1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 38 #include <asm/page.h> 39 #include <asm/pgalloc.h> 40 #include <asm/tlb.h> 41 42 #include <linux/io.h> 43 #include <linux/hugetlb.h> 44 #include <linux/hugetlb_cgroup.h> 45 #include <linux/node.h> 46 #include <linux/page_owner.h> 47 #include "internal.h" 48 #include "hugetlb_vmemmap.h" 49 50 int hugetlb_max_hstate __read_mostly; 51 unsigned int default_hstate_idx; 52 struct hstate hstates[HUGE_MAX_HSTATE]; 53 54 #ifdef CONFIG_CMA 55 static struct cma *hugetlb_cma[MAX_NUMNODES]; 56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 57 static bool hugetlb_cma_page(struct page *page, unsigned int order) 58 { 59 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page, 60 1 << order); 61 } 62 #else 63 static bool hugetlb_cma_page(struct page *page, unsigned int order) 64 { 65 return false; 66 } 67 #endif 68 static unsigned long hugetlb_cma_size __initdata; 69 70 __initdata LIST_HEAD(huge_boot_pages); 71 72 /* for command line parsing */ 73 static struct hstate * __initdata parsed_hstate; 74 static unsigned long __initdata default_hstate_max_huge_pages; 75 static bool __initdata parsed_valid_hugepagesz = true; 76 static bool __initdata parsed_default_hugepagesz; 77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 78 79 /* 80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 81 * free_huge_pages, and surplus_huge_pages. 82 */ 83 DEFINE_SPINLOCK(hugetlb_lock); 84 85 /* 86 * Serializes faults on the same logical page. This is used to 87 * prevent spurious OOMs when the hugepage pool is fully utilized. 88 */ 89 static int num_fault_mutexes; 90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 91 92 /* Forward declaration */ 93 static int hugetlb_acct_memory(struct hstate *h, long delta); 94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 97 98 static inline bool subpool_is_free(struct hugepage_subpool *spool) 99 { 100 if (spool->count) 101 return false; 102 if (spool->max_hpages != -1) 103 return spool->used_hpages == 0; 104 if (spool->min_hpages != -1) 105 return spool->rsv_hpages == spool->min_hpages; 106 107 return true; 108 } 109 110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 111 unsigned long irq_flags) 112 { 113 spin_unlock_irqrestore(&spool->lock, irq_flags); 114 115 /* If no pages are used, and no other handles to the subpool 116 * remain, give up any reservations based on minimum size and 117 * free the subpool */ 118 if (subpool_is_free(spool)) { 119 if (spool->min_hpages != -1) 120 hugetlb_acct_memory(spool->hstate, 121 -spool->min_hpages); 122 kfree(spool); 123 } 124 } 125 126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 127 long min_hpages) 128 { 129 struct hugepage_subpool *spool; 130 131 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 132 if (!spool) 133 return NULL; 134 135 spin_lock_init(&spool->lock); 136 spool->count = 1; 137 spool->max_hpages = max_hpages; 138 spool->hstate = h; 139 spool->min_hpages = min_hpages; 140 141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 142 kfree(spool); 143 return NULL; 144 } 145 spool->rsv_hpages = min_hpages; 146 147 return spool; 148 } 149 150 void hugepage_put_subpool(struct hugepage_subpool *spool) 151 { 152 unsigned long flags; 153 154 spin_lock_irqsave(&spool->lock, flags); 155 BUG_ON(!spool->count); 156 spool->count--; 157 unlock_or_release_subpool(spool, flags); 158 } 159 160 /* 161 * Subpool accounting for allocating and reserving pages. 162 * Return -ENOMEM if there are not enough resources to satisfy the 163 * request. Otherwise, return the number of pages by which the 164 * global pools must be adjusted (upward). The returned value may 165 * only be different than the passed value (delta) in the case where 166 * a subpool minimum size must be maintained. 167 */ 168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 169 long delta) 170 { 171 long ret = delta; 172 173 if (!spool) 174 return ret; 175 176 spin_lock_irq(&spool->lock); 177 178 if (spool->max_hpages != -1) { /* maximum size accounting */ 179 if ((spool->used_hpages + delta) <= spool->max_hpages) 180 spool->used_hpages += delta; 181 else { 182 ret = -ENOMEM; 183 goto unlock_ret; 184 } 185 } 186 187 /* minimum size accounting */ 188 if (spool->min_hpages != -1 && spool->rsv_hpages) { 189 if (delta > spool->rsv_hpages) { 190 /* 191 * Asking for more reserves than those already taken on 192 * behalf of subpool. Return difference. 193 */ 194 ret = delta - spool->rsv_hpages; 195 spool->rsv_hpages = 0; 196 } else { 197 ret = 0; /* reserves already accounted for */ 198 spool->rsv_hpages -= delta; 199 } 200 } 201 202 unlock_ret: 203 spin_unlock_irq(&spool->lock); 204 return ret; 205 } 206 207 /* 208 * Subpool accounting for freeing and unreserving pages. 209 * Return the number of global page reservations that must be dropped. 210 * The return value may only be different than the passed value (delta) 211 * in the case where a subpool minimum size must be maintained. 212 */ 213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 214 long delta) 215 { 216 long ret = delta; 217 unsigned long flags; 218 219 if (!spool) 220 return delta; 221 222 spin_lock_irqsave(&spool->lock, flags); 223 224 if (spool->max_hpages != -1) /* maximum size accounting */ 225 spool->used_hpages -= delta; 226 227 /* minimum size accounting */ 228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 229 if (spool->rsv_hpages + delta <= spool->min_hpages) 230 ret = 0; 231 else 232 ret = spool->rsv_hpages + delta - spool->min_hpages; 233 234 spool->rsv_hpages += delta; 235 if (spool->rsv_hpages > spool->min_hpages) 236 spool->rsv_hpages = spool->min_hpages; 237 } 238 239 /* 240 * If hugetlbfs_put_super couldn't free spool due to an outstanding 241 * quota reference, free it now. 242 */ 243 unlock_or_release_subpool(spool, flags); 244 245 return ret; 246 } 247 248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 249 { 250 return HUGETLBFS_SB(inode->i_sb)->spool; 251 } 252 253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 254 { 255 return subpool_inode(file_inode(vma->vm_file)); 256 } 257 258 /* Helper that removes a struct file_region from the resv_map cache and returns 259 * it for use. 260 */ 261 static struct file_region * 262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 263 { 264 struct file_region *nrg; 265 266 VM_BUG_ON(resv->region_cache_count <= 0); 267 268 resv->region_cache_count--; 269 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 270 list_del(&nrg->link); 271 272 nrg->from = from; 273 nrg->to = to; 274 275 return nrg; 276 } 277 278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 279 struct file_region *rg) 280 { 281 #ifdef CONFIG_CGROUP_HUGETLB 282 nrg->reservation_counter = rg->reservation_counter; 283 nrg->css = rg->css; 284 if (rg->css) 285 css_get(rg->css); 286 #endif 287 } 288 289 /* Helper that records hugetlb_cgroup uncharge info. */ 290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 291 struct hstate *h, 292 struct resv_map *resv, 293 struct file_region *nrg) 294 { 295 #ifdef CONFIG_CGROUP_HUGETLB 296 if (h_cg) { 297 nrg->reservation_counter = 298 &h_cg->rsvd_hugepage[hstate_index(h)]; 299 nrg->css = &h_cg->css; 300 /* 301 * The caller will hold exactly one h_cg->css reference for the 302 * whole contiguous reservation region. But this area might be 303 * scattered when there are already some file_regions reside in 304 * it. As a result, many file_regions may share only one css 305 * reference. In order to ensure that one file_region must hold 306 * exactly one h_cg->css reference, we should do css_get for 307 * each file_region and leave the reference held by caller 308 * untouched. 309 */ 310 css_get(&h_cg->css); 311 if (!resv->pages_per_hpage) 312 resv->pages_per_hpage = pages_per_huge_page(h); 313 /* pages_per_hpage should be the same for all entries in 314 * a resv_map. 315 */ 316 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 317 } else { 318 nrg->reservation_counter = NULL; 319 nrg->css = NULL; 320 } 321 #endif 322 } 323 324 static void put_uncharge_info(struct file_region *rg) 325 { 326 #ifdef CONFIG_CGROUP_HUGETLB 327 if (rg->css) 328 css_put(rg->css); 329 #endif 330 } 331 332 static bool has_same_uncharge_info(struct file_region *rg, 333 struct file_region *org) 334 { 335 #ifdef CONFIG_CGROUP_HUGETLB 336 return rg->reservation_counter == org->reservation_counter && 337 rg->css == org->css; 338 339 #else 340 return true; 341 #endif 342 } 343 344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 345 { 346 struct file_region *nrg, *prg; 347 348 prg = list_prev_entry(rg, link); 349 if (&prg->link != &resv->regions && prg->to == rg->from && 350 has_same_uncharge_info(prg, rg)) { 351 prg->to = rg->to; 352 353 list_del(&rg->link); 354 put_uncharge_info(rg); 355 kfree(rg); 356 357 rg = prg; 358 } 359 360 nrg = list_next_entry(rg, link); 361 if (&nrg->link != &resv->regions && nrg->from == rg->to && 362 has_same_uncharge_info(nrg, rg)) { 363 nrg->from = rg->from; 364 365 list_del(&rg->link); 366 put_uncharge_info(rg); 367 kfree(rg); 368 } 369 } 370 371 static inline long 372 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 373 long to, struct hstate *h, struct hugetlb_cgroup *cg, 374 long *regions_needed) 375 { 376 struct file_region *nrg; 377 378 if (!regions_needed) { 379 nrg = get_file_region_entry_from_cache(map, from, to); 380 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 381 list_add(&nrg->link, rg); 382 coalesce_file_region(map, nrg); 383 } else 384 *regions_needed += 1; 385 386 return to - from; 387 } 388 389 /* 390 * Must be called with resv->lock held. 391 * 392 * Calling this with regions_needed != NULL will count the number of pages 393 * to be added but will not modify the linked list. And regions_needed will 394 * indicate the number of file_regions needed in the cache to carry out to add 395 * the regions for this range. 396 */ 397 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 398 struct hugetlb_cgroup *h_cg, 399 struct hstate *h, long *regions_needed) 400 { 401 long add = 0; 402 struct list_head *head = &resv->regions; 403 long last_accounted_offset = f; 404 struct file_region *iter, *trg = NULL; 405 struct list_head *rg = NULL; 406 407 if (regions_needed) 408 *regions_needed = 0; 409 410 /* In this loop, we essentially handle an entry for the range 411 * [last_accounted_offset, iter->from), at every iteration, with some 412 * bounds checking. 413 */ 414 list_for_each_entry_safe(iter, trg, head, link) { 415 /* Skip irrelevant regions that start before our range. */ 416 if (iter->from < f) { 417 /* If this region ends after the last accounted offset, 418 * then we need to update last_accounted_offset. 419 */ 420 if (iter->to > last_accounted_offset) 421 last_accounted_offset = iter->to; 422 continue; 423 } 424 425 /* When we find a region that starts beyond our range, we've 426 * finished. 427 */ 428 if (iter->from >= t) { 429 rg = iter->link.prev; 430 break; 431 } 432 433 /* Add an entry for last_accounted_offset -> iter->from, and 434 * update last_accounted_offset. 435 */ 436 if (iter->from > last_accounted_offset) 437 add += hugetlb_resv_map_add(resv, iter->link.prev, 438 last_accounted_offset, 439 iter->from, h, h_cg, 440 regions_needed); 441 442 last_accounted_offset = iter->to; 443 } 444 445 /* Handle the case where our range extends beyond 446 * last_accounted_offset. 447 */ 448 if (!rg) 449 rg = head->prev; 450 if (last_accounted_offset < t) 451 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 452 t, h, h_cg, regions_needed); 453 454 return add; 455 } 456 457 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 458 */ 459 static int allocate_file_region_entries(struct resv_map *resv, 460 int regions_needed) 461 __must_hold(&resv->lock) 462 { 463 LIST_HEAD(allocated_regions); 464 int to_allocate = 0, i = 0; 465 struct file_region *trg = NULL, *rg = NULL; 466 467 VM_BUG_ON(regions_needed < 0); 468 469 /* 470 * Check for sufficient descriptors in the cache to accommodate 471 * the number of in progress add operations plus regions_needed. 472 * 473 * This is a while loop because when we drop the lock, some other call 474 * to region_add or region_del may have consumed some region_entries, 475 * so we keep looping here until we finally have enough entries for 476 * (adds_in_progress + regions_needed). 477 */ 478 while (resv->region_cache_count < 479 (resv->adds_in_progress + regions_needed)) { 480 to_allocate = resv->adds_in_progress + regions_needed - 481 resv->region_cache_count; 482 483 /* At this point, we should have enough entries in the cache 484 * for all the existing adds_in_progress. We should only be 485 * needing to allocate for regions_needed. 486 */ 487 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 488 489 spin_unlock(&resv->lock); 490 for (i = 0; i < to_allocate; i++) { 491 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 492 if (!trg) 493 goto out_of_memory; 494 list_add(&trg->link, &allocated_regions); 495 } 496 497 spin_lock(&resv->lock); 498 499 list_splice(&allocated_regions, &resv->region_cache); 500 resv->region_cache_count += to_allocate; 501 } 502 503 return 0; 504 505 out_of_memory: 506 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 507 list_del(&rg->link); 508 kfree(rg); 509 } 510 return -ENOMEM; 511 } 512 513 /* 514 * Add the huge page range represented by [f, t) to the reserve 515 * map. Regions will be taken from the cache to fill in this range. 516 * Sufficient regions should exist in the cache due to the previous 517 * call to region_chg with the same range, but in some cases the cache will not 518 * have sufficient entries due to races with other code doing region_add or 519 * region_del. The extra needed entries will be allocated. 520 * 521 * regions_needed is the out value provided by a previous call to region_chg. 522 * 523 * Return the number of new huge pages added to the map. This number is greater 524 * than or equal to zero. If file_region entries needed to be allocated for 525 * this operation and we were not able to allocate, it returns -ENOMEM. 526 * region_add of regions of length 1 never allocate file_regions and cannot 527 * fail; region_chg will always allocate at least 1 entry and a region_add for 528 * 1 page will only require at most 1 entry. 529 */ 530 static long region_add(struct resv_map *resv, long f, long t, 531 long in_regions_needed, struct hstate *h, 532 struct hugetlb_cgroup *h_cg) 533 { 534 long add = 0, actual_regions_needed = 0; 535 536 spin_lock(&resv->lock); 537 retry: 538 539 /* Count how many regions are actually needed to execute this add. */ 540 add_reservation_in_range(resv, f, t, NULL, NULL, 541 &actual_regions_needed); 542 543 /* 544 * Check for sufficient descriptors in the cache to accommodate 545 * this add operation. Note that actual_regions_needed may be greater 546 * than in_regions_needed, as the resv_map may have been modified since 547 * the region_chg call. In this case, we need to make sure that we 548 * allocate extra entries, such that we have enough for all the 549 * existing adds_in_progress, plus the excess needed for this 550 * operation. 551 */ 552 if (actual_regions_needed > in_regions_needed && 553 resv->region_cache_count < 554 resv->adds_in_progress + 555 (actual_regions_needed - in_regions_needed)) { 556 /* region_add operation of range 1 should never need to 557 * allocate file_region entries. 558 */ 559 VM_BUG_ON(t - f <= 1); 560 561 if (allocate_file_region_entries( 562 resv, actual_regions_needed - in_regions_needed)) { 563 return -ENOMEM; 564 } 565 566 goto retry; 567 } 568 569 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 570 571 resv->adds_in_progress -= in_regions_needed; 572 573 spin_unlock(&resv->lock); 574 return add; 575 } 576 577 /* 578 * Examine the existing reserve map and determine how many 579 * huge pages in the specified range [f, t) are NOT currently 580 * represented. This routine is called before a subsequent 581 * call to region_add that will actually modify the reserve 582 * map to add the specified range [f, t). region_chg does 583 * not change the number of huge pages represented by the 584 * map. A number of new file_region structures is added to the cache as a 585 * placeholder, for the subsequent region_add call to use. At least 1 586 * file_region structure is added. 587 * 588 * out_regions_needed is the number of regions added to the 589 * resv->adds_in_progress. This value needs to be provided to a follow up call 590 * to region_add or region_abort for proper accounting. 591 * 592 * Returns the number of huge pages that need to be added to the existing 593 * reservation map for the range [f, t). This number is greater or equal to 594 * zero. -ENOMEM is returned if a new file_region structure or cache entry 595 * is needed and can not be allocated. 596 */ 597 static long region_chg(struct resv_map *resv, long f, long t, 598 long *out_regions_needed) 599 { 600 long chg = 0; 601 602 spin_lock(&resv->lock); 603 604 /* Count how many hugepages in this range are NOT represented. */ 605 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 606 out_regions_needed); 607 608 if (*out_regions_needed == 0) 609 *out_regions_needed = 1; 610 611 if (allocate_file_region_entries(resv, *out_regions_needed)) 612 return -ENOMEM; 613 614 resv->adds_in_progress += *out_regions_needed; 615 616 spin_unlock(&resv->lock); 617 return chg; 618 } 619 620 /* 621 * Abort the in progress add operation. The adds_in_progress field 622 * of the resv_map keeps track of the operations in progress between 623 * calls to region_chg and region_add. Operations are sometimes 624 * aborted after the call to region_chg. In such cases, region_abort 625 * is called to decrement the adds_in_progress counter. regions_needed 626 * is the value returned by the region_chg call, it is used to decrement 627 * the adds_in_progress counter. 628 * 629 * NOTE: The range arguments [f, t) are not needed or used in this 630 * routine. They are kept to make reading the calling code easier as 631 * arguments will match the associated region_chg call. 632 */ 633 static void region_abort(struct resv_map *resv, long f, long t, 634 long regions_needed) 635 { 636 spin_lock(&resv->lock); 637 VM_BUG_ON(!resv->region_cache_count); 638 resv->adds_in_progress -= regions_needed; 639 spin_unlock(&resv->lock); 640 } 641 642 /* 643 * Delete the specified range [f, t) from the reserve map. If the 644 * t parameter is LONG_MAX, this indicates that ALL regions after f 645 * should be deleted. Locate the regions which intersect [f, t) 646 * and either trim, delete or split the existing regions. 647 * 648 * Returns the number of huge pages deleted from the reserve map. 649 * In the normal case, the return value is zero or more. In the 650 * case where a region must be split, a new region descriptor must 651 * be allocated. If the allocation fails, -ENOMEM will be returned. 652 * NOTE: If the parameter t == LONG_MAX, then we will never split 653 * a region and possibly return -ENOMEM. Callers specifying 654 * t == LONG_MAX do not need to check for -ENOMEM error. 655 */ 656 static long region_del(struct resv_map *resv, long f, long t) 657 { 658 struct list_head *head = &resv->regions; 659 struct file_region *rg, *trg; 660 struct file_region *nrg = NULL; 661 long del = 0; 662 663 retry: 664 spin_lock(&resv->lock); 665 list_for_each_entry_safe(rg, trg, head, link) { 666 /* 667 * Skip regions before the range to be deleted. file_region 668 * ranges are normally of the form [from, to). However, there 669 * may be a "placeholder" entry in the map which is of the form 670 * (from, to) with from == to. Check for placeholder entries 671 * at the beginning of the range to be deleted. 672 */ 673 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 674 continue; 675 676 if (rg->from >= t) 677 break; 678 679 if (f > rg->from && t < rg->to) { /* Must split region */ 680 /* 681 * Check for an entry in the cache before dropping 682 * lock and attempting allocation. 683 */ 684 if (!nrg && 685 resv->region_cache_count > resv->adds_in_progress) { 686 nrg = list_first_entry(&resv->region_cache, 687 struct file_region, 688 link); 689 list_del(&nrg->link); 690 resv->region_cache_count--; 691 } 692 693 if (!nrg) { 694 spin_unlock(&resv->lock); 695 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 696 if (!nrg) 697 return -ENOMEM; 698 goto retry; 699 } 700 701 del += t - f; 702 hugetlb_cgroup_uncharge_file_region( 703 resv, rg, t - f, false); 704 705 /* New entry for end of split region */ 706 nrg->from = t; 707 nrg->to = rg->to; 708 709 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 710 711 INIT_LIST_HEAD(&nrg->link); 712 713 /* Original entry is trimmed */ 714 rg->to = f; 715 716 list_add(&nrg->link, &rg->link); 717 nrg = NULL; 718 break; 719 } 720 721 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 722 del += rg->to - rg->from; 723 hugetlb_cgroup_uncharge_file_region(resv, rg, 724 rg->to - rg->from, true); 725 list_del(&rg->link); 726 kfree(rg); 727 continue; 728 } 729 730 if (f <= rg->from) { /* Trim beginning of region */ 731 hugetlb_cgroup_uncharge_file_region(resv, rg, 732 t - rg->from, false); 733 734 del += t - rg->from; 735 rg->from = t; 736 } else { /* Trim end of region */ 737 hugetlb_cgroup_uncharge_file_region(resv, rg, 738 rg->to - f, false); 739 740 del += rg->to - f; 741 rg->to = f; 742 } 743 } 744 745 spin_unlock(&resv->lock); 746 kfree(nrg); 747 return del; 748 } 749 750 /* 751 * A rare out of memory error was encountered which prevented removal of 752 * the reserve map region for a page. The huge page itself was free'ed 753 * and removed from the page cache. This routine will adjust the subpool 754 * usage count, and the global reserve count if needed. By incrementing 755 * these counts, the reserve map entry which could not be deleted will 756 * appear as a "reserved" entry instead of simply dangling with incorrect 757 * counts. 758 */ 759 void hugetlb_fix_reserve_counts(struct inode *inode) 760 { 761 struct hugepage_subpool *spool = subpool_inode(inode); 762 long rsv_adjust; 763 bool reserved = false; 764 765 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 766 if (rsv_adjust > 0) { 767 struct hstate *h = hstate_inode(inode); 768 769 if (!hugetlb_acct_memory(h, 1)) 770 reserved = true; 771 } else if (!rsv_adjust) { 772 reserved = true; 773 } 774 775 if (!reserved) 776 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 777 } 778 779 /* 780 * Count and return the number of huge pages in the reserve map 781 * that intersect with the range [f, t). 782 */ 783 static long region_count(struct resv_map *resv, long f, long t) 784 { 785 struct list_head *head = &resv->regions; 786 struct file_region *rg; 787 long chg = 0; 788 789 spin_lock(&resv->lock); 790 /* Locate each segment we overlap with, and count that overlap. */ 791 list_for_each_entry(rg, head, link) { 792 long seg_from; 793 long seg_to; 794 795 if (rg->to <= f) 796 continue; 797 if (rg->from >= t) 798 break; 799 800 seg_from = max(rg->from, f); 801 seg_to = min(rg->to, t); 802 803 chg += seg_to - seg_from; 804 } 805 spin_unlock(&resv->lock); 806 807 return chg; 808 } 809 810 /* 811 * Convert the address within this vma to the page offset within 812 * the mapping, in pagecache page units; huge pages here. 813 */ 814 static pgoff_t vma_hugecache_offset(struct hstate *h, 815 struct vm_area_struct *vma, unsigned long address) 816 { 817 return ((address - vma->vm_start) >> huge_page_shift(h)) + 818 (vma->vm_pgoff >> huge_page_order(h)); 819 } 820 821 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 822 unsigned long address) 823 { 824 return vma_hugecache_offset(hstate_vma(vma), vma, address); 825 } 826 EXPORT_SYMBOL_GPL(linear_hugepage_index); 827 828 /* 829 * Return the size of the pages allocated when backing a VMA. In the majority 830 * cases this will be same size as used by the page table entries. 831 */ 832 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 833 { 834 if (vma->vm_ops && vma->vm_ops->pagesize) 835 return vma->vm_ops->pagesize(vma); 836 return PAGE_SIZE; 837 } 838 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 839 840 /* 841 * Return the page size being used by the MMU to back a VMA. In the majority 842 * of cases, the page size used by the kernel matches the MMU size. On 843 * architectures where it differs, an architecture-specific 'strong' 844 * version of this symbol is required. 845 */ 846 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 847 { 848 return vma_kernel_pagesize(vma); 849 } 850 851 /* 852 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 853 * bits of the reservation map pointer, which are always clear due to 854 * alignment. 855 */ 856 #define HPAGE_RESV_OWNER (1UL << 0) 857 #define HPAGE_RESV_UNMAPPED (1UL << 1) 858 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 859 860 /* 861 * These helpers are used to track how many pages are reserved for 862 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 863 * is guaranteed to have their future faults succeed. 864 * 865 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 866 * the reserve counters are updated with the hugetlb_lock held. It is safe 867 * to reset the VMA at fork() time as it is not in use yet and there is no 868 * chance of the global counters getting corrupted as a result of the values. 869 * 870 * The private mapping reservation is represented in a subtly different 871 * manner to a shared mapping. A shared mapping has a region map associated 872 * with the underlying file, this region map represents the backing file 873 * pages which have ever had a reservation assigned which this persists even 874 * after the page is instantiated. A private mapping has a region map 875 * associated with the original mmap which is attached to all VMAs which 876 * reference it, this region map represents those offsets which have consumed 877 * reservation ie. where pages have been instantiated. 878 */ 879 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 880 { 881 return (unsigned long)vma->vm_private_data; 882 } 883 884 static void set_vma_private_data(struct vm_area_struct *vma, 885 unsigned long value) 886 { 887 vma->vm_private_data = (void *)value; 888 } 889 890 static void 891 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 892 struct hugetlb_cgroup *h_cg, 893 struct hstate *h) 894 { 895 #ifdef CONFIG_CGROUP_HUGETLB 896 if (!h_cg || !h) { 897 resv_map->reservation_counter = NULL; 898 resv_map->pages_per_hpage = 0; 899 resv_map->css = NULL; 900 } else { 901 resv_map->reservation_counter = 902 &h_cg->rsvd_hugepage[hstate_index(h)]; 903 resv_map->pages_per_hpage = pages_per_huge_page(h); 904 resv_map->css = &h_cg->css; 905 } 906 #endif 907 } 908 909 struct resv_map *resv_map_alloc(void) 910 { 911 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 912 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 913 914 if (!resv_map || !rg) { 915 kfree(resv_map); 916 kfree(rg); 917 return NULL; 918 } 919 920 kref_init(&resv_map->refs); 921 spin_lock_init(&resv_map->lock); 922 INIT_LIST_HEAD(&resv_map->regions); 923 924 resv_map->adds_in_progress = 0; 925 /* 926 * Initialize these to 0. On shared mappings, 0's here indicate these 927 * fields don't do cgroup accounting. On private mappings, these will be 928 * re-initialized to the proper values, to indicate that hugetlb cgroup 929 * reservations are to be un-charged from here. 930 */ 931 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 932 933 INIT_LIST_HEAD(&resv_map->region_cache); 934 list_add(&rg->link, &resv_map->region_cache); 935 resv_map->region_cache_count = 1; 936 937 return resv_map; 938 } 939 940 void resv_map_release(struct kref *ref) 941 { 942 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 943 struct list_head *head = &resv_map->region_cache; 944 struct file_region *rg, *trg; 945 946 /* Clear out any active regions before we release the map. */ 947 region_del(resv_map, 0, LONG_MAX); 948 949 /* ... and any entries left in the cache */ 950 list_for_each_entry_safe(rg, trg, head, link) { 951 list_del(&rg->link); 952 kfree(rg); 953 } 954 955 VM_BUG_ON(resv_map->adds_in_progress); 956 957 kfree(resv_map); 958 } 959 960 static inline struct resv_map *inode_resv_map(struct inode *inode) 961 { 962 /* 963 * At inode evict time, i_mapping may not point to the original 964 * address space within the inode. This original address space 965 * contains the pointer to the resv_map. So, always use the 966 * address space embedded within the inode. 967 * The VERY common case is inode->mapping == &inode->i_data but, 968 * this may not be true for device special inodes. 969 */ 970 return (struct resv_map *)(&inode->i_data)->private_data; 971 } 972 973 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 974 { 975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 976 if (vma->vm_flags & VM_MAYSHARE) { 977 struct address_space *mapping = vma->vm_file->f_mapping; 978 struct inode *inode = mapping->host; 979 980 return inode_resv_map(inode); 981 982 } else { 983 return (struct resv_map *)(get_vma_private_data(vma) & 984 ~HPAGE_RESV_MASK); 985 } 986 } 987 988 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 989 { 990 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 991 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 992 993 set_vma_private_data(vma, (get_vma_private_data(vma) & 994 HPAGE_RESV_MASK) | (unsigned long)map); 995 } 996 997 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 998 { 999 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1000 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1001 1002 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1003 } 1004 1005 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1006 { 1007 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1008 1009 return (get_vma_private_data(vma) & flag) != 0; 1010 } 1011 1012 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1013 { 1014 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1015 /* 1016 * Clear vm_private_data 1017 * - For MAP_PRIVATE mappings, this is the reserve map which does 1018 * not apply to children. Faults generated by the children are 1019 * not guaranteed to succeed, even if read-only. 1020 * - For shared mappings this is a per-vma semaphore that may be 1021 * allocated in a subsequent call to hugetlb_vm_op_open. 1022 */ 1023 vma->vm_private_data = (void *)0; 1024 if (!(vma->vm_flags & VM_MAYSHARE)) 1025 return; 1026 } 1027 1028 /* 1029 * Reset and decrement one ref on hugepage private reservation. 1030 * Called with mm->mmap_sem writer semaphore held. 1031 * This function should be only used by move_vma() and operate on 1032 * same sized vma. It should never come here with last ref on the 1033 * reservation. 1034 */ 1035 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1036 { 1037 /* 1038 * Clear the old hugetlb private page reservation. 1039 * It has already been transferred to new_vma. 1040 * 1041 * During a mremap() operation of a hugetlb vma we call move_vma() 1042 * which copies vma into new_vma and unmaps vma. After the copy 1043 * operation both new_vma and vma share a reference to the resv_map 1044 * struct, and at that point vma is about to be unmapped. We don't 1045 * want to return the reservation to the pool at unmap of vma because 1046 * the reservation still lives on in new_vma, so simply decrement the 1047 * ref here and remove the resv_map reference from this vma. 1048 */ 1049 struct resv_map *reservations = vma_resv_map(vma); 1050 1051 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1052 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1053 kref_put(&reservations->refs, resv_map_release); 1054 } 1055 1056 hugetlb_dup_vma_private(vma); 1057 } 1058 1059 /* Returns true if the VMA has associated reserve pages */ 1060 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1061 { 1062 if (vma->vm_flags & VM_NORESERVE) { 1063 /* 1064 * This address is already reserved by other process(chg == 0), 1065 * so, we should decrement reserved count. Without decrementing, 1066 * reserve count remains after releasing inode, because this 1067 * allocated page will go into page cache and is regarded as 1068 * coming from reserved pool in releasing step. Currently, we 1069 * don't have any other solution to deal with this situation 1070 * properly, so add work-around here. 1071 */ 1072 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1073 return true; 1074 else 1075 return false; 1076 } 1077 1078 /* Shared mappings always use reserves */ 1079 if (vma->vm_flags & VM_MAYSHARE) { 1080 /* 1081 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1082 * be a region map for all pages. The only situation where 1083 * there is no region map is if a hole was punched via 1084 * fallocate. In this case, there really are no reserves to 1085 * use. This situation is indicated if chg != 0. 1086 */ 1087 if (chg) 1088 return false; 1089 else 1090 return true; 1091 } 1092 1093 /* 1094 * Only the process that called mmap() has reserves for 1095 * private mappings. 1096 */ 1097 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1098 /* 1099 * Like the shared case above, a hole punch or truncate 1100 * could have been performed on the private mapping. 1101 * Examine the value of chg to determine if reserves 1102 * actually exist or were previously consumed. 1103 * Very Subtle - The value of chg comes from a previous 1104 * call to vma_needs_reserves(). The reserve map for 1105 * private mappings has different (opposite) semantics 1106 * than that of shared mappings. vma_needs_reserves() 1107 * has already taken this difference in semantics into 1108 * account. Therefore, the meaning of chg is the same 1109 * as in the shared case above. Code could easily be 1110 * combined, but keeping it separate draws attention to 1111 * subtle differences. 1112 */ 1113 if (chg) 1114 return false; 1115 else 1116 return true; 1117 } 1118 1119 return false; 1120 } 1121 1122 static void enqueue_huge_page(struct hstate *h, struct page *page) 1123 { 1124 int nid = page_to_nid(page); 1125 1126 lockdep_assert_held(&hugetlb_lock); 1127 VM_BUG_ON_PAGE(page_count(page), page); 1128 1129 list_move(&page->lru, &h->hugepage_freelists[nid]); 1130 h->free_huge_pages++; 1131 h->free_huge_pages_node[nid]++; 1132 SetHPageFreed(page); 1133 } 1134 1135 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1136 { 1137 struct page *page; 1138 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1139 1140 lockdep_assert_held(&hugetlb_lock); 1141 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1142 if (pin && !is_longterm_pinnable_page(page)) 1143 continue; 1144 1145 if (PageHWPoison(page)) 1146 continue; 1147 1148 list_move(&page->lru, &h->hugepage_activelist); 1149 set_page_refcounted(page); 1150 ClearHPageFreed(page); 1151 h->free_huge_pages--; 1152 h->free_huge_pages_node[nid]--; 1153 return page; 1154 } 1155 1156 return NULL; 1157 } 1158 1159 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1160 nodemask_t *nmask) 1161 { 1162 unsigned int cpuset_mems_cookie; 1163 struct zonelist *zonelist; 1164 struct zone *zone; 1165 struct zoneref *z; 1166 int node = NUMA_NO_NODE; 1167 1168 zonelist = node_zonelist(nid, gfp_mask); 1169 1170 retry_cpuset: 1171 cpuset_mems_cookie = read_mems_allowed_begin(); 1172 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1173 struct page *page; 1174 1175 if (!cpuset_zone_allowed(zone, gfp_mask)) 1176 continue; 1177 /* 1178 * no need to ask again on the same node. Pool is node rather than 1179 * zone aware 1180 */ 1181 if (zone_to_nid(zone) == node) 1182 continue; 1183 node = zone_to_nid(zone); 1184 1185 page = dequeue_huge_page_node_exact(h, node); 1186 if (page) 1187 return page; 1188 } 1189 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1190 goto retry_cpuset; 1191 1192 return NULL; 1193 } 1194 1195 static unsigned long available_huge_pages(struct hstate *h) 1196 { 1197 return h->free_huge_pages - h->resv_huge_pages; 1198 } 1199 1200 static struct page *dequeue_huge_page_vma(struct hstate *h, 1201 struct vm_area_struct *vma, 1202 unsigned long address, int avoid_reserve, 1203 long chg) 1204 { 1205 struct page *page = NULL; 1206 struct mempolicy *mpol; 1207 gfp_t gfp_mask; 1208 nodemask_t *nodemask; 1209 int nid; 1210 1211 /* 1212 * A child process with MAP_PRIVATE mappings created by their parent 1213 * have no page reserves. This check ensures that reservations are 1214 * not "stolen". The child may still get SIGKILLed 1215 */ 1216 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1217 goto err; 1218 1219 /* If reserves cannot be used, ensure enough pages are in the pool */ 1220 if (avoid_reserve && !available_huge_pages(h)) 1221 goto err; 1222 1223 gfp_mask = htlb_alloc_mask(h); 1224 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1225 1226 if (mpol_is_preferred_many(mpol)) { 1227 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1228 1229 /* Fallback to all nodes if page==NULL */ 1230 nodemask = NULL; 1231 } 1232 1233 if (!page) 1234 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1235 1236 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1237 SetHPageRestoreReserve(page); 1238 h->resv_huge_pages--; 1239 } 1240 1241 mpol_cond_put(mpol); 1242 return page; 1243 1244 err: 1245 return NULL; 1246 } 1247 1248 /* 1249 * common helper functions for hstate_next_node_to_{alloc|free}. 1250 * We may have allocated or freed a huge page based on a different 1251 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1252 * be outside of *nodes_allowed. Ensure that we use an allowed 1253 * node for alloc or free. 1254 */ 1255 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1256 { 1257 nid = next_node_in(nid, *nodes_allowed); 1258 VM_BUG_ON(nid >= MAX_NUMNODES); 1259 1260 return nid; 1261 } 1262 1263 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1264 { 1265 if (!node_isset(nid, *nodes_allowed)) 1266 nid = next_node_allowed(nid, nodes_allowed); 1267 return nid; 1268 } 1269 1270 /* 1271 * returns the previously saved node ["this node"] from which to 1272 * allocate a persistent huge page for the pool and advance the 1273 * next node from which to allocate, handling wrap at end of node 1274 * mask. 1275 */ 1276 static int hstate_next_node_to_alloc(struct hstate *h, 1277 nodemask_t *nodes_allowed) 1278 { 1279 int nid; 1280 1281 VM_BUG_ON(!nodes_allowed); 1282 1283 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1284 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1285 1286 return nid; 1287 } 1288 1289 /* 1290 * helper for remove_pool_huge_page() - return the previously saved 1291 * node ["this node"] from which to free a huge page. Advance the 1292 * next node id whether or not we find a free huge page to free so 1293 * that the next attempt to free addresses the next node. 1294 */ 1295 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1296 { 1297 int nid; 1298 1299 VM_BUG_ON(!nodes_allowed); 1300 1301 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1302 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1303 1304 return nid; 1305 } 1306 1307 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1308 for (nr_nodes = nodes_weight(*mask); \ 1309 nr_nodes > 0 && \ 1310 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1311 nr_nodes--) 1312 1313 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1314 for (nr_nodes = nodes_weight(*mask); \ 1315 nr_nodes > 0 && \ 1316 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1317 nr_nodes--) 1318 1319 /* used to demote non-gigantic_huge pages as well */ 1320 static void __destroy_compound_gigantic_page(struct page *page, 1321 unsigned int order, bool demote) 1322 { 1323 int i; 1324 int nr_pages = 1 << order; 1325 struct page *p; 1326 1327 atomic_set(compound_mapcount_ptr(page), 0); 1328 atomic_set(compound_pincount_ptr(page), 0); 1329 1330 for (i = 1; i < nr_pages; i++) { 1331 p = nth_page(page, i); 1332 p->mapping = NULL; 1333 clear_compound_head(p); 1334 if (!demote) 1335 set_page_refcounted(p); 1336 } 1337 1338 set_compound_order(page, 0); 1339 #ifdef CONFIG_64BIT 1340 page[1].compound_nr = 0; 1341 #endif 1342 __ClearPageHead(page); 1343 } 1344 1345 static void destroy_compound_hugetlb_page_for_demote(struct page *page, 1346 unsigned int order) 1347 { 1348 __destroy_compound_gigantic_page(page, order, true); 1349 } 1350 1351 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1352 static void destroy_compound_gigantic_page(struct page *page, 1353 unsigned int order) 1354 { 1355 __destroy_compound_gigantic_page(page, order, false); 1356 } 1357 1358 static void free_gigantic_page(struct page *page, unsigned int order) 1359 { 1360 /* 1361 * If the page isn't allocated using the cma allocator, 1362 * cma_release() returns false. 1363 */ 1364 #ifdef CONFIG_CMA 1365 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1366 return; 1367 #endif 1368 1369 free_contig_range(page_to_pfn(page), 1 << order); 1370 } 1371 1372 #ifdef CONFIG_CONTIG_ALLOC 1373 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1374 int nid, nodemask_t *nodemask) 1375 { 1376 unsigned long nr_pages = pages_per_huge_page(h); 1377 if (nid == NUMA_NO_NODE) 1378 nid = numa_mem_id(); 1379 1380 #ifdef CONFIG_CMA 1381 { 1382 struct page *page; 1383 int node; 1384 1385 if (hugetlb_cma[nid]) { 1386 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1387 huge_page_order(h), true); 1388 if (page) 1389 return page; 1390 } 1391 1392 if (!(gfp_mask & __GFP_THISNODE)) { 1393 for_each_node_mask(node, *nodemask) { 1394 if (node == nid || !hugetlb_cma[node]) 1395 continue; 1396 1397 page = cma_alloc(hugetlb_cma[node], nr_pages, 1398 huge_page_order(h), true); 1399 if (page) 1400 return page; 1401 } 1402 } 1403 } 1404 #endif 1405 1406 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1407 } 1408 1409 #else /* !CONFIG_CONTIG_ALLOC */ 1410 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1411 int nid, nodemask_t *nodemask) 1412 { 1413 return NULL; 1414 } 1415 #endif /* CONFIG_CONTIG_ALLOC */ 1416 1417 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1418 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1419 int nid, nodemask_t *nodemask) 1420 { 1421 return NULL; 1422 } 1423 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1424 static inline void destroy_compound_gigantic_page(struct page *page, 1425 unsigned int order) { } 1426 #endif 1427 1428 /* 1429 * Remove hugetlb page from lists, and update dtor so that page appears 1430 * as just a compound page. 1431 * 1432 * A reference is held on the page, except in the case of demote. 1433 * 1434 * Must be called with hugetlb lock held. 1435 */ 1436 static void __remove_hugetlb_page(struct hstate *h, struct page *page, 1437 bool adjust_surplus, 1438 bool demote) 1439 { 1440 int nid = page_to_nid(page); 1441 1442 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1443 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1444 1445 lockdep_assert_held(&hugetlb_lock); 1446 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1447 return; 1448 1449 list_del(&page->lru); 1450 1451 if (HPageFreed(page)) { 1452 h->free_huge_pages--; 1453 h->free_huge_pages_node[nid]--; 1454 } 1455 if (adjust_surplus) { 1456 h->surplus_huge_pages--; 1457 h->surplus_huge_pages_node[nid]--; 1458 } 1459 1460 /* 1461 * Very subtle 1462 * 1463 * For non-gigantic pages set the destructor to the normal compound 1464 * page dtor. This is needed in case someone takes an additional 1465 * temporary ref to the page, and freeing is delayed until they drop 1466 * their reference. 1467 * 1468 * For gigantic pages set the destructor to the null dtor. This 1469 * destructor will never be called. Before freeing the gigantic 1470 * page destroy_compound_gigantic_page will turn the compound page 1471 * into a simple group of pages. After this the destructor does not 1472 * apply. 1473 * 1474 * This handles the case where more than one ref is held when and 1475 * after update_and_free_page is called. 1476 * 1477 * In the case of demote we do not ref count the page as it will soon 1478 * be turned into a page of smaller size. 1479 */ 1480 if (!demote) 1481 set_page_refcounted(page); 1482 if (hstate_is_gigantic(h)) 1483 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1484 else 1485 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 1486 1487 h->nr_huge_pages--; 1488 h->nr_huge_pages_node[nid]--; 1489 } 1490 1491 static void remove_hugetlb_page(struct hstate *h, struct page *page, 1492 bool adjust_surplus) 1493 { 1494 __remove_hugetlb_page(h, page, adjust_surplus, false); 1495 } 1496 1497 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page, 1498 bool adjust_surplus) 1499 { 1500 __remove_hugetlb_page(h, page, adjust_surplus, true); 1501 } 1502 1503 static void add_hugetlb_page(struct hstate *h, struct page *page, 1504 bool adjust_surplus) 1505 { 1506 int zeroed; 1507 int nid = page_to_nid(page); 1508 1509 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page); 1510 1511 lockdep_assert_held(&hugetlb_lock); 1512 1513 INIT_LIST_HEAD(&page->lru); 1514 h->nr_huge_pages++; 1515 h->nr_huge_pages_node[nid]++; 1516 1517 if (adjust_surplus) { 1518 h->surplus_huge_pages++; 1519 h->surplus_huge_pages_node[nid]++; 1520 } 1521 1522 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1523 set_page_private(page, 0); 1524 /* 1525 * We have to set HPageVmemmapOptimized again as above 1526 * set_page_private(page, 0) cleared it. 1527 */ 1528 SetHPageVmemmapOptimized(page); 1529 1530 /* 1531 * This page is about to be managed by the hugetlb allocator and 1532 * should have no users. Drop our reference, and check for others 1533 * just in case. 1534 */ 1535 zeroed = put_page_testzero(page); 1536 if (!zeroed) 1537 /* 1538 * It is VERY unlikely soneone else has taken a ref on 1539 * the page. In this case, we simply return as the 1540 * hugetlb destructor (free_huge_page) will be called 1541 * when this other ref is dropped. 1542 */ 1543 return; 1544 1545 arch_clear_hugepage_flags(page); 1546 enqueue_huge_page(h, page); 1547 } 1548 1549 static void __update_and_free_page(struct hstate *h, struct page *page) 1550 { 1551 int i; 1552 struct page *subpage; 1553 1554 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1555 return; 1556 1557 /* 1558 * If we don't know which subpages are hwpoisoned, we can't free 1559 * the hugepage, so it's leaked intentionally. 1560 */ 1561 if (HPageRawHwpUnreliable(page)) 1562 return; 1563 1564 if (hugetlb_vmemmap_restore(h, page)) { 1565 spin_lock_irq(&hugetlb_lock); 1566 /* 1567 * If we cannot allocate vmemmap pages, just refuse to free the 1568 * page and put the page back on the hugetlb free list and treat 1569 * as a surplus page. 1570 */ 1571 add_hugetlb_page(h, page, true); 1572 spin_unlock_irq(&hugetlb_lock); 1573 return; 1574 } 1575 1576 /* 1577 * Move PageHWPoison flag from head page to the raw error pages, 1578 * which makes any healthy subpages reusable. 1579 */ 1580 if (unlikely(PageHWPoison(page))) 1581 hugetlb_clear_page_hwpoison(page); 1582 1583 for (i = 0; i < pages_per_huge_page(h); i++) { 1584 subpage = nth_page(page, i); 1585 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1586 1 << PG_referenced | 1 << PG_dirty | 1587 1 << PG_active | 1 << PG_private | 1588 1 << PG_writeback); 1589 } 1590 1591 /* 1592 * Non-gigantic pages demoted from CMA allocated gigantic pages 1593 * need to be given back to CMA in free_gigantic_page. 1594 */ 1595 if (hstate_is_gigantic(h) || 1596 hugetlb_cma_page(page, huge_page_order(h))) { 1597 destroy_compound_gigantic_page(page, huge_page_order(h)); 1598 free_gigantic_page(page, huge_page_order(h)); 1599 } else { 1600 __free_pages(page, huge_page_order(h)); 1601 } 1602 } 1603 1604 /* 1605 * As update_and_free_page() can be called under any context, so we cannot 1606 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1607 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1608 * the vmemmap pages. 1609 * 1610 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1611 * freed and frees them one-by-one. As the page->mapping pointer is going 1612 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1613 * structure of a lockless linked list of huge pages to be freed. 1614 */ 1615 static LLIST_HEAD(hpage_freelist); 1616 1617 static void free_hpage_workfn(struct work_struct *work) 1618 { 1619 struct llist_node *node; 1620 1621 node = llist_del_all(&hpage_freelist); 1622 1623 while (node) { 1624 struct page *page; 1625 struct hstate *h; 1626 1627 page = container_of((struct address_space **)node, 1628 struct page, mapping); 1629 node = node->next; 1630 page->mapping = NULL; 1631 /* 1632 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() 1633 * is going to trigger because a previous call to 1634 * remove_hugetlb_page() will set_compound_page_dtor(page, 1635 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly. 1636 */ 1637 h = size_to_hstate(page_size(page)); 1638 1639 __update_and_free_page(h, page); 1640 1641 cond_resched(); 1642 } 1643 } 1644 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1645 1646 static inline void flush_free_hpage_work(struct hstate *h) 1647 { 1648 if (hugetlb_vmemmap_optimizable(h)) 1649 flush_work(&free_hpage_work); 1650 } 1651 1652 static void update_and_free_page(struct hstate *h, struct page *page, 1653 bool atomic) 1654 { 1655 if (!HPageVmemmapOptimized(page) || !atomic) { 1656 __update_and_free_page(h, page); 1657 return; 1658 } 1659 1660 /* 1661 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1662 * 1663 * Only call schedule_work() if hpage_freelist is previously 1664 * empty. Otherwise, schedule_work() had been called but the workfn 1665 * hasn't retrieved the list yet. 1666 */ 1667 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist)) 1668 schedule_work(&free_hpage_work); 1669 } 1670 1671 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1672 { 1673 struct page *page, *t_page; 1674 1675 list_for_each_entry_safe(page, t_page, list, lru) { 1676 update_and_free_page(h, page, false); 1677 cond_resched(); 1678 } 1679 } 1680 1681 struct hstate *size_to_hstate(unsigned long size) 1682 { 1683 struct hstate *h; 1684 1685 for_each_hstate(h) { 1686 if (huge_page_size(h) == size) 1687 return h; 1688 } 1689 return NULL; 1690 } 1691 1692 void free_huge_page(struct page *page) 1693 { 1694 /* 1695 * Can't pass hstate in here because it is called from the 1696 * compound page destructor. 1697 */ 1698 struct hstate *h = page_hstate(page); 1699 int nid = page_to_nid(page); 1700 struct hugepage_subpool *spool = hugetlb_page_subpool(page); 1701 bool restore_reserve; 1702 unsigned long flags; 1703 1704 VM_BUG_ON_PAGE(page_count(page), page); 1705 VM_BUG_ON_PAGE(page_mapcount(page), page); 1706 1707 hugetlb_set_page_subpool(page, NULL); 1708 if (PageAnon(page)) 1709 __ClearPageAnonExclusive(page); 1710 page->mapping = NULL; 1711 restore_reserve = HPageRestoreReserve(page); 1712 ClearHPageRestoreReserve(page); 1713 1714 /* 1715 * If HPageRestoreReserve was set on page, page allocation consumed a 1716 * reservation. If the page was associated with a subpool, there 1717 * would have been a page reserved in the subpool before allocation 1718 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1719 * reservation, do not call hugepage_subpool_put_pages() as this will 1720 * remove the reserved page from the subpool. 1721 */ 1722 if (!restore_reserve) { 1723 /* 1724 * A return code of zero implies that the subpool will be 1725 * under its minimum size if the reservation is not restored 1726 * after page is free. Therefore, force restore_reserve 1727 * operation. 1728 */ 1729 if (hugepage_subpool_put_pages(spool, 1) == 0) 1730 restore_reserve = true; 1731 } 1732 1733 spin_lock_irqsave(&hugetlb_lock, flags); 1734 ClearHPageMigratable(page); 1735 hugetlb_cgroup_uncharge_page(hstate_index(h), 1736 pages_per_huge_page(h), page); 1737 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1738 pages_per_huge_page(h), page); 1739 if (restore_reserve) 1740 h->resv_huge_pages++; 1741 1742 if (HPageTemporary(page)) { 1743 remove_hugetlb_page(h, page, false); 1744 spin_unlock_irqrestore(&hugetlb_lock, flags); 1745 update_and_free_page(h, page, true); 1746 } else if (h->surplus_huge_pages_node[nid]) { 1747 /* remove the page from active list */ 1748 remove_hugetlb_page(h, page, true); 1749 spin_unlock_irqrestore(&hugetlb_lock, flags); 1750 update_and_free_page(h, page, true); 1751 } else { 1752 arch_clear_hugepage_flags(page); 1753 enqueue_huge_page(h, page); 1754 spin_unlock_irqrestore(&hugetlb_lock, flags); 1755 } 1756 } 1757 1758 /* 1759 * Must be called with the hugetlb lock held 1760 */ 1761 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1762 { 1763 lockdep_assert_held(&hugetlb_lock); 1764 h->nr_huge_pages++; 1765 h->nr_huge_pages_node[nid]++; 1766 } 1767 1768 static void __prep_new_huge_page(struct hstate *h, struct page *page) 1769 { 1770 hugetlb_vmemmap_optimize(h, page); 1771 INIT_LIST_HEAD(&page->lru); 1772 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1773 hugetlb_set_page_subpool(page, NULL); 1774 set_hugetlb_cgroup(page, NULL); 1775 set_hugetlb_cgroup_rsvd(page, NULL); 1776 } 1777 1778 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1779 { 1780 __prep_new_huge_page(h, page); 1781 spin_lock_irq(&hugetlb_lock); 1782 __prep_account_new_huge_page(h, nid); 1783 spin_unlock_irq(&hugetlb_lock); 1784 } 1785 1786 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order, 1787 bool demote) 1788 { 1789 int i, j; 1790 int nr_pages = 1 << order; 1791 struct page *p; 1792 1793 /* we rely on prep_new_huge_page to set the destructor */ 1794 set_compound_order(page, order); 1795 __SetPageHead(page); 1796 for (i = 0; i < nr_pages; i++) { 1797 p = nth_page(page, i); 1798 1799 /* 1800 * For gigantic hugepages allocated through bootmem at 1801 * boot, it's safer to be consistent with the not-gigantic 1802 * hugepages and clear the PG_reserved bit from all tail pages 1803 * too. Otherwise drivers using get_user_pages() to access tail 1804 * pages may get the reference counting wrong if they see 1805 * PG_reserved set on a tail page (despite the head page not 1806 * having PG_reserved set). Enforcing this consistency between 1807 * head and tail pages allows drivers to optimize away a check 1808 * on the head page when they need know if put_page() is needed 1809 * after get_user_pages(). 1810 */ 1811 __ClearPageReserved(p); 1812 /* 1813 * Subtle and very unlikely 1814 * 1815 * Gigantic 'page allocators' such as memblock or cma will 1816 * return a set of pages with each page ref counted. We need 1817 * to turn this set of pages into a compound page with tail 1818 * page ref counts set to zero. Code such as speculative page 1819 * cache adding could take a ref on a 'to be' tail page. 1820 * We need to respect any increased ref count, and only set 1821 * the ref count to zero if count is currently 1. If count 1822 * is not 1, we return an error. An error return indicates 1823 * the set of pages can not be converted to a gigantic page. 1824 * The caller who allocated the pages should then discard the 1825 * pages using the appropriate free interface. 1826 * 1827 * In the case of demote, the ref count will be zero. 1828 */ 1829 if (!demote) { 1830 if (!page_ref_freeze(p, 1)) { 1831 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 1832 goto out_error; 1833 } 1834 } else { 1835 VM_BUG_ON_PAGE(page_count(p), p); 1836 } 1837 if (i != 0) 1838 set_compound_head(p, page); 1839 } 1840 atomic_set(compound_mapcount_ptr(page), -1); 1841 atomic_set(compound_pincount_ptr(page), 0); 1842 return true; 1843 1844 out_error: 1845 /* undo page modifications made above */ 1846 for (j = 0; j < i; j++) { 1847 p = nth_page(page, j); 1848 if (j != 0) 1849 clear_compound_head(p); 1850 set_page_refcounted(p); 1851 } 1852 /* need to clear PG_reserved on remaining tail pages */ 1853 for (; j < nr_pages; j++) { 1854 p = nth_page(page, j); 1855 __ClearPageReserved(p); 1856 } 1857 set_compound_order(page, 0); 1858 #ifdef CONFIG_64BIT 1859 page[1].compound_nr = 0; 1860 #endif 1861 __ClearPageHead(page); 1862 return false; 1863 } 1864 1865 static bool prep_compound_gigantic_page(struct page *page, unsigned int order) 1866 { 1867 return __prep_compound_gigantic_page(page, order, false); 1868 } 1869 1870 static bool prep_compound_gigantic_page_for_demote(struct page *page, 1871 unsigned int order) 1872 { 1873 return __prep_compound_gigantic_page(page, order, true); 1874 } 1875 1876 /* 1877 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1878 * transparent huge pages. See the PageTransHuge() documentation for more 1879 * details. 1880 */ 1881 int PageHuge(struct page *page) 1882 { 1883 if (!PageCompound(page)) 1884 return 0; 1885 1886 page = compound_head(page); 1887 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1888 } 1889 EXPORT_SYMBOL_GPL(PageHuge); 1890 1891 /* 1892 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1893 * normal or transparent huge pages. 1894 */ 1895 int PageHeadHuge(struct page *page_head) 1896 { 1897 if (!PageHead(page_head)) 1898 return 0; 1899 1900 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1901 } 1902 EXPORT_SYMBOL_GPL(PageHeadHuge); 1903 1904 /* 1905 * Find and lock address space (mapping) in write mode. 1906 * 1907 * Upon entry, the page is locked which means that page_mapping() is 1908 * stable. Due to locking order, we can only trylock_write. If we can 1909 * not get the lock, simply return NULL to caller. 1910 */ 1911 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1912 { 1913 struct address_space *mapping = page_mapping(hpage); 1914 1915 if (!mapping) 1916 return mapping; 1917 1918 if (i_mmap_trylock_write(mapping)) 1919 return mapping; 1920 1921 return NULL; 1922 } 1923 1924 pgoff_t hugetlb_basepage_index(struct page *page) 1925 { 1926 struct page *page_head = compound_head(page); 1927 pgoff_t index = page_index(page_head); 1928 unsigned long compound_idx; 1929 1930 if (compound_order(page_head) >= MAX_ORDER) 1931 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1932 else 1933 compound_idx = page - page_head; 1934 1935 return (index << compound_order(page_head)) + compound_idx; 1936 } 1937 1938 static struct page *alloc_buddy_huge_page(struct hstate *h, 1939 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1940 nodemask_t *node_alloc_noretry) 1941 { 1942 int order = huge_page_order(h); 1943 struct page *page; 1944 bool alloc_try_hard = true; 1945 bool retry = true; 1946 1947 /* 1948 * By default we always try hard to allocate the page with 1949 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1950 * a loop (to adjust global huge page counts) and previous allocation 1951 * failed, do not continue to try hard on the same node. Use the 1952 * node_alloc_noretry bitmap to manage this state information. 1953 */ 1954 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1955 alloc_try_hard = false; 1956 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1957 if (alloc_try_hard) 1958 gfp_mask |= __GFP_RETRY_MAYFAIL; 1959 if (nid == NUMA_NO_NODE) 1960 nid = numa_mem_id(); 1961 retry: 1962 page = __alloc_pages(gfp_mask, order, nid, nmask); 1963 1964 /* Freeze head page */ 1965 if (page && !page_ref_freeze(page, 1)) { 1966 __free_pages(page, order); 1967 if (retry) { /* retry once */ 1968 retry = false; 1969 goto retry; 1970 } 1971 /* WOW! twice in a row. */ 1972 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 1973 page = NULL; 1974 } 1975 1976 if (page) 1977 __count_vm_event(HTLB_BUDDY_PGALLOC); 1978 else 1979 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1980 1981 /* 1982 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1983 * indicates an overall state change. Clear bit so that we resume 1984 * normal 'try hard' allocations. 1985 */ 1986 if (node_alloc_noretry && page && !alloc_try_hard) 1987 node_clear(nid, *node_alloc_noretry); 1988 1989 /* 1990 * If we tried hard to get a page but failed, set bit so that 1991 * subsequent attempts will not try as hard until there is an 1992 * overall state change. 1993 */ 1994 if (node_alloc_noretry && !page && alloc_try_hard) 1995 node_set(nid, *node_alloc_noretry); 1996 1997 return page; 1998 } 1999 2000 /* 2001 * Common helper to allocate a fresh hugetlb page. All specific allocators 2002 * should use this function to get new hugetlb pages 2003 * 2004 * Note that returned page is 'frozen': ref count of head page and all tail 2005 * pages is zero. 2006 */ 2007 static struct page *alloc_fresh_huge_page(struct hstate *h, 2008 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2009 nodemask_t *node_alloc_noretry) 2010 { 2011 struct page *page; 2012 bool retry = false; 2013 2014 retry: 2015 if (hstate_is_gigantic(h)) 2016 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 2017 else 2018 page = alloc_buddy_huge_page(h, gfp_mask, 2019 nid, nmask, node_alloc_noretry); 2020 if (!page) 2021 return NULL; 2022 2023 if (hstate_is_gigantic(h)) { 2024 if (!prep_compound_gigantic_page(page, huge_page_order(h))) { 2025 /* 2026 * Rare failure to convert pages to compound page. 2027 * Free pages and try again - ONCE! 2028 */ 2029 free_gigantic_page(page, huge_page_order(h)); 2030 if (!retry) { 2031 retry = true; 2032 goto retry; 2033 } 2034 return NULL; 2035 } 2036 } 2037 prep_new_huge_page(h, page, page_to_nid(page)); 2038 2039 return page; 2040 } 2041 2042 /* 2043 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2044 * manner. 2045 */ 2046 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2047 nodemask_t *node_alloc_noretry) 2048 { 2049 struct page *page; 2050 int nr_nodes, node; 2051 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2052 2053 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2054 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 2055 node_alloc_noretry); 2056 if (page) 2057 break; 2058 } 2059 2060 if (!page) 2061 return 0; 2062 2063 free_huge_page(page); /* free it into the hugepage allocator */ 2064 2065 return 1; 2066 } 2067 2068 /* 2069 * Remove huge page from pool from next node to free. Attempt to keep 2070 * persistent huge pages more or less balanced over allowed nodes. 2071 * This routine only 'removes' the hugetlb page. The caller must make 2072 * an additional call to free the page to low level allocators. 2073 * Called with hugetlb_lock locked. 2074 */ 2075 static struct page *remove_pool_huge_page(struct hstate *h, 2076 nodemask_t *nodes_allowed, 2077 bool acct_surplus) 2078 { 2079 int nr_nodes, node; 2080 struct page *page = NULL; 2081 2082 lockdep_assert_held(&hugetlb_lock); 2083 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2084 /* 2085 * If we're returning unused surplus pages, only examine 2086 * nodes with surplus pages. 2087 */ 2088 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2089 !list_empty(&h->hugepage_freelists[node])) { 2090 page = list_entry(h->hugepage_freelists[node].next, 2091 struct page, lru); 2092 remove_hugetlb_page(h, page, acct_surplus); 2093 break; 2094 } 2095 } 2096 2097 return page; 2098 } 2099 2100 /* 2101 * Dissolve a given free hugepage into free buddy pages. This function does 2102 * nothing for in-use hugepages and non-hugepages. 2103 * This function returns values like below: 2104 * 2105 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2106 * when the system is under memory pressure and the feature of 2107 * freeing unused vmemmap pages associated with each hugetlb page 2108 * is enabled. 2109 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2110 * (allocated or reserved.) 2111 * 0: successfully dissolved free hugepages or the page is not a 2112 * hugepage (considered as already dissolved) 2113 */ 2114 int dissolve_free_huge_page(struct page *page) 2115 { 2116 int rc = -EBUSY; 2117 2118 retry: 2119 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2120 if (!PageHuge(page)) 2121 return 0; 2122 2123 spin_lock_irq(&hugetlb_lock); 2124 if (!PageHuge(page)) { 2125 rc = 0; 2126 goto out; 2127 } 2128 2129 if (!page_count(page)) { 2130 struct page *head = compound_head(page); 2131 struct hstate *h = page_hstate(head); 2132 if (!available_huge_pages(h)) 2133 goto out; 2134 2135 /* 2136 * We should make sure that the page is already on the free list 2137 * when it is dissolved. 2138 */ 2139 if (unlikely(!HPageFreed(head))) { 2140 spin_unlock_irq(&hugetlb_lock); 2141 cond_resched(); 2142 2143 /* 2144 * Theoretically, we should return -EBUSY when we 2145 * encounter this race. In fact, we have a chance 2146 * to successfully dissolve the page if we do a 2147 * retry. Because the race window is quite small. 2148 * If we seize this opportunity, it is an optimization 2149 * for increasing the success rate of dissolving page. 2150 */ 2151 goto retry; 2152 } 2153 2154 remove_hugetlb_page(h, head, false); 2155 h->max_huge_pages--; 2156 spin_unlock_irq(&hugetlb_lock); 2157 2158 /* 2159 * Normally update_and_free_page will allocate required vmemmmap 2160 * before freeing the page. update_and_free_page will fail to 2161 * free the page if it can not allocate required vmemmap. We 2162 * need to adjust max_huge_pages if the page is not freed. 2163 * Attempt to allocate vmemmmap here so that we can take 2164 * appropriate action on failure. 2165 */ 2166 rc = hugetlb_vmemmap_restore(h, head); 2167 if (!rc) { 2168 update_and_free_page(h, head, false); 2169 } else { 2170 spin_lock_irq(&hugetlb_lock); 2171 add_hugetlb_page(h, head, false); 2172 h->max_huge_pages++; 2173 spin_unlock_irq(&hugetlb_lock); 2174 } 2175 2176 return rc; 2177 } 2178 out: 2179 spin_unlock_irq(&hugetlb_lock); 2180 return rc; 2181 } 2182 2183 /* 2184 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2185 * make specified memory blocks removable from the system. 2186 * Note that this will dissolve a free gigantic hugepage completely, if any 2187 * part of it lies within the given range. 2188 * Also note that if dissolve_free_huge_page() returns with an error, all 2189 * free hugepages that were dissolved before that error are lost. 2190 */ 2191 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2192 { 2193 unsigned long pfn; 2194 struct page *page; 2195 int rc = 0; 2196 unsigned int order; 2197 struct hstate *h; 2198 2199 if (!hugepages_supported()) 2200 return rc; 2201 2202 order = huge_page_order(&default_hstate); 2203 for_each_hstate(h) 2204 order = min(order, huge_page_order(h)); 2205 2206 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2207 page = pfn_to_page(pfn); 2208 rc = dissolve_free_huge_page(page); 2209 if (rc) 2210 break; 2211 } 2212 2213 return rc; 2214 } 2215 2216 /* 2217 * Allocates a fresh surplus page from the page allocator. 2218 */ 2219 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 2220 int nid, nodemask_t *nmask) 2221 { 2222 struct page *page = NULL; 2223 2224 if (hstate_is_gigantic(h)) 2225 return NULL; 2226 2227 spin_lock_irq(&hugetlb_lock); 2228 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2229 goto out_unlock; 2230 spin_unlock_irq(&hugetlb_lock); 2231 2232 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2233 if (!page) 2234 return NULL; 2235 2236 spin_lock_irq(&hugetlb_lock); 2237 /* 2238 * We could have raced with the pool size change. 2239 * Double check that and simply deallocate the new page 2240 * if we would end up overcommiting the surpluses. Abuse 2241 * temporary page to workaround the nasty free_huge_page 2242 * codeflow 2243 */ 2244 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2245 SetHPageTemporary(page); 2246 spin_unlock_irq(&hugetlb_lock); 2247 free_huge_page(page); 2248 return NULL; 2249 } 2250 2251 h->surplus_huge_pages++; 2252 h->surplus_huge_pages_node[page_to_nid(page)]++; 2253 2254 out_unlock: 2255 spin_unlock_irq(&hugetlb_lock); 2256 2257 return page; 2258 } 2259 2260 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 2261 int nid, nodemask_t *nmask) 2262 { 2263 struct page *page; 2264 2265 if (hstate_is_gigantic(h)) 2266 return NULL; 2267 2268 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2269 if (!page) 2270 return NULL; 2271 2272 /* fresh huge pages are frozen */ 2273 set_page_refcounted(page); 2274 2275 /* 2276 * We do not account these pages as surplus because they are only 2277 * temporary and will be released properly on the last reference 2278 */ 2279 SetHPageTemporary(page); 2280 2281 return page; 2282 } 2283 2284 /* 2285 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2286 */ 2287 static 2288 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 2289 struct vm_area_struct *vma, unsigned long addr) 2290 { 2291 struct page *page = NULL; 2292 struct mempolicy *mpol; 2293 gfp_t gfp_mask = htlb_alloc_mask(h); 2294 int nid; 2295 nodemask_t *nodemask; 2296 2297 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2298 if (mpol_is_preferred_many(mpol)) { 2299 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2300 2301 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2302 page = alloc_surplus_huge_page(h, gfp, nid, nodemask); 2303 2304 /* Fallback to all nodes if page==NULL */ 2305 nodemask = NULL; 2306 } 2307 2308 if (!page) 2309 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 2310 mpol_cond_put(mpol); 2311 return page; 2312 } 2313 2314 /* page migration callback function */ 2315 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 2316 nodemask_t *nmask, gfp_t gfp_mask) 2317 { 2318 spin_lock_irq(&hugetlb_lock); 2319 if (available_huge_pages(h)) { 2320 struct page *page; 2321 2322 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 2323 if (page) { 2324 spin_unlock_irq(&hugetlb_lock); 2325 return page; 2326 } 2327 } 2328 spin_unlock_irq(&hugetlb_lock); 2329 2330 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2331 } 2332 2333 /* mempolicy aware migration callback */ 2334 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2335 unsigned long address) 2336 { 2337 struct mempolicy *mpol; 2338 nodemask_t *nodemask; 2339 struct page *page; 2340 gfp_t gfp_mask; 2341 int node; 2342 2343 gfp_mask = htlb_alloc_mask(h); 2344 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2345 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2346 mpol_cond_put(mpol); 2347 2348 return page; 2349 } 2350 2351 /* 2352 * Increase the hugetlb pool such that it can accommodate a reservation 2353 * of size 'delta'. 2354 */ 2355 static int gather_surplus_pages(struct hstate *h, long delta) 2356 __must_hold(&hugetlb_lock) 2357 { 2358 LIST_HEAD(surplus_list); 2359 struct page *page, *tmp; 2360 int ret; 2361 long i; 2362 long needed, allocated; 2363 bool alloc_ok = true; 2364 2365 lockdep_assert_held(&hugetlb_lock); 2366 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2367 if (needed <= 0) { 2368 h->resv_huge_pages += delta; 2369 return 0; 2370 } 2371 2372 allocated = 0; 2373 2374 ret = -ENOMEM; 2375 retry: 2376 spin_unlock_irq(&hugetlb_lock); 2377 for (i = 0; i < needed; i++) { 2378 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2379 NUMA_NO_NODE, NULL); 2380 if (!page) { 2381 alloc_ok = false; 2382 break; 2383 } 2384 list_add(&page->lru, &surplus_list); 2385 cond_resched(); 2386 } 2387 allocated += i; 2388 2389 /* 2390 * After retaking hugetlb_lock, we need to recalculate 'needed' 2391 * because either resv_huge_pages or free_huge_pages may have changed. 2392 */ 2393 spin_lock_irq(&hugetlb_lock); 2394 needed = (h->resv_huge_pages + delta) - 2395 (h->free_huge_pages + allocated); 2396 if (needed > 0) { 2397 if (alloc_ok) 2398 goto retry; 2399 /* 2400 * We were not able to allocate enough pages to 2401 * satisfy the entire reservation so we free what 2402 * we've allocated so far. 2403 */ 2404 goto free; 2405 } 2406 /* 2407 * The surplus_list now contains _at_least_ the number of extra pages 2408 * needed to accommodate the reservation. Add the appropriate number 2409 * of pages to the hugetlb pool and free the extras back to the buddy 2410 * allocator. Commit the entire reservation here to prevent another 2411 * process from stealing the pages as they are added to the pool but 2412 * before they are reserved. 2413 */ 2414 needed += allocated; 2415 h->resv_huge_pages += delta; 2416 ret = 0; 2417 2418 /* Free the needed pages to the hugetlb pool */ 2419 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2420 if ((--needed) < 0) 2421 break; 2422 /* Add the page to the hugetlb allocator */ 2423 enqueue_huge_page(h, page); 2424 } 2425 free: 2426 spin_unlock_irq(&hugetlb_lock); 2427 2428 /* 2429 * Free unnecessary surplus pages to the buddy allocator. 2430 * Pages have no ref count, call free_huge_page directly. 2431 */ 2432 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2433 free_huge_page(page); 2434 spin_lock_irq(&hugetlb_lock); 2435 2436 return ret; 2437 } 2438 2439 /* 2440 * This routine has two main purposes: 2441 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2442 * in unused_resv_pages. This corresponds to the prior adjustments made 2443 * to the associated reservation map. 2444 * 2) Free any unused surplus pages that may have been allocated to satisfy 2445 * the reservation. As many as unused_resv_pages may be freed. 2446 */ 2447 static void return_unused_surplus_pages(struct hstate *h, 2448 unsigned long unused_resv_pages) 2449 { 2450 unsigned long nr_pages; 2451 struct page *page; 2452 LIST_HEAD(page_list); 2453 2454 lockdep_assert_held(&hugetlb_lock); 2455 /* Uncommit the reservation */ 2456 h->resv_huge_pages -= unused_resv_pages; 2457 2458 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2459 goto out; 2460 2461 /* 2462 * Part (or even all) of the reservation could have been backed 2463 * by pre-allocated pages. Only free surplus pages. 2464 */ 2465 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2466 2467 /* 2468 * We want to release as many surplus pages as possible, spread 2469 * evenly across all nodes with memory. Iterate across these nodes 2470 * until we can no longer free unreserved surplus pages. This occurs 2471 * when the nodes with surplus pages have no free pages. 2472 * remove_pool_huge_page() will balance the freed pages across the 2473 * on-line nodes with memory and will handle the hstate accounting. 2474 */ 2475 while (nr_pages--) { 2476 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2477 if (!page) 2478 goto out; 2479 2480 list_add(&page->lru, &page_list); 2481 } 2482 2483 out: 2484 spin_unlock_irq(&hugetlb_lock); 2485 update_and_free_pages_bulk(h, &page_list); 2486 spin_lock_irq(&hugetlb_lock); 2487 } 2488 2489 2490 /* 2491 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2492 * are used by the huge page allocation routines to manage reservations. 2493 * 2494 * vma_needs_reservation is called to determine if the huge page at addr 2495 * within the vma has an associated reservation. If a reservation is 2496 * needed, the value 1 is returned. The caller is then responsible for 2497 * managing the global reservation and subpool usage counts. After 2498 * the huge page has been allocated, vma_commit_reservation is called 2499 * to add the page to the reservation map. If the page allocation fails, 2500 * the reservation must be ended instead of committed. vma_end_reservation 2501 * is called in such cases. 2502 * 2503 * In the normal case, vma_commit_reservation returns the same value 2504 * as the preceding vma_needs_reservation call. The only time this 2505 * is not the case is if a reserve map was changed between calls. It 2506 * is the responsibility of the caller to notice the difference and 2507 * take appropriate action. 2508 * 2509 * vma_add_reservation is used in error paths where a reservation must 2510 * be restored when a newly allocated huge page must be freed. It is 2511 * to be called after calling vma_needs_reservation to determine if a 2512 * reservation exists. 2513 * 2514 * vma_del_reservation is used in error paths where an entry in the reserve 2515 * map was created during huge page allocation and must be removed. It is to 2516 * be called after calling vma_needs_reservation to determine if a reservation 2517 * exists. 2518 */ 2519 enum vma_resv_mode { 2520 VMA_NEEDS_RESV, 2521 VMA_COMMIT_RESV, 2522 VMA_END_RESV, 2523 VMA_ADD_RESV, 2524 VMA_DEL_RESV, 2525 }; 2526 static long __vma_reservation_common(struct hstate *h, 2527 struct vm_area_struct *vma, unsigned long addr, 2528 enum vma_resv_mode mode) 2529 { 2530 struct resv_map *resv; 2531 pgoff_t idx; 2532 long ret; 2533 long dummy_out_regions_needed; 2534 2535 resv = vma_resv_map(vma); 2536 if (!resv) 2537 return 1; 2538 2539 idx = vma_hugecache_offset(h, vma, addr); 2540 switch (mode) { 2541 case VMA_NEEDS_RESV: 2542 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2543 /* We assume that vma_reservation_* routines always operate on 2544 * 1 page, and that adding to resv map a 1 page entry can only 2545 * ever require 1 region. 2546 */ 2547 VM_BUG_ON(dummy_out_regions_needed != 1); 2548 break; 2549 case VMA_COMMIT_RESV: 2550 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2551 /* region_add calls of range 1 should never fail. */ 2552 VM_BUG_ON(ret < 0); 2553 break; 2554 case VMA_END_RESV: 2555 region_abort(resv, idx, idx + 1, 1); 2556 ret = 0; 2557 break; 2558 case VMA_ADD_RESV: 2559 if (vma->vm_flags & VM_MAYSHARE) { 2560 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2561 /* region_add calls of range 1 should never fail. */ 2562 VM_BUG_ON(ret < 0); 2563 } else { 2564 region_abort(resv, idx, idx + 1, 1); 2565 ret = region_del(resv, idx, idx + 1); 2566 } 2567 break; 2568 case VMA_DEL_RESV: 2569 if (vma->vm_flags & VM_MAYSHARE) { 2570 region_abort(resv, idx, idx + 1, 1); 2571 ret = region_del(resv, idx, idx + 1); 2572 } else { 2573 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2574 /* region_add calls of range 1 should never fail. */ 2575 VM_BUG_ON(ret < 0); 2576 } 2577 break; 2578 default: 2579 BUG(); 2580 } 2581 2582 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2583 return ret; 2584 /* 2585 * We know private mapping must have HPAGE_RESV_OWNER set. 2586 * 2587 * In most cases, reserves always exist for private mappings. 2588 * However, a file associated with mapping could have been 2589 * hole punched or truncated after reserves were consumed. 2590 * As subsequent fault on such a range will not use reserves. 2591 * Subtle - The reserve map for private mappings has the 2592 * opposite meaning than that of shared mappings. If NO 2593 * entry is in the reserve map, it means a reservation exists. 2594 * If an entry exists in the reserve map, it means the 2595 * reservation has already been consumed. As a result, the 2596 * return value of this routine is the opposite of the 2597 * value returned from reserve map manipulation routines above. 2598 */ 2599 if (ret > 0) 2600 return 0; 2601 if (ret == 0) 2602 return 1; 2603 return ret; 2604 } 2605 2606 static long vma_needs_reservation(struct hstate *h, 2607 struct vm_area_struct *vma, unsigned long addr) 2608 { 2609 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2610 } 2611 2612 static long vma_commit_reservation(struct hstate *h, 2613 struct vm_area_struct *vma, unsigned long addr) 2614 { 2615 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2616 } 2617 2618 static void vma_end_reservation(struct hstate *h, 2619 struct vm_area_struct *vma, unsigned long addr) 2620 { 2621 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2622 } 2623 2624 static long vma_add_reservation(struct hstate *h, 2625 struct vm_area_struct *vma, unsigned long addr) 2626 { 2627 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2628 } 2629 2630 static long vma_del_reservation(struct hstate *h, 2631 struct vm_area_struct *vma, unsigned long addr) 2632 { 2633 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2634 } 2635 2636 /* 2637 * This routine is called to restore reservation information on error paths. 2638 * It should ONLY be called for pages allocated via alloc_huge_page(), and 2639 * the hugetlb mutex should remain held when calling this routine. 2640 * 2641 * It handles two specific cases: 2642 * 1) A reservation was in place and the page consumed the reservation. 2643 * HPageRestoreReserve is set in the page. 2644 * 2) No reservation was in place for the page, so HPageRestoreReserve is 2645 * not set. However, alloc_huge_page always updates the reserve map. 2646 * 2647 * In case 1, free_huge_page later in the error path will increment the 2648 * global reserve count. But, free_huge_page does not have enough context 2649 * to adjust the reservation map. This case deals primarily with private 2650 * mappings. Adjust the reserve map here to be consistent with global 2651 * reserve count adjustments to be made by free_huge_page. Make sure the 2652 * reserve map indicates there is a reservation present. 2653 * 2654 * In case 2, simply undo reserve map modifications done by alloc_huge_page. 2655 */ 2656 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2657 unsigned long address, struct page *page) 2658 { 2659 long rc = vma_needs_reservation(h, vma, address); 2660 2661 if (HPageRestoreReserve(page)) { 2662 if (unlikely(rc < 0)) 2663 /* 2664 * Rare out of memory condition in reserve map 2665 * manipulation. Clear HPageRestoreReserve so that 2666 * global reserve count will not be incremented 2667 * by free_huge_page. This will make it appear 2668 * as though the reservation for this page was 2669 * consumed. This may prevent the task from 2670 * faulting in the page at a later time. This 2671 * is better than inconsistent global huge page 2672 * accounting of reserve counts. 2673 */ 2674 ClearHPageRestoreReserve(page); 2675 else if (rc) 2676 (void)vma_add_reservation(h, vma, address); 2677 else 2678 vma_end_reservation(h, vma, address); 2679 } else { 2680 if (!rc) { 2681 /* 2682 * This indicates there is an entry in the reserve map 2683 * not added by alloc_huge_page. We know it was added 2684 * before the alloc_huge_page call, otherwise 2685 * HPageRestoreReserve would be set on the page. 2686 * Remove the entry so that a subsequent allocation 2687 * does not consume a reservation. 2688 */ 2689 rc = vma_del_reservation(h, vma, address); 2690 if (rc < 0) 2691 /* 2692 * VERY rare out of memory condition. Since 2693 * we can not delete the entry, set 2694 * HPageRestoreReserve so that the reserve 2695 * count will be incremented when the page 2696 * is freed. This reserve will be consumed 2697 * on a subsequent allocation. 2698 */ 2699 SetHPageRestoreReserve(page); 2700 } else if (rc < 0) { 2701 /* 2702 * Rare out of memory condition from 2703 * vma_needs_reservation call. Memory allocation is 2704 * only attempted if a new entry is needed. Therefore, 2705 * this implies there is not an entry in the 2706 * reserve map. 2707 * 2708 * For shared mappings, no entry in the map indicates 2709 * no reservation. We are done. 2710 */ 2711 if (!(vma->vm_flags & VM_MAYSHARE)) 2712 /* 2713 * For private mappings, no entry indicates 2714 * a reservation is present. Since we can 2715 * not add an entry, set SetHPageRestoreReserve 2716 * on the page so reserve count will be 2717 * incremented when freed. This reserve will 2718 * be consumed on a subsequent allocation. 2719 */ 2720 SetHPageRestoreReserve(page); 2721 } else 2722 /* 2723 * No reservation present, do nothing 2724 */ 2725 vma_end_reservation(h, vma, address); 2726 } 2727 } 2728 2729 /* 2730 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one 2731 * @h: struct hstate old page belongs to 2732 * @old_page: Old page to dissolve 2733 * @list: List to isolate the page in case we need to 2734 * Returns 0 on success, otherwise negated error. 2735 */ 2736 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page, 2737 struct list_head *list) 2738 { 2739 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2740 int nid = page_to_nid(old_page); 2741 struct page *new_page; 2742 int ret = 0; 2743 2744 /* 2745 * Before dissolving the page, we need to allocate a new one for the 2746 * pool to remain stable. Here, we allocate the page and 'prep' it 2747 * by doing everything but actually updating counters and adding to 2748 * the pool. This simplifies and let us do most of the processing 2749 * under the lock. 2750 */ 2751 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL); 2752 if (!new_page) 2753 return -ENOMEM; 2754 __prep_new_huge_page(h, new_page); 2755 2756 retry: 2757 spin_lock_irq(&hugetlb_lock); 2758 if (!PageHuge(old_page)) { 2759 /* 2760 * Freed from under us. Drop new_page too. 2761 */ 2762 goto free_new; 2763 } else if (page_count(old_page)) { 2764 /* 2765 * Someone has grabbed the page, try to isolate it here. 2766 * Fail with -EBUSY if not possible. 2767 */ 2768 spin_unlock_irq(&hugetlb_lock); 2769 ret = isolate_hugetlb(old_page, list); 2770 spin_lock_irq(&hugetlb_lock); 2771 goto free_new; 2772 } else if (!HPageFreed(old_page)) { 2773 /* 2774 * Page's refcount is 0 but it has not been enqueued in the 2775 * freelist yet. Race window is small, so we can succeed here if 2776 * we retry. 2777 */ 2778 spin_unlock_irq(&hugetlb_lock); 2779 cond_resched(); 2780 goto retry; 2781 } else { 2782 /* 2783 * Ok, old_page is still a genuine free hugepage. Remove it from 2784 * the freelist and decrease the counters. These will be 2785 * incremented again when calling __prep_account_new_huge_page() 2786 * and enqueue_huge_page() for new_page. The counters will remain 2787 * stable since this happens under the lock. 2788 */ 2789 remove_hugetlb_page(h, old_page, false); 2790 2791 /* 2792 * Ref count on new page is already zero as it was dropped 2793 * earlier. It can be directly added to the pool free list. 2794 */ 2795 __prep_account_new_huge_page(h, nid); 2796 enqueue_huge_page(h, new_page); 2797 2798 /* 2799 * Pages have been replaced, we can safely free the old one. 2800 */ 2801 spin_unlock_irq(&hugetlb_lock); 2802 update_and_free_page(h, old_page, false); 2803 } 2804 2805 return ret; 2806 2807 free_new: 2808 spin_unlock_irq(&hugetlb_lock); 2809 /* Page has a zero ref count, but needs a ref to be freed */ 2810 set_page_refcounted(new_page); 2811 update_and_free_page(h, new_page, false); 2812 2813 return ret; 2814 } 2815 2816 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2817 { 2818 struct hstate *h; 2819 struct page *head; 2820 int ret = -EBUSY; 2821 2822 /* 2823 * The page might have been dissolved from under our feet, so make sure 2824 * to carefully check the state under the lock. 2825 * Return success when racing as if we dissolved the page ourselves. 2826 */ 2827 spin_lock_irq(&hugetlb_lock); 2828 if (PageHuge(page)) { 2829 head = compound_head(page); 2830 h = page_hstate(head); 2831 } else { 2832 spin_unlock_irq(&hugetlb_lock); 2833 return 0; 2834 } 2835 spin_unlock_irq(&hugetlb_lock); 2836 2837 /* 2838 * Fence off gigantic pages as there is a cyclic dependency between 2839 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2840 * of bailing out right away without further retrying. 2841 */ 2842 if (hstate_is_gigantic(h)) 2843 return -ENOMEM; 2844 2845 if (page_count(head) && !isolate_hugetlb(head, list)) 2846 ret = 0; 2847 else if (!page_count(head)) 2848 ret = alloc_and_dissolve_huge_page(h, head, list); 2849 2850 return ret; 2851 } 2852 2853 struct page *alloc_huge_page(struct vm_area_struct *vma, 2854 unsigned long addr, int avoid_reserve) 2855 { 2856 struct hugepage_subpool *spool = subpool_vma(vma); 2857 struct hstate *h = hstate_vma(vma); 2858 struct page *page; 2859 long map_chg, map_commit; 2860 long gbl_chg; 2861 int ret, idx; 2862 struct hugetlb_cgroup *h_cg; 2863 bool deferred_reserve; 2864 2865 idx = hstate_index(h); 2866 /* 2867 * Examine the region/reserve map to determine if the process 2868 * has a reservation for the page to be allocated. A return 2869 * code of zero indicates a reservation exists (no change). 2870 */ 2871 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2872 if (map_chg < 0) 2873 return ERR_PTR(-ENOMEM); 2874 2875 /* 2876 * Processes that did not create the mapping will have no 2877 * reserves as indicated by the region/reserve map. Check 2878 * that the allocation will not exceed the subpool limit. 2879 * Allocations for MAP_NORESERVE mappings also need to be 2880 * checked against any subpool limit. 2881 */ 2882 if (map_chg || avoid_reserve) { 2883 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2884 if (gbl_chg < 0) { 2885 vma_end_reservation(h, vma, addr); 2886 return ERR_PTR(-ENOSPC); 2887 } 2888 2889 /* 2890 * Even though there was no reservation in the region/reserve 2891 * map, there could be reservations associated with the 2892 * subpool that can be used. This would be indicated if the 2893 * return value of hugepage_subpool_get_pages() is zero. 2894 * However, if avoid_reserve is specified we still avoid even 2895 * the subpool reservations. 2896 */ 2897 if (avoid_reserve) 2898 gbl_chg = 1; 2899 } 2900 2901 /* If this allocation is not consuming a reservation, charge it now. 2902 */ 2903 deferred_reserve = map_chg || avoid_reserve; 2904 if (deferred_reserve) { 2905 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2906 idx, pages_per_huge_page(h), &h_cg); 2907 if (ret) 2908 goto out_subpool_put; 2909 } 2910 2911 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2912 if (ret) 2913 goto out_uncharge_cgroup_reservation; 2914 2915 spin_lock_irq(&hugetlb_lock); 2916 /* 2917 * glb_chg is passed to indicate whether or not a page must be taken 2918 * from the global free pool (global change). gbl_chg == 0 indicates 2919 * a reservation exists for the allocation. 2920 */ 2921 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2922 if (!page) { 2923 spin_unlock_irq(&hugetlb_lock); 2924 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2925 if (!page) 2926 goto out_uncharge_cgroup; 2927 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2928 SetHPageRestoreReserve(page); 2929 h->resv_huge_pages--; 2930 } 2931 spin_lock_irq(&hugetlb_lock); 2932 list_add(&page->lru, &h->hugepage_activelist); 2933 set_page_refcounted(page); 2934 /* Fall through */ 2935 } 2936 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2937 /* If allocation is not consuming a reservation, also store the 2938 * hugetlb_cgroup pointer on the page. 2939 */ 2940 if (deferred_reserve) { 2941 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2942 h_cg, page); 2943 } 2944 2945 spin_unlock_irq(&hugetlb_lock); 2946 2947 hugetlb_set_page_subpool(page, spool); 2948 2949 map_commit = vma_commit_reservation(h, vma, addr); 2950 if (unlikely(map_chg > map_commit)) { 2951 /* 2952 * The page was added to the reservation map between 2953 * vma_needs_reservation and vma_commit_reservation. 2954 * This indicates a race with hugetlb_reserve_pages. 2955 * Adjust for the subpool count incremented above AND 2956 * in hugetlb_reserve_pages for the same page. Also, 2957 * the reservation count added in hugetlb_reserve_pages 2958 * no longer applies. 2959 */ 2960 long rsv_adjust; 2961 2962 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2963 hugetlb_acct_memory(h, -rsv_adjust); 2964 if (deferred_reserve) 2965 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2966 pages_per_huge_page(h), page); 2967 } 2968 return page; 2969 2970 out_uncharge_cgroup: 2971 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2972 out_uncharge_cgroup_reservation: 2973 if (deferred_reserve) 2974 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2975 h_cg); 2976 out_subpool_put: 2977 if (map_chg || avoid_reserve) 2978 hugepage_subpool_put_pages(spool, 1); 2979 vma_end_reservation(h, vma, addr); 2980 return ERR_PTR(-ENOSPC); 2981 } 2982 2983 int alloc_bootmem_huge_page(struct hstate *h, int nid) 2984 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2985 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 2986 { 2987 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 2988 int nr_nodes, node; 2989 2990 /* do node specific alloc */ 2991 if (nid != NUMA_NO_NODE) { 2992 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 2993 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 2994 if (!m) 2995 return 0; 2996 goto found; 2997 } 2998 /* allocate from next node when distributing huge pages */ 2999 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3000 m = memblock_alloc_try_nid_raw( 3001 huge_page_size(h), huge_page_size(h), 3002 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3003 /* 3004 * Use the beginning of the huge page to store the 3005 * huge_bootmem_page struct (until gather_bootmem 3006 * puts them into the mem_map). 3007 */ 3008 if (!m) 3009 return 0; 3010 goto found; 3011 } 3012 3013 found: 3014 /* Put them into a private list first because mem_map is not up yet */ 3015 INIT_LIST_HEAD(&m->list); 3016 list_add(&m->list, &huge_boot_pages); 3017 m->hstate = h; 3018 return 1; 3019 } 3020 3021 /* 3022 * Put bootmem huge pages into the standard lists after mem_map is up. 3023 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3024 */ 3025 static void __init gather_bootmem_prealloc(void) 3026 { 3027 struct huge_bootmem_page *m; 3028 3029 list_for_each_entry(m, &huge_boot_pages, list) { 3030 struct page *page = virt_to_page(m); 3031 struct hstate *h = m->hstate; 3032 3033 VM_BUG_ON(!hstate_is_gigantic(h)); 3034 WARN_ON(page_count(page) != 1); 3035 if (prep_compound_gigantic_page(page, huge_page_order(h))) { 3036 WARN_ON(PageReserved(page)); 3037 prep_new_huge_page(h, page, page_to_nid(page)); 3038 free_huge_page(page); /* add to the hugepage allocator */ 3039 } else { 3040 /* VERY unlikely inflated ref count on a tail page */ 3041 free_gigantic_page(page, huge_page_order(h)); 3042 } 3043 3044 /* 3045 * We need to restore the 'stolen' pages to totalram_pages 3046 * in order to fix confusing memory reports from free(1) and 3047 * other side-effects, like CommitLimit going negative. 3048 */ 3049 adjust_managed_page_count(page, pages_per_huge_page(h)); 3050 cond_resched(); 3051 } 3052 } 3053 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3054 { 3055 unsigned long i; 3056 char buf[32]; 3057 3058 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3059 if (hstate_is_gigantic(h)) { 3060 if (!alloc_bootmem_huge_page(h, nid)) 3061 break; 3062 } else { 3063 struct page *page; 3064 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3065 3066 page = alloc_fresh_huge_page(h, gfp_mask, nid, 3067 &node_states[N_MEMORY], NULL); 3068 if (!page) 3069 break; 3070 free_huge_page(page); /* free it into the hugepage allocator */ 3071 } 3072 cond_resched(); 3073 } 3074 if (i == h->max_huge_pages_node[nid]) 3075 return; 3076 3077 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3078 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3079 h->max_huge_pages_node[nid], buf, nid, i); 3080 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3081 h->max_huge_pages_node[nid] = i; 3082 } 3083 3084 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3085 { 3086 unsigned long i; 3087 nodemask_t *node_alloc_noretry; 3088 bool node_specific_alloc = false; 3089 3090 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3091 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3092 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3093 return; 3094 } 3095 3096 /* do node specific alloc */ 3097 for_each_online_node(i) { 3098 if (h->max_huge_pages_node[i] > 0) { 3099 hugetlb_hstate_alloc_pages_onenode(h, i); 3100 node_specific_alloc = true; 3101 } 3102 } 3103 3104 if (node_specific_alloc) 3105 return; 3106 3107 /* below will do all node balanced alloc */ 3108 if (!hstate_is_gigantic(h)) { 3109 /* 3110 * Bit mask controlling how hard we retry per-node allocations. 3111 * Ignore errors as lower level routines can deal with 3112 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3113 * time, we are likely in bigger trouble. 3114 */ 3115 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3116 GFP_KERNEL); 3117 } else { 3118 /* allocations done at boot time */ 3119 node_alloc_noretry = NULL; 3120 } 3121 3122 /* bit mask controlling how hard we retry per-node allocations */ 3123 if (node_alloc_noretry) 3124 nodes_clear(*node_alloc_noretry); 3125 3126 for (i = 0; i < h->max_huge_pages; ++i) { 3127 if (hstate_is_gigantic(h)) { 3128 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3129 break; 3130 } else if (!alloc_pool_huge_page(h, 3131 &node_states[N_MEMORY], 3132 node_alloc_noretry)) 3133 break; 3134 cond_resched(); 3135 } 3136 if (i < h->max_huge_pages) { 3137 char buf[32]; 3138 3139 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3140 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3141 h->max_huge_pages, buf, i); 3142 h->max_huge_pages = i; 3143 } 3144 kfree(node_alloc_noretry); 3145 } 3146 3147 static void __init hugetlb_init_hstates(void) 3148 { 3149 struct hstate *h, *h2; 3150 3151 for_each_hstate(h) { 3152 /* oversize hugepages were init'ed in early boot */ 3153 if (!hstate_is_gigantic(h)) 3154 hugetlb_hstate_alloc_pages(h); 3155 3156 /* 3157 * Set demote order for each hstate. Note that 3158 * h->demote_order is initially 0. 3159 * - We can not demote gigantic pages if runtime freeing 3160 * is not supported, so skip this. 3161 * - If CMA allocation is possible, we can not demote 3162 * HUGETLB_PAGE_ORDER or smaller size pages. 3163 */ 3164 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3165 continue; 3166 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3167 continue; 3168 for_each_hstate(h2) { 3169 if (h2 == h) 3170 continue; 3171 if (h2->order < h->order && 3172 h2->order > h->demote_order) 3173 h->demote_order = h2->order; 3174 } 3175 } 3176 } 3177 3178 static void __init report_hugepages(void) 3179 { 3180 struct hstate *h; 3181 3182 for_each_hstate(h) { 3183 char buf[32]; 3184 3185 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3186 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3187 buf, h->free_huge_pages); 3188 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3189 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3190 } 3191 } 3192 3193 #ifdef CONFIG_HIGHMEM 3194 static void try_to_free_low(struct hstate *h, unsigned long count, 3195 nodemask_t *nodes_allowed) 3196 { 3197 int i; 3198 LIST_HEAD(page_list); 3199 3200 lockdep_assert_held(&hugetlb_lock); 3201 if (hstate_is_gigantic(h)) 3202 return; 3203 3204 /* 3205 * Collect pages to be freed on a list, and free after dropping lock 3206 */ 3207 for_each_node_mask(i, *nodes_allowed) { 3208 struct page *page, *next; 3209 struct list_head *freel = &h->hugepage_freelists[i]; 3210 list_for_each_entry_safe(page, next, freel, lru) { 3211 if (count >= h->nr_huge_pages) 3212 goto out; 3213 if (PageHighMem(page)) 3214 continue; 3215 remove_hugetlb_page(h, page, false); 3216 list_add(&page->lru, &page_list); 3217 } 3218 } 3219 3220 out: 3221 spin_unlock_irq(&hugetlb_lock); 3222 update_and_free_pages_bulk(h, &page_list); 3223 spin_lock_irq(&hugetlb_lock); 3224 } 3225 #else 3226 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3227 nodemask_t *nodes_allowed) 3228 { 3229 } 3230 #endif 3231 3232 /* 3233 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3234 * balanced by operating on them in a round-robin fashion. 3235 * Returns 1 if an adjustment was made. 3236 */ 3237 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3238 int delta) 3239 { 3240 int nr_nodes, node; 3241 3242 lockdep_assert_held(&hugetlb_lock); 3243 VM_BUG_ON(delta != -1 && delta != 1); 3244 3245 if (delta < 0) { 3246 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3247 if (h->surplus_huge_pages_node[node]) 3248 goto found; 3249 } 3250 } else { 3251 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3252 if (h->surplus_huge_pages_node[node] < 3253 h->nr_huge_pages_node[node]) 3254 goto found; 3255 } 3256 } 3257 return 0; 3258 3259 found: 3260 h->surplus_huge_pages += delta; 3261 h->surplus_huge_pages_node[node] += delta; 3262 return 1; 3263 } 3264 3265 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3266 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3267 nodemask_t *nodes_allowed) 3268 { 3269 unsigned long min_count, ret; 3270 struct page *page; 3271 LIST_HEAD(page_list); 3272 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3273 3274 /* 3275 * Bit mask controlling how hard we retry per-node allocations. 3276 * If we can not allocate the bit mask, do not attempt to allocate 3277 * the requested huge pages. 3278 */ 3279 if (node_alloc_noretry) 3280 nodes_clear(*node_alloc_noretry); 3281 else 3282 return -ENOMEM; 3283 3284 /* 3285 * resize_lock mutex prevents concurrent adjustments to number of 3286 * pages in hstate via the proc/sysfs interfaces. 3287 */ 3288 mutex_lock(&h->resize_lock); 3289 flush_free_hpage_work(h); 3290 spin_lock_irq(&hugetlb_lock); 3291 3292 /* 3293 * Check for a node specific request. 3294 * Changing node specific huge page count may require a corresponding 3295 * change to the global count. In any case, the passed node mask 3296 * (nodes_allowed) will restrict alloc/free to the specified node. 3297 */ 3298 if (nid != NUMA_NO_NODE) { 3299 unsigned long old_count = count; 3300 3301 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3302 /* 3303 * User may have specified a large count value which caused the 3304 * above calculation to overflow. In this case, they wanted 3305 * to allocate as many huge pages as possible. Set count to 3306 * largest possible value to align with their intention. 3307 */ 3308 if (count < old_count) 3309 count = ULONG_MAX; 3310 } 3311 3312 /* 3313 * Gigantic pages runtime allocation depend on the capability for large 3314 * page range allocation. 3315 * If the system does not provide this feature, return an error when 3316 * the user tries to allocate gigantic pages but let the user free the 3317 * boottime allocated gigantic pages. 3318 */ 3319 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3320 if (count > persistent_huge_pages(h)) { 3321 spin_unlock_irq(&hugetlb_lock); 3322 mutex_unlock(&h->resize_lock); 3323 NODEMASK_FREE(node_alloc_noretry); 3324 return -EINVAL; 3325 } 3326 /* Fall through to decrease pool */ 3327 } 3328 3329 /* 3330 * Increase the pool size 3331 * First take pages out of surplus state. Then make up the 3332 * remaining difference by allocating fresh huge pages. 3333 * 3334 * We might race with alloc_surplus_huge_page() here and be unable 3335 * to convert a surplus huge page to a normal huge page. That is 3336 * not critical, though, it just means the overall size of the 3337 * pool might be one hugepage larger than it needs to be, but 3338 * within all the constraints specified by the sysctls. 3339 */ 3340 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3341 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3342 break; 3343 } 3344 3345 while (count > persistent_huge_pages(h)) { 3346 /* 3347 * If this allocation races such that we no longer need the 3348 * page, free_huge_page will handle it by freeing the page 3349 * and reducing the surplus. 3350 */ 3351 spin_unlock_irq(&hugetlb_lock); 3352 3353 /* yield cpu to avoid soft lockup */ 3354 cond_resched(); 3355 3356 ret = alloc_pool_huge_page(h, nodes_allowed, 3357 node_alloc_noretry); 3358 spin_lock_irq(&hugetlb_lock); 3359 if (!ret) 3360 goto out; 3361 3362 /* Bail for signals. Probably ctrl-c from user */ 3363 if (signal_pending(current)) 3364 goto out; 3365 } 3366 3367 /* 3368 * Decrease the pool size 3369 * First return free pages to the buddy allocator (being careful 3370 * to keep enough around to satisfy reservations). Then place 3371 * pages into surplus state as needed so the pool will shrink 3372 * to the desired size as pages become free. 3373 * 3374 * By placing pages into the surplus state independent of the 3375 * overcommit value, we are allowing the surplus pool size to 3376 * exceed overcommit. There are few sane options here. Since 3377 * alloc_surplus_huge_page() is checking the global counter, 3378 * though, we'll note that we're not allowed to exceed surplus 3379 * and won't grow the pool anywhere else. Not until one of the 3380 * sysctls are changed, or the surplus pages go out of use. 3381 */ 3382 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3383 min_count = max(count, min_count); 3384 try_to_free_low(h, min_count, nodes_allowed); 3385 3386 /* 3387 * Collect pages to be removed on list without dropping lock 3388 */ 3389 while (min_count < persistent_huge_pages(h)) { 3390 page = remove_pool_huge_page(h, nodes_allowed, 0); 3391 if (!page) 3392 break; 3393 3394 list_add(&page->lru, &page_list); 3395 } 3396 /* free the pages after dropping lock */ 3397 spin_unlock_irq(&hugetlb_lock); 3398 update_and_free_pages_bulk(h, &page_list); 3399 flush_free_hpage_work(h); 3400 spin_lock_irq(&hugetlb_lock); 3401 3402 while (count < persistent_huge_pages(h)) { 3403 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3404 break; 3405 } 3406 out: 3407 h->max_huge_pages = persistent_huge_pages(h); 3408 spin_unlock_irq(&hugetlb_lock); 3409 mutex_unlock(&h->resize_lock); 3410 3411 NODEMASK_FREE(node_alloc_noretry); 3412 3413 return 0; 3414 } 3415 3416 static int demote_free_huge_page(struct hstate *h, struct page *page) 3417 { 3418 int i, nid = page_to_nid(page); 3419 struct hstate *target_hstate; 3420 struct page *subpage; 3421 int rc = 0; 3422 3423 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3424 3425 remove_hugetlb_page_for_demote(h, page, false); 3426 spin_unlock_irq(&hugetlb_lock); 3427 3428 rc = hugetlb_vmemmap_restore(h, page); 3429 if (rc) { 3430 /* Allocation of vmemmmap failed, we can not demote page */ 3431 spin_lock_irq(&hugetlb_lock); 3432 set_page_refcounted(page); 3433 add_hugetlb_page(h, page, false); 3434 return rc; 3435 } 3436 3437 /* 3438 * Use destroy_compound_hugetlb_page_for_demote for all huge page 3439 * sizes as it will not ref count pages. 3440 */ 3441 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h)); 3442 3443 /* 3444 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3445 * Without the mutex, pages added to target hstate could be marked 3446 * as surplus. 3447 * 3448 * Note that we already hold h->resize_lock. To prevent deadlock, 3449 * use the convention of always taking larger size hstate mutex first. 3450 */ 3451 mutex_lock(&target_hstate->resize_lock); 3452 for (i = 0; i < pages_per_huge_page(h); 3453 i += pages_per_huge_page(target_hstate)) { 3454 subpage = nth_page(page, i); 3455 if (hstate_is_gigantic(target_hstate)) 3456 prep_compound_gigantic_page_for_demote(subpage, 3457 target_hstate->order); 3458 else 3459 prep_compound_page(subpage, target_hstate->order); 3460 set_page_private(subpage, 0); 3461 prep_new_huge_page(target_hstate, subpage, nid); 3462 free_huge_page(subpage); 3463 } 3464 mutex_unlock(&target_hstate->resize_lock); 3465 3466 spin_lock_irq(&hugetlb_lock); 3467 3468 /* 3469 * Not absolutely necessary, but for consistency update max_huge_pages 3470 * based on pool changes for the demoted page. 3471 */ 3472 h->max_huge_pages--; 3473 target_hstate->max_huge_pages += 3474 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3475 3476 return rc; 3477 } 3478 3479 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3480 __must_hold(&hugetlb_lock) 3481 { 3482 int nr_nodes, node; 3483 struct page *page; 3484 3485 lockdep_assert_held(&hugetlb_lock); 3486 3487 /* We should never get here if no demote order */ 3488 if (!h->demote_order) { 3489 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3490 return -EINVAL; /* internal error */ 3491 } 3492 3493 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3494 list_for_each_entry(page, &h->hugepage_freelists[node], lru) { 3495 if (PageHWPoison(page)) 3496 continue; 3497 3498 return demote_free_huge_page(h, page); 3499 } 3500 } 3501 3502 /* 3503 * Only way to get here is if all pages on free lists are poisoned. 3504 * Return -EBUSY so that caller will not retry. 3505 */ 3506 return -EBUSY; 3507 } 3508 3509 #define HSTATE_ATTR_RO(_name) \ 3510 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3511 3512 #define HSTATE_ATTR_WO(_name) \ 3513 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3514 3515 #define HSTATE_ATTR(_name) \ 3516 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3517 3518 static struct kobject *hugepages_kobj; 3519 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3520 3521 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3522 3523 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3524 { 3525 int i; 3526 3527 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3528 if (hstate_kobjs[i] == kobj) { 3529 if (nidp) 3530 *nidp = NUMA_NO_NODE; 3531 return &hstates[i]; 3532 } 3533 3534 return kobj_to_node_hstate(kobj, nidp); 3535 } 3536 3537 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3538 struct kobj_attribute *attr, char *buf) 3539 { 3540 struct hstate *h; 3541 unsigned long nr_huge_pages; 3542 int nid; 3543 3544 h = kobj_to_hstate(kobj, &nid); 3545 if (nid == NUMA_NO_NODE) 3546 nr_huge_pages = h->nr_huge_pages; 3547 else 3548 nr_huge_pages = h->nr_huge_pages_node[nid]; 3549 3550 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3551 } 3552 3553 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3554 struct hstate *h, int nid, 3555 unsigned long count, size_t len) 3556 { 3557 int err; 3558 nodemask_t nodes_allowed, *n_mask; 3559 3560 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3561 return -EINVAL; 3562 3563 if (nid == NUMA_NO_NODE) { 3564 /* 3565 * global hstate attribute 3566 */ 3567 if (!(obey_mempolicy && 3568 init_nodemask_of_mempolicy(&nodes_allowed))) 3569 n_mask = &node_states[N_MEMORY]; 3570 else 3571 n_mask = &nodes_allowed; 3572 } else { 3573 /* 3574 * Node specific request. count adjustment happens in 3575 * set_max_huge_pages() after acquiring hugetlb_lock. 3576 */ 3577 init_nodemask_of_node(&nodes_allowed, nid); 3578 n_mask = &nodes_allowed; 3579 } 3580 3581 err = set_max_huge_pages(h, count, nid, n_mask); 3582 3583 return err ? err : len; 3584 } 3585 3586 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3587 struct kobject *kobj, const char *buf, 3588 size_t len) 3589 { 3590 struct hstate *h; 3591 unsigned long count; 3592 int nid; 3593 int err; 3594 3595 err = kstrtoul(buf, 10, &count); 3596 if (err) 3597 return err; 3598 3599 h = kobj_to_hstate(kobj, &nid); 3600 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3601 } 3602 3603 static ssize_t nr_hugepages_show(struct kobject *kobj, 3604 struct kobj_attribute *attr, char *buf) 3605 { 3606 return nr_hugepages_show_common(kobj, attr, buf); 3607 } 3608 3609 static ssize_t nr_hugepages_store(struct kobject *kobj, 3610 struct kobj_attribute *attr, const char *buf, size_t len) 3611 { 3612 return nr_hugepages_store_common(false, kobj, buf, len); 3613 } 3614 HSTATE_ATTR(nr_hugepages); 3615 3616 #ifdef CONFIG_NUMA 3617 3618 /* 3619 * hstate attribute for optionally mempolicy-based constraint on persistent 3620 * huge page alloc/free. 3621 */ 3622 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3623 struct kobj_attribute *attr, 3624 char *buf) 3625 { 3626 return nr_hugepages_show_common(kobj, attr, buf); 3627 } 3628 3629 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3630 struct kobj_attribute *attr, const char *buf, size_t len) 3631 { 3632 return nr_hugepages_store_common(true, kobj, buf, len); 3633 } 3634 HSTATE_ATTR(nr_hugepages_mempolicy); 3635 #endif 3636 3637 3638 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3639 struct kobj_attribute *attr, char *buf) 3640 { 3641 struct hstate *h = kobj_to_hstate(kobj, NULL); 3642 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3643 } 3644 3645 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3646 struct kobj_attribute *attr, const char *buf, size_t count) 3647 { 3648 int err; 3649 unsigned long input; 3650 struct hstate *h = kobj_to_hstate(kobj, NULL); 3651 3652 if (hstate_is_gigantic(h)) 3653 return -EINVAL; 3654 3655 err = kstrtoul(buf, 10, &input); 3656 if (err) 3657 return err; 3658 3659 spin_lock_irq(&hugetlb_lock); 3660 h->nr_overcommit_huge_pages = input; 3661 spin_unlock_irq(&hugetlb_lock); 3662 3663 return count; 3664 } 3665 HSTATE_ATTR(nr_overcommit_hugepages); 3666 3667 static ssize_t free_hugepages_show(struct kobject *kobj, 3668 struct kobj_attribute *attr, char *buf) 3669 { 3670 struct hstate *h; 3671 unsigned long free_huge_pages; 3672 int nid; 3673 3674 h = kobj_to_hstate(kobj, &nid); 3675 if (nid == NUMA_NO_NODE) 3676 free_huge_pages = h->free_huge_pages; 3677 else 3678 free_huge_pages = h->free_huge_pages_node[nid]; 3679 3680 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3681 } 3682 HSTATE_ATTR_RO(free_hugepages); 3683 3684 static ssize_t resv_hugepages_show(struct kobject *kobj, 3685 struct kobj_attribute *attr, char *buf) 3686 { 3687 struct hstate *h = kobj_to_hstate(kobj, NULL); 3688 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3689 } 3690 HSTATE_ATTR_RO(resv_hugepages); 3691 3692 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3693 struct kobj_attribute *attr, char *buf) 3694 { 3695 struct hstate *h; 3696 unsigned long surplus_huge_pages; 3697 int nid; 3698 3699 h = kobj_to_hstate(kobj, &nid); 3700 if (nid == NUMA_NO_NODE) 3701 surplus_huge_pages = h->surplus_huge_pages; 3702 else 3703 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3704 3705 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3706 } 3707 HSTATE_ATTR_RO(surplus_hugepages); 3708 3709 static ssize_t demote_store(struct kobject *kobj, 3710 struct kobj_attribute *attr, const char *buf, size_t len) 3711 { 3712 unsigned long nr_demote; 3713 unsigned long nr_available; 3714 nodemask_t nodes_allowed, *n_mask; 3715 struct hstate *h; 3716 int err; 3717 int nid; 3718 3719 err = kstrtoul(buf, 10, &nr_demote); 3720 if (err) 3721 return err; 3722 h = kobj_to_hstate(kobj, &nid); 3723 3724 if (nid != NUMA_NO_NODE) { 3725 init_nodemask_of_node(&nodes_allowed, nid); 3726 n_mask = &nodes_allowed; 3727 } else { 3728 n_mask = &node_states[N_MEMORY]; 3729 } 3730 3731 /* Synchronize with other sysfs operations modifying huge pages */ 3732 mutex_lock(&h->resize_lock); 3733 spin_lock_irq(&hugetlb_lock); 3734 3735 while (nr_demote) { 3736 /* 3737 * Check for available pages to demote each time thorough the 3738 * loop as demote_pool_huge_page will drop hugetlb_lock. 3739 */ 3740 if (nid != NUMA_NO_NODE) 3741 nr_available = h->free_huge_pages_node[nid]; 3742 else 3743 nr_available = h->free_huge_pages; 3744 nr_available -= h->resv_huge_pages; 3745 if (!nr_available) 3746 break; 3747 3748 err = demote_pool_huge_page(h, n_mask); 3749 if (err) 3750 break; 3751 3752 nr_demote--; 3753 } 3754 3755 spin_unlock_irq(&hugetlb_lock); 3756 mutex_unlock(&h->resize_lock); 3757 3758 if (err) 3759 return err; 3760 return len; 3761 } 3762 HSTATE_ATTR_WO(demote); 3763 3764 static ssize_t demote_size_show(struct kobject *kobj, 3765 struct kobj_attribute *attr, char *buf) 3766 { 3767 struct hstate *h = kobj_to_hstate(kobj, NULL); 3768 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3769 3770 return sysfs_emit(buf, "%lukB\n", demote_size); 3771 } 3772 3773 static ssize_t demote_size_store(struct kobject *kobj, 3774 struct kobj_attribute *attr, 3775 const char *buf, size_t count) 3776 { 3777 struct hstate *h, *demote_hstate; 3778 unsigned long demote_size; 3779 unsigned int demote_order; 3780 3781 demote_size = (unsigned long)memparse(buf, NULL); 3782 3783 demote_hstate = size_to_hstate(demote_size); 3784 if (!demote_hstate) 3785 return -EINVAL; 3786 demote_order = demote_hstate->order; 3787 if (demote_order < HUGETLB_PAGE_ORDER) 3788 return -EINVAL; 3789 3790 /* demote order must be smaller than hstate order */ 3791 h = kobj_to_hstate(kobj, NULL); 3792 if (demote_order >= h->order) 3793 return -EINVAL; 3794 3795 /* resize_lock synchronizes access to demote size and writes */ 3796 mutex_lock(&h->resize_lock); 3797 h->demote_order = demote_order; 3798 mutex_unlock(&h->resize_lock); 3799 3800 return count; 3801 } 3802 HSTATE_ATTR(demote_size); 3803 3804 static struct attribute *hstate_attrs[] = { 3805 &nr_hugepages_attr.attr, 3806 &nr_overcommit_hugepages_attr.attr, 3807 &free_hugepages_attr.attr, 3808 &resv_hugepages_attr.attr, 3809 &surplus_hugepages_attr.attr, 3810 #ifdef CONFIG_NUMA 3811 &nr_hugepages_mempolicy_attr.attr, 3812 #endif 3813 NULL, 3814 }; 3815 3816 static const struct attribute_group hstate_attr_group = { 3817 .attrs = hstate_attrs, 3818 }; 3819 3820 static struct attribute *hstate_demote_attrs[] = { 3821 &demote_size_attr.attr, 3822 &demote_attr.attr, 3823 NULL, 3824 }; 3825 3826 static const struct attribute_group hstate_demote_attr_group = { 3827 .attrs = hstate_demote_attrs, 3828 }; 3829 3830 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3831 struct kobject **hstate_kobjs, 3832 const struct attribute_group *hstate_attr_group) 3833 { 3834 int retval; 3835 int hi = hstate_index(h); 3836 3837 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3838 if (!hstate_kobjs[hi]) 3839 return -ENOMEM; 3840 3841 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3842 if (retval) { 3843 kobject_put(hstate_kobjs[hi]); 3844 hstate_kobjs[hi] = NULL; 3845 return retval; 3846 } 3847 3848 if (h->demote_order) { 3849 retval = sysfs_create_group(hstate_kobjs[hi], 3850 &hstate_demote_attr_group); 3851 if (retval) { 3852 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 3853 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 3854 kobject_put(hstate_kobjs[hi]); 3855 hstate_kobjs[hi] = NULL; 3856 return retval; 3857 } 3858 } 3859 3860 return 0; 3861 } 3862 3863 #ifdef CONFIG_NUMA 3864 static bool hugetlb_sysfs_initialized __ro_after_init; 3865 3866 /* 3867 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3868 * with node devices in node_devices[] using a parallel array. The array 3869 * index of a node device or _hstate == node id. 3870 * This is here to avoid any static dependency of the node device driver, in 3871 * the base kernel, on the hugetlb module. 3872 */ 3873 struct node_hstate { 3874 struct kobject *hugepages_kobj; 3875 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3876 }; 3877 static struct node_hstate node_hstates[MAX_NUMNODES]; 3878 3879 /* 3880 * A subset of global hstate attributes for node devices 3881 */ 3882 static struct attribute *per_node_hstate_attrs[] = { 3883 &nr_hugepages_attr.attr, 3884 &free_hugepages_attr.attr, 3885 &surplus_hugepages_attr.attr, 3886 NULL, 3887 }; 3888 3889 static const struct attribute_group per_node_hstate_attr_group = { 3890 .attrs = per_node_hstate_attrs, 3891 }; 3892 3893 /* 3894 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3895 * Returns node id via non-NULL nidp. 3896 */ 3897 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3898 { 3899 int nid; 3900 3901 for (nid = 0; nid < nr_node_ids; nid++) { 3902 struct node_hstate *nhs = &node_hstates[nid]; 3903 int i; 3904 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3905 if (nhs->hstate_kobjs[i] == kobj) { 3906 if (nidp) 3907 *nidp = nid; 3908 return &hstates[i]; 3909 } 3910 } 3911 3912 BUG(); 3913 return NULL; 3914 } 3915 3916 /* 3917 * Unregister hstate attributes from a single node device. 3918 * No-op if no hstate attributes attached. 3919 */ 3920 void hugetlb_unregister_node(struct node *node) 3921 { 3922 struct hstate *h; 3923 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3924 3925 if (!nhs->hugepages_kobj) 3926 return; /* no hstate attributes */ 3927 3928 for_each_hstate(h) { 3929 int idx = hstate_index(h); 3930 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 3931 3932 if (!hstate_kobj) 3933 continue; 3934 if (h->demote_order) 3935 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 3936 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 3937 kobject_put(hstate_kobj); 3938 nhs->hstate_kobjs[idx] = NULL; 3939 } 3940 3941 kobject_put(nhs->hugepages_kobj); 3942 nhs->hugepages_kobj = NULL; 3943 } 3944 3945 3946 /* 3947 * Register hstate attributes for a single node device. 3948 * No-op if attributes already registered. 3949 */ 3950 void hugetlb_register_node(struct node *node) 3951 { 3952 struct hstate *h; 3953 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3954 int err; 3955 3956 if (!hugetlb_sysfs_initialized) 3957 return; 3958 3959 if (nhs->hugepages_kobj) 3960 return; /* already allocated */ 3961 3962 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3963 &node->dev.kobj); 3964 if (!nhs->hugepages_kobj) 3965 return; 3966 3967 for_each_hstate(h) { 3968 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3969 nhs->hstate_kobjs, 3970 &per_node_hstate_attr_group); 3971 if (err) { 3972 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3973 h->name, node->dev.id); 3974 hugetlb_unregister_node(node); 3975 break; 3976 } 3977 } 3978 } 3979 3980 /* 3981 * hugetlb init time: register hstate attributes for all registered node 3982 * devices of nodes that have memory. All on-line nodes should have 3983 * registered their associated device by this time. 3984 */ 3985 static void __init hugetlb_register_all_nodes(void) 3986 { 3987 int nid; 3988 3989 for_each_online_node(nid) 3990 hugetlb_register_node(node_devices[nid]); 3991 } 3992 #else /* !CONFIG_NUMA */ 3993 3994 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3995 { 3996 BUG(); 3997 if (nidp) 3998 *nidp = -1; 3999 return NULL; 4000 } 4001 4002 static void hugetlb_register_all_nodes(void) { } 4003 4004 #endif 4005 4006 #ifdef CONFIG_CMA 4007 static void __init hugetlb_cma_check(void); 4008 #else 4009 static inline __init void hugetlb_cma_check(void) 4010 { 4011 } 4012 #endif 4013 4014 static void __init hugetlb_sysfs_init(void) 4015 { 4016 struct hstate *h; 4017 int err; 4018 4019 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4020 if (!hugepages_kobj) 4021 return; 4022 4023 for_each_hstate(h) { 4024 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4025 hstate_kobjs, &hstate_attr_group); 4026 if (err) 4027 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4028 } 4029 4030 #ifdef CONFIG_NUMA 4031 hugetlb_sysfs_initialized = true; 4032 #endif 4033 hugetlb_register_all_nodes(); 4034 } 4035 4036 static int __init hugetlb_init(void) 4037 { 4038 int i; 4039 4040 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4041 __NR_HPAGEFLAGS); 4042 4043 if (!hugepages_supported()) { 4044 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4045 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4046 return 0; 4047 } 4048 4049 /* 4050 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4051 * architectures depend on setup being done here. 4052 */ 4053 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4054 if (!parsed_default_hugepagesz) { 4055 /* 4056 * If we did not parse a default huge page size, set 4057 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4058 * number of huge pages for this default size was implicitly 4059 * specified, set that here as well. 4060 * Note that the implicit setting will overwrite an explicit 4061 * setting. A warning will be printed in this case. 4062 */ 4063 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4064 if (default_hstate_max_huge_pages) { 4065 if (default_hstate.max_huge_pages) { 4066 char buf[32]; 4067 4068 string_get_size(huge_page_size(&default_hstate), 4069 1, STRING_UNITS_2, buf, 32); 4070 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4071 default_hstate.max_huge_pages, buf); 4072 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4073 default_hstate_max_huge_pages); 4074 } 4075 default_hstate.max_huge_pages = 4076 default_hstate_max_huge_pages; 4077 4078 for_each_online_node(i) 4079 default_hstate.max_huge_pages_node[i] = 4080 default_hugepages_in_node[i]; 4081 } 4082 } 4083 4084 hugetlb_cma_check(); 4085 hugetlb_init_hstates(); 4086 gather_bootmem_prealloc(); 4087 report_hugepages(); 4088 4089 hugetlb_sysfs_init(); 4090 hugetlb_cgroup_file_init(); 4091 4092 #ifdef CONFIG_SMP 4093 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4094 #else 4095 num_fault_mutexes = 1; 4096 #endif 4097 hugetlb_fault_mutex_table = 4098 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4099 GFP_KERNEL); 4100 BUG_ON(!hugetlb_fault_mutex_table); 4101 4102 for (i = 0; i < num_fault_mutexes; i++) 4103 mutex_init(&hugetlb_fault_mutex_table[i]); 4104 return 0; 4105 } 4106 subsys_initcall(hugetlb_init); 4107 4108 /* Overwritten by architectures with more huge page sizes */ 4109 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4110 { 4111 return size == HPAGE_SIZE; 4112 } 4113 4114 void __init hugetlb_add_hstate(unsigned int order) 4115 { 4116 struct hstate *h; 4117 unsigned long i; 4118 4119 if (size_to_hstate(PAGE_SIZE << order)) { 4120 return; 4121 } 4122 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4123 BUG_ON(order == 0); 4124 h = &hstates[hugetlb_max_hstate++]; 4125 mutex_init(&h->resize_lock); 4126 h->order = order; 4127 h->mask = ~(huge_page_size(h) - 1); 4128 for (i = 0; i < MAX_NUMNODES; ++i) 4129 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4130 INIT_LIST_HEAD(&h->hugepage_activelist); 4131 h->next_nid_to_alloc = first_memory_node; 4132 h->next_nid_to_free = first_memory_node; 4133 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4134 huge_page_size(h)/SZ_1K); 4135 4136 parsed_hstate = h; 4137 } 4138 4139 bool __init __weak hugetlb_node_alloc_supported(void) 4140 { 4141 return true; 4142 } 4143 4144 static void __init hugepages_clear_pages_in_node(void) 4145 { 4146 if (!hugetlb_max_hstate) { 4147 default_hstate_max_huge_pages = 0; 4148 memset(default_hugepages_in_node, 0, 4149 sizeof(default_hugepages_in_node)); 4150 } else { 4151 parsed_hstate->max_huge_pages = 0; 4152 memset(parsed_hstate->max_huge_pages_node, 0, 4153 sizeof(parsed_hstate->max_huge_pages_node)); 4154 } 4155 } 4156 4157 /* 4158 * hugepages command line processing 4159 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4160 * specification. If not, ignore the hugepages value. hugepages can also 4161 * be the first huge page command line option in which case it implicitly 4162 * specifies the number of huge pages for the default size. 4163 */ 4164 static int __init hugepages_setup(char *s) 4165 { 4166 unsigned long *mhp; 4167 static unsigned long *last_mhp; 4168 int node = NUMA_NO_NODE; 4169 int count; 4170 unsigned long tmp; 4171 char *p = s; 4172 4173 if (!parsed_valid_hugepagesz) { 4174 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4175 parsed_valid_hugepagesz = true; 4176 return 1; 4177 } 4178 4179 /* 4180 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4181 * yet, so this hugepages= parameter goes to the "default hstate". 4182 * Otherwise, it goes with the previously parsed hugepagesz or 4183 * default_hugepagesz. 4184 */ 4185 else if (!hugetlb_max_hstate) 4186 mhp = &default_hstate_max_huge_pages; 4187 else 4188 mhp = &parsed_hstate->max_huge_pages; 4189 4190 if (mhp == last_mhp) { 4191 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4192 return 1; 4193 } 4194 4195 while (*p) { 4196 count = 0; 4197 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4198 goto invalid; 4199 /* Parameter is node format */ 4200 if (p[count] == ':') { 4201 if (!hugetlb_node_alloc_supported()) { 4202 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4203 return 1; 4204 } 4205 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4206 goto invalid; 4207 node = array_index_nospec(tmp, MAX_NUMNODES); 4208 p += count + 1; 4209 /* Parse hugepages */ 4210 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4211 goto invalid; 4212 if (!hugetlb_max_hstate) 4213 default_hugepages_in_node[node] = tmp; 4214 else 4215 parsed_hstate->max_huge_pages_node[node] = tmp; 4216 *mhp += tmp; 4217 /* Go to parse next node*/ 4218 if (p[count] == ',') 4219 p += count + 1; 4220 else 4221 break; 4222 } else { 4223 if (p != s) 4224 goto invalid; 4225 *mhp = tmp; 4226 break; 4227 } 4228 } 4229 4230 /* 4231 * Global state is always initialized later in hugetlb_init. 4232 * But we need to allocate gigantic hstates here early to still 4233 * use the bootmem allocator. 4234 */ 4235 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4236 hugetlb_hstate_alloc_pages(parsed_hstate); 4237 4238 last_mhp = mhp; 4239 4240 return 1; 4241 4242 invalid: 4243 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4244 hugepages_clear_pages_in_node(); 4245 return 1; 4246 } 4247 __setup("hugepages=", hugepages_setup); 4248 4249 /* 4250 * hugepagesz command line processing 4251 * A specific huge page size can only be specified once with hugepagesz. 4252 * hugepagesz is followed by hugepages on the command line. The global 4253 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4254 * hugepagesz argument was valid. 4255 */ 4256 static int __init hugepagesz_setup(char *s) 4257 { 4258 unsigned long size; 4259 struct hstate *h; 4260 4261 parsed_valid_hugepagesz = false; 4262 size = (unsigned long)memparse(s, NULL); 4263 4264 if (!arch_hugetlb_valid_size(size)) { 4265 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4266 return 1; 4267 } 4268 4269 h = size_to_hstate(size); 4270 if (h) { 4271 /* 4272 * hstate for this size already exists. This is normally 4273 * an error, but is allowed if the existing hstate is the 4274 * default hstate. More specifically, it is only allowed if 4275 * the number of huge pages for the default hstate was not 4276 * previously specified. 4277 */ 4278 if (!parsed_default_hugepagesz || h != &default_hstate || 4279 default_hstate.max_huge_pages) { 4280 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4281 return 1; 4282 } 4283 4284 /* 4285 * No need to call hugetlb_add_hstate() as hstate already 4286 * exists. But, do set parsed_hstate so that a following 4287 * hugepages= parameter will be applied to this hstate. 4288 */ 4289 parsed_hstate = h; 4290 parsed_valid_hugepagesz = true; 4291 return 1; 4292 } 4293 4294 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4295 parsed_valid_hugepagesz = true; 4296 return 1; 4297 } 4298 __setup("hugepagesz=", hugepagesz_setup); 4299 4300 /* 4301 * default_hugepagesz command line input 4302 * Only one instance of default_hugepagesz allowed on command line. 4303 */ 4304 static int __init default_hugepagesz_setup(char *s) 4305 { 4306 unsigned long size; 4307 int i; 4308 4309 parsed_valid_hugepagesz = false; 4310 if (parsed_default_hugepagesz) { 4311 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4312 return 1; 4313 } 4314 4315 size = (unsigned long)memparse(s, NULL); 4316 4317 if (!arch_hugetlb_valid_size(size)) { 4318 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4319 return 1; 4320 } 4321 4322 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4323 parsed_valid_hugepagesz = true; 4324 parsed_default_hugepagesz = true; 4325 default_hstate_idx = hstate_index(size_to_hstate(size)); 4326 4327 /* 4328 * The number of default huge pages (for this size) could have been 4329 * specified as the first hugetlb parameter: hugepages=X. If so, 4330 * then default_hstate_max_huge_pages is set. If the default huge 4331 * page size is gigantic (>= MAX_ORDER), then the pages must be 4332 * allocated here from bootmem allocator. 4333 */ 4334 if (default_hstate_max_huge_pages) { 4335 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4336 for_each_online_node(i) 4337 default_hstate.max_huge_pages_node[i] = 4338 default_hugepages_in_node[i]; 4339 if (hstate_is_gigantic(&default_hstate)) 4340 hugetlb_hstate_alloc_pages(&default_hstate); 4341 default_hstate_max_huge_pages = 0; 4342 } 4343 4344 return 1; 4345 } 4346 __setup("default_hugepagesz=", default_hugepagesz_setup); 4347 4348 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4349 { 4350 #ifdef CONFIG_NUMA 4351 struct mempolicy *mpol = get_task_policy(current); 4352 4353 /* 4354 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4355 * (from policy_nodemask) specifically for hugetlb case 4356 */ 4357 if (mpol->mode == MPOL_BIND && 4358 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4359 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4360 return &mpol->nodes; 4361 #endif 4362 return NULL; 4363 } 4364 4365 static unsigned int allowed_mems_nr(struct hstate *h) 4366 { 4367 int node; 4368 unsigned int nr = 0; 4369 nodemask_t *mbind_nodemask; 4370 unsigned int *array = h->free_huge_pages_node; 4371 gfp_t gfp_mask = htlb_alloc_mask(h); 4372 4373 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4374 for_each_node_mask(node, cpuset_current_mems_allowed) { 4375 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4376 nr += array[node]; 4377 } 4378 4379 return nr; 4380 } 4381 4382 #ifdef CONFIG_SYSCTL 4383 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4384 void *buffer, size_t *length, 4385 loff_t *ppos, unsigned long *out) 4386 { 4387 struct ctl_table dup_table; 4388 4389 /* 4390 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4391 * can duplicate the @table and alter the duplicate of it. 4392 */ 4393 dup_table = *table; 4394 dup_table.data = out; 4395 4396 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4397 } 4398 4399 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4400 struct ctl_table *table, int write, 4401 void *buffer, size_t *length, loff_t *ppos) 4402 { 4403 struct hstate *h = &default_hstate; 4404 unsigned long tmp = h->max_huge_pages; 4405 int ret; 4406 4407 if (!hugepages_supported()) 4408 return -EOPNOTSUPP; 4409 4410 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4411 &tmp); 4412 if (ret) 4413 goto out; 4414 4415 if (write) 4416 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4417 NUMA_NO_NODE, tmp, *length); 4418 out: 4419 return ret; 4420 } 4421 4422 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4423 void *buffer, size_t *length, loff_t *ppos) 4424 { 4425 4426 return hugetlb_sysctl_handler_common(false, table, write, 4427 buffer, length, ppos); 4428 } 4429 4430 #ifdef CONFIG_NUMA 4431 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4432 void *buffer, size_t *length, loff_t *ppos) 4433 { 4434 return hugetlb_sysctl_handler_common(true, table, write, 4435 buffer, length, ppos); 4436 } 4437 #endif /* CONFIG_NUMA */ 4438 4439 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4440 void *buffer, size_t *length, loff_t *ppos) 4441 { 4442 struct hstate *h = &default_hstate; 4443 unsigned long tmp; 4444 int ret; 4445 4446 if (!hugepages_supported()) 4447 return -EOPNOTSUPP; 4448 4449 tmp = h->nr_overcommit_huge_pages; 4450 4451 if (write && hstate_is_gigantic(h)) 4452 return -EINVAL; 4453 4454 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4455 &tmp); 4456 if (ret) 4457 goto out; 4458 4459 if (write) { 4460 spin_lock_irq(&hugetlb_lock); 4461 h->nr_overcommit_huge_pages = tmp; 4462 spin_unlock_irq(&hugetlb_lock); 4463 } 4464 out: 4465 return ret; 4466 } 4467 4468 #endif /* CONFIG_SYSCTL */ 4469 4470 void hugetlb_report_meminfo(struct seq_file *m) 4471 { 4472 struct hstate *h; 4473 unsigned long total = 0; 4474 4475 if (!hugepages_supported()) 4476 return; 4477 4478 for_each_hstate(h) { 4479 unsigned long count = h->nr_huge_pages; 4480 4481 total += huge_page_size(h) * count; 4482 4483 if (h == &default_hstate) 4484 seq_printf(m, 4485 "HugePages_Total: %5lu\n" 4486 "HugePages_Free: %5lu\n" 4487 "HugePages_Rsvd: %5lu\n" 4488 "HugePages_Surp: %5lu\n" 4489 "Hugepagesize: %8lu kB\n", 4490 count, 4491 h->free_huge_pages, 4492 h->resv_huge_pages, 4493 h->surplus_huge_pages, 4494 huge_page_size(h) / SZ_1K); 4495 } 4496 4497 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4498 } 4499 4500 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4501 { 4502 struct hstate *h = &default_hstate; 4503 4504 if (!hugepages_supported()) 4505 return 0; 4506 4507 return sysfs_emit_at(buf, len, 4508 "Node %d HugePages_Total: %5u\n" 4509 "Node %d HugePages_Free: %5u\n" 4510 "Node %d HugePages_Surp: %5u\n", 4511 nid, h->nr_huge_pages_node[nid], 4512 nid, h->free_huge_pages_node[nid], 4513 nid, h->surplus_huge_pages_node[nid]); 4514 } 4515 4516 void hugetlb_show_meminfo_node(int nid) 4517 { 4518 struct hstate *h; 4519 4520 if (!hugepages_supported()) 4521 return; 4522 4523 for_each_hstate(h) 4524 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4525 nid, 4526 h->nr_huge_pages_node[nid], 4527 h->free_huge_pages_node[nid], 4528 h->surplus_huge_pages_node[nid], 4529 huge_page_size(h) / SZ_1K); 4530 } 4531 4532 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4533 { 4534 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4535 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 4536 } 4537 4538 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4539 unsigned long hugetlb_total_pages(void) 4540 { 4541 struct hstate *h; 4542 unsigned long nr_total_pages = 0; 4543 4544 for_each_hstate(h) 4545 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4546 return nr_total_pages; 4547 } 4548 4549 static int hugetlb_acct_memory(struct hstate *h, long delta) 4550 { 4551 int ret = -ENOMEM; 4552 4553 if (!delta) 4554 return 0; 4555 4556 spin_lock_irq(&hugetlb_lock); 4557 /* 4558 * When cpuset is configured, it breaks the strict hugetlb page 4559 * reservation as the accounting is done on a global variable. Such 4560 * reservation is completely rubbish in the presence of cpuset because 4561 * the reservation is not checked against page availability for the 4562 * current cpuset. Application can still potentially OOM'ed by kernel 4563 * with lack of free htlb page in cpuset that the task is in. 4564 * Attempt to enforce strict accounting with cpuset is almost 4565 * impossible (or too ugly) because cpuset is too fluid that 4566 * task or memory node can be dynamically moved between cpusets. 4567 * 4568 * The change of semantics for shared hugetlb mapping with cpuset is 4569 * undesirable. However, in order to preserve some of the semantics, 4570 * we fall back to check against current free page availability as 4571 * a best attempt and hopefully to minimize the impact of changing 4572 * semantics that cpuset has. 4573 * 4574 * Apart from cpuset, we also have memory policy mechanism that 4575 * also determines from which node the kernel will allocate memory 4576 * in a NUMA system. So similar to cpuset, we also should consider 4577 * the memory policy of the current task. Similar to the description 4578 * above. 4579 */ 4580 if (delta > 0) { 4581 if (gather_surplus_pages(h, delta) < 0) 4582 goto out; 4583 4584 if (delta > allowed_mems_nr(h)) { 4585 return_unused_surplus_pages(h, delta); 4586 goto out; 4587 } 4588 } 4589 4590 ret = 0; 4591 if (delta < 0) 4592 return_unused_surplus_pages(h, (unsigned long) -delta); 4593 4594 out: 4595 spin_unlock_irq(&hugetlb_lock); 4596 return ret; 4597 } 4598 4599 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4600 { 4601 struct resv_map *resv = vma_resv_map(vma); 4602 4603 /* 4604 * This new VMA should share its siblings reservation map if present. 4605 * The VMA will only ever have a valid reservation map pointer where 4606 * it is being copied for another still existing VMA. As that VMA 4607 * has a reference to the reservation map it cannot disappear until 4608 * after this open call completes. It is therefore safe to take a 4609 * new reference here without additional locking. 4610 */ 4611 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4612 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4613 kref_get(&resv->refs); 4614 } 4615 4616 /* 4617 * vma_lock structure for sharable mappings is vma specific. 4618 * Clear old pointer (if copied via vm_area_dup) and create new. 4619 */ 4620 if (vma->vm_flags & VM_MAYSHARE) { 4621 vma->vm_private_data = NULL; 4622 hugetlb_vma_lock_alloc(vma); 4623 } 4624 } 4625 4626 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4627 { 4628 struct hstate *h = hstate_vma(vma); 4629 struct resv_map *resv; 4630 struct hugepage_subpool *spool = subpool_vma(vma); 4631 unsigned long reserve, start, end; 4632 long gbl_reserve; 4633 4634 hugetlb_vma_lock_free(vma); 4635 4636 resv = vma_resv_map(vma); 4637 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4638 return; 4639 4640 start = vma_hugecache_offset(h, vma, vma->vm_start); 4641 end = vma_hugecache_offset(h, vma, vma->vm_end); 4642 4643 reserve = (end - start) - region_count(resv, start, end); 4644 hugetlb_cgroup_uncharge_counter(resv, start, end); 4645 if (reserve) { 4646 /* 4647 * Decrement reserve counts. The global reserve count may be 4648 * adjusted if the subpool has a minimum size. 4649 */ 4650 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4651 hugetlb_acct_memory(h, -gbl_reserve); 4652 } 4653 4654 kref_put(&resv->refs, resv_map_release); 4655 } 4656 4657 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4658 { 4659 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4660 return -EINVAL; 4661 return 0; 4662 } 4663 4664 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4665 { 4666 return huge_page_size(hstate_vma(vma)); 4667 } 4668 4669 /* 4670 * We cannot handle pagefaults against hugetlb pages at all. They cause 4671 * handle_mm_fault() to try to instantiate regular-sized pages in the 4672 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4673 * this far. 4674 */ 4675 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4676 { 4677 BUG(); 4678 return 0; 4679 } 4680 4681 /* 4682 * When a new function is introduced to vm_operations_struct and added 4683 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4684 * This is because under System V memory model, mappings created via 4685 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4686 * their original vm_ops are overwritten with shm_vm_ops. 4687 */ 4688 const struct vm_operations_struct hugetlb_vm_ops = { 4689 .fault = hugetlb_vm_op_fault, 4690 .open = hugetlb_vm_op_open, 4691 .close = hugetlb_vm_op_close, 4692 .may_split = hugetlb_vm_op_split, 4693 .pagesize = hugetlb_vm_op_pagesize, 4694 }; 4695 4696 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4697 int writable) 4698 { 4699 pte_t entry; 4700 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4701 4702 if (writable) { 4703 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4704 vma->vm_page_prot))); 4705 } else { 4706 entry = huge_pte_wrprotect(mk_huge_pte(page, 4707 vma->vm_page_prot)); 4708 } 4709 entry = pte_mkyoung(entry); 4710 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4711 4712 return entry; 4713 } 4714 4715 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4716 unsigned long address, pte_t *ptep) 4717 { 4718 pte_t entry; 4719 4720 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4721 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4722 update_mmu_cache(vma, address, ptep); 4723 } 4724 4725 bool is_hugetlb_entry_migration(pte_t pte) 4726 { 4727 swp_entry_t swp; 4728 4729 if (huge_pte_none(pte) || pte_present(pte)) 4730 return false; 4731 swp = pte_to_swp_entry(pte); 4732 if (is_migration_entry(swp)) 4733 return true; 4734 else 4735 return false; 4736 } 4737 4738 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4739 { 4740 swp_entry_t swp; 4741 4742 if (huge_pte_none(pte) || pte_present(pte)) 4743 return false; 4744 swp = pte_to_swp_entry(pte); 4745 if (is_hwpoison_entry(swp)) 4746 return true; 4747 else 4748 return false; 4749 } 4750 4751 static void 4752 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4753 struct page *new_page) 4754 { 4755 __SetPageUptodate(new_page); 4756 hugepage_add_new_anon_rmap(new_page, vma, addr); 4757 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 4758 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 4759 ClearHPageRestoreReserve(new_page); 4760 SetHPageMigratable(new_page); 4761 } 4762 4763 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 4764 struct vm_area_struct *dst_vma, 4765 struct vm_area_struct *src_vma) 4766 { 4767 pte_t *src_pte, *dst_pte, entry; 4768 struct page *ptepage; 4769 unsigned long addr; 4770 bool cow = is_cow_mapping(src_vma->vm_flags); 4771 struct hstate *h = hstate_vma(src_vma); 4772 unsigned long sz = huge_page_size(h); 4773 unsigned long npages = pages_per_huge_page(h); 4774 struct mmu_notifier_range range; 4775 unsigned long last_addr_mask; 4776 int ret = 0; 4777 4778 if (cow) { 4779 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src, 4780 src_vma->vm_start, 4781 src_vma->vm_end); 4782 mmu_notifier_invalidate_range_start(&range); 4783 mmap_assert_write_locked(src); 4784 raw_write_seqcount_begin(&src->write_protect_seq); 4785 } else { 4786 /* 4787 * For shared mappings the vma lock must be held before 4788 * calling huge_pte_offset in the src vma. Otherwise, the 4789 * returned ptep could go away if part of a shared pmd and 4790 * another thread calls huge_pmd_unshare. 4791 */ 4792 hugetlb_vma_lock_read(src_vma); 4793 } 4794 4795 last_addr_mask = hugetlb_mask_last_page(h); 4796 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 4797 spinlock_t *src_ptl, *dst_ptl; 4798 src_pte = huge_pte_offset(src, addr, sz); 4799 if (!src_pte) { 4800 addr |= last_addr_mask; 4801 continue; 4802 } 4803 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 4804 if (!dst_pte) { 4805 ret = -ENOMEM; 4806 break; 4807 } 4808 4809 /* 4810 * If the pagetables are shared don't copy or take references. 4811 * 4812 * dst_pte == src_pte is the common case of src/dest sharing. 4813 * However, src could have 'unshared' and dst shares with 4814 * another vma. So page_count of ptep page is checked instead 4815 * to reliably determine whether pte is shared. 4816 */ 4817 if (page_count(virt_to_page(dst_pte)) > 1) { 4818 addr |= last_addr_mask; 4819 continue; 4820 } 4821 4822 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4823 src_ptl = huge_pte_lockptr(h, src, src_pte); 4824 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4825 entry = huge_ptep_get(src_pte); 4826 again: 4827 if (huge_pte_none(entry)) { 4828 /* 4829 * Skip if src entry none. 4830 */ 4831 ; 4832 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 4833 bool uffd_wp = huge_pte_uffd_wp(entry); 4834 4835 if (!userfaultfd_wp(dst_vma) && uffd_wp) 4836 entry = huge_pte_clear_uffd_wp(entry); 4837 set_huge_pte_at(dst, addr, dst_pte, entry); 4838 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 4839 swp_entry_t swp_entry = pte_to_swp_entry(entry); 4840 bool uffd_wp = huge_pte_uffd_wp(entry); 4841 4842 if (!is_readable_migration_entry(swp_entry) && cow) { 4843 /* 4844 * COW mappings require pages in both 4845 * parent and child to be set to read. 4846 */ 4847 swp_entry = make_readable_migration_entry( 4848 swp_offset(swp_entry)); 4849 entry = swp_entry_to_pte(swp_entry); 4850 if (userfaultfd_wp(src_vma) && uffd_wp) 4851 entry = huge_pte_mkuffd_wp(entry); 4852 set_huge_pte_at(src, addr, src_pte, entry); 4853 } 4854 if (!userfaultfd_wp(dst_vma) && uffd_wp) 4855 entry = huge_pte_clear_uffd_wp(entry); 4856 set_huge_pte_at(dst, addr, dst_pte, entry); 4857 } else if (unlikely(is_pte_marker(entry))) { 4858 /* 4859 * We copy the pte marker only if the dst vma has 4860 * uffd-wp enabled. 4861 */ 4862 if (userfaultfd_wp(dst_vma)) 4863 set_huge_pte_at(dst, addr, dst_pte, entry); 4864 } else { 4865 entry = huge_ptep_get(src_pte); 4866 ptepage = pte_page(entry); 4867 get_page(ptepage); 4868 4869 /* 4870 * Failing to duplicate the anon rmap is a rare case 4871 * where we see pinned hugetlb pages while they're 4872 * prone to COW. We need to do the COW earlier during 4873 * fork. 4874 * 4875 * When pre-allocating the page or copying data, we 4876 * need to be without the pgtable locks since we could 4877 * sleep during the process. 4878 */ 4879 if (!PageAnon(ptepage)) { 4880 page_dup_file_rmap(ptepage, true); 4881 } else if (page_try_dup_anon_rmap(ptepage, true, 4882 src_vma)) { 4883 pte_t src_pte_old = entry; 4884 struct page *new; 4885 4886 spin_unlock(src_ptl); 4887 spin_unlock(dst_ptl); 4888 /* Do not use reserve as it's private owned */ 4889 new = alloc_huge_page(dst_vma, addr, 1); 4890 if (IS_ERR(new)) { 4891 put_page(ptepage); 4892 ret = PTR_ERR(new); 4893 break; 4894 } 4895 copy_user_huge_page(new, ptepage, addr, dst_vma, 4896 npages); 4897 put_page(ptepage); 4898 4899 /* Install the new huge page if src pte stable */ 4900 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4901 src_ptl = huge_pte_lockptr(h, src, src_pte); 4902 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4903 entry = huge_ptep_get(src_pte); 4904 if (!pte_same(src_pte_old, entry)) { 4905 restore_reserve_on_error(h, dst_vma, addr, 4906 new); 4907 put_page(new); 4908 /* huge_ptep of dst_pte won't change as in child */ 4909 goto again; 4910 } 4911 hugetlb_install_page(dst_vma, dst_pte, addr, new); 4912 spin_unlock(src_ptl); 4913 spin_unlock(dst_ptl); 4914 continue; 4915 } 4916 4917 if (cow) { 4918 /* 4919 * No need to notify as we are downgrading page 4920 * table protection not changing it to point 4921 * to a new page. 4922 * 4923 * See Documentation/mm/mmu_notifier.rst 4924 */ 4925 huge_ptep_set_wrprotect(src, addr, src_pte); 4926 entry = huge_pte_wrprotect(entry); 4927 } 4928 4929 set_huge_pte_at(dst, addr, dst_pte, entry); 4930 hugetlb_count_add(npages, dst); 4931 } 4932 spin_unlock(src_ptl); 4933 spin_unlock(dst_ptl); 4934 } 4935 4936 if (cow) { 4937 raw_write_seqcount_end(&src->write_protect_seq); 4938 mmu_notifier_invalidate_range_end(&range); 4939 } else { 4940 hugetlb_vma_unlock_read(src_vma); 4941 } 4942 4943 return ret; 4944 } 4945 4946 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 4947 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) 4948 { 4949 struct hstate *h = hstate_vma(vma); 4950 struct mm_struct *mm = vma->vm_mm; 4951 spinlock_t *src_ptl, *dst_ptl; 4952 pte_t pte; 4953 4954 dst_ptl = huge_pte_lock(h, mm, dst_pte); 4955 src_ptl = huge_pte_lockptr(h, mm, src_pte); 4956 4957 /* 4958 * We don't have to worry about the ordering of src and dst ptlocks 4959 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock. 4960 */ 4961 if (src_ptl != dst_ptl) 4962 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4963 4964 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 4965 set_huge_pte_at(mm, new_addr, dst_pte, pte); 4966 4967 if (src_ptl != dst_ptl) 4968 spin_unlock(src_ptl); 4969 spin_unlock(dst_ptl); 4970 } 4971 4972 int move_hugetlb_page_tables(struct vm_area_struct *vma, 4973 struct vm_area_struct *new_vma, 4974 unsigned long old_addr, unsigned long new_addr, 4975 unsigned long len) 4976 { 4977 struct hstate *h = hstate_vma(vma); 4978 struct address_space *mapping = vma->vm_file->f_mapping; 4979 unsigned long sz = huge_page_size(h); 4980 struct mm_struct *mm = vma->vm_mm; 4981 unsigned long old_end = old_addr + len; 4982 unsigned long last_addr_mask; 4983 pte_t *src_pte, *dst_pte; 4984 struct mmu_notifier_range range; 4985 bool shared_pmd = false; 4986 4987 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr, 4988 old_end); 4989 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4990 /* 4991 * In case of shared PMDs, we should cover the maximum possible 4992 * range. 4993 */ 4994 flush_cache_range(vma, range.start, range.end); 4995 4996 mmu_notifier_invalidate_range_start(&range); 4997 last_addr_mask = hugetlb_mask_last_page(h); 4998 /* Prevent race with file truncation */ 4999 hugetlb_vma_lock_write(vma); 5000 i_mmap_lock_write(mapping); 5001 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5002 src_pte = huge_pte_offset(mm, old_addr, sz); 5003 if (!src_pte) { 5004 old_addr |= last_addr_mask; 5005 new_addr |= last_addr_mask; 5006 continue; 5007 } 5008 if (huge_pte_none(huge_ptep_get(src_pte))) 5009 continue; 5010 5011 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5012 shared_pmd = true; 5013 old_addr |= last_addr_mask; 5014 new_addr |= last_addr_mask; 5015 continue; 5016 } 5017 5018 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5019 if (!dst_pte) 5020 break; 5021 5022 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); 5023 } 5024 5025 if (shared_pmd) 5026 flush_tlb_range(vma, range.start, range.end); 5027 else 5028 flush_tlb_range(vma, old_end - len, old_end); 5029 mmu_notifier_invalidate_range_end(&range); 5030 i_mmap_unlock_write(mapping); 5031 hugetlb_vma_unlock_write(vma); 5032 5033 return len + old_addr - old_end; 5034 } 5035 5036 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5037 unsigned long start, unsigned long end, 5038 struct page *ref_page, zap_flags_t zap_flags) 5039 { 5040 struct mm_struct *mm = vma->vm_mm; 5041 unsigned long address; 5042 pte_t *ptep; 5043 pte_t pte; 5044 spinlock_t *ptl; 5045 struct page *page; 5046 struct hstate *h = hstate_vma(vma); 5047 unsigned long sz = huge_page_size(h); 5048 struct mmu_notifier_range range; 5049 unsigned long last_addr_mask; 5050 bool force_flush = false; 5051 5052 WARN_ON(!is_vm_hugetlb_page(vma)); 5053 BUG_ON(start & ~huge_page_mask(h)); 5054 BUG_ON(end & ~huge_page_mask(h)); 5055 5056 /* 5057 * This is a hugetlb vma, all the pte entries should point 5058 * to huge page. 5059 */ 5060 tlb_change_page_size(tlb, sz); 5061 tlb_start_vma(tlb, vma); 5062 5063 /* 5064 * If sharing possible, alert mmu notifiers of worst case. 5065 */ 5066 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 5067 end); 5068 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5069 mmu_notifier_invalidate_range_start(&range); 5070 last_addr_mask = hugetlb_mask_last_page(h); 5071 address = start; 5072 for (; address < end; address += sz) { 5073 ptep = huge_pte_offset(mm, address, sz); 5074 if (!ptep) { 5075 address |= last_addr_mask; 5076 continue; 5077 } 5078 5079 ptl = huge_pte_lock(h, mm, ptep); 5080 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5081 spin_unlock(ptl); 5082 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5083 force_flush = true; 5084 address |= last_addr_mask; 5085 continue; 5086 } 5087 5088 pte = huge_ptep_get(ptep); 5089 if (huge_pte_none(pte)) { 5090 spin_unlock(ptl); 5091 continue; 5092 } 5093 5094 /* 5095 * Migrating hugepage or HWPoisoned hugepage is already 5096 * unmapped and its refcount is dropped, so just clear pte here. 5097 */ 5098 if (unlikely(!pte_present(pte))) { 5099 #ifdef CONFIG_PTE_MARKER_UFFD_WP 5100 /* 5101 * If the pte was wr-protected by uffd-wp in any of the 5102 * swap forms, meanwhile the caller does not want to 5103 * drop the uffd-wp bit in this zap, then replace the 5104 * pte with a marker. 5105 */ 5106 if (pte_swp_uffd_wp_any(pte) && 5107 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5108 set_huge_pte_at(mm, address, ptep, 5109 make_pte_marker(PTE_MARKER_UFFD_WP)); 5110 else 5111 #endif 5112 huge_pte_clear(mm, address, ptep, sz); 5113 spin_unlock(ptl); 5114 continue; 5115 } 5116 5117 page = pte_page(pte); 5118 /* 5119 * If a reference page is supplied, it is because a specific 5120 * page is being unmapped, not a range. Ensure the page we 5121 * are about to unmap is the actual page of interest. 5122 */ 5123 if (ref_page) { 5124 if (page != ref_page) { 5125 spin_unlock(ptl); 5126 continue; 5127 } 5128 /* 5129 * Mark the VMA as having unmapped its page so that 5130 * future faults in this VMA will fail rather than 5131 * looking like data was lost 5132 */ 5133 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5134 } 5135 5136 pte = huge_ptep_get_and_clear(mm, address, ptep); 5137 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5138 if (huge_pte_dirty(pte)) 5139 set_page_dirty(page); 5140 #ifdef CONFIG_PTE_MARKER_UFFD_WP 5141 /* Leave a uffd-wp pte marker if needed */ 5142 if (huge_pte_uffd_wp(pte) && 5143 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5144 set_huge_pte_at(mm, address, ptep, 5145 make_pte_marker(PTE_MARKER_UFFD_WP)); 5146 #endif 5147 hugetlb_count_sub(pages_per_huge_page(h), mm); 5148 page_remove_rmap(page, vma, true); 5149 5150 spin_unlock(ptl); 5151 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5152 /* 5153 * Bail out after unmapping reference page if supplied 5154 */ 5155 if (ref_page) 5156 break; 5157 } 5158 mmu_notifier_invalidate_range_end(&range); 5159 tlb_end_vma(tlb, vma); 5160 5161 /* 5162 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5163 * could defer the flush until now, since by holding i_mmap_rwsem we 5164 * guaranteed that the last refernece would not be dropped. But we must 5165 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5166 * dropped and the last reference to the shared PMDs page might be 5167 * dropped as well. 5168 * 5169 * In theory we could defer the freeing of the PMD pages as well, but 5170 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5171 * detect sharing, so we cannot defer the release of the page either. 5172 * Instead, do flush now. 5173 */ 5174 if (force_flush) 5175 tlb_flush_mmu_tlbonly(tlb); 5176 } 5177 5178 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5179 struct vm_area_struct *vma, unsigned long start, 5180 unsigned long end, struct page *ref_page, 5181 zap_flags_t zap_flags) 5182 { 5183 hugetlb_vma_lock_write(vma); 5184 i_mmap_lock_write(vma->vm_file->f_mapping); 5185 5186 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); 5187 5188 /* 5189 * Unlock and free the vma lock before releasing i_mmap_rwsem. When 5190 * the vma_lock is freed, this makes the vma ineligible for pmd 5191 * sharing. And, i_mmap_rwsem is required to set up pmd sharing. 5192 * This is important as page tables for this unmapped range will 5193 * be asynchrously deleted. If the page tables are shared, there 5194 * will be issues when accessed by someone else. 5195 */ 5196 __hugetlb_vma_unlock_write_free(vma); 5197 5198 i_mmap_unlock_write(vma->vm_file->f_mapping); 5199 } 5200 5201 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5202 unsigned long end, struct page *ref_page, 5203 zap_flags_t zap_flags) 5204 { 5205 struct mmu_gather tlb; 5206 5207 tlb_gather_mmu(&tlb, vma->vm_mm); 5208 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5209 tlb_finish_mmu(&tlb); 5210 } 5211 5212 /* 5213 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5214 * mapping it owns the reserve page for. The intention is to unmap the page 5215 * from other VMAs and let the children be SIGKILLed if they are faulting the 5216 * same region. 5217 */ 5218 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5219 struct page *page, unsigned long address) 5220 { 5221 struct hstate *h = hstate_vma(vma); 5222 struct vm_area_struct *iter_vma; 5223 struct address_space *mapping; 5224 pgoff_t pgoff; 5225 5226 /* 5227 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5228 * from page cache lookup which is in HPAGE_SIZE units. 5229 */ 5230 address = address & huge_page_mask(h); 5231 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5232 vma->vm_pgoff; 5233 mapping = vma->vm_file->f_mapping; 5234 5235 /* 5236 * Take the mapping lock for the duration of the table walk. As 5237 * this mapping should be shared between all the VMAs, 5238 * __unmap_hugepage_range() is called as the lock is already held 5239 */ 5240 i_mmap_lock_write(mapping); 5241 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5242 /* Do not unmap the current VMA */ 5243 if (iter_vma == vma) 5244 continue; 5245 5246 /* 5247 * Shared VMAs have their own reserves and do not affect 5248 * MAP_PRIVATE accounting but it is possible that a shared 5249 * VMA is using the same page so check and skip such VMAs. 5250 */ 5251 if (iter_vma->vm_flags & VM_MAYSHARE) 5252 continue; 5253 5254 /* 5255 * Unmap the page from other VMAs without their own reserves. 5256 * They get marked to be SIGKILLed if they fault in these 5257 * areas. This is because a future no-page fault on this VMA 5258 * could insert a zeroed page instead of the data existing 5259 * from the time of fork. This would look like data corruption 5260 */ 5261 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5262 unmap_hugepage_range(iter_vma, address, 5263 address + huge_page_size(h), page, 0); 5264 } 5265 i_mmap_unlock_write(mapping); 5266 } 5267 5268 /* 5269 * hugetlb_wp() should be called with page lock of the original hugepage held. 5270 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5271 * cannot race with other handlers or page migration. 5272 * Keep the pte_same checks anyway to make transition from the mutex easier. 5273 */ 5274 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5275 unsigned long address, pte_t *ptep, unsigned int flags, 5276 struct page *pagecache_page, spinlock_t *ptl) 5277 { 5278 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5279 pte_t pte; 5280 struct hstate *h = hstate_vma(vma); 5281 struct page *old_page, *new_page; 5282 int outside_reserve = 0; 5283 vm_fault_t ret = 0; 5284 unsigned long haddr = address & huge_page_mask(h); 5285 struct mmu_notifier_range range; 5286 5287 VM_BUG_ON(unshare && (flags & FOLL_WRITE)); 5288 VM_BUG_ON(!unshare && !(flags & FOLL_WRITE)); 5289 5290 /* 5291 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5292 * PTE mapped R/O such as maybe_mkwrite() would do. 5293 */ 5294 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5295 return VM_FAULT_SIGSEGV; 5296 5297 /* Let's take out MAP_SHARED mappings first. */ 5298 if (vma->vm_flags & VM_MAYSHARE) { 5299 if (unlikely(unshare)) 5300 return 0; 5301 set_huge_ptep_writable(vma, haddr, ptep); 5302 return 0; 5303 } 5304 5305 pte = huge_ptep_get(ptep); 5306 old_page = pte_page(pte); 5307 5308 delayacct_wpcopy_start(); 5309 5310 retry_avoidcopy: 5311 /* 5312 * If no-one else is actually using this page, we're the exclusive 5313 * owner and can reuse this page. 5314 */ 5315 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 5316 if (!PageAnonExclusive(old_page)) 5317 page_move_anon_rmap(old_page, vma); 5318 if (likely(!unshare)) 5319 set_huge_ptep_writable(vma, haddr, ptep); 5320 5321 delayacct_wpcopy_end(); 5322 return 0; 5323 } 5324 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page), 5325 old_page); 5326 5327 /* 5328 * If the process that created a MAP_PRIVATE mapping is about to 5329 * perform a COW due to a shared page count, attempt to satisfy 5330 * the allocation without using the existing reserves. The pagecache 5331 * page is used to determine if the reserve at this address was 5332 * consumed or not. If reserves were used, a partial faulted mapping 5333 * at the time of fork() could consume its reserves on COW instead 5334 * of the full address range. 5335 */ 5336 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5337 old_page != pagecache_page) 5338 outside_reserve = 1; 5339 5340 get_page(old_page); 5341 5342 /* 5343 * Drop page table lock as buddy allocator may be called. It will 5344 * be acquired again before returning to the caller, as expected. 5345 */ 5346 spin_unlock(ptl); 5347 new_page = alloc_huge_page(vma, haddr, outside_reserve); 5348 5349 if (IS_ERR(new_page)) { 5350 /* 5351 * If a process owning a MAP_PRIVATE mapping fails to COW, 5352 * it is due to references held by a child and an insufficient 5353 * huge page pool. To guarantee the original mappers 5354 * reliability, unmap the page from child processes. The child 5355 * may get SIGKILLed if it later faults. 5356 */ 5357 if (outside_reserve) { 5358 struct address_space *mapping = vma->vm_file->f_mapping; 5359 pgoff_t idx; 5360 u32 hash; 5361 5362 put_page(old_page); 5363 /* 5364 * Drop hugetlb_fault_mutex and vma_lock before 5365 * unmapping. unmapping needs to hold vma_lock 5366 * in write mode. Dropping vma_lock in read mode 5367 * here is OK as COW mappings do not interact with 5368 * PMD sharing. 5369 * 5370 * Reacquire both after unmap operation. 5371 */ 5372 idx = vma_hugecache_offset(h, vma, haddr); 5373 hash = hugetlb_fault_mutex_hash(mapping, idx); 5374 hugetlb_vma_unlock_read(vma); 5375 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5376 5377 unmap_ref_private(mm, vma, old_page, haddr); 5378 5379 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5380 hugetlb_vma_lock_read(vma); 5381 spin_lock(ptl); 5382 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5383 if (likely(ptep && 5384 pte_same(huge_ptep_get(ptep), pte))) 5385 goto retry_avoidcopy; 5386 /* 5387 * race occurs while re-acquiring page table 5388 * lock, and our job is done. 5389 */ 5390 delayacct_wpcopy_end(); 5391 return 0; 5392 } 5393 5394 ret = vmf_error(PTR_ERR(new_page)); 5395 goto out_release_old; 5396 } 5397 5398 /* 5399 * When the original hugepage is shared one, it does not have 5400 * anon_vma prepared. 5401 */ 5402 if (unlikely(anon_vma_prepare(vma))) { 5403 ret = VM_FAULT_OOM; 5404 goto out_release_all; 5405 } 5406 5407 copy_user_huge_page(new_page, old_page, address, vma, 5408 pages_per_huge_page(h)); 5409 __SetPageUptodate(new_page); 5410 5411 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 5412 haddr + huge_page_size(h)); 5413 mmu_notifier_invalidate_range_start(&range); 5414 5415 /* 5416 * Retake the page table lock to check for racing updates 5417 * before the page tables are altered 5418 */ 5419 spin_lock(ptl); 5420 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5421 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5422 ClearHPageRestoreReserve(new_page); 5423 5424 /* Break COW or unshare */ 5425 huge_ptep_clear_flush(vma, haddr, ptep); 5426 mmu_notifier_invalidate_range(mm, range.start, range.end); 5427 page_remove_rmap(old_page, vma, true); 5428 hugepage_add_new_anon_rmap(new_page, vma, haddr); 5429 set_huge_pte_at(mm, haddr, ptep, 5430 make_huge_pte(vma, new_page, !unshare)); 5431 SetHPageMigratable(new_page); 5432 /* Make the old page be freed below */ 5433 new_page = old_page; 5434 } 5435 spin_unlock(ptl); 5436 mmu_notifier_invalidate_range_end(&range); 5437 out_release_all: 5438 /* 5439 * No restore in case of successful pagetable update (Break COW or 5440 * unshare) 5441 */ 5442 if (new_page != old_page) 5443 restore_reserve_on_error(h, vma, haddr, new_page); 5444 put_page(new_page); 5445 out_release_old: 5446 put_page(old_page); 5447 5448 spin_lock(ptl); /* Caller expects lock to be held */ 5449 5450 delayacct_wpcopy_end(); 5451 return ret; 5452 } 5453 5454 /* 5455 * Return whether there is a pagecache page to back given address within VMA. 5456 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 5457 */ 5458 static bool hugetlbfs_pagecache_present(struct hstate *h, 5459 struct vm_area_struct *vma, unsigned long address) 5460 { 5461 struct address_space *mapping; 5462 pgoff_t idx; 5463 struct page *page; 5464 5465 mapping = vma->vm_file->f_mapping; 5466 idx = vma_hugecache_offset(h, vma, address); 5467 5468 page = find_get_page(mapping, idx); 5469 if (page) 5470 put_page(page); 5471 return page != NULL; 5472 } 5473 5474 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping, 5475 pgoff_t idx) 5476 { 5477 struct folio *folio = page_folio(page); 5478 struct inode *inode = mapping->host; 5479 struct hstate *h = hstate_inode(inode); 5480 int err; 5481 5482 __folio_set_locked(folio); 5483 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5484 5485 if (unlikely(err)) { 5486 __folio_clear_locked(folio); 5487 return err; 5488 } 5489 ClearHPageRestoreReserve(page); 5490 5491 /* 5492 * mark folio dirty so that it will not be removed from cache/file 5493 * by non-hugetlbfs specific code paths. 5494 */ 5495 folio_mark_dirty(folio); 5496 5497 spin_lock(&inode->i_lock); 5498 inode->i_blocks += blocks_per_huge_page(h); 5499 spin_unlock(&inode->i_lock); 5500 return 0; 5501 } 5502 5503 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5504 struct address_space *mapping, 5505 pgoff_t idx, 5506 unsigned int flags, 5507 unsigned long haddr, 5508 unsigned long addr, 5509 unsigned long reason) 5510 { 5511 u32 hash; 5512 struct vm_fault vmf = { 5513 .vma = vma, 5514 .address = haddr, 5515 .real_address = addr, 5516 .flags = flags, 5517 5518 /* 5519 * Hard to debug if it ends up being 5520 * used by a callee that assumes 5521 * something about the other 5522 * uninitialized fields... same as in 5523 * memory.c 5524 */ 5525 }; 5526 5527 /* 5528 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5529 * userfault. Also mmap_lock could be dropped due to handling 5530 * userfault, any vma operation should be careful from here. 5531 */ 5532 hugetlb_vma_unlock_read(vma); 5533 hash = hugetlb_fault_mutex_hash(mapping, idx); 5534 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5535 return handle_userfault(&vmf, reason); 5536 } 5537 5538 /* 5539 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5540 * false if pte changed or is changing. 5541 */ 5542 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 5543 pte_t *ptep, pte_t old_pte) 5544 { 5545 spinlock_t *ptl; 5546 bool same; 5547 5548 ptl = huge_pte_lock(h, mm, ptep); 5549 same = pte_same(huge_ptep_get(ptep), old_pte); 5550 spin_unlock(ptl); 5551 5552 return same; 5553 } 5554 5555 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5556 struct vm_area_struct *vma, 5557 struct address_space *mapping, pgoff_t idx, 5558 unsigned long address, pte_t *ptep, 5559 pte_t old_pte, unsigned int flags) 5560 { 5561 struct hstate *h = hstate_vma(vma); 5562 vm_fault_t ret = VM_FAULT_SIGBUS; 5563 int anon_rmap = 0; 5564 unsigned long size; 5565 struct page *page; 5566 pte_t new_pte; 5567 spinlock_t *ptl; 5568 unsigned long haddr = address & huge_page_mask(h); 5569 bool new_page, new_pagecache_page = false; 5570 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 5571 5572 /* 5573 * Currently, we are forced to kill the process in the event the 5574 * original mapper has unmapped pages from the child due to a failed 5575 * COW/unsharing. Warn that such a situation has occurred as it may not 5576 * be obvious. 5577 */ 5578 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5579 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5580 current->pid); 5581 goto out; 5582 } 5583 5584 /* 5585 * Use page lock to guard against racing truncation 5586 * before we get page_table_lock. 5587 */ 5588 new_page = false; 5589 page = find_lock_page(mapping, idx); 5590 if (!page) { 5591 size = i_size_read(mapping->host) >> huge_page_shift(h); 5592 if (idx >= size) 5593 goto out; 5594 /* Check for page in userfault range */ 5595 if (userfaultfd_missing(vma)) { 5596 /* 5597 * Since hugetlb_no_page() was examining pte 5598 * without pgtable lock, we need to re-test under 5599 * lock because the pte may not be stable and could 5600 * have changed from under us. Try to detect 5601 * either changed or during-changing ptes and retry 5602 * properly when needed. 5603 * 5604 * Note that userfaultfd is actually fine with 5605 * false positives (e.g. caused by pte changed), 5606 * but not wrong logical events (e.g. caused by 5607 * reading a pte during changing). The latter can 5608 * confuse the userspace, so the strictness is very 5609 * much preferred. E.g., MISSING event should 5610 * never happen on the page after UFFDIO_COPY has 5611 * correctly installed the page and returned. 5612 */ 5613 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5614 ret = 0; 5615 goto out; 5616 } 5617 5618 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5619 haddr, address, 5620 VM_UFFD_MISSING); 5621 } 5622 5623 page = alloc_huge_page(vma, haddr, 0); 5624 if (IS_ERR(page)) { 5625 /* 5626 * Returning error will result in faulting task being 5627 * sent SIGBUS. The hugetlb fault mutex prevents two 5628 * tasks from racing to fault in the same page which 5629 * could result in false unable to allocate errors. 5630 * Page migration does not take the fault mutex, but 5631 * does a clear then write of pte's under page table 5632 * lock. Page fault code could race with migration, 5633 * notice the clear pte and try to allocate a page 5634 * here. Before returning error, get ptl and make 5635 * sure there really is no pte entry. 5636 */ 5637 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 5638 ret = vmf_error(PTR_ERR(page)); 5639 else 5640 ret = 0; 5641 goto out; 5642 } 5643 clear_huge_page(page, address, pages_per_huge_page(h)); 5644 __SetPageUptodate(page); 5645 new_page = true; 5646 5647 if (vma->vm_flags & VM_MAYSHARE) { 5648 int err = hugetlb_add_to_page_cache(page, mapping, idx); 5649 if (err) { 5650 /* 5651 * err can't be -EEXIST which implies someone 5652 * else consumed the reservation since hugetlb 5653 * fault mutex is held when add a hugetlb page 5654 * to the page cache. So it's safe to call 5655 * restore_reserve_on_error() here. 5656 */ 5657 restore_reserve_on_error(h, vma, haddr, page); 5658 put_page(page); 5659 goto out; 5660 } 5661 new_pagecache_page = true; 5662 } else { 5663 lock_page(page); 5664 if (unlikely(anon_vma_prepare(vma))) { 5665 ret = VM_FAULT_OOM; 5666 goto backout_unlocked; 5667 } 5668 anon_rmap = 1; 5669 } 5670 } else { 5671 /* 5672 * If memory error occurs between mmap() and fault, some process 5673 * don't have hwpoisoned swap entry for errored virtual address. 5674 * So we need to block hugepage fault by PG_hwpoison bit check. 5675 */ 5676 if (unlikely(PageHWPoison(page))) { 5677 ret = VM_FAULT_HWPOISON_LARGE | 5678 VM_FAULT_SET_HINDEX(hstate_index(h)); 5679 goto backout_unlocked; 5680 } 5681 5682 /* Check for page in userfault range. */ 5683 if (userfaultfd_minor(vma)) { 5684 unlock_page(page); 5685 put_page(page); 5686 /* See comment in userfaultfd_missing() block above */ 5687 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5688 ret = 0; 5689 goto out; 5690 } 5691 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5692 haddr, address, 5693 VM_UFFD_MINOR); 5694 } 5695 } 5696 5697 /* 5698 * If we are going to COW a private mapping later, we examine the 5699 * pending reservations for this page now. This will ensure that 5700 * any allocations necessary to record that reservation occur outside 5701 * the spinlock. 5702 */ 5703 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5704 if (vma_needs_reservation(h, vma, haddr) < 0) { 5705 ret = VM_FAULT_OOM; 5706 goto backout_unlocked; 5707 } 5708 /* Just decrements count, does not deallocate */ 5709 vma_end_reservation(h, vma, haddr); 5710 } 5711 5712 ptl = huge_pte_lock(h, mm, ptep); 5713 ret = 0; 5714 /* If pte changed from under us, retry */ 5715 if (!pte_same(huge_ptep_get(ptep), old_pte)) 5716 goto backout; 5717 5718 if (anon_rmap) { 5719 ClearHPageRestoreReserve(page); 5720 hugepage_add_new_anon_rmap(page, vma, haddr); 5721 } else 5722 page_dup_file_rmap(page, true); 5723 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 5724 && (vma->vm_flags & VM_SHARED))); 5725 /* 5726 * If this pte was previously wr-protected, keep it wr-protected even 5727 * if populated. 5728 */ 5729 if (unlikely(pte_marker_uffd_wp(old_pte))) 5730 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte)); 5731 set_huge_pte_at(mm, haddr, ptep, new_pte); 5732 5733 hugetlb_count_add(pages_per_huge_page(h), mm); 5734 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5735 /* Optimization, do the COW without a second fault */ 5736 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl); 5737 } 5738 5739 spin_unlock(ptl); 5740 5741 /* 5742 * Only set HPageMigratable in newly allocated pages. Existing pages 5743 * found in the pagecache may not have HPageMigratableset if they have 5744 * been isolated for migration. 5745 */ 5746 if (new_page) 5747 SetHPageMigratable(page); 5748 5749 unlock_page(page); 5750 out: 5751 hugetlb_vma_unlock_read(vma); 5752 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5753 return ret; 5754 5755 backout: 5756 spin_unlock(ptl); 5757 backout_unlocked: 5758 if (new_page && !new_pagecache_page) 5759 restore_reserve_on_error(h, vma, haddr, page); 5760 5761 unlock_page(page); 5762 put_page(page); 5763 goto out; 5764 } 5765 5766 #ifdef CONFIG_SMP 5767 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5768 { 5769 unsigned long key[2]; 5770 u32 hash; 5771 5772 key[0] = (unsigned long) mapping; 5773 key[1] = idx; 5774 5775 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 5776 5777 return hash & (num_fault_mutexes - 1); 5778 } 5779 #else 5780 /* 5781 * For uniprocessor systems we always use a single mutex, so just 5782 * return 0 and avoid the hashing overhead. 5783 */ 5784 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5785 { 5786 return 0; 5787 } 5788 #endif 5789 5790 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 5791 unsigned long address, unsigned int flags) 5792 { 5793 pte_t *ptep, entry; 5794 spinlock_t *ptl; 5795 vm_fault_t ret; 5796 u32 hash; 5797 pgoff_t idx; 5798 struct page *page = NULL; 5799 struct page *pagecache_page = NULL; 5800 struct hstate *h = hstate_vma(vma); 5801 struct address_space *mapping; 5802 int need_wait_lock = 0; 5803 unsigned long haddr = address & huge_page_mask(h); 5804 5805 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5806 if (ptep) { 5807 /* 5808 * Since we hold no locks, ptep could be stale. That is 5809 * OK as we are only making decisions based on content and 5810 * not actually modifying content here. 5811 */ 5812 entry = huge_ptep_get(ptep); 5813 if (unlikely(is_hugetlb_entry_migration(entry))) { 5814 migration_entry_wait_huge(vma, ptep); 5815 return 0; 5816 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 5817 return VM_FAULT_HWPOISON_LARGE | 5818 VM_FAULT_SET_HINDEX(hstate_index(h)); 5819 } 5820 5821 /* 5822 * Serialize hugepage allocation and instantiation, so that we don't 5823 * get spurious allocation failures if two CPUs race to instantiate 5824 * the same page in the page cache. 5825 */ 5826 mapping = vma->vm_file->f_mapping; 5827 idx = vma_hugecache_offset(h, vma, haddr); 5828 hash = hugetlb_fault_mutex_hash(mapping, idx); 5829 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5830 5831 /* 5832 * Acquire vma lock before calling huge_pte_alloc and hold 5833 * until finished with ptep. This prevents huge_pmd_unshare from 5834 * being called elsewhere and making the ptep no longer valid. 5835 * 5836 * ptep could have already be assigned via huge_pte_offset. That 5837 * is OK, as huge_pte_alloc will return the same value unless 5838 * something has changed. 5839 */ 5840 hugetlb_vma_lock_read(vma); 5841 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 5842 if (!ptep) { 5843 hugetlb_vma_unlock_read(vma); 5844 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5845 return VM_FAULT_OOM; 5846 } 5847 5848 entry = huge_ptep_get(ptep); 5849 /* PTE markers should be handled the same way as none pte */ 5850 if (huge_pte_none_mostly(entry)) 5851 /* 5852 * hugetlb_no_page will drop vma lock and hugetlb fault 5853 * mutex internally, which make us return immediately. 5854 */ 5855 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 5856 entry, flags); 5857 5858 ret = 0; 5859 5860 /* 5861 * entry could be a migration/hwpoison entry at this point, so this 5862 * check prevents the kernel from going below assuming that we have 5863 * an active hugepage in pagecache. This goto expects the 2nd page 5864 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 5865 * properly handle it. 5866 */ 5867 if (!pte_present(entry)) 5868 goto out_mutex; 5869 5870 /* 5871 * If we are going to COW/unshare the mapping later, we examine the 5872 * pending reservations for this page now. This will ensure that any 5873 * allocations necessary to record that reservation occur outside the 5874 * spinlock. Also lookup the pagecache page now as it is used to 5875 * determine if a reservation has been consumed. 5876 */ 5877 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5878 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 5879 if (vma_needs_reservation(h, vma, haddr) < 0) { 5880 ret = VM_FAULT_OOM; 5881 goto out_mutex; 5882 } 5883 /* Just decrements count, does not deallocate */ 5884 vma_end_reservation(h, vma, haddr); 5885 5886 pagecache_page = find_lock_page(mapping, idx); 5887 } 5888 5889 ptl = huge_pte_lock(h, mm, ptep); 5890 5891 /* Check for a racing update before calling hugetlb_wp() */ 5892 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 5893 goto out_ptl; 5894 5895 /* Handle userfault-wp first, before trying to lock more pages */ 5896 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 5897 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 5898 struct vm_fault vmf = { 5899 .vma = vma, 5900 .address = haddr, 5901 .real_address = address, 5902 .flags = flags, 5903 }; 5904 5905 spin_unlock(ptl); 5906 if (pagecache_page) { 5907 unlock_page(pagecache_page); 5908 put_page(pagecache_page); 5909 } 5910 hugetlb_vma_unlock_read(vma); 5911 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5912 return handle_userfault(&vmf, VM_UFFD_WP); 5913 } 5914 5915 /* 5916 * hugetlb_wp() requires page locks of pte_page(entry) and 5917 * pagecache_page, so here we need take the former one 5918 * when page != pagecache_page or !pagecache_page. 5919 */ 5920 page = pte_page(entry); 5921 if (page != pagecache_page) 5922 if (!trylock_page(page)) { 5923 need_wait_lock = 1; 5924 goto out_ptl; 5925 } 5926 5927 get_page(page); 5928 5929 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5930 if (!huge_pte_write(entry)) { 5931 ret = hugetlb_wp(mm, vma, address, ptep, flags, 5932 pagecache_page, ptl); 5933 goto out_put_page; 5934 } else if (likely(flags & FAULT_FLAG_WRITE)) { 5935 entry = huge_pte_mkdirty(entry); 5936 } 5937 } 5938 entry = pte_mkyoung(entry); 5939 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 5940 flags & FAULT_FLAG_WRITE)) 5941 update_mmu_cache(vma, haddr, ptep); 5942 out_put_page: 5943 if (page != pagecache_page) 5944 unlock_page(page); 5945 put_page(page); 5946 out_ptl: 5947 spin_unlock(ptl); 5948 5949 if (pagecache_page) { 5950 unlock_page(pagecache_page); 5951 put_page(pagecache_page); 5952 } 5953 out_mutex: 5954 hugetlb_vma_unlock_read(vma); 5955 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5956 /* 5957 * Generally it's safe to hold refcount during waiting page lock. But 5958 * here we just wait to defer the next page fault to avoid busy loop and 5959 * the page is not used after unlocked before returning from the current 5960 * page fault. So we are safe from accessing freed page, even if we wait 5961 * here without taking refcount. 5962 */ 5963 if (need_wait_lock) 5964 wait_on_page_locked(page); 5965 return ret; 5966 } 5967 5968 #ifdef CONFIG_USERFAULTFD 5969 /* 5970 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 5971 * modifications for huge pages. 5972 */ 5973 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 5974 pte_t *dst_pte, 5975 struct vm_area_struct *dst_vma, 5976 unsigned long dst_addr, 5977 unsigned long src_addr, 5978 enum mcopy_atomic_mode mode, 5979 struct page **pagep, 5980 bool wp_copy) 5981 { 5982 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 5983 struct hstate *h = hstate_vma(dst_vma); 5984 struct address_space *mapping = dst_vma->vm_file->f_mapping; 5985 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 5986 unsigned long size; 5987 int vm_shared = dst_vma->vm_flags & VM_SHARED; 5988 pte_t _dst_pte; 5989 spinlock_t *ptl; 5990 int ret = -ENOMEM; 5991 struct page *page; 5992 int writable; 5993 bool page_in_pagecache = false; 5994 5995 if (is_continue) { 5996 ret = -EFAULT; 5997 page = find_lock_page(mapping, idx); 5998 if (!page) 5999 goto out; 6000 page_in_pagecache = true; 6001 } else if (!*pagep) { 6002 /* If a page already exists, then it's UFFDIO_COPY for 6003 * a non-missing case. Return -EEXIST. 6004 */ 6005 if (vm_shared && 6006 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6007 ret = -EEXIST; 6008 goto out; 6009 } 6010 6011 page = alloc_huge_page(dst_vma, dst_addr, 0); 6012 if (IS_ERR(page)) { 6013 ret = -ENOMEM; 6014 goto out; 6015 } 6016 6017 ret = copy_huge_page_from_user(page, 6018 (const void __user *) src_addr, 6019 pages_per_huge_page(h), false); 6020 6021 /* fallback to copy_from_user outside mmap_lock */ 6022 if (unlikely(ret)) { 6023 ret = -ENOENT; 6024 /* Free the allocated page which may have 6025 * consumed a reservation. 6026 */ 6027 restore_reserve_on_error(h, dst_vma, dst_addr, page); 6028 put_page(page); 6029 6030 /* Allocate a temporary page to hold the copied 6031 * contents. 6032 */ 6033 page = alloc_huge_page_vma(h, dst_vma, dst_addr); 6034 if (!page) { 6035 ret = -ENOMEM; 6036 goto out; 6037 } 6038 *pagep = page; 6039 /* Set the outparam pagep and return to the caller to 6040 * copy the contents outside the lock. Don't free the 6041 * page. 6042 */ 6043 goto out; 6044 } 6045 } else { 6046 if (vm_shared && 6047 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6048 put_page(*pagep); 6049 ret = -EEXIST; 6050 *pagep = NULL; 6051 goto out; 6052 } 6053 6054 page = alloc_huge_page(dst_vma, dst_addr, 0); 6055 if (IS_ERR(page)) { 6056 put_page(*pagep); 6057 ret = -ENOMEM; 6058 *pagep = NULL; 6059 goto out; 6060 } 6061 copy_user_huge_page(page, *pagep, dst_addr, dst_vma, 6062 pages_per_huge_page(h)); 6063 put_page(*pagep); 6064 *pagep = NULL; 6065 } 6066 6067 /* 6068 * The memory barrier inside __SetPageUptodate makes sure that 6069 * preceding stores to the page contents become visible before 6070 * the set_pte_at() write. 6071 */ 6072 __SetPageUptodate(page); 6073 6074 /* Add shared, newly allocated pages to the page cache. */ 6075 if (vm_shared && !is_continue) { 6076 size = i_size_read(mapping->host) >> huge_page_shift(h); 6077 ret = -EFAULT; 6078 if (idx >= size) 6079 goto out_release_nounlock; 6080 6081 /* 6082 * Serialization between remove_inode_hugepages() and 6083 * hugetlb_add_to_page_cache() below happens through the 6084 * hugetlb_fault_mutex_table that here must be hold by 6085 * the caller. 6086 */ 6087 ret = hugetlb_add_to_page_cache(page, mapping, idx); 6088 if (ret) 6089 goto out_release_nounlock; 6090 page_in_pagecache = true; 6091 } 6092 6093 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6094 6095 /* 6096 * We allow to overwrite a pte marker: consider when both MISSING|WP 6097 * registered, we firstly wr-protect a none pte which has no page cache 6098 * page backing it, then access the page. 6099 */ 6100 ret = -EEXIST; 6101 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6102 goto out_release_unlock; 6103 6104 if (page_in_pagecache) { 6105 page_dup_file_rmap(page, true); 6106 } else { 6107 ClearHPageRestoreReserve(page); 6108 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 6109 } 6110 6111 /* 6112 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6113 * with wp flag set, don't set pte write bit. 6114 */ 6115 if (wp_copy || (is_continue && !vm_shared)) 6116 writable = 0; 6117 else 6118 writable = dst_vma->vm_flags & VM_WRITE; 6119 6120 _dst_pte = make_huge_pte(dst_vma, page, writable); 6121 /* 6122 * Always mark UFFDIO_COPY page dirty; note that this may not be 6123 * extremely important for hugetlbfs for now since swapping is not 6124 * supported, but we should still be clear in that this page cannot be 6125 * thrown away at will, even if write bit not set. 6126 */ 6127 _dst_pte = huge_pte_mkdirty(_dst_pte); 6128 _dst_pte = pte_mkyoung(_dst_pte); 6129 6130 if (wp_copy) 6131 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6132 6133 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 6134 6135 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6136 6137 /* No need to invalidate - it was non-present before */ 6138 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6139 6140 spin_unlock(ptl); 6141 if (!is_continue) 6142 SetHPageMigratable(page); 6143 if (vm_shared || is_continue) 6144 unlock_page(page); 6145 ret = 0; 6146 out: 6147 return ret; 6148 out_release_unlock: 6149 spin_unlock(ptl); 6150 if (vm_shared || is_continue) 6151 unlock_page(page); 6152 out_release_nounlock: 6153 if (!page_in_pagecache) 6154 restore_reserve_on_error(h, dst_vma, dst_addr, page); 6155 put_page(page); 6156 goto out; 6157 } 6158 #endif /* CONFIG_USERFAULTFD */ 6159 6160 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 6161 int refs, struct page **pages, 6162 struct vm_area_struct **vmas) 6163 { 6164 int nr; 6165 6166 for (nr = 0; nr < refs; nr++) { 6167 if (likely(pages)) 6168 pages[nr] = nth_page(page, nr); 6169 if (vmas) 6170 vmas[nr] = vma; 6171 } 6172 } 6173 6174 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte, 6175 bool *unshare) 6176 { 6177 pte_t pteval = huge_ptep_get(pte); 6178 6179 *unshare = false; 6180 if (is_swap_pte(pteval)) 6181 return true; 6182 if (huge_pte_write(pteval)) 6183 return false; 6184 if (flags & FOLL_WRITE) 6185 return true; 6186 if (gup_must_unshare(flags, pte_page(pteval))) { 6187 *unshare = true; 6188 return true; 6189 } 6190 return false; 6191 } 6192 6193 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 6194 struct page **pages, struct vm_area_struct **vmas, 6195 unsigned long *position, unsigned long *nr_pages, 6196 long i, unsigned int flags, int *locked) 6197 { 6198 unsigned long pfn_offset; 6199 unsigned long vaddr = *position; 6200 unsigned long remainder = *nr_pages; 6201 struct hstate *h = hstate_vma(vma); 6202 int err = -EFAULT, refs; 6203 6204 while (vaddr < vma->vm_end && remainder) { 6205 pte_t *pte; 6206 spinlock_t *ptl = NULL; 6207 bool unshare = false; 6208 int absent; 6209 struct page *page; 6210 6211 /* 6212 * If we have a pending SIGKILL, don't keep faulting pages and 6213 * potentially allocating memory. 6214 */ 6215 if (fatal_signal_pending(current)) { 6216 remainder = 0; 6217 break; 6218 } 6219 6220 /* 6221 * Some archs (sparc64, sh*) have multiple pte_ts to 6222 * each hugepage. We have to make sure we get the 6223 * first, for the page indexing below to work. 6224 * 6225 * Note that page table lock is not held when pte is null. 6226 */ 6227 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 6228 huge_page_size(h)); 6229 if (pte) 6230 ptl = huge_pte_lock(h, mm, pte); 6231 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 6232 6233 /* 6234 * When coredumping, it suits get_dump_page if we just return 6235 * an error where there's an empty slot with no huge pagecache 6236 * to back it. This way, we avoid allocating a hugepage, and 6237 * the sparse dumpfile avoids allocating disk blocks, but its 6238 * huge holes still show up with zeroes where they need to be. 6239 */ 6240 if (absent && (flags & FOLL_DUMP) && 6241 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 6242 if (pte) 6243 spin_unlock(ptl); 6244 remainder = 0; 6245 break; 6246 } 6247 6248 /* 6249 * We need call hugetlb_fault for both hugepages under migration 6250 * (in which case hugetlb_fault waits for the migration,) and 6251 * hwpoisoned hugepages (in which case we need to prevent the 6252 * caller from accessing to them.) In order to do this, we use 6253 * here is_swap_pte instead of is_hugetlb_entry_migration and 6254 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 6255 * both cases, and because we can't follow correct pages 6256 * directly from any kind of swap entries. 6257 */ 6258 if (absent || 6259 __follow_hugetlb_must_fault(flags, pte, &unshare)) { 6260 vm_fault_t ret; 6261 unsigned int fault_flags = 0; 6262 6263 if (pte) 6264 spin_unlock(ptl); 6265 if (flags & FOLL_WRITE) 6266 fault_flags |= FAULT_FLAG_WRITE; 6267 else if (unshare) 6268 fault_flags |= FAULT_FLAG_UNSHARE; 6269 if (locked) 6270 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6271 FAULT_FLAG_KILLABLE; 6272 if (flags & FOLL_NOWAIT) 6273 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6274 FAULT_FLAG_RETRY_NOWAIT; 6275 if (flags & FOLL_TRIED) { 6276 /* 6277 * Note: FAULT_FLAG_ALLOW_RETRY and 6278 * FAULT_FLAG_TRIED can co-exist 6279 */ 6280 fault_flags |= FAULT_FLAG_TRIED; 6281 } 6282 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 6283 if (ret & VM_FAULT_ERROR) { 6284 err = vm_fault_to_errno(ret, flags); 6285 remainder = 0; 6286 break; 6287 } 6288 if (ret & VM_FAULT_RETRY) { 6289 if (locked && 6290 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 6291 *locked = 0; 6292 *nr_pages = 0; 6293 /* 6294 * VM_FAULT_RETRY must not return an 6295 * error, it will return zero 6296 * instead. 6297 * 6298 * No need to update "position" as the 6299 * caller will not check it after 6300 * *nr_pages is set to 0. 6301 */ 6302 return i; 6303 } 6304 continue; 6305 } 6306 6307 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 6308 page = pte_page(huge_ptep_get(pte)); 6309 6310 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 6311 !PageAnonExclusive(page), page); 6312 6313 /* 6314 * If subpage information not requested, update counters 6315 * and skip the same_page loop below. 6316 */ 6317 if (!pages && !vmas && !pfn_offset && 6318 (vaddr + huge_page_size(h) < vma->vm_end) && 6319 (remainder >= pages_per_huge_page(h))) { 6320 vaddr += huge_page_size(h); 6321 remainder -= pages_per_huge_page(h); 6322 i += pages_per_huge_page(h); 6323 spin_unlock(ptl); 6324 continue; 6325 } 6326 6327 /* vaddr may not be aligned to PAGE_SIZE */ 6328 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, 6329 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); 6330 6331 if (pages || vmas) 6332 record_subpages_vmas(nth_page(page, pfn_offset), 6333 vma, refs, 6334 likely(pages) ? pages + i : NULL, 6335 vmas ? vmas + i : NULL); 6336 6337 if (pages) { 6338 /* 6339 * try_grab_folio() should always succeed here, 6340 * because: a) we hold the ptl lock, and b) we've just 6341 * checked that the huge page is present in the page 6342 * tables. If the huge page is present, then the tail 6343 * pages must also be present. The ptl prevents the 6344 * head page and tail pages from being rearranged in 6345 * any way. So this page must be available at this 6346 * point, unless the page refcount overflowed: 6347 */ 6348 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, 6349 flags))) { 6350 spin_unlock(ptl); 6351 remainder = 0; 6352 err = -ENOMEM; 6353 break; 6354 } 6355 } 6356 6357 vaddr += (refs << PAGE_SHIFT); 6358 remainder -= refs; 6359 i += refs; 6360 6361 spin_unlock(ptl); 6362 } 6363 *nr_pages = remainder; 6364 /* 6365 * setting position is actually required only if remainder is 6366 * not zero but it's faster not to add a "if (remainder)" 6367 * branch. 6368 */ 6369 *position = vaddr; 6370 6371 return i ? i : err; 6372 } 6373 6374 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 6375 unsigned long address, unsigned long end, 6376 pgprot_t newprot, unsigned long cp_flags) 6377 { 6378 struct mm_struct *mm = vma->vm_mm; 6379 unsigned long start = address; 6380 pte_t *ptep; 6381 pte_t pte; 6382 struct hstate *h = hstate_vma(vma); 6383 unsigned long pages = 0, psize = huge_page_size(h); 6384 bool shared_pmd = false; 6385 struct mmu_notifier_range range; 6386 unsigned long last_addr_mask; 6387 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6388 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6389 6390 /* 6391 * In the case of shared PMDs, the area to flush could be beyond 6392 * start/end. Set range.start/range.end to cover the maximum possible 6393 * range if PMD sharing is possible. 6394 */ 6395 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6396 0, vma, mm, start, end); 6397 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6398 6399 BUG_ON(address >= end); 6400 flush_cache_range(vma, range.start, range.end); 6401 6402 mmu_notifier_invalidate_range_start(&range); 6403 hugetlb_vma_lock_write(vma); 6404 i_mmap_lock_write(vma->vm_file->f_mapping); 6405 last_addr_mask = hugetlb_mask_last_page(h); 6406 for (; address < end; address += psize) { 6407 spinlock_t *ptl; 6408 ptep = huge_pte_offset(mm, address, psize); 6409 if (!ptep) { 6410 address |= last_addr_mask; 6411 continue; 6412 } 6413 ptl = huge_pte_lock(h, mm, ptep); 6414 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6415 /* 6416 * When uffd-wp is enabled on the vma, unshare 6417 * shouldn't happen at all. Warn about it if it 6418 * happened due to some reason. 6419 */ 6420 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6421 pages++; 6422 spin_unlock(ptl); 6423 shared_pmd = true; 6424 address |= last_addr_mask; 6425 continue; 6426 } 6427 pte = huge_ptep_get(ptep); 6428 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6429 spin_unlock(ptl); 6430 continue; 6431 } 6432 if (unlikely(is_hugetlb_entry_migration(pte))) { 6433 swp_entry_t entry = pte_to_swp_entry(pte); 6434 struct page *page = pfn_swap_entry_to_page(entry); 6435 6436 if (!is_readable_migration_entry(entry)) { 6437 pte_t newpte; 6438 6439 if (PageAnon(page)) 6440 entry = make_readable_exclusive_migration_entry( 6441 swp_offset(entry)); 6442 else 6443 entry = make_readable_migration_entry( 6444 swp_offset(entry)); 6445 newpte = swp_entry_to_pte(entry); 6446 if (uffd_wp) 6447 newpte = pte_swp_mkuffd_wp(newpte); 6448 else if (uffd_wp_resolve) 6449 newpte = pte_swp_clear_uffd_wp(newpte); 6450 set_huge_pte_at(mm, address, ptep, newpte); 6451 pages++; 6452 } 6453 spin_unlock(ptl); 6454 continue; 6455 } 6456 if (unlikely(pte_marker_uffd_wp(pte))) { 6457 /* 6458 * This is changing a non-present pte into a none pte, 6459 * no need for huge_ptep_modify_prot_start/commit(). 6460 */ 6461 if (uffd_wp_resolve) 6462 huge_pte_clear(mm, address, ptep, psize); 6463 } 6464 if (!huge_pte_none(pte)) { 6465 pte_t old_pte; 6466 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6467 6468 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6469 pte = huge_pte_modify(old_pte, newprot); 6470 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6471 if (uffd_wp) 6472 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte)); 6473 else if (uffd_wp_resolve) 6474 pte = huge_pte_clear_uffd_wp(pte); 6475 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6476 pages++; 6477 } else { 6478 /* None pte */ 6479 if (unlikely(uffd_wp)) 6480 /* Safe to modify directly (none->non-present). */ 6481 set_huge_pte_at(mm, address, ptep, 6482 make_pte_marker(PTE_MARKER_UFFD_WP)); 6483 } 6484 spin_unlock(ptl); 6485 } 6486 /* 6487 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6488 * may have cleared our pud entry and done put_page on the page table: 6489 * once we release i_mmap_rwsem, another task can do the final put_page 6490 * and that page table be reused and filled with junk. If we actually 6491 * did unshare a page of pmds, flush the range corresponding to the pud. 6492 */ 6493 if (shared_pmd) 6494 flush_hugetlb_tlb_range(vma, range.start, range.end); 6495 else 6496 flush_hugetlb_tlb_range(vma, start, end); 6497 /* 6498 * No need to call mmu_notifier_invalidate_range() we are downgrading 6499 * page table protection not changing it to point to a new page. 6500 * 6501 * See Documentation/mm/mmu_notifier.rst 6502 */ 6503 i_mmap_unlock_write(vma->vm_file->f_mapping); 6504 hugetlb_vma_unlock_write(vma); 6505 mmu_notifier_invalidate_range_end(&range); 6506 6507 return pages << h->order; 6508 } 6509 6510 /* Return true if reservation was successful, false otherwise. */ 6511 bool hugetlb_reserve_pages(struct inode *inode, 6512 long from, long to, 6513 struct vm_area_struct *vma, 6514 vm_flags_t vm_flags) 6515 { 6516 long chg, add = -1; 6517 struct hstate *h = hstate_inode(inode); 6518 struct hugepage_subpool *spool = subpool_inode(inode); 6519 struct resv_map *resv_map; 6520 struct hugetlb_cgroup *h_cg = NULL; 6521 long gbl_reserve, regions_needed = 0; 6522 6523 /* This should never happen */ 6524 if (from > to) { 6525 VM_WARN(1, "%s called with a negative range\n", __func__); 6526 return false; 6527 } 6528 6529 /* 6530 * vma specific semaphore used for pmd sharing synchronization 6531 */ 6532 hugetlb_vma_lock_alloc(vma); 6533 6534 /* 6535 * Only apply hugepage reservation if asked. At fault time, an 6536 * attempt will be made for VM_NORESERVE to allocate a page 6537 * without using reserves 6538 */ 6539 if (vm_flags & VM_NORESERVE) 6540 return true; 6541 6542 /* 6543 * Shared mappings base their reservation on the number of pages that 6544 * are already allocated on behalf of the file. Private mappings need 6545 * to reserve the full area even if read-only as mprotect() may be 6546 * called to make the mapping read-write. Assume !vma is a shm mapping 6547 */ 6548 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6549 /* 6550 * resv_map can not be NULL as hugetlb_reserve_pages is only 6551 * called for inodes for which resv_maps were created (see 6552 * hugetlbfs_get_inode). 6553 */ 6554 resv_map = inode_resv_map(inode); 6555 6556 chg = region_chg(resv_map, from, to, ®ions_needed); 6557 } else { 6558 /* Private mapping. */ 6559 resv_map = resv_map_alloc(); 6560 if (!resv_map) 6561 goto out_err; 6562 6563 chg = to - from; 6564 6565 set_vma_resv_map(vma, resv_map); 6566 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6567 } 6568 6569 if (chg < 0) 6570 goto out_err; 6571 6572 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6573 chg * pages_per_huge_page(h), &h_cg) < 0) 6574 goto out_err; 6575 6576 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6577 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6578 * of the resv_map. 6579 */ 6580 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6581 } 6582 6583 /* 6584 * There must be enough pages in the subpool for the mapping. If 6585 * the subpool has a minimum size, there may be some global 6586 * reservations already in place (gbl_reserve). 6587 */ 6588 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6589 if (gbl_reserve < 0) 6590 goto out_uncharge_cgroup; 6591 6592 /* 6593 * Check enough hugepages are available for the reservation. 6594 * Hand the pages back to the subpool if there are not 6595 */ 6596 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6597 goto out_put_pages; 6598 6599 /* 6600 * Account for the reservations made. Shared mappings record regions 6601 * that have reservations as they are shared by multiple VMAs. 6602 * When the last VMA disappears, the region map says how much 6603 * the reservation was and the page cache tells how much of 6604 * the reservation was consumed. Private mappings are per-VMA and 6605 * only the consumed reservations are tracked. When the VMA 6606 * disappears, the original reservation is the VMA size and the 6607 * consumed reservations are stored in the map. Hence, nothing 6608 * else has to be done for private mappings here 6609 */ 6610 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6611 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6612 6613 if (unlikely(add < 0)) { 6614 hugetlb_acct_memory(h, -gbl_reserve); 6615 goto out_put_pages; 6616 } else if (unlikely(chg > add)) { 6617 /* 6618 * pages in this range were added to the reserve 6619 * map between region_chg and region_add. This 6620 * indicates a race with alloc_huge_page. Adjust 6621 * the subpool and reserve counts modified above 6622 * based on the difference. 6623 */ 6624 long rsv_adjust; 6625 6626 /* 6627 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6628 * reference to h_cg->css. See comment below for detail. 6629 */ 6630 hugetlb_cgroup_uncharge_cgroup_rsvd( 6631 hstate_index(h), 6632 (chg - add) * pages_per_huge_page(h), h_cg); 6633 6634 rsv_adjust = hugepage_subpool_put_pages(spool, 6635 chg - add); 6636 hugetlb_acct_memory(h, -rsv_adjust); 6637 } else if (h_cg) { 6638 /* 6639 * The file_regions will hold their own reference to 6640 * h_cg->css. So we should release the reference held 6641 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6642 * done. 6643 */ 6644 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6645 } 6646 } 6647 return true; 6648 6649 out_put_pages: 6650 /* put back original number of pages, chg */ 6651 (void)hugepage_subpool_put_pages(spool, chg); 6652 out_uncharge_cgroup: 6653 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6654 chg * pages_per_huge_page(h), h_cg); 6655 out_err: 6656 hugetlb_vma_lock_free(vma); 6657 if (!vma || vma->vm_flags & VM_MAYSHARE) 6658 /* Only call region_abort if the region_chg succeeded but the 6659 * region_add failed or didn't run. 6660 */ 6661 if (chg >= 0 && add < 0) 6662 region_abort(resv_map, from, to, regions_needed); 6663 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 6664 kref_put(&resv_map->refs, resv_map_release); 6665 return false; 6666 } 6667 6668 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6669 long freed) 6670 { 6671 struct hstate *h = hstate_inode(inode); 6672 struct resv_map *resv_map = inode_resv_map(inode); 6673 long chg = 0; 6674 struct hugepage_subpool *spool = subpool_inode(inode); 6675 long gbl_reserve; 6676 6677 /* 6678 * Since this routine can be called in the evict inode path for all 6679 * hugetlbfs inodes, resv_map could be NULL. 6680 */ 6681 if (resv_map) { 6682 chg = region_del(resv_map, start, end); 6683 /* 6684 * region_del() can fail in the rare case where a region 6685 * must be split and another region descriptor can not be 6686 * allocated. If end == LONG_MAX, it will not fail. 6687 */ 6688 if (chg < 0) 6689 return chg; 6690 } 6691 6692 spin_lock(&inode->i_lock); 6693 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6694 spin_unlock(&inode->i_lock); 6695 6696 /* 6697 * If the subpool has a minimum size, the number of global 6698 * reservations to be released may be adjusted. 6699 * 6700 * Note that !resv_map implies freed == 0. So (chg - freed) 6701 * won't go negative. 6702 */ 6703 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6704 hugetlb_acct_memory(h, -gbl_reserve); 6705 6706 return 0; 6707 } 6708 6709 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6710 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6711 struct vm_area_struct *vma, 6712 unsigned long addr, pgoff_t idx) 6713 { 6714 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6715 svma->vm_start; 6716 unsigned long sbase = saddr & PUD_MASK; 6717 unsigned long s_end = sbase + PUD_SIZE; 6718 6719 /* Allow segments to share if only one is marked locked */ 6720 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 6721 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 6722 6723 /* 6724 * match the virtual addresses, permission and the alignment of the 6725 * page table page. 6726 * 6727 * Also, vma_lock (vm_private_data) is required for sharing. 6728 */ 6729 if (pmd_index(addr) != pmd_index(saddr) || 6730 vm_flags != svm_flags || 6731 !range_in_vma(svma, sbase, s_end) || 6732 !svma->vm_private_data) 6733 return 0; 6734 6735 return saddr; 6736 } 6737 6738 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6739 { 6740 unsigned long start = addr & PUD_MASK; 6741 unsigned long end = start + PUD_SIZE; 6742 6743 #ifdef CONFIG_USERFAULTFD 6744 if (uffd_disable_huge_pmd_share(vma)) 6745 return false; 6746 #endif 6747 /* 6748 * check on proper vm_flags and page table alignment 6749 */ 6750 if (!(vma->vm_flags & VM_MAYSHARE)) 6751 return false; 6752 if (!vma->vm_private_data) /* vma lock required for sharing */ 6753 return false; 6754 if (!range_in_vma(vma, start, end)) 6755 return false; 6756 return true; 6757 } 6758 6759 /* 6760 * Determine if start,end range within vma could be mapped by shared pmd. 6761 * If yes, adjust start and end to cover range associated with possible 6762 * shared pmd mappings. 6763 */ 6764 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6765 unsigned long *start, unsigned long *end) 6766 { 6767 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6768 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6769 6770 /* 6771 * vma needs to span at least one aligned PUD size, and the range 6772 * must be at least partially within in. 6773 */ 6774 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6775 (*end <= v_start) || (*start >= v_end)) 6776 return; 6777 6778 /* Extend the range to be PUD aligned for a worst case scenario */ 6779 if (*start > v_start) 6780 *start = ALIGN_DOWN(*start, PUD_SIZE); 6781 6782 if (*end < v_end) 6783 *end = ALIGN(*end, PUD_SIZE); 6784 } 6785 6786 static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma) 6787 { 6788 return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) && 6789 vma->vm_private_data; 6790 } 6791 6792 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 6793 { 6794 if (__vma_shareable_flags_pmd(vma)) { 6795 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6796 6797 down_read(&vma_lock->rw_sema); 6798 } 6799 } 6800 6801 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 6802 { 6803 if (__vma_shareable_flags_pmd(vma)) { 6804 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6805 6806 up_read(&vma_lock->rw_sema); 6807 } 6808 } 6809 6810 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 6811 { 6812 if (__vma_shareable_flags_pmd(vma)) { 6813 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6814 6815 down_write(&vma_lock->rw_sema); 6816 } 6817 } 6818 6819 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 6820 { 6821 if (__vma_shareable_flags_pmd(vma)) { 6822 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6823 6824 up_write(&vma_lock->rw_sema); 6825 } 6826 } 6827 6828 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 6829 { 6830 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6831 6832 if (!__vma_shareable_flags_pmd(vma)) 6833 return 1; 6834 6835 return down_write_trylock(&vma_lock->rw_sema); 6836 } 6837 6838 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 6839 { 6840 if (__vma_shareable_flags_pmd(vma)) { 6841 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6842 6843 lockdep_assert_held(&vma_lock->rw_sema); 6844 } 6845 } 6846 6847 void hugetlb_vma_lock_release(struct kref *kref) 6848 { 6849 struct hugetlb_vma_lock *vma_lock = container_of(kref, 6850 struct hugetlb_vma_lock, refs); 6851 6852 kfree(vma_lock); 6853 } 6854 6855 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 6856 { 6857 struct vm_area_struct *vma = vma_lock->vma; 6858 6859 /* 6860 * vma_lock structure may or not be released as a result of put, 6861 * it certainly will no longer be attached to vma so clear pointer. 6862 * Semaphore synchronizes access to vma_lock->vma field. 6863 */ 6864 vma_lock->vma = NULL; 6865 vma->vm_private_data = NULL; 6866 up_write(&vma_lock->rw_sema); 6867 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 6868 } 6869 6870 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 6871 { 6872 if (__vma_shareable_flags_pmd(vma)) { 6873 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6874 6875 __hugetlb_vma_unlock_write_put(vma_lock); 6876 } 6877 } 6878 6879 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 6880 { 6881 /* 6882 * Only present in sharable vmas. 6883 */ 6884 if (!vma || !__vma_shareable_flags_pmd(vma)) 6885 return; 6886 6887 if (vma->vm_private_data) { 6888 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6889 6890 down_write(&vma_lock->rw_sema); 6891 __hugetlb_vma_unlock_write_put(vma_lock); 6892 } 6893 } 6894 6895 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 6896 { 6897 struct hugetlb_vma_lock *vma_lock; 6898 6899 /* Only establish in (flags) sharable vmas */ 6900 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 6901 return; 6902 6903 /* Should never get here with non-NULL vm_private_data */ 6904 if (vma->vm_private_data) 6905 return; 6906 6907 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 6908 if (!vma_lock) { 6909 /* 6910 * If we can not allocate structure, then vma can not 6911 * participate in pmd sharing. This is only a possible 6912 * performance enhancement and memory saving issue. 6913 * However, the lock is also used to synchronize page 6914 * faults with truncation. If the lock is not present, 6915 * unlikely races could leave pages in a file past i_size 6916 * until the file is removed. Warn in the unlikely case of 6917 * allocation failure. 6918 */ 6919 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 6920 return; 6921 } 6922 6923 kref_init(&vma_lock->refs); 6924 init_rwsem(&vma_lock->rw_sema); 6925 vma_lock->vma = vma; 6926 vma->vm_private_data = vma_lock; 6927 } 6928 6929 /* 6930 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6931 * and returns the corresponding pte. While this is not necessary for the 6932 * !shared pmd case because we can allocate the pmd later as well, it makes the 6933 * code much cleaner. pmd allocation is essential for the shared case because 6934 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 6935 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 6936 * bad pmd for sharing. 6937 */ 6938 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6939 unsigned long addr, pud_t *pud) 6940 { 6941 struct address_space *mapping = vma->vm_file->f_mapping; 6942 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 6943 vma->vm_pgoff; 6944 struct vm_area_struct *svma; 6945 unsigned long saddr; 6946 pte_t *spte = NULL; 6947 pte_t *pte; 6948 spinlock_t *ptl; 6949 6950 i_mmap_lock_read(mapping); 6951 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 6952 if (svma == vma) 6953 continue; 6954 6955 saddr = page_table_shareable(svma, vma, addr, idx); 6956 if (saddr) { 6957 spte = huge_pte_offset(svma->vm_mm, saddr, 6958 vma_mmu_pagesize(svma)); 6959 if (spte) { 6960 get_page(virt_to_page(spte)); 6961 break; 6962 } 6963 } 6964 } 6965 6966 if (!spte) 6967 goto out; 6968 6969 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 6970 if (pud_none(*pud)) { 6971 pud_populate(mm, pud, 6972 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 6973 mm_inc_nr_pmds(mm); 6974 } else { 6975 put_page(virt_to_page(spte)); 6976 } 6977 spin_unlock(ptl); 6978 out: 6979 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6980 i_mmap_unlock_read(mapping); 6981 return pte; 6982 } 6983 6984 /* 6985 * unmap huge page backed by shared pte. 6986 * 6987 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 6988 * indicated by page_count > 1, unmap is achieved by clearing pud and 6989 * decrementing the ref count. If count == 1, the pte page is not shared. 6990 * 6991 * Called with page table lock held. 6992 * 6993 * returns: 1 successfully unmapped a shared pte page 6994 * 0 the underlying pte page is not shared, or it is the last user 6995 */ 6996 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 6997 unsigned long addr, pte_t *ptep) 6998 { 6999 pgd_t *pgd = pgd_offset(mm, addr); 7000 p4d_t *p4d = p4d_offset(pgd, addr); 7001 pud_t *pud = pud_offset(p4d, addr); 7002 7003 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7004 hugetlb_vma_assert_locked(vma); 7005 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7006 if (page_count(virt_to_page(ptep)) == 1) 7007 return 0; 7008 7009 pud_clear(pud); 7010 put_page(virt_to_page(ptep)); 7011 mm_dec_nr_pmds(mm); 7012 return 1; 7013 } 7014 7015 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7016 7017 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 7018 { 7019 } 7020 7021 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 7022 { 7023 } 7024 7025 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 7026 { 7027 } 7028 7029 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 7030 { 7031 } 7032 7033 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 7034 { 7035 return 1; 7036 } 7037 7038 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 7039 { 7040 } 7041 7042 void hugetlb_vma_lock_release(struct kref *kref) 7043 { 7044 } 7045 7046 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 7047 { 7048 } 7049 7050 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 7051 { 7052 } 7053 7054 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 7055 { 7056 } 7057 7058 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7059 unsigned long addr, pud_t *pud) 7060 { 7061 return NULL; 7062 } 7063 7064 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7065 unsigned long addr, pte_t *ptep) 7066 { 7067 return 0; 7068 } 7069 7070 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7071 unsigned long *start, unsigned long *end) 7072 { 7073 } 7074 7075 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7076 { 7077 return false; 7078 } 7079 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7080 7081 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7082 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7083 unsigned long addr, unsigned long sz) 7084 { 7085 pgd_t *pgd; 7086 p4d_t *p4d; 7087 pud_t *pud; 7088 pte_t *pte = NULL; 7089 7090 pgd = pgd_offset(mm, addr); 7091 p4d = p4d_alloc(mm, pgd, addr); 7092 if (!p4d) 7093 return NULL; 7094 pud = pud_alloc(mm, p4d, addr); 7095 if (pud) { 7096 if (sz == PUD_SIZE) { 7097 pte = (pte_t *)pud; 7098 } else { 7099 BUG_ON(sz != PMD_SIZE); 7100 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7101 pte = huge_pmd_share(mm, vma, addr, pud); 7102 else 7103 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7104 } 7105 } 7106 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 7107 7108 return pte; 7109 } 7110 7111 /* 7112 * huge_pte_offset() - Walk the page table to resolve the hugepage 7113 * entry at address @addr 7114 * 7115 * Return: Pointer to page table entry (PUD or PMD) for 7116 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7117 * size @sz doesn't match the hugepage size at this level of the page 7118 * table. 7119 */ 7120 pte_t *huge_pte_offset(struct mm_struct *mm, 7121 unsigned long addr, unsigned long sz) 7122 { 7123 pgd_t *pgd; 7124 p4d_t *p4d; 7125 pud_t *pud; 7126 pmd_t *pmd; 7127 7128 pgd = pgd_offset(mm, addr); 7129 if (!pgd_present(*pgd)) 7130 return NULL; 7131 p4d = p4d_offset(pgd, addr); 7132 if (!p4d_present(*p4d)) 7133 return NULL; 7134 7135 pud = pud_offset(p4d, addr); 7136 if (sz == PUD_SIZE) 7137 /* must be pud huge, non-present or none */ 7138 return (pte_t *)pud; 7139 if (!pud_present(*pud)) 7140 return NULL; 7141 /* must have a valid entry and size to go further */ 7142 7143 pmd = pmd_offset(pud, addr); 7144 /* must be pmd huge, non-present or none */ 7145 return (pte_t *)pmd; 7146 } 7147 7148 /* 7149 * Return a mask that can be used to update an address to the last huge 7150 * page in a page table page mapping size. Used to skip non-present 7151 * page table entries when linearly scanning address ranges. Architectures 7152 * with unique huge page to page table relationships can define their own 7153 * version of this routine. 7154 */ 7155 unsigned long hugetlb_mask_last_page(struct hstate *h) 7156 { 7157 unsigned long hp_size = huge_page_size(h); 7158 7159 if (hp_size == PUD_SIZE) 7160 return P4D_SIZE - PUD_SIZE; 7161 else if (hp_size == PMD_SIZE) 7162 return PUD_SIZE - PMD_SIZE; 7163 else 7164 return 0UL; 7165 } 7166 7167 #else 7168 7169 /* See description above. Architectures can provide their own version. */ 7170 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7171 { 7172 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7173 if (huge_page_size(h) == PMD_SIZE) 7174 return PUD_SIZE - PMD_SIZE; 7175 #endif 7176 return 0UL; 7177 } 7178 7179 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7180 7181 /* 7182 * These functions are overwritable if your architecture needs its own 7183 * behavior. 7184 */ 7185 struct page * __weak 7186 follow_huge_addr(struct mm_struct *mm, unsigned long address, 7187 int write) 7188 { 7189 return ERR_PTR(-EINVAL); 7190 } 7191 7192 struct page * __weak 7193 follow_huge_pd(struct vm_area_struct *vma, 7194 unsigned long address, hugepd_t hpd, int flags, int pdshift) 7195 { 7196 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 7197 return NULL; 7198 } 7199 7200 struct page * __weak 7201 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags) 7202 { 7203 struct hstate *h = hstate_vma(vma); 7204 struct mm_struct *mm = vma->vm_mm; 7205 struct page *page = NULL; 7206 spinlock_t *ptl; 7207 pte_t *ptep, pte; 7208 7209 /* 7210 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via 7211 * follow_hugetlb_page(). 7212 */ 7213 if (WARN_ON_ONCE(flags & FOLL_PIN)) 7214 return NULL; 7215 7216 retry: 7217 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 7218 if (!ptep) 7219 return NULL; 7220 7221 ptl = huge_pte_lock(h, mm, ptep); 7222 pte = huge_ptep_get(ptep); 7223 if (pte_present(pte)) { 7224 page = pte_page(pte) + 7225 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT); 7226 /* 7227 * try_grab_page() should always succeed here, because: a) we 7228 * hold the pmd (ptl) lock, and b) we've just checked that the 7229 * huge pmd (head) page is present in the page tables. The ptl 7230 * prevents the head page and tail pages from being rearranged 7231 * in any way. So this page must be available at this point, 7232 * unless the page refcount overflowed: 7233 */ 7234 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 7235 page = NULL; 7236 goto out; 7237 } 7238 } else { 7239 if (is_hugetlb_entry_migration(pte)) { 7240 spin_unlock(ptl); 7241 __migration_entry_wait_huge(ptep, ptl); 7242 goto retry; 7243 } 7244 /* 7245 * hwpoisoned entry is treated as no_page_table in 7246 * follow_page_mask(). 7247 */ 7248 } 7249 out: 7250 spin_unlock(ptl); 7251 return page; 7252 } 7253 7254 struct page * __weak 7255 follow_huge_pud(struct mm_struct *mm, unsigned long address, 7256 pud_t *pud, int flags) 7257 { 7258 struct page *page = NULL; 7259 spinlock_t *ptl; 7260 pte_t pte; 7261 7262 if (WARN_ON_ONCE(flags & FOLL_PIN)) 7263 return NULL; 7264 7265 retry: 7266 ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud); 7267 if (!pud_huge(*pud)) 7268 goto out; 7269 pte = huge_ptep_get((pte_t *)pud); 7270 if (pte_present(pte)) { 7271 page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 7272 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 7273 page = NULL; 7274 goto out; 7275 } 7276 } else { 7277 if (is_hugetlb_entry_migration(pte)) { 7278 spin_unlock(ptl); 7279 __migration_entry_wait(mm, (pte_t *)pud, ptl); 7280 goto retry; 7281 } 7282 /* 7283 * hwpoisoned entry is treated as no_page_table in 7284 * follow_page_mask(). 7285 */ 7286 } 7287 out: 7288 spin_unlock(ptl); 7289 return page; 7290 } 7291 7292 struct page * __weak 7293 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 7294 { 7295 if (flags & (FOLL_GET | FOLL_PIN)) 7296 return NULL; 7297 7298 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 7299 } 7300 7301 int isolate_hugetlb(struct page *page, struct list_head *list) 7302 { 7303 int ret = 0; 7304 7305 spin_lock_irq(&hugetlb_lock); 7306 if (!PageHeadHuge(page) || 7307 !HPageMigratable(page) || 7308 !get_page_unless_zero(page)) { 7309 ret = -EBUSY; 7310 goto unlock; 7311 } 7312 ClearHPageMigratable(page); 7313 list_move_tail(&page->lru, list); 7314 unlock: 7315 spin_unlock_irq(&hugetlb_lock); 7316 return ret; 7317 } 7318 7319 int get_hwpoison_huge_page(struct page *page, bool *hugetlb) 7320 { 7321 int ret = 0; 7322 7323 *hugetlb = false; 7324 spin_lock_irq(&hugetlb_lock); 7325 if (PageHeadHuge(page)) { 7326 *hugetlb = true; 7327 if (HPageFreed(page)) 7328 ret = 0; 7329 else if (HPageMigratable(page)) 7330 ret = get_page_unless_zero(page); 7331 else 7332 ret = -EBUSY; 7333 } 7334 spin_unlock_irq(&hugetlb_lock); 7335 return ret; 7336 } 7337 7338 int get_huge_page_for_hwpoison(unsigned long pfn, int flags) 7339 { 7340 int ret; 7341 7342 spin_lock_irq(&hugetlb_lock); 7343 ret = __get_huge_page_for_hwpoison(pfn, flags); 7344 spin_unlock_irq(&hugetlb_lock); 7345 return ret; 7346 } 7347 7348 void putback_active_hugepage(struct page *page) 7349 { 7350 spin_lock_irq(&hugetlb_lock); 7351 SetHPageMigratable(page); 7352 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 7353 spin_unlock_irq(&hugetlb_lock); 7354 put_page(page); 7355 } 7356 7357 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 7358 { 7359 struct hstate *h = page_hstate(oldpage); 7360 7361 hugetlb_cgroup_migrate(oldpage, newpage); 7362 set_page_owner_migrate_reason(newpage, reason); 7363 7364 /* 7365 * transfer temporary state of the new huge page. This is 7366 * reverse to other transitions because the newpage is going to 7367 * be final while the old one will be freed so it takes over 7368 * the temporary status. 7369 * 7370 * Also note that we have to transfer the per-node surplus state 7371 * here as well otherwise the global surplus count will not match 7372 * the per-node's. 7373 */ 7374 if (HPageTemporary(newpage)) { 7375 int old_nid = page_to_nid(oldpage); 7376 int new_nid = page_to_nid(newpage); 7377 7378 SetHPageTemporary(oldpage); 7379 ClearHPageTemporary(newpage); 7380 7381 /* 7382 * There is no need to transfer the per-node surplus state 7383 * when we do not cross the node. 7384 */ 7385 if (new_nid == old_nid) 7386 return; 7387 spin_lock_irq(&hugetlb_lock); 7388 if (h->surplus_huge_pages_node[old_nid]) { 7389 h->surplus_huge_pages_node[old_nid]--; 7390 h->surplus_huge_pages_node[new_nid]++; 7391 } 7392 spin_unlock_irq(&hugetlb_lock); 7393 } 7394 } 7395 7396 /* 7397 * This function will unconditionally remove all the shared pmd pgtable entries 7398 * within the specific vma for a hugetlbfs memory range. 7399 */ 7400 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7401 { 7402 struct hstate *h = hstate_vma(vma); 7403 unsigned long sz = huge_page_size(h); 7404 struct mm_struct *mm = vma->vm_mm; 7405 struct mmu_notifier_range range; 7406 unsigned long address, start, end; 7407 spinlock_t *ptl; 7408 pte_t *ptep; 7409 7410 if (!(vma->vm_flags & VM_MAYSHARE)) 7411 return; 7412 7413 start = ALIGN(vma->vm_start, PUD_SIZE); 7414 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7415 7416 if (start >= end) 7417 return; 7418 7419 flush_cache_range(vma, start, end); 7420 /* 7421 * No need to call adjust_range_if_pmd_sharing_possible(), because 7422 * we have already done the PUD_SIZE alignment. 7423 */ 7424 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 7425 start, end); 7426 mmu_notifier_invalidate_range_start(&range); 7427 hugetlb_vma_lock_write(vma); 7428 i_mmap_lock_write(vma->vm_file->f_mapping); 7429 for (address = start; address < end; address += PUD_SIZE) { 7430 ptep = huge_pte_offset(mm, address, sz); 7431 if (!ptep) 7432 continue; 7433 ptl = huge_pte_lock(h, mm, ptep); 7434 huge_pmd_unshare(mm, vma, address, ptep); 7435 spin_unlock(ptl); 7436 } 7437 flush_hugetlb_tlb_range(vma, start, end); 7438 i_mmap_unlock_write(vma->vm_file->f_mapping); 7439 hugetlb_vma_unlock_write(vma); 7440 /* 7441 * No need to call mmu_notifier_invalidate_range(), see 7442 * Documentation/mm/mmu_notifier.rst. 7443 */ 7444 mmu_notifier_invalidate_range_end(&range); 7445 } 7446 7447 #ifdef CONFIG_CMA 7448 static bool cma_reserve_called __initdata; 7449 7450 static int __init cmdline_parse_hugetlb_cma(char *p) 7451 { 7452 int nid, count = 0; 7453 unsigned long tmp; 7454 char *s = p; 7455 7456 while (*s) { 7457 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7458 break; 7459 7460 if (s[count] == ':') { 7461 if (tmp >= MAX_NUMNODES) 7462 break; 7463 nid = array_index_nospec(tmp, MAX_NUMNODES); 7464 7465 s += count + 1; 7466 tmp = memparse(s, &s); 7467 hugetlb_cma_size_in_node[nid] = tmp; 7468 hugetlb_cma_size += tmp; 7469 7470 /* 7471 * Skip the separator if have one, otherwise 7472 * break the parsing. 7473 */ 7474 if (*s == ',') 7475 s++; 7476 else 7477 break; 7478 } else { 7479 hugetlb_cma_size = memparse(p, &p); 7480 break; 7481 } 7482 } 7483 7484 return 0; 7485 } 7486 7487 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7488 7489 void __init hugetlb_cma_reserve(int order) 7490 { 7491 unsigned long size, reserved, per_node; 7492 bool node_specific_cma_alloc = false; 7493 int nid; 7494 7495 cma_reserve_called = true; 7496 7497 if (!hugetlb_cma_size) 7498 return; 7499 7500 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7501 if (hugetlb_cma_size_in_node[nid] == 0) 7502 continue; 7503 7504 if (!node_online(nid)) { 7505 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7506 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7507 hugetlb_cma_size_in_node[nid] = 0; 7508 continue; 7509 } 7510 7511 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7512 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7513 nid, (PAGE_SIZE << order) / SZ_1M); 7514 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7515 hugetlb_cma_size_in_node[nid] = 0; 7516 } else { 7517 node_specific_cma_alloc = true; 7518 } 7519 } 7520 7521 /* Validate the CMA size again in case some invalid nodes specified. */ 7522 if (!hugetlb_cma_size) 7523 return; 7524 7525 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7526 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7527 (PAGE_SIZE << order) / SZ_1M); 7528 hugetlb_cma_size = 0; 7529 return; 7530 } 7531 7532 if (!node_specific_cma_alloc) { 7533 /* 7534 * If 3 GB area is requested on a machine with 4 numa nodes, 7535 * let's allocate 1 GB on first three nodes and ignore the last one. 7536 */ 7537 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7538 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7539 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7540 } 7541 7542 reserved = 0; 7543 for_each_online_node(nid) { 7544 int res; 7545 char name[CMA_MAX_NAME]; 7546 7547 if (node_specific_cma_alloc) { 7548 if (hugetlb_cma_size_in_node[nid] == 0) 7549 continue; 7550 7551 size = hugetlb_cma_size_in_node[nid]; 7552 } else { 7553 size = min(per_node, hugetlb_cma_size - reserved); 7554 } 7555 7556 size = round_up(size, PAGE_SIZE << order); 7557 7558 snprintf(name, sizeof(name), "hugetlb%d", nid); 7559 /* 7560 * Note that 'order per bit' is based on smallest size that 7561 * may be returned to CMA allocator in the case of 7562 * huge page demotion. 7563 */ 7564 res = cma_declare_contiguous_nid(0, size, 0, 7565 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7566 0, false, name, 7567 &hugetlb_cma[nid], nid); 7568 if (res) { 7569 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7570 res, nid); 7571 continue; 7572 } 7573 7574 reserved += size; 7575 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7576 size / SZ_1M, nid); 7577 7578 if (reserved >= hugetlb_cma_size) 7579 break; 7580 } 7581 7582 if (!reserved) 7583 /* 7584 * hugetlb_cma_size is used to determine if allocations from 7585 * cma are possible. Set to zero if no cma regions are set up. 7586 */ 7587 hugetlb_cma_size = 0; 7588 } 7589 7590 static void __init hugetlb_cma_check(void) 7591 { 7592 if (!hugetlb_cma_size || cma_reserve_called) 7593 return; 7594 7595 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7596 } 7597 7598 #endif /* CONFIG_CMA */ 7599