1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/mmdebug.h> 23 #include <linux/sched/signal.h> 24 #include <linux/rmap.h> 25 #include <linux/string_helpers.h> 26 #include <linux/swap.h> 27 #include <linux/swapops.h> 28 #include <linux/jhash.h> 29 #include <linux/numa.h> 30 #include <linux/llist.h> 31 32 #include <asm/page.h> 33 #include <asm/pgtable.h> 34 #include <asm/tlb.h> 35 36 #include <linux/io.h> 37 #include <linux/hugetlb.h> 38 #include <linux/hugetlb_cgroup.h> 39 #include <linux/node.h> 40 #include <linux/userfaultfd_k.h> 41 #include <linux/page_owner.h> 42 #include "internal.h" 43 44 int hugetlb_max_hstate __read_mostly; 45 unsigned int default_hstate_idx; 46 struct hstate hstates[HUGE_MAX_HSTATE]; 47 /* 48 * Minimum page order among possible hugepage sizes, set to a proper value 49 * at boot time. 50 */ 51 static unsigned int minimum_order __read_mostly = UINT_MAX; 52 53 __initdata LIST_HEAD(huge_boot_pages); 54 55 /* for command line parsing */ 56 static struct hstate * __initdata parsed_hstate; 57 static unsigned long __initdata default_hstate_max_huge_pages; 58 static unsigned long __initdata default_hstate_size; 59 static bool __initdata parsed_valid_hugepagesz = true; 60 61 /* 62 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 63 * free_huge_pages, and surplus_huge_pages. 64 */ 65 DEFINE_SPINLOCK(hugetlb_lock); 66 67 /* 68 * Serializes faults on the same logical page. This is used to 69 * prevent spurious OOMs when the hugepage pool is fully utilized. 70 */ 71 static int num_fault_mutexes; 72 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 73 74 /* Forward declaration */ 75 static int hugetlb_acct_memory(struct hstate *h, long delta); 76 77 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 78 { 79 bool free = (spool->count == 0) && (spool->used_hpages == 0); 80 81 spin_unlock(&spool->lock); 82 83 /* If no pages are used, and no other handles to the subpool 84 * remain, give up any reservations mased on minimum size and 85 * free the subpool */ 86 if (free) { 87 if (spool->min_hpages != -1) 88 hugetlb_acct_memory(spool->hstate, 89 -spool->min_hpages); 90 kfree(spool); 91 } 92 } 93 94 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 95 long min_hpages) 96 { 97 struct hugepage_subpool *spool; 98 99 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 100 if (!spool) 101 return NULL; 102 103 spin_lock_init(&spool->lock); 104 spool->count = 1; 105 spool->max_hpages = max_hpages; 106 spool->hstate = h; 107 spool->min_hpages = min_hpages; 108 109 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 110 kfree(spool); 111 return NULL; 112 } 113 spool->rsv_hpages = min_hpages; 114 115 return spool; 116 } 117 118 void hugepage_put_subpool(struct hugepage_subpool *spool) 119 { 120 spin_lock(&spool->lock); 121 BUG_ON(!spool->count); 122 spool->count--; 123 unlock_or_release_subpool(spool); 124 } 125 126 /* 127 * Subpool accounting for allocating and reserving pages. 128 * Return -ENOMEM if there are not enough resources to satisfy the 129 * the request. Otherwise, return the number of pages by which the 130 * global pools must be adjusted (upward). The returned value may 131 * only be different than the passed value (delta) in the case where 132 * a subpool minimum size must be manitained. 133 */ 134 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 135 long delta) 136 { 137 long ret = delta; 138 139 if (!spool) 140 return ret; 141 142 spin_lock(&spool->lock); 143 144 if (spool->max_hpages != -1) { /* maximum size accounting */ 145 if ((spool->used_hpages + delta) <= spool->max_hpages) 146 spool->used_hpages += delta; 147 else { 148 ret = -ENOMEM; 149 goto unlock_ret; 150 } 151 } 152 153 /* minimum size accounting */ 154 if (spool->min_hpages != -1 && spool->rsv_hpages) { 155 if (delta > spool->rsv_hpages) { 156 /* 157 * Asking for more reserves than those already taken on 158 * behalf of subpool. Return difference. 159 */ 160 ret = delta - spool->rsv_hpages; 161 spool->rsv_hpages = 0; 162 } else { 163 ret = 0; /* reserves already accounted for */ 164 spool->rsv_hpages -= delta; 165 } 166 } 167 168 unlock_ret: 169 spin_unlock(&spool->lock); 170 return ret; 171 } 172 173 /* 174 * Subpool accounting for freeing and unreserving pages. 175 * Return the number of global page reservations that must be dropped. 176 * The return value may only be different than the passed value (delta) 177 * in the case where a subpool minimum size must be maintained. 178 */ 179 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 180 long delta) 181 { 182 long ret = delta; 183 184 if (!spool) 185 return delta; 186 187 spin_lock(&spool->lock); 188 189 if (spool->max_hpages != -1) /* maximum size accounting */ 190 spool->used_hpages -= delta; 191 192 /* minimum size accounting */ 193 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 194 if (spool->rsv_hpages + delta <= spool->min_hpages) 195 ret = 0; 196 else 197 ret = spool->rsv_hpages + delta - spool->min_hpages; 198 199 spool->rsv_hpages += delta; 200 if (spool->rsv_hpages > spool->min_hpages) 201 spool->rsv_hpages = spool->min_hpages; 202 } 203 204 /* 205 * If hugetlbfs_put_super couldn't free spool due to an outstanding 206 * quota reference, free it now. 207 */ 208 unlock_or_release_subpool(spool); 209 210 return ret; 211 } 212 213 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 214 { 215 return HUGETLBFS_SB(inode->i_sb)->spool; 216 } 217 218 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 219 { 220 return subpool_inode(file_inode(vma->vm_file)); 221 } 222 223 /* 224 * Region tracking -- allows tracking of reservations and instantiated pages 225 * across the pages in a mapping. 226 * 227 * The region data structures are embedded into a resv_map and protected 228 * by a resv_map's lock. The set of regions within the resv_map represent 229 * reservations for huge pages, or huge pages that have already been 230 * instantiated within the map. The from and to elements are huge page 231 * indicies into the associated mapping. from indicates the starting index 232 * of the region. to represents the first index past the end of the region. 233 * 234 * For example, a file region structure with from == 0 and to == 4 represents 235 * four huge pages in a mapping. It is important to note that the to element 236 * represents the first element past the end of the region. This is used in 237 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 238 * 239 * Interval notation of the form [from, to) will be used to indicate that 240 * the endpoint from is inclusive and to is exclusive. 241 */ 242 struct file_region { 243 struct list_head link; 244 long from; 245 long to; 246 }; 247 248 /* Must be called with resv->lock held. Calling this with count_only == true 249 * will count the number of pages to be added but will not modify the linked 250 * list. 251 */ 252 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 253 bool count_only) 254 { 255 long chg = 0; 256 struct list_head *head = &resv->regions; 257 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL; 258 259 /* Locate the region we are before or in. */ 260 list_for_each_entry(rg, head, link) 261 if (f <= rg->to) 262 break; 263 264 /* Round our left edge to the current segment if it encloses us. */ 265 if (f > rg->from) 266 f = rg->from; 267 268 chg = t - f; 269 270 /* Check for and consume any regions we now overlap with. */ 271 nrg = rg; 272 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 273 if (&rg->link == head) 274 break; 275 if (rg->from > t) 276 break; 277 278 /* We overlap with this area, if it extends further than 279 * us then we must extend ourselves. Account for its 280 * existing reservation. 281 */ 282 if (rg->to > t) { 283 chg += rg->to - t; 284 t = rg->to; 285 } 286 chg -= rg->to - rg->from; 287 288 if (!count_only && rg != nrg) { 289 list_del(&rg->link); 290 kfree(rg); 291 } 292 } 293 294 if (!count_only) { 295 nrg->from = f; 296 nrg->to = t; 297 } 298 299 return chg; 300 } 301 302 /* 303 * Add the huge page range represented by [f, t) to the reserve 304 * map. Existing regions will be expanded to accommodate the specified 305 * range, or a region will be taken from the cache. Sufficient regions 306 * must exist in the cache due to the previous call to region_chg with 307 * the same range. 308 * 309 * Return the number of new huge pages added to the map. This 310 * number is greater than or equal to zero. 311 */ 312 static long region_add(struct resv_map *resv, long f, long t) 313 { 314 struct list_head *head = &resv->regions; 315 struct file_region *rg, *nrg; 316 long add = 0; 317 318 spin_lock(&resv->lock); 319 /* Locate the region we are either in or before. */ 320 list_for_each_entry(rg, head, link) 321 if (f <= rg->to) 322 break; 323 324 /* 325 * If no region exists which can be expanded to include the 326 * specified range, pull a region descriptor from the cache 327 * and use it for this range. 328 */ 329 if (&rg->link == head || t < rg->from) { 330 VM_BUG_ON(resv->region_cache_count <= 0); 331 332 resv->region_cache_count--; 333 nrg = list_first_entry(&resv->region_cache, struct file_region, 334 link); 335 list_del(&nrg->link); 336 337 nrg->from = f; 338 nrg->to = t; 339 list_add(&nrg->link, rg->link.prev); 340 341 add += t - f; 342 goto out_locked; 343 } 344 345 add = add_reservation_in_range(resv, f, t, false); 346 347 out_locked: 348 resv->adds_in_progress--; 349 spin_unlock(&resv->lock); 350 VM_BUG_ON(add < 0); 351 return add; 352 } 353 354 /* 355 * Examine the existing reserve map and determine how many 356 * huge pages in the specified range [f, t) are NOT currently 357 * represented. This routine is called before a subsequent 358 * call to region_add that will actually modify the reserve 359 * map to add the specified range [f, t). region_chg does 360 * not change the number of huge pages represented by the 361 * map. A new file_region structure is added to the cache 362 * as a placeholder, so that the subsequent region_add 363 * call will have all the regions it needs and will not fail. 364 * 365 * Returns the number of huge pages that need to be added to the existing 366 * reservation map for the range [f, t). This number is greater or equal to 367 * zero. -ENOMEM is returned if a new file_region structure or cache entry 368 * is needed and can not be allocated. 369 */ 370 static long region_chg(struct resv_map *resv, long f, long t) 371 { 372 long chg = 0; 373 374 spin_lock(&resv->lock); 375 retry_locked: 376 resv->adds_in_progress++; 377 378 /* 379 * Check for sufficient descriptors in the cache to accommodate 380 * the number of in progress add operations. 381 */ 382 if (resv->adds_in_progress > resv->region_cache_count) { 383 struct file_region *trg; 384 385 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 386 /* Must drop lock to allocate a new descriptor. */ 387 resv->adds_in_progress--; 388 spin_unlock(&resv->lock); 389 390 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 391 if (!trg) 392 return -ENOMEM; 393 394 spin_lock(&resv->lock); 395 list_add(&trg->link, &resv->region_cache); 396 resv->region_cache_count++; 397 goto retry_locked; 398 } 399 400 chg = add_reservation_in_range(resv, f, t, true); 401 402 spin_unlock(&resv->lock); 403 return chg; 404 } 405 406 /* 407 * Abort the in progress add operation. The adds_in_progress field 408 * of the resv_map keeps track of the operations in progress between 409 * calls to region_chg and region_add. Operations are sometimes 410 * aborted after the call to region_chg. In such cases, region_abort 411 * is called to decrement the adds_in_progress counter. 412 * 413 * NOTE: The range arguments [f, t) are not needed or used in this 414 * routine. They are kept to make reading the calling code easier as 415 * arguments will match the associated region_chg call. 416 */ 417 static void region_abort(struct resv_map *resv, long f, long t) 418 { 419 spin_lock(&resv->lock); 420 VM_BUG_ON(!resv->region_cache_count); 421 resv->adds_in_progress--; 422 spin_unlock(&resv->lock); 423 } 424 425 /* 426 * Delete the specified range [f, t) from the reserve map. If the 427 * t parameter is LONG_MAX, this indicates that ALL regions after f 428 * should be deleted. Locate the regions which intersect [f, t) 429 * and either trim, delete or split the existing regions. 430 * 431 * Returns the number of huge pages deleted from the reserve map. 432 * In the normal case, the return value is zero or more. In the 433 * case where a region must be split, a new region descriptor must 434 * be allocated. If the allocation fails, -ENOMEM will be returned. 435 * NOTE: If the parameter t == LONG_MAX, then we will never split 436 * a region and possibly return -ENOMEM. Callers specifying 437 * t == LONG_MAX do not need to check for -ENOMEM error. 438 */ 439 static long region_del(struct resv_map *resv, long f, long t) 440 { 441 struct list_head *head = &resv->regions; 442 struct file_region *rg, *trg; 443 struct file_region *nrg = NULL; 444 long del = 0; 445 446 retry: 447 spin_lock(&resv->lock); 448 list_for_each_entry_safe(rg, trg, head, link) { 449 /* 450 * Skip regions before the range to be deleted. file_region 451 * ranges are normally of the form [from, to). However, there 452 * may be a "placeholder" entry in the map which is of the form 453 * (from, to) with from == to. Check for placeholder entries 454 * at the beginning of the range to be deleted. 455 */ 456 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 457 continue; 458 459 if (rg->from >= t) 460 break; 461 462 if (f > rg->from && t < rg->to) { /* Must split region */ 463 /* 464 * Check for an entry in the cache before dropping 465 * lock and attempting allocation. 466 */ 467 if (!nrg && 468 resv->region_cache_count > resv->adds_in_progress) { 469 nrg = list_first_entry(&resv->region_cache, 470 struct file_region, 471 link); 472 list_del(&nrg->link); 473 resv->region_cache_count--; 474 } 475 476 if (!nrg) { 477 spin_unlock(&resv->lock); 478 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 479 if (!nrg) 480 return -ENOMEM; 481 goto retry; 482 } 483 484 del += t - f; 485 486 /* New entry for end of split region */ 487 nrg->from = t; 488 nrg->to = rg->to; 489 INIT_LIST_HEAD(&nrg->link); 490 491 /* Original entry is trimmed */ 492 rg->to = f; 493 494 list_add(&nrg->link, &rg->link); 495 nrg = NULL; 496 break; 497 } 498 499 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 500 del += rg->to - rg->from; 501 list_del(&rg->link); 502 kfree(rg); 503 continue; 504 } 505 506 if (f <= rg->from) { /* Trim beginning of region */ 507 del += t - rg->from; 508 rg->from = t; 509 } else { /* Trim end of region */ 510 del += rg->to - f; 511 rg->to = f; 512 } 513 } 514 515 spin_unlock(&resv->lock); 516 kfree(nrg); 517 return del; 518 } 519 520 /* 521 * A rare out of memory error was encountered which prevented removal of 522 * the reserve map region for a page. The huge page itself was free'ed 523 * and removed from the page cache. This routine will adjust the subpool 524 * usage count, and the global reserve count if needed. By incrementing 525 * these counts, the reserve map entry which could not be deleted will 526 * appear as a "reserved" entry instead of simply dangling with incorrect 527 * counts. 528 */ 529 void hugetlb_fix_reserve_counts(struct inode *inode) 530 { 531 struct hugepage_subpool *spool = subpool_inode(inode); 532 long rsv_adjust; 533 534 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 535 if (rsv_adjust) { 536 struct hstate *h = hstate_inode(inode); 537 538 hugetlb_acct_memory(h, 1); 539 } 540 } 541 542 /* 543 * Count and return the number of huge pages in the reserve map 544 * that intersect with the range [f, t). 545 */ 546 static long region_count(struct resv_map *resv, long f, long t) 547 { 548 struct list_head *head = &resv->regions; 549 struct file_region *rg; 550 long chg = 0; 551 552 spin_lock(&resv->lock); 553 /* Locate each segment we overlap with, and count that overlap. */ 554 list_for_each_entry(rg, head, link) { 555 long seg_from; 556 long seg_to; 557 558 if (rg->to <= f) 559 continue; 560 if (rg->from >= t) 561 break; 562 563 seg_from = max(rg->from, f); 564 seg_to = min(rg->to, t); 565 566 chg += seg_to - seg_from; 567 } 568 spin_unlock(&resv->lock); 569 570 return chg; 571 } 572 573 /* 574 * Convert the address within this vma to the page offset within 575 * the mapping, in pagecache page units; huge pages here. 576 */ 577 static pgoff_t vma_hugecache_offset(struct hstate *h, 578 struct vm_area_struct *vma, unsigned long address) 579 { 580 return ((address - vma->vm_start) >> huge_page_shift(h)) + 581 (vma->vm_pgoff >> huge_page_order(h)); 582 } 583 584 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 585 unsigned long address) 586 { 587 return vma_hugecache_offset(hstate_vma(vma), vma, address); 588 } 589 EXPORT_SYMBOL_GPL(linear_hugepage_index); 590 591 /* 592 * Return the size of the pages allocated when backing a VMA. In the majority 593 * cases this will be same size as used by the page table entries. 594 */ 595 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 596 { 597 if (vma->vm_ops && vma->vm_ops->pagesize) 598 return vma->vm_ops->pagesize(vma); 599 return PAGE_SIZE; 600 } 601 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 602 603 /* 604 * Return the page size being used by the MMU to back a VMA. In the majority 605 * of cases, the page size used by the kernel matches the MMU size. On 606 * architectures where it differs, an architecture-specific 'strong' 607 * version of this symbol is required. 608 */ 609 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 610 { 611 return vma_kernel_pagesize(vma); 612 } 613 614 /* 615 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 616 * bits of the reservation map pointer, which are always clear due to 617 * alignment. 618 */ 619 #define HPAGE_RESV_OWNER (1UL << 0) 620 #define HPAGE_RESV_UNMAPPED (1UL << 1) 621 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 622 623 /* 624 * These helpers are used to track how many pages are reserved for 625 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 626 * is guaranteed to have their future faults succeed. 627 * 628 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 629 * the reserve counters are updated with the hugetlb_lock held. It is safe 630 * to reset the VMA at fork() time as it is not in use yet and there is no 631 * chance of the global counters getting corrupted as a result of the values. 632 * 633 * The private mapping reservation is represented in a subtly different 634 * manner to a shared mapping. A shared mapping has a region map associated 635 * with the underlying file, this region map represents the backing file 636 * pages which have ever had a reservation assigned which this persists even 637 * after the page is instantiated. A private mapping has a region map 638 * associated with the original mmap which is attached to all VMAs which 639 * reference it, this region map represents those offsets which have consumed 640 * reservation ie. where pages have been instantiated. 641 */ 642 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 643 { 644 return (unsigned long)vma->vm_private_data; 645 } 646 647 static void set_vma_private_data(struct vm_area_struct *vma, 648 unsigned long value) 649 { 650 vma->vm_private_data = (void *)value; 651 } 652 653 struct resv_map *resv_map_alloc(void) 654 { 655 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 656 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 657 658 if (!resv_map || !rg) { 659 kfree(resv_map); 660 kfree(rg); 661 return NULL; 662 } 663 664 kref_init(&resv_map->refs); 665 spin_lock_init(&resv_map->lock); 666 INIT_LIST_HEAD(&resv_map->regions); 667 668 resv_map->adds_in_progress = 0; 669 670 INIT_LIST_HEAD(&resv_map->region_cache); 671 list_add(&rg->link, &resv_map->region_cache); 672 resv_map->region_cache_count = 1; 673 674 return resv_map; 675 } 676 677 void resv_map_release(struct kref *ref) 678 { 679 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 680 struct list_head *head = &resv_map->region_cache; 681 struct file_region *rg, *trg; 682 683 /* Clear out any active regions before we release the map. */ 684 region_del(resv_map, 0, LONG_MAX); 685 686 /* ... and any entries left in the cache */ 687 list_for_each_entry_safe(rg, trg, head, link) { 688 list_del(&rg->link); 689 kfree(rg); 690 } 691 692 VM_BUG_ON(resv_map->adds_in_progress); 693 694 kfree(resv_map); 695 } 696 697 static inline struct resv_map *inode_resv_map(struct inode *inode) 698 { 699 /* 700 * At inode evict time, i_mapping may not point to the original 701 * address space within the inode. This original address space 702 * contains the pointer to the resv_map. So, always use the 703 * address space embedded within the inode. 704 * The VERY common case is inode->mapping == &inode->i_data but, 705 * this may not be true for device special inodes. 706 */ 707 return (struct resv_map *)(&inode->i_data)->private_data; 708 } 709 710 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 711 { 712 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 713 if (vma->vm_flags & VM_MAYSHARE) { 714 struct address_space *mapping = vma->vm_file->f_mapping; 715 struct inode *inode = mapping->host; 716 717 return inode_resv_map(inode); 718 719 } else { 720 return (struct resv_map *)(get_vma_private_data(vma) & 721 ~HPAGE_RESV_MASK); 722 } 723 } 724 725 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 726 { 727 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 728 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 729 730 set_vma_private_data(vma, (get_vma_private_data(vma) & 731 HPAGE_RESV_MASK) | (unsigned long)map); 732 } 733 734 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 735 { 736 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 737 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 738 739 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 740 } 741 742 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 743 { 744 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 745 746 return (get_vma_private_data(vma) & flag) != 0; 747 } 748 749 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 750 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 751 { 752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 753 if (!(vma->vm_flags & VM_MAYSHARE)) 754 vma->vm_private_data = (void *)0; 755 } 756 757 /* Returns true if the VMA has associated reserve pages */ 758 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 759 { 760 if (vma->vm_flags & VM_NORESERVE) { 761 /* 762 * This address is already reserved by other process(chg == 0), 763 * so, we should decrement reserved count. Without decrementing, 764 * reserve count remains after releasing inode, because this 765 * allocated page will go into page cache and is regarded as 766 * coming from reserved pool in releasing step. Currently, we 767 * don't have any other solution to deal with this situation 768 * properly, so add work-around here. 769 */ 770 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 771 return true; 772 else 773 return false; 774 } 775 776 /* Shared mappings always use reserves */ 777 if (vma->vm_flags & VM_MAYSHARE) { 778 /* 779 * We know VM_NORESERVE is not set. Therefore, there SHOULD 780 * be a region map for all pages. The only situation where 781 * there is no region map is if a hole was punched via 782 * fallocate. In this case, there really are no reverves to 783 * use. This situation is indicated if chg != 0. 784 */ 785 if (chg) 786 return false; 787 else 788 return true; 789 } 790 791 /* 792 * Only the process that called mmap() has reserves for 793 * private mappings. 794 */ 795 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 796 /* 797 * Like the shared case above, a hole punch or truncate 798 * could have been performed on the private mapping. 799 * Examine the value of chg to determine if reserves 800 * actually exist or were previously consumed. 801 * Very Subtle - The value of chg comes from a previous 802 * call to vma_needs_reserves(). The reserve map for 803 * private mappings has different (opposite) semantics 804 * than that of shared mappings. vma_needs_reserves() 805 * has already taken this difference in semantics into 806 * account. Therefore, the meaning of chg is the same 807 * as in the shared case above. Code could easily be 808 * combined, but keeping it separate draws attention to 809 * subtle differences. 810 */ 811 if (chg) 812 return false; 813 else 814 return true; 815 } 816 817 return false; 818 } 819 820 static void enqueue_huge_page(struct hstate *h, struct page *page) 821 { 822 int nid = page_to_nid(page); 823 list_move(&page->lru, &h->hugepage_freelists[nid]); 824 h->free_huge_pages++; 825 h->free_huge_pages_node[nid]++; 826 } 827 828 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 829 { 830 struct page *page; 831 832 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 833 if (!PageHWPoison(page)) 834 break; 835 /* 836 * if 'non-isolated free hugepage' not found on the list, 837 * the allocation fails. 838 */ 839 if (&h->hugepage_freelists[nid] == &page->lru) 840 return NULL; 841 list_move(&page->lru, &h->hugepage_activelist); 842 set_page_refcounted(page); 843 h->free_huge_pages--; 844 h->free_huge_pages_node[nid]--; 845 return page; 846 } 847 848 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 849 nodemask_t *nmask) 850 { 851 unsigned int cpuset_mems_cookie; 852 struct zonelist *zonelist; 853 struct zone *zone; 854 struct zoneref *z; 855 int node = NUMA_NO_NODE; 856 857 zonelist = node_zonelist(nid, gfp_mask); 858 859 retry_cpuset: 860 cpuset_mems_cookie = read_mems_allowed_begin(); 861 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 862 struct page *page; 863 864 if (!cpuset_zone_allowed(zone, gfp_mask)) 865 continue; 866 /* 867 * no need to ask again on the same node. Pool is node rather than 868 * zone aware 869 */ 870 if (zone_to_nid(zone) == node) 871 continue; 872 node = zone_to_nid(zone); 873 874 page = dequeue_huge_page_node_exact(h, node); 875 if (page) 876 return page; 877 } 878 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 879 goto retry_cpuset; 880 881 return NULL; 882 } 883 884 /* Movability of hugepages depends on migration support. */ 885 static inline gfp_t htlb_alloc_mask(struct hstate *h) 886 { 887 if (hugepage_movable_supported(h)) 888 return GFP_HIGHUSER_MOVABLE; 889 else 890 return GFP_HIGHUSER; 891 } 892 893 static struct page *dequeue_huge_page_vma(struct hstate *h, 894 struct vm_area_struct *vma, 895 unsigned long address, int avoid_reserve, 896 long chg) 897 { 898 struct page *page; 899 struct mempolicy *mpol; 900 gfp_t gfp_mask; 901 nodemask_t *nodemask; 902 int nid; 903 904 /* 905 * A child process with MAP_PRIVATE mappings created by their parent 906 * have no page reserves. This check ensures that reservations are 907 * not "stolen". The child may still get SIGKILLed 908 */ 909 if (!vma_has_reserves(vma, chg) && 910 h->free_huge_pages - h->resv_huge_pages == 0) 911 goto err; 912 913 /* If reserves cannot be used, ensure enough pages are in the pool */ 914 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 915 goto err; 916 917 gfp_mask = htlb_alloc_mask(h); 918 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 919 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 920 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 921 SetPagePrivate(page); 922 h->resv_huge_pages--; 923 } 924 925 mpol_cond_put(mpol); 926 return page; 927 928 err: 929 return NULL; 930 } 931 932 /* 933 * common helper functions for hstate_next_node_to_{alloc|free}. 934 * We may have allocated or freed a huge page based on a different 935 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 936 * be outside of *nodes_allowed. Ensure that we use an allowed 937 * node for alloc or free. 938 */ 939 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 940 { 941 nid = next_node_in(nid, *nodes_allowed); 942 VM_BUG_ON(nid >= MAX_NUMNODES); 943 944 return nid; 945 } 946 947 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 948 { 949 if (!node_isset(nid, *nodes_allowed)) 950 nid = next_node_allowed(nid, nodes_allowed); 951 return nid; 952 } 953 954 /* 955 * returns the previously saved node ["this node"] from which to 956 * allocate a persistent huge page for the pool and advance the 957 * next node from which to allocate, handling wrap at end of node 958 * mask. 959 */ 960 static int hstate_next_node_to_alloc(struct hstate *h, 961 nodemask_t *nodes_allowed) 962 { 963 int nid; 964 965 VM_BUG_ON(!nodes_allowed); 966 967 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 968 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 969 970 return nid; 971 } 972 973 /* 974 * helper for free_pool_huge_page() - return the previously saved 975 * node ["this node"] from which to free a huge page. Advance the 976 * next node id whether or not we find a free huge page to free so 977 * that the next attempt to free addresses the next node. 978 */ 979 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 980 { 981 int nid; 982 983 VM_BUG_ON(!nodes_allowed); 984 985 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 986 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 987 988 return nid; 989 } 990 991 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 992 for (nr_nodes = nodes_weight(*mask); \ 993 nr_nodes > 0 && \ 994 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 995 nr_nodes--) 996 997 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 998 for (nr_nodes = nodes_weight(*mask); \ 999 nr_nodes > 0 && \ 1000 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1001 nr_nodes--) 1002 1003 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1004 static void destroy_compound_gigantic_page(struct page *page, 1005 unsigned int order) 1006 { 1007 int i; 1008 int nr_pages = 1 << order; 1009 struct page *p = page + 1; 1010 1011 atomic_set(compound_mapcount_ptr(page), 0); 1012 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1013 clear_compound_head(p); 1014 set_page_refcounted(p); 1015 } 1016 1017 set_compound_order(page, 0); 1018 __ClearPageHead(page); 1019 } 1020 1021 static void free_gigantic_page(struct page *page, unsigned int order) 1022 { 1023 free_contig_range(page_to_pfn(page), 1 << order); 1024 } 1025 1026 #ifdef CONFIG_CONTIG_ALLOC 1027 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1028 int nid, nodemask_t *nodemask) 1029 { 1030 unsigned long nr_pages = 1UL << huge_page_order(h); 1031 1032 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1033 } 1034 1035 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1036 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1037 #else /* !CONFIG_CONTIG_ALLOC */ 1038 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1039 int nid, nodemask_t *nodemask) 1040 { 1041 return NULL; 1042 } 1043 #endif /* CONFIG_CONTIG_ALLOC */ 1044 1045 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1046 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1047 int nid, nodemask_t *nodemask) 1048 { 1049 return NULL; 1050 } 1051 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1052 static inline void destroy_compound_gigantic_page(struct page *page, 1053 unsigned int order) { } 1054 #endif 1055 1056 static void update_and_free_page(struct hstate *h, struct page *page) 1057 { 1058 int i; 1059 1060 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1061 return; 1062 1063 h->nr_huge_pages--; 1064 h->nr_huge_pages_node[page_to_nid(page)]--; 1065 for (i = 0; i < pages_per_huge_page(h); i++) { 1066 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1067 1 << PG_referenced | 1 << PG_dirty | 1068 1 << PG_active | 1 << PG_private | 1069 1 << PG_writeback); 1070 } 1071 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1072 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1073 set_page_refcounted(page); 1074 if (hstate_is_gigantic(h)) { 1075 destroy_compound_gigantic_page(page, huge_page_order(h)); 1076 free_gigantic_page(page, huge_page_order(h)); 1077 } else { 1078 __free_pages(page, huge_page_order(h)); 1079 } 1080 } 1081 1082 struct hstate *size_to_hstate(unsigned long size) 1083 { 1084 struct hstate *h; 1085 1086 for_each_hstate(h) { 1087 if (huge_page_size(h) == size) 1088 return h; 1089 } 1090 return NULL; 1091 } 1092 1093 /* 1094 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1095 * to hstate->hugepage_activelist.) 1096 * 1097 * This function can be called for tail pages, but never returns true for them. 1098 */ 1099 bool page_huge_active(struct page *page) 1100 { 1101 VM_BUG_ON_PAGE(!PageHuge(page), page); 1102 return PageHead(page) && PagePrivate(&page[1]); 1103 } 1104 1105 /* never called for tail page */ 1106 static void set_page_huge_active(struct page *page) 1107 { 1108 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1109 SetPagePrivate(&page[1]); 1110 } 1111 1112 static void clear_page_huge_active(struct page *page) 1113 { 1114 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1115 ClearPagePrivate(&page[1]); 1116 } 1117 1118 /* 1119 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1120 * code 1121 */ 1122 static inline bool PageHugeTemporary(struct page *page) 1123 { 1124 if (!PageHuge(page)) 1125 return false; 1126 1127 return (unsigned long)page[2].mapping == -1U; 1128 } 1129 1130 static inline void SetPageHugeTemporary(struct page *page) 1131 { 1132 page[2].mapping = (void *)-1U; 1133 } 1134 1135 static inline void ClearPageHugeTemporary(struct page *page) 1136 { 1137 page[2].mapping = NULL; 1138 } 1139 1140 static void __free_huge_page(struct page *page) 1141 { 1142 /* 1143 * Can't pass hstate in here because it is called from the 1144 * compound page destructor. 1145 */ 1146 struct hstate *h = page_hstate(page); 1147 int nid = page_to_nid(page); 1148 struct hugepage_subpool *spool = 1149 (struct hugepage_subpool *)page_private(page); 1150 bool restore_reserve; 1151 1152 VM_BUG_ON_PAGE(page_count(page), page); 1153 VM_BUG_ON_PAGE(page_mapcount(page), page); 1154 1155 set_page_private(page, 0); 1156 page->mapping = NULL; 1157 restore_reserve = PagePrivate(page); 1158 ClearPagePrivate(page); 1159 1160 /* 1161 * If PagePrivate() was set on page, page allocation consumed a 1162 * reservation. If the page was associated with a subpool, there 1163 * would have been a page reserved in the subpool before allocation 1164 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1165 * reservtion, do not call hugepage_subpool_put_pages() as this will 1166 * remove the reserved page from the subpool. 1167 */ 1168 if (!restore_reserve) { 1169 /* 1170 * A return code of zero implies that the subpool will be 1171 * under its minimum size if the reservation is not restored 1172 * after page is free. Therefore, force restore_reserve 1173 * operation. 1174 */ 1175 if (hugepage_subpool_put_pages(spool, 1) == 0) 1176 restore_reserve = true; 1177 } 1178 1179 spin_lock(&hugetlb_lock); 1180 clear_page_huge_active(page); 1181 hugetlb_cgroup_uncharge_page(hstate_index(h), 1182 pages_per_huge_page(h), page); 1183 if (restore_reserve) 1184 h->resv_huge_pages++; 1185 1186 if (PageHugeTemporary(page)) { 1187 list_del(&page->lru); 1188 ClearPageHugeTemporary(page); 1189 update_and_free_page(h, page); 1190 } else if (h->surplus_huge_pages_node[nid]) { 1191 /* remove the page from active list */ 1192 list_del(&page->lru); 1193 update_and_free_page(h, page); 1194 h->surplus_huge_pages--; 1195 h->surplus_huge_pages_node[nid]--; 1196 } else { 1197 arch_clear_hugepage_flags(page); 1198 enqueue_huge_page(h, page); 1199 } 1200 spin_unlock(&hugetlb_lock); 1201 } 1202 1203 /* 1204 * As free_huge_page() can be called from a non-task context, we have 1205 * to defer the actual freeing in a workqueue to prevent potential 1206 * hugetlb_lock deadlock. 1207 * 1208 * free_hpage_workfn() locklessly retrieves the linked list of pages to 1209 * be freed and frees them one-by-one. As the page->mapping pointer is 1210 * going to be cleared in __free_huge_page() anyway, it is reused as the 1211 * llist_node structure of a lockless linked list of huge pages to be freed. 1212 */ 1213 static LLIST_HEAD(hpage_freelist); 1214 1215 static void free_hpage_workfn(struct work_struct *work) 1216 { 1217 struct llist_node *node; 1218 struct page *page; 1219 1220 node = llist_del_all(&hpage_freelist); 1221 1222 while (node) { 1223 page = container_of((struct address_space **)node, 1224 struct page, mapping); 1225 node = node->next; 1226 __free_huge_page(page); 1227 } 1228 } 1229 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1230 1231 void free_huge_page(struct page *page) 1232 { 1233 /* 1234 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock. 1235 */ 1236 if (!in_task()) { 1237 /* 1238 * Only call schedule_work() if hpage_freelist is previously 1239 * empty. Otherwise, schedule_work() had been called but the 1240 * workfn hasn't retrieved the list yet. 1241 */ 1242 if (llist_add((struct llist_node *)&page->mapping, 1243 &hpage_freelist)) 1244 schedule_work(&free_hpage_work); 1245 return; 1246 } 1247 1248 __free_huge_page(page); 1249 } 1250 1251 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1252 { 1253 INIT_LIST_HEAD(&page->lru); 1254 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1255 spin_lock(&hugetlb_lock); 1256 set_hugetlb_cgroup(page, NULL); 1257 h->nr_huge_pages++; 1258 h->nr_huge_pages_node[nid]++; 1259 spin_unlock(&hugetlb_lock); 1260 } 1261 1262 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1263 { 1264 int i; 1265 int nr_pages = 1 << order; 1266 struct page *p = page + 1; 1267 1268 /* we rely on prep_new_huge_page to set the destructor */ 1269 set_compound_order(page, order); 1270 __ClearPageReserved(page); 1271 __SetPageHead(page); 1272 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1273 /* 1274 * For gigantic hugepages allocated through bootmem at 1275 * boot, it's safer to be consistent with the not-gigantic 1276 * hugepages and clear the PG_reserved bit from all tail pages 1277 * too. Otherwse drivers using get_user_pages() to access tail 1278 * pages may get the reference counting wrong if they see 1279 * PG_reserved set on a tail page (despite the head page not 1280 * having PG_reserved set). Enforcing this consistency between 1281 * head and tail pages allows drivers to optimize away a check 1282 * on the head page when they need know if put_page() is needed 1283 * after get_user_pages(). 1284 */ 1285 __ClearPageReserved(p); 1286 set_page_count(p, 0); 1287 set_compound_head(p, page); 1288 } 1289 atomic_set(compound_mapcount_ptr(page), -1); 1290 } 1291 1292 /* 1293 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1294 * transparent huge pages. See the PageTransHuge() documentation for more 1295 * details. 1296 */ 1297 int PageHuge(struct page *page) 1298 { 1299 if (!PageCompound(page)) 1300 return 0; 1301 1302 page = compound_head(page); 1303 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1304 } 1305 EXPORT_SYMBOL_GPL(PageHuge); 1306 1307 /* 1308 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1309 * normal or transparent huge pages. 1310 */ 1311 int PageHeadHuge(struct page *page_head) 1312 { 1313 if (!PageHead(page_head)) 1314 return 0; 1315 1316 return get_compound_page_dtor(page_head) == free_huge_page; 1317 } 1318 1319 pgoff_t __basepage_index(struct page *page) 1320 { 1321 struct page *page_head = compound_head(page); 1322 pgoff_t index = page_index(page_head); 1323 unsigned long compound_idx; 1324 1325 if (!PageHuge(page_head)) 1326 return page_index(page); 1327 1328 if (compound_order(page_head) >= MAX_ORDER) 1329 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1330 else 1331 compound_idx = page - page_head; 1332 1333 return (index << compound_order(page_head)) + compound_idx; 1334 } 1335 1336 static struct page *alloc_buddy_huge_page(struct hstate *h, 1337 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1338 nodemask_t *node_alloc_noretry) 1339 { 1340 int order = huge_page_order(h); 1341 struct page *page; 1342 bool alloc_try_hard = true; 1343 1344 /* 1345 * By default we always try hard to allocate the page with 1346 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1347 * a loop (to adjust global huge page counts) and previous allocation 1348 * failed, do not continue to try hard on the same node. Use the 1349 * node_alloc_noretry bitmap to manage this state information. 1350 */ 1351 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1352 alloc_try_hard = false; 1353 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1354 if (alloc_try_hard) 1355 gfp_mask |= __GFP_RETRY_MAYFAIL; 1356 if (nid == NUMA_NO_NODE) 1357 nid = numa_mem_id(); 1358 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1359 if (page) 1360 __count_vm_event(HTLB_BUDDY_PGALLOC); 1361 else 1362 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1363 1364 /* 1365 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1366 * indicates an overall state change. Clear bit so that we resume 1367 * normal 'try hard' allocations. 1368 */ 1369 if (node_alloc_noretry && page && !alloc_try_hard) 1370 node_clear(nid, *node_alloc_noretry); 1371 1372 /* 1373 * If we tried hard to get a page but failed, set bit so that 1374 * subsequent attempts will not try as hard until there is an 1375 * overall state change. 1376 */ 1377 if (node_alloc_noretry && !page && alloc_try_hard) 1378 node_set(nid, *node_alloc_noretry); 1379 1380 return page; 1381 } 1382 1383 /* 1384 * Common helper to allocate a fresh hugetlb page. All specific allocators 1385 * should use this function to get new hugetlb pages 1386 */ 1387 static struct page *alloc_fresh_huge_page(struct hstate *h, 1388 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1389 nodemask_t *node_alloc_noretry) 1390 { 1391 struct page *page; 1392 1393 if (hstate_is_gigantic(h)) 1394 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1395 else 1396 page = alloc_buddy_huge_page(h, gfp_mask, 1397 nid, nmask, node_alloc_noretry); 1398 if (!page) 1399 return NULL; 1400 1401 if (hstate_is_gigantic(h)) 1402 prep_compound_gigantic_page(page, huge_page_order(h)); 1403 prep_new_huge_page(h, page, page_to_nid(page)); 1404 1405 return page; 1406 } 1407 1408 /* 1409 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1410 * manner. 1411 */ 1412 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1413 nodemask_t *node_alloc_noretry) 1414 { 1415 struct page *page; 1416 int nr_nodes, node; 1417 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1418 1419 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1420 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1421 node_alloc_noretry); 1422 if (page) 1423 break; 1424 } 1425 1426 if (!page) 1427 return 0; 1428 1429 put_page(page); /* free it into the hugepage allocator */ 1430 1431 return 1; 1432 } 1433 1434 /* 1435 * Free huge page from pool from next node to free. 1436 * Attempt to keep persistent huge pages more or less 1437 * balanced over allowed nodes. 1438 * Called with hugetlb_lock locked. 1439 */ 1440 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1441 bool acct_surplus) 1442 { 1443 int nr_nodes, node; 1444 int ret = 0; 1445 1446 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1447 /* 1448 * If we're returning unused surplus pages, only examine 1449 * nodes with surplus pages. 1450 */ 1451 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1452 !list_empty(&h->hugepage_freelists[node])) { 1453 struct page *page = 1454 list_entry(h->hugepage_freelists[node].next, 1455 struct page, lru); 1456 list_del(&page->lru); 1457 h->free_huge_pages--; 1458 h->free_huge_pages_node[node]--; 1459 if (acct_surplus) { 1460 h->surplus_huge_pages--; 1461 h->surplus_huge_pages_node[node]--; 1462 } 1463 update_and_free_page(h, page); 1464 ret = 1; 1465 break; 1466 } 1467 } 1468 1469 return ret; 1470 } 1471 1472 /* 1473 * Dissolve a given free hugepage into free buddy pages. This function does 1474 * nothing for in-use hugepages and non-hugepages. 1475 * This function returns values like below: 1476 * 1477 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 1478 * (allocated or reserved.) 1479 * 0: successfully dissolved free hugepages or the page is not a 1480 * hugepage (considered as already dissolved) 1481 */ 1482 int dissolve_free_huge_page(struct page *page) 1483 { 1484 int rc = -EBUSY; 1485 1486 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 1487 if (!PageHuge(page)) 1488 return 0; 1489 1490 spin_lock(&hugetlb_lock); 1491 if (!PageHuge(page)) { 1492 rc = 0; 1493 goto out; 1494 } 1495 1496 if (!page_count(page)) { 1497 struct page *head = compound_head(page); 1498 struct hstate *h = page_hstate(head); 1499 int nid = page_to_nid(head); 1500 if (h->free_huge_pages - h->resv_huge_pages == 0) 1501 goto out; 1502 /* 1503 * Move PageHWPoison flag from head page to the raw error page, 1504 * which makes any subpages rather than the error page reusable. 1505 */ 1506 if (PageHWPoison(head) && page != head) { 1507 SetPageHWPoison(page); 1508 ClearPageHWPoison(head); 1509 } 1510 list_del(&head->lru); 1511 h->free_huge_pages--; 1512 h->free_huge_pages_node[nid]--; 1513 h->max_huge_pages--; 1514 update_and_free_page(h, head); 1515 rc = 0; 1516 } 1517 out: 1518 spin_unlock(&hugetlb_lock); 1519 return rc; 1520 } 1521 1522 /* 1523 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1524 * make specified memory blocks removable from the system. 1525 * Note that this will dissolve a free gigantic hugepage completely, if any 1526 * part of it lies within the given range. 1527 * Also note that if dissolve_free_huge_page() returns with an error, all 1528 * free hugepages that were dissolved before that error are lost. 1529 */ 1530 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1531 { 1532 unsigned long pfn; 1533 struct page *page; 1534 int rc = 0; 1535 1536 if (!hugepages_supported()) 1537 return rc; 1538 1539 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1540 page = pfn_to_page(pfn); 1541 rc = dissolve_free_huge_page(page); 1542 if (rc) 1543 break; 1544 } 1545 1546 return rc; 1547 } 1548 1549 /* 1550 * Allocates a fresh surplus page from the page allocator. 1551 */ 1552 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1553 int nid, nodemask_t *nmask) 1554 { 1555 struct page *page = NULL; 1556 1557 if (hstate_is_gigantic(h)) 1558 return NULL; 1559 1560 spin_lock(&hugetlb_lock); 1561 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1562 goto out_unlock; 1563 spin_unlock(&hugetlb_lock); 1564 1565 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1566 if (!page) 1567 return NULL; 1568 1569 spin_lock(&hugetlb_lock); 1570 /* 1571 * We could have raced with the pool size change. 1572 * Double check that and simply deallocate the new page 1573 * if we would end up overcommiting the surpluses. Abuse 1574 * temporary page to workaround the nasty free_huge_page 1575 * codeflow 1576 */ 1577 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1578 SetPageHugeTemporary(page); 1579 spin_unlock(&hugetlb_lock); 1580 put_page(page); 1581 return NULL; 1582 } else { 1583 h->surplus_huge_pages++; 1584 h->surplus_huge_pages_node[page_to_nid(page)]++; 1585 } 1586 1587 out_unlock: 1588 spin_unlock(&hugetlb_lock); 1589 1590 return page; 1591 } 1592 1593 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1594 int nid, nodemask_t *nmask) 1595 { 1596 struct page *page; 1597 1598 if (hstate_is_gigantic(h)) 1599 return NULL; 1600 1601 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1602 if (!page) 1603 return NULL; 1604 1605 /* 1606 * We do not account these pages as surplus because they are only 1607 * temporary and will be released properly on the last reference 1608 */ 1609 SetPageHugeTemporary(page); 1610 1611 return page; 1612 } 1613 1614 /* 1615 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1616 */ 1617 static 1618 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1619 struct vm_area_struct *vma, unsigned long addr) 1620 { 1621 struct page *page; 1622 struct mempolicy *mpol; 1623 gfp_t gfp_mask = htlb_alloc_mask(h); 1624 int nid; 1625 nodemask_t *nodemask; 1626 1627 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1628 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1629 mpol_cond_put(mpol); 1630 1631 return page; 1632 } 1633 1634 /* page migration callback function */ 1635 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1636 { 1637 gfp_t gfp_mask = htlb_alloc_mask(h); 1638 struct page *page = NULL; 1639 1640 if (nid != NUMA_NO_NODE) 1641 gfp_mask |= __GFP_THISNODE; 1642 1643 spin_lock(&hugetlb_lock); 1644 if (h->free_huge_pages - h->resv_huge_pages > 0) 1645 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); 1646 spin_unlock(&hugetlb_lock); 1647 1648 if (!page) 1649 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1650 1651 return page; 1652 } 1653 1654 /* page migration callback function */ 1655 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1656 nodemask_t *nmask) 1657 { 1658 gfp_t gfp_mask = htlb_alloc_mask(h); 1659 1660 spin_lock(&hugetlb_lock); 1661 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1662 struct page *page; 1663 1664 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1665 if (page) { 1666 spin_unlock(&hugetlb_lock); 1667 return page; 1668 } 1669 } 1670 spin_unlock(&hugetlb_lock); 1671 1672 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1673 } 1674 1675 /* mempolicy aware migration callback */ 1676 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1677 unsigned long address) 1678 { 1679 struct mempolicy *mpol; 1680 nodemask_t *nodemask; 1681 struct page *page; 1682 gfp_t gfp_mask; 1683 int node; 1684 1685 gfp_mask = htlb_alloc_mask(h); 1686 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1687 page = alloc_huge_page_nodemask(h, node, nodemask); 1688 mpol_cond_put(mpol); 1689 1690 return page; 1691 } 1692 1693 /* 1694 * Increase the hugetlb pool such that it can accommodate a reservation 1695 * of size 'delta'. 1696 */ 1697 static int gather_surplus_pages(struct hstate *h, int delta) 1698 { 1699 struct list_head surplus_list; 1700 struct page *page, *tmp; 1701 int ret, i; 1702 int needed, allocated; 1703 bool alloc_ok = true; 1704 1705 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1706 if (needed <= 0) { 1707 h->resv_huge_pages += delta; 1708 return 0; 1709 } 1710 1711 allocated = 0; 1712 INIT_LIST_HEAD(&surplus_list); 1713 1714 ret = -ENOMEM; 1715 retry: 1716 spin_unlock(&hugetlb_lock); 1717 for (i = 0; i < needed; i++) { 1718 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1719 NUMA_NO_NODE, NULL); 1720 if (!page) { 1721 alloc_ok = false; 1722 break; 1723 } 1724 list_add(&page->lru, &surplus_list); 1725 cond_resched(); 1726 } 1727 allocated += i; 1728 1729 /* 1730 * After retaking hugetlb_lock, we need to recalculate 'needed' 1731 * because either resv_huge_pages or free_huge_pages may have changed. 1732 */ 1733 spin_lock(&hugetlb_lock); 1734 needed = (h->resv_huge_pages + delta) - 1735 (h->free_huge_pages + allocated); 1736 if (needed > 0) { 1737 if (alloc_ok) 1738 goto retry; 1739 /* 1740 * We were not able to allocate enough pages to 1741 * satisfy the entire reservation so we free what 1742 * we've allocated so far. 1743 */ 1744 goto free; 1745 } 1746 /* 1747 * The surplus_list now contains _at_least_ the number of extra pages 1748 * needed to accommodate the reservation. Add the appropriate number 1749 * of pages to the hugetlb pool and free the extras back to the buddy 1750 * allocator. Commit the entire reservation here to prevent another 1751 * process from stealing the pages as they are added to the pool but 1752 * before they are reserved. 1753 */ 1754 needed += allocated; 1755 h->resv_huge_pages += delta; 1756 ret = 0; 1757 1758 /* Free the needed pages to the hugetlb pool */ 1759 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1760 if ((--needed) < 0) 1761 break; 1762 /* 1763 * This page is now managed by the hugetlb allocator and has 1764 * no users -- drop the buddy allocator's reference. 1765 */ 1766 put_page_testzero(page); 1767 VM_BUG_ON_PAGE(page_count(page), page); 1768 enqueue_huge_page(h, page); 1769 } 1770 free: 1771 spin_unlock(&hugetlb_lock); 1772 1773 /* Free unnecessary surplus pages to the buddy allocator */ 1774 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1775 put_page(page); 1776 spin_lock(&hugetlb_lock); 1777 1778 return ret; 1779 } 1780 1781 /* 1782 * This routine has two main purposes: 1783 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 1784 * in unused_resv_pages. This corresponds to the prior adjustments made 1785 * to the associated reservation map. 1786 * 2) Free any unused surplus pages that may have been allocated to satisfy 1787 * the reservation. As many as unused_resv_pages may be freed. 1788 * 1789 * Called with hugetlb_lock held. However, the lock could be dropped (and 1790 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 1791 * we must make sure nobody else can claim pages we are in the process of 1792 * freeing. Do this by ensuring resv_huge_page always is greater than the 1793 * number of huge pages we plan to free when dropping the lock. 1794 */ 1795 static void return_unused_surplus_pages(struct hstate *h, 1796 unsigned long unused_resv_pages) 1797 { 1798 unsigned long nr_pages; 1799 1800 /* Cannot return gigantic pages currently */ 1801 if (hstate_is_gigantic(h)) 1802 goto out; 1803 1804 /* 1805 * Part (or even all) of the reservation could have been backed 1806 * by pre-allocated pages. Only free surplus pages. 1807 */ 1808 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1809 1810 /* 1811 * We want to release as many surplus pages as possible, spread 1812 * evenly across all nodes with memory. Iterate across these nodes 1813 * until we can no longer free unreserved surplus pages. This occurs 1814 * when the nodes with surplus pages have no free pages. 1815 * free_pool_huge_page() will balance the the freed pages across the 1816 * on-line nodes with memory and will handle the hstate accounting. 1817 * 1818 * Note that we decrement resv_huge_pages as we free the pages. If 1819 * we drop the lock, resv_huge_pages will still be sufficiently large 1820 * to cover subsequent pages we may free. 1821 */ 1822 while (nr_pages--) { 1823 h->resv_huge_pages--; 1824 unused_resv_pages--; 1825 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1826 goto out; 1827 cond_resched_lock(&hugetlb_lock); 1828 } 1829 1830 out: 1831 /* Fully uncommit the reservation */ 1832 h->resv_huge_pages -= unused_resv_pages; 1833 } 1834 1835 1836 /* 1837 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1838 * are used by the huge page allocation routines to manage reservations. 1839 * 1840 * vma_needs_reservation is called to determine if the huge page at addr 1841 * within the vma has an associated reservation. If a reservation is 1842 * needed, the value 1 is returned. The caller is then responsible for 1843 * managing the global reservation and subpool usage counts. After 1844 * the huge page has been allocated, vma_commit_reservation is called 1845 * to add the page to the reservation map. If the page allocation fails, 1846 * the reservation must be ended instead of committed. vma_end_reservation 1847 * is called in such cases. 1848 * 1849 * In the normal case, vma_commit_reservation returns the same value 1850 * as the preceding vma_needs_reservation call. The only time this 1851 * is not the case is if a reserve map was changed between calls. It 1852 * is the responsibility of the caller to notice the difference and 1853 * take appropriate action. 1854 * 1855 * vma_add_reservation is used in error paths where a reservation must 1856 * be restored when a newly allocated huge page must be freed. It is 1857 * to be called after calling vma_needs_reservation to determine if a 1858 * reservation exists. 1859 */ 1860 enum vma_resv_mode { 1861 VMA_NEEDS_RESV, 1862 VMA_COMMIT_RESV, 1863 VMA_END_RESV, 1864 VMA_ADD_RESV, 1865 }; 1866 static long __vma_reservation_common(struct hstate *h, 1867 struct vm_area_struct *vma, unsigned long addr, 1868 enum vma_resv_mode mode) 1869 { 1870 struct resv_map *resv; 1871 pgoff_t idx; 1872 long ret; 1873 1874 resv = vma_resv_map(vma); 1875 if (!resv) 1876 return 1; 1877 1878 idx = vma_hugecache_offset(h, vma, addr); 1879 switch (mode) { 1880 case VMA_NEEDS_RESV: 1881 ret = region_chg(resv, idx, idx + 1); 1882 break; 1883 case VMA_COMMIT_RESV: 1884 ret = region_add(resv, idx, idx + 1); 1885 break; 1886 case VMA_END_RESV: 1887 region_abort(resv, idx, idx + 1); 1888 ret = 0; 1889 break; 1890 case VMA_ADD_RESV: 1891 if (vma->vm_flags & VM_MAYSHARE) 1892 ret = region_add(resv, idx, idx + 1); 1893 else { 1894 region_abort(resv, idx, idx + 1); 1895 ret = region_del(resv, idx, idx + 1); 1896 } 1897 break; 1898 default: 1899 BUG(); 1900 } 1901 1902 if (vma->vm_flags & VM_MAYSHARE) 1903 return ret; 1904 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1905 /* 1906 * In most cases, reserves always exist for private mappings. 1907 * However, a file associated with mapping could have been 1908 * hole punched or truncated after reserves were consumed. 1909 * As subsequent fault on such a range will not use reserves. 1910 * Subtle - The reserve map for private mappings has the 1911 * opposite meaning than that of shared mappings. If NO 1912 * entry is in the reserve map, it means a reservation exists. 1913 * If an entry exists in the reserve map, it means the 1914 * reservation has already been consumed. As a result, the 1915 * return value of this routine is the opposite of the 1916 * value returned from reserve map manipulation routines above. 1917 */ 1918 if (ret) 1919 return 0; 1920 else 1921 return 1; 1922 } 1923 else 1924 return ret < 0 ? ret : 0; 1925 } 1926 1927 static long vma_needs_reservation(struct hstate *h, 1928 struct vm_area_struct *vma, unsigned long addr) 1929 { 1930 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1931 } 1932 1933 static long vma_commit_reservation(struct hstate *h, 1934 struct vm_area_struct *vma, unsigned long addr) 1935 { 1936 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1937 } 1938 1939 static void vma_end_reservation(struct hstate *h, 1940 struct vm_area_struct *vma, unsigned long addr) 1941 { 1942 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1943 } 1944 1945 static long vma_add_reservation(struct hstate *h, 1946 struct vm_area_struct *vma, unsigned long addr) 1947 { 1948 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 1949 } 1950 1951 /* 1952 * This routine is called to restore a reservation on error paths. In the 1953 * specific error paths, a huge page was allocated (via alloc_huge_page) 1954 * and is about to be freed. If a reservation for the page existed, 1955 * alloc_huge_page would have consumed the reservation and set PagePrivate 1956 * in the newly allocated page. When the page is freed via free_huge_page, 1957 * the global reservation count will be incremented if PagePrivate is set. 1958 * However, free_huge_page can not adjust the reserve map. Adjust the 1959 * reserve map here to be consistent with global reserve count adjustments 1960 * to be made by free_huge_page. 1961 */ 1962 static void restore_reserve_on_error(struct hstate *h, 1963 struct vm_area_struct *vma, unsigned long address, 1964 struct page *page) 1965 { 1966 if (unlikely(PagePrivate(page))) { 1967 long rc = vma_needs_reservation(h, vma, address); 1968 1969 if (unlikely(rc < 0)) { 1970 /* 1971 * Rare out of memory condition in reserve map 1972 * manipulation. Clear PagePrivate so that 1973 * global reserve count will not be incremented 1974 * by free_huge_page. This will make it appear 1975 * as though the reservation for this page was 1976 * consumed. This may prevent the task from 1977 * faulting in the page at a later time. This 1978 * is better than inconsistent global huge page 1979 * accounting of reserve counts. 1980 */ 1981 ClearPagePrivate(page); 1982 } else if (rc) { 1983 rc = vma_add_reservation(h, vma, address); 1984 if (unlikely(rc < 0)) 1985 /* 1986 * See above comment about rare out of 1987 * memory condition. 1988 */ 1989 ClearPagePrivate(page); 1990 } else 1991 vma_end_reservation(h, vma, address); 1992 } 1993 } 1994 1995 struct page *alloc_huge_page(struct vm_area_struct *vma, 1996 unsigned long addr, int avoid_reserve) 1997 { 1998 struct hugepage_subpool *spool = subpool_vma(vma); 1999 struct hstate *h = hstate_vma(vma); 2000 struct page *page; 2001 long map_chg, map_commit; 2002 long gbl_chg; 2003 int ret, idx; 2004 struct hugetlb_cgroup *h_cg; 2005 2006 idx = hstate_index(h); 2007 /* 2008 * Examine the region/reserve map to determine if the process 2009 * has a reservation for the page to be allocated. A return 2010 * code of zero indicates a reservation exists (no change). 2011 */ 2012 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2013 if (map_chg < 0) 2014 return ERR_PTR(-ENOMEM); 2015 2016 /* 2017 * Processes that did not create the mapping will have no 2018 * reserves as indicated by the region/reserve map. Check 2019 * that the allocation will not exceed the subpool limit. 2020 * Allocations for MAP_NORESERVE mappings also need to be 2021 * checked against any subpool limit. 2022 */ 2023 if (map_chg || avoid_reserve) { 2024 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2025 if (gbl_chg < 0) { 2026 vma_end_reservation(h, vma, addr); 2027 return ERR_PTR(-ENOSPC); 2028 } 2029 2030 /* 2031 * Even though there was no reservation in the region/reserve 2032 * map, there could be reservations associated with the 2033 * subpool that can be used. This would be indicated if the 2034 * return value of hugepage_subpool_get_pages() is zero. 2035 * However, if avoid_reserve is specified we still avoid even 2036 * the subpool reservations. 2037 */ 2038 if (avoid_reserve) 2039 gbl_chg = 1; 2040 } 2041 2042 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2043 if (ret) 2044 goto out_subpool_put; 2045 2046 spin_lock(&hugetlb_lock); 2047 /* 2048 * glb_chg is passed to indicate whether or not a page must be taken 2049 * from the global free pool (global change). gbl_chg == 0 indicates 2050 * a reservation exists for the allocation. 2051 */ 2052 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2053 if (!page) { 2054 spin_unlock(&hugetlb_lock); 2055 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2056 if (!page) 2057 goto out_uncharge_cgroup; 2058 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2059 SetPagePrivate(page); 2060 h->resv_huge_pages--; 2061 } 2062 spin_lock(&hugetlb_lock); 2063 list_move(&page->lru, &h->hugepage_activelist); 2064 /* Fall through */ 2065 } 2066 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2067 spin_unlock(&hugetlb_lock); 2068 2069 set_page_private(page, (unsigned long)spool); 2070 2071 map_commit = vma_commit_reservation(h, vma, addr); 2072 if (unlikely(map_chg > map_commit)) { 2073 /* 2074 * The page was added to the reservation map between 2075 * vma_needs_reservation and vma_commit_reservation. 2076 * This indicates a race with hugetlb_reserve_pages. 2077 * Adjust for the subpool count incremented above AND 2078 * in hugetlb_reserve_pages for the same page. Also, 2079 * the reservation count added in hugetlb_reserve_pages 2080 * no longer applies. 2081 */ 2082 long rsv_adjust; 2083 2084 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2085 hugetlb_acct_memory(h, -rsv_adjust); 2086 } 2087 return page; 2088 2089 out_uncharge_cgroup: 2090 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2091 out_subpool_put: 2092 if (map_chg || avoid_reserve) 2093 hugepage_subpool_put_pages(spool, 1); 2094 vma_end_reservation(h, vma, addr); 2095 return ERR_PTR(-ENOSPC); 2096 } 2097 2098 int alloc_bootmem_huge_page(struct hstate *h) 2099 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2100 int __alloc_bootmem_huge_page(struct hstate *h) 2101 { 2102 struct huge_bootmem_page *m; 2103 int nr_nodes, node; 2104 2105 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2106 void *addr; 2107 2108 addr = memblock_alloc_try_nid_raw( 2109 huge_page_size(h), huge_page_size(h), 2110 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2111 if (addr) { 2112 /* 2113 * Use the beginning of the huge page to store the 2114 * huge_bootmem_page struct (until gather_bootmem 2115 * puts them into the mem_map). 2116 */ 2117 m = addr; 2118 goto found; 2119 } 2120 } 2121 return 0; 2122 2123 found: 2124 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2125 /* Put them into a private list first because mem_map is not up yet */ 2126 INIT_LIST_HEAD(&m->list); 2127 list_add(&m->list, &huge_boot_pages); 2128 m->hstate = h; 2129 return 1; 2130 } 2131 2132 static void __init prep_compound_huge_page(struct page *page, 2133 unsigned int order) 2134 { 2135 if (unlikely(order > (MAX_ORDER - 1))) 2136 prep_compound_gigantic_page(page, order); 2137 else 2138 prep_compound_page(page, order); 2139 } 2140 2141 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2142 static void __init gather_bootmem_prealloc(void) 2143 { 2144 struct huge_bootmem_page *m; 2145 2146 list_for_each_entry(m, &huge_boot_pages, list) { 2147 struct page *page = virt_to_page(m); 2148 struct hstate *h = m->hstate; 2149 2150 WARN_ON(page_count(page) != 1); 2151 prep_compound_huge_page(page, h->order); 2152 WARN_ON(PageReserved(page)); 2153 prep_new_huge_page(h, page, page_to_nid(page)); 2154 put_page(page); /* free it into the hugepage allocator */ 2155 2156 /* 2157 * If we had gigantic hugepages allocated at boot time, we need 2158 * to restore the 'stolen' pages to totalram_pages in order to 2159 * fix confusing memory reports from free(1) and another 2160 * side-effects, like CommitLimit going negative. 2161 */ 2162 if (hstate_is_gigantic(h)) 2163 adjust_managed_page_count(page, 1 << h->order); 2164 cond_resched(); 2165 } 2166 } 2167 2168 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2169 { 2170 unsigned long i; 2171 nodemask_t *node_alloc_noretry; 2172 2173 if (!hstate_is_gigantic(h)) { 2174 /* 2175 * Bit mask controlling how hard we retry per-node allocations. 2176 * Ignore errors as lower level routines can deal with 2177 * node_alloc_noretry == NULL. If this kmalloc fails at boot 2178 * time, we are likely in bigger trouble. 2179 */ 2180 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 2181 GFP_KERNEL); 2182 } else { 2183 /* allocations done at boot time */ 2184 node_alloc_noretry = NULL; 2185 } 2186 2187 /* bit mask controlling how hard we retry per-node allocations */ 2188 if (node_alloc_noretry) 2189 nodes_clear(*node_alloc_noretry); 2190 2191 for (i = 0; i < h->max_huge_pages; ++i) { 2192 if (hstate_is_gigantic(h)) { 2193 if (!alloc_bootmem_huge_page(h)) 2194 break; 2195 } else if (!alloc_pool_huge_page(h, 2196 &node_states[N_MEMORY], 2197 node_alloc_noretry)) 2198 break; 2199 cond_resched(); 2200 } 2201 if (i < h->max_huge_pages) { 2202 char buf[32]; 2203 2204 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2205 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2206 h->max_huge_pages, buf, i); 2207 h->max_huge_pages = i; 2208 } 2209 2210 kfree(node_alloc_noretry); 2211 } 2212 2213 static void __init hugetlb_init_hstates(void) 2214 { 2215 struct hstate *h; 2216 2217 for_each_hstate(h) { 2218 if (minimum_order > huge_page_order(h)) 2219 minimum_order = huge_page_order(h); 2220 2221 /* oversize hugepages were init'ed in early boot */ 2222 if (!hstate_is_gigantic(h)) 2223 hugetlb_hstate_alloc_pages(h); 2224 } 2225 VM_BUG_ON(minimum_order == UINT_MAX); 2226 } 2227 2228 static void __init report_hugepages(void) 2229 { 2230 struct hstate *h; 2231 2232 for_each_hstate(h) { 2233 char buf[32]; 2234 2235 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2236 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2237 buf, h->free_huge_pages); 2238 } 2239 } 2240 2241 #ifdef CONFIG_HIGHMEM 2242 static void try_to_free_low(struct hstate *h, unsigned long count, 2243 nodemask_t *nodes_allowed) 2244 { 2245 int i; 2246 2247 if (hstate_is_gigantic(h)) 2248 return; 2249 2250 for_each_node_mask(i, *nodes_allowed) { 2251 struct page *page, *next; 2252 struct list_head *freel = &h->hugepage_freelists[i]; 2253 list_for_each_entry_safe(page, next, freel, lru) { 2254 if (count >= h->nr_huge_pages) 2255 return; 2256 if (PageHighMem(page)) 2257 continue; 2258 list_del(&page->lru); 2259 update_and_free_page(h, page); 2260 h->free_huge_pages--; 2261 h->free_huge_pages_node[page_to_nid(page)]--; 2262 } 2263 } 2264 } 2265 #else 2266 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2267 nodemask_t *nodes_allowed) 2268 { 2269 } 2270 #endif 2271 2272 /* 2273 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2274 * balanced by operating on them in a round-robin fashion. 2275 * Returns 1 if an adjustment was made. 2276 */ 2277 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2278 int delta) 2279 { 2280 int nr_nodes, node; 2281 2282 VM_BUG_ON(delta != -1 && delta != 1); 2283 2284 if (delta < 0) { 2285 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2286 if (h->surplus_huge_pages_node[node]) 2287 goto found; 2288 } 2289 } else { 2290 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2291 if (h->surplus_huge_pages_node[node] < 2292 h->nr_huge_pages_node[node]) 2293 goto found; 2294 } 2295 } 2296 return 0; 2297 2298 found: 2299 h->surplus_huge_pages += delta; 2300 h->surplus_huge_pages_node[node] += delta; 2301 return 1; 2302 } 2303 2304 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2305 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2306 nodemask_t *nodes_allowed) 2307 { 2308 unsigned long min_count, ret; 2309 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 2310 2311 /* 2312 * Bit mask controlling how hard we retry per-node allocations. 2313 * If we can not allocate the bit mask, do not attempt to allocate 2314 * the requested huge pages. 2315 */ 2316 if (node_alloc_noretry) 2317 nodes_clear(*node_alloc_noretry); 2318 else 2319 return -ENOMEM; 2320 2321 spin_lock(&hugetlb_lock); 2322 2323 /* 2324 * Check for a node specific request. 2325 * Changing node specific huge page count may require a corresponding 2326 * change to the global count. In any case, the passed node mask 2327 * (nodes_allowed) will restrict alloc/free to the specified node. 2328 */ 2329 if (nid != NUMA_NO_NODE) { 2330 unsigned long old_count = count; 2331 2332 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2333 /* 2334 * User may have specified a large count value which caused the 2335 * above calculation to overflow. In this case, they wanted 2336 * to allocate as many huge pages as possible. Set count to 2337 * largest possible value to align with their intention. 2338 */ 2339 if (count < old_count) 2340 count = ULONG_MAX; 2341 } 2342 2343 /* 2344 * Gigantic pages runtime allocation depend on the capability for large 2345 * page range allocation. 2346 * If the system does not provide this feature, return an error when 2347 * the user tries to allocate gigantic pages but let the user free the 2348 * boottime allocated gigantic pages. 2349 */ 2350 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2351 if (count > persistent_huge_pages(h)) { 2352 spin_unlock(&hugetlb_lock); 2353 NODEMASK_FREE(node_alloc_noretry); 2354 return -EINVAL; 2355 } 2356 /* Fall through to decrease pool */ 2357 } 2358 2359 /* 2360 * Increase the pool size 2361 * First take pages out of surplus state. Then make up the 2362 * remaining difference by allocating fresh huge pages. 2363 * 2364 * We might race with alloc_surplus_huge_page() here and be unable 2365 * to convert a surplus huge page to a normal huge page. That is 2366 * not critical, though, it just means the overall size of the 2367 * pool might be one hugepage larger than it needs to be, but 2368 * within all the constraints specified by the sysctls. 2369 */ 2370 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2371 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2372 break; 2373 } 2374 2375 while (count > persistent_huge_pages(h)) { 2376 /* 2377 * If this allocation races such that we no longer need the 2378 * page, free_huge_page will handle it by freeing the page 2379 * and reducing the surplus. 2380 */ 2381 spin_unlock(&hugetlb_lock); 2382 2383 /* yield cpu to avoid soft lockup */ 2384 cond_resched(); 2385 2386 ret = alloc_pool_huge_page(h, nodes_allowed, 2387 node_alloc_noretry); 2388 spin_lock(&hugetlb_lock); 2389 if (!ret) 2390 goto out; 2391 2392 /* Bail for signals. Probably ctrl-c from user */ 2393 if (signal_pending(current)) 2394 goto out; 2395 } 2396 2397 /* 2398 * Decrease the pool size 2399 * First return free pages to the buddy allocator (being careful 2400 * to keep enough around to satisfy reservations). Then place 2401 * pages into surplus state as needed so the pool will shrink 2402 * to the desired size as pages become free. 2403 * 2404 * By placing pages into the surplus state independent of the 2405 * overcommit value, we are allowing the surplus pool size to 2406 * exceed overcommit. There are few sane options here. Since 2407 * alloc_surplus_huge_page() is checking the global counter, 2408 * though, we'll note that we're not allowed to exceed surplus 2409 * and won't grow the pool anywhere else. Not until one of the 2410 * sysctls are changed, or the surplus pages go out of use. 2411 */ 2412 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2413 min_count = max(count, min_count); 2414 try_to_free_low(h, min_count, nodes_allowed); 2415 while (min_count < persistent_huge_pages(h)) { 2416 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2417 break; 2418 cond_resched_lock(&hugetlb_lock); 2419 } 2420 while (count < persistent_huge_pages(h)) { 2421 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2422 break; 2423 } 2424 out: 2425 h->max_huge_pages = persistent_huge_pages(h); 2426 spin_unlock(&hugetlb_lock); 2427 2428 NODEMASK_FREE(node_alloc_noretry); 2429 2430 return 0; 2431 } 2432 2433 #define HSTATE_ATTR_RO(_name) \ 2434 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2435 2436 #define HSTATE_ATTR(_name) \ 2437 static struct kobj_attribute _name##_attr = \ 2438 __ATTR(_name, 0644, _name##_show, _name##_store) 2439 2440 static struct kobject *hugepages_kobj; 2441 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2442 2443 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2444 2445 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2446 { 2447 int i; 2448 2449 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2450 if (hstate_kobjs[i] == kobj) { 2451 if (nidp) 2452 *nidp = NUMA_NO_NODE; 2453 return &hstates[i]; 2454 } 2455 2456 return kobj_to_node_hstate(kobj, nidp); 2457 } 2458 2459 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2460 struct kobj_attribute *attr, char *buf) 2461 { 2462 struct hstate *h; 2463 unsigned long nr_huge_pages; 2464 int nid; 2465 2466 h = kobj_to_hstate(kobj, &nid); 2467 if (nid == NUMA_NO_NODE) 2468 nr_huge_pages = h->nr_huge_pages; 2469 else 2470 nr_huge_pages = h->nr_huge_pages_node[nid]; 2471 2472 return sprintf(buf, "%lu\n", nr_huge_pages); 2473 } 2474 2475 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2476 struct hstate *h, int nid, 2477 unsigned long count, size_t len) 2478 { 2479 int err; 2480 nodemask_t nodes_allowed, *n_mask; 2481 2482 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2483 return -EINVAL; 2484 2485 if (nid == NUMA_NO_NODE) { 2486 /* 2487 * global hstate attribute 2488 */ 2489 if (!(obey_mempolicy && 2490 init_nodemask_of_mempolicy(&nodes_allowed))) 2491 n_mask = &node_states[N_MEMORY]; 2492 else 2493 n_mask = &nodes_allowed; 2494 } else { 2495 /* 2496 * Node specific request. count adjustment happens in 2497 * set_max_huge_pages() after acquiring hugetlb_lock. 2498 */ 2499 init_nodemask_of_node(&nodes_allowed, nid); 2500 n_mask = &nodes_allowed; 2501 } 2502 2503 err = set_max_huge_pages(h, count, nid, n_mask); 2504 2505 return err ? err : len; 2506 } 2507 2508 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2509 struct kobject *kobj, const char *buf, 2510 size_t len) 2511 { 2512 struct hstate *h; 2513 unsigned long count; 2514 int nid; 2515 int err; 2516 2517 err = kstrtoul(buf, 10, &count); 2518 if (err) 2519 return err; 2520 2521 h = kobj_to_hstate(kobj, &nid); 2522 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2523 } 2524 2525 static ssize_t nr_hugepages_show(struct kobject *kobj, 2526 struct kobj_attribute *attr, char *buf) 2527 { 2528 return nr_hugepages_show_common(kobj, attr, buf); 2529 } 2530 2531 static ssize_t nr_hugepages_store(struct kobject *kobj, 2532 struct kobj_attribute *attr, const char *buf, size_t len) 2533 { 2534 return nr_hugepages_store_common(false, kobj, buf, len); 2535 } 2536 HSTATE_ATTR(nr_hugepages); 2537 2538 #ifdef CONFIG_NUMA 2539 2540 /* 2541 * hstate attribute for optionally mempolicy-based constraint on persistent 2542 * huge page alloc/free. 2543 */ 2544 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2545 struct kobj_attribute *attr, char *buf) 2546 { 2547 return nr_hugepages_show_common(kobj, attr, buf); 2548 } 2549 2550 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2551 struct kobj_attribute *attr, const char *buf, size_t len) 2552 { 2553 return nr_hugepages_store_common(true, kobj, buf, len); 2554 } 2555 HSTATE_ATTR(nr_hugepages_mempolicy); 2556 #endif 2557 2558 2559 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2560 struct kobj_attribute *attr, char *buf) 2561 { 2562 struct hstate *h = kobj_to_hstate(kobj, NULL); 2563 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2564 } 2565 2566 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2567 struct kobj_attribute *attr, const char *buf, size_t count) 2568 { 2569 int err; 2570 unsigned long input; 2571 struct hstate *h = kobj_to_hstate(kobj, NULL); 2572 2573 if (hstate_is_gigantic(h)) 2574 return -EINVAL; 2575 2576 err = kstrtoul(buf, 10, &input); 2577 if (err) 2578 return err; 2579 2580 spin_lock(&hugetlb_lock); 2581 h->nr_overcommit_huge_pages = input; 2582 spin_unlock(&hugetlb_lock); 2583 2584 return count; 2585 } 2586 HSTATE_ATTR(nr_overcommit_hugepages); 2587 2588 static ssize_t free_hugepages_show(struct kobject *kobj, 2589 struct kobj_attribute *attr, char *buf) 2590 { 2591 struct hstate *h; 2592 unsigned long free_huge_pages; 2593 int nid; 2594 2595 h = kobj_to_hstate(kobj, &nid); 2596 if (nid == NUMA_NO_NODE) 2597 free_huge_pages = h->free_huge_pages; 2598 else 2599 free_huge_pages = h->free_huge_pages_node[nid]; 2600 2601 return sprintf(buf, "%lu\n", free_huge_pages); 2602 } 2603 HSTATE_ATTR_RO(free_hugepages); 2604 2605 static ssize_t resv_hugepages_show(struct kobject *kobj, 2606 struct kobj_attribute *attr, char *buf) 2607 { 2608 struct hstate *h = kobj_to_hstate(kobj, NULL); 2609 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2610 } 2611 HSTATE_ATTR_RO(resv_hugepages); 2612 2613 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2614 struct kobj_attribute *attr, char *buf) 2615 { 2616 struct hstate *h; 2617 unsigned long surplus_huge_pages; 2618 int nid; 2619 2620 h = kobj_to_hstate(kobj, &nid); 2621 if (nid == NUMA_NO_NODE) 2622 surplus_huge_pages = h->surplus_huge_pages; 2623 else 2624 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2625 2626 return sprintf(buf, "%lu\n", surplus_huge_pages); 2627 } 2628 HSTATE_ATTR_RO(surplus_hugepages); 2629 2630 static struct attribute *hstate_attrs[] = { 2631 &nr_hugepages_attr.attr, 2632 &nr_overcommit_hugepages_attr.attr, 2633 &free_hugepages_attr.attr, 2634 &resv_hugepages_attr.attr, 2635 &surplus_hugepages_attr.attr, 2636 #ifdef CONFIG_NUMA 2637 &nr_hugepages_mempolicy_attr.attr, 2638 #endif 2639 NULL, 2640 }; 2641 2642 static const struct attribute_group hstate_attr_group = { 2643 .attrs = hstate_attrs, 2644 }; 2645 2646 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2647 struct kobject **hstate_kobjs, 2648 const struct attribute_group *hstate_attr_group) 2649 { 2650 int retval; 2651 int hi = hstate_index(h); 2652 2653 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2654 if (!hstate_kobjs[hi]) 2655 return -ENOMEM; 2656 2657 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2658 if (retval) 2659 kobject_put(hstate_kobjs[hi]); 2660 2661 return retval; 2662 } 2663 2664 static void __init hugetlb_sysfs_init(void) 2665 { 2666 struct hstate *h; 2667 int err; 2668 2669 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2670 if (!hugepages_kobj) 2671 return; 2672 2673 for_each_hstate(h) { 2674 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2675 hstate_kobjs, &hstate_attr_group); 2676 if (err) 2677 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2678 } 2679 } 2680 2681 #ifdef CONFIG_NUMA 2682 2683 /* 2684 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2685 * with node devices in node_devices[] using a parallel array. The array 2686 * index of a node device or _hstate == node id. 2687 * This is here to avoid any static dependency of the node device driver, in 2688 * the base kernel, on the hugetlb module. 2689 */ 2690 struct node_hstate { 2691 struct kobject *hugepages_kobj; 2692 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2693 }; 2694 static struct node_hstate node_hstates[MAX_NUMNODES]; 2695 2696 /* 2697 * A subset of global hstate attributes for node devices 2698 */ 2699 static struct attribute *per_node_hstate_attrs[] = { 2700 &nr_hugepages_attr.attr, 2701 &free_hugepages_attr.attr, 2702 &surplus_hugepages_attr.attr, 2703 NULL, 2704 }; 2705 2706 static const struct attribute_group per_node_hstate_attr_group = { 2707 .attrs = per_node_hstate_attrs, 2708 }; 2709 2710 /* 2711 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2712 * Returns node id via non-NULL nidp. 2713 */ 2714 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2715 { 2716 int nid; 2717 2718 for (nid = 0; nid < nr_node_ids; nid++) { 2719 struct node_hstate *nhs = &node_hstates[nid]; 2720 int i; 2721 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2722 if (nhs->hstate_kobjs[i] == kobj) { 2723 if (nidp) 2724 *nidp = nid; 2725 return &hstates[i]; 2726 } 2727 } 2728 2729 BUG(); 2730 return NULL; 2731 } 2732 2733 /* 2734 * Unregister hstate attributes from a single node device. 2735 * No-op if no hstate attributes attached. 2736 */ 2737 static void hugetlb_unregister_node(struct node *node) 2738 { 2739 struct hstate *h; 2740 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2741 2742 if (!nhs->hugepages_kobj) 2743 return; /* no hstate attributes */ 2744 2745 for_each_hstate(h) { 2746 int idx = hstate_index(h); 2747 if (nhs->hstate_kobjs[idx]) { 2748 kobject_put(nhs->hstate_kobjs[idx]); 2749 nhs->hstate_kobjs[idx] = NULL; 2750 } 2751 } 2752 2753 kobject_put(nhs->hugepages_kobj); 2754 nhs->hugepages_kobj = NULL; 2755 } 2756 2757 2758 /* 2759 * Register hstate attributes for a single node device. 2760 * No-op if attributes already registered. 2761 */ 2762 static void hugetlb_register_node(struct node *node) 2763 { 2764 struct hstate *h; 2765 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2766 int err; 2767 2768 if (nhs->hugepages_kobj) 2769 return; /* already allocated */ 2770 2771 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2772 &node->dev.kobj); 2773 if (!nhs->hugepages_kobj) 2774 return; 2775 2776 for_each_hstate(h) { 2777 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2778 nhs->hstate_kobjs, 2779 &per_node_hstate_attr_group); 2780 if (err) { 2781 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2782 h->name, node->dev.id); 2783 hugetlb_unregister_node(node); 2784 break; 2785 } 2786 } 2787 } 2788 2789 /* 2790 * hugetlb init time: register hstate attributes for all registered node 2791 * devices of nodes that have memory. All on-line nodes should have 2792 * registered their associated device by this time. 2793 */ 2794 static void __init hugetlb_register_all_nodes(void) 2795 { 2796 int nid; 2797 2798 for_each_node_state(nid, N_MEMORY) { 2799 struct node *node = node_devices[nid]; 2800 if (node->dev.id == nid) 2801 hugetlb_register_node(node); 2802 } 2803 2804 /* 2805 * Let the node device driver know we're here so it can 2806 * [un]register hstate attributes on node hotplug. 2807 */ 2808 register_hugetlbfs_with_node(hugetlb_register_node, 2809 hugetlb_unregister_node); 2810 } 2811 #else /* !CONFIG_NUMA */ 2812 2813 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2814 { 2815 BUG(); 2816 if (nidp) 2817 *nidp = -1; 2818 return NULL; 2819 } 2820 2821 static void hugetlb_register_all_nodes(void) { } 2822 2823 #endif 2824 2825 static int __init hugetlb_init(void) 2826 { 2827 int i; 2828 2829 if (!hugepages_supported()) 2830 return 0; 2831 2832 if (!size_to_hstate(default_hstate_size)) { 2833 if (default_hstate_size != 0) { 2834 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", 2835 default_hstate_size, HPAGE_SIZE); 2836 } 2837 2838 default_hstate_size = HPAGE_SIZE; 2839 if (!size_to_hstate(default_hstate_size)) 2840 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2841 } 2842 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2843 if (default_hstate_max_huge_pages) { 2844 if (!default_hstate.max_huge_pages) 2845 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2846 } 2847 2848 hugetlb_init_hstates(); 2849 gather_bootmem_prealloc(); 2850 report_hugepages(); 2851 2852 hugetlb_sysfs_init(); 2853 hugetlb_register_all_nodes(); 2854 hugetlb_cgroup_file_init(); 2855 2856 #ifdef CONFIG_SMP 2857 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2858 #else 2859 num_fault_mutexes = 1; 2860 #endif 2861 hugetlb_fault_mutex_table = 2862 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 2863 GFP_KERNEL); 2864 BUG_ON(!hugetlb_fault_mutex_table); 2865 2866 for (i = 0; i < num_fault_mutexes; i++) 2867 mutex_init(&hugetlb_fault_mutex_table[i]); 2868 return 0; 2869 } 2870 subsys_initcall(hugetlb_init); 2871 2872 /* Should be called on processing a hugepagesz=... option */ 2873 void __init hugetlb_bad_size(void) 2874 { 2875 parsed_valid_hugepagesz = false; 2876 } 2877 2878 void __init hugetlb_add_hstate(unsigned int order) 2879 { 2880 struct hstate *h; 2881 unsigned long i; 2882 2883 if (size_to_hstate(PAGE_SIZE << order)) { 2884 pr_warn("hugepagesz= specified twice, ignoring\n"); 2885 return; 2886 } 2887 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2888 BUG_ON(order == 0); 2889 h = &hstates[hugetlb_max_hstate++]; 2890 h->order = order; 2891 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2892 h->nr_huge_pages = 0; 2893 h->free_huge_pages = 0; 2894 for (i = 0; i < MAX_NUMNODES; ++i) 2895 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2896 INIT_LIST_HEAD(&h->hugepage_activelist); 2897 h->next_nid_to_alloc = first_memory_node; 2898 h->next_nid_to_free = first_memory_node; 2899 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2900 huge_page_size(h)/1024); 2901 2902 parsed_hstate = h; 2903 } 2904 2905 static int __init hugetlb_nrpages_setup(char *s) 2906 { 2907 unsigned long *mhp; 2908 static unsigned long *last_mhp; 2909 2910 if (!parsed_valid_hugepagesz) { 2911 pr_warn("hugepages = %s preceded by " 2912 "an unsupported hugepagesz, ignoring\n", s); 2913 parsed_valid_hugepagesz = true; 2914 return 1; 2915 } 2916 /* 2917 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2918 * so this hugepages= parameter goes to the "default hstate". 2919 */ 2920 else if (!hugetlb_max_hstate) 2921 mhp = &default_hstate_max_huge_pages; 2922 else 2923 mhp = &parsed_hstate->max_huge_pages; 2924 2925 if (mhp == last_mhp) { 2926 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2927 return 1; 2928 } 2929 2930 if (sscanf(s, "%lu", mhp) <= 0) 2931 *mhp = 0; 2932 2933 /* 2934 * Global state is always initialized later in hugetlb_init. 2935 * But we need to allocate >= MAX_ORDER hstates here early to still 2936 * use the bootmem allocator. 2937 */ 2938 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2939 hugetlb_hstate_alloc_pages(parsed_hstate); 2940 2941 last_mhp = mhp; 2942 2943 return 1; 2944 } 2945 __setup("hugepages=", hugetlb_nrpages_setup); 2946 2947 static int __init hugetlb_default_setup(char *s) 2948 { 2949 default_hstate_size = memparse(s, &s); 2950 return 1; 2951 } 2952 __setup("default_hugepagesz=", hugetlb_default_setup); 2953 2954 static unsigned int cpuset_mems_nr(unsigned int *array) 2955 { 2956 int node; 2957 unsigned int nr = 0; 2958 2959 for_each_node_mask(node, cpuset_current_mems_allowed) 2960 nr += array[node]; 2961 2962 return nr; 2963 } 2964 2965 #ifdef CONFIG_SYSCTL 2966 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2967 struct ctl_table *table, int write, 2968 void __user *buffer, size_t *length, loff_t *ppos) 2969 { 2970 struct hstate *h = &default_hstate; 2971 unsigned long tmp = h->max_huge_pages; 2972 int ret; 2973 2974 if (!hugepages_supported()) 2975 return -EOPNOTSUPP; 2976 2977 table->data = &tmp; 2978 table->maxlen = sizeof(unsigned long); 2979 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2980 if (ret) 2981 goto out; 2982 2983 if (write) 2984 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2985 NUMA_NO_NODE, tmp, *length); 2986 out: 2987 return ret; 2988 } 2989 2990 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2991 void __user *buffer, size_t *length, loff_t *ppos) 2992 { 2993 2994 return hugetlb_sysctl_handler_common(false, table, write, 2995 buffer, length, ppos); 2996 } 2997 2998 #ifdef CONFIG_NUMA 2999 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 3000 void __user *buffer, size_t *length, loff_t *ppos) 3001 { 3002 return hugetlb_sysctl_handler_common(true, table, write, 3003 buffer, length, ppos); 3004 } 3005 #endif /* CONFIG_NUMA */ 3006 3007 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 3008 void __user *buffer, 3009 size_t *length, loff_t *ppos) 3010 { 3011 struct hstate *h = &default_hstate; 3012 unsigned long tmp; 3013 int ret; 3014 3015 if (!hugepages_supported()) 3016 return -EOPNOTSUPP; 3017 3018 tmp = h->nr_overcommit_huge_pages; 3019 3020 if (write && hstate_is_gigantic(h)) 3021 return -EINVAL; 3022 3023 table->data = &tmp; 3024 table->maxlen = sizeof(unsigned long); 3025 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 3026 if (ret) 3027 goto out; 3028 3029 if (write) { 3030 spin_lock(&hugetlb_lock); 3031 h->nr_overcommit_huge_pages = tmp; 3032 spin_unlock(&hugetlb_lock); 3033 } 3034 out: 3035 return ret; 3036 } 3037 3038 #endif /* CONFIG_SYSCTL */ 3039 3040 void hugetlb_report_meminfo(struct seq_file *m) 3041 { 3042 struct hstate *h; 3043 unsigned long total = 0; 3044 3045 if (!hugepages_supported()) 3046 return; 3047 3048 for_each_hstate(h) { 3049 unsigned long count = h->nr_huge_pages; 3050 3051 total += (PAGE_SIZE << huge_page_order(h)) * count; 3052 3053 if (h == &default_hstate) 3054 seq_printf(m, 3055 "HugePages_Total: %5lu\n" 3056 "HugePages_Free: %5lu\n" 3057 "HugePages_Rsvd: %5lu\n" 3058 "HugePages_Surp: %5lu\n" 3059 "Hugepagesize: %8lu kB\n", 3060 count, 3061 h->free_huge_pages, 3062 h->resv_huge_pages, 3063 h->surplus_huge_pages, 3064 (PAGE_SIZE << huge_page_order(h)) / 1024); 3065 } 3066 3067 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3068 } 3069 3070 int hugetlb_report_node_meminfo(int nid, char *buf) 3071 { 3072 struct hstate *h = &default_hstate; 3073 if (!hugepages_supported()) 3074 return 0; 3075 return sprintf(buf, 3076 "Node %d HugePages_Total: %5u\n" 3077 "Node %d HugePages_Free: %5u\n" 3078 "Node %d HugePages_Surp: %5u\n", 3079 nid, h->nr_huge_pages_node[nid], 3080 nid, h->free_huge_pages_node[nid], 3081 nid, h->surplus_huge_pages_node[nid]); 3082 } 3083 3084 void hugetlb_show_meminfo(void) 3085 { 3086 struct hstate *h; 3087 int nid; 3088 3089 if (!hugepages_supported()) 3090 return; 3091 3092 for_each_node_state(nid, N_MEMORY) 3093 for_each_hstate(h) 3094 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3095 nid, 3096 h->nr_huge_pages_node[nid], 3097 h->free_huge_pages_node[nid], 3098 h->surplus_huge_pages_node[nid], 3099 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3100 } 3101 3102 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3103 { 3104 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3105 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3106 } 3107 3108 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3109 unsigned long hugetlb_total_pages(void) 3110 { 3111 struct hstate *h; 3112 unsigned long nr_total_pages = 0; 3113 3114 for_each_hstate(h) 3115 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3116 return nr_total_pages; 3117 } 3118 3119 static int hugetlb_acct_memory(struct hstate *h, long delta) 3120 { 3121 int ret = -ENOMEM; 3122 3123 spin_lock(&hugetlb_lock); 3124 /* 3125 * When cpuset is configured, it breaks the strict hugetlb page 3126 * reservation as the accounting is done on a global variable. Such 3127 * reservation is completely rubbish in the presence of cpuset because 3128 * the reservation is not checked against page availability for the 3129 * current cpuset. Application can still potentially OOM'ed by kernel 3130 * with lack of free htlb page in cpuset that the task is in. 3131 * Attempt to enforce strict accounting with cpuset is almost 3132 * impossible (or too ugly) because cpuset is too fluid that 3133 * task or memory node can be dynamically moved between cpusets. 3134 * 3135 * The change of semantics for shared hugetlb mapping with cpuset is 3136 * undesirable. However, in order to preserve some of the semantics, 3137 * we fall back to check against current free page availability as 3138 * a best attempt and hopefully to minimize the impact of changing 3139 * semantics that cpuset has. 3140 */ 3141 if (delta > 0) { 3142 if (gather_surplus_pages(h, delta) < 0) 3143 goto out; 3144 3145 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 3146 return_unused_surplus_pages(h, delta); 3147 goto out; 3148 } 3149 } 3150 3151 ret = 0; 3152 if (delta < 0) 3153 return_unused_surplus_pages(h, (unsigned long) -delta); 3154 3155 out: 3156 spin_unlock(&hugetlb_lock); 3157 return ret; 3158 } 3159 3160 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3161 { 3162 struct resv_map *resv = vma_resv_map(vma); 3163 3164 /* 3165 * This new VMA should share its siblings reservation map if present. 3166 * The VMA will only ever have a valid reservation map pointer where 3167 * it is being copied for another still existing VMA. As that VMA 3168 * has a reference to the reservation map it cannot disappear until 3169 * after this open call completes. It is therefore safe to take a 3170 * new reference here without additional locking. 3171 */ 3172 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3173 kref_get(&resv->refs); 3174 } 3175 3176 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3177 { 3178 struct hstate *h = hstate_vma(vma); 3179 struct resv_map *resv = vma_resv_map(vma); 3180 struct hugepage_subpool *spool = subpool_vma(vma); 3181 unsigned long reserve, start, end; 3182 long gbl_reserve; 3183 3184 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3185 return; 3186 3187 start = vma_hugecache_offset(h, vma, vma->vm_start); 3188 end = vma_hugecache_offset(h, vma, vma->vm_end); 3189 3190 reserve = (end - start) - region_count(resv, start, end); 3191 3192 kref_put(&resv->refs, resv_map_release); 3193 3194 if (reserve) { 3195 /* 3196 * Decrement reserve counts. The global reserve count may be 3197 * adjusted if the subpool has a minimum size. 3198 */ 3199 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3200 hugetlb_acct_memory(h, -gbl_reserve); 3201 } 3202 } 3203 3204 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3205 { 3206 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3207 return -EINVAL; 3208 return 0; 3209 } 3210 3211 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3212 { 3213 struct hstate *hstate = hstate_vma(vma); 3214 3215 return 1UL << huge_page_shift(hstate); 3216 } 3217 3218 /* 3219 * We cannot handle pagefaults against hugetlb pages at all. They cause 3220 * handle_mm_fault() to try to instantiate regular-sized pages in the 3221 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3222 * this far. 3223 */ 3224 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3225 { 3226 BUG(); 3227 return 0; 3228 } 3229 3230 /* 3231 * When a new function is introduced to vm_operations_struct and added 3232 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3233 * This is because under System V memory model, mappings created via 3234 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3235 * their original vm_ops are overwritten with shm_vm_ops. 3236 */ 3237 const struct vm_operations_struct hugetlb_vm_ops = { 3238 .fault = hugetlb_vm_op_fault, 3239 .open = hugetlb_vm_op_open, 3240 .close = hugetlb_vm_op_close, 3241 .split = hugetlb_vm_op_split, 3242 .pagesize = hugetlb_vm_op_pagesize, 3243 }; 3244 3245 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3246 int writable) 3247 { 3248 pte_t entry; 3249 3250 if (writable) { 3251 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3252 vma->vm_page_prot))); 3253 } else { 3254 entry = huge_pte_wrprotect(mk_huge_pte(page, 3255 vma->vm_page_prot)); 3256 } 3257 entry = pte_mkyoung(entry); 3258 entry = pte_mkhuge(entry); 3259 entry = arch_make_huge_pte(entry, vma, page, writable); 3260 3261 return entry; 3262 } 3263 3264 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3265 unsigned long address, pte_t *ptep) 3266 { 3267 pte_t entry; 3268 3269 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3270 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3271 update_mmu_cache(vma, address, ptep); 3272 } 3273 3274 bool is_hugetlb_entry_migration(pte_t pte) 3275 { 3276 swp_entry_t swp; 3277 3278 if (huge_pte_none(pte) || pte_present(pte)) 3279 return false; 3280 swp = pte_to_swp_entry(pte); 3281 if (non_swap_entry(swp) && is_migration_entry(swp)) 3282 return true; 3283 else 3284 return false; 3285 } 3286 3287 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3288 { 3289 swp_entry_t swp; 3290 3291 if (huge_pte_none(pte) || pte_present(pte)) 3292 return 0; 3293 swp = pte_to_swp_entry(pte); 3294 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3295 return 1; 3296 else 3297 return 0; 3298 } 3299 3300 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3301 struct vm_area_struct *vma) 3302 { 3303 pte_t *src_pte, *dst_pte, entry, dst_entry; 3304 struct page *ptepage; 3305 unsigned long addr; 3306 int cow; 3307 struct hstate *h = hstate_vma(vma); 3308 unsigned long sz = huge_page_size(h); 3309 struct mmu_notifier_range range; 3310 int ret = 0; 3311 3312 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3313 3314 if (cow) { 3315 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 3316 vma->vm_start, 3317 vma->vm_end); 3318 mmu_notifier_invalidate_range_start(&range); 3319 } 3320 3321 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3322 spinlock_t *src_ptl, *dst_ptl; 3323 src_pte = huge_pte_offset(src, addr, sz); 3324 if (!src_pte) 3325 continue; 3326 dst_pte = huge_pte_alloc(dst, addr, sz); 3327 if (!dst_pte) { 3328 ret = -ENOMEM; 3329 break; 3330 } 3331 3332 /* 3333 * If the pagetables are shared don't copy or take references. 3334 * dst_pte == src_pte is the common case of src/dest sharing. 3335 * 3336 * However, src could have 'unshared' and dst shares with 3337 * another vma. If dst_pte !none, this implies sharing. 3338 * Check here before taking page table lock, and once again 3339 * after taking the lock below. 3340 */ 3341 dst_entry = huge_ptep_get(dst_pte); 3342 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3343 continue; 3344 3345 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3346 src_ptl = huge_pte_lockptr(h, src, src_pte); 3347 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3348 entry = huge_ptep_get(src_pte); 3349 dst_entry = huge_ptep_get(dst_pte); 3350 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3351 /* 3352 * Skip if src entry none. Also, skip in the 3353 * unlikely case dst entry !none as this implies 3354 * sharing with another vma. 3355 */ 3356 ; 3357 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3358 is_hugetlb_entry_hwpoisoned(entry))) { 3359 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3360 3361 if (is_write_migration_entry(swp_entry) && cow) { 3362 /* 3363 * COW mappings require pages in both 3364 * parent and child to be set to read. 3365 */ 3366 make_migration_entry_read(&swp_entry); 3367 entry = swp_entry_to_pte(swp_entry); 3368 set_huge_swap_pte_at(src, addr, src_pte, 3369 entry, sz); 3370 } 3371 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3372 } else { 3373 if (cow) { 3374 /* 3375 * No need to notify as we are downgrading page 3376 * table protection not changing it to point 3377 * to a new page. 3378 * 3379 * See Documentation/vm/mmu_notifier.rst 3380 */ 3381 huge_ptep_set_wrprotect(src, addr, src_pte); 3382 } 3383 entry = huge_ptep_get(src_pte); 3384 ptepage = pte_page(entry); 3385 get_page(ptepage); 3386 page_dup_rmap(ptepage, true); 3387 set_huge_pte_at(dst, addr, dst_pte, entry); 3388 hugetlb_count_add(pages_per_huge_page(h), dst); 3389 } 3390 spin_unlock(src_ptl); 3391 spin_unlock(dst_ptl); 3392 } 3393 3394 if (cow) 3395 mmu_notifier_invalidate_range_end(&range); 3396 3397 return ret; 3398 } 3399 3400 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3401 unsigned long start, unsigned long end, 3402 struct page *ref_page) 3403 { 3404 struct mm_struct *mm = vma->vm_mm; 3405 unsigned long address; 3406 pte_t *ptep; 3407 pte_t pte; 3408 spinlock_t *ptl; 3409 struct page *page; 3410 struct hstate *h = hstate_vma(vma); 3411 unsigned long sz = huge_page_size(h); 3412 struct mmu_notifier_range range; 3413 3414 WARN_ON(!is_vm_hugetlb_page(vma)); 3415 BUG_ON(start & ~huge_page_mask(h)); 3416 BUG_ON(end & ~huge_page_mask(h)); 3417 3418 /* 3419 * This is a hugetlb vma, all the pte entries should point 3420 * to huge page. 3421 */ 3422 tlb_change_page_size(tlb, sz); 3423 tlb_start_vma(tlb, vma); 3424 3425 /* 3426 * If sharing possible, alert mmu notifiers of worst case. 3427 */ 3428 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 3429 end); 3430 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3431 mmu_notifier_invalidate_range_start(&range); 3432 address = start; 3433 for (; address < end; address += sz) { 3434 ptep = huge_pte_offset(mm, address, sz); 3435 if (!ptep) 3436 continue; 3437 3438 ptl = huge_pte_lock(h, mm, ptep); 3439 if (huge_pmd_unshare(mm, &address, ptep)) { 3440 spin_unlock(ptl); 3441 /* 3442 * We just unmapped a page of PMDs by clearing a PUD. 3443 * The caller's TLB flush range should cover this area. 3444 */ 3445 continue; 3446 } 3447 3448 pte = huge_ptep_get(ptep); 3449 if (huge_pte_none(pte)) { 3450 spin_unlock(ptl); 3451 continue; 3452 } 3453 3454 /* 3455 * Migrating hugepage or HWPoisoned hugepage is already 3456 * unmapped and its refcount is dropped, so just clear pte here. 3457 */ 3458 if (unlikely(!pte_present(pte))) { 3459 huge_pte_clear(mm, address, ptep, sz); 3460 spin_unlock(ptl); 3461 continue; 3462 } 3463 3464 page = pte_page(pte); 3465 /* 3466 * If a reference page is supplied, it is because a specific 3467 * page is being unmapped, not a range. Ensure the page we 3468 * are about to unmap is the actual page of interest. 3469 */ 3470 if (ref_page) { 3471 if (page != ref_page) { 3472 spin_unlock(ptl); 3473 continue; 3474 } 3475 /* 3476 * Mark the VMA as having unmapped its page so that 3477 * future faults in this VMA will fail rather than 3478 * looking like data was lost 3479 */ 3480 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3481 } 3482 3483 pte = huge_ptep_get_and_clear(mm, address, ptep); 3484 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3485 if (huge_pte_dirty(pte)) 3486 set_page_dirty(page); 3487 3488 hugetlb_count_sub(pages_per_huge_page(h), mm); 3489 page_remove_rmap(page, true); 3490 3491 spin_unlock(ptl); 3492 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3493 /* 3494 * Bail out after unmapping reference page if supplied 3495 */ 3496 if (ref_page) 3497 break; 3498 } 3499 mmu_notifier_invalidate_range_end(&range); 3500 tlb_end_vma(tlb, vma); 3501 } 3502 3503 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3504 struct vm_area_struct *vma, unsigned long start, 3505 unsigned long end, struct page *ref_page) 3506 { 3507 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3508 3509 /* 3510 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3511 * test will fail on a vma being torn down, and not grab a page table 3512 * on its way out. We're lucky that the flag has such an appropriate 3513 * name, and can in fact be safely cleared here. We could clear it 3514 * before the __unmap_hugepage_range above, but all that's necessary 3515 * is to clear it before releasing the i_mmap_rwsem. This works 3516 * because in the context this is called, the VMA is about to be 3517 * destroyed and the i_mmap_rwsem is held. 3518 */ 3519 vma->vm_flags &= ~VM_MAYSHARE; 3520 } 3521 3522 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3523 unsigned long end, struct page *ref_page) 3524 { 3525 struct mm_struct *mm; 3526 struct mmu_gather tlb; 3527 unsigned long tlb_start = start; 3528 unsigned long tlb_end = end; 3529 3530 /* 3531 * If shared PMDs were possibly used within this vma range, adjust 3532 * start/end for worst case tlb flushing. 3533 * Note that we can not be sure if PMDs are shared until we try to 3534 * unmap pages. However, we want to make sure TLB flushing covers 3535 * the largest possible range. 3536 */ 3537 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); 3538 3539 mm = vma->vm_mm; 3540 3541 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); 3542 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3543 tlb_finish_mmu(&tlb, tlb_start, tlb_end); 3544 } 3545 3546 /* 3547 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3548 * mappping it owns the reserve page for. The intention is to unmap the page 3549 * from other VMAs and let the children be SIGKILLed if they are faulting the 3550 * same region. 3551 */ 3552 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3553 struct page *page, unsigned long address) 3554 { 3555 struct hstate *h = hstate_vma(vma); 3556 struct vm_area_struct *iter_vma; 3557 struct address_space *mapping; 3558 pgoff_t pgoff; 3559 3560 /* 3561 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3562 * from page cache lookup which is in HPAGE_SIZE units. 3563 */ 3564 address = address & huge_page_mask(h); 3565 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3566 vma->vm_pgoff; 3567 mapping = vma->vm_file->f_mapping; 3568 3569 /* 3570 * Take the mapping lock for the duration of the table walk. As 3571 * this mapping should be shared between all the VMAs, 3572 * __unmap_hugepage_range() is called as the lock is already held 3573 */ 3574 i_mmap_lock_write(mapping); 3575 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3576 /* Do not unmap the current VMA */ 3577 if (iter_vma == vma) 3578 continue; 3579 3580 /* 3581 * Shared VMAs have their own reserves and do not affect 3582 * MAP_PRIVATE accounting but it is possible that a shared 3583 * VMA is using the same page so check and skip such VMAs. 3584 */ 3585 if (iter_vma->vm_flags & VM_MAYSHARE) 3586 continue; 3587 3588 /* 3589 * Unmap the page from other VMAs without their own reserves. 3590 * They get marked to be SIGKILLed if they fault in these 3591 * areas. This is because a future no-page fault on this VMA 3592 * could insert a zeroed page instead of the data existing 3593 * from the time of fork. This would look like data corruption 3594 */ 3595 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3596 unmap_hugepage_range(iter_vma, address, 3597 address + huge_page_size(h), page); 3598 } 3599 i_mmap_unlock_write(mapping); 3600 } 3601 3602 /* 3603 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3604 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3605 * cannot race with other handlers or page migration. 3606 * Keep the pte_same checks anyway to make transition from the mutex easier. 3607 */ 3608 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3609 unsigned long address, pte_t *ptep, 3610 struct page *pagecache_page, spinlock_t *ptl) 3611 { 3612 pte_t pte; 3613 struct hstate *h = hstate_vma(vma); 3614 struct page *old_page, *new_page; 3615 int outside_reserve = 0; 3616 vm_fault_t ret = 0; 3617 unsigned long haddr = address & huge_page_mask(h); 3618 struct mmu_notifier_range range; 3619 3620 pte = huge_ptep_get(ptep); 3621 old_page = pte_page(pte); 3622 3623 retry_avoidcopy: 3624 /* If no-one else is actually using this page, avoid the copy 3625 * and just make the page writable */ 3626 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3627 page_move_anon_rmap(old_page, vma); 3628 set_huge_ptep_writable(vma, haddr, ptep); 3629 return 0; 3630 } 3631 3632 /* 3633 * If the process that created a MAP_PRIVATE mapping is about to 3634 * perform a COW due to a shared page count, attempt to satisfy 3635 * the allocation without using the existing reserves. The pagecache 3636 * page is used to determine if the reserve at this address was 3637 * consumed or not. If reserves were used, a partial faulted mapping 3638 * at the time of fork() could consume its reserves on COW instead 3639 * of the full address range. 3640 */ 3641 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3642 old_page != pagecache_page) 3643 outside_reserve = 1; 3644 3645 get_page(old_page); 3646 3647 /* 3648 * Drop page table lock as buddy allocator may be called. It will 3649 * be acquired again before returning to the caller, as expected. 3650 */ 3651 spin_unlock(ptl); 3652 new_page = alloc_huge_page(vma, haddr, outside_reserve); 3653 3654 if (IS_ERR(new_page)) { 3655 /* 3656 * If a process owning a MAP_PRIVATE mapping fails to COW, 3657 * it is due to references held by a child and an insufficient 3658 * huge page pool. To guarantee the original mappers 3659 * reliability, unmap the page from child processes. The child 3660 * may get SIGKILLed if it later faults. 3661 */ 3662 if (outside_reserve) { 3663 put_page(old_page); 3664 BUG_ON(huge_pte_none(pte)); 3665 unmap_ref_private(mm, vma, old_page, haddr); 3666 BUG_ON(huge_pte_none(pte)); 3667 spin_lock(ptl); 3668 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3669 if (likely(ptep && 3670 pte_same(huge_ptep_get(ptep), pte))) 3671 goto retry_avoidcopy; 3672 /* 3673 * race occurs while re-acquiring page table 3674 * lock, and our job is done. 3675 */ 3676 return 0; 3677 } 3678 3679 ret = vmf_error(PTR_ERR(new_page)); 3680 goto out_release_old; 3681 } 3682 3683 /* 3684 * When the original hugepage is shared one, it does not have 3685 * anon_vma prepared. 3686 */ 3687 if (unlikely(anon_vma_prepare(vma))) { 3688 ret = VM_FAULT_OOM; 3689 goto out_release_all; 3690 } 3691 3692 copy_user_huge_page(new_page, old_page, address, vma, 3693 pages_per_huge_page(h)); 3694 __SetPageUptodate(new_page); 3695 3696 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 3697 haddr + huge_page_size(h)); 3698 mmu_notifier_invalidate_range_start(&range); 3699 3700 /* 3701 * Retake the page table lock to check for racing updates 3702 * before the page tables are altered 3703 */ 3704 spin_lock(ptl); 3705 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3706 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3707 ClearPagePrivate(new_page); 3708 3709 /* Break COW */ 3710 huge_ptep_clear_flush(vma, haddr, ptep); 3711 mmu_notifier_invalidate_range(mm, range.start, range.end); 3712 set_huge_pte_at(mm, haddr, ptep, 3713 make_huge_pte(vma, new_page, 1)); 3714 page_remove_rmap(old_page, true); 3715 hugepage_add_new_anon_rmap(new_page, vma, haddr); 3716 set_page_huge_active(new_page); 3717 /* Make the old page be freed below */ 3718 new_page = old_page; 3719 } 3720 spin_unlock(ptl); 3721 mmu_notifier_invalidate_range_end(&range); 3722 out_release_all: 3723 restore_reserve_on_error(h, vma, haddr, new_page); 3724 put_page(new_page); 3725 out_release_old: 3726 put_page(old_page); 3727 3728 spin_lock(ptl); /* Caller expects lock to be held */ 3729 return ret; 3730 } 3731 3732 /* Return the pagecache page at a given address within a VMA */ 3733 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3734 struct vm_area_struct *vma, unsigned long address) 3735 { 3736 struct address_space *mapping; 3737 pgoff_t idx; 3738 3739 mapping = vma->vm_file->f_mapping; 3740 idx = vma_hugecache_offset(h, vma, address); 3741 3742 return find_lock_page(mapping, idx); 3743 } 3744 3745 /* 3746 * Return whether there is a pagecache page to back given address within VMA. 3747 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3748 */ 3749 static bool hugetlbfs_pagecache_present(struct hstate *h, 3750 struct vm_area_struct *vma, unsigned long address) 3751 { 3752 struct address_space *mapping; 3753 pgoff_t idx; 3754 struct page *page; 3755 3756 mapping = vma->vm_file->f_mapping; 3757 idx = vma_hugecache_offset(h, vma, address); 3758 3759 page = find_get_page(mapping, idx); 3760 if (page) 3761 put_page(page); 3762 return page != NULL; 3763 } 3764 3765 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3766 pgoff_t idx) 3767 { 3768 struct inode *inode = mapping->host; 3769 struct hstate *h = hstate_inode(inode); 3770 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3771 3772 if (err) 3773 return err; 3774 ClearPagePrivate(page); 3775 3776 /* 3777 * set page dirty so that it will not be removed from cache/file 3778 * by non-hugetlbfs specific code paths. 3779 */ 3780 set_page_dirty(page); 3781 3782 spin_lock(&inode->i_lock); 3783 inode->i_blocks += blocks_per_huge_page(h); 3784 spin_unlock(&inode->i_lock); 3785 return 0; 3786 } 3787 3788 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 3789 struct vm_area_struct *vma, 3790 struct address_space *mapping, pgoff_t idx, 3791 unsigned long address, pte_t *ptep, unsigned int flags) 3792 { 3793 struct hstate *h = hstate_vma(vma); 3794 vm_fault_t ret = VM_FAULT_SIGBUS; 3795 int anon_rmap = 0; 3796 unsigned long size; 3797 struct page *page; 3798 pte_t new_pte; 3799 spinlock_t *ptl; 3800 unsigned long haddr = address & huge_page_mask(h); 3801 bool new_page = false; 3802 3803 /* 3804 * Currently, we are forced to kill the process in the event the 3805 * original mapper has unmapped pages from the child due to a failed 3806 * COW. Warn that such a situation has occurred as it may not be obvious 3807 */ 3808 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3809 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3810 current->pid); 3811 return ret; 3812 } 3813 3814 /* 3815 * Use page lock to guard against racing truncation 3816 * before we get page_table_lock. 3817 */ 3818 retry: 3819 page = find_lock_page(mapping, idx); 3820 if (!page) { 3821 size = i_size_read(mapping->host) >> huge_page_shift(h); 3822 if (idx >= size) 3823 goto out; 3824 3825 /* 3826 * Check for page in userfault range 3827 */ 3828 if (userfaultfd_missing(vma)) { 3829 u32 hash; 3830 struct vm_fault vmf = { 3831 .vma = vma, 3832 .address = haddr, 3833 .flags = flags, 3834 /* 3835 * Hard to debug if it ends up being 3836 * used by a callee that assumes 3837 * something about the other 3838 * uninitialized fields... same as in 3839 * memory.c 3840 */ 3841 }; 3842 3843 /* 3844 * hugetlb_fault_mutex must be dropped before 3845 * handling userfault. Reacquire after handling 3846 * fault to make calling code simpler. 3847 */ 3848 hash = hugetlb_fault_mutex_hash(mapping, idx); 3849 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3850 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 3851 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3852 goto out; 3853 } 3854 3855 page = alloc_huge_page(vma, haddr, 0); 3856 if (IS_ERR(page)) { 3857 /* 3858 * Returning error will result in faulting task being 3859 * sent SIGBUS. The hugetlb fault mutex prevents two 3860 * tasks from racing to fault in the same page which 3861 * could result in false unable to allocate errors. 3862 * Page migration does not take the fault mutex, but 3863 * does a clear then write of pte's under page table 3864 * lock. Page fault code could race with migration, 3865 * notice the clear pte and try to allocate a page 3866 * here. Before returning error, get ptl and make 3867 * sure there really is no pte entry. 3868 */ 3869 ptl = huge_pte_lock(h, mm, ptep); 3870 if (!huge_pte_none(huge_ptep_get(ptep))) { 3871 ret = 0; 3872 spin_unlock(ptl); 3873 goto out; 3874 } 3875 spin_unlock(ptl); 3876 ret = vmf_error(PTR_ERR(page)); 3877 goto out; 3878 } 3879 clear_huge_page(page, address, pages_per_huge_page(h)); 3880 __SetPageUptodate(page); 3881 new_page = true; 3882 3883 if (vma->vm_flags & VM_MAYSHARE) { 3884 int err = huge_add_to_page_cache(page, mapping, idx); 3885 if (err) { 3886 put_page(page); 3887 if (err == -EEXIST) 3888 goto retry; 3889 goto out; 3890 } 3891 } else { 3892 lock_page(page); 3893 if (unlikely(anon_vma_prepare(vma))) { 3894 ret = VM_FAULT_OOM; 3895 goto backout_unlocked; 3896 } 3897 anon_rmap = 1; 3898 } 3899 } else { 3900 /* 3901 * If memory error occurs between mmap() and fault, some process 3902 * don't have hwpoisoned swap entry for errored virtual address. 3903 * So we need to block hugepage fault by PG_hwpoison bit check. 3904 */ 3905 if (unlikely(PageHWPoison(page))) { 3906 ret = VM_FAULT_HWPOISON | 3907 VM_FAULT_SET_HINDEX(hstate_index(h)); 3908 goto backout_unlocked; 3909 } 3910 } 3911 3912 /* 3913 * If we are going to COW a private mapping later, we examine the 3914 * pending reservations for this page now. This will ensure that 3915 * any allocations necessary to record that reservation occur outside 3916 * the spinlock. 3917 */ 3918 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3919 if (vma_needs_reservation(h, vma, haddr) < 0) { 3920 ret = VM_FAULT_OOM; 3921 goto backout_unlocked; 3922 } 3923 /* Just decrements count, does not deallocate */ 3924 vma_end_reservation(h, vma, haddr); 3925 } 3926 3927 ptl = huge_pte_lock(h, mm, ptep); 3928 size = i_size_read(mapping->host) >> huge_page_shift(h); 3929 if (idx >= size) 3930 goto backout; 3931 3932 ret = 0; 3933 if (!huge_pte_none(huge_ptep_get(ptep))) 3934 goto backout; 3935 3936 if (anon_rmap) { 3937 ClearPagePrivate(page); 3938 hugepage_add_new_anon_rmap(page, vma, haddr); 3939 } else 3940 page_dup_rmap(page, true); 3941 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3942 && (vma->vm_flags & VM_SHARED))); 3943 set_huge_pte_at(mm, haddr, ptep, new_pte); 3944 3945 hugetlb_count_add(pages_per_huge_page(h), mm); 3946 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3947 /* Optimization, do the COW without a second fault */ 3948 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 3949 } 3950 3951 spin_unlock(ptl); 3952 3953 /* 3954 * Only make newly allocated pages active. Existing pages found 3955 * in the pagecache could be !page_huge_active() if they have been 3956 * isolated for migration. 3957 */ 3958 if (new_page) 3959 set_page_huge_active(page); 3960 3961 unlock_page(page); 3962 out: 3963 return ret; 3964 3965 backout: 3966 spin_unlock(ptl); 3967 backout_unlocked: 3968 unlock_page(page); 3969 restore_reserve_on_error(h, vma, haddr, page); 3970 put_page(page); 3971 goto out; 3972 } 3973 3974 #ifdef CONFIG_SMP 3975 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 3976 { 3977 unsigned long key[2]; 3978 u32 hash; 3979 3980 key[0] = (unsigned long) mapping; 3981 key[1] = idx; 3982 3983 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 3984 3985 return hash & (num_fault_mutexes - 1); 3986 } 3987 #else 3988 /* 3989 * For uniprocesor systems we always use a single mutex, so just 3990 * return 0 and avoid the hashing overhead. 3991 */ 3992 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 3993 { 3994 return 0; 3995 } 3996 #endif 3997 3998 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3999 unsigned long address, unsigned int flags) 4000 { 4001 pte_t *ptep, entry; 4002 spinlock_t *ptl; 4003 vm_fault_t ret; 4004 u32 hash; 4005 pgoff_t idx; 4006 struct page *page = NULL; 4007 struct page *pagecache_page = NULL; 4008 struct hstate *h = hstate_vma(vma); 4009 struct address_space *mapping; 4010 int need_wait_lock = 0; 4011 unsigned long haddr = address & huge_page_mask(h); 4012 4013 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4014 if (ptep) { 4015 entry = huge_ptep_get(ptep); 4016 if (unlikely(is_hugetlb_entry_migration(entry))) { 4017 migration_entry_wait_huge(vma, mm, ptep); 4018 return 0; 4019 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 4020 return VM_FAULT_HWPOISON_LARGE | 4021 VM_FAULT_SET_HINDEX(hstate_index(h)); 4022 } else { 4023 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 4024 if (!ptep) 4025 return VM_FAULT_OOM; 4026 } 4027 4028 mapping = vma->vm_file->f_mapping; 4029 idx = vma_hugecache_offset(h, vma, haddr); 4030 4031 /* 4032 * Serialize hugepage allocation and instantiation, so that we don't 4033 * get spurious allocation failures if two CPUs race to instantiate 4034 * the same page in the page cache. 4035 */ 4036 hash = hugetlb_fault_mutex_hash(mapping, idx); 4037 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4038 4039 entry = huge_ptep_get(ptep); 4040 if (huge_pte_none(entry)) { 4041 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4042 goto out_mutex; 4043 } 4044 4045 ret = 0; 4046 4047 /* 4048 * entry could be a migration/hwpoison entry at this point, so this 4049 * check prevents the kernel from going below assuming that we have 4050 * a active hugepage in pagecache. This goto expects the 2nd page fault, 4051 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 4052 * handle it. 4053 */ 4054 if (!pte_present(entry)) 4055 goto out_mutex; 4056 4057 /* 4058 * If we are going to COW the mapping later, we examine the pending 4059 * reservations for this page now. This will ensure that any 4060 * allocations necessary to record that reservation occur outside the 4061 * spinlock. For private mappings, we also lookup the pagecache 4062 * page now as it is used to determine if a reservation has been 4063 * consumed. 4064 */ 4065 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4066 if (vma_needs_reservation(h, vma, haddr) < 0) { 4067 ret = VM_FAULT_OOM; 4068 goto out_mutex; 4069 } 4070 /* Just decrements count, does not deallocate */ 4071 vma_end_reservation(h, vma, haddr); 4072 4073 if (!(vma->vm_flags & VM_MAYSHARE)) 4074 pagecache_page = hugetlbfs_pagecache_page(h, 4075 vma, haddr); 4076 } 4077 4078 ptl = huge_pte_lock(h, mm, ptep); 4079 4080 /* Check for a racing update before calling hugetlb_cow */ 4081 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4082 goto out_ptl; 4083 4084 /* 4085 * hugetlb_cow() requires page locks of pte_page(entry) and 4086 * pagecache_page, so here we need take the former one 4087 * when page != pagecache_page or !pagecache_page. 4088 */ 4089 page = pte_page(entry); 4090 if (page != pagecache_page) 4091 if (!trylock_page(page)) { 4092 need_wait_lock = 1; 4093 goto out_ptl; 4094 } 4095 4096 get_page(page); 4097 4098 if (flags & FAULT_FLAG_WRITE) { 4099 if (!huge_pte_write(entry)) { 4100 ret = hugetlb_cow(mm, vma, address, ptep, 4101 pagecache_page, ptl); 4102 goto out_put_page; 4103 } 4104 entry = huge_pte_mkdirty(entry); 4105 } 4106 entry = pte_mkyoung(entry); 4107 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4108 flags & FAULT_FLAG_WRITE)) 4109 update_mmu_cache(vma, haddr, ptep); 4110 out_put_page: 4111 if (page != pagecache_page) 4112 unlock_page(page); 4113 put_page(page); 4114 out_ptl: 4115 spin_unlock(ptl); 4116 4117 if (pagecache_page) { 4118 unlock_page(pagecache_page); 4119 put_page(pagecache_page); 4120 } 4121 out_mutex: 4122 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4123 /* 4124 * Generally it's safe to hold refcount during waiting page lock. But 4125 * here we just wait to defer the next page fault to avoid busy loop and 4126 * the page is not used after unlocked before returning from the current 4127 * page fault. So we are safe from accessing freed page, even if we wait 4128 * here without taking refcount. 4129 */ 4130 if (need_wait_lock) 4131 wait_on_page_locked(page); 4132 return ret; 4133 } 4134 4135 /* 4136 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4137 * modifications for huge pages. 4138 */ 4139 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4140 pte_t *dst_pte, 4141 struct vm_area_struct *dst_vma, 4142 unsigned long dst_addr, 4143 unsigned long src_addr, 4144 struct page **pagep) 4145 { 4146 struct address_space *mapping; 4147 pgoff_t idx; 4148 unsigned long size; 4149 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4150 struct hstate *h = hstate_vma(dst_vma); 4151 pte_t _dst_pte; 4152 spinlock_t *ptl; 4153 int ret; 4154 struct page *page; 4155 4156 if (!*pagep) { 4157 ret = -ENOMEM; 4158 page = alloc_huge_page(dst_vma, dst_addr, 0); 4159 if (IS_ERR(page)) 4160 goto out; 4161 4162 ret = copy_huge_page_from_user(page, 4163 (const void __user *) src_addr, 4164 pages_per_huge_page(h), false); 4165 4166 /* fallback to copy_from_user outside mmap_sem */ 4167 if (unlikely(ret)) { 4168 ret = -ENOENT; 4169 *pagep = page; 4170 /* don't free the page */ 4171 goto out; 4172 } 4173 } else { 4174 page = *pagep; 4175 *pagep = NULL; 4176 } 4177 4178 /* 4179 * The memory barrier inside __SetPageUptodate makes sure that 4180 * preceding stores to the page contents become visible before 4181 * the set_pte_at() write. 4182 */ 4183 __SetPageUptodate(page); 4184 4185 mapping = dst_vma->vm_file->f_mapping; 4186 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4187 4188 /* 4189 * If shared, add to page cache 4190 */ 4191 if (vm_shared) { 4192 size = i_size_read(mapping->host) >> huge_page_shift(h); 4193 ret = -EFAULT; 4194 if (idx >= size) 4195 goto out_release_nounlock; 4196 4197 /* 4198 * Serialization between remove_inode_hugepages() and 4199 * huge_add_to_page_cache() below happens through the 4200 * hugetlb_fault_mutex_table that here must be hold by 4201 * the caller. 4202 */ 4203 ret = huge_add_to_page_cache(page, mapping, idx); 4204 if (ret) 4205 goto out_release_nounlock; 4206 } 4207 4208 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4209 spin_lock(ptl); 4210 4211 /* 4212 * Recheck the i_size after holding PT lock to make sure not 4213 * to leave any page mapped (as page_mapped()) beyond the end 4214 * of the i_size (remove_inode_hugepages() is strict about 4215 * enforcing that). If we bail out here, we'll also leave a 4216 * page in the radix tree in the vm_shared case beyond the end 4217 * of the i_size, but remove_inode_hugepages() will take care 4218 * of it as soon as we drop the hugetlb_fault_mutex_table. 4219 */ 4220 size = i_size_read(mapping->host) >> huge_page_shift(h); 4221 ret = -EFAULT; 4222 if (idx >= size) 4223 goto out_release_unlock; 4224 4225 ret = -EEXIST; 4226 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4227 goto out_release_unlock; 4228 4229 if (vm_shared) { 4230 page_dup_rmap(page, true); 4231 } else { 4232 ClearPagePrivate(page); 4233 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4234 } 4235 4236 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4237 if (dst_vma->vm_flags & VM_WRITE) 4238 _dst_pte = huge_pte_mkdirty(_dst_pte); 4239 _dst_pte = pte_mkyoung(_dst_pte); 4240 4241 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4242 4243 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4244 dst_vma->vm_flags & VM_WRITE); 4245 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4246 4247 /* No need to invalidate - it was non-present before */ 4248 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4249 4250 spin_unlock(ptl); 4251 set_page_huge_active(page); 4252 if (vm_shared) 4253 unlock_page(page); 4254 ret = 0; 4255 out: 4256 return ret; 4257 out_release_unlock: 4258 spin_unlock(ptl); 4259 if (vm_shared) 4260 unlock_page(page); 4261 out_release_nounlock: 4262 put_page(page); 4263 goto out; 4264 } 4265 4266 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4267 struct page **pages, struct vm_area_struct **vmas, 4268 unsigned long *position, unsigned long *nr_pages, 4269 long i, unsigned int flags, int *nonblocking) 4270 { 4271 unsigned long pfn_offset; 4272 unsigned long vaddr = *position; 4273 unsigned long remainder = *nr_pages; 4274 struct hstate *h = hstate_vma(vma); 4275 int err = -EFAULT; 4276 4277 while (vaddr < vma->vm_end && remainder) { 4278 pte_t *pte; 4279 spinlock_t *ptl = NULL; 4280 int absent; 4281 struct page *page; 4282 4283 /* 4284 * If we have a pending SIGKILL, don't keep faulting pages and 4285 * potentially allocating memory. 4286 */ 4287 if (fatal_signal_pending(current)) { 4288 remainder = 0; 4289 break; 4290 } 4291 4292 /* 4293 * Some archs (sparc64, sh*) have multiple pte_ts to 4294 * each hugepage. We have to make sure we get the 4295 * first, for the page indexing below to work. 4296 * 4297 * Note that page table lock is not held when pte is null. 4298 */ 4299 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4300 huge_page_size(h)); 4301 if (pte) 4302 ptl = huge_pte_lock(h, mm, pte); 4303 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4304 4305 /* 4306 * When coredumping, it suits get_dump_page if we just return 4307 * an error where there's an empty slot with no huge pagecache 4308 * to back it. This way, we avoid allocating a hugepage, and 4309 * the sparse dumpfile avoids allocating disk blocks, but its 4310 * huge holes still show up with zeroes where they need to be. 4311 */ 4312 if (absent && (flags & FOLL_DUMP) && 4313 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4314 if (pte) 4315 spin_unlock(ptl); 4316 remainder = 0; 4317 break; 4318 } 4319 4320 /* 4321 * We need call hugetlb_fault for both hugepages under migration 4322 * (in which case hugetlb_fault waits for the migration,) and 4323 * hwpoisoned hugepages (in which case we need to prevent the 4324 * caller from accessing to them.) In order to do this, we use 4325 * here is_swap_pte instead of is_hugetlb_entry_migration and 4326 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4327 * both cases, and because we can't follow correct pages 4328 * directly from any kind of swap entries. 4329 */ 4330 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4331 ((flags & FOLL_WRITE) && 4332 !huge_pte_write(huge_ptep_get(pte)))) { 4333 vm_fault_t ret; 4334 unsigned int fault_flags = 0; 4335 4336 if (pte) 4337 spin_unlock(ptl); 4338 if (flags & FOLL_WRITE) 4339 fault_flags |= FAULT_FLAG_WRITE; 4340 if (nonblocking) 4341 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 4342 if (flags & FOLL_NOWAIT) 4343 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4344 FAULT_FLAG_RETRY_NOWAIT; 4345 if (flags & FOLL_TRIED) { 4346 VM_WARN_ON_ONCE(fault_flags & 4347 FAULT_FLAG_ALLOW_RETRY); 4348 fault_flags |= FAULT_FLAG_TRIED; 4349 } 4350 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4351 if (ret & VM_FAULT_ERROR) { 4352 err = vm_fault_to_errno(ret, flags); 4353 remainder = 0; 4354 break; 4355 } 4356 if (ret & VM_FAULT_RETRY) { 4357 if (nonblocking && 4358 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4359 *nonblocking = 0; 4360 *nr_pages = 0; 4361 /* 4362 * VM_FAULT_RETRY must not return an 4363 * error, it will return zero 4364 * instead. 4365 * 4366 * No need to update "position" as the 4367 * caller will not check it after 4368 * *nr_pages is set to 0. 4369 */ 4370 return i; 4371 } 4372 continue; 4373 } 4374 4375 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4376 page = pte_page(huge_ptep_get(pte)); 4377 4378 /* 4379 * Instead of doing 'try_get_page()' below in the same_page 4380 * loop, just check the count once here. 4381 */ 4382 if (unlikely(page_count(page) <= 0)) { 4383 if (pages) { 4384 spin_unlock(ptl); 4385 remainder = 0; 4386 err = -ENOMEM; 4387 break; 4388 } 4389 } 4390 4391 /* 4392 * If subpage information not requested, update counters 4393 * and skip the same_page loop below. 4394 */ 4395 if (!pages && !vmas && !pfn_offset && 4396 (vaddr + huge_page_size(h) < vma->vm_end) && 4397 (remainder >= pages_per_huge_page(h))) { 4398 vaddr += huge_page_size(h); 4399 remainder -= pages_per_huge_page(h); 4400 i += pages_per_huge_page(h); 4401 spin_unlock(ptl); 4402 continue; 4403 } 4404 4405 same_page: 4406 if (pages) { 4407 pages[i] = mem_map_offset(page, pfn_offset); 4408 get_page(pages[i]); 4409 } 4410 4411 if (vmas) 4412 vmas[i] = vma; 4413 4414 vaddr += PAGE_SIZE; 4415 ++pfn_offset; 4416 --remainder; 4417 ++i; 4418 if (vaddr < vma->vm_end && remainder && 4419 pfn_offset < pages_per_huge_page(h)) { 4420 /* 4421 * We use pfn_offset to avoid touching the pageframes 4422 * of this compound page. 4423 */ 4424 goto same_page; 4425 } 4426 spin_unlock(ptl); 4427 } 4428 *nr_pages = remainder; 4429 /* 4430 * setting position is actually required only if remainder is 4431 * not zero but it's faster not to add a "if (remainder)" 4432 * branch. 4433 */ 4434 *position = vaddr; 4435 4436 return i ? i : err; 4437 } 4438 4439 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4440 /* 4441 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4442 * implement this. 4443 */ 4444 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4445 #endif 4446 4447 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4448 unsigned long address, unsigned long end, pgprot_t newprot) 4449 { 4450 struct mm_struct *mm = vma->vm_mm; 4451 unsigned long start = address; 4452 pte_t *ptep; 4453 pte_t pte; 4454 struct hstate *h = hstate_vma(vma); 4455 unsigned long pages = 0; 4456 bool shared_pmd = false; 4457 struct mmu_notifier_range range; 4458 4459 /* 4460 * In the case of shared PMDs, the area to flush could be beyond 4461 * start/end. Set range.start/range.end to cover the maximum possible 4462 * range if PMD sharing is possible. 4463 */ 4464 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 4465 0, vma, mm, start, end); 4466 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4467 4468 BUG_ON(address >= end); 4469 flush_cache_range(vma, range.start, range.end); 4470 4471 mmu_notifier_invalidate_range_start(&range); 4472 i_mmap_lock_write(vma->vm_file->f_mapping); 4473 for (; address < end; address += huge_page_size(h)) { 4474 spinlock_t *ptl; 4475 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 4476 if (!ptep) 4477 continue; 4478 ptl = huge_pte_lock(h, mm, ptep); 4479 if (huge_pmd_unshare(mm, &address, ptep)) { 4480 pages++; 4481 spin_unlock(ptl); 4482 shared_pmd = true; 4483 continue; 4484 } 4485 pte = huge_ptep_get(ptep); 4486 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 4487 spin_unlock(ptl); 4488 continue; 4489 } 4490 if (unlikely(is_hugetlb_entry_migration(pte))) { 4491 swp_entry_t entry = pte_to_swp_entry(pte); 4492 4493 if (is_write_migration_entry(entry)) { 4494 pte_t newpte; 4495 4496 make_migration_entry_read(&entry); 4497 newpte = swp_entry_to_pte(entry); 4498 set_huge_swap_pte_at(mm, address, ptep, 4499 newpte, huge_page_size(h)); 4500 pages++; 4501 } 4502 spin_unlock(ptl); 4503 continue; 4504 } 4505 if (!huge_pte_none(pte)) { 4506 pte_t old_pte; 4507 4508 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 4509 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 4510 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4511 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 4512 pages++; 4513 } 4514 spin_unlock(ptl); 4515 } 4516 /* 4517 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4518 * may have cleared our pud entry and done put_page on the page table: 4519 * once we release i_mmap_rwsem, another task can do the final put_page 4520 * and that page table be reused and filled with junk. If we actually 4521 * did unshare a page of pmds, flush the range corresponding to the pud. 4522 */ 4523 if (shared_pmd) 4524 flush_hugetlb_tlb_range(vma, range.start, range.end); 4525 else 4526 flush_hugetlb_tlb_range(vma, start, end); 4527 /* 4528 * No need to call mmu_notifier_invalidate_range() we are downgrading 4529 * page table protection not changing it to point to a new page. 4530 * 4531 * See Documentation/vm/mmu_notifier.rst 4532 */ 4533 i_mmap_unlock_write(vma->vm_file->f_mapping); 4534 mmu_notifier_invalidate_range_end(&range); 4535 4536 return pages << h->order; 4537 } 4538 4539 int hugetlb_reserve_pages(struct inode *inode, 4540 long from, long to, 4541 struct vm_area_struct *vma, 4542 vm_flags_t vm_flags) 4543 { 4544 long ret, chg; 4545 struct hstate *h = hstate_inode(inode); 4546 struct hugepage_subpool *spool = subpool_inode(inode); 4547 struct resv_map *resv_map; 4548 long gbl_reserve; 4549 4550 /* This should never happen */ 4551 if (from > to) { 4552 VM_WARN(1, "%s called with a negative range\n", __func__); 4553 return -EINVAL; 4554 } 4555 4556 /* 4557 * Only apply hugepage reservation if asked. At fault time, an 4558 * attempt will be made for VM_NORESERVE to allocate a page 4559 * without using reserves 4560 */ 4561 if (vm_flags & VM_NORESERVE) 4562 return 0; 4563 4564 /* 4565 * Shared mappings base their reservation on the number of pages that 4566 * are already allocated on behalf of the file. Private mappings need 4567 * to reserve the full area even if read-only as mprotect() may be 4568 * called to make the mapping read-write. Assume !vma is a shm mapping 4569 */ 4570 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4571 /* 4572 * resv_map can not be NULL as hugetlb_reserve_pages is only 4573 * called for inodes for which resv_maps were created (see 4574 * hugetlbfs_get_inode). 4575 */ 4576 resv_map = inode_resv_map(inode); 4577 4578 chg = region_chg(resv_map, from, to); 4579 4580 } else { 4581 resv_map = resv_map_alloc(); 4582 if (!resv_map) 4583 return -ENOMEM; 4584 4585 chg = to - from; 4586 4587 set_vma_resv_map(vma, resv_map); 4588 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4589 } 4590 4591 if (chg < 0) { 4592 ret = chg; 4593 goto out_err; 4594 } 4595 4596 /* 4597 * There must be enough pages in the subpool for the mapping. If 4598 * the subpool has a minimum size, there may be some global 4599 * reservations already in place (gbl_reserve). 4600 */ 4601 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4602 if (gbl_reserve < 0) { 4603 ret = -ENOSPC; 4604 goto out_err; 4605 } 4606 4607 /* 4608 * Check enough hugepages are available for the reservation. 4609 * Hand the pages back to the subpool if there are not 4610 */ 4611 ret = hugetlb_acct_memory(h, gbl_reserve); 4612 if (ret < 0) { 4613 /* put back original number of pages, chg */ 4614 (void)hugepage_subpool_put_pages(spool, chg); 4615 goto out_err; 4616 } 4617 4618 /* 4619 * Account for the reservations made. Shared mappings record regions 4620 * that have reservations as they are shared by multiple VMAs. 4621 * When the last VMA disappears, the region map says how much 4622 * the reservation was and the page cache tells how much of 4623 * the reservation was consumed. Private mappings are per-VMA and 4624 * only the consumed reservations are tracked. When the VMA 4625 * disappears, the original reservation is the VMA size and the 4626 * consumed reservations are stored in the map. Hence, nothing 4627 * else has to be done for private mappings here 4628 */ 4629 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4630 long add = region_add(resv_map, from, to); 4631 4632 if (unlikely(chg > add)) { 4633 /* 4634 * pages in this range were added to the reserve 4635 * map between region_chg and region_add. This 4636 * indicates a race with alloc_huge_page. Adjust 4637 * the subpool and reserve counts modified above 4638 * based on the difference. 4639 */ 4640 long rsv_adjust; 4641 4642 rsv_adjust = hugepage_subpool_put_pages(spool, 4643 chg - add); 4644 hugetlb_acct_memory(h, -rsv_adjust); 4645 } 4646 } 4647 return 0; 4648 out_err: 4649 if (!vma || vma->vm_flags & VM_MAYSHARE) 4650 /* Don't call region_abort if region_chg failed */ 4651 if (chg >= 0) 4652 region_abort(resv_map, from, to); 4653 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4654 kref_put(&resv_map->refs, resv_map_release); 4655 return ret; 4656 } 4657 4658 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4659 long freed) 4660 { 4661 struct hstate *h = hstate_inode(inode); 4662 struct resv_map *resv_map = inode_resv_map(inode); 4663 long chg = 0; 4664 struct hugepage_subpool *spool = subpool_inode(inode); 4665 long gbl_reserve; 4666 4667 /* 4668 * Since this routine can be called in the evict inode path for all 4669 * hugetlbfs inodes, resv_map could be NULL. 4670 */ 4671 if (resv_map) { 4672 chg = region_del(resv_map, start, end); 4673 /* 4674 * region_del() can fail in the rare case where a region 4675 * must be split and another region descriptor can not be 4676 * allocated. If end == LONG_MAX, it will not fail. 4677 */ 4678 if (chg < 0) 4679 return chg; 4680 } 4681 4682 spin_lock(&inode->i_lock); 4683 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4684 spin_unlock(&inode->i_lock); 4685 4686 /* 4687 * If the subpool has a minimum size, the number of global 4688 * reservations to be released may be adjusted. 4689 */ 4690 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4691 hugetlb_acct_memory(h, -gbl_reserve); 4692 4693 return 0; 4694 } 4695 4696 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4697 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4698 struct vm_area_struct *vma, 4699 unsigned long addr, pgoff_t idx) 4700 { 4701 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4702 svma->vm_start; 4703 unsigned long sbase = saddr & PUD_MASK; 4704 unsigned long s_end = sbase + PUD_SIZE; 4705 4706 /* Allow segments to share if only one is marked locked */ 4707 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4708 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4709 4710 /* 4711 * match the virtual addresses, permission and the alignment of the 4712 * page table page. 4713 */ 4714 if (pmd_index(addr) != pmd_index(saddr) || 4715 vm_flags != svm_flags || 4716 sbase < svma->vm_start || svma->vm_end < s_end) 4717 return 0; 4718 4719 return saddr; 4720 } 4721 4722 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4723 { 4724 unsigned long base = addr & PUD_MASK; 4725 unsigned long end = base + PUD_SIZE; 4726 4727 /* 4728 * check on proper vm_flags and page table alignment 4729 */ 4730 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 4731 return true; 4732 return false; 4733 } 4734 4735 /* 4736 * Determine if start,end range within vma could be mapped by shared pmd. 4737 * If yes, adjust start and end to cover range associated with possible 4738 * shared pmd mappings. 4739 */ 4740 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4741 unsigned long *start, unsigned long *end) 4742 { 4743 unsigned long check_addr = *start; 4744 4745 if (!(vma->vm_flags & VM_MAYSHARE)) 4746 return; 4747 4748 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) { 4749 unsigned long a_start = check_addr & PUD_MASK; 4750 unsigned long a_end = a_start + PUD_SIZE; 4751 4752 /* 4753 * If sharing is possible, adjust start/end if necessary. 4754 */ 4755 if (range_in_vma(vma, a_start, a_end)) { 4756 if (a_start < *start) 4757 *start = a_start; 4758 if (a_end > *end) 4759 *end = a_end; 4760 } 4761 } 4762 } 4763 4764 /* 4765 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4766 * and returns the corresponding pte. While this is not necessary for the 4767 * !shared pmd case because we can allocate the pmd later as well, it makes the 4768 * code much cleaner. pmd allocation is essential for the shared case because 4769 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4770 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4771 * bad pmd for sharing. 4772 */ 4773 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4774 { 4775 struct vm_area_struct *vma = find_vma(mm, addr); 4776 struct address_space *mapping = vma->vm_file->f_mapping; 4777 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4778 vma->vm_pgoff; 4779 struct vm_area_struct *svma; 4780 unsigned long saddr; 4781 pte_t *spte = NULL; 4782 pte_t *pte; 4783 spinlock_t *ptl; 4784 4785 if (!vma_shareable(vma, addr)) 4786 return (pte_t *)pmd_alloc(mm, pud, addr); 4787 4788 i_mmap_lock_read(mapping); 4789 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4790 if (svma == vma) 4791 continue; 4792 4793 saddr = page_table_shareable(svma, vma, addr, idx); 4794 if (saddr) { 4795 spte = huge_pte_offset(svma->vm_mm, saddr, 4796 vma_mmu_pagesize(svma)); 4797 if (spte) { 4798 get_page(virt_to_page(spte)); 4799 break; 4800 } 4801 } 4802 } 4803 4804 if (!spte) 4805 goto out; 4806 4807 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 4808 if (pud_none(*pud)) { 4809 pud_populate(mm, pud, 4810 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4811 mm_inc_nr_pmds(mm); 4812 } else { 4813 put_page(virt_to_page(spte)); 4814 } 4815 spin_unlock(ptl); 4816 out: 4817 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4818 i_mmap_unlock_read(mapping); 4819 return pte; 4820 } 4821 4822 /* 4823 * unmap huge page backed by shared pte. 4824 * 4825 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4826 * indicated by page_count > 1, unmap is achieved by clearing pud and 4827 * decrementing the ref count. If count == 1, the pte page is not shared. 4828 * 4829 * called with page table lock held. 4830 * 4831 * returns: 1 successfully unmapped a shared pte page 4832 * 0 the underlying pte page is not shared, or it is the last user 4833 */ 4834 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4835 { 4836 pgd_t *pgd = pgd_offset(mm, *addr); 4837 p4d_t *p4d = p4d_offset(pgd, *addr); 4838 pud_t *pud = pud_offset(p4d, *addr); 4839 4840 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4841 if (page_count(virt_to_page(ptep)) == 1) 4842 return 0; 4843 4844 pud_clear(pud); 4845 put_page(virt_to_page(ptep)); 4846 mm_dec_nr_pmds(mm); 4847 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4848 return 1; 4849 } 4850 #define want_pmd_share() (1) 4851 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4852 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4853 { 4854 return NULL; 4855 } 4856 4857 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4858 { 4859 return 0; 4860 } 4861 4862 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4863 unsigned long *start, unsigned long *end) 4864 { 4865 } 4866 #define want_pmd_share() (0) 4867 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4868 4869 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4870 pte_t *huge_pte_alloc(struct mm_struct *mm, 4871 unsigned long addr, unsigned long sz) 4872 { 4873 pgd_t *pgd; 4874 p4d_t *p4d; 4875 pud_t *pud; 4876 pte_t *pte = NULL; 4877 4878 pgd = pgd_offset(mm, addr); 4879 p4d = p4d_alloc(mm, pgd, addr); 4880 if (!p4d) 4881 return NULL; 4882 pud = pud_alloc(mm, p4d, addr); 4883 if (pud) { 4884 if (sz == PUD_SIZE) { 4885 pte = (pte_t *)pud; 4886 } else { 4887 BUG_ON(sz != PMD_SIZE); 4888 if (want_pmd_share() && pud_none(*pud)) 4889 pte = huge_pmd_share(mm, addr, pud); 4890 else 4891 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4892 } 4893 } 4894 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 4895 4896 return pte; 4897 } 4898 4899 /* 4900 * huge_pte_offset() - Walk the page table to resolve the hugepage 4901 * entry at address @addr 4902 * 4903 * Return: Pointer to page table or swap entry (PUD or PMD) for 4904 * address @addr, or NULL if a p*d_none() entry is encountered and the 4905 * size @sz doesn't match the hugepage size at this level of the page 4906 * table. 4907 */ 4908 pte_t *huge_pte_offset(struct mm_struct *mm, 4909 unsigned long addr, unsigned long sz) 4910 { 4911 pgd_t *pgd; 4912 p4d_t *p4d; 4913 pud_t *pud; 4914 pmd_t *pmd; 4915 4916 pgd = pgd_offset(mm, addr); 4917 if (!pgd_present(*pgd)) 4918 return NULL; 4919 p4d = p4d_offset(pgd, addr); 4920 if (!p4d_present(*p4d)) 4921 return NULL; 4922 4923 pud = pud_offset(p4d, addr); 4924 if (sz != PUD_SIZE && pud_none(*pud)) 4925 return NULL; 4926 /* hugepage or swap? */ 4927 if (pud_huge(*pud) || !pud_present(*pud)) 4928 return (pte_t *)pud; 4929 4930 pmd = pmd_offset(pud, addr); 4931 if (sz != PMD_SIZE && pmd_none(*pmd)) 4932 return NULL; 4933 /* hugepage or swap? */ 4934 if (pmd_huge(*pmd) || !pmd_present(*pmd)) 4935 return (pte_t *)pmd; 4936 4937 return NULL; 4938 } 4939 4940 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4941 4942 /* 4943 * These functions are overwritable if your architecture needs its own 4944 * behavior. 4945 */ 4946 struct page * __weak 4947 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4948 int write) 4949 { 4950 return ERR_PTR(-EINVAL); 4951 } 4952 4953 struct page * __weak 4954 follow_huge_pd(struct vm_area_struct *vma, 4955 unsigned long address, hugepd_t hpd, int flags, int pdshift) 4956 { 4957 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 4958 return NULL; 4959 } 4960 4961 struct page * __weak 4962 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4963 pmd_t *pmd, int flags) 4964 { 4965 struct page *page = NULL; 4966 spinlock_t *ptl; 4967 pte_t pte; 4968 retry: 4969 ptl = pmd_lockptr(mm, pmd); 4970 spin_lock(ptl); 4971 /* 4972 * make sure that the address range covered by this pmd is not 4973 * unmapped from other threads. 4974 */ 4975 if (!pmd_huge(*pmd)) 4976 goto out; 4977 pte = huge_ptep_get((pte_t *)pmd); 4978 if (pte_present(pte)) { 4979 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4980 if (flags & FOLL_GET) 4981 get_page(page); 4982 } else { 4983 if (is_hugetlb_entry_migration(pte)) { 4984 spin_unlock(ptl); 4985 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4986 goto retry; 4987 } 4988 /* 4989 * hwpoisoned entry is treated as no_page_table in 4990 * follow_page_mask(). 4991 */ 4992 } 4993 out: 4994 spin_unlock(ptl); 4995 return page; 4996 } 4997 4998 struct page * __weak 4999 follow_huge_pud(struct mm_struct *mm, unsigned long address, 5000 pud_t *pud, int flags) 5001 { 5002 if (flags & FOLL_GET) 5003 return NULL; 5004 5005 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 5006 } 5007 5008 struct page * __weak 5009 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 5010 { 5011 if (flags & FOLL_GET) 5012 return NULL; 5013 5014 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 5015 } 5016 5017 bool isolate_huge_page(struct page *page, struct list_head *list) 5018 { 5019 bool ret = true; 5020 5021 VM_BUG_ON_PAGE(!PageHead(page), page); 5022 spin_lock(&hugetlb_lock); 5023 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 5024 ret = false; 5025 goto unlock; 5026 } 5027 clear_page_huge_active(page); 5028 list_move_tail(&page->lru, list); 5029 unlock: 5030 spin_unlock(&hugetlb_lock); 5031 return ret; 5032 } 5033 5034 void putback_active_hugepage(struct page *page) 5035 { 5036 VM_BUG_ON_PAGE(!PageHead(page), page); 5037 spin_lock(&hugetlb_lock); 5038 set_page_huge_active(page); 5039 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 5040 spin_unlock(&hugetlb_lock); 5041 put_page(page); 5042 } 5043 5044 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5045 { 5046 struct hstate *h = page_hstate(oldpage); 5047 5048 hugetlb_cgroup_migrate(oldpage, newpage); 5049 set_page_owner_migrate_reason(newpage, reason); 5050 5051 /* 5052 * transfer temporary state of the new huge page. This is 5053 * reverse to other transitions because the newpage is going to 5054 * be final while the old one will be freed so it takes over 5055 * the temporary status. 5056 * 5057 * Also note that we have to transfer the per-node surplus state 5058 * here as well otherwise the global surplus count will not match 5059 * the per-node's. 5060 */ 5061 if (PageHugeTemporary(newpage)) { 5062 int old_nid = page_to_nid(oldpage); 5063 int new_nid = page_to_nid(newpage); 5064 5065 SetPageHugeTemporary(oldpage); 5066 ClearPageHugeTemporary(newpage); 5067 5068 spin_lock(&hugetlb_lock); 5069 if (h->surplus_huge_pages_node[old_nid]) { 5070 h->surplus_huge_pages_node[old_nid]--; 5071 h->surplus_huge_pages_node[new_nid]++; 5072 } 5073 spin_unlock(&hugetlb_lock); 5074 } 5075 } 5076