end, pgprot_t newprot)
4226 {
4227 	struct mm_struct *mm = vma->vm_mm;
4228 	unsigned long start = address;
4229 	pte_t *ptep;
4230 	pte_t pte;
4231 	struct hstate *h = hstate_vma(vma);
4232 	unsigned long pages = 0;
4233 
4234 	BUG_ON(address >= end);
4235 	flush_cache_range(vma, address, end);
4236 
4237 	mmu_notifier_invalidate_range_start(mm, start, end);
4238 	i_mmap_lock_write(vma->vm_file->f_mapping);
4239 	for (; address < end; address += huge_page_size(h)) {
4240 		spinlock_t *ptl;
4241 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4242 		if (!ptep)
4243 			continue;
4244 		ptl = huge_pte_lock(h, mm, ptep);
4245 		if (huge_pmd_unshare(mm, &address, ptep)) {
4246 			pages++;
4247 			spin_unlock(ptl);
4248 			continue;
4249 		}
4250 		pte = huge_ptep_get(ptep);
4251 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4252 			spin_unlock(ptl);
4253 			continue;
4254 		}
4255 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4256 			swp_entry_t entry = pte_to_swp_entry(pte);
4257 
4258 			if (is_write_migration_entry(entry)) {
4259 				pte_t newpte;
4260 
4261 				make_migration_entry_read(&entry);
4262 				newpte = swp_entry_to_pte(entry);
4263 				set_huge_swap_pte_at(mm, address, ptep,
4264 						     newpte, huge_page_size(h));
4265 				pages++;
4266 			}
4267 			spin_unlock(ptl);
4268 			continue;
4269 		}
4270 		if (!huge_pte_none(pte)) {
4271 			pte = huge_ptep_get_and_clear(mm, address, ptep);
4272 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4273 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4274 			set_huge_pte_at(mm, address, ptep, pte);
4275 			pages++;
4276 		}
4277 		spin_unlock(ptl);
4278 	}
4279 	/*
4280 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4281 	 * may have cleared our pud entry and done put_page on the page table:
4282 	 * once we release i_mmap_rwsem, another task can do the final put_page
4283 	 * and that page table be reused and filled with junk.
4284 	 */
4285 	flush_hugetlb_tlb_range(vma, start, end);
4286 	mmu_notifier_invalidate_range(mm, start, end);
4287 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4288 	mmu_notifier_invalidate_range_end(mm, start, end);
4289 
4290 	return pages << h->order;
4291 }
4292 
4293 int hugetlb_reserve_pages(struct inode *inode,
4294 					long from, long to,
4295 					struct vm_area_struct *vma,
4296 					vm_flags_t vm_flags)
4297 {
4298 	long ret, chg;
4299 	struct hstate *h = hstate_inode(inode);
4300 	struct hugepage_subpool *spool = subpool_inode(inode);
4301 	struct resv_map *resv_map;
4302 	long gbl_reserve;
4303 
4304 	/*
4305 	 * Only apply hugepage reservation if asked. At fault time, an
4306 	 * attempt will be made for VM_NORESERVE to allocate a page
4307 	 * without using reserves
4308 	 */
4309 	if (vm_flags & VM_NORESERVE)
4310 		return 0;
4311 
4312 	/*
4313 	 * Shared mappings base their reservation on the number of pages that
4314 	 * are already allocated on behalf of the file. Private mappings need
4315 	 * to reserve the full area even if read-only as mprotect() may be
4316 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4317 	 */
4318 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4319 		resv_map = inode_resv_map(inode);
4320 
4321 		chg = region_chg(resv_map, from, to);
4322 
4323 	} else {
4324 		resv_map = resv_map_alloc();
4325 		if (!resv_map)
4326 			return -ENOMEM;
4327 
4328 		chg = to - from;
4329 
4330 		set_vma_resv_map(vma, resv_map);
4331 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4332 	}
4333 
4334 	if (chg < 0) {
4335 		ret = chg;
4336 		goto out_err;
4337 	}
4338 
4339 	/*
4340 	 * There must be enough pages in the subpool for the mapping. If
4341 	 * the subpool has a minimum size, there may be some global
4342 	 * reservations already in place (gbl_reserve).
4343 	 */
4344 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4345 	if (gbl_reserve < 0) {
4346 		ret = -ENOSPC;
4347 		goto out_err;
4348 	}
4349 
4350 	/*
4351 	 * Check enough hugepages are available for the reservation.
4352 	 * Hand the pages back to the subpool if there are not
4353 	 */
4354 	ret = hugetlb_acct_memory(h, gbl_reserve);
4355 	if (ret < 0) {
4356 		/* put back original number of pages, chg */
4357 		(void)hugepage_subpool_put_pages(spool, chg);
4358 		goto out_err;
4359 	}
4360 
4361 	/*
4362 	 * Account for the reservations made. Shared mappings record regions
4363 	 * that have reservations as they are shared by multiple VMAs.
4364 	 * When the last VMA disappears, the region map says how much
4365 	 * the reservation was and the page cache tells how much of
4366 	 * the reservation was consumed. Private mappings are per-VMA and
4367 	 * only the consumed reservations are tracked. When the VMA
4368 	 * disappears, the original reservation is the VMA size and the
4369 	 * consumed reservations are stored in the map. Hence, nothing
4370 	 * else has to be done for private mappings here
4371 	 */
4372 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4373 		long add = region_add(resv_map, from, to);
4374 
4375 		if (unlikely(chg > add)) {
4376 			/*
4377 			 * pages in this range were added to the reserve
4378 			 * map between region_chg and region_add.  This
4379 			 * indicates a race with alloc_huge_page.  Adjust
4380 			 * the subpool and reserve counts modified above
4381 			 * based on the difference.
4382 			 */
4383 			long rsv_adjust;
4384 
4385 			rsv_adjust = hugepage_subpool_put_pages(spool,
4386 								chg - add);
4387 			hugetlb_acct_memory(h, -rsv_adjust);
4388 		}
4389 	}
4390 	return 0;
4391 out_err:
4392 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4393 		/* Don't call region_abort if region_chg failed */
4394 		if (chg >= 0)
4395 			region_abort(resv_map, from, to);
4396 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4397 		kref_put(&resv_map->refs, resv_map_release);
4398 	return ret;
4399 }
4400 
4401 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4402 								long freed)
4403 {
4404 	struct hstate *h = hstate_inode(inode);
4405 	struct resv_map *resv_map = inode_resv_map(inode);
4406 	long chg = 0;
4407 	struct hugepage_subpool *spool = subpool_inode(inode);
4408 	long gbl_reserve;
4409 
4410 	if (resv_map) {
4411 		chg = region_del(resv_map, start, end);
4412 		/*
4413 		 * region_del() can fail in the rare case where a region
4414 		 * must be split and another region descriptor can not be
4415 		 * allocated.  If end == LONG_MAX, it will not fail.
4416 		 */
4417 		if (chg < 0)
4418 			return chg;
4419 	}
4420 
4421 	spin_lock(&inode->i_lock);
4422 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4423 	spin_unlock(&inode->i_lock);
4424 
4425 	/*
4426 	 * If the subpool has a minimum size, the number of global
4427 	 * reservations to be released may be adjusted.
4428 	 */
4429 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4430 	hugetlb_acct_memory(h, -gbl_reserve);
4431 
4432 	return 0;
4433 }
4434 
4435 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4436 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4437 				struct vm_area_struct *vma,
4438 				unsigned long addr, pgoff_t idx)
4439 {
4440 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4441 				svma->vm_start;
4442 	unsigned long sbase = saddr & PUD_MASK;
4443 	unsigned long s_end = sbase + PUD_SIZE;
4444 
4445 	/* Allow segments to share if only one is marked locked */
4446 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4447 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4448 
4449 	/*
4450 	 * match the virtual addresses, permission and the alignment of the
4451 	 * page table page.
4452 	 */
4453 	if (pmd_index(addr) != pmd_index(saddr) ||
4454 	    vm_flags != svm_flags ||
4455 	    sbase < svma->vm_start || svma->vm_end < s_end)
4456 		return 0;
4457 
4458 	return saddr;
4459 }
4460 
4461 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4462 {
4463 	unsigned long base = addr & PUD_MASK;
4464 	unsigned long end = base + PUD_SIZE;
4465 
4466 	/*
4467 	 * check on proper vm_flags and page table alignment
4468 	 */
4469 	if (vma->vm_flags & VM_MAYSHARE &&
4470 	    vma->vm_start <= base && end <= vma->vm_end)
4471 		return true;
4472 	return false;
4473 }
4474 
4475 /*
4476  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4477  * and returns the corresponding pte. While this is not necessary for the
4478  * !shared pmd case because we can allocate the pmd later as well, it makes the
4479  * code much cleaner. pmd allocation is essential for the shared case because
4480  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4481  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4482  * bad pmd for sharing.
4483  */
4484 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4485 {
4486 	struct vm_area_struct *vma = find_vma(mm, addr);
4487 	struct address_space *mapping = vma->vm_file->f_mapping;
4488 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4489 			vma->vm_pgoff;
4490 	struct vm_area_struct *svma;
4491 	unsigned long saddr;
4492 	pte_t *spte = NULL;
4493 	pte_t *pte;
4494 	spinlock_t *ptl;
4495 
4496 	if (!vma_shareable(vma, addr))
4497 		return (pte_t *)pmd_alloc(mm, pud, addr);
4498 
4499 	i_mmap_lock_write(mapping);
4500 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4501 		if (svma == vma)
4502 			continue;
4503 
4504 		saddr = page_table_shareable(svma, vma, addr, idx);
4505 		if (saddr) {
4506 			spte = huge_pte_offset(svma->vm_mm, saddr,
4507 					       vma_mmu_pagesize(svma));
4508 			if (spte) {
4509 				get_page(virt_to_page(spte));
4510 				break;
4511 			}
4512 		}
4513 	}
4514 
4515 	if (!spte)
4516 		goto out;
4517 
4518 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4519 	if (pud_none(*pud)) {
4520 		pud_populate(mm, pud,
4521 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4522 		mm_inc_nr_pmds(mm);
4523 	} else {
4524 		put_page(virt_to_page(spte));
4525 	}
4526 	spin_unlock(ptl);
4527 out:
4528 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4529 	i_mmap_unlock_write(mapping);
4530 	return pte;
4531 }
4532 
4533 /*
4534  * unmap huge page backed by shared pte.
4535  *
4536  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4537  * indicated by page_count > 1, unmap is achieved by clearing pud and
4538  * decrementing the ref count. If count == 1, the pte page is not shared.
4539  *
4540  * called with page table lock held.
4541  *
4542  * returns: 1 successfully unmapped a shared pte page
4543  *	    0 the underlying pte page is not shared, or it is the last user
4544  */
4545 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4546 {
4547 	pgd_t *pgd = pgd_offset(mm, *addr);
4548 	p4d_t *p4d = p4d_offset(pgd, *addr);
4549 	pud_t *pud = pud_offset(p4d, *addr);
4550 
4551 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4552 	if (page_count(virt_to_page(ptep)) == 1)
4553 		return 0;
4554 
4555 	pud_clear(pud);
4556 	put_page(virt_to_page(ptep));
4557 	mm_dec_nr_pmds(mm);
4558 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4559 	return 1;
4560 }
4561 #define want_pmd_share()	(1)
4562 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4563 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4564 {
4565 	return NULL;
4566 }
4567 
4568 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4569 {
4570 	return 0;
4571 }
4572 #define want_pmd_share()	(0)
4573 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4574 
4575 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4576 pte_t *huge_pte_alloc(struct mm_struct *mm,
4577 			unsigned long addr, unsigned long sz)
4578 {
4579 	pgd_t *pgd;
4580 	p4d_t *p4d;
4581 	pud_t *pud;
4582 	pte_t *pte = NULL;
4583 
4584 	pgd = pgd_offset(mm, addr);
4585 	p4d = p4d_offset(pgd, addr);
4586 	pud = pud_alloc(mm, p4d, addr);
4587 	if (pud) {
4588 		if (sz == PUD_SIZE) {
4589 			pte = (pte_t *)pud;
4590 		} else {
4591 			BUG_ON(sz != PMD_SIZE);
4592 			if (want_pmd_share() && pud_none(*pud))
4593 				pte = huge_pmd_share(mm, addr, pud);
4594 			else
4595 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4596 		}
4597 	}
4598 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4599 
4600 	return pte;
4601 }
4602 
4603 pte_t *huge_pte_offset(struct mm_struct *mm,
4604 		       unsigned long addr, unsigned long sz)
4605 {
4606 	pgd_t *pgd;
4607 	p4d_t *p4d;
4608 	pud_t *pud;
4609 	pmd_t *pmd;
4610 
4611 	pgd = pgd_offset(mm, addr);
4612 	if (!pgd_present(*pgd))
4613 		return NULL;
4614 	p4d = p4d_offset(pgd, addr);
4615 	if (!p4d_present(*p4d))
4616 		return NULL;
4617 	pud = pud_offset(p4d, addr);
4618 	if (!pud_present(*pud))
4619 		return NULL;
4620 	if (pud_huge(*pud))
4621 		return (pte_t *)pud;
4622 	pmd = pmd_offset(pud, addr);
4623 	return (pte_t *) pmd;
4624 }
4625 
4626 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4627 
4628 /*
4629  * These functions are overwritable if your architecture needs its own
4630  * behavior.
4631  */
4632 struct page * __weak
4633 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4634 			      int write)
4635 {
4636 	return ERR_PTR(-EINVAL);
4637 }
4638 
4639 struct page * __weak
4640 follow_huge_pd(struct vm_area_struct *vma,
4641 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
4642 {
4643 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4644 	return NULL;
4645 }
4646 
4647 struct page * __weak
4648 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4649 		pmd_t *pmd, int flags)
4650 {
4651 	struct page *page = NULL;
4652 	spinlock_t *ptl;
4653 	pte_t pte;
4654 retry:
4655 	ptl = pmd_lockptr(mm, pmd);
4656 	spin_lock(ptl);
4657 	/*
4658 	 * make sure that the address range covered by this pmd is not
4659 	 * unmapped from other threads.
4660 	 */
4661 	if (!pmd_huge(*pmd))
4662 		goto out;
4663 	pte = huge_ptep_get((pte_t *)pmd);
4664 	if (pte_present(pte)) {
4665 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4666 		if (flags & FOLL_GET)
4667 			get_page(page);
4668 	} else {
4669 		if (is_hugetlb_entry_migration(pte)) {
4670 			spin_unlock(ptl);
4671 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4672 			goto retry;
4673 		}
4674 		/*
4675 		 * hwpoisoned entry is treated as no_page_table in
4676 		 * follow_page_mask().
4677 		 */
4678 	}
4679 out:
4680 	spin_unlock(ptl);
4681 	return page;
4682 }
4683 
4684 struct page * __weak
4685 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4686 		pud_t *pud, int flags)
4687 {
4688 	if (flags & FOLL_GET)
4689 		return NULL;
4690 
4691 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4692 }
4693 
4694 struct page * __weak
4695 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4696 {
4697 	if (flags & FOLL_GET)
4698 		return NULL;
4699 
4700 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4701 }
4702 
4703 bool isolate_huge_page(struct page *page, struct list_head *list)
4704 {
4705 	bool ret = true;
4706 
4707 	VM_BUG_ON_PAGE(!PageHead(page), page);
4708 	spin_lock(&hugetlb_lock);
4709 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4710 		ret = false;
4711 		goto unlock;
4712 	}
4713 	clear_page_huge_active(page);
4714 	list_move_tail(&page->lru, list);
4715 unlock:
4716 	spin_unlock(&hugetlb_lock);
4717 	return ret;
4718 }
4719 
4720 void putback_active_hugepage(struct page *page)
4721 {
4722 	VM_BUG_ON_PAGE(!PageHead(page), page);
4723 	spin_lock(&hugetlb_lock);
4724 	set_page_huge_active(page);
4725 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4726 	spin_unlock(&hugetlb_lock);
4727 	put_page(page);
4728 }
4729