1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 34 #include <asm/page.h> 35 #include <asm/pgalloc.h> 36 #include <asm/tlb.h> 37 38 #include <linux/io.h> 39 #include <linux/hugetlb.h> 40 #include <linux/hugetlb_cgroup.h> 41 #include <linux/node.h> 42 #include <linux/page_owner.h> 43 #include "internal.h" 44 45 int hugetlb_max_hstate __read_mostly; 46 unsigned int default_hstate_idx; 47 struct hstate hstates[HUGE_MAX_HSTATE]; 48 49 #ifdef CONFIG_CMA 50 static struct cma *hugetlb_cma[MAX_NUMNODES]; 51 #endif 52 static unsigned long hugetlb_cma_size __initdata; 53 54 /* 55 * Minimum page order among possible hugepage sizes, set to a proper value 56 * at boot time. 57 */ 58 static unsigned int minimum_order __read_mostly = UINT_MAX; 59 60 __initdata LIST_HEAD(huge_boot_pages); 61 62 /* for command line parsing */ 63 static struct hstate * __initdata parsed_hstate; 64 static unsigned long __initdata default_hstate_max_huge_pages; 65 static bool __initdata parsed_valid_hugepagesz = true; 66 static bool __initdata parsed_default_hugepagesz; 67 68 /* 69 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 70 * free_huge_pages, and surplus_huge_pages. 71 */ 72 DEFINE_SPINLOCK(hugetlb_lock); 73 74 /* 75 * Serializes faults on the same logical page. This is used to 76 * prevent spurious OOMs when the hugepage pool is fully utilized. 77 */ 78 static int num_fault_mutexes; 79 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 80 81 /* Forward declaration */ 82 static int hugetlb_acct_memory(struct hstate *h, long delta); 83 84 static inline bool subpool_is_free(struct hugepage_subpool *spool) 85 { 86 if (spool->count) 87 return false; 88 if (spool->max_hpages != -1) 89 return spool->used_hpages == 0; 90 if (spool->min_hpages != -1) 91 return spool->rsv_hpages == spool->min_hpages; 92 93 return true; 94 } 95 96 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 97 unsigned long irq_flags) 98 { 99 spin_unlock_irqrestore(&spool->lock, irq_flags); 100 101 /* If no pages are used, and no other handles to the subpool 102 * remain, give up any reservations based on minimum size and 103 * free the subpool */ 104 if (subpool_is_free(spool)) { 105 if (spool->min_hpages != -1) 106 hugetlb_acct_memory(spool->hstate, 107 -spool->min_hpages); 108 kfree(spool); 109 } 110 } 111 112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 113 long min_hpages) 114 { 115 struct hugepage_subpool *spool; 116 117 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 118 if (!spool) 119 return NULL; 120 121 spin_lock_init(&spool->lock); 122 spool->count = 1; 123 spool->max_hpages = max_hpages; 124 spool->hstate = h; 125 spool->min_hpages = min_hpages; 126 127 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 128 kfree(spool); 129 return NULL; 130 } 131 spool->rsv_hpages = min_hpages; 132 133 return spool; 134 } 135 136 void hugepage_put_subpool(struct hugepage_subpool *spool) 137 { 138 unsigned long flags; 139 140 spin_lock_irqsave(&spool->lock, flags); 141 BUG_ON(!spool->count); 142 spool->count--; 143 unlock_or_release_subpool(spool, flags); 144 } 145 146 /* 147 * Subpool accounting for allocating and reserving pages. 148 * Return -ENOMEM if there are not enough resources to satisfy the 149 * request. Otherwise, return the number of pages by which the 150 * global pools must be adjusted (upward). The returned value may 151 * only be different than the passed value (delta) in the case where 152 * a subpool minimum size must be maintained. 153 */ 154 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 155 long delta) 156 { 157 long ret = delta; 158 159 if (!spool) 160 return ret; 161 162 spin_lock_irq(&spool->lock); 163 164 if (spool->max_hpages != -1) { /* maximum size accounting */ 165 if ((spool->used_hpages + delta) <= spool->max_hpages) 166 spool->used_hpages += delta; 167 else { 168 ret = -ENOMEM; 169 goto unlock_ret; 170 } 171 } 172 173 /* minimum size accounting */ 174 if (spool->min_hpages != -1 && spool->rsv_hpages) { 175 if (delta > spool->rsv_hpages) { 176 /* 177 * Asking for more reserves than those already taken on 178 * behalf of subpool. Return difference. 179 */ 180 ret = delta - spool->rsv_hpages; 181 spool->rsv_hpages = 0; 182 } else { 183 ret = 0; /* reserves already accounted for */ 184 spool->rsv_hpages -= delta; 185 } 186 } 187 188 unlock_ret: 189 spin_unlock_irq(&spool->lock); 190 return ret; 191 } 192 193 /* 194 * Subpool accounting for freeing and unreserving pages. 195 * Return the number of global page reservations that must be dropped. 196 * The return value may only be different than the passed value (delta) 197 * in the case where a subpool minimum size must be maintained. 198 */ 199 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 200 long delta) 201 { 202 long ret = delta; 203 unsigned long flags; 204 205 if (!spool) 206 return delta; 207 208 spin_lock_irqsave(&spool->lock, flags); 209 210 if (spool->max_hpages != -1) /* maximum size accounting */ 211 spool->used_hpages -= delta; 212 213 /* minimum size accounting */ 214 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 215 if (spool->rsv_hpages + delta <= spool->min_hpages) 216 ret = 0; 217 else 218 ret = spool->rsv_hpages + delta - spool->min_hpages; 219 220 spool->rsv_hpages += delta; 221 if (spool->rsv_hpages > spool->min_hpages) 222 spool->rsv_hpages = spool->min_hpages; 223 } 224 225 /* 226 * If hugetlbfs_put_super couldn't free spool due to an outstanding 227 * quota reference, free it now. 228 */ 229 unlock_or_release_subpool(spool, flags); 230 231 return ret; 232 } 233 234 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 235 { 236 return HUGETLBFS_SB(inode->i_sb)->spool; 237 } 238 239 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 240 { 241 return subpool_inode(file_inode(vma->vm_file)); 242 } 243 244 /* Helper that removes a struct file_region from the resv_map cache and returns 245 * it for use. 246 */ 247 static struct file_region * 248 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 249 { 250 struct file_region *nrg = NULL; 251 252 VM_BUG_ON(resv->region_cache_count <= 0); 253 254 resv->region_cache_count--; 255 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 256 list_del(&nrg->link); 257 258 nrg->from = from; 259 nrg->to = to; 260 261 return nrg; 262 } 263 264 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 265 struct file_region *rg) 266 { 267 #ifdef CONFIG_CGROUP_HUGETLB 268 nrg->reservation_counter = rg->reservation_counter; 269 nrg->css = rg->css; 270 if (rg->css) 271 css_get(rg->css); 272 #endif 273 } 274 275 /* Helper that records hugetlb_cgroup uncharge info. */ 276 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 277 struct hstate *h, 278 struct resv_map *resv, 279 struct file_region *nrg) 280 { 281 #ifdef CONFIG_CGROUP_HUGETLB 282 if (h_cg) { 283 nrg->reservation_counter = 284 &h_cg->rsvd_hugepage[hstate_index(h)]; 285 nrg->css = &h_cg->css; 286 /* 287 * The caller will hold exactly one h_cg->css reference for the 288 * whole contiguous reservation region. But this area might be 289 * scattered when there are already some file_regions reside in 290 * it. As a result, many file_regions may share only one css 291 * reference. In order to ensure that one file_region must hold 292 * exactly one h_cg->css reference, we should do css_get for 293 * each file_region and leave the reference held by caller 294 * untouched. 295 */ 296 css_get(&h_cg->css); 297 if (!resv->pages_per_hpage) 298 resv->pages_per_hpage = pages_per_huge_page(h); 299 /* pages_per_hpage should be the same for all entries in 300 * a resv_map. 301 */ 302 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 303 } else { 304 nrg->reservation_counter = NULL; 305 nrg->css = NULL; 306 } 307 #endif 308 } 309 310 static void put_uncharge_info(struct file_region *rg) 311 { 312 #ifdef CONFIG_CGROUP_HUGETLB 313 if (rg->css) 314 css_put(rg->css); 315 #endif 316 } 317 318 static bool has_same_uncharge_info(struct file_region *rg, 319 struct file_region *org) 320 { 321 #ifdef CONFIG_CGROUP_HUGETLB 322 return rg && org && 323 rg->reservation_counter == org->reservation_counter && 324 rg->css == org->css; 325 326 #else 327 return true; 328 #endif 329 } 330 331 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 332 { 333 struct file_region *nrg = NULL, *prg = NULL; 334 335 prg = list_prev_entry(rg, link); 336 if (&prg->link != &resv->regions && prg->to == rg->from && 337 has_same_uncharge_info(prg, rg)) { 338 prg->to = rg->to; 339 340 list_del(&rg->link); 341 put_uncharge_info(rg); 342 kfree(rg); 343 344 rg = prg; 345 } 346 347 nrg = list_next_entry(rg, link); 348 if (&nrg->link != &resv->regions && nrg->from == rg->to && 349 has_same_uncharge_info(nrg, rg)) { 350 nrg->from = rg->from; 351 352 list_del(&rg->link); 353 put_uncharge_info(rg); 354 kfree(rg); 355 } 356 } 357 358 static inline long 359 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from, 360 long to, struct hstate *h, struct hugetlb_cgroup *cg, 361 long *regions_needed) 362 { 363 struct file_region *nrg; 364 365 if (!regions_needed) { 366 nrg = get_file_region_entry_from_cache(map, from, to); 367 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 368 list_add(&nrg->link, rg->link.prev); 369 coalesce_file_region(map, nrg); 370 } else 371 *regions_needed += 1; 372 373 return to - from; 374 } 375 376 /* 377 * Must be called with resv->lock held. 378 * 379 * Calling this with regions_needed != NULL will count the number of pages 380 * to be added but will not modify the linked list. And regions_needed will 381 * indicate the number of file_regions needed in the cache to carry out to add 382 * the regions for this range. 383 */ 384 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 385 struct hugetlb_cgroup *h_cg, 386 struct hstate *h, long *regions_needed) 387 { 388 long add = 0; 389 struct list_head *head = &resv->regions; 390 long last_accounted_offset = f; 391 struct file_region *rg = NULL, *trg = NULL; 392 393 if (regions_needed) 394 *regions_needed = 0; 395 396 /* In this loop, we essentially handle an entry for the range 397 * [last_accounted_offset, rg->from), at every iteration, with some 398 * bounds checking. 399 */ 400 list_for_each_entry_safe(rg, trg, head, link) { 401 /* Skip irrelevant regions that start before our range. */ 402 if (rg->from < f) { 403 /* If this region ends after the last accounted offset, 404 * then we need to update last_accounted_offset. 405 */ 406 if (rg->to > last_accounted_offset) 407 last_accounted_offset = rg->to; 408 continue; 409 } 410 411 /* When we find a region that starts beyond our range, we've 412 * finished. 413 */ 414 if (rg->from >= t) 415 break; 416 417 /* Add an entry for last_accounted_offset -> rg->from, and 418 * update last_accounted_offset. 419 */ 420 if (rg->from > last_accounted_offset) 421 add += hugetlb_resv_map_add(resv, rg, 422 last_accounted_offset, 423 rg->from, h, h_cg, 424 regions_needed); 425 426 last_accounted_offset = rg->to; 427 } 428 429 /* Handle the case where our range extends beyond 430 * last_accounted_offset. 431 */ 432 if (last_accounted_offset < t) 433 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 434 t, h, h_cg, regions_needed); 435 436 VM_BUG_ON(add < 0); 437 return add; 438 } 439 440 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 441 */ 442 static int allocate_file_region_entries(struct resv_map *resv, 443 int regions_needed) 444 __must_hold(&resv->lock) 445 { 446 struct list_head allocated_regions; 447 int to_allocate = 0, i = 0; 448 struct file_region *trg = NULL, *rg = NULL; 449 450 VM_BUG_ON(regions_needed < 0); 451 452 INIT_LIST_HEAD(&allocated_regions); 453 454 /* 455 * Check for sufficient descriptors in the cache to accommodate 456 * the number of in progress add operations plus regions_needed. 457 * 458 * This is a while loop because when we drop the lock, some other call 459 * to region_add or region_del may have consumed some region_entries, 460 * so we keep looping here until we finally have enough entries for 461 * (adds_in_progress + regions_needed). 462 */ 463 while (resv->region_cache_count < 464 (resv->adds_in_progress + regions_needed)) { 465 to_allocate = resv->adds_in_progress + regions_needed - 466 resv->region_cache_count; 467 468 /* At this point, we should have enough entries in the cache 469 * for all the existing adds_in_progress. We should only be 470 * needing to allocate for regions_needed. 471 */ 472 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 473 474 spin_unlock(&resv->lock); 475 for (i = 0; i < to_allocate; i++) { 476 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 477 if (!trg) 478 goto out_of_memory; 479 list_add(&trg->link, &allocated_regions); 480 } 481 482 spin_lock(&resv->lock); 483 484 list_splice(&allocated_regions, &resv->region_cache); 485 resv->region_cache_count += to_allocate; 486 } 487 488 return 0; 489 490 out_of_memory: 491 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 492 list_del(&rg->link); 493 kfree(rg); 494 } 495 return -ENOMEM; 496 } 497 498 /* 499 * Add the huge page range represented by [f, t) to the reserve 500 * map. Regions will be taken from the cache to fill in this range. 501 * Sufficient regions should exist in the cache due to the previous 502 * call to region_chg with the same range, but in some cases the cache will not 503 * have sufficient entries due to races with other code doing region_add or 504 * region_del. The extra needed entries will be allocated. 505 * 506 * regions_needed is the out value provided by a previous call to region_chg. 507 * 508 * Return the number of new huge pages added to the map. This number is greater 509 * than or equal to zero. If file_region entries needed to be allocated for 510 * this operation and we were not able to allocate, it returns -ENOMEM. 511 * region_add of regions of length 1 never allocate file_regions and cannot 512 * fail; region_chg will always allocate at least 1 entry and a region_add for 513 * 1 page will only require at most 1 entry. 514 */ 515 static long region_add(struct resv_map *resv, long f, long t, 516 long in_regions_needed, struct hstate *h, 517 struct hugetlb_cgroup *h_cg) 518 { 519 long add = 0, actual_regions_needed = 0; 520 521 spin_lock(&resv->lock); 522 retry: 523 524 /* Count how many regions are actually needed to execute this add. */ 525 add_reservation_in_range(resv, f, t, NULL, NULL, 526 &actual_regions_needed); 527 528 /* 529 * Check for sufficient descriptors in the cache to accommodate 530 * this add operation. Note that actual_regions_needed may be greater 531 * than in_regions_needed, as the resv_map may have been modified since 532 * the region_chg call. In this case, we need to make sure that we 533 * allocate extra entries, such that we have enough for all the 534 * existing adds_in_progress, plus the excess needed for this 535 * operation. 536 */ 537 if (actual_regions_needed > in_regions_needed && 538 resv->region_cache_count < 539 resv->adds_in_progress + 540 (actual_regions_needed - in_regions_needed)) { 541 /* region_add operation of range 1 should never need to 542 * allocate file_region entries. 543 */ 544 VM_BUG_ON(t - f <= 1); 545 546 if (allocate_file_region_entries( 547 resv, actual_regions_needed - in_regions_needed)) { 548 return -ENOMEM; 549 } 550 551 goto retry; 552 } 553 554 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 555 556 resv->adds_in_progress -= in_regions_needed; 557 558 spin_unlock(&resv->lock); 559 return add; 560 } 561 562 /* 563 * Examine the existing reserve map and determine how many 564 * huge pages in the specified range [f, t) are NOT currently 565 * represented. This routine is called before a subsequent 566 * call to region_add that will actually modify the reserve 567 * map to add the specified range [f, t). region_chg does 568 * not change the number of huge pages represented by the 569 * map. A number of new file_region structures is added to the cache as a 570 * placeholder, for the subsequent region_add call to use. At least 1 571 * file_region structure is added. 572 * 573 * out_regions_needed is the number of regions added to the 574 * resv->adds_in_progress. This value needs to be provided to a follow up call 575 * to region_add or region_abort for proper accounting. 576 * 577 * Returns the number of huge pages that need to be added to the existing 578 * reservation map for the range [f, t). This number is greater or equal to 579 * zero. -ENOMEM is returned if a new file_region structure or cache entry 580 * is needed and can not be allocated. 581 */ 582 static long region_chg(struct resv_map *resv, long f, long t, 583 long *out_regions_needed) 584 { 585 long chg = 0; 586 587 spin_lock(&resv->lock); 588 589 /* Count how many hugepages in this range are NOT represented. */ 590 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 591 out_regions_needed); 592 593 if (*out_regions_needed == 0) 594 *out_regions_needed = 1; 595 596 if (allocate_file_region_entries(resv, *out_regions_needed)) 597 return -ENOMEM; 598 599 resv->adds_in_progress += *out_regions_needed; 600 601 spin_unlock(&resv->lock); 602 return chg; 603 } 604 605 /* 606 * Abort the in progress add operation. The adds_in_progress field 607 * of the resv_map keeps track of the operations in progress between 608 * calls to region_chg and region_add. Operations are sometimes 609 * aborted after the call to region_chg. In such cases, region_abort 610 * is called to decrement the adds_in_progress counter. regions_needed 611 * is the value returned by the region_chg call, it is used to decrement 612 * the adds_in_progress counter. 613 * 614 * NOTE: The range arguments [f, t) are not needed or used in this 615 * routine. They are kept to make reading the calling code easier as 616 * arguments will match the associated region_chg call. 617 */ 618 static void region_abort(struct resv_map *resv, long f, long t, 619 long regions_needed) 620 { 621 spin_lock(&resv->lock); 622 VM_BUG_ON(!resv->region_cache_count); 623 resv->adds_in_progress -= regions_needed; 624 spin_unlock(&resv->lock); 625 } 626 627 /* 628 * Delete the specified range [f, t) from the reserve map. If the 629 * t parameter is LONG_MAX, this indicates that ALL regions after f 630 * should be deleted. Locate the regions which intersect [f, t) 631 * and either trim, delete or split the existing regions. 632 * 633 * Returns the number of huge pages deleted from the reserve map. 634 * In the normal case, the return value is zero or more. In the 635 * case where a region must be split, a new region descriptor must 636 * be allocated. If the allocation fails, -ENOMEM will be returned. 637 * NOTE: If the parameter t == LONG_MAX, then we will never split 638 * a region and possibly return -ENOMEM. Callers specifying 639 * t == LONG_MAX do not need to check for -ENOMEM error. 640 */ 641 static long region_del(struct resv_map *resv, long f, long t) 642 { 643 struct list_head *head = &resv->regions; 644 struct file_region *rg, *trg; 645 struct file_region *nrg = NULL; 646 long del = 0; 647 648 retry: 649 spin_lock(&resv->lock); 650 list_for_each_entry_safe(rg, trg, head, link) { 651 /* 652 * Skip regions before the range to be deleted. file_region 653 * ranges are normally of the form [from, to). However, there 654 * may be a "placeholder" entry in the map which is of the form 655 * (from, to) with from == to. Check for placeholder entries 656 * at the beginning of the range to be deleted. 657 */ 658 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 659 continue; 660 661 if (rg->from >= t) 662 break; 663 664 if (f > rg->from && t < rg->to) { /* Must split region */ 665 /* 666 * Check for an entry in the cache before dropping 667 * lock and attempting allocation. 668 */ 669 if (!nrg && 670 resv->region_cache_count > resv->adds_in_progress) { 671 nrg = list_first_entry(&resv->region_cache, 672 struct file_region, 673 link); 674 list_del(&nrg->link); 675 resv->region_cache_count--; 676 } 677 678 if (!nrg) { 679 spin_unlock(&resv->lock); 680 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 681 if (!nrg) 682 return -ENOMEM; 683 goto retry; 684 } 685 686 del += t - f; 687 hugetlb_cgroup_uncharge_file_region( 688 resv, rg, t - f, false); 689 690 /* New entry for end of split region */ 691 nrg->from = t; 692 nrg->to = rg->to; 693 694 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 695 696 INIT_LIST_HEAD(&nrg->link); 697 698 /* Original entry is trimmed */ 699 rg->to = f; 700 701 list_add(&nrg->link, &rg->link); 702 nrg = NULL; 703 break; 704 } 705 706 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 707 del += rg->to - rg->from; 708 hugetlb_cgroup_uncharge_file_region(resv, rg, 709 rg->to - rg->from, true); 710 list_del(&rg->link); 711 kfree(rg); 712 continue; 713 } 714 715 if (f <= rg->from) { /* Trim beginning of region */ 716 hugetlb_cgroup_uncharge_file_region(resv, rg, 717 t - rg->from, false); 718 719 del += t - rg->from; 720 rg->from = t; 721 } else { /* Trim end of region */ 722 hugetlb_cgroup_uncharge_file_region(resv, rg, 723 rg->to - f, false); 724 725 del += rg->to - f; 726 rg->to = f; 727 } 728 } 729 730 spin_unlock(&resv->lock); 731 kfree(nrg); 732 return del; 733 } 734 735 /* 736 * A rare out of memory error was encountered which prevented removal of 737 * the reserve map region for a page. The huge page itself was free'ed 738 * and removed from the page cache. This routine will adjust the subpool 739 * usage count, and the global reserve count if needed. By incrementing 740 * these counts, the reserve map entry which could not be deleted will 741 * appear as a "reserved" entry instead of simply dangling with incorrect 742 * counts. 743 */ 744 void hugetlb_fix_reserve_counts(struct inode *inode) 745 { 746 struct hugepage_subpool *spool = subpool_inode(inode); 747 long rsv_adjust; 748 bool reserved = false; 749 750 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 751 if (rsv_adjust > 0) { 752 struct hstate *h = hstate_inode(inode); 753 754 if (!hugetlb_acct_memory(h, 1)) 755 reserved = true; 756 } else if (!rsv_adjust) { 757 reserved = true; 758 } 759 760 if (!reserved) 761 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 762 } 763 764 /* 765 * Count and return the number of huge pages in the reserve map 766 * that intersect with the range [f, t). 767 */ 768 static long region_count(struct resv_map *resv, long f, long t) 769 { 770 struct list_head *head = &resv->regions; 771 struct file_region *rg; 772 long chg = 0; 773 774 spin_lock(&resv->lock); 775 /* Locate each segment we overlap with, and count that overlap. */ 776 list_for_each_entry(rg, head, link) { 777 long seg_from; 778 long seg_to; 779 780 if (rg->to <= f) 781 continue; 782 if (rg->from >= t) 783 break; 784 785 seg_from = max(rg->from, f); 786 seg_to = min(rg->to, t); 787 788 chg += seg_to - seg_from; 789 } 790 spin_unlock(&resv->lock); 791 792 return chg; 793 } 794 795 /* 796 * Convert the address within this vma to the page offset within 797 * the mapping, in pagecache page units; huge pages here. 798 */ 799 static pgoff_t vma_hugecache_offset(struct hstate *h, 800 struct vm_area_struct *vma, unsigned long address) 801 { 802 return ((address - vma->vm_start) >> huge_page_shift(h)) + 803 (vma->vm_pgoff >> huge_page_order(h)); 804 } 805 806 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 807 unsigned long address) 808 { 809 return vma_hugecache_offset(hstate_vma(vma), vma, address); 810 } 811 EXPORT_SYMBOL_GPL(linear_hugepage_index); 812 813 /* 814 * Return the size of the pages allocated when backing a VMA. In the majority 815 * cases this will be same size as used by the page table entries. 816 */ 817 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 818 { 819 if (vma->vm_ops && vma->vm_ops->pagesize) 820 return vma->vm_ops->pagesize(vma); 821 return PAGE_SIZE; 822 } 823 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 824 825 /* 826 * Return the page size being used by the MMU to back a VMA. In the majority 827 * of cases, the page size used by the kernel matches the MMU size. On 828 * architectures where it differs, an architecture-specific 'strong' 829 * version of this symbol is required. 830 */ 831 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 832 { 833 return vma_kernel_pagesize(vma); 834 } 835 836 /* 837 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 838 * bits of the reservation map pointer, which are always clear due to 839 * alignment. 840 */ 841 #define HPAGE_RESV_OWNER (1UL << 0) 842 #define HPAGE_RESV_UNMAPPED (1UL << 1) 843 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 844 845 /* 846 * These helpers are used to track how many pages are reserved for 847 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 848 * is guaranteed to have their future faults succeed. 849 * 850 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 851 * the reserve counters are updated with the hugetlb_lock held. It is safe 852 * to reset the VMA at fork() time as it is not in use yet and there is no 853 * chance of the global counters getting corrupted as a result of the values. 854 * 855 * The private mapping reservation is represented in a subtly different 856 * manner to a shared mapping. A shared mapping has a region map associated 857 * with the underlying file, this region map represents the backing file 858 * pages which have ever had a reservation assigned which this persists even 859 * after the page is instantiated. A private mapping has a region map 860 * associated with the original mmap which is attached to all VMAs which 861 * reference it, this region map represents those offsets which have consumed 862 * reservation ie. where pages have been instantiated. 863 */ 864 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 865 { 866 return (unsigned long)vma->vm_private_data; 867 } 868 869 static void set_vma_private_data(struct vm_area_struct *vma, 870 unsigned long value) 871 { 872 vma->vm_private_data = (void *)value; 873 } 874 875 static void 876 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 877 struct hugetlb_cgroup *h_cg, 878 struct hstate *h) 879 { 880 #ifdef CONFIG_CGROUP_HUGETLB 881 if (!h_cg || !h) { 882 resv_map->reservation_counter = NULL; 883 resv_map->pages_per_hpage = 0; 884 resv_map->css = NULL; 885 } else { 886 resv_map->reservation_counter = 887 &h_cg->rsvd_hugepage[hstate_index(h)]; 888 resv_map->pages_per_hpage = pages_per_huge_page(h); 889 resv_map->css = &h_cg->css; 890 } 891 #endif 892 } 893 894 struct resv_map *resv_map_alloc(void) 895 { 896 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 897 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 898 899 if (!resv_map || !rg) { 900 kfree(resv_map); 901 kfree(rg); 902 return NULL; 903 } 904 905 kref_init(&resv_map->refs); 906 spin_lock_init(&resv_map->lock); 907 INIT_LIST_HEAD(&resv_map->regions); 908 909 resv_map->adds_in_progress = 0; 910 /* 911 * Initialize these to 0. On shared mappings, 0's here indicate these 912 * fields don't do cgroup accounting. On private mappings, these will be 913 * re-initialized to the proper values, to indicate that hugetlb cgroup 914 * reservations are to be un-charged from here. 915 */ 916 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 917 918 INIT_LIST_HEAD(&resv_map->region_cache); 919 list_add(&rg->link, &resv_map->region_cache); 920 resv_map->region_cache_count = 1; 921 922 return resv_map; 923 } 924 925 void resv_map_release(struct kref *ref) 926 { 927 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 928 struct list_head *head = &resv_map->region_cache; 929 struct file_region *rg, *trg; 930 931 /* Clear out any active regions before we release the map. */ 932 region_del(resv_map, 0, LONG_MAX); 933 934 /* ... and any entries left in the cache */ 935 list_for_each_entry_safe(rg, trg, head, link) { 936 list_del(&rg->link); 937 kfree(rg); 938 } 939 940 VM_BUG_ON(resv_map->adds_in_progress); 941 942 kfree(resv_map); 943 } 944 945 static inline struct resv_map *inode_resv_map(struct inode *inode) 946 { 947 /* 948 * At inode evict time, i_mapping may not point to the original 949 * address space within the inode. This original address space 950 * contains the pointer to the resv_map. So, always use the 951 * address space embedded within the inode. 952 * The VERY common case is inode->mapping == &inode->i_data but, 953 * this may not be true for device special inodes. 954 */ 955 return (struct resv_map *)(&inode->i_data)->private_data; 956 } 957 958 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 959 { 960 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 961 if (vma->vm_flags & VM_MAYSHARE) { 962 struct address_space *mapping = vma->vm_file->f_mapping; 963 struct inode *inode = mapping->host; 964 965 return inode_resv_map(inode); 966 967 } else { 968 return (struct resv_map *)(get_vma_private_data(vma) & 969 ~HPAGE_RESV_MASK); 970 } 971 } 972 973 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 974 { 975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 976 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 977 978 set_vma_private_data(vma, (get_vma_private_data(vma) & 979 HPAGE_RESV_MASK) | (unsigned long)map); 980 } 981 982 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 983 { 984 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 985 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 986 987 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 988 } 989 990 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 991 { 992 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 993 994 return (get_vma_private_data(vma) & flag) != 0; 995 } 996 997 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 998 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 999 { 1000 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1001 if (!(vma->vm_flags & VM_MAYSHARE)) 1002 vma->vm_private_data = (void *)0; 1003 } 1004 1005 /* Returns true if the VMA has associated reserve pages */ 1006 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1007 { 1008 if (vma->vm_flags & VM_NORESERVE) { 1009 /* 1010 * This address is already reserved by other process(chg == 0), 1011 * so, we should decrement reserved count. Without decrementing, 1012 * reserve count remains after releasing inode, because this 1013 * allocated page will go into page cache and is regarded as 1014 * coming from reserved pool in releasing step. Currently, we 1015 * don't have any other solution to deal with this situation 1016 * properly, so add work-around here. 1017 */ 1018 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1019 return true; 1020 else 1021 return false; 1022 } 1023 1024 /* Shared mappings always use reserves */ 1025 if (vma->vm_flags & VM_MAYSHARE) { 1026 /* 1027 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1028 * be a region map for all pages. The only situation where 1029 * there is no region map is if a hole was punched via 1030 * fallocate. In this case, there really are no reserves to 1031 * use. This situation is indicated if chg != 0. 1032 */ 1033 if (chg) 1034 return false; 1035 else 1036 return true; 1037 } 1038 1039 /* 1040 * Only the process that called mmap() has reserves for 1041 * private mappings. 1042 */ 1043 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1044 /* 1045 * Like the shared case above, a hole punch or truncate 1046 * could have been performed on the private mapping. 1047 * Examine the value of chg to determine if reserves 1048 * actually exist or were previously consumed. 1049 * Very Subtle - The value of chg comes from a previous 1050 * call to vma_needs_reserves(). The reserve map for 1051 * private mappings has different (opposite) semantics 1052 * than that of shared mappings. vma_needs_reserves() 1053 * has already taken this difference in semantics into 1054 * account. Therefore, the meaning of chg is the same 1055 * as in the shared case above. Code could easily be 1056 * combined, but keeping it separate draws attention to 1057 * subtle differences. 1058 */ 1059 if (chg) 1060 return false; 1061 else 1062 return true; 1063 } 1064 1065 return false; 1066 } 1067 1068 static void enqueue_huge_page(struct hstate *h, struct page *page) 1069 { 1070 int nid = page_to_nid(page); 1071 1072 lockdep_assert_held(&hugetlb_lock); 1073 list_move(&page->lru, &h->hugepage_freelists[nid]); 1074 h->free_huge_pages++; 1075 h->free_huge_pages_node[nid]++; 1076 SetHPageFreed(page); 1077 } 1078 1079 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1080 { 1081 struct page *page; 1082 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1083 1084 lockdep_assert_held(&hugetlb_lock); 1085 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1086 if (pin && !is_pinnable_page(page)) 1087 continue; 1088 1089 if (PageHWPoison(page)) 1090 continue; 1091 1092 list_move(&page->lru, &h->hugepage_activelist); 1093 set_page_refcounted(page); 1094 ClearHPageFreed(page); 1095 h->free_huge_pages--; 1096 h->free_huge_pages_node[nid]--; 1097 return page; 1098 } 1099 1100 return NULL; 1101 } 1102 1103 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1104 nodemask_t *nmask) 1105 { 1106 unsigned int cpuset_mems_cookie; 1107 struct zonelist *zonelist; 1108 struct zone *zone; 1109 struct zoneref *z; 1110 int node = NUMA_NO_NODE; 1111 1112 zonelist = node_zonelist(nid, gfp_mask); 1113 1114 retry_cpuset: 1115 cpuset_mems_cookie = read_mems_allowed_begin(); 1116 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1117 struct page *page; 1118 1119 if (!cpuset_zone_allowed(zone, gfp_mask)) 1120 continue; 1121 /* 1122 * no need to ask again on the same node. Pool is node rather than 1123 * zone aware 1124 */ 1125 if (zone_to_nid(zone) == node) 1126 continue; 1127 node = zone_to_nid(zone); 1128 1129 page = dequeue_huge_page_node_exact(h, node); 1130 if (page) 1131 return page; 1132 } 1133 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1134 goto retry_cpuset; 1135 1136 return NULL; 1137 } 1138 1139 static struct page *dequeue_huge_page_vma(struct hstate *h, 1140 struct vm_area_struct *vma, 1141 unsigned long address, int avoid_reserve, 1142 long chg) 1143 { 1144 struct page *page; 1145 struct mempolicy *mpol; 1146 gfp_t gfp_mask; 1147 nodemask_t *nodemask; 1148 int nid; 1149 1150 /* 1151 * A child process with MAP_PRIVATE mappings created by their parent 1152 * have no page reserves. This check ensures that reservations are 1153 * not "stolen". The child may still get SIGKILLed 1154 */ 1155 if (!vma_has_reserves(vma, chg) && 1156 h->free_huge_pages - h->resv_huge_pages == 0) 1157 goto err; 1158 1159 /* If reserves cannot be used, ensure enough pages are in the pool */ 1160 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1161 goto err; 1162 1163 gfp_mask = htlb_alloc_mask(h); 1164 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1165 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1166 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1167 SetHPageRestoreReserve(page); 1168 h->resv_huge_pages--; 1169 } 1170 1171 mpol_cond_put(mpol); 1172 return page; 1173 1174 err: 1175 return NULL; 1176 } 1177 1178 /* 1179 * common helper functions for hstate_next_node_to_{alloc|free}. 1180 * We may have allocated or freed a huge page based on a different 1181 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1182 * be outside of *nodes_allowed. Ensure that we use an allowed 1183 * node for alloc or free. 1184 */ 1185 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1186 { 1187 nid = next_node_in(nid, *nodes_allowed); 1188 VM_BUG_ON(nid >= MAX_NUMNODES); 1189 1190 return nid; 1191 } 1192 1193 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1194 { 1195 if (!node_isset(nid, *nodes_allowed)) 1196 nid = next_node_allowed(nid, nodes_allowed); 1197 return nid; 1198 } 1199 1200 /* 1201 * returns the previously saved node ["this node"] from which to 1202 * allocate a persistent huge page for the pool and advance the 1203 * next node from which to allocate, handling wrap at end of node 1204 * mask. 1205 */ 1206 static int hstate_next_node_to_alloc(struct hstate *h, 1207 nodemask_t *nodes_allowed) 1208 { 1209 int nid; 1210 1211 VM_BUG_ON(!nodes_allowed); 1212 1213 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1214 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1215 1216 return nid; 1217 } 1218 1219 /* 1220 * helper for remove_pool_huge_page() - return the previously saved 1221 * node ["this node"] from which to free a huge page. Advance the 1222 * next node id whether or not we find a free huge page to free so 1223 * that the next attempt to free addresses the next node. 1224 */ 1225 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1226 { 1227 int nid; 1228 1229 VM_BUG_ON(!nodes_allowed); 1230 1231 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1232 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1233 1234 return nid; 1235 } 1236 1237 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1238 for (nr_nodes = nodes_weight(*mask); \ 1239 nr_nodes > 0 && \ 1240 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1241 nr_nodes--) 1242 1243 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1244 for (nr_nodes = nodes_weight(*mask); \ 1245 nr_nodes > 0 && \ 1246 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1247 nr_nodes--) 1248 1249 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1250 static void destroy_compound_gigantic_page(struct page *page, 1251 unsigned int order) 1252 { 1253 int i; 1254 int nr_pages = 1 << order; 1255 struct page *p = page + 1; 1256 1257 atomic_set(compound_mapcount_ptr(page), 0); 1258 atomic_set(compound_pincount_ptr(page), 0); 1259 1260 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1261 clear_compound_head(p); 1262 set_page_refcounted(p); 1263 } 1264 1265 set_compound_order(page, 0); 1266 page[1].compound_nr = 0; 1267 __ClearPageHead(page); 1268 } 1269 1270 static void free_gigantic_page(struct page *page, unsigned int order) 1271 { 1272 /* 1273 * If the page isn't allocated using the cma allocator, 1274 * cma_release() returns false. 1275 */ 1276 #ifdef CONFIG_CMA 1277 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1278 return; 1279 #endif 1280 1281 free_contig_range(page_to_pfn(page), 1 << order); 1282 } 1283 1284 #ifdef CONFIG_CONTIG_ALLOC 1285 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1286 int nid, nodemask_t *nodemask) 1287 { 1288 unsigned long nr_pages = pages_per_huge_page(h); 1289 if (nid == NUMA_NO_NODE) 1290 nid = numa_mem_id(); 1291 1292 #ifdef CONFIG_CMA 1293 { 1294 struct page *page; 1295 int node; 1296 1297 if (hugetlb_cma[nid]) { 1298 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1299 huge_page_order(h), true); 1300 if (page) 1301 return page; 1302 } 1303 1304 if (!(gfp_mask & __GFP_THISNODE)) { 1305 for_each_node_mask(node, *nodemask) { 1306 if (node == nid || !hugetlb_cma[node]) 1307 continue; 1308 1309 page = cma_alloc(hugetlb_cma[node], nr_pages, 1310 huge_page_order(h), true); 1311 if (page) 1312 return page; 1313 } 1314 } 1315 } 1316 #endif 1317 1318 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1319 } 1320 1321 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1322 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1323 #else /* !CONFIG_CONTIG_ALLOC */ 1324 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1325 int nid, nodemask_t *nodemask) 1326 { 1327 return NULL; 1328 } 1329 #endif /* CONFIG_CONTIG_ALLOC */ 1330 1331 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1332 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1333 int nid, nodemask_t *nodemask) 1334 { 1335 return NULL; 1336 } 1337 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1338 static inline void destroy_compound_gigantic_page(struct page *page, 1339 unsigned int order) { } 1340 #endif 1341 1342 /* 1343 * Remove hugetlb page from lists, and update dtor so that page appears 1344 * as just a compound page. A reference is held on the page. 1345 * 1346 * Must be called with hugetlb lock held. 1347 */ 1348 static void remove_hugetlb_page(struct hstate *h, struct page *page, 1349 bool adjust_surplus) 1350 { 1351 int nid = page_to_nid(page); 1352 1353 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1354 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1355 1356 lockdep_assert_held(&hugetlb_lock); 1357 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1358 return; 1359 1360 list_del(&page->lru); 1361 1362 if (HPageFreed(page)) { 1363 h->free_huge_pages--; 1364 h->free_huge_pages_node[nid]--; 1365 } 1366 if (adjust_surplus) { 1367 h->surplus_huge_pages--; 1368 h->surplus_huge_pages_node[nid]--; 1369 } 1370 1371 set_page_refcounted(page); 1372 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1373 1374 h->nr_huge_pages--; 1375 h->nr_huge_pages_node[nid]--; 1376 } 1377 1378 static void update_and_free_page(struct hstate *h, struct page *page) 1379 { 1380 int i; 1381 struct page *subpage = page; 1382 1383 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1384 return; 1385 1386 for (i = 0; i < pages_per_huge_page(h); 1387 i++, subpage = mem_map_next(subpage, page, i)) { 1388 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1389 1 << PG_referenced | 1 << PG_dirty | 1390 1 << PG_active | 1 << PG_private | 1391 1 << PG_writeback); 1392 } 1393 if (hstate_is_gigantic(h)) { 1394 destroy_compound_gigantic_page(page, huge_page_order(h)); 1395 free_gigantic_page(page, huge_page_order(h)); 1396 } else { 1397 __free_pages(page, huge_page_order(h)); 1398 } 1399 } 1400 1401 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1402 { 1403 struct page *page, *t_page; 1404 1405 list_for_each_entry_safe(page, t_page, list, lru) { 1406 update_and_free_page(h, page); 1407 cond_resched(); 1408 } 1409 } 1410 1411 struct hstate *size_to_hstate(unsigned long size) 1412 { 1413 struct hstate *h; 1414 1415 for_each_hstate(h) { 1416 if (huge_page_size(h) == size) 1417 return h; 1418 } 1419 return NULL; 1420 } 1421 1422 void free_huge_page(struct page *page) 1423 { 1424 /* 1425 * Can't pass hstate in here because it is called from the 1426 * compound page destructor. 1427 */ 1428 struct hstate *h = page_hstate(page); 1429 int nid = page_to_nid(page); 1430 struct hugepage_subpool *spool = hugetlb_page_subpool(page); 1431 bool restore_reserve; 1432 unsigned long flags; 1433 1434 VM_BUG_ON_PAGE(page_count(page), page); 1435 VM_BUG_ON_PAGE(page_mapcount(page), page); 1436 1437 hugetlb_set_page_subpool(page, NULL); 1438 page->mapping = NULL; 1439 restore_reserve = HPageRestoreReserve(page); 1440 ClearHPageRestoreReserve(page); 1441 1442 /* 1443 * If HPageRestoreReserve was set on page, page allocation consumed a 1444 * reservation. If the page was associated with a subpool, there 1445 * would have been a page reserved in the subpool before allocation 1446 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1447 * reservation, do not call hugepage_subpool_put_pages() as this will 1448 * remove the reserved page from the subpool. 1449 */ 1450 if (!restore_reserve) { 1451 /* 1452 * A return code of zero implies that the subpool will be 1453 * under its minimum size if the reservation is not restored 1454 * after page is free. Therefore, force restore_reserve 1455 * operation. 1456 */ 1457 if (hugepage_subpool_put_pages(spool, 1) == 0) 1458 restore_reserve = true; 1459 } 1460 1461 spin_lock_irqsave(&hugetlb_lock, flags); 1462 ClearHPageMigratable(page); 1463 hugetlb_cgroup_uncharge_page(hstate_index(h), 1464 pages_per_huge_page(h), page); 1465 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1466 pages_per_huge_page(h), page); 1467 if (restore_reserve) 1468 h->resv_huge_pages++; 1469 1470 if (HPageTemporary(page)) { 1471 remove_hugetlb_page(h, page, false); 1472 spin_unlock_irqrestore(&hugetlb_lock, flags); 1473 update_and_free_page(h, page); 1474 } else if (h->surplus_huge_pages_node[nid]) { 1475 /* remove the page from active list */ 1476 remove_hugetlb_page(h, page, true); 1477 spin_unlock_irqrestore(&hugetlb_lock, flags); 1478 update_and_free_page(h, page); 1479 } else { 1480 arch_clear_hugepage_flags(page); 1481 enqueue_huge_page(h, page); 1482 spin_unlock_irqrestore(&hugetlb_lock, flags); 1483 } 1484 } 1485 1486 /* 1487 * Must be called with the hugetlb lock held 1488 */ 1489 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1490 { 1491 lockdep_assert_held(&hugetlb_lock); 1492 h->nr_huge_pages++; 1493 h->nr_huge_pages_node[nid]++; 1494 } 1495 1496 static void __prep_new_huge_page(struct page *page) 1497 { 1498 INIT_LIST_HEAD(&page->lru); 1499 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1500 hugetlb_set_page_subpool(page, NULL); 1501 set_hugetlb_cgroup(page, NULL); 1502 set_hugetlb_cgroup_rsvd(page, NULL); 1503 } 1504 1505 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1506 { 1507 __prep_new_huge_page(page); 1508 spin_lock_irq(&hugetlb_lock); 1509 __prep_account_new_huge_page(h, nid); 1510 spin_unlock_irq(&hugetlb_lock); 1511 } 1512 1513 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1514 { 1515 int i; 1516 int nr_pages = 1 << order; 1517 struct page *p = page + 1; 1518 1519 /* we rely on prep_new_huge_page to set the destructor */ 1520 set_compound_order(page, order); 1521 __ClearPageReserved(page); 1522 __SetPageHead(page); 1523 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1524 /* 1525 * For gigantic hugepages allocated through bootmem at 1526 * boot, it's safer to be consistent with the not-gigantic 1527 * hugepages and clear the PG_reserved bit from all tail pages 1528 * too. Otherwise drivers using get_user_pages() to access tail 1529 * pages may get the reference counting wrong if they see 1530 * PG_reserved set on a tail page (despite the head page not 1531 * having PG_reserved set). Enforcing this consistency between 1532 * head and tail pages allows drivers to optimize away a check 1533 * on the head page when they need know if put_page() is needed 1534 * after get_user_pages(). 1535 */ 1536 __ClearPageReserved(p); 1537 set_page_count(p, 0); 1538 set_compound_head(p, page); 1539 } 1540 atomic_set(compound_mapcount_ptr(page), -1); 1541 atomic_set(compound_pincount_ptr(page), 0); 1542 } 1543 1544 /* 1545 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1546 * transparent huge pages. See the PageTransHuge() documentation for more 1547 * details. 1548 */ 1549 int PageHuge(struct page *page) 1550 { 1551 if (!PageCompound(page)) 1552 return 0; 1553 1554 page = compound_head(page); 1555 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1556 } 1557 EXPORT_SYMBOL_GPL(PageHuge); 1558 1559 /* 1560 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1561 * normal or transparent huge pages. 1562 */ 1563 int PageHeadHuge(struct page *page_head) 1564 { 1565 if (!PageHead(page_head)) 1566 return 0; 1567 1568 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1569 } 1570 1571 /* 1572 * Find and lock address space (mapping) in write mode. 1573 * 1574 * Upon entry, the page is locked which means that page_mapping() is 1575 * stable. Due to locking order, we can only trylock_write. If we can 1576 * not get the lock, simply return NULL to caller. 1577 */ 1578 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1579 { 1580 struct address_space *mapping = page_mapping(hpage); 1581 1582 if (!mapping) 1583 return mapping; 1584 1585 if (i_mmap_trylock_write(mapping)) 1586 return mapping; 1587 1588 return NULL; 1589 } 1590 1591 pgoff_t __basepage_index(struct page *page) 1592 { 1593 struct page *page_head = compound_head(page); 1594 pgoff_t index = page_index(page_head); 1595 unsigned long compound_idx; 1596 1597 if (!PageHuge(page_head)) 1598 return page_index(page); 1599 1600 if (compound_order(page_head) >= MAX_ORDER) 1601 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1602 else 1603 compound_idx = page - page_head; 1604 1605 return (index << compound_order(page_head)) + compound_idx; 1606 } 1607 1608 static struct page *alloc_buddy_huge_page(struct hstate *h, 1609 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1610 nodemask_t *node_alloc_noretry) 1611 { 1612 int order = huge_page_order(h); 1613 struct page *page; 1614 bool alloc_try_hard = true; 1615 1616 /* 1617 * By default we always try hard to allocate the page with 1618 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1619 * a loop (to adjust global huge page counts) and previous allocation 1620 * failed, do not continue to try hard on the same node. Use the 1621 * node_alloc_noretry bitmap to manage this state information. 1622 */ 1623 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1624 alloc_try_hard = false; 1625 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1626 if (alloc_try_hard) 1627 gfp_mask |= __GFP_RETRY_MAYFAIL; 1628 if (nid == NUMA_NO_NODE) 1629 nid = numa_mem_id(); 1630 page = __alloc_pages(gfp_mask, order, nid, nmask); 1631 if (page) 1632 __count_vm_event(HTLB_BUDDY_PGALLOC); 1633 else 1634 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1635 1636 /* 1637 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1638 * indicates an overall state change. Clear bit so that we resume 1639 * normal 'try hard' allocations. 1640 */ 1641 if (node_alloc_noretry && page && !alloc_try_hard) 1642 node_clear(nid, *node_alloc_noretry); 1643 1644 /* 1645 * If we tried hard to get a page but failed, set bit so that 1646 * subsequent attempts will not try as hard until there is an 1647 * overall state change. 1648 */ 1649 if (node_alloc_noretry && !page && alloc_try_hard) 1650 node_set(nid, *node_alloc_noretry); 1651 1652 return page; 1653 } 1654 1655 /* 1656 * Common helper to allocate a fresh hugetlb page. All specific allocators 1657 * should use this function to get new hugetlb pages 1658 */ 1659 static struct page *alloc_fresh_huge_page(struct hstate *h, 1660 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1661 nodemask_t *node_alloc_noretry) 1662 { 1663 struct page *page; 1664 1665 if (hstate_is_gigantic(h)) 1666 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1667 else 1668 page = alloc_buddy_huge_page(h, gfp_mask, 1669 nid, nmask, node_alloc_noretry); 1670 if (!page) 1671 return NULL; 1672 1673 if (hstate_is_gigantic(h)) 1674 prep_compound_gigantic_page(page, huge_page_order(h)); 1675 prep_new_huge_page(h, page, page_to_nid(page)); 1676 1677 return page; 1678 } 1679 1680 /* 1681 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1682 * manner. 1683 */ 1684 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1685 nodemask_t *node_alloc_noretry) 1686 { 1687 struct page *page; 1688 int nr_nodes, node; 1689 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1690 1691 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1692 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1693 node_alloc_noretry); 1694 if (page) 1695 break; 1696 } 1697 1698 if (!page) 1699 return 0; 1700 1701 put_page(page); /* free it into the hugepage allocator */ 1702 1703 return 1; 1704 } 1705 1706 /* 1707 * Remove huge page from pool from next node to free. Attempt to keep 1708 * persistent huge pages more or less balanced over allowed nodes. 1709 * This routine only 'removes' the hugetlb page. The caller must make 1710 * an additional call to free the page to low level allocators. 1711 * Called with hugetlb_lock locked. 1712 */ 1713 static struct page *remove_pool_huge_page(struct hstate *h, 1714 nodemask_t *nodes_allowed, 1715 bool acct_surplus) 1716 { 1717 int nr_nodes, node; 1718 struct page *page = NULL; 1719 1720 lockdep_assert_held(&hugetlb_lock); 1721 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1722 /* 1723 * If we're returning unused surplus pages, only examine 1724 * nodes with surplus pages. 1725 */ 1726 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1727 !list_empty(&h->hugepage_freelists[node])) { 1728 page = list_entry(h->hugepage_freelists[node].next, 1729 struct page, lru); 1730 remove_hugetlb_page(h, page, acct_surplus); 1731 break; 1732 } 1733 } 1734 1735 return page; 1736 } 1737 1738 /* 1739 * Dissolve a given free hugepage into free buddy pages. This function does 1740 * nothing for in-use hugepages and non-hugepages. 1741 * This function returns values like below: 1742 * 1743 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 1744 * (allocated or reserved.) 1745 * 0: successfully dissolved free hugepages or the page is not a 1746 * hugepage (considered as already dissolved) 1747 */ 1748 int dissolve_free_huge_page(struct page *page) 1749 { 1750 int rc = -EBUSY; 1751 1752 retry: 1753 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 1754 if (!PageHuge(page)) 1755 return 0; 1756 1757 spin_lock_irq(&hugetlb_lock); 1758 if (!PageHuge(page)) { 1759 rc = 0; 1760 goto out; 1761 } 1762 1763 if (!page_count(page)) { 1764 struct page *head = compound_head(page); 1765 struct hstate *h = page_hstate(head); 1766 if (h->free_huge_pages - h->resv_huge_pages == 0) 1767 goto out; 1768 1769 /* 1770 * We should make sure that the page is already on the free list 1771 * when it is dissolved. 1772 */ 1773 if (unlikely(!HPageFreed(head))) { 1774 spin_unlock_irq(&hugetlb_lock); 1775 cond_resched(); 1776 1777 /* 1778 * Theoretically, we should return -EBUSY when we 1779 * encounter this race. In fact, we have a chance 1780 * to successfully dissolve the page if we do a 1781 * retry. Because the race window is quite small. 1782 * If we seize this opportunity, it is an optimization 1783 * for increasing the success rate of dissolving page. 1784 */ 1785 goto retry; 1786 } 1787 1788 /* 1789 * Move PageHWPoison flag from head page to the raw error page, 1790 * which makes any subpages rather than the error page reusable. 1791 */ 1792 if (PageHWPoison(head) && page != head) { 1793 SetPageHWPoison(page); 1794 ClearPageHWPoison(head); 1795 } 1796 remove_hugetlb_page(h, page, false); 1797 h->max_huge_pages--; 1798 spin_unlock_irq(&hugetlb_lock); 1799 update_and_free_page(h, head); 1800 return 0; 1801 } 1802 out: 1803 spin_unlock_irq(&hugetlb_lock); 1804 return rc; 1805 } 1806 1807 /* 1808 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1809 * make specified memory blocks removable from the system. 1810 * Note that this will dissolve a free gigantic hugepage completely, if any 1811 * part of it lies within the given range. 1812 * Also note that if dissolve_free_huge_page() returns with an error, all 1813 * free hugepages that were dissolved before that error are lost. 1814 */ 1815 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1816 { 1817 unsigned long pfn; 1818 struct page *page; 1819 int rc = 0; 1820 1821 if (!hugepages_supported()) 1822 return rc; 1823 1824 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1825 page = pfn_to_page(pfn); 1826 rc = dissolve_free_huge_page(page); 1827 if (rc) 1828 break; 1829 } 1830 1831 return rc; 1832 } 1833 1834 /* 1835 * Allocates a fresh surplus page from the page allocator. 1836 */ 1837 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1838 int nid, nodemask_t *nmask) 1839 { 1840 struct page *page = NULL; 1841 1842 if (hstate_is_gigantic(h)) 1843 return NULL; 1844 1845 spin_lock_irq(&hugetlb_lock); 1846 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1847 goto out_unlock; 1848 spin_unlock_irq(&hugetlb_lock); 1849 1850 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1851 if (!page) 1852 return NULL; 1853 1854 spin_lock_irq(&hugetlb_lock); 1855 /* 1856 * We could have raced with the pool size change. 1857 * Double check that and simply deallocate the new page 1858 * if we would end up overcommiting the surpluses. Abuse 1859 * temporary page to workaround the nasty free_huge_page 1860 * codeflow 1861 */ 1862 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1863 SetHPageTemporary(page); 1864 spin_unlock_irq(&hugetlb_lock); 1865 put_page(page); 1866 return NULL; 1867 } else { 1868 h->surplus_huge_pages++; 1869 h->surplus_huge_pages_node[page_to_nid(page)]++; 1870 } 1871 1872 out_unlock: 1873 spin_unlock_irq(&hugetlb_lock); 1874 1875 return page; 1876 } 1877 1878 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1879 int nid, nodemask_t *nmask) 1880 { 1881 struct page *page; 1882 1883 if (hstate_is_gigantic(h)) 1884 return NULL; 1885 1886 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1887 if (!page) 1888 return NULL; 1889 1890 /* 1891 * We do not account these pages as surplus because they are only 1892 * temporary and will be released properly on the last reference 1893 */ 1894 SetHPageTemporary(page); 1895 1896 return page; 1897 } 1898 1899 /* 1900 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1901 */ 1902 static 1903 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1904 struct vm_area_struct *vma, unsigned long addr) 1905 { 1906 struct page *page; 1907 struct mempolicy *mpol; 1908 gfp_t gfp_mask = htlb_alloc_mask(h); 1909 int nid; 1910 nodemask_t *nodemask; 1911 1912 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1913 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1914 mpol_cond_put(mpol); 1915 1916 return page; 1917 } 1918 1919 /* page migration callback function */ 1920 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1921 nodemask_t *nmask, gfp_t gfp_mask) 1922 { 1923 spin_lock_irq(&hugetlb_lock); 1924 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1925 struct page *page; 1926 1927 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1928 if (page) { 1929 spin_unlock_irq(&hugetlb_lock); 1930 return page; 1931 } 1932 } 1933 spin_unlock_irq(&hugetlb_lock); 1934 1935 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1936 } 1937 1938 /* mempolicy aware migration callback */ 1939 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1940 unsigned long address) 1941 { 1942 struct mempolicy *mpol; 1943 nodemask_t *nodemask; 1944 struct page *page; 1945 gfp_t gfp_mask; 1946 int node; 1947 1948 gfp_mask = htlb_alloc_mask(h); 1949 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1950 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 1951 mpol_cond_put(mpol); 1952 1953 return page; 1954 } 1955 1956 /* 1957 * Increase the hugetlb pool such that it can accommodate a reservation 1958 * of size 'delta'. 1959 */ 1960 static int gather_surplus_pages(struct hstate *h, long delta) 1961 __must_hold(&hugetlb_lock) 1962 { 1963 struct list_head surplus_list; 1964 struct page *page, *tmp; 1965 int ret; 1966 long i; 1967 long needed, allocated; 1968 bool alloc_ok = true; 1969 1970 lockdep_assert_held(&hugetlb_lock); 1971 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1972 if (needed <= 0) { 1973 h->resv_huge_pages += delta; 1974 return 0; 1975 } 1976 1977 allocated = 0; 1978 INIT_LIST_HEAD(&surplus_list); 1979 1980 ret = -ENOMEM; 1981 retry: 1982 spin_unlock_irq(&hugetlb_lock); 1983 for (i = 0; i < needed; i++) { 1984 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1985 NUMA_NO_NODE, NULL); 1986 if (!page) { 1987 alloc_ok = false; 1988 break; 1989 } 1990 list_add(&page->lru, &surplus_list); 1991 cond_resched(); 1992 } 1993 allocated += i; 1994 1995 /* 1996 * After retaking hugetlb_lock, we need to recalculate 'needed' 1997 * because either resv_huge_pages or free_huge_pages may have changed. 1998 */ 1999 spin_lock_irq(&hugetlb_lock); 2000 needed = (h->resv_huge_pages + delta) - 2001 (h->free_huge_pages + allocated); 2002 if (needed > 0) { 2003 if (alloc_ok) 2004 goto retry; 2005 /* 2006 * We were not able to allocate enough pages to 2007 * satisfy the entire reservation so we free what 2008 * we've allocated so far. 2009 */ 2010 goto free; 2011 } 2012 /* 2013 * The surplus_list now contains _at_least_ the number of extra pages 2014 * needed to accommodate the reservation. Add the appropriate number 2015 * of pages to the hugetlb pool and free the extras back to the buddy 2016 * allocator. Commit the entire reservation here to prevent another 2017 * process from stealing the pages as they are added to the pool but 2018 * before they are reserved. 2019 */ 2020 needed += allocated; 2021 h->resv_huge_pages += delta; 2022 ret = 0; 2023 2024 /* Free the needed pages to the hugetlb pool */ 2025 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2026 int zeroed; 2027 2028 if ((--needed) < 0) 2029 break; 2030 /* 2031 * This page is now managed by the hugetlb allocator and has 2032 * no users -- drop the buddy allocator's reference. 2033 */ 2034 zeroed = put_page_testzero(page); 2035 VM_BUG_ON_PAGE(!zeroed, page); 2036 enqueue_huge_page(h, page); 2037 } 2038 free: 2039 spin_unlock_irq(&hugetlb_lock); 2040 2041 /* Free unnecessary surplus pages to the buddy allocator */ 2042 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2043 put_page(page); 2044 spin_lock_irq(&hugetlb_lock); 2045 2046 return ret; 2047 } 2048 2049 /* 2050 * This routine has two main purposes: 2051 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2052 * in unused_resv_pages. This corresponds to the prior adjustments made 2053 * to the associated reservation map. 2054 * 2) Free any unused surplus pages that may have been allocated to satisfy 2055 * the reservation. As many as unused_resv_pages may be freed. 2056 */ 2057 static void return_unused_surplus_pages(struct hstate *h, 2058 unsigned long unused_resv_pages) 2059 { 2060 unsigned long nr_pages; 2061 struct page *page; 2062 LIST_HEAD(page_list); 2063 2064 lockdep_assert_held(&hugetlb_lock); 2065 /* Uncommit the reservation */ 2066 h->resv_huge_pages -= unused_resv_pages; 2067 2068 /* Cannot return gigantic pages currently */ 2069 if (hstate_is_gigantic(h)) 2070 goto out; 2071 2072 /* 2073 * Part (or even all) of the reservation could have been backed 2074 * by pre-allocated pages. Only free surplus pages. 2075 */ 2076 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2077 2078 /* 2079 * We want to release as many surplus pages as possible, spread 2080 * evenly across all nodes with memory. Iterate across these nodes 2081 * until we can no longer free unreserved surplus pages. This occurs 2082 * when the nodes with surplus pages have no free pages. 2083 * remove_pool_huge_page() will balance the freed pages across the 2084 * on-line nodes with memory and will handle the hstate accounting. 2085 */ 2086 while (nr_pages--) { 2087 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2088 if (!page) 2089 goto out; 2090 2091 list_add(&page->lru, &page_list); 2092 } 2093 2094 out: 2095 spin_unlock_irq(&hugetlb_lock); 2096 update_and_free_pages_bulk(h, &page_list); 2097 spin_lock_irq(&hugetlb_lock); 2098 } 2099 2100 2101 /* 2102 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2103 * are used by the huge page allocation routines to manage reservations. 2104 * 2105 * vma_needs_reservation is called to determine if the huge page at addr 2106 * within the vma has an associated reservation. If a reservation is 2107 * needed, the value 1 is returned. The caller is then responsible for 2108 * managing the global reservation and subpool usage counts. After 2109 * the huge page has been allocated, vma_commit_reservation is called 2110 * to add the page to the reservation map. If the page allocation fails, 2111 * the reservation must be ended instead of committed. vma_end_reservation 2112 * is called in such cases. 2113 * 2114 * In the normal case, vma_commit_reservation returns the same value 2115 * as the preceding vma_needs_reservation call. The only time this 2116 * is not the case is if a reserve map was changed between calls. It 2117 * is the responsibility of the caller to notice the difference and 2118 * take appropriate action. 2119 * 2120 * vma_add_reservation is used in error paths where a reservation must 2121 * be restored when a newly allocated huge page must be freed. It is 2122 * to be called after calling vma_needs_reservation to determine if a 2123 * reservation exists. 2124 */ 2125 enum vma_resv_mode { 2126 VMA_NEEDS_RESV, 2127 VMA_COMMIT_RESV, 2128 VMA_END_RESV, 2129 VMA_ADD_RESV, 2130 }; 2131 static long __vma_reservation_common(struct hstate *h, 2132 struct vm_area_struct *vma, unsigned long addr, 2133 enum vma_resv_mode mode) 2134 { 2135 struct resv_map *resv; 2136 pgoff_t idx; 2137 long ret; 2138 long dummy_out_regions_needed; 2139 2140 resv = vma_resv_map(vma); 2141 if (!resv) 2142 return 1; 2143 2144 idx = vma_hugecache_offset(h, vma, addr); 2145 switch (mode) { 2146 case VMA_NEEDS_RESV: 2147 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2148 /* We assume that vma_reservation_* routines always operate on 2149 * 1 page, and that adding to resv map a 1 page entry can only 2150 * ever require 1 region. 2151 */ 2152 VM_BUG_ON(dummy_out_regions_needed != 1); 2153 break; 2154 case VMA_COMMIT_RESV: 2155 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2156 /* region_add calls of range 1 should never fail. */ 2157 VM_BUG_ON(ret < 0); 2158 break; 2159 case VMA_END_RESV: 2160 region_abort(resv, idx, idx + 1, 1); 2161 ret = 0; 2162 break; 2163 case VMA_ADD_RESV: 2164 if (vma->vm_flags & VM_MAYSHARE) { 2165 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2166 /* region_add calls of range 1 should never fail. */ 2167 VM_BUG_ON(ret < 0); 2168 } else { 2169 region_abort(resv, idx, idx + 1, 1); 2170 ret = region_del(resv, idx, idx + 1); 2171 } 2172 break; 2173 default: 2174 BUG(); 2175 } 2176 2177 if (vma->vm_flags & VM_MAYSHARE) 2178 return ret; 2179 /* 2180 * We know private mapping must have HPAGE_RESV_OWNER set. 2181 * 2182 * In most cases, reserves always exist for private mappings. 2183 * However, a file associated with mapping could have been 2184 * hole punched or truncated after reserves were consumed. 2185 * As subsequent fault on such a range will not use reserves. 2186 * Subtle - The reserve map for private mappings has the 2187 * opposite meaning than that of shared mappings. If NO 2188 * entry is in the reserve map, it means a reservation exists. 2189 * If an entry exists in the reserve map, it means the 2190 * reservation has already been consumed. As a result, the 2191 * return value of this routine is the opposite of the 2192 * value returned from reserve map manipulation routines above. 2193 */ 2194 if (ret > 0) 2195 return 0; 2196 if (ret == 0) 2197 return 1; 2198 return ret; 2199 } 2200 2201 static long vma_needs_reservation(struct hstate *h, 2202 struct vm_area_struct *vma, unsigned long addr) 2203 { 2204 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2205 } 2206 2207 static long vma_commit_reservation(struct hstate *h, 2208 struct vm_area_struct *vma, unsigned long addr) 2209 { 2210 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2211 } 2212 2213 static void vma_end_reservation(struct hstate *h, 2214 struct vm_area_struct *vma, unsigned long addr) 2215 { 2216 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2217 } 2218 2219 static long vma_add_reservation(struct hstate *h, 2220 struct vm_area_struct *vma, unsigned long addr) 2221 { 2222 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2223 } 2224 2225 /* 2226 * This routine is called to restore a reservation on error paths. In the 2227 * specific error paths, a huge page was allocated (via alloc_huge_page) 2228 * and is about to be freed. If a reservation for the page existed, 2229 * alloc_huge_page would have consumed the reservation and set 2230 * HPageRestoreReserve in the newly allocated page. When the page is freed 2231 * via free_huge_page, the global reservation count will be incremented if 2232 * HPageRestoreReserve is set. However, free_huge_page can not adjust the 2233 * reserve map. Adjust the reserve map here to be consistent with global 2234 * reserve count adjustments to be made by free_huge_page. 2235 */ 2236 static void restore_reserve_on_error(struct hstate *h, 2237 struct vm_area_struct *vma, unsigned long address, 2238 struct page *page) 2239 { 2240 if (unlikely(HPageRestoreReserve(page))) { 2241 long rc = vma_needs_reservation(h, vma, address); 2242 2243 if (unlikely(rc < 0)) { 2244 /* 2245 * Rare out of memory condition in reserve map 2246 * manipulation. Clear HPageRestoreReserve so that 2247 * global reserve count will not be incremented 2248 * by free_huge_page. This will make it appear 2249 * as though the reservation for this page was 2250 * consumed. This may prevent the task from 2251 * faulting in the page at a later time. This 2252 * is better than inconsistent global huge page 2253 * accounting of reserve counts. 2254 */ 2255 ClearHPageRestoreReserve(page); 2256 } else if (rc) { 2257 rc = vma_add_reservation(h, vma, address); 2258 if (unlikely(rc < 0)) 2259 /* 2260 * See above comment about rare out of 2261 * memory condition. 2262 */ 2263 ClearHPageRestoreReserve(page); 2264 } else 2265 vma_end_reservation(h, vma, address); 2266 } 2267 } 2268 2269 /* 2270 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one 2271 * @h: struct hstate old page belongs to 2272 * @old_page: Old page to dissolve 2273 * @list: List to isolate the page in case we need to 2274 * Returns 0 on success, otherwise negated error. 2275 */ 2276 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page, 2277 struct list_head *list) 2278 { 2279 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2280 int nid = page_to_nid(old_page); 2281 struct page *new_page; 2282 int ret = 0; 2283 2284 /* 2285 * Before dissolving the page, we need to allocate a new one for the 2286 * pool to remain stable. Using alloc_buddy_huge_page() allows us to 2287 * not having to deal with prep_new_huge_page() and avoids dealing of any 2288 * counters. This simplifies and let us do the whole thing under the 2289 * lock. 2290 */ 2291 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL); 2292 if (!new_page) 2293 return -ENOMEM; 2294 2295 retry: 2296 spin_lock_irq(&hugetlb_lock); 2297 if (!PageHuge(old_page)) { 2298 /* 2299 * Freed from under us. Drop new_page too. 2300 */ 2301 goto free_new; 2302 } else if (page_count(old_page)) { 2303 /* 2304 * Someone has grabbed the page, try to isolate it here. 2305 * Fail with -EBUSY if not possible. 2306 */ 2307 spin_unlock_irq(&hugetlb_lock); 2308 if (!isolate_huge_page(old_page, list)) 2309 ret = -EBUSY; 2310 spin_lock_irq(&hugetlb_lock); 2311 goto free_new; 2312 } else if (!HPageFreed(old_page)) { 2313 /* 2314 * Page's refcount is 0 but it has not been enqueued in the 2315 * freelist yet. Race window is small, so we can succeed here if 2316 * we retry. 2317 */ 2318 spin_unlock_irq(&hugetlb_lock); 2319 cond_resched(); 2320 goto retry; 2321 } else { 2322 /* 2323 * Ok, old_page is still a genuine free hugepage. Remove it from 2324 * the freelist and decrease the counters. These will be 2325 * incremented again when calling __prep_account_new_huge_page() 2326 * and enqueue_huge_page() for new_page. The counters will remain 2327 * stable since this happens under the lock. 2328 */ 2329 remove_hugetlb_page(h, old_page, false); 2330 2331 /* 2332 * new_page needs to be initialized with the standard hugetlb 2333 * state. This is normally done by prep_new_huge_page() but 2334 * that takes hugetlb_lock which is already held so we need to 2335 * open code it here. 2336 * Reference count trick is needed because allocator gives us 2337 * referenced page but the pool requires pages with 0 refcount. 2338 */ 2339 __prep_new_huge_page(new_page); 2340 __prep_account_new_huge_page(h, nid); 2341 page_ref_dec(new_page); 2342 enqueue_huge_page(h, new_page); 2343 2344 /* 2345 * Pages have been replaced, we can safely free the old one. 2346 */ 2347 spin_unlock_irq(&hugetlb_lock); 2348 update_and_free_page(h, old_page); 2349 } 2350 2351 return ret; 2352 2353 free_new: 2354 spin_unlock_irq(&hugetlb_lock); 2355 __free_pages(new_page, huge_page_order(h)); 2356 2357 return ret; 2358 } 2359 2360 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2361 { 2362 struct hstate *h; 2363 struct page *head; 2364 int ret = -EBUSY; 2365 2366 /* 2367 * The page might have been dissolved from under our feet, so make sure 2368 * to carefully check the state under the lock. 2369 * Return success when racing as if we dissolved the page ourselves. 2370 */ 2371 spin_lock_irq(&hugetlb_lock); 2372 if (PageHuge(page)) { 2373 head = compound_head(page); 2374 h = page_hstate(head); 2375 } else { 2376 spin_unlock_irq(&hugetlb_lock); 2377 return 0; 2378 } 2379 spin_unlock_irq(&hugetlb_lock); 2380 2381 /* 2382 * Fence off gigantic pages as there is a cyclic dependency between 2383 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2384 * of bailing out right away without further retrying. 2385 */ 2386 if (hstate_is_gigantic(h)) 2387 return -ENOMEM; 2388 2389 if (page_count(head) && isolate_huge_page(head, list)) 2390 ret = 0; 2391 else if (!page_count(head)) 2392 ret = alloc_and_dissolve_huge_page(h, head, list); 2393 2394 return ret; 2395 } 2396 2397 struct page *alloc_huge_page(struct vm_area_struct *vma, 2398 unsigned long addr, int avoid_reserve) 2399 { 2400 struct hugepage_subpool *spool = subpool_vma(vma); 2401 struct hstate *h = hstate_vma(vma); 2402 struct page *page; 2403 long map_chg, map_commit; 2404 long gbl_chg; 2405 int ret, idx; 2406 struct hugetlb_cgroup *h_cg; 2407 bool deferred_reserve; 2408 2409 idx = hstate_index(h); 2410 /* 2411 * Examine the region/reserve map to determine if the process 2412 * has a reservation for the page to be allocated. A return 2413 * code of zero indicates a reservation exists (no change). 2414 */ 2415 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2416 if (map_chg < 0) 2417 return ERR_PTR(-ENOMEM); 2418 2419 /* 2420 * Processes that did not create the mapping will have no 2421 * reserves as indicated by the region/reserve map. Check 2422 * that the allocation will not exceed the subpool limit. 2423 * Allocations for MAP_NORESERVE mappings also need to be 2424 * checked against any subpool limit. 2425 */ 2426 if (map_chg || avoid_reserve) { 2427 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2428 if (gbl_chg < 0) { 2429 vma_end_reservation(h, vma, addr); 2430 return ERR_PTR(-ENOSPC); 2431 } 2432 2433 /* 2434 * Even though there was no reservation in the region/reserve 2435 * map, there could be reservations associated with the 2436 * subpool that can be used. This would be indicated if the 2437 * return value of hugepage_subpool_get_pages() is zero. 2438 * However, if avoid_reserve is specified we still avoid even 2439 * the subpool reservations. 2440 */ 2441 if (avoid_reserve) 2442 gbl_chg = 1; 2443 } 2444 2445 /* If this allocation is not consuming a reservation, charge it now. 2446 */ 2447 deferred_reserve = map_chg || avoid_reserve; 2448 if (deferred_reserve) { 2449 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2450 idx, pages_per_huge_page(h), &h_cg); 2451 if (ret) 2452 goto out_subpool_put; 2453 } 2454 2455 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2456 if (ret) 2457 goto out_uncharge_cgroup_reservation; 2458 2459 spin_lock_irq(&hugetlb_lock); 2460 /* 2461 * glb_chg is passed to indicate whether or not a page must be taken 2462 * from the global free pool (global change). gbl_chg == 0 indicates 2463 * a reservation exists for the allocation. 2464 */ 2465 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2466 if (!page) { 2467 spin_unlock_irq(&hugetlb_lock); 2468 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2469 if (!page) 2470 goto out_uncharge_cgroup; 2471 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2472 SetHPageRestoreReserve(page); 2473 h->resv_huge_pages--; 2474 } 2475 spin_lock_irq(&hugetlb_lock); 2476 list_add(&page->lru, &h->hugepage_activelist); 2477 /* Fall through */ 2478 } 2479 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2480 /* If allocation is not consuming a reservation, also store the 2481 * hugetlb_cgroup pointer on the page. 2482 */ 2483 if (deferred_reserve) { 2484 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2485 h_cg, page); 2486 } 2487 2488 spin_unlock_irq(&hugetlb_lock); 2489 2490 hugetlb_set_page_subpool(page, spool); 2491 2492 map_commit = vma_commit_reservation(h, vma, addr); 2493 if (unlikely(map_chg > map_commit)) { 2494 /* 2495 * The page was added to the reservation map between 2496 * vma_needs_reservation and vma_commit_reservation. 2497 * This indicates a race with hugetlb_reserve_pages. 2498 * Adjust for the subpool count incremented above AND 2499 * in hugetlb_reserve_pages for the same page. Also, 2500 * the reservation count added in hugetlb_reserve_pages 2501 * no longer applies. 2502 */ 2503 long rsv_adjust; 2504 2505 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2506 hugetlb_acct_memory(h, -rsv_adjust); 2507 if (deferred_reserve) 2508 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2509 pages_per_huge_page(h), page); 2510 } 2511 return page; 2512 2513 out_uncharge_cgroup: 2514 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2515 out_uncharge_cgroup_reservation: 2516 if (deferred_reserve) 2517 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2518 h_cg); 2519 out_subpool_put: 2520 if (map_chg || avoid_reserve) 2521 hugepage_subpool_put_pages(spool, 1); 2522 vma_end_reservation(h, vma, addr); 2523 return ERR_PTR(-ENOSPC); 2524 } 2525 2526 int alloc_bootmem_huge_page(struct hstate *h) 2527 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2528 int __alloc_bootmem_huge_page(struct hstate *h) 2529 { 2530 struct huge_bootmem_page *m; 2531 int nr_nodes, node; 2532 2533 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2534 void *addr; 2535 2536 addr = memblock_alloc_try_nid_raw( 2537 huge_page_size(h), huge_page_size(h), 2538 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2539 if (addr) { 2540 /* 2541 * Use the beginning of the huge page to store the 2542 * huge_bootmem_page struct (until gather_bootmem 2543 * puts them into the mem_map). 2544 */ 2545 m = addr; 2546 goto found; 2547 } 2548 } 2549 return 0; 2550 2551 found: 2552 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2553 /* Put them into a private list first because mem_map is not up yet */ 2554 INIT_LIST_HEAD(&m->list); 2555 list_add(&m->list, &huge_boot_pages); 2556 m->hstate = h; 2557 return 1; 2558 } 2559 2560 static void __init prep_compound_huge_page(struct page *page, 2561 unsigned int order) 2562 { 2563 if (unlikely(order > (MAX_ORDER - 1))) 2564 prep_compound_gigantic_page(page, order); 2565 else 2566 prep_compound_page(page, order); 2567 } 2568 2569 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2570 static void __init gather_bootmem_prealloc(void) 2571 { 2572 struct huge_bootmem_page *m; 2573 2574 list_for_each_entry(m, &huge_boot_pages, list) { 2575 struct page *page = virt_to_page(m); 2576 struct hstate *h = m->hstate; 2577 2578 WARN_ON(page_count(page) != 1); 2579 prep_compound_huge_page(page, huge_page_order(h)); 2580 WARN_ON(PageReserved(page)); 2581 prep_new_huge_page(h, page, page_to_nid(page)); 2582 put_page(page); /* free it into the hugepage allocator */ 2583 2584 /* 2585 * If we had gigantic hugepages allocated at boot time, we need 2586 * to restore the 'stolen' pages to totalram_pages in order to 2587 * fix confusing memory reports from free(1) and another 2588 * side-effects, like CommitLimit going negative. 2589 */ 2590 if (hstate_is_gigantic(h)) 2591 adjust_managed_page_count(page, pages_per_huge_page(h)); 2592 cond_resched(); 2593 } 2594 } 2595 2596 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2597 { 2598 unsigned long i; 2599 nodemask_t *node_alloc_noretry; 2600 2601 if (!hstate_is_gigantic(h)) { 2602 /* 2603 * Bit mask controlling how hard we retry per-node allocations. 2604 * Ignore errors as lower level routines can deal with 2605 * node_alloc_noretry == NULL. If this kmalloc fails at boot 2606 * time, we are likely in bigger trouble. 2607 */ 2608 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 2609 GFP_KERNEL); 2610 } else { 2611 /* allocations done at boot time */ 2612 node_alloc_noretry = NULL; 2613 } 2614 2615 /* bit mask controlling how hard we retry per-node allocations */ 2616 if (node_alloc_noretry) 2617 nodes_clear(*node_alloc_noretry); 2618 2619 for (i = 0; i < h->max_huge_pages; ++i) { 2620 if (hstate_is_gigantic(h)) { 2621 if (hugetlb_cma_size) { 2622 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 2623 goto free; 2624 } 2625 if (!alloc_bootmem_huge_page(h)) 2626 break; 2627 } else if (!alloc_pool_huge_page(h, 2628 &node_states[N_MEMORY], 2629 node_alloc_noretry)) 2630 break; 2631 cond_resched(); 2632 } 2633 if (i < h->max_huge_pages) { 2634 char buf[32]; 2635 2636 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2637 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2638 h->max_huge_pages, buf, i); 2639 h->max_huge_pages = i; 2640 } 2641 free: 2642 kfree(node_alloc_noretry); 2643 } 2644 2645 static void __init hugetlb_init_hstates(void) 2646 { 2647 struct hstate *h; 2648 2649 for_each_hstate(h) { 2650 if (minimum_order > huge_page_order(h)) 2651 minimum_order = huge_page_order(h); 2652 2653 /* oversize hugepages were init'ed in early boot */ 2654 if (!hstate_is_gigantic(h)) 2655 hugetlb_hstate_alloc_pages(h); 2656 } 2657 VM_BUG_ON(minimum_order == UINT_MAX); 2658 } 2659 2660 static void __init report_hugepages(void) 2661 { 2662 struct hstate *h; 2663 2664 for_each_hstate(h) { 2665 char buf[32]; 2666 2667 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2668 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2669 buf, h->free_huge_pages); 2670 } 2671 } 2672 2673 #ifdef CONFIG_HIGHMEM 2674 static void try_to_free_low(struct hstate *h, unsigned long count, 2675 nodemask_t *nodes_allowed) 2676 { 2677 int i; 2678 LIST_HEAD(page_list); 2679 2680 lockdep_assert_held(&hugetlb_lock); 2681 if (hstate_is_gigantic(h)) 2682 return; 2683 2684 /* 2685 * Collect pages to be freed on a list, and free after dropping lock 2686 */ 2687 for_each_node_mask(i, *nodes_allowed) { 2688 struct page *page, *next; 2689 struct list_head *freel = &h->hugepage_freelists[i]; 2690 list_for_each_entry_safe(page, next, freel, lru) { 2691 if (count >= h->nr_huge_pages) 2692 goto out; 2693 if (PageHighMem(page)) 2694 continue; 2695 remove_hugetlb_page(h, page, false); 2696 list_add(&page->lru, &page_list); 2697 } 2698 } 2699 2700 out: 2701 spin_unlock_irq(&hugetlb_lock); 2702 update_and_free_pages_bulk(h, &page_list); 2703 spin_lock_irq(&hugetlb_lock); 2704 } 2705 #else 2706 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2707 nodemask_t *nodes_allowed) 2708 { 2709 } 2710 #endif 2711 2712 /* 2713 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2714 * balanced by operating on them in a round-robin fashion. 2715 * Returns 1 if an adjustment was made. 2716 */ 2717 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2718 int delta) 2719 { 2720 int nr_nodes, node; 2721 2722 lockdep_assert_held(&hugetlb_lock); 2723 VM_BUG_ON(delta != -1 && delta != 1); 2724 2725 if (delta < 0) { 2726 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2727 if (h->surplus_huge_pages_node[node]) 2728 goto found; 2729 } 2730 } else { 2731 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2732 if (h->surplus_huge_pages_node[node] < 2733 h->nr_huge_pages_node[node]) 2734 goto found; 2735 } 2736 } 2737 return 0; 2738 2739 found: 2740 h->surplus_huge_pages += delta; 2741 h->surplus_huge_pages_node[node] += delta; 2742 return 1; 2743 } 2744 2745 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2746 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2747 nodemask_t *nodes_allowed) 2748 { 2749 unsigned long min_count, ret; 2750 struct page *page; 2751 LIST_HEAD(page_list); 2752 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 2753 2754 /* 2755 * Bit mask controlling how hard we retry per-node allocations. 2756 * If we can not allocate the bit mask, do not attempt to allocate 2757 * the requested huge pages. 2758 */ 2759 if (node_alloc_noretry) 2760 nodes_clear(*node_alloc_noretry); 2761 else 2762 return -ENOMEM; 2763 2764 /* 2765 * resize_lock mutex prevents concurrent adjustments to number of 2766 * pages in hstate via the proc/sysfs interfaces. 2767 */ 2768 mutex_lock(&h->resize_lock); 2769 spin_lock_irq(&hugetlb_lock); 2770 2771 /* 2772 * Check for a node specific request. 2773 * Changing node specific huge page count may require a corresponding 2774 * change to the global count. In any case, the passed node mask 2775 * (nodes_allowed) will restrict alloc/free to the specified node. 2776 */ 2777 if (nid != NUMA_NO_NODE) { 2778 unsigned long old_count = count; 2779 2780 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2781 /* 2782 * User may have specified a large count value which caused the 2783 * above calculation to overflow. In this case, they wanted 2784 * to allocate as many huge pages as possible. Set count to 2785 * largest possible value to align with their intention. 2786 */ 2787 if (count < old_count) 2788 count = ULONG_MAX; 2789 } 2790 2791 /* 2792 * Gigantic pages runtime allocation depend on the capability for large 2793 * page range allocation. 2794 * If the system does not provide this feature, return an error when 2795 * the user tries to allocate gigantic pages but let the user free the 2796 * boottime allocated gigantic pages. 2797 */ 2798 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2799 if (count > persistent_huge_pages(h)) { 2800 spin_unlock_irq(&hugetlb_lock); 2801 mutex_unlock(&h->resize_lock); 2802 NODEMASK_FREE(node_alloc_noretry); 2803 return -EINVAL; 2804 } 2805 /* Fall through to decrease pool */ 2806 } 2807 2808 /* 2809 * Increase the pool size 2810 * First take pages out of surplus state. Then make up the 2811 * remaining difference by allocating fresh huge pages. 2812 * 2813 * We might race with alloc_surplus_huge_page() here and be unable 2814 * to convert a surplus huge page to a normal huge page. That is 2815 * not critical, though, it just means the overall size of the 2816 * pool might be one hugepage larger than it needs to be, but 2817 * within all the constraints specified by the sysctls. 2818 */ 2819 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2820 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2821 break; 2822 } 2823 2824 while (count > persistent_huge_pages(h)) { 2825 /* 2826 * If this allocation races such that we no longer need the 2827 * page, free_huge_page will handle it by freeing the page 2828 * and reducing the surplus. 2829 */ 2830 spin_unlock_irq(&hugetlb_lock); 2831 2832 /* yield cpu to avoid soft lockup */ 2833 cond_resched(); 2834 2835 ret = alloc_pool_huge_page(h, nodes_allowed, 2836 node_alloc_noretry); 2837 spin_lock_irq(&hugetlb_lock); 2838 if (!ret) 2839 goto out; 2840 2841 /* Bail for signals. Probably ctrl-c from user */ 2842 if (signal_pending(current)) 2843 goto out; 2844 } 2845 2846 /* 2847 * Decrease the pool size 2848 * First return free pages to the buddy allocator (being careful 2849 * to keep enough around to satisfy reservations). Then place 2850 * pages into surplus state as needed so the pool will shrink 2851 * to the desired size as pages become free. 2852 * 2853 * By placing pages into the surplus state independent of the 2854 * overcommit value, we are allowing the surplus pool size to 2855 * exceed overcommit. There are few sane options here. Since 2856 * alloc_surplus_huge_page() is checking the global counter, 2857 * though, we'll note that we're not allowed to exceed surplus 2858 * and won't grow the pool anywhere else. Not until one of the 2859 * sysctls are changed, or the surplus pages go out of use. 2860 */ 2861 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2862 min_count = max(count, min_count); 2863 try_to_free_low(h, min_count, nodes_allowed); 2864 2865 /* 2866 * Collect pages to be removed on list without dropping lock 2867 */ 2868 while (min_count < persistent_huge_pages(h)) { 2869 page = remove_pool_huge_page(h, nodes_allowed, 0); 2870 if (!page) 2871 break; 2872 2873 list_add(&page->lru, &page_list); 2874 } 2875 /* free the pages after dropping lock */ 2876 spin_unlock_irq(&hugetlb_lock); 2877 update_and_free_pages_bulk(h, &page_list); 2878 spin_lock_irq(&hugetlb_lock); 2879 2880 while (count < persistent_huge_pages(h)) { 2881 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2882 break; 2883 } 2884 out: 2885 h->max_huge_pages = persistent_huge_pages(h); 2886 spin_unlock_irq(&hugetlb_lock); 2887 mutex_unlock(&h->resize_lock); 2888 2889 NODEMASK_FREE(node_alloc_noretry); 2890 2891 return 0; 2892 } 2893 2894 #define HSTATE_ATTR_RO(_name) \ 2895 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2896 2897 #define HSTATE_ATTR(_name) \ 2898 static struct kobj_attribute _name##_attr = \ 2899 __ATTR(_name, 0644, _name##_show, _name##_store) 2900 2901 static struct kobject *hugepages_kobj; 2902 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2903 2904 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2905 2906 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2907 { 2908 int i; 2909 2910 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2911 if (hstate_kobjs[i] == kobj) { 2912 if (nidp) 2913 *nidp = NUMA_NO_NODE; 2914 return &hstates[i]; 2915 } 2916 2917 return kobj_to_node_hstate(kobj, nidp); 2918 } 2919 2920 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2921 struct kobj_attribute *attr, char *buf) 2922 { 2923 struct hstate *h; 2924 unsigned long nr_huge_pages; 2925 int nid; 2926 2927 h = kobj_to_hstate(kobj, &nid); 2928 if (nid == NUMA_NO_NODE) 2929 nr_huge_pages = h->nr_huge_pages; 2930 else 2931 nr_huge_pages = h->nr_huge_pages_node[nid]; 2932 2933 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 2934 } 2935 2936 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2937 struct hstate *h, int nid, 2938 unsigned long count, size_t len) 2939 { 2940 int err; 2941 nodemask_t nodes_allowed, *n_mask; 2942 2943 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2944 return -EINVAL; 2945 2946 if (nid == NUMA_NO_NODE) { 2947 /* 2948 * global hstate attribute 2949 */ 2950 if (!(obey_mempolicy && 2951 init_nodemask_of_mempolicy(&nodes_allowed))) 2952 n_mask = &node_states[N_MEMORY]; 2953 else 2954 n_mask = &nodes_allowed; 2955 } else { 2956 /* 2957 * Node specific request. count adjustment happens in 2958 * set_max_huge_pages() after acquiring hugetlb_lock. 2959 */ 2960 init_nodemask_of_node(&nodes_allowed, nid); 2961 n_mask = &nodes_allowed; 2962 } 2963 2964 err = set_max_huge_pages(h, count, nid, n_mask); 2965 2966 return err ? err : len; 2967 } 2968 2969 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2970 struct kobject *kobj, const char *buf, 2971 size_t len) 2972 { 2973 struct hstate *h; 2974 unsigned long count; 2975 int nid; 2976 int err; 2977 2978 err = kstrtoul(buf, 10, &count); 2979 if (err) 2980 return err; 2981 2982 h = kobj_to_hstate(kobj, &nid); 2983 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2984 } 2985 2986 static ssize_t nr_hugepages_show(struct kobject *kobj, 2987 struct kobj_attribute *attr, char *buf) 2988 { 2989 return nr_hugepages_show_common(kobj, attr, buf); 2990 } 2991 2992 static ssize_t nr_hugepages_store(struct kobject *kobj, 2993 struct kobj_attribute *attr, const char *buf, size_t len) 2994 { 2995 return nr_hugepages_store_common(false, kobj, buf, len); 2996 } 2997 HSTATE_ATTR(nr_hugepages); 2998 2999 #ifdef CONFIG_NUMA 3000 3001 /* 3002 * hstate attribute for optionally mempolicy-based constraint on persistent 3003 * huge page alloc/free. 3004 */ 3005 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3006 struct kobj_attribute *attr, 3007 char *buf) 3008 { 3009 return nr_hugepages_show_common(kobj, attr, buf); 3010 } 3011 3012 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3013 struct kobj_attribute *attr, const char *buf, size_t len) 3014 { 3015 return nr_hugepages_store_common(true, kobj, buf, len); 3016 } 3017 HSTATE_ATTR(nr_hugepages_mempolicy); 3018 #endif 3019 3020 3021 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3022 struct kobj_attribute *attr, char *buf) 3023 { 3024 struct hstate *h = kobj_to_hstate(kobj, NULL); 3025 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3026 } 3027 3028 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3029 struct kobj_attribute *attr, const char *buf, size_t count) 3030 { 3031 int err; 3032 unsigned long input; 3033 struct hstate *h = kobj_to_hstate(kobj, NULL); 3034 3035 if (hstate_is_gigantic(h)) 3036 return -EINVAL; 3037 3038 err = kstrtoul(buf, 10, &input); 3039 if (err) 3040 return err; 3041 3042 spin_lock_irq(&hugetlb_lock); 3043 h->nr_overcommit_huge_pages = input; 3044 spin_unlock_irq(&hugetlb_lock); 3045 3046 return count; 3047 } 3048 HSTATE_ATTR(nr_overcommit_hugepages); 3049 3050 static ssize_t free_hugepages_show(struct kobject *kobj, 3051 struct kobj_attribute *attr, char *buf) 3052 { 3053 struct hstate *h; 3054 unsigned long free_huge_pages; 3055 int nid; 3056 3057 h = kobj_to_hstate(kobj, &nid); 3058 if (nid == NUMA_NO_NODE) 3059 free_huge_pages = h->free_huge_pages; 3060 else 3061 free_huge_pages = h->free_huge_pages_node[nid]; 3062 3063 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3064 } 3065 HSTATE_ATTR_RO(free_hugepages); 3066 3067 static ssize_t resv_hugepages_show(struct kobject *kobj, 3068 struct kobj_attribute *attr, char *buf) 3069 { 3070 struct hstate *h = kobj_to_hstate(kobj, NULL); 3071 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3072 } 3073 HSTATE_ATTR_RO(resv_hugepages); 3074 3075 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3076 struct kobj_attribute *attr, char *buf) 3077 { 3078 struct hstate *h; 3079 unsigned long surplus_huge_pages; 3080 int nid; 3081 3082 h = kobj_to_hstate(kobj, &nid); 3083 if (nid == NUMA_NO_NODE) 3084 surplus_huge_pages = h->surplus_huge_pages; 3085 else 3086 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3087 3088 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3089 } 3090 HSTATE_ATTR_RO(surplus_hugepages); 3091 3092 static struct attribute *hstate_attrs[] = { 3093 &nr_hugepages_attr.attr, 3094 &nr_overcommit_hugepages_attr.attr, 3095 &free_hugepages_attr.attr, 3096 &resv_hugepages_attr.attr, 3097 &surplus_hugepages_attr.attr, 3098 #ifdef CONFIG_NUMA 3099 &nr_hugepages_mempolicy_attr.attr, 3100 #endif 3101 NULL, 3102 }; 3103 3104 static const struct attribute_group hstate_attr_group = { 3105 .attrs = hstate_attrs, 3106 }; 3107 3108 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3109 struct kobject **hstate_kobjs, 3110 const struct attribute_group *hstate_attr_group) 3111 { 3112 int retval; 3113 int hi = hstate_index(h); 3114 3115 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3116 if (!hstate_kobjs[hi]) 3117 return -ENOMEM; 3118 3119 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3120 if (retval) { 3121 kobject_put(hstate_kobjs[hi]); 3122 hstate_kobjs[hi] = NULL; 3123 } 3124 3125 return retval; 3126 } 3127 3128 static void __init hugetlb_sysfs_init(void) 3129 { 3130 struct hstate *h; 3131 int err; 3132 3133 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3134 if (!hugepages_kobj) 3135 return; 3136 3137 for_each_hstate(h) { 3138 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3139 hstate_kobjs, &hstate_attr_group); 3140 if (err) 3141 pr_err("HugeTLB: Unable to add hstate %s", h->name); 3142 } 3143 } 3144 3145 #ifdef CONFIG_NUMA 3146 3147 /* 3148 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3149 * with node devices in node_devices[] using a parallel array. The array 3150 * index of a node device or _hstate == node id. 3151 * This is here to avoid any static dependency of the node device driver, in 3152 * the base kernel, on the hugetlb module. 3153 */ 3154 struct node_hstate { 3155 struct kobject *hugepages_kobj; 3156 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3157 }; 3158 static struct node_hstate node_hstates[MAX_NUMNODES]; 3159 3160 /* 3161 * A subset of global hstate attributes for node devices 3162 */ 3163 static struct attribute *per_node_hstate_attrs[] = { 3164 &nr_hugepages_attr.attr, 3165 &free_hugepages_attr.attr, 3166 &surplus_hugepages_attr.attr, 3167 NULL, 3168 }; 3169 3170 static const struct attribute_group per_node_hstate_attr_group = { 3171 .attrs = per_node_hstate_attrs, 3172 }; 3173 3174 /* 3175 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3176 * Returns node id via non-NULL nidp. 3177 */ 3178 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3179 { 3180 int nid; 3181 3182 for (nid = 0; nid < nr_node_ids; nid++) { 3183 struct node_hstate *nhs = &node_hstates[nid]; 3184 int i; 3185 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3186 if (nhs->hstate_kobjs[i] == kobj) { 3187 if (nidp) 3188 *nidp = nid; 3189 return &hstates[i]; 3190 } 3191 } 3192 3193 BUG(); 3194 return NULL; 3195 } 3196 3197 /* 3198 * Unregister hstate attributes from a single node device. 3199 * No-op if no hstate attributes attached. 3200 */ 3201 static void hugetlb_unregister_node(struct node *node) 3202 { 3203 struct hstate *h; 3204 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3205 3206 if (!nhs->hugepages_kobj) 3207 return; /* no hstate attributes */ 3208 3209 for_each_hstate(h) { 3210 int idx = hstate_index(h); 3211 if (nhs->hstate_kobjs[idx]) { 3212 kobject_put(nhs->hstate_kobjs[idx]); 3213 nhs->hstate_kobjs[idx] = NULL; 3214 } 3215 } 3216 3217 kobject_put(nhs->hugepages_kobj); 3218 nhs->hugepages_kobj = NULL; 3219 } 3220 3221 3222 /* 3223 * Register hstate attributes for a single node device. 3224 * No-op if attributes already registered. 3225 */ 3226 static void hugetlb_register_node(struct node *node) 3227 { 3228 struct hstate *h; 3229 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3230 int err; 3231 3232 if (nhs->hugepages_kobj) 3233 return; /* already allocated */ 3234 3235 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3236 &node->dev.kobj); 3237 if (!nhs->hugepages_kobj) 3238 return; 3239 3240 for_each_hstate(h) { 3241 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3242 nhs->hstate_kobjs, 3243 &per_node_hstate_attr_group); 3244 if (err) { 3245 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3246 h->name, node->dev.id); 3247 hugetlb_unregister_node(node); 3248 break; 3249 } 3250 } 3251 } 3252 3253 /* 3254 * hugetlb init time: register hstate attributes for all registered node 3255 * devices of nodes that have memory. All on-line nodes should have 3256 * registered their associated device by this time. 3257 */ 3258 static void __init hugetlb_register_all_nodes(void) 3259 { 3260 int nid; 3261 3262 for_each_node_state(nid, N_MEMORY) { 3263 struct node *node = node_devices[nid]; 3264 if (node->dev.id == nid) 3265 hugetlb_register_node(node); 3266 } 3267 3268 /* 3269 * Let the node device driver know we're here so it can 3270 * [un]register hstate attributes on node hotplug. 3271 */ 3272 register_hugetlbfs_with_node(hugetlb_register_node, 3273 hugetlb_unregister_node); 3274 } 3275 #else /* !CONFIG_NUMA */ 3276 3277 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3278 { 3279 BUG(); 3280 if (nidp) 3281 *nidp = -1; 3282 return NULL; 3283 } 3284 3285 static void hugetlb_register_all_nodes(void) { } 3286 3287 #endif 3288 3289 static int __init hugetlb_init(void) 3290 { 3291 int i; 3292 3293 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 3294 __NR_HPAGEFLAGS); 3295 3296 if (!hugepages_supported()) { 3297 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 3298 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 3299 return 0; 3300 } 3301 3302 /* 3303 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 3304 * architectures depend on setup being done here. 3305 */ 3306 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 3307 if (!parsed_default_hugepagesz) { 3308 /* 3309 * If we did not parse a default huge page size, set 3310 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 3311 * number of huge pages for this default size was implicitly 3312 * specified, set that here as well. 3313 * Note that the implicit setting will overwrite an explicit 3314 * setting. A warning will be printed in this case. 3315 */ 3316 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 3317 if (default_hstate_max_huge_pages) { 3318 if (default_hstate.max_huge_pages) { 3319 char buf[32]; 3320 3321 string_get_size(huge_page_size(&default_hstate), 3322 1, STRING_UNITS_2, buf, 32); 3323 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 3324 default_hstate.max_huge_pages, buf); 3325 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 3326 default_hstate_max_huge_pages); 3327 } 3328 default_hstate.max_huge_pages = 3329 default_hstate_max_huge_pages; 3330 } 3331 } 3332 3333 hugetlb_cma_check(); 3334 hugetlb_init_hstates(); 3335 gather_bootmem_prealloc(); 3336 report_hugepages(); 3337 3338 hugetlb_sysfs_init(); 3339 hugetlb_register_all_nodes(); 3340 hugetlb_cgroup_file_init(); 3341 3342 #ifdef CONFIG_SMP 3343 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 3344 #else 3345 num_fault_mutexes = 1; 3346 #endif 3347 hugetlb_fault_mutex_table = 3348 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 3349 GFP_KERNEL); 3350 BUG_ON(!hugetlb_fault_mutex_table); 3351 3352 for (i = 0; i < num_fault_mutexes; i++) 3353 mutex_init(&hugetlb_fault_mutex_table[i]); 3354 return 0; 3355 } 3356 subsys_initcall(hugetlb_init); 3357 3358 /* Overwritten by architectures with more huge page sizes */ 3359 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 3360 { 3361 return size == HPAGE_SIZE; 3362 } 3363 3364 void __init hugetlb_add_hstate(unsigned int order) 3365 { 3366 struct hstate *h; 3367 unsigned long i; 3368 3369 if (size_to_hstate(PAGE_SIZE << order)) { 3370 return; 3371 } 3372 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 3373 BUG_ON(order == 0); 3374 h = &hstates[hugetlb_max_hstate++]; 3375 mutex_init(&h->resize_lock); 3376 h->order = order; 3377 h->mask = ~(huge_page_size(h) - 1); 3378 for (i = 0; i < MAX_NUMNODES; ++i) 3379 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 3380 INIT_LIST_HEAD(&h->hugepage_activelist); 3381 h->next_nid_to_alloc = first_memory_node; 3382 h->next_nid_to_free = first_memory_node; 3383 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 3384 huge_page_size(h)/1024); 3385 3386 parsed_hstate = h; 3387 } 3388 3389 /* 3390 * hugepages command line processing 3391 * hugepages normally follows a valid hugepagsz or default_hugepagsz 3392 * specification. If not, ignore the hugepages value. hugepages can also 3393 * be the first huge page command line option in which case it implicitly 3394 * specifies the number of huge pages for the default size. 3395 */ 3396 static int __init hugepages_setup(char *s) 3397 { 3398 unsigned long *mhp; 3399 static unsigned long *last_mhp; 3400 3401 if (!parsed_valid_hugepagesz) { 3402 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 3403 parsed_valid_hugepagesz = true; 3404 return 0; 3405 } 3406 3407 /* 3408 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 3409 * yet, so this hugepages= parameter goes to the "default hstate". 3410 * Otherwise, it goes with the previously parsed hugepagesz or 3411 * default_hugepagesz. 3412 */ 3413 else if (!hugetlb_max_hstate) 3414 mhp = &default_hstate_max_huge_pages; 3415 else 3416 mhp = &parsed_hstate->max_huge_pages; 3417 3418 if (mhp == last_mhp) { 3419 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 3420 return 0; 3421 } 3422 3423 if (sscanf(s, "%lu", mhp) <= 0) 3424 *mhp = 0; 3425 3426 /* 3427 * Global state is always initialized later in hugetlb_init. 3428 * But we need to allocate gigantic hstates here early to still 3429 * use the bootmem allocator. 3430 */ 3431 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 3432 hugetlb_hstate_alloc_pages(parsed_hstate); 3433 3434 last_mhp = mhp; 3435 3436 return 1; 3437 } 3438 __setup("hugepages=", hugepages_setup); 3439 3440 /* 3441 * hugepagesz command line processing 3442 * A specific huge page size can only be specified once with hugepagesz. 3443 * hugepagesz is followed by hugepages on the command line. The global 3444 * variable 'parsed_valid_hugepagesz' is used to determine if prior 3445 * hugepagesz argument was valid. 3446 */ 3447 static int __init hugepagesz_setup(char *s) 3448 { 3449 unsigned long size; 3450 struct hstate *h; 3451 3452 parsed_valid_hugepagesz = false; 3453 size = (unsigned long)memparse(s, NULL); 3454 3455 if (!arch_hugetlb_valid_size(size)) { 3456 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 3457 return 0; 3458 } 3459 3460 h = size_to_hstate(size); 3461 if (h) { 3462 /* 3463 * hstate for this size already exists. This is normally 3464 * an error, but is allowed if the existing hstate is the 3465 * default hstate. More specifically, it is only allowed if 3466 * the number of huge pages for the default hstate was not 3467 * previously specified. 3468 */ 3469 if (!parsed_default_hugepagesz || h != &default_hstate || 3470 default_hstate.max_huge_pages) { 3471 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 3472 return 0; 3473 } 3474 3475 /* 3476 * No need to call hugetlb_add_hstate() as hstate already 3477 * exists. But, do set parsed_hstate so that a following 3478 * hugepages= parameter will be applied to this hstate. 3479 */ 3480 parsed_hstate = h; 3481 parsed_valid_hugepagesz = true; 3482 return 1; 3483 } 3484 3485 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3486 parsed_valid_hugepagesz = true; 3487 return 1; 3488 } 3489 __setup("hugepagesz=", hugepagesz_setup); 3490 3491 /* 3492 * default_hugepagesz command line input 3493 * Only one instance of default_hugepagesz allowed on command line. 3494 */ 3495 static int __init default_hugepagesz_setup(char *s) 3496 { 3497 unsigned long size; 3498 3499 parsed_valid_hugepagesz = false; 3500 if (parsed_default_hugepagesz) { 3501 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 3502 return 0; 3503 } 3504 3505 size = (unsigned long)memparse(s, NULL); 3506 3507 if (!arch_hugetlb_valid_size(size)) { 3508 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 3509 return 0; 3510 } 3511 3512 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3513 parsed_valid_hugepagesz = true; 3514 parsed_default_hugepagesz = true; 3515 default_hstate_idx = hstate_index(size_to_hstate(size)); 3516 3517 /* 3518 * The number of default huge pages (for this size) could have been 3519 * specified as the first hugetlb parameter: hugepages=X. If so, 3520 * then default_hstate_max_huge_pages is set. If the default huge 3521 * page size is gigantic (>= MAX_ORDER), then the pages must be 3522 * allocated here from bootmem allocator. 3523 */ 3524 if (default_hstate_max_huge_pages) { 3525 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 3526 if (hstate_is_gigantic(&default_hstate)) 3527 hugetlb_hstate_alloc_pages(&default_hstate); 3528 default_hstate_max_huge_pages = 0; 3529 } 3530 3531 return 1; 3532 } 3533 __setup("default_hugepagesz=", default_hugepagesz_setup); 3534 3535 static unsigned int allowed_mems_nr(struct hstate *h) 3536 { 3537 int node; 3538 unsigned int nr = 0; 3539 nodemask_t *mpol_allowed; 3540 unsigned int *array = h->free_huge_pages_node; 3541 gfp_t gfp_mask = htlb_alloc_mask(h); 3542 3543 mpol_allowed = policy_nodemask_current(gfp_mask); 3544 3545 for_each_node_mask(node, cpuset_current_mems_allowed) { 3546 if (!mpol_allowed || node_isset(node, *mpol_allowed)) 3547 nr += array[node]; 3548 } 3549 3550 return nr; 3551 } 3552 3553 #ifdef CONFIG_SYSCTL 3554 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 3555 void *buffer, size_t *length, 3556 loff_t *ppos, unsigned long *out) 3557 { 3558 struct ctl_table dup_table; 3559 3560 /* 3561 * In order to avoid races with __do_proc_doulongvec_minmax(), we 3562 * can duplicate the @table and alter the duplicate of it. 3563 */ 3564 dup_table = *table; 3565 dup_table.data = out; 3566 3567 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 3568 } 3569 3570 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 3571 struct ctl_table *table, int write, 3572 void *buffer, size_t *length, loff_t *ppos) 3573 { 3574 struct hstate *h = &default_hstate; 3575 unsigned long tmp = h->max_huge_pages; 3576 int ret; 3577 3578 if (!hugepages_supported()) 3579 return -EOPNOTSUPP; 3580 3581 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3582 &tmp); 3583 if (ret) 3584 goto out; 3585 3586 if (write) 3587 ret = __nr_hugepages_store_common(obey_mempolicy, h, 3588 NUMA_NO_NODE, tmp, *length); 3589 out: 3590 return ret; 3591 } 3592 3593 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 3594 void *buffer, size_t *length, loff_t *ppos) 3595 { 3596 3597 return hugetlb_sysctl_handler_common(false, table, write, 3598 buffer, length, ppos); 3599 } 3600 3601 #ifdef CONFIG_NUMA 3602 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 3603 void *buffer, size_t *length, loff_t *ppos) 3604 { 3605 return hugetlb_sysctl_handler_common(true, table, write, 3606 buffer, length, ppos); 3607 } 3608 #endif /* CONFIG_NUMA */ 3609 3610 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 3611 void *buffer, size_t *length, loff_t *ppos) 3612 { 3613 struct hstate *h = &default_hstate; 3614 unsigned long tmp; 3615 int ret; 3616 3617 if (!hugepages_supported()) 3618 return -EOPNOTSUPP; 3619 3620 tmp = h->nr_overcommit_huge_pages; 3621 3622 if (write && hstate_is_gigantic(h)) 3623 return -EINVAL; 3624 3625 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3626 &tmp); 3627 if (ret) 3628 goto out; 3629 3630 if (write) { 3631 spin_lock_irq(&hugetlb_lock); 3632 h->nr_overcommit_huge_pages = tmp; 3633 spin_unlock_irq(&hugetlb_lock); 3634 } 3635 out: 3636 return ret; 3637 } 3638 3639 #endif /* CONFIG_SYSCTL */ 3640 3641 void hugetlb_report_meminfo(struct seq_file *m) 3642 { 3643 struct hstate *h; 3644 unsigned long total = 0; 3645 3646 if (!hugepages_supported()) 3647 return; 3648 3649 for_each_hstate(h) { 3650 unsigned long count = h->nr_huge_pages; 3651 3652 total += huge_page_size(h) * count; 3653 3654 if (h == &default_hstate) 3655 seq_printf(m, 3656 "HugePages_Total: %5lu\n" 3657 "HugePages_Free: %5lu\n" 3658 "HugePages_Rsvd: %5lu\n" 3659 "HugePages_Surp: %5lu\n" 3660 "Hugepagesize: %8lu kB\n", 3661 count, 3662 h->free_huge_pages, 3663 h->resv_huge_pages, 3664 h->surplus_huge_pages, 3665 huge_page_size(h) / SZ_1K); 3666 } 3667 3668 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 3669 } 3670 3671 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 3672 { 3673 struct hstate *h = &default_hstate; 3674 3675 if (!hugepages_supported()) 3676 return 0; 3677 3678 return sysfs_emit_at(buf, len, 3679 "Node %d HugePages_Total: %5u\n" 3680 "Node %d HugePages_Free: %5u\n" 3681 "Node %d HugePages_Surp: %5u\n", 3682 nid, h->nr_huge_pages_node[nid], 3683 nid, h->free_huge_pages_node[nid], 3684 nid, h->surplus_huge_pages_node[nid]); 3685 } 3686 3687 void hugetlb_show_meminfo(void) 3688 { 3689 struct hstate *h; 3690 int nid; 3691 3692 if (!hugepages_supported()) 3693 return; 3694 3695 for_each_node_state(nid, N_MEMORY) 3696 for_each_hstate(h) 3697 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3698 nid, 3699 h->nr_huge_pages_node[nid], 3700 h->free_huge_pages_node[nid], 3701 h->surplus_huge_pages_node[nid], 3702 huge_page_size(h) / SZ_1K); 3703 } 3704 3705 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3706 { 3707 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3708 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3709 } 3710 3711 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3712 unsigned long hugetlb_total_pages(void) 3713 { 3714 struct hstate *h; 3715 unsigned long nr_total_pages = 0; 3716 3717 for_each_hstate(h) 3718 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3719 return nr_total_pages; 3720 } 3721 3722 static int hugetlb_acct_memory(struct hstate *h, long delta) 3723 { 3724 int ret = -ENOMEM; 3725 3726 if (!delta) 3727 return 0; 3728 3729 spin_lock_irq(&hugetlb_lock); 3730 /* 3731 * When cpuset is configured, it breaks the strict hugetlb page 3732 * reservation as the accounting is done on a global variable. Such 3733 * reservation is completely rubbish in the presence of cpuset because 3734 * the reservation is not checked against page availability for the 3735 * current cpuset. Application can still potentially OOM'ed by kernel 3736 * with lack of free htlb page in cpuset that the task is in. 3737 * Attempt to enforce strict accounting with cpuset is almost 3738 * impossible (or too ugly) because cpuset is too fluid that 3739 * task or memory node can be dynamically moved between cpusets. 3740 * 3741 * The change of semantics for shared hugetlb mapping with cpuset is 3742 * undesirable. However, in order to preserve some of the semantics, 3743 * we fall back to check against current free page availability as 3744 * a best attempt and hopefully to minimize the impact of changing 3745 * semantics that cpuset has. 3746 * 3747 * Apart from cpuset, we also have memory policy mechanism that 3748 * also determines from which node the kernel will allocate memory 3749 * in a NUMA system. So similar to cpuset, we also should consider 3750 * the memory policy of the current task. Similar to the description 3751 * above. 3752 */ 3753 if (delta > 0) { 3754 if (gather_surplus_pages(h, delta) < 0) 3755 goto out; 3756 3757 if (delta > allowed_mems_nr(h)) { 3758 return_unused_surplus_pages(h, delta); 3759 goto out; 3760 } 3761 } 3762 3763 ret = 0; 3764 if (delta < 0) 3765 return_unused_surplus_pages(h, (unsigned long) -delta); 3766 3767 out: 3768 spin_unlock_irq(&hugetlb_lock); 3769 return ret; 3770 } 3771 3772 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3773 { 3774 struct resv_map *resv = vma_resv_map(vma); 3775 3776 /* 3777 * This new VMA should share its siblings reservation map if present. 3778 * The VMA will only ever have a valid reservation map pointer where 3779 * it is being copied for another still existing VMA. As that VMA 3780 * has a reference to the reservation map it cannot disappear until 3781 * after this open call completes. It is therefore safe to take a 3782 * new reference here without additional locking. 3783 */ 3784 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3785 kref_get(&resv->refs); 3786 } 3787 3788 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3789 { 3790 struct hstate *h = hstate_vma(vma); 3791 struct resv_map *resv = vma_resv_map(vma); 3792 struct hugepage_subpool *spool = subpool_vma(vma); 3793 unsigned long reserve, start, end; 3794 long gbl_reserve; 3795 3796 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3797 return; 3798 3799 start = vma_hugecache_offset(h, vma, vma->vm_start); 3800 end = vma_hugecache_offset(h, vma, vma->vm_end); 3801 3802 reserve = (end - start) - region_count(resv, start, end); 3803 hugetlb_cgroup_uncharge_counter(resv, start, end); 3804 if (reserve) { 3805 /* 3806 * Decrement reserve counts. The global reserve count may be 3807 * adjusted if the subpool has a minimum size. 3808 */ 3809 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3810 hugetlb_acct_memory(h, -gbl_reserve); 3811 } 3812 3813 kref_put(&resv->refs, resv_map_release); 3814 } 3815 3816 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3817 { 3818 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3819 return -EINVAL; 3820 return 0; 3821 } 3822 3823 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3824 { 3825 return huge_page_size(hstate_vma(vma)); 3826 } 3827 3828 /* 3829 * We cannot handle pagefaults against hugetlb pages at all. They cause 3830 * handle_mm_fault() to try to instantiate regular-sized pages in the 3831 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3832 * this far. 3833 */ 3834 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3835 { 3836 BUG(); 3837 return 0; 3838 } 3839 3840 /* 3841 * When a new function is introduced to vm_operations_struct and added 3842 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3843 * This is because under System V memory model, mappings created via 3844 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3845 * their original vm_ops are overwritten with shm_vm_ops. 3846 */ 3847 const struct vm_operations_struct hugetlb_vm_ops = { 3848 .fault = hugetlb_vm_op_fault, 3849 .open = hugetlb_vm_op_open, 3850 .close = hugetlb_vm_op_close, 3851 .may_split = hugetlb_vm_op_split, 3852 .pagesize = hugetlb_vm_op_pagesize, 3853 }; 3854 3855 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3856 int writable) 3857 { 3858 pte_t entry; 3859 3860 if (writable) { 3861 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3862 vma->vm_page_prot))); 3863 } else { 3864 entry = huge_pte_wrprotect(mk_huge_pte(page, 3865 vma->vm_page_prot)); 3866 } 3867 entry = pte_mkyoung(entry); 3868 entry = pte_mkhuge(entry); 3869 entry = arch_make_huge_pte(entry, vma, page, writable); 3870 3871 return entry; 3872 } 3873 3874 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3875 unsigned long address, pte_t *ptep) 3876 { 3877 pte_t entry; 3878 3879 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3880 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3881 update_mmu_cache(vma, address, ptep); 3882 } 3883 3884 bool is_hugetlb_entry_migration(pte_t pte) 3885 { 3886 swp_entry_t swp; 3887 3888 if (huge_pte_none(pte) || pte_present(pte)) 3889 return false; 3890 swp = pte_to_swp_entry(pte); 3891 if (is_migration_entry(swp)) 3892 return true; 3893 else 3894 return false; 3895 } 3896 3897 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 3898 { 3899 swp_entry_t swp; 3900 3901 if (huge_pte_none(pte) || pte_present(pte)) 3902 return false; 3903 swp = pte_to_swp_entry(pte); 3904 if (is_hwpoison_entry(swp)) 3905 return true; 3906 else 3907 return false; 3908 } 3909 3910 static void 3911 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 3912 struct page *new_page) 3913 { 3914 __SetPageUptodate(new_page); 3915 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 3916 hugepage_add_new_anon_rmap(new_page, vma, addr); 3917 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 3918 ClearHPageRestoreReserve(new_page); 3919 SetHPageMigratable(new_page); 3920 } 3921 3922 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3923 struct vm_area_struct *vma) 3924 { 3925 pte_t *src_pte, *dst_pte, entry, dst_entry; 3926 struct page *ptepage; 3927 unsigned long addr; 3928 bool cow = is_cow_mapping(vma->vm_flags); 3929 struct hstate *h = hstate_vma(vma); 3930 unsigned long sz = huge_page_size(h); 3931 unsigned long npages = pages_per_huge_page(h); 3932 struct address_space *mapping = vma->vm_file->f_mapping; 3933 struct mmu_notifier_range range; 3934 int ret = 0; 3935 3936 if (cow) { 3937 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 3938 vma->vm_start, 3939 vma->vm_end); 3940 mmu_notifier_invalidate_range_start(&range); 3941 } else { 3942 /* 3943 * For shared mappings i_mmap_rwsem must be held to call 3944 * huge_pte_alloc, otherwise the returned ptep could go 3945 * away if part of a shared pmd and another thread calls 3946 * huge_pmd_unshare. 3947 */ 3948 i_mmap_lock_read(mapping); 3949 } 3950 3951 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3952 spinlock_t *src_ptl, *dst_ptl; 3953 src_pte = huge_pte_offset(src, addr, sz); 3954 if (!src_pte) 3955 continue; 3956 dst_pte = huge_pte_alloc(dst, vma, addr, sz); 3957 if (!dst_pte) { 3958 ret = -ENOMEM; 3959 break; 3960 } 3961 3962 /* 3963 * If the pagetables are shared don't copy or take references. 3964 * dst_pte == src_pte is the common case of src/dest sharing. 3965 * 3966 * However, src could have 'unshared' and dst shares with 3967 * another vma. If dst_pte !none, this implies sharing. 3968 * Check here before taking page table lock, and once again 3969 * after taking the lock below. 3970 */ 3971 dst_entry = huge_ptep_get(dst_pte); 3972 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3973 continue; 3974 3975 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3976 src_ptl = huge_pte_lockptr(h, src, src_pte); 3977 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3978 entry = huge_ptep_get(src_pte); 3979 dst_entry = huge_ptep_get(dst_pte); 3980 again: 3981 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3982 /* 3983 * Skip if src entry none. Also, skip in the 3984 * unlikely case dst entry !none as this implies 3985 * sharing with another vma. 3986 */ 3987 ; 3988 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3989 is_hugetlb_entry_hwpoisoned(entry))) { 3990 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3991 3992 if (is_write_migration_entry(swp_entry) && cow) { 3993 /* 3994 * COW mappings require pages in both 3995 * parent and child to be set to read. 3996 */ 3997 make_migration_entry_read(&swp_entry); 3998 entry = swp_entry_to_pte(swp_entry); 3999 set_huge_swap_pte_at(src, addr, src_pte, 4000 entry, sz); 4001 } 4002 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 4003 } else { 4004 entry = huge_ptep_get(src_pte); 4005 ptepage = pte_page(entry); 4006 get_page(ptepage); 4007 4008 /* 4009 * This is a rare case where we see pinned hugetlb 4010 * pages while they're prone to COW. We need to do the 4011 * COW earlier during fork. 4012 * 4013 * When pre-allocating the page or copying data, we 4014 * need to be without the pgtable locks since we could 4015 * sleep during the process. 4016 */ 4017 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) { 4018 pte_t src_pte_old = entry; 4019 struct page *new; 4020 4021 spin_unlock(src_ptl); 4022 spin_unlock(dst_ptl); 4023 /* Do not use reserve as it's private owned */ 4024 new = alloc_huge_page(vma, addr, 1); 4025 if (IS_ERR(new)) { 4026 put_page(ptepage); 4027 ret = PTR_ERR(new); 4028 break; 4029 } 4030 copy_user_huge_page(new, ptepage, addr, vma, 4031 npages); 4032 put_page(ptepage); 4033 4034 /* Install the new huge page if src pte stable */ 4035 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4036 src_ptl = huge_pte_lockptr(h, src, src_pte); 4037 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4038 entry = huge_ptep_get(src_pte); 4039 if (!pte_same(src_pte_old, entry)) { 4040 put_page(new); 4041 /* dst_entry won't change as in child */ 4042 goto again; 4043 } 4044 hugetlb_install_page(vma, dst_pte, addr, new); 4045 spin_unlock(src_ptl); 4046 spin_unlock(dst_ptl); 4047 continue; 4048 } 4049 4050 if (cow) { 4051 /* 4052 * No need to notify as we are downgrading page 4053 * table protection not changing it to point 4054 * to a new page. 4055 * 4056 * See Documentation/vm/mmu_notifier.rst 4057 */ 4058 huge_ptep_set_wrprotect(src, addr, src_pte); 4059 } 4060 4061 page_dup_rmap(ptepage, true); 4062 set_huge_pte_at(dst, addr, dst_pte, entry); 4063 hugetlb_count_add(npages, dst); 4064 } 4065 spin_unlock(src_ptl); 4066 spin_unlock(dst_ptl); 4067 } 4068 4069 if (cow) 4070 mmu_notifier_invalidate_range_end(&range); 4071 else 4072 i_mmap_unlock_read(mapping); 4073 4074 return ret; 4075 } 4076 4077 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 4078 unsigned long start, unsigned long end, 4079 struct page *ref_page) 4080 { 4081 struct mm_struct *mm = vma->vm_mm; 4082 unsigned long address; 4083 pte_t *ptep; 4084 pte_t pte; 4085 spinlock_t *ptl; 4086 struct page *page; 4087 struct hstate *h = hstate_vma(vma); 4088 unsigned long sz = huge_page_size(h); 4089 struct mmu_notifier_range range; 4090 4091 WARN_ON(!is_vm_hugetlb_page(vma)); 4092 BUG_ON(start & ~huge_page_mask(h)); 4093 BUG_ON(end & ~huge_page_mask(h)); 4094 4095 /* 4096 * This is a hugetlb vma, all the pte entries should point 4097 * to huge page. 4098 */ 4099 tlb_change_page_size(tlb, sz); 4100 tlb_start_vma(tlb, vma); 4101 4102 /* 4103 * If sharing possible, alert mmu notifiers of worst case. 4104 */ 4105 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 4106 end); 4107 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4108 mmu_notifier_invalidate_range_start(&range); 4109 address = start; 4110 for (; address < end; address += sz) { 4111 ptep = huge_pte_offset(mm, address, sz); 4112 if (!ptep) 4113 continue; 4114 4115 ptl = huge_pte_lock(h, mm, ptep); 4116 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 4117 spin_unlock(ptl); 4118 /* 4119 * We just unmapped a page of PMDs by clearing a PUD. 4120 * The caller's TLB flush range should cover this area. 4121 */ 4122 continue; 4123 } 4124 4125 pte = huge_ptep_get(ptep); 4126 if (huge_pte_none(pte)) { 4127 spin_unlock(ptl); 4128 continue; 4129 } 4130 4131 /* 4132 * Migrating hugepage or HWPoisoned hugepage is already 4133 * unmapped and its refcount is dropped, so just clear pte here. 4134 */ 4135 if (unlikely(!pte_present(pte))) { 4136 huge_pte_clear(mm, address, ptep, sz); 4137 spin_unlock(ptl); 4138 continue; 4139 } 4140 4141 page = pte_page(pte); 4142 /* 4143 * If a reference page is supplied, it is because a specific 4144 * page is being unmapped, not a range. Ensure the page we 4145 * are about to unmap is the actual page of interest. 4146 */ 4147 if (ref_page) { 4148 if (page != ref_page) { 4149 spin_unlock(ptl); 4150 continue; 4151 } 4152 /* 4153 * Mark the VMA as having unmapped its page so that 4154 * future faults in this VMA will fail rather than 4155 * looking like data was lost 4156 */ 4157 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 4158 } 4159 4160 pte = huge_ptep_get_and_clear(mm, address, ptep); 4161 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 4162 if (huge_pte_dirty(pte)) 4163 set_page_dirty(page); 4164 4165 hugetlb_count_sub(pages_per_huge_page(h), mm); 4166 page_remove_rmap(page, true); 4167 4168 spin_unlock(ptl); 4169 tlb_remove_page_size(tlb, page, huge_page_size(h)); 4170 /* 4171 * Bail out after unmapping reference page if supplied 4172 */ 4173 if (ref_page) 4174 break; 4175 } 4176 mmu_notifier_invalidate_range_end(&range); 4177 tlb_end_vma(tlb, vma); 4178 } 4179 4180 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 4181 struct vm_area_struct *vma, unsigned long start, 4182 unsigned long end, struct page *ref_page) 4183 { 4184 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 4185 4186 /* 4187 * Clear this flag so that x86's huge_pmd_share page_table_shareable 4188 * test will fail on a vma being torn down, and not grab a page table 4189 * on its way out. We're lucky that the flag has such an appropriate 4190 * name, and can in fact be safely cleared here. We could clear it 4191 * before the __unmap_hugepage_range above, but all that's necessary 4192 * is to clear it before releasing the i_mmap_rwsem. This works 4193 * because in the context this is called, the VMA is about to be 4194 * destroyed and the i_mmap_rwsem is held. 4195 */ 4196 vma->vm_flags &= ~VM_MAYSHARE; 4197 } 4198 4199 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 4200 unsigned long end, struct page *ref_page) 4201 { 4202 struct mmu_gather tlb; 4203 4204 tlb_gather_mmu(&tlb, vma->vm_mm); 4205 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 4206 tlb_finish_mmu(&tlb); 4207 } 4208 4209 /* 4210 * This is called when the original mapper is failing to COW a MAP_PRIVATE 4211 * mapping it owns the reserve page for. The intention is to unmap the page 4212 * from other VMAs and let the children be SIGKILLed if they are faulting the 4213 * same region. 4214 */ 4215 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 4216 struct page *page, unsigned long address) 4217 { 4218 struct hstate *h = hstate_vma(vma); 4219 struct vm_area_struct *iter_vma; 4220 struct address_space *mapping; 4221 pgoff_t pgoff; 4222 4223 /* 4224 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 4225 * from page cache lookup which is in HPAGE_SIZE units. 4226 */ 4227 address = address & huge_page_mask(h); 4228 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 4229 vma->vm_pgoff; 4230 mapping = vma->vm_file->f_mapping; 4231 4232 /* 4233 * Take the mapping lock for the duration of the table walk. As 4234 * this mapping should be shared between all the VMAs, 4235 * __unmap_hugepage_range() is called as the lock is already held 4236 */ 4237 i_mmap_lock_write(mapping); 4238 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 4239 /* Do not unmap the current VMA */ 4240 if (iter_vma == vma) 4241 continue; 4242 4243 /* 4244 * Shared VMAs have their own reserves and do not affect 4245 * MAP_PRIVATE accounting but it is possible that a shared 4246 * VMA is using the same page so check and skip such VMAs. 4247 */ 4248 if (iter_vma->vm_flags & VM_MAYSHARE) 4249 continue; 4250 4251 /* 4252 * Unmap the page from other VMAs without their own reserves. 4253 * They get marked to be SIGKILLed if they fault in these 4254 * areas. This is because a future no-page fault on this VMA 4255 * could insert a zeroed page instead of the data existing 4256 * from the time of fork. This would look like data corruption 4257 */ 4258 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 4259 unmap_hugepage_range(iter_vma, address, 4260 address + huge_page_size(h), page); 4261 } 4262 i_mmap_unlock_write(mapping); 4263 } 4264 4265 /* 4266 * Hugetlb_cow() should be called with page lock of the original hugepage held. 4267 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 4268 * cannot race with other handlers or page migration. 4269 * Keep the pte_same checks anyway to make transition from the mutex easier. 4270 */ 4271 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 4272 unsigned long address, pte_t *ptep, 4273 struct page *pagecache_page, spinlock_t *ptl) 4274 { 4275 pte_t pte; 4276 struct hstate *h = hstate_vma(vma); 4277 struct page *old_page, *new_page; 4278 int outside_reserve = 0; 4279 vm_fault_t ret = 0; 4280 unsigned long haddr = address & huge_page_mask(h); 4281 struct mmu_notifier_range range; 4282 4283 pte = huge_ptep_get(ptep); 4284 old_page = pte_page(pte); 4285 4286 retry_avoidcopy: 4287 /* If no-one else is actually using this page, avoid the copy 4288 * and just make the page writable */ 4289 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 4290 page_move_anon_rmap(old_page, vma); 4291 set_huge_ptep_writable(vma, haddr, ptep); 4292 return 0; 4293 } 4294 4295 /* 4296 * If the process that created a MAP_PRIVATE mapping is about to 4297 * perform a COW due to a shared page count, attempt to satisfy 4298 * the allocation without using the existing reserves. The pagecache 4299 * page is used to determine if the reserve at this address was 4300 * consumed or not. If reserves were used, a partial faulted mapping 4301 * at the time of fork() could consume its reserves on COW instead 4302 * of the full address range. 4303 */ 4304 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 4305 old_page != pagecache_page) 4306 outside_reserve = 1; 4307 4308 get_page(old_page); 4309 4310 /* 4311 * Drop page table lock as buddy allocator may be called. It will 4312 * be acquired again before returning to the caller, as expected. 4313 */ 4314 spin_unlock(ptl); 4315 new_page = alloc_huge_page(vma, haddr, outside_reserve); 4316 4317 if (IS_ERR(new_page)) { 4318 /* 4319 * If a process owning a MAP_PRIVATE mapping fails to COW, 4320 * it is due to references held by a child and an insufficient 4321 * huge page pool. To guarantee the original mappers 4322 * reliability, unmap the page from child processes. The child 4323 * may get SIGKILLed if it later faults. 4324 */ 4325 if (outside_reserve) { 4326 struct address_space *mapping = vma->vm_file->f_mapping; 4327 pgoff_t idx; 4328 u32 hash; 4329 4330 put_page(old_page); 4331 BUG_ON(huge_pte_none(pte)); 4332 /* 4333 * Drop hugetlb_fault_mutex and i_mmap_rwsem before 4334 * unmapping. unmapping needs to hold i_mmap_rwsem 4335 * in write mode. Dropping i_mmap_rwsem in read mode 4336 * here is OK as COW mappings do not interact with 4337 * PMD sharing. 4338 * 4339 * Reacquire both after unmap operation. 4340 */ 4341 idx = vma_hugecache_offset(h, vma, haddr); 4342 hash = hugetlb_fault_mutex_hash(mapping, idx); 4343 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4344 i_mmap_unlock_read(mapping); 4345 4346 unmap_ref_private(mm, vma, old_page, haddr); 4347 4348 i_mmap_lock_read(mapping); 4349 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4350 spin_lock(ptl); 4351 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4352 if (likely(ptep && 4353 pte_same(huge_ptep_get(ptep), pte))) 4354 goto retry_avoidcopy; 4355 /* 4356 * race occurs while re-acquiring page table 4357 * lock, and our job is done. 4358 */ 4359 return 0; 4360 } 4361 4362 ret = vmf_error(PTR_ERR(new_page)); 4363 goto out_release_old; 4364 } 4365 4366 /* 4367 * When the original hugepage is shared one, it does not have 4368 * anon_vma prepared. 4369 */ 4370 if (unlikely(anon_vma_prepare(vma))) { 4371 ret = VM_FAULT_OOM; 4372 goto out_release_all; 4373 } 4374 4375 copy_user_huge_page(new_page, old_page, address, vma, 4376 pages_per_huge_page(h)); 4377 __SetPageUptodate(new_page); 4378 4379 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 4380 haddr + huge_page_size(h)); 4381 mmu_notifier_invalidate_range_start(&range); 4382 4383 /* 4384 * Retake the page table lock to check for racing updates 4385 * before the page tables are altered 4386 */ 4387 spin_lock(ptl); 4388 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4389 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 4390 ClearHPageRestoreReserve(new_page); 4391 4392 /* Break COW */ 4393 huge_ptep_clear_flush(vma, haddr, ptep); 4394 mmu_notifier_invalidate_range(mm, range.start, range.end); 4395 set_huge_pte_at(mm, haddr, ptep, 4396 make_huge_pte(vma, new_page, 1)); 4397 page_remove_rmap(old_page, true); 4398 hugepage_add_new_anon_rmap(new_page, vma, haddr); 4399 SetHPageMigratable(new_page); 4400 /* Make the old page be freed below */ 4401 new_page = old_page; 4402 } 4403 spin_unlock(ptl); 4404 mmu_notifier_invalidate_range_end(&range); 4405 out_release_all: 4406 restore_reserve_on_error(h, vma, haddr, new_page); 4407 put_page(new_page); 4408 out_release_old: 4409 put_page(old_page); 4410 4411 spin_lock(ptl); /* Caller expects lock to be held */ 4412 return ret; 4413 } 4414 4415 /* Return the pagecache page at a given address within a VMA */ 4416 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 4417 struct vm_area_struct *vma, unsigned long address) 4418 { 4419 struct address_space *mapping; 4420 pgoff_t idx; 4421 4422 mapping = vma->vm_file->f_mapping; 4423 idx = vma_hugecache_offset(h, vma, address); 4424 4425 return find_lock_page(mapping, idx); 4426 } 4427 4428 /* 4429 * Return whether there is a pagecache page to back given address within VMA. 4430 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 4431 */ 4432 static bool hugetlbfs_pagecache_present(struct hstate *h, 4433 struct vm_area_struct *vma, unsigned long address) 4434 { 4435 struct address_space *mapping; 4436 pgoff_t idx; 4437 struct page *page; 4438 4439 mapping = vma->vm_file->f_mapping; 4440 idx = vma_hugecache_offset(h, vma, address); 4441 4442 page = find_get_page(mapping, idx); 4443 if (page) 4444 put_page(page); 4445 return page != NULL; 4446 } 4447 4448 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 4449 pgoff_t idx) 4450 { 4451 struct inode *inode = mapping->host; 4452 struct hstate *h = hstate_inode(inode); 4453 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 4454 4455 if (err) 4456 return err; 4457 ClearHPageRestoreReserve(page); 4458 4459 /* 4460 * set page dirty so that it will not be removed from cache/file 4461 * by non-hugetlbfs specific code paths. 4462 */ 4463 set_page_dirty(page); 4464 4465 spin_lock(&inode->i_lock); 4466 inode->i_blocks += blocks_per_huge_page(h); 4467 spin_unlock(&inode->i_lock); 4468 return 0; 4469 } 4470 4471 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 4472 struct address_space *mapping, 4473 pgoff_t idx, 4474 unsigned int flags, 4475 unsigned long haddr, 4476 unsigned long reason) 4477 { 4478 vm_fault_t ret; 4479 u32 hash; 4480 struct vm_fault vmf = { 4481 .vma = vma, 4482 .address = haddr, 4483 .flags = flags, 4484 4485 /* 4486 * Hard to debug if it ends up being 4487 * used by a callee that assumes 4488 * something about the other 4489 * uninitialized fields... same as in 4490 * memory.c 4491 */ 4492 }; 4493 4494 /* 4495 * hugetlb_fault_mutex and i_mmap_rwsem must be 4496 * dropped before handling userfault. Reacquire 4497 * after handling fault to make calling code simpler. 4498 */ 4499 hash = hugetlb_fault_mutex_hash(mapping, idx); 4500 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4501 i_mmap_unlock_read(mapping); 4502 ret = handle_userfault(&vmf, reason); 4503 i_mmap_lock_read(mapping); 4504 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4505 4506 return ret; 4507 } 4508 4509 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 4510 struct vm_area_struct *vma, 4511 struct address_space *mapping, pgoff_t idx, 4512 unsigned long address, pte_t *ptep, unsigned int flags) 4513 { 4514 struct hstate *h = hstate_vma(vma); 4515 vm_fault_t ret = VM_FAULT_SIGBUS; 4516 int anon_rmap = 0; 4517 unsigned long size; 4518 struct page *page; 4519 pte_t new_pte; 4520 spinlock_t *ptl; 4521 unsigned long haddr = address & huge_page_mask(h); 4522 bool new_page = false; 4523 4524 /* 4525 * Currently, we are forced to kill the process in the event the 4526 * original mapper has unmapped pages from the child due to a failed 4527 * COW. Warn that such a situation has occurred as it may not be obvious 4528 */ 4529 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 4530 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 4531 current->pid); 4532 return ret; 4533 } 4534 4535 /* 4536 * We can not race with truncation due to holding i_mmap_rwsem. 4537 * i_size is modified when holding i_mmap_rwsem, so check here 4538 * once for faults beyond end of file. 4539 */ 4540 size = i_size_read(mapping->host) >> huge_page_shift(h); 4541 if (idx >= size) 4542 goto out; 4543 4544 retry: 4545 page = find_lock_page(mapping, idx); 4546 if (!page) { 4547 /* Check for page in userfault range */ 4548 if (userfaultfd_missing(vma)) { 4549 ret = hugetlb_handle_userfault(vma, mapping, idx, 4550 flags, haddr, 4551 VM_UFFD_MISSING); 4552 goto out; 4553 } 4554 4555 page = alloc_huge_page(vma, haddr, 0); 4556 if (IS_ERR(page)) { 4557 /* 4558 * Returning error will result in faulting task being 4559 * sent SIGBUS. The hugetlb fault mutex prevents two 4560 * tasks from racing to fault in the same page which 4561 * could result in false unable to allocate errors. 4562 * Page migration does not take the fault mutex, but 4563 * does a clear then write of pte's under page table 4564 * lock. Page fault code could race with migration, 4565 * notice the clear pte and try to allocate a page 4566 * here. Before returning error, get ptl and make 4567 * sure there really is no pte entry. 4568 */ 4569 ptl = huge_pte_lock(h, mm, ptep); 4570 ret = 0; 4571 if (huge_pte_none(huge_ptep_get(ptep))) 4572 ret = vmf_error(PTR_ERR(page)); 4573 spin_unlock(ptl); 4574 goto out; 4575 } 4576 clear_huge_page(page, address, pages_per_huge_page(h)); 4577 __SetPageUptodate(page); 4578 new_page = true; 4579 4580 if (vma->vm_flags & VM_MAYSHARE) { 4581 int err = huge_add_to_page_cache(page, mapping, idx); 4582 if (err) { 4583 put_page(page); 4584 if (err == -EEXIST) 4585 goto retry; 4586 goto out; 4587 } 4588 } else { 4589 lock_page(page); 4590 if (unlikely(anon_vma_prepare(vma))) { 4591 ret = VM_FAULT_OOM; 4592 goto backout_unlocked; 4593 } 4594 anon_rmap = 1; 4595 } 4596 } else { 4597 /* 4598 * If memory error occurs between mmap() and fault, some process 4599 * don't have hwpoisoned swap entry for errored virtual address. 4600 * So we need to block hugepage fault by PG_hwpoison bit check. 4601 */ 4602 if (unlikely(PageHWPoison(page))) { 4603 ret = VM_FAULT_HWPOISON_LARGE | 4604 VM_FAULT_SET_HINDEX(hstate_index(h)); 4605 goto backout_unlocked; 4606 } 4607 4608 /* Check for page in userfault range. */ 4609 if (userfaultfd_minor(vma)) { 4610 unlock_page(page); 4611 put_page(page); 4612 ret = hugetlb_handle_userfault(vma, mapping, idx, 4613 flags, haddr, 4614 VM_UFFD_MINOR); 4615 goto out; 4616 } 4617 } 4618 4619 /* 4620 * If we are going to COW a private mapping later, we examine the 4621 * pending reservations for this page now. This will ensure that 4622 * any allocations necessary to record that reservation occur outside 4623 * the spinlock. 4624 */ 4625 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4626 if (vma_needs_reservation(h, vma, haddr) < 0) { 4627 ret = VM_FAULT_OOM; 4628 goto backout_unlocked; 4629 } 4630 /* Just decrements count, does not deallocate */ 4631 vma_end_reservation(h, vma, haddr); 4632 } 4633 4634 ptl = huge_pte_lock(h, mm, ptep); 4635 ret = 0; 4636 if (!huge_pte_none(huge_ptep_get(ptep))) 4637 goto backout; 4638 4639 if (anon_rmap) { 4640 ClearHPageRestoreReserve(page); 4641 hugepage_add_new_anon_rmap(page, vma, haddr); 4642 } else 4643 page_dup_rmap(page, true); 4644 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 4645 && (vma->vm_flags & VM_SHARED))); 4646 set_huge_pte_at(mm, haddr, ptep, new_pte); 4647 4648 hugetlb_count_add(pages_per_huge_page(h), mm); 4649 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4650 /* Optimization, do the COW without a second fault */ 4651 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 4652 } 4653 4654 spin_unlock(ptl); 4655 4656 /* 4657 * Only set HPageMigratable in newly allocated pages. Existing pages 4658 * found in the pagecache may not have HPageMigratableset if they have 4659 * been isolated for migration. 4660 */ 4661 if (new_page) 4662 SetHPageMigratable(page); 4663 4664 unlock_page(page); 4665 out: 4666 return ret; 4667 4668 backout: 4669 spin_unlock(ptl); 4670 backout_unlocked: 4671 unlock_page(page); 4672 restore_reserve_on_error(h, vma, haddr, page); 4673 put_page(page); 4674 goto out; 4675 } 4676 4677 #ifdef CONFIG_SMP 4678 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4679 { 4680 unsigned long key[2]; 4681 u32 hash; 4682 4683 key[0] = (unsigned long) mapping; 4684 key[1] = idx; 4685 4686 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 4687 4688 return hash & (num_fault_mutexes - 1); 4689 } 4690 #else 4691 /* 4692 * For uniprocessor systems we always use a single mutex, so just 4693 * return 0 and avoid the hashing overhead. 4694 */ 4695 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4696 { 4697 return 0; 4698 } 4699 #endif 4700 4701 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 4702 unsigned long address, unsigned int flags) 4703 { 4704 pte_t *ptep, entry; 4705 spinlock_t *ptl; 4706 vm_fault_t ret; 4707 u32 hash; 4708 pgoff_t idx; 4709 struct page *page = NULL; 4710 struct page *pagecache_page = NULL; 4711 struct hstate *h = hstate_vma(vma); 4712 struct address_space *mapping; 4713 int need_wait_lock = 0; 4714 unsigned long haddr = address & huge_page_mask(h); 4715 4716 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4717 if (ptep) { 4718 /* 4719 * Since we hold no locks, ptep could be stale. That is 4720 * OK as we are only making decisions based on content and 4721 * not actually modifying content here. 4722 */ 4723 entry = huge_ptep_get(ptep); 4724 if (unlikely(is_hugetlb_entry_migration(entry))) { 4725 migration_entry_wait_huge(vma, mm, ptep); 4726 return 0; 4727 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 4728 return VM_FAULT_HWPOISON_LARGE | 4729 VM_FAULT_SET_HINDEX(hstate_index(h)); 4730 } 4731 4732 /* 4733 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 4734 * until finished with ptep. This serves two purposes: 4735 * 1) It prevents huge_pmd_unshare from being called elsewhere 4736 * and making the ptep no longer valid. 4737 * 2) It synchronizes us with i_size modifications during truncation. 4738 * 4739 * ptep could have already be assigned via huge_pte_offset. That 4740 * is OK, as huge_pte_alloc will return the same value unless 4741 * something has changed. 4742 */ 4743 mapping = vma->vm_file->f_mapping; 4744 i_mmap_lock_read(mapping); 4745 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 4746 if (!ptep) { 4747 i_mmap_unlock_read(mapping); 4748 return VM_FAULT_OOM; 4749 } 4750 4751 /* 4752 * Serialize hugepage allocation and instantiation, so that we don't 4753 * get spurious allocation failures if two CPUs race to instantiate 4754 * the same page in the page cache. 4755 */ 4756 idx = vma_hugecache_offset(h, vma, haddr); 4757 hash = hugetlb_fault_mutex_hash(mapping, idx); 4758 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4759 4760 entry = huge_ptep_get(ptep); 4761 if (huge_pte_none(entry)) { 4762 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4763 goto out_mutex; 4764 } 4765 4766 ret = 0; 4767 4768 /* 4769 * entry could be a migration/hwpoison entry at this point, so this 4770 * check prevents the kernel from going below assuming that we have 4771 * an active hugepage in pagecache. This goto expects the 2nd page 4772 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 4773 * properly handle it. 4774 */ 4775 if (!pte_present(entry)) 4776 goto out_mutex; 4777 4778 /* 4779 * If we are going to COW the mapping later, we examine the pending 4780 * reservations for this page now. This will ensure that any 4781 * allocations necessary to record that reservation occur outside the 4782 * spinlock. For private mappings, we also lookup the pagecache 4783 * page now as it is used to determine if a reservation has been 4784 * consumed. 4785 */ 4786 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4787 if (vma_needs_reservation(h, vma, haddr) < 0) { 4788 ret = VM_FAULT_OOM; 4789 goto out_mutex; 4790 } 4791 /* Just decrements count, does not deallocate */ 4792 vma_end_reservation(h, vma, haddr); 4793 4794 if (!(vma->vm_flags & VM_MAYSHARE)) 4795 pagecache_page = hugetlbfs_pagecache_page(h, 4796 vma, haddr); 4797 } 4798 4799 ptl = huge_pte_lock(h, mm, ptep); 4800 4801 /* Check for a racing update before calling hugetlb_cow */ 4802 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4803 goto out_ptl; 4804 4805 /* 4806 * hugetlb_cow() requires page locks of pte_page(entry) and 4807 * pagecache_page, so here we need take the former one 4808 * when page != pagecache_page or !pagecache_page. 4809 */ 4810 page = pte_page(entry); 4811 if (page != pagecache_page) 4812 if (!trylock_page(page)) { 4813 need_wait_lock = 1; 4814 goto out_ptl; 4815 } 4816 4817 get_page(page); 4818 4819 if (flags & FAULT_FLAG_WRITE) { 4820 if (!huge_pte_write(entry)) { 4821 ret = hugetlb_cow(mm, vma, address, ptep, 4822 pagecache_page, ptl); 4823 goto out_put_page; 4824 } 4825 entry = huge_pte_mkdirty(entry); 4826 } 4827 entry = pte_mkyoung(entry); 4828 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4829 flags & FAULT_FLAG_WRITE)) 4830 update_mmu_cache(vma, haddr, ptep); 4831 out_put_page: 4832 if (page != pagecache_page) 4833 unlock_page(page); 4834 put_page(page); 4835 out_ptl: 4836 spin_unlock(ptl); 4837 4838 if (pagecache_page) { 4839 unlock_page(pagecache_page); 4840 put_page(pagecache_page); 4841 } 4842 out_mutex: 4843 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4844 i_mmap_unlock_read(mapping); 4845 /* 4846 * Generally it's safe to hold refcount during waiting page lock. But 4847 * here we just wait to defer the next page fault to avoid busy loop and 4848 * the page is not used after unlocked before returning from the current 4849 * page fault. So we are safe from accessing freed page, even if we wait 4850 * here without taking refcount. 4851 */ 4852 if (need_wait_lock) 4853 wait_on_page_locked(page); 4854 return ret; 4855 } 4856 4857 #ifdef CONFIG_USERFAULTFD 4858 /* 4859 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4860 * modifications for huge pages. 4861 */ 4862 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4863 pte_t *dst_pte, 4864 struct vm_area_struct *dst_vma, 4865 unsigned long dst_addr, 4866 unsigned long src_addr, 4867 enum mcopy_atomic_mode mode, 4868 struct page **pagep) 4869 { 4870 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 4871 struct address_space *mapping; 4872 pgoff_t idx; 4873 unsigned long size; 4874 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4875 struct hstate *h = hstate_vma(dst_vma); 4876 pte_t _dst_pte; 4877 spinlock_t *ptl; 4878 int ret; 4879 struct page *page; 4880 int writable; 4881 4882 mapping = dst_vma->vm_file->f_mapping; 4883 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4884 4885 if (is_continue) { 4886 ret = -EFAULT; 4887 page = find_lock_page(mapping, idx); 4888 if (!page) 4889 goto out; 4890 } else if (!*pagep) { 4891 ret = -ENOMEM; 4892 page = alloc_huge_page(dst_vma, dst_addr, 0); 4893 if (IS_ERR(page)) 4894 goto out; 4895 4896 ret = copy_huge_page_from_user(page, 4897 (const void __user *) src_addr, 4898 pages_per_huge_page(h), false); 4899 4900 /* fallback to copy_from_user outside mmap_lock */ 4901 if (unlikely(ret)) { 4902 ret = -ENOENT; 4903 *pagep = page; 4904 /* don't free the page */ 4905 goto out; 4906 } 4907 } else { 4908 page = *pagep; 4909 *pagep = NULL; 4910 } 4911 4912 /* 4913 * The memory barrier inside __SetPageUptodate makes sure that 4914 * preceding stores to the page contents become visible before 4915 * the set_pte_at() write. 4916 */ 4917 __SetPageUptodate(page); 4918 4919 /* Add shared, newly allocated pages to the page cache. */ 4920 if (vm_shared && !is_continue) { 4921 size = i_size_read(mapping->host) >> huge_page_shift(h); 4922 ret = -EFAULT; 4923 if (idx >= size) 4924 goto out_release_nounlock; 4925 4926 /* 4927 * Serialization between remove_inode_hugepages() and 4928 * huge_add_to_page_cache() below happens through the 4929 * hugetlb_fault_mutex_table that here must be hold by 4930 * the caller. 4931 */ 4932 ret = huge_add_to_page_cache(page, mapping, idx); 4933 if (ret) 4934 goto out_release_nounlock; 4935 } 4936 4937 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4938 spin_lock(ptl); 4939 4940 /* 4941 * Recheck the i_size after holding PT lock to make sure not 4942 * to leave any page mapped (as page_mapped()) beyond the end 4943 * of the i_size (remove_inode_hugepages() is strict about 4944 * enforcing that). If we bail out here, we'll also leave a 4945 * page in the radix tree in the vm_shared case beyond the end 4946 * of the i_size, but remove_inode_hugepages() will take care 4947 * of it as soon as we drop the hugetlb_fault_mutex_table. 4948 */ 4949 size = i_size_read(mapping->host) >> huge_page_shift(h); 4950 ret = -EFAULT; 4951 if (idx >= size) 4952 goto out_release_unlock; 4953 4954 ret = -EEXIST; 4955 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4956 goto out_release_unlock; 4957 4958 if (vm_shared) { 4959 page_dup_rmap(page, true); 4960 } else { 4961 ClearHPageRestoreReserve(page); 4962 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4963 } 4964 4965 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */ 4966 if (is_continue && !vm_shared) 4967 writable = 0; 4968 else 4969 writable = dst_vma->vm_flags & VM_WRITE; 4970 4971 _dst_pte = make_huge_pte(dst_vma, page, writable); 4972 if (writable) 4973 _dst_pte = huge_pte_mkdirty(_dst_pte); 4974 _dst_pte = pte_mkyoung(_dst_pte); 4975 4976 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4977 4978 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4979 dst_vma->vm_flags & VM_WRITE); 4980 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4981 4982 /* No need to invalidate - it was non-present before */ 4983 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4984 4985 spin_unlock(ptl); 4986 if (!is_continue) 4987 SetHPageMigratable(page); 4988 if (vm_shared || is_continue) 4989 unlock_page(page); 4990 ret = 0; 4991 out: 4992 return ret; 4993 out_release_unlock: 4994 spin_unlock(ptl); 4995 if (vm_shared || is_continue) 4996 unlock_page(page); 4997 out_release_nounlock: 4998 put_page(page); 4999 goto out; 5000 } 5001 #endif /* CONFIG_USERFAULTFD */ 5002 5003 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 5004 int refs, struct page **pages, 5005 struct vm_area_struct **vmas) 5006 { 5007 int nr; 5008 5009 for (nr = 0; nr < refs; nr++) { 5010 if (likely(pages)) 5011 pages[nr] = mem_map_offset(page, nr); 5012 if (vmas) 5013 vmas[nr] = vma; 5014 } 5015 } 5016 5017 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 5018 struct page **pages, struct vm_area_struct **vmas, 5019 unsigned long *position, unsigned long *nr_pages, 5020 long i, unsigned int flags, int *locked) 5021 { 5022 unsigned long pfn_offset; 5023 unsigned long vaddr = *position; 5024 unsigned long remainder = *nr_pages; 5025 struct hstate *h = hstate_vma(vma); 5026 int err = -EFAULT, refs; 5027 5028 while (vaddr < vma->vm_end && remainder) { 5029 pte_t *pte; 5030 spinlock_t *ptl = NULL; 5031 int absent; 5032 struct page *page; 5033 5034 /* 5035 * If we have a pending SIGKILL, don't keep faulting pages and 5036 * potentially allocating memory. 5037 */ 5038 if (fatal_signal_pending(current)) { 5039 remainder = 0; 5040 break; 5041 } 5042 5043 /* 5044 * Some archs (sparc64, sh*) have multiple pte_ts to 5045 * each hugepage. We have to make sure we get the 5046 * first, for the page indexing below to work. 5047 * 5048 * Note that page table lock is not held when pte is null. 5049 */ 5050 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 5051 huge_page_size(h)); 5052 if (pte) 5053 ptl = huge_pte_lock(h, mm, pte); 5054 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 5055 5056 /* 5057 * When coredumping, it suits get_dump_page if we just return 5058 * an error where there's an empty slot with no huge pagecache 5059 * to back it. This way, we avoid allocating a hugepage, and 5060 * the sparse dumpfile avoids allocating disk blocks, but its 5061 * huge holes still show up with zeroes where they need to be. 5062 */ 5063 if (absent && (flags & FOLL_DUMP) && 5064 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 5065 if (pte) 5066 spin_unlock(ptl); 5067 remainder = 0; 5068 break; 5069 } 5070 5071 /* 5072 * We need call hugetlb_fault for both hugepages under migration 5073 * (in which case hugetlb_fault waits for the migration,) and 5074 * hwpoisoned hugepages (in which case we need to prevent the 5075 * caller from accessing to them.) In order to do this, we use 5076 * here is_swap_pte instead of is_hugetlb_entry_migration and 5077 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 5078 * both cases, and because we can't follow correct pages 5079 * directly from any kind of swap entries. 5080 */ 5081 if (absent || is_swap_pte(huge_ptep_get(pte)) || 5082 ((flags & FOLL_WRITE) && 5083 !huge_pte_write(huge_ptep_get(pte)))) { 5084 vm_fault_t ret; 5085 unsigned int fault_flags = 0; 5086 5087 if (pte) 5088 spin_unlock(ptl); 5089 if (flags & FOLL_WRITE) 5090 fault_flags |= FAULT_FLAG_WRITE; 5091 if (locked) 5092 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 5093 FAULT_FLAG_KILLABLE; 5094 if (flags & FOLL_NOWAIT) 5095 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 5096 FAULT_FLAG_RETRY_NOWAIT; 5097 if (flags & FOLL_TRIED) { 5098 /* 5099 * Note: FAULT_FLAG_ALLOW_RETRY and 5100 * FAULT_FLAG_TRIED can co-exist 5101 */ 5102 fault_flags |= FAULT_FLAG_TRIED; 5103 } 5104 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 5105 if (ret & VM_FAULT_ERROR) { 5106 err = vm_fault_to_errno(ret, flags); 5107 remainder = 0; 5108 break; 5109 } 5110 if (ret & VM_FAULT_RETRY) { 5111 if (locked && 5112 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 5113 *locked = 0; 5114 *nr_pages = 0; 5115 /* 5116 * VM_FAULT_RETRY must not return an 5117 * error, it will return zero 5118 * instead. 5119 * 5120 * No need to update "position" as the 5121 * caller will not check it after 5122 * *nr_pages is set to 0. 5123 */ 5124 return i; 5125 } 5126 continue; 5127 } 5128 5129 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 5130 page = pte_page(huge_ptep_get(pte)); 5131 5132 /* 5133 * If subpage information not requested, update counters 5134 * and skip the same_page loop below. 5135 */ 5136 if (!pages && !vmas && !pfn_offset && 5137 (vaddr + huge_page_size(h) < vma->vm_end) && 5138 (remainder >= pages_per_huge_page(h))) { 5139 vaddr += huge_page_size(h); 5140 remainder -= pages_per_huge_page(h); 5141 i += pages_per_huge_page(h); 5142 spin_unlock(ptl); 5143 continue; 5144 } 5145 5146 refs = min3(pages_per_huge_page(h) - pfn_offset, 5147 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder); 5148 5149 if (pages || vmas) 5150 record_subpages_vmas(mem_map_offset(page, pfn_offset), 5151 vma, refs, 5152 likely(pages) ? pages + i : NULL, 5153 vmas ? vmas + i : NULL); 5154 5155 if (pages) { 5156 /* 5157 * try_grab_compound_head() should always succeed here, 5158 * because: a) we hold the ptl lock, and b) we've just 5159 * checked that the huge page is present in the page 5160 * tables. If the huge page is present, then the tail 5161 * pages must also be present. The ptl prevents the 5162 * head page and tail pages from being rearranged in 5163 * any way. So this page must be available at this 5164 * point, unless the page refcount overflowed: 5165 */ 5166 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i], 5167 refs, 5168 flags))) { 5169 spin_unlock(ptl); 5170 remainder = 0; 5171 err = -ENOMEM; 5172 break; 5173 } 5174 } 5175 5176 vaddr += (refs << PAGE_SHIFT); 5177 remainder -= refs; 5178 i += refs; 5179 5180 spin_unlock(ptl); 5181 } 5182 *nr_pages = remainder; 5183 /* 5184 * setting position is actually required only if remainder is 5185 * not zero but it's faster not to add a "if (remainder)" 5186 * branch. 5187 */ 5188 *position = vaddr; 5189 5190 return i ? i : err; 5191 } 5192 5193 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 5194 unsigned long address, unsigned long end, pgprot_t newprot) 5195 { 5196 struct mm_struct *mm = vma->vm_mm; 5197 unsigned long start = address; 5198 pte_t *ptep; 5199 pte_t pte; 5200 struct hstate *h = hstate_vma(vma); 5201 unsigned long pages = 0; 5202 bool shared_pmd = false; 5203 struct mmu_notifier_range range; 5204 5205 /* 5206 * In the case of shared PMDs, the area to flush could be beyond 5207 * start/end. Set range.start/range.end to cover the maximum possible 5208 * range if PMD sharing is possible. 5209 */ 5210 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 5211 0, vma, mm, start, end); 5212 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5213 5214 BUG_ON(address >= end); 5215 flush_cache_range(vma, range.start, range.end); 5216 5217 mmu_notifier_invalidate_range_start(&range); 5218 i_mmap_lock_write(vma->vm_file->f_mapping); 5219 for (; address < end; address += huge_page_size(h)) { 5220 spinlock_t *ptl; 5221 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 5222 if (!ptep) 5223 continue; 5224 ptl = huge_pte_lock(h, mm, ptep); 5225 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 5226 pages++; 5227 spin_unlock(ptl); 5228 shared_pmd = true; 5229 continue; 5230 } 5231 pte = huge_ptep_get(ptep); 5232 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 5233 spin_unlock(ptl); 5234 continue; 5235 } 5236 if (unlikely(is_hugetlb_entry_migration(pte))) { 5237 swp_entry_t entry = pte_to_swp_entry(pte); 5238 5239 if (is_write_migration_entry(entry)) { 5240 pte_t newpte; 5241 5242 make_migration_entry_read(&entry); 5243 newpte = swp_entry_to_pte(entry); 5244 set_huge_swap_pte_at(mm, address, ptep, 5245 newpte, huge_page_size(h)); 5246 pages++; 5247 } 5248 spin_unlock(ptl); 5249 continue; 5250 } 5251 if (!huge_pte_none(pte)) { 5252 pte_t old_pte; 5253 5254 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 5255 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 5256 pte = arch_make_huge_pte(pte, vma, NULL, 0); 5257 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 5258 pages++; 5259 } 5260 spin_unlock(ptl); 5261 } 5262 /* 5263 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 5264 * may have cleared our pud entry and done put_page on the page table: 5265 * once we release i_mmap_rwsem, another task can do the final put_page 5266 * and that page table be reused and filled with junk. If we actually 5267 * did unshare a page of pmds, flush the range corresponding to the pud. 5268 */ 5269 if (shared_pmd) 5270 flush_hugetlb_tlb_range(vma, range.start, range.end); 5271 else 5272 flush_hugetlb_tlb_range(vma, start, end); 5273 /* 5274 * No need to call mmu_notifier_invalidate_range() we are downgrading 5275 * page table protection not changing it to point to a new page. 5276 * 5277 * See Documentation/vm/mmu_notifier.rst 5278 */ 5279 i_mmap_unlock_write(vma->vm_file->f_mapping); 5280 mmu_notifier_invalidate_range_end(&range); 5281 5282 return pages << h->order; 5283 } 5284 5285 /* Return true if reservation was successful, false otherwise. */ 5286 bool hugetlb_reserve_pages(struct inode *inode, 5287 long from, long to, 5288 struct vm_area_struct *vma, 5289 vm_flags_t vm_flags) 5290 { 5291 long chg, add = -1; 5292 struct hstate *h = hstate_inode(inode); 5293 struct hugepage_subpool *spool = subpool_inode(inode); 5294 struct resv_map *resv_map; 5295 struct hugetlb_cgroup *h_cg = NULL; 5296 long gbl_reserve, regions_needed = 0; 5297 5298 /* This should never happen */ 5299 if (from > to) { 5300 VM_WARN(1, "%s called with a negative range\n", __func__); 5301 return false; 5302 } 5303 5304 /* 5305 * Only apply hugepage reservation if asked. At fault time, an 5306 * attempt will be made for VM_NORESERVE to allocate a page 5307 * without using reserves 5308 */ 5309 if (vm_flags & VM_NORESERVE) 5310 return true; 5311 5312 /* 5313 * Shared mappings base their reservation on the number of pages that 5314 * are already allocated on behalf of the file. Private mappings need 5315 * to reserve the full area even if read-only as mprotect() may be 5316 * called to make the mapping read-write. Assume !vma is a shm mapping 5317 */ 5318 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5319 /* 5320 * resv_map can not be NULL as hugetlb_reserve_pages is only 5321 * called for inodes for which resv_maps were created (see 5322 * hugetlbfs_get_inode). 5323 */ 5324 resv_map = inode_resv_map(inode); 5325 5326 chg = region_chg(resv_map, from, to, ®ions_needed); 5327 5328 } else { 5329 /* Private mapping. */ 5330 resv_map = resv_map_alloc(); 5331 if (!resv_map) 5332 return false; 5333 5334 chg = to - from; 5335 5336 set_vma_resv_map(vma, resv_map); 5337 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 5338 } 5339 5340 if (chg < 0) 5341 goto out_err; 5342 5343 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 5344 chg * pages_per_huge_page(h), &h_cg) < 0) 5345 goto out_err; 5346 5347 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 5348 /* For private mappings, the hugetlb_cgroup uncharge info hangs 5349 * of the resv_map. 5350 */ 5351 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 5352 } 5353 5354 /* 5355 * There must be enough pages in the subpool for the mapping. If 5356 * the subpool has a minimum size, there may be some global 5357 * reservations already in place (gbl_reserve). 5358 */ 5359 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 5360 if (gbl_reserve < 0) 5361 goto out_uncharge_cgroup; 5362 5363 /* 5364 * Check enough hugepages are available for the reservation. 5365 * Hand the pages back to the subpool if there are not 5366 */ 5367 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 5368 goto out_put_pages; 5369 5370 /* 5371 * Account for the reservations made. Shared mappings record regions 5372 * that have reservations as they are shared by multiple VMAs. 5373 * When the last VMA disappears, the region map says how much 5374 * the reservation was and the page cache tells how much of 5375 * the reservation was consumed. Private mappings are per-VMA and 5376 * only the consumed reservations are tracked. When the VMA 5377 * disappears, the original reservation is the VMA size and the 5378 * consumed reservations are stored in the map. Hence, nothing 5379 * else has to be done for private mappings here 5380 */ 5381 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5382 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 5383 5384 if (unlikely(add < 0)) { 5385 hugetlb_acct_memory(h, -gbl_reserve); 5386 goto out_put_pages; 5387 } else if (unlikely(chg > add)) { 5388 /* 5389 * pages in this range were added to the reserve 5390 * map between region_chg and region_add. This 5391 * indicates a race with alloc_huge_page. Adjust 5392 * the subpool and reserve counts modified above 5393 * based on the difference. 5394 */ 5395 long rsv_adjust; 5396 5397 /* 5398 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 5399 * reference to h_cg->css. See comment below for detail. 5400 */ 5401 hugetlb_cgroup_uncharge_cgroup_rsvd( 5402 hstate_index(h), 5403 (chg - add) * pages_per_huge_page(h), h_cg); 5404 5405 rsv_adjust = hugepage_subpool_put_pages(spool, 5406 chg - add); 5407 hugetlb_acct_memory(h, -rsv_adjust); 5408 } else if (h_cg) { 5409 /* 5410 * The file_regions will hold their own reference to 5411 * h_cg->css. So we should release the reference held 5412 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 5413 * done. 5414 */ 5415 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 5416 } 5417 } 5418 return true; 5419 5420 out_put_pages: 5421 /* put back original number of pages, chg */ 5422 (void)hugepage_subpool_put_pages(spool, chg); 5423 out_uncharge_cgroup: 5424 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 5425 chg * pages_per_huge_page(h), h_cg); 5426 out_err: 5427 if (!vma || vma->vm_flags & VM_MAYSHARE) 5428 /* Only call region_abort if the region_chg succeeded but the 5429 * region_add failed or didn't run. 5430 */ 5431 if (chg >= 0 && add < 0) 5432 region_abort(resv_map, from, to, regions_needed); 5433 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5434 kref_put(&resv_map->refs, resv_map_release); 5435 return false; 5436 } 5437 5438 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 5439 long freed) 5440 { 5441 struct hstate *h = hstate_inode(inode); 5442 struct resv_map *resv_map = inode_resv_map(inode); 5443 long chg = 0; 5444 struct hugepage_subpool *spool = subpool_inode(inode); 5445 long gbl_reserve; 5446 5447 /* 5448 * Since this routine can be called in the evict inode path for all 5449 * hugetlbfs inodes, resv_map could be NULL. 5450 */ 5451 if (resv_map) { 5452 chg = region_del(resv_map, start, end); 5453 /* 5454 * region_del() can fail in the rare case where a region 5455 * must be split and another region descriptor can not be 5456 * allocated. If end == LONG_MAX, it will not fail. 5457 */ 5458 if (chg < 0) 5459 return chg; 5460 } 5461 5462 spin_lock(&inode->i_lock); 5463 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 5464 spin_unlock(&inode->i_lock); 5465 5466 /* 5467 * If the subpool has a minimum size, the number of global 5468 * reservations to be released may be adjusted. 5469 * 5470 * Note that !resv_map implies freed == 0. So (chg - freed) 5471 * won't go negative. 5472 */ 5473 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 5474 hugetlb_acct_memory(h, -gbl_reserve); 5475 5476 return 0; 5477 } 5478 5479 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 5480 static unsigned long page_table_shareable(struct vm_area_struct *svma, 5481 struct vm_area_struct *vma, 5482 unsigned long addr, pgoff_t idx) 5483 { 5484 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 5485 svma->vm_start; 5486 unsigned long sbase = saddr & PUD_MASK; 5487 unsigned long s_end = sbase + PUD_SIZE; 5488 5489 /* Allow segments to share if only one is marked locked */ 5490 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 5491 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 5492 5493 /* 5494 * match the virtual addresses, permission and the alignment of the 5495 * page table page. 5496 */ 5497 if (pmd_index(addr) != pmd_index(saddr) || 5498 vm_flags != svm_flags || 5499 !range_in_vma(svma, sbase, s_end)) 5500 return 0; 5501 5502 return saddr; 5503 } 5504 5505 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 5506 { 5507 unsigned long base = addr & PUD_MASK; 5508 unsigned long end = base + PUD_SIZE; 5509 5510 /* 5511 * check on proper vm_flags and page table alignment 5512 */ 5513 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 5514 return true; 5515 return false; 5516 } 5517 5518 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 5519 { 5520 #ifdef CONFIG_USERFAULTFD 5521 if (uffd_disable_huge_pmd_share(vma)) 5522 return false; 5523 #endif 5524 return vma_shareable(vma, addr); 5525 } 5526 5527 /* 5528 * Determine if start,end range within vma could be mapped by shared pmd. 5529 * If yes, adjust start and end to cover range associated with possible 5530 * shared pmd mappings. 5531 */ 5532 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5533 unsigned long *start, unsigned long *end) 5534 { 5535 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 5536 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 5537 5538 /* 5539 * vma needs to span at least one aligned PUD size, and the range 5540 * must be at least partially within in. 5541 */ 5542 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 5543 (*end <= v_start) || (*start >= v_end)) 5544 return; 5545 5546 /* Extend the range to be PUD aligned for a worst case scenario */ 5547 if (*start > v_start) 5548 *start = ALIGN_DOWN(*start, PUD_SIZE); 5549 5550 if (*end < v_end) 5551 *end = ALIGN(*end, PUD_SIZE); 5552 } 5553 5554 /* 5555 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 5556 * and returns the corresponding pte. While this is not necessary for the 5557 * !shared pmd case because we can allocate the pmd later as well, it makes the 5558 * code much cleaner. 5559 * 5560 * This routine must be called with i_mmap_rwsem held in at least read mode if 5561 * sharing is possible. For hugetlbfs, this prevents removal of any page 5562 * table entries associated with the address space. This is important as we 5563 * are setting up sharing based on existing page table entries (mappings). 5564 * 5565 * NOTE: This routine is only called from huge_pte_alloc. Some callers of 5566 * huge_pte_alloc know that sharing is not possible and do not take 5567 * i_mmap_rwsem as a performance optimization. This is handled by the 5568 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is 5569 * only required for subsequent processing. 5570 */ 5571 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 5572 unsigned long addr, pud_t *pud) 5573 { 5574 struct address_space *mapping = vma->vm_file->f_mapping; 5575 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 5576 vma->vm_pgoff; 5577 struct vm_area_struct *svma; 5578 unsigned long saddr; 5579 pte_t *spte = NULL; 5580 pte_t *pte; 5581 spinlock_t *ptl; 5582 5583 i_mmap_assert_locked(mapping); 5584 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 5585 if (svma == vma) 5586 continue; 5587 5588 saddr = page_table_shareable(svma, vma, addr, idx); 5589 if (saddr) { 5590 spte = huge_pte_offset(svma->vm_mm, saddr, 5591 vma_mmu_pagesize(svma)); 5592 if (spte) { 5593 get_page(virt_to_page(spte)); 5594 break; 5595 } 5596 } 5597 } 5598 5599 if (!spte) 5600 goto out; 5601 5602 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 5603 if (pud_none(*pud)) { 5604 pud_populate(mm, pud, 5605 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 5606 mm_inc_nr_pmds(mm); 5607 } else { 5608 put_page(virt_to_page(spte)); 5609 } 5610 spin_unlock(ptl); 5611 out: 5612 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5613 return pte; 5614 } 5615 5616 /* 5617 * unmap huge page backed by shared pte. 5618 * 5619 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 5620 * indicated by page_count > 1, unmap is achieved by clearing pud and 5621 * decrementing the ref count. If count == 1, the pte page is not shared. 5622 * 5623 * Called with page table lock held and i_mmap_rwsem held in write mode. 5624 * 5625 * returns: 1 successfully unmapped a shared pte page 5626 * 0 the underlying pte page is not shared, or it is the last user 5627 */ 5628 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5629 unsigned long *addr, pte_t *ptep) 5630 { 5631 pgd_t *pgd = pgd_offset(mm, *addr); 5632 p4d_t *p4d = p4d_offset(pgd, *addr); 5633 pud_t *pud = pud_offset(p4d, *addr); 5634 5635 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 5636 BUG_ON(page_count(virt_to_page(ptep)) == 0); 5637 if (page_count(virt_to_page(ptep)) == 1) 5638 return 0; 5639 5640 pud_clear(pud); 5641 put_page(virt_to_page(ptep)); 5642 mm_dec_nr_pmds(mm); 5643 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 5644 return 1; 5645 } 5646 5647 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5648 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 5649 unsigned long addr, pud_t *pud) 5650 { 5651 return NULL; 5652 } 5653 5654 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5655 unsigned long *addr, pte_t *ptep) 5656 { 5657 return 0; 5658 } 5659 5660 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5661 unsigned long *start, unsigned long *end) 5662 { 5663 } 5664 5665 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 5666 { 5667 return false; 5668 } 5669 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5670 5671 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 5672 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 5673 unsigned long addr, unsigned long sz) 5674 { 5675 pgd_t *pgd; 5676 p4d_t *p4d; 5677 pud_t *pud; 5678 pte_t *pte = NULL; 5679 5680 pgd = pgd_offset(mm, addr); 5681 p4d = p4d_alloc(mm, pgd, addr); 5682 if (!p4d) 5683 return NULL; 5684 pud = pud_alloc(mm, p4d, addr); 5685 if (pud) { 5686 if (sz == PUD_SIZE) { 5687 pte = (pte_t *)pud; 5688 } else { 5689 BUG_ON(sz != PMD_SIZE); 5690 if (want_pmd_share(vma, addr) && pud_none(*pud)) 5691 pte = huge_pmd_share(mm, vma, addr, pud); 5692 else 5693 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5694 } 5695 } 5696 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 5697 5698 return pte; 5699 } 5700 5701 /* 5702 * huge_pte_offset() - Walk the page table to resolve the hugepage 5703 * entry at address @addr 5704 * 5705 * Return: Pointer to page table entry (PUD or PMD) for 5706 * address @addr, or NULL if a !p*d_present() entry is encountered and the 5707 * size @sz doesn't match the hugepage size at this level of the page 5708 * table. 5709 */ 5710 pte_t *huge_pte_offset(struct mm_struct *mm, 5711 unsigned long addr, unsigned long sz) 5712 { 5713 pgd_t *pgd; 5714 p4d_t *p4d; 5715 pud_t *pud; 5716 pmd_t *pmd; 5717 5718 pgd = pgd_offset(mm, addr); 5719 if (!pgd_present(*pgd)) 5720 return NULL; 5721 p4d = p4d_offset(pgd, addr); 5722 if (!p4d_present(*p4d)) 5723 return NULL; 5724 5725 pud = pud_offset(p4d, addr); 5726 if (sz == PUD_SIZE) 5727 /* must be pud huge, non-present or none */ 5728 return (pte_t *)pud; 5729 if (!pud_present(*pud)) 5730 return NULL; 5731 /* must have a valid entry and size to go further */ 5732 5733 pmd = pmd_offset(pud, addr); 5734 /* must be pmd huge, non-present or none */ 5735 return (pte_t *)pmd; 5736 } 5737 5738 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 5739 5740 /* 5741 * These functions are overwritable if your architecture needs its own 5742 * behavior. 5743 */ 5744 struct page * __weak 5745 follow_huge_addr(struct mm_struct *mm, unsigned long address, 5746 int write) 5747 { 5748 return ERR_PTR(-EINVAL); 5749 } 5750 5751 struct page * __weak 5752 follow_huge_pd(struct vm_area_struct *vma, 5753 unsigned long address, hugepd_t hpd, int flags, int pdshift) 5754 { 5755 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 5756 return NULL; 5757 } 5758 5759 struct page * __weak 5760 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 5761 pmd_t *pmd, int flags) 5762 { 5763 struct page *page = NULL; 5764 spinlock_t *ptl; 5765 pte_t pte; 5766 5767 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 5768 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 5769 (FOLL_PIN | FOLL_GET))) 5770 return NULL; 5771 5772 retry: 5773 ptl = pmd_lockptr(mm, pmd); 5774 spin_lock(ptl); 5775 /* 5776 * make sure that the address range covered by this pmd is not 5777 * unmapped from other threads. 5778 */ 5779 if (!pmd_huge(*pmd)) 5780 goto out; 5781 pte = huge_ptep_get((pte_t *)pmd); 5782 if (pte_present(pte)) { 5783 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 5784 /* 5785 * try_grab_page() should always succeed here, because: a) we 5786 * hold the pmd (ptl) lock, and b) we've just checked that the 5787 * huge pmd (head) page is present in the page tables. The ptl 5788 * prevents the head page and tail pages from being rearranged 5789 * in any way. So this page must be available at this point, 5790 * unless the page refcount overflowed: 5791 */ 5792 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 5793 page = NULL; 5794 goto out; 5795 } 5796 } else { 5797 if (is_hugetlb_entry_migration(pte)) { 5798 spin_unlock(ptl); 5799 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 5800 goto retry; 5801 } 5802 /* 5803 * hwpoisoned entry is treated as no_page_table in 5804 * follow_page_mask(). 5805 */ 5806 } 5807 out: 5808 spin_unlock(ptl); 5809 return page; 5810 } 5811 5812 struct page * __weak 5813 follow_huge_pud(struct mm_struct *mm, unsigned long address, 5814 pud_t *pud, int flags) 5815 { 5816 if (flags & (FOLL_GET | FOLL_PIN)) 5817 return NULL; 5818 5819 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 5820 } 5821 5822 struct page * __weak 5823 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 5824 { 5825 if (flags & (FOLL_GET | FOLL_PIN)) 5826 return NULL; 5827 5828 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 5829 } 5830 5831 bool isolate_huge_page(struct page *page, struct list_head *list) 5832 { 5833 bool ret = true; 5834 5835 spin_lock_irq(&hugetlb_lock); 5836 if (!PageHeadHuge(page) || 5837 !HPageMigratable(page) || 5838 !get_page_unless_zero(page)) { 5839 ret = false; 5840 goto unlock; 5841 } 5842 ClearHPageMigratable(page); 5843 list_move_tail(&page->lru, list); 5844 unlock: 5845 spin_unlock_irq(&hugetlb_lock); 5846 return ret; 5847 } 5848 5849 void putback_active_hugepage(struct page *page) 5850 { 5851 spin_lock_irq(&hugetlb_lock); 5852 SetHPageMigratable(page); 5853 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 5854 spin_unlock_irq(&hugetlb_lock); 5855 put_page(page); 5856 } 5857 5858 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5859 { 5860 struct hstate *h = page_hstate(oldpage); 5861 5862 hugetlb_cgroup_migrate(oldpage, newpage); 5863 set_page_owner_migrate_reason(newpage, reason); 5864 5865 /* 5866 * transfer temporary state of the new huge page. This is 5867 * reverse to other transitions because the newpage is going to 5868 * be final while the old one will be freed so it takes over 5869 * the temporary status. 5870 * 5871 * Also note that we have to transfer the per-node surplus state 5872 * here as well otherwise the global surplus count will not match 5873 * the per-node's. 5874 */ 5875 if (HPageTemporary(newpage)) { 5876 int old_nid = page_to_nid(oldpage); 5877 int new_nid = page_to_nid(newpage); 5878 5879 SetHPageTemporary(oldpage); 5880 ClearHPageTemporary(newpage); 5881 5882 /* 5883 * There is no need to transfer the per-node surplus state 5884 * when we do not cross the node. 5885 */ 5886 if (new_nid == old_nid) 5887 return; 5888 spin_lock_irq(&hugetlb_lock); 5889 if (h->surplus_huge_pages_node[old_nid]) { 5890 h->surplus_huge_pages_node[old_nid]--; 5891 h->surplus_huge_pages_node[new_nid]++; 5892 } 5893 spin_unlock_irq(&hugetlb_lock); 5894 } 5895 } 5896 5897 /* 5898 * This function will unconditionally remove all the shared pmd pgtable entries 5899 * within the specific vma for a hugetlbfs memory range. 5900 */ 5901 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 5902 { 5903 struct hstate *h = hstate_vma(vma); 5904 unsigned long sz = huge_page_size(h); 5905 struct mm_struct *mm = vma->vm_mm; 5906 struct mmu_notifier_range range; 5907 unsigned long address, start, end; 5908 spinlock_t *ptl; 5909 pte_t *ptep; 5910 5911 if (!(vma->vm_flags & VM_MAYSHARE)) 5912 return; 5913 5914 start = ALIGN(vma->vm_start, PUD_SIZE); 5915 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 5916 5917 if (start >= end) 5918 return; 5919 5920 /* 5921 * No need to call adjust_range_if_pmd_sharing_possible(), because 5922 * we have already done the PUD_SIZE alignment. 5923 */ 5924 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 5925 start, end); 5926 mmu_notifier_invalidate_range_start(&range); 5927 i_mmap_lock_write(vma->vm_file->f_mapping); 5928 for (address = start; address < end; address += PUD_SIZE) { 5929 unsigned long tmp = address; 5930 5931 ptep = huge_pte_offset(mm, address, sz); 5932 if (!ptep) 5933 continue; 5934 ptl = huge_pte_lock(h, mm, ptep); 5935 /* We don't want 'address' to be changed */ 5936 huge_pmd_unshare(mm, vma, &tmp, ptep); 5937 spin_unlock(ptl); 5938 } 5939 flush_hugetlb_tlb_range(vma, start, end); 5940 i_mmap_unlock_write(vma->vm_file->f_mapping); 5941 /* 5942 * No need to call mmu_notifier_invalidate_range(), see 5943 * Documentation/vm/mmu_notifier.rst. 5944 */ 5945 mmu_notifier_invalidate_range_end(&range); 5946 } 5947 5948 #ifdef CONFIG_CMA 5949 static bool cma_reserve_called __initdata; 5950 5951 static int __init cmdline_parse_hugetlb_cma(char *p) 5952 { 5953 hugetlb_cma_size = memparse(p, &p); 5954 return 0; 5955 } 5956 5957 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 5958 5959 void __init hugetlb_cma_reserve(int order) 5960 { 5961 unsigned long size, reserved, per_node; 5962 int nid; 5963 5964 cma_reserve_called = true; 5965 5966 if (!hugetlb_cma_size) 5967 return; 5968 5969 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 5970 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 5971 (PAGE_SIZE << order) / SZ_1M); 5972 return; 5973 } 5974 5975 /* 5976 * If 3 GB area is requested on a machine with 4 numa nodes, 5977 * let's allocate 1 GB on first three nodes and ignore the last one. 5978 */ 5979 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 5980 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 5981 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 5982 5983 reserved = 0; 5984 for_each_node_state(nid, N_ONLINE) { 5985 int res; 5986 char name[CMA_MAX_NAME]; 5987 5988 size = min(per_node, hugetlb_cma_size - reserved); 5989 size = round_up(size, PAGE_SIZE << order); 5990 5991 snprintf(name, sizeof(name), "hugetlb%d", nid); 5992 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order, 5993 0, false, name, 5994 &hugetlb_cma[nid], nid); 5995 if (res) { 5996 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 5997 res, nid); 5998 continue; 5999 } 6000 6001 reserved += size; 6002 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 6003 size / SZ_1M, nid); 6004 6005 if (reserved >= hugetlb_cma_size) 6006 break; 6007 } 6008 } 6009 6010 void __init hugetlb_cma_check(void) 6011 { 6012 if (!hugetlb_cma_size || cma_reserve_called) 6013 return; 6014 6015 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 6016 } 6017 6018 #endif /* CONFIG_CMA */ 6019