1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/mmdebug.h> 23 #include <linux/sched/signal.h> 24 #include <linux/rmap.h> 25 #include <linux/string_helpers.h> 26 #include <linux/swap.h> 27 #include <linux/swapops.h> 28 #include <linux/jhash.h> 29 #include <linux/numa.h> 30 #include <linux/llist.h> 31 #include <linux/cma.h> 32 33 #include <asm/page.h> 34 #include <asm/pgalloc.h> 35 #include <asm/tlb.h> 36 37 #include <linux/io.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/node.h> 41 #include <linux/userfaultfd_k.h> 42 #include <linux/page_owner.h> 43 #include "internal.h" 44 45 int hugetlb_max_hstate __read_mostly; 46 unsigned int default_hstate_idx; 47 struct hstate hstates[HUGE_MAX_HSTATE]; 48 49 #ifdef CONFIG_CMA 50 static struct cma *hugetlb_cma[MAX_NUMNODES]; 51 #endif 52 static unsigned long hugetlb_cma_size __initdata; 53 54 /* 55 * Minimum page order among possible hugepage sizes, set to a proper value 56 * at boot time. 57 */ 58 static unsigned int minimum_order __read_mostly = UINT_MAX; 59 60 __initdata LIST_HEAD(huge_boot_pages); 61 62 /* for command line parsing */ 63 static struct hstate * __initdata parsed_hstate; 64 static unsigned long __initdata default_hstate_max_huge_pages; 65 static bool __initdata parsed_valid_hugepagesz = true; 66 static bool __initdata parsed_default_hugepagesz; 67 68 /* 69 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 70 * free_huge_pages, and surplus_huge_pages. 71 */ 72 DEFINE_SPINLOCK(hugetlb_lock); 73 74 /* 75 * Serializes faults on the same logical page. This is used to 76 * prevent spurious OOMs when the hugepage pool is fully utilized. 77 */ 78 static int num_fault_mutexes; 79 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 80 81 /* Forward declaration */ 82 static int hugetlb_acct_memory(struct hstate *h, long delta); 83 84 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 85 { 86 bool free = (spool->count == 0) && (spool->used_hpages == 0); 87 88 spin_unlock(&spool->lock); 89 90 /* If no pages are used, and no other handles to the subpool 91 * remain, give up any reservations based on minimum size and 92 * free the subpool */ 93 if (free) { 94 if (spool->min_hpages != -1) 95 hugetlb_acct_memory(spool->hstate, 96 -spool->min_hpages); 97 kfree(spool); 98 } 99 } 100 101 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 102 long min_hpages) 103 { 104 struct hugepage_subpool *spool; 105 106 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 107 if (!spool) 108 return NULL; 109 110 spin_lock_init(&spool->lock); 111 spool->count = 1; 112 spool->max_hpages = max_hpages; 113 spool->hstate = h; 114 spool->min_hpages = min_hpages; 115 116 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 117 kfree(spool); 118 return NULL; 119 } 120 spool->rsv_hpages = min_hpages; 121 122 return spool; 123 } 124 125 void hugepage_put_subpool(struct hugepage_subpool *spool) 126 { 127 spin_lock(&spool->lock); 128 BUG_ON(!spool->count); 129 spool->count--; 130 unlock_or_release_subpool(spool); 131 } 132 133 /* 134 * Subpool accounting for allocating and reserving pages. 135 * Return -ENOMEM if there are not enough resources to satisfy the 136 * request. Otherwise, return the number of pages by which the 137 * global pools must be adjusted (upward). The returned value may 138 * only be different than the passed value (delta) in the case where 139 * a subpool minimum size must be maintained. 140 */ 141 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 142 long delta) 143 { 144 long ret = delta; 145 146 if (!spool) 147 return ret; 148 149 spin_lock(&spool->lock); 150 151 if (spool->max_hpages != -1) { /* maximum size accounting */ 152 if ((spool->used_hpages + delta) <= spool->max_hpages) 153 spool->used_hpages += delta; 154 else { 155 ret = -ENOMEM; 156 goto unlock_ret; 157 } 158 } 159 160 /* minimum size accounting */ 161 if (spool->min_hpages != -1 && spool->rsv_hpages) { 162 if (delta > spool->rsv_hpages) { 163 /* 164 * Asking for more reserves than those already taken on 165 * behalf of subpool. Return difference. 166 */ 167 ret = delta - spool->rsv_hpages; 168 spool->rsv_hpages = 0; 169 } else { 170 ret = 0; /* reserves already accounted for */ 171 spool->rsv_hpages -= delta; 172 } 173 } 174 175 unlock_ret: 176 spin_unlock(&spool->lock); 177 return ret; 178 } 179 180 /* 181 * Subpool accounting for freeing and unreserving pages. 182 * Return the number of global page reservations that must be dropped. 183 * The return value may only be different than the passed value (delta) 184 * in the case where a subpool minimum size must be maintained. 185 */ 186 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 187 long delta) 188 { 189 long ret = delta; 190 191 if (!spool) 192 return delta; 193 194 spin_lock(&spool->lock); 195 196 if (spool->max_hpages != -1) /* maximum size accounting */ 197 spool->used_hpages -= delta; 198 199 /* minimum size accounting */ 200 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 201 if (spool->rsv_hpages + delta <= spool->min_hpages) 202 ret = 0; 203 else 204 ret = spool->rsv_hpages + delta - spool->min_hpages; 205 206 spool->rsv_hpages += delta; 207 if (spool->rsv_hpages > spool->min_hpages) 208 spool->rsv_hpages = spool->min_hpages; 209 } 210 211 /* 212 * If hugetlbfs_put_super couldn't free spool due to an outstanding 213 * quota reference, free it now. 214 */ 215 unlock_or_release_subpool(spool); 216 217 return ret; 218 } 219 220 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 221 { 222 return HUGETLBFS_SB(inode->i_sb)->spool; 223 } 224 225 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 226 { 227 return subpool_inode(file_inode(vma->vm_file)); 228 } 229 230 /* Helper that removes a struct file_region from the resv_map cache and returns 231 * it for use. 232 */ 233 static struct file_region * 234 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 235 { 236 struct file_region *nrg = NULL; 237 238 VM_BUG_ON(resv->region_cache_count <= 0); 239 240 resv->region_cache_count--; 241 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 242 VM_BUG_ON(!nrg); 243 list_del(&nrg->link); 244 245 nrg->from = from; 246 nrg->to = to; 247 248 return nrg; 249 } 250 251 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 252 struct file_region *rg) 253 { 254 #ifdef CONFIG_CGROUP_HUGETLB 255 nrg->reservation_counter = rg->reservation_counter; 256 nrg->css = rg->css; 257 if (rg->css) 258 css_get(rg->css); 259 #endif 260 } 261 262 /* Helper that records hugetlb_cgroup uncharge info. */ 263 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 264 struct hstate *h, 265 struct resv_map *resv, 266 struct file_region *nrg) 267 { 268 #ifdef CONFIG_CGROUP_HUGETLB 269 if (h_cg) { 270 nrg->reservation_counter = 271 &h_cg->rsvd_hugepage[hstate_index(h)]; 272 nrg->css = &h_cg->css; 273 if (!resv->pages_per_hpage) 274 resv->pages_per_hpage = pages_per_huge_page(h); 275 /* pages_per_hpage should be the same for all entries in 276 * a resv_map. 277 */ 278 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 279 } else { 280 nrg->reservation_counter = NULL; 281 nrg->css = NULL; 282 } 283 #endif 284 } 285 286 static bool has_same_uncharge_info(struct file_region *rg, 287 struct file_region *org) 288 { 289 #ifdef CONFIG_CGROUP_HUGETLB 290 return rg && org && 291 rg->reservation_counter == org->reservation_counter && 292 rg->css == org->css; 293 294 #else 295 return true; 296 #endif 297 } 298 299 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 300 { 301 struct file_region *nrg = NULL, *prg = NULL; 302 303 prg = list_prev_entry(rg, link); 304 if (&prg->link != &resv->regions && prg->to == rg->from && 305 has_same_uncharge_info(prg, rg)) { 306 prg->to = rg->to; 307 308 list_del(&rg->link); 309 kfree(rg); 310 311 coalesce_file_region(resv, prg); 312 return; 313 } 314 315 nrg = list_next_entry(rg, link); 316 if (&nrg->link != &resv->regions && nrg->from == rg->to && 317 has_same_uncharge_info(nrg, rg)) { 318 nrg->from = rg->from; 319 320 list_del(&rg->link); 321 kfree(rg); 322 323 coalesce_file_region(resv, nrg); 324 return; 325 } 326 } 327 328 /* Must be called with resv->lock held. Calling this with count_only == true 329 * will count the number of pages to be added but will not modify the linked 330 * list. If regions_needed != NULL and count_only == true, then regions_needed 331 * will indicate the number of file_regions needed in the cache to carry out to 332 * add the regions for this range. 333 */ 334 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 335 struct hugetlb_cgroup *h_cg, 336 struct hstate *h, long *regions_needed, 337 bool count_only) 338 { 339 long add = 0; 340 struct list_head *head = &resv->regions; 341 long last_accounted_offset = f; 342 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL; 343 344 if (regions_needed) 345 *regions_needed = 0; 346 347 /* In this loop, we essentially handle an entry for the range 348 * [last_accounted_offset, rg->from), at every iteration, with some 349 * bounds checking. 350 */ 351 list_for_each_entry_safe(rg, trg, head, link) { 352 /* Skip irrelevant regions that start before our range. */ 353 if (rg->from < f) { 354 /* If this region ends after the last accounted offset, 355 * then we need to update last_accounted_offset. 356 */ 357 if (rg->to > last_accounted_offset) 358 last_accounted_offset = rg->to; 359 continue; 360 } 361 362 /* When we find a region that starts beyond our range, we've 363 * finished. 364 */ 365 if (rg->from > t) 366 break; 367 368 /* Add an entry for last_accounted_offset -> rg->from, and 369 * update last_accounted_offset. 370 */ 371 if (rg->from > last_accounted_offset) { 372 add += rg->from - last_accounted_offset; 373 if (!count_only) { 374 nrg = get_file_region_entry_from_cache( 375 resv, last_accounted_offset, rg->from); 376 record_hugetlb_cgroup_uncharge_info(h_cg, h, 377 resv, nrg); 378 list_add(&nrg->link, rg->link.prev); 379 coalesce_file_region(resv, nrg); 380 } else if (regions_needed) 381 *regions_needed += 1; 382 } 383 384 last_accounted_offset = rg->to; 385 } 386 387 /* Handle the case where our range extends beyond 388 * last_accounted_offset. 389 */ 390 if (last_accounted_offset < t) { 391 add += t - last_accounted_offset; 392 if (!count_only) { 393 nrg = get_file_region_entry_from_cache( 394 resv, last_accounted_offset, t); 395 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg); 396 list_add(&nrg->link, rg->link.prev); 397 coalesce_file_region(resv, nrg); 398 } else if (regions_needed) 399 *regions_needed += 1; 400 } 401 402 VM_BUG_ON(add < 0); 403 return add; 404 } 405 406 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 407 */ 408 static int allocate_file_region_entries(struct resv_map *resv, 409 int regions_needed) 410 __must_hold(&resv->lock) 411 { 412 struct list_head allocated_regions; 413 int to_allocate = 0, i = 0; 414 struct file_region *trg = NULL, *rg = NULL; 415 416 VM_BUG_ON(regions_needed < 0); 417 418 INIT_LIST_HEAD(&allocated_regions); 419 420 /* 421 * Check for sufficient descriptors in the cache to accommodate 422 * the number of in progress add operations plus regions_needed. 423 * 424 * This is a while loop because when we drop the lock, some other call 425 * to region_add or region_del may have consumed some region_entries, 426 * so we keep looping here until we finally have enough entries for 427 * (adds_in_progress + regions_needed). 428 */ 429 while (resv->region_cache_count < 430 (resv->adds_in_progress + regions_needed)) { 431 to_allocate = resv->adds_in_progress + regions_needed - 432 resv->region_cache_count; 433 434 /* At this point, we should have enough entries in the cache 435 * for all the existings adds_in_progress. We should only be 436 * needing to allocate for regions_needed. 437 */ 438 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 439 440 spin_unlock(&resv->lock); 441 for (i = 0; i < to_allocate; i++) { 442 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 443 if (!trg) 444 goto out_of_memory; 445 list_add(&trg->link, &allocated_regions); 446 } 447 448 spin_lock(&resv->lock); 449 450 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 451 list_del(&rg->link); 452 list_add(&rg->link, &resv->region_cache); 453 resv->region_cache_count++; 454 } 455 } 456 457 return 0; 458 459 out_of_memory: 460 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 461 list_del(&rg->link); 462 kfree(rg); 463 } 464 return -ENOMEM; 465 } 466 467 /* 468 * Add the huge page range represented by [f, t) to the reserve 469 * map. Regions will be taken from the cache to fill in this range. 470 * Sufficient regions should exist in the cache due to the previous 471 * call to region_chg with the same range, but in some cases the cache will not 472 * have sufficient entries due to races with other code doing region_add or 473 * region_del. The extra needed entries will be allocated. 474 * 475 * regions_needed is the out value provided by a previous call to region_chg. 476 * 477 * Return the number of new huge pages added to the map. This number is greater 478 * than or equal to zero. If file_region entries needed to be allocated for 479 * this operation and we were not able to allocate, it returns -ENOMEM. 480 * region_add of regions of length 1 never allocate file_regions and cannot 481 * fail; region_chg will always allocate at least 1 entry and a region_add for 482 * 1 page will only require at most 1 entry. 483 */ 484 static long region_add(struct resv_map *resv, long f, long t, 485 long in_regions_needed, struct hstate *h, 486 struct hugetlb_cgroup *h_cg) 487 { 488 long add = 0, actual_regions_needed = 0; 489 490 spin_lock(&resv->lock); 491 retry: 492 493 /* Count how many regions are actually needed to execute this add. */ 494 add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed, 495 true); 496 497 /* 498 * Check for sufficient descriptors in the cache to accommodate 499 * this add operation. Note that actual_regions_needed may be greater 500 * than in_regions_needed, as the resv_map may have been modified since 501 * the region_chg call. In this case, we need to make sure that we 502 * allocate extra entries, such that we have enough for all the 503 * existing adds_in_progress, plus the excess needed for this 504 * operation. 505 */ 506 if (actual_regions_needed > in_regions_needed && 507 resv->region_cache_count < 508 resv->adds_in_progress + 509 (actual_regions_needed - in_regions_needed)) { 510 /* region_add operation of range 1 should never need to 511 * allocate file_region entries. 512 */ 513 VM_BUG_ON(t - f <= 1); 514 515 if (allocate_file_region_entries( 516 resv, actual_regions_needed - in_regions_needed)) { 517 return -ENOMEM; 518 } 519 520 goto retry; 521 } 522 523 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false); 524 525 resv->adds_in_progress -= in_regions_needed; 526 527 spin_unlock(&resv->lock); 528 VM_BUG_ON(add < 0); 529 return add; 530 } 531 532 /* 533 * Examine the existing reserve map and determine how many 534 * huge pages in the specified range [f, t) are NOT currently 535 * represented. This routine is called before a subsequent 536 * call to region_add that will actually modify the reserve 537 * map to add the specified range [f, t). region_chg does 538 * not change the number of huge pages represented by the 539 * map. A number of new file_region structures is added to the cache as a 540 * placeholder, for the subsequent region_add call to use. At least 1 541 * file_region structure is added. 542 * 543 * out_regions_needed is the number of regions added to the 544 * resv->adds_in_progress. This value needs to be provided to a follow up call 545 * to region_add or region_abort for proper accounting. 546 * 547 * Returns the number of huge pages that need to be added to the existing 548 * reservation map for the range [f, t). This number is greater or equal to 549 * zero. -ENOMEM is returned if a new file_region structure or cache entry 550 * is needed and can not be allocated. 551 */ 552 static long region_chg(struct resv_map *resv, long f, long t, 553 long *out_regions_needed) 554 { 555 long chg = 0; 556 557 spin_lock(&resv->lock); 558 559 /* Count how many hugepages in this range are NOT respresented. */ 560 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 561 out_regions_needed, true); 562 563 if (*out_regions_needed == 0) 564 *out_regions_needed = 1; 565 566 if (allocate_file_region_entries(resv, *out_regions_needed)) 567 return -ENOMEM; 568 569 resv->adds_in_progress += *out_regions_needed; 570 571 spin_unlock(&resv->lock); 572 return chg; 573 } 574 575 /* 576 * Abort the in progress add operation. The adds_in_progress field 577 * of the resv_map keeps track of the operations in progress between 578 * calls to region_chg and region_add. Operations are sometimes 579 * aborted after the call to region_chg. In such cases, region_abort 580 * is called to decrement the adds_in_progress counter. regions_needed 581 * is the value returned by the region_chg call, it is used to decrement 582 * the adds_in_progress counter. 583 * 584 * NOTE: The range arguments [f, t) are not needed or used in this 585 * routine. They are kept to make reading the calling code easier as 586 * arguments will match the associated region_chg call. 587 */ 588 static void region_abort(struct resv_map *resv, long f, long t, 589 long regions_needed) 590 { 591 spin_lock(&resv->lock); 592 VM_BUG_ON(!resv->region_cache_count); 593 resv->adds_in_progress -= regions_needed; 594 spin_unlock(&resv->lock); 595 } 596 597 /* 598 * Delete the specified range [f, t) from the reserve map. If the 599 * t parameter is LONG_MAX, this indicates that ALL regions after f 600 * should be deleted. Locate the regions which intersect [f, t) 601 * and either trim, delete or split the existing regions. 602 * 603 * Returns the number of huge pages deleted from the reserve map. 604 * In the normal case, the return value is zero or more. In the 605 * case where a region must be split, a new region descriptor must 606 * be allocated. If the allocation fails, -ENOMEM will be returned. 607 * NOTE: If the parameter t == LONG_MAX, then we will never split 608 * a region and possibly return -ENOMEM. Callers specifying 609 * t == LONG_MAX do not need to check for -ENOMEM error. 610 */ 611 static long region_del(struct resv_map *resv, long f, long t) 612 { 613 struct list_head *head = &resv->regions; 614 struct file_region *rg, *trg; 615 struct file_region *nrg = NULL; 616 long del = 0; 617 618 retry: 619 spin_lock(&resv->lock); 620 list_for_each_entry_safe(rg, trg, head, link) { 621 /* 622 * Skip regions before the range to be deleted. file_region 623 * ranges are normally of the form [from, to). However, there 624 * may be a "placeholder" entry in the map which is of the form 625 * (from, to) with from == to. Check for placeholder entries 626 * at the beginning of the range to be deleted. 627 */ 628 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 629 continue; 630 631 if (rg->from >= t) 632 break; 633 634 if (f > rg->from && t < rg->to) { /* Must split region */ 635 /* 636 * Check for an entry in the cache before dropping 637 * lock and attempting allocation. 638 */ 639 if (!nrg && 640 resv->region_cache_count > resv->adds_in_progress) { 641 nrg = list_first_entry(&resv->region_cache, 642 struct file_region, 643 link); 644 list_del(&nrg->link); 645 resv->region_cache_count--; 646 } 647 648 if (!nrg) { 649 spin_unlock(&resv->lock); 650 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 651 if (!nrg) 652 return -ENOMEM; 653 goto retry; 654 } 655 656 del += t - f; 657 658 /* New entry for end of split region */ 659 nrg->from = t; 660 nrg->to = rg->to; 661 662 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 663 664 INIT_LIST_HEAD(&nrg->link); 665 666 /* Original entry is trimmed */ 667 rg->to = f; 668 669 hugetlb_cgroup_uncharge_file_region( 670 resv, rg, nrg->to - nrg->from); 671 672 list_add(&nrg->link, &rg->link); 673 nrg = NULL; 674 break; 675 } 676 677 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 678 del += rg->to - rg->from; 679 hugetlb_cgroup_uncharge_file_region(resv, rg, 680 rg->to - rg->from); 681 list_del(&rg->link); 682 kfree(rg); 683 continue; 684 } 685 686 if (f <= rg->from) { /* Trim beginning of region */ 687 del += t - rg->from; 688 rg->from = t; 689 690 hugetlb_cgroup_uncharge_file_region(resv, rg, 691 t - rg->from); 692 } else { /* Trim end of region */ 693 del += rg->to - f; 694 rg->to = f; 695 696 hugetlb_cgroup_uncharge_file_region(resv, rg, 697 rg->to - f); 698 } 699 } 700 701 spin_unlock(&resv->lock); 702 kfree(nrg); 703 return del; 704 } 705 706 /* 707 * A rare out of memory error was encountered which prevented removal of 708 * the reserve map region for a page. The huge page itself was free'ed 709 * and removed from the page cache. This routine will adjust the subpool 710 * usage count, and the global reserve count if needed. By incrementing 711 * these counts, the reserve map entry which could not be deleted will 712 * appear as a "reserved" entry instead of simply dangling with incorrect 713 * counts. 714 */ 715 void hugetlb_fix_reserve_counts(struct inode *inode) 716 { 717 struct hugepage_subpool *spool = subpool_inode(inode); 718 long rsv_adjust; 719 720 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 721 if (rsv_adjust) { 722 struct hstate *h = hstate_inode(inode); 723 724 hugetlb_acct_memory(h, 1); 725 } 726 } 727 728 /* 729 * Count and return the number of huge pages in the reserve map 730 * that intersect with the range [f, t). 731 */ 732 static long region_count(struct resv_map *resv, long f, long t) 733 { 734 struct list_head *head = &resv->regions; 735 struct file_region *rg; 736 long chg = 0; 737 738 spin_lock(&resv->lock); 739 /* Locate each segment we overlap with, and count that overlap. */ 740 list_for_each_entry(rg, head, link) { 741 long seg_from; 742 long seg_to; 743 744 if (rg->to <= f) 745 continue; 746 if (rg->from >= t) 747 break; 748 749 seg_from = max(rg->from, f); 750 seg_to = min(rg->to, t); 751 752 chg += seg_to - seg_from; 753 } 754 spin_unlock(&resv->lock); 755 756 return chg; 757 } 758 759 /* 760 * Convert the address within this vma to the page offset within 761 * the mapping, in pagecache page units; huge pages here. 762 */ 763 static pgoff_t vma_hugecache_offset(struct hstate *h, 764 struct vm_area_struct *vma, unsigned long address) 765 { 766 return ((address - vma->vm_start) >> huge_page_shift(h)) + 767 (vma->vm_pgoff >> huge_page_order(h)); 768 } 769 770 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 771 unsigned long address) 772 { 773 return vma_hugecache_offset(hstate_vma(vma), vma, address); 774 } 775 EXPORT_SYMBOL_GPL(linear_hugepage_index); 776 777 /* 778 * Return the size of the pages allocated when backing a VMA. In the majority 779 * cases this will be same size as used by the page table entries. 780 */ 781 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 782 { 783 if (vma->vm_ops && vma->vm_ops->pagesize) 784 return vma->vm_ops->pagesize(vma); 785 return PAGE_SIZE; 786 } 787 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 788 789 /* 790 * Return the page size being used by the MMU to back a VMA. In the majority 791 * of cases, the page size used by the kernel matches the MMU size. On 792 * architectures where it differs, an architecture-specific 'strong' 793 * version of this symbol is required. 794 */ 795 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 796 { 797 return vma_kernel_pagesize(vma); 798 } 799 800 /* 801 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 802 * bits of the reservation map pointer, which are always clear due to 803 * alignment. 804 */ 805 #define HPAGE_RESV_OWNER (1UL << 0) 806 #define HPAGE_RESV_UNMAPPED (1UL << 1) 807 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 808 809 /* 810 * These helpers are used to track how many pages are reserved for 811 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 812 * is guaranteed to have their future faults succeed. 813 * 814 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 815 * the reserve counters are updated with the hugetlb_lock held. It is safe 816 * to reset the VMA at fork() time as it is not in use yet and there is no 817 * chance of the global counters getting corrupted as a result of the values. 818 * 819 * The private mapping reservation is represented in a subtly different 820 * manner to a shared mapping. A shared mapping has a region map associated 821 * with the underlying file, this region map represents the backing file 822 * pages which have ever had a reservation assigned which this persists even 823 * after the page is instantiated. A private mapping has a region map 824 * associated with the original mmap which is attached to all VMAs which 825 * reference it, this region map represents those offsets which have consumed 826 * reservation ie. where pages have been instantiated. 827 */ 828 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 829 { 830 return (unsigned long)vma->vm_private_data; 831 } 832 833 static void set_vma_private_data(struct vm_area_struct *vma, 834 unsigned long value) 835 { 836 vma->vm_private_data = (void *)value; 837 } 838 839 static void 840 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 841 struct hugetlb_cgroup *h_cg, 842 struct hstate *h) 843 { 844 #ifdef CONFIG_CGROUP_HUGETLB 845 if (!h_cg || !h) { 846 resv_map->reservation_counter = NULL; 847 resv_map->pages_per_hpage = 0; 848 resv_map->css = NULL; 849 } else { 850 resv_map->reservation_counter = 851 &h_cg->rsvd_hugepage[hstate_index(h)]; 852 resv_map->pages_per_hpage = pages_per_huge_page(h); 853 resv_map->css = &h_cg->css; 854 } 855 #endif 856 } 857 858 struct resv_map *resv_map_alloc(void) 859 { 860 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 861 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 862 863 if (!resv_map || !rg) { 864 kfree(resv_map); 865 kfree(rg); 866 return NULL; 867 } 868 869 kref_init(&resv_map->refs); 870 spin_lock_init(&resv_map->lock); 871 INIT_LIST_HEAD(&resv_map->regions); 872 873 resv_map->adds_in_progress = 0; 874 /* 875 * Initialize these to 0. On shared mappings, 0's here indicate these 876 * fields don't do cgroup accounting. On private mappings, these will be 877 * re-initialized to the proper values, to indicate that hugetlb cgroup 878 * reservations are to be un-charged from here. 879 */ 880 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 881 882 INIT_LIST_HEAD(&resv_map->region_cache); 883 list_add(&rg->link, &resv_map->region_cache); 884 resv_map->region_cache_count = 1; 885 886 return resv_map; 887 } 888 889 void resv_map_release(struct kref *ref) 890 { 891 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 892 struct list_head *head = &resv_map->region_cache; 893 struct file_region *rg, *trg; 894 895 /* Clear out any active regions before we release the map. */ 896 region_del(resv_map, 0, LONG_MAX); 897 898 /* ... and any entries left in the cache */ 899 list_for_each_entry_safe(rg, trg, head, link) { 900 list_del(&rg->link); 901 kfree(rg); 902 } 903 904 VM_BUG_ON(resv_map->adds_in_progress); 905 906 kfree(resv_map); 907 } 908 909 static inline struct resv_map *inode_resv_map(struct inode *inode) 910 { 911 /* 912 * At inode evict time, i_mapping may not point to the original 913 * address space within the inode. This original address space 914 * contains the pointer to the resv_map. So, always use the 915 * address space embedded within the inode. 916 * The VERY common case is inode->mapping == &inode->i_data but, 917 * this may not be true for device special inodes. 918 */ 919 return (struct resv_map *)(&inode->i_data)->private_data; 920 } 921 922 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 923 { 924 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 925 if (vma->vm_flags & VM_MAYSHARE) { 926 struct address_space *mapping = vma->vm_file->f_mapping; 927 struct inode *inode = mapping->host; 928 929 return inode_resv_map(inode); 930 931 } else { 932 return (struct resv_map *)(get_vma_private_data(vma) & 933 ~HPAGE_RESV_MASK); 934 } 935 } 936 937 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 938 { 939 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 940 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 941 942 set_vma_private_data(vma, (get_vma_private_data(vma) & 943 HPAGE_RESV_MASK) | (unsigned long)map); 944 } 945 946 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 947 { 948 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 949 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 950 951 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 952 } 953 954 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 955 { 956 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 957 958 return (get_vma_private_data(vma) & flag) != 0; 959 } 960 961 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 962 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 963 { 964 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 965 if (!(vma->vm_flags & VM_MAYSHARE)) 966 vma->vm_private_data = (void *)0; 967 } 968 969 /* Returns true if the VMA has associated reserve pages */ 970 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 971 { 972 if (vma->vm_flags & VM_NORESERVE) { 973 /* 974 * This address is already reserved by other process(chg == 0), 975 * so, we should decrement reserved count. Without decrementing, 976 * reserve count remains after releasing inode, because this 977 * allocated page will go into page cache and is regarded as 978 * coming from reserved pool in releasing step. Currently, we 979 * don't have any other solution to deal with this situation 980 * properly, so add work-around here. 981 */ 982 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 983 return true; 984 else 985 return false; 986 } 987 988 /* Shared mappings always use reserves */ 989 if (vma->vm_flags & VM_MAYSHARE) { 990 /* 991 * We know VM_NORESERVE is not set. Therefore, there SHOULD 992 * be a region map for all pages. The only situation where 993 * there is no region map is if a hole was punched via 994 * fallocate. In this case, there really are no reserves to 995 * use. This situation is indicated if chg != 0. 996 */ 997 if (chg) 998 return false; 999 else 1000 return true; 1001 } 1002 1003 /* 1004 * Only the process that called mmap() has reserves for 1005 * private mappings. 1006 */ 1007 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1008 /* 1009 * Like the shared case above, a hole punch or truncate 1010 * could have been performed on the private mapping. 1011 * Examine the value of chg to determine if reserves 1012 * actually exist or were previously consumed. 1013 * Very Subtle - The value of chg comes from a previous 1014 * call to vma_needs_reserves(). The reserve map for 1015 * private mappings has different (opposite) semantics 1016 * than that of shared mappings. vma_needs_reserves() 1017 * has already taken this difference in semantics into 1018 * account. Therefore, the meaning of chg is the same 1019 * as in the shared case above. Code could easily be 1020 * combined, but keeping it separate draws attention to 1021 * subtle differences. 1022 */ 1023 if (chg) 1024 return false; 1025 else 1026 return true; 1027 } 1028 1029 return false; 1030 } 1031 1032 static void enqueue_huge_page(struct hstate *h, struct page *page) 1033 { 1034 int nid = page_to_nid(page); 1035 list_move(&page->lru, &h->hugepage_freelists[nid]); 1036 h->free_huge_pages++; 1037 h->free_huge_pages_node[nid]++; 1038 } 1039 1040 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1041 { 1042 struct page *page; 1043 1044 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 1045 if (!PageHWPoison(page)) 1046 break; 1047 /* 1048 * if 'non-isolated free hugepage' not found on the list, 1049 * the allocation fails. 1050 */ 1051 if (&h->hugepage_freelists[nid] == &page->lru) 1052 return NULL; 1053 list_move(&page->lru, &h->hugepage_activelist); 1054 set_page_refcounted(page); 1055 h->free_huge_pages--; 1056 h->free_huge_pages_node[nid]--; 1057 return page; 1058 } 1059 1060 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1061 nodemask_t *nmask) 1062 { 1063 unsigned int cpuset_mems_cookie; 1064 struct zonelist *zonelist; 1065 struct zone *zone; 1066 struct zoneref *z; 1067 int node = NUMA_NO_NODE; 1068 1069 zonelist = node_zonelist(nid, gfp_mask); 1070 1071 retry_cpuset: 1072 cpuset_mems_cookie = read_mems_allowed_begin(); 1073 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1074 struct page *page; 1075 1076 if (!cpuset_zone_allowed(zone, gfp_mask)) 1077 continue; 1078 /* 1079 * no need to ask again on the same node. Pool is node rather than 1080 * zone aware 1081 */ 1082 if (zone_to_nid(zone) == node) 1083 continue; 1084 node = zone_to_nid(zone); 1085 1086 page = dequeue_huge_page_node_exact(h, node); 1087 if (page) 1088 return page; 1089 } 1090 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1091 goto retry_cpuset; 1092 1093 return NULL; 1094 } 1095 1096 /* Movability of hugepages depends on migration support. */ 1097 static inline gfp_t htlb_alloc_mask(struct hstate *h) 1098 { 1099 if (hugepage_movable_supported(h)) 1100 return GFP_HIGHUSER_MOVABLE; 1101 else 1102 return GFP_HIGHUSER; 1103 } 1104 1105 static struct page *dequeue_huge_page_vma(struct hstate *h, 1106 struct vm_area_struct *vma, 1107 unsigned long address, int avoid_reserve, 1108 long chg) 1109 { 1110 struct page *page; 1111 struct mempolicy *mpol; 1112 gfp_t gfp_mask; 1113 nodemask_t *nodemask; 1114 int nid; 1115 1116 /* 1117 * A child process with MAP_PRIVATE mappings created by their parent 1118 * have no page reserves. This check ensures that reservations are 1119 * not "stolen". The child may still get SIGKILLed 1120 */ 1121 if (!vma_has_reserves(vma, chg) && 1122 h->free_huge_pages - h->resv_huge_pages == 0) 1123 goto err; 1124 1125 /* If reserves cannot be used, ensure enough pages are in the pool */ 1126 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1127 goto err; 1128 1129 gfp_mask = htlb_alloc_mask(h); 1130 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1131 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1132 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1133 SetPagePrivate(page); 1134 h->resv_huge_pages--; 1135 } 1136 1137 mpol_cond_put(mpol); 1138 return page; 1139 1140 err: 1141 return NULL; 1142 } 1143 1144 /* 1145 * common helper functions for hstate_next_node_to_{alloc|free}. 1146 * We may have allocated or freed a huge page based on a different 1147 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1148 * be outside of *nodes_allowed. Ensure that we use an allowed 1149 * node for alloc or free. 1150 */ 1151 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1152 { 1153 nid = next_node_in(nid, *nodes_allowed); 1154 VM_BUG_ON(nid >= MAX_NUMNODES); 1155 1156 return nid; 1157 } 1158 1159 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1160 { 1161 if (!node_isset(nid, *nodes_allowed)) 1162 nid = next_node_allowed(nid, nodes_allowed); 1163 return nid; 1164 } 1165 1166 /* 1167 * returns the previously saved node ["this node"] from which to 1168 * allocate a persistent huge page for the pool and advance the 1169 * next node from which to allocate, handling wrap at end of node 1170 * mask. 1171 */ 1172 static int hstate_next_node_to_alloc(struct hstate *h, 1173 nodemask_t *nodes_allowed) 1174 { 1175 int nid; 1176 1177 VM_BUG_ON(!nodes_allowed); 1178 1179 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1180 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1181 1182 return nid; 1183 } 1184 1185 /* 1186 * helper for free_pool_huge_page() - return the previously saved 1187 * node ["this node"] from which to free a huge page. Advance the 1188 * next node id whether or not we find a free huge page to free so 1189 * that the next attempt to free addresses the next node. 1190 */ 1191 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1192 { 1193 int nid; 1194 1195 VM_BUG_ON(!nodes_allowed); 1196 1197 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1198 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1199 1200 return nid; 1201 } 1202 1203 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1204 for (nr_nodes = nodes_weight(*mask); \ 1205 nr_nodes > 0 && \ 1206 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1207 nr_nodes--) 1208 1209 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1210 for (nr_nodes = nodes_weight(*mask); \ 1211 nr_nodes > 0 && \ 1212 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1213 nr_nodes--) 1214 1215 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1216 static void destroy_compound_gigantic_page(struct page *page, 1217 unsigned int order) 1218 { 1219 int i; 1220 int nr_pages = 1 << order; 1221 struct page *p = page + 1; 1222 1223 atomic_set(compound_mapcount_ptr(page), 0); 1224 if (hpage_pincount_available(page)) 1225 atomic_set(compound_pincount_ptr(page), 0); 1226 1227 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1228 clear_compound_head(p); 1229 set_page_refcounted(p); 1230 } 1231 1232 set_compound_order(page, 0); 1233 __ClearPageHead(page); 1234 } 1235 1236 static void free_gigantic_page(struct page *page, unsigned int order) 1237 { 1238 /* 1239 * If the page isn't allocated using the cma allocator, 1240 * cma_release() returns false. 1241 */ 1242 #ifdef CONFIG_CMA 1243 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1244 return; 1245 #endif 1246 1247 free_contig_range(page_to_pfn(page), 1 << order); 1248 } 1249 1250 #ifdef CONFIG_CONTIG_ALLOC 1251 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1252 int nid, nodemask_t *nodemask) 1253 { 1254 unsigned long nr_pages = 1UL << huge_page_order(h); 1255 1256 #ifdef CONFIG_CMA 1257 { 1258 struct page *page; 1259 int node; 1260 1261 for_each_node_mask(node, *nodemask) { 1262 if (!hugetlb_cma[node]) 1263 continue; 1264 1265 page = cma_alloc(hugetlb_cma[node], nr_pages, 1266 huge_page_order(h), true); 1267 if (page) 1268 return page; 1269 } 1270 } 1271 #endif 1272 1273 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1274 } 1275 1276 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1277 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1278 #else /* !CONFIG_CONTIG_ALLOC */ 1279 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1280 int nid, nodemask_t *nodemask) 1281 { 1282 return NULL; 1283 } 1284 #endif /* CONFIG_CONTIG_ALLOC */ 1285 1286 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1287 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1288 int nid, nodemask_t *nodemask) 1289 { 1290 return NULL; 1291 } 1292 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1293 static inline void destroy_compound_gigantic_page(struct page *page, 1294 unsigned int order) { } 1295 #endif 1296 1297 static void update_and_free_page(struct hstate *h, struct page *page) 1298 { 1299 int i; 1300 1301 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1302 return; 1303 1304 h->nr_huge_pages--; 1305 h->nr_huge_pages_node[page_to_nid(page)]--; 1306 for (i = 0; i < pages_per_huge_page(h); i++) { 1307 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1308 1 << PG_referenced | 1 << PG_dirty | 1309 1 << PG_active | 1 << PG_private | 1310 1 << PG_writeback); 1311 } 1312 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1313 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1314 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1315 set_page_refcounted(page); 1316 if (hstate_is_gigantic(h)) { 1317 /* 1318 * Temporarily drop the hugetlb_lock, because 1319 * we might block in free_gigantic_page(). 1320 */ 1321 spin_unlock(&hugetlb_lock); 1322 destroy_compound_gigantic_page(page, huge_page_order(h)); 1323 free_gigantic_page(page, huge_page_order(h)); 1324 spin_lock(&hugetlb_lock); 1325 } else { 1326 __free_pages(page, huge_page_order(h)); 1327 } 1328 } 1329 1330 struct hstate *size_to_hstate(unsigned long size) 1331 { 1332 struct hstate *h; 1333 1334 for_each_hstate(h) { 1335 if (huge_page_size(h) == size) 1336 return h; 1337 } 1338 return NULL; 1339 } 1340 1341 /* 1342 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1343 * to hstate->hugepage_activelist.) 1344 * 1345 * This function can be called for tail pages, but never returns true for them. 1346 */ 1347 bool page_huge_active(struct page *page) 1348 { 1349 VM_BUG_ON_PAGE(!PageHuge(page), page); 1350 return PageHead(page) && PagePrivate(&page[1]); 1351 } 1352 1353 /* never called for tail page */ 1354 static void set_page_huge_active(struct page *page) 1355 { 1356 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1357 SetPagePrivate(&page[1]); 1358 } 1359 1360 static void clear_page_huge_active(struct page *page) 1361 { 1362 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1363 ClearPagePrivate(&page[1]); 1364 } 1365 1366 /* 1367 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1368 * code 1369 */ 1370 static inline bool PageHugeTemporary(struct page *page) 1371 { 1372 if (!PageHuge(page)) 1373 return false; 1374 1375 return (unsigned long)page[2].mapping == -1U; 1376 } 1377 1378 static inline void SetPageHugeTemporary(struct page *page) 1379 { 1380 page[2].mapping = (void *)-1U; 1381 } 1382 1383 static inline void ClearPageHugeTemporary(struct page *page) 1384 { 1385 page[2].mapping = NULL; 1386 } 1387 1388 static void __free_huge_page(struct page *page) 1389 { 1390 /* 1391 * Can't pass hstate in here because it is called from the 1392 * compound page destructor. 1393 */ 1394 struct hstate *h = page_hstate(page); 1395 int nid = page_to_nid(page); 1396 struct hugepage_subpool *spool = 1397 (struct hugepage_subpool *)page_private(page); 1398 bool restore_reserve; 1399 1400 VM_BUG_ON_PAGE(page_count(page), page); 1401 VM_BUG_ON_PAGE(page_mapcount(page), page); 1402 1403 set_page_private(page, 0); 1404 page->mapping = NULL; 1405 restore_reserve = PagePrivate(page); 1406 ClearPagePrivate(page); 1407 1408 /* 1409 * If PagePrivate() was set on page, page allocation consumed a 1410 * reservation. If the page was associated with a subpool, there 1411 * would have been a page reserved in the subpool before allocation 1412 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1413 * reservtion, do not call hugepage_subpool_put_pages() as this will 1414 * remove the reserved page from the subpool. 1415 */ 1416 if (!restore_reserve) { 1417 /* 1418 * A return code of zero implies that the subpool will be 1419 * under its minimum size if the reservation is not restored 1420 * after page is free. Therefore, force restore_reserve 1421 * operation. 1422 */ 1423 if (hugepage_subpool_put_pages(spool, 1) == 0) 1424 restore_reserve = true; 1425 } 1426 1427 spin_lock(&hugetlb_lock); 1428 clear_page_huge_active(page); 1429 hugetlb_cgroup_uncharge_page(hstate_index(h), 1430 pages_per_huge_page(h), page); 1431 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1432 pages_per_huge_page(h), page); 1433 if (restore_reserve) 1434 h->resv_huge_pages++; 1435 1436 if (PageHugeTemporary(page)) { 1437 list_del(&page->lru); 1438 ClearPageHugeTemporary(page); 1439 update_and_free_page(h, page); 1440 } else if (h->surplus_huge_pages_node[nid]) { 1441 /* remove the page from active list */ 1442 list_del(&page->lru); 1443 update_and_free_page(h, page); 1444 h->surplus_huge_pages--; 1445 h->surplus_huge_pages_node[nid]--; 1446 } else { 1447 arch_clear_hugepage_flags(page); 1448 enqueue_huge_page(h, page); 1449 } 1450 spin_unlock(&hugetlb_lock); 1451 } 1452 1453 /* 1454 * As free_huge_page() can be called from a non-task context, we have 1455 * to defer the actual freeing in a workqueue to prevent potential 1456 * hugetlb_lock deadlock. 1457 * 1458 * free_hpage_workfn() locklessly retrieves the linked list of pages to 1459 * be freed and frees them one-by-one. As the page->mapping pointer is 1460 * going to be cleared in __free_huge_page() anyway, it is reused as the 1461 * llist_node structure of a lockless linked list of huge pages to be freed. 1462 */ 1463 static LLIST_HEAD(hpage_freelist); 1464 1465 static void free_hpage_workfn(struct work_struct *work) 1466 { 1467 struct llist_node *node; 1468 struct page *page; 1469 1470 node = llist_del_all(&hpage_freelist); 1471 1472 while (node) { 1473 page = container_of((struct address_space **)node, 1474 struct page, mapping); 1475 node = node->next; 1476 __free_huge_page(page); 1477 } 1478 } 1479 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1480 1481 void free_huge_page(struct page *page) 1482 { 1483 /* 1484 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock. 1485 */ 1486 if (!in_task()) { 1487 /* 1488 * Only call schedule_work() if hpage_freelist is previously 1489 * empty. Otherwise, schedule_work() had been called but the 1490 * workfn hasn't retrieved the list yet. 1491 */ 1492 if (llist_add((struct llist_node *)&page->mapping, 1493 &hpage_freelist)) 1494 schedule_work(&free_hpage_work); 1495 return; 1496 } 1497 1498 __free_huge_page(page); 1499 } 1500 1501 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1502 { 1503 INIT_LIST_HEAD(&page->lru); 1504 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1505 spin_lock(&hugetlb_lock); 1506 set_hugetlb_cgroup(page, NULL); 1507 set_hugetlb_cgroup_rsvd(page, NULL); 1508 h->nr_huge_pages++; 1509 h->nr_huge_pages_node[nid]++; 1510 spin_unlock(&hugetlb_lock); 1511 } 1512 1513 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1514 { 1515 int i; 1516 int nr_pages = 1 << order; 1517 struct page *p = page + 1; 1518 1519 /* we rely on prep_new_huge_page to set the destructor */ 1520 set_compound_order(page, order); 1521 __ClearPageReserved(page); 1522 __SetPageHead(page); 1523 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1524 /* 1525 * For gigantic hugepages allocated through bootmem at 1526 * boot, it's safer to be consistent with the not-gigantic 1527 * hugepages and clear the PG_reserved bit from all tail pages 1528 * too. Otherwise drivers using get_user_pages() to access tail 1529 * pages may get the reference counting wrong if they see 1530 * PG_reserved set on a tail page (despite the head page not 1531 * having PG_reserved set). Enforcing this consistency between 1532 * head and tail pages allows drivers to optimize away a check 1533 * on the head page when they need know if put_page() is needed 1534 * after get_user_pages(). 1535 */ 1536 __ClearPageReserved(p); 1537 set_page_count(p, 0); 1538 set_compound_head(p, page); 1539 } 1540 atomic_set(compound_mapcount_ptr(page), -1); 1541 1542 if (hpage_pincount_available(page)) 1543 atomic_set(compound_pincount_ptr(page), 0); 1544 } 1545 1546 /* 1547 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1548 * transparent huge pages. See the PageTransHuge() documentation for more 1549 * details. 1550 */ 1551 int PageHuge(struct page *page) 1552 { 1553 if (!PageCompound(page)) 1554 return 0; 1555 1556 page = compound_head(page); 1557 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1558 } 1559 EXPORT_SYMBOL_GPL(PageHuge); 1560 1561 /* 1562 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1563 * normal or transparent huge pages. 1564 */ 1565 int PageHeadHuge(struct page *page_head) 1566 { 1567 if (!PageHead(page_head)) 1568 return 0; 1569 1570 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1571 } 1572 1573 /* 1574 * Find address_space associated with hugetlbfs page. 1575 * Upon entry page is locked and page 'was' mapped although mapped state 1576 * could change. If necessary, use anon_vma to find vma and associated 1577 * address space. The returned mapping may be stale, but it can not be 1578 * invalid as page lock (which is held) is required to destroy mapping. 1579 */ 1580 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage) 1581 { 1582 struct anon_vma *anon_vma; 1583 pgoff_t pgoff_start, pgoff_end; 1584 struct anon_vma_chain *avc; 1585 struct address_space *mapping = page_mapping(hpage); 1586 1587 /* Simple file based mapping */ 1588 if (mapping) 1589 return mapping; 1590 1591 /* 1592 * Even anonymous hugetlbfs mappings are associated with an 1593 * underlying hugetlbfs file (see hugetlb_file_setup in mmap 1594 * code). Find a vma associated with the anonymous vma, and 1595 * use the file pointer to get address_space. 1596 */ 1597 anon_vma = page_lock_anon_vma_read(hpage); 1598 if (!anon_vma) 1599 return mapping; /* NULL */ 1600 1601 /* Use first found vma */ 1602 pgoff_start = page_to_pgoff(hpage); 1603 pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1; 1604 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 1605 pgoff_start, pgoff_end) { 1606 struct vm_area_struct *vma = avc->vma; 1607 1608 mapping = vma->vm_file->f_mapping; 1609 break; 1610 } 1611 1612 anon_vma_unlock_read(anon_vma); 1613 return mapping; 1614 } 1615 1616 /* 1617 * Find and lock address space (mapping) in write mode. 1618 * 1619 * Upon entry, the page is locked which allows us to find the mapping 1620 * even in the case of an anon page. However, locking order dictates 1621 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs 1622 * specific. So, we first try to lock the sema while still holding the 1623 * page lock. If this works, great! If not, then we need to drop the 1624 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of 1625 * course, need to revalidate state along the way. 1626 */ 1627 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1628 { 1629 struct address_space *mapping, *mapping2; 1630 1631 mapping = _get_hugetlb_page_mapping(hpage); 1632 retry: 1633 if (!mapping) 1634 return mapping; 1635 1636 /* 1637 * If no contention, take lock and return 1638 */ 1639 if (i_mmap_trylock_write(mapping)) 1640 return mapping; 1641 1642 /* 1643 * Must drop page lock and wait on mapping sema. 1644 * Note: Once page lock is dropped, mapping could become invalid. 1645 * As a hack, increase map count until we lock page again. 1646 */ 1647 atomic_inc(&hpage->_mapcount); 1648 unlock_page(hpage); 1649 i_mmap_lock_write(mapping); 1650 lock_page(hpage); 1651 atomic_add_negative(-1, &hpage->_mapcount); 1652 1653 /* verify page is still mapped */ 1654 if (!page_mapped(hpage)) { 1655 i_mmap_unlock_write(mapping); 1656 return NULL; 1657 } 1658 1659 /* 1660 * Get address space again and verify it is the same one 1661 * we locked. If not, drop lock and retry. 1662 */ 1663 mapping2 = _get_hugetlb_page_mapping(hpage); 1664 if (mapping2 != mapping) { 1665 i_mmap_unlock_write(mapping); 1666 mapping = mapping2; 1667 goto retry; 1668 } 1669 1670 return mapping; 1671 } 1672 1673 pgoff_t __basepage_index(struct page *page) 1674 { 1675 struct page *page_head = compound_head(page); 1676 pgoff_t index = page_index(page_head); 1677 unsigned long compound_idx; 1678 1679 if (!PageHuge(page_head)) 1680 return page_index(page); 1681 1682 if (compound_order(page_head) >= MAX_ORDER) 1683 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1684 else 1685 compound_idx = page - page_head; 1686 1687 return (index << compound_order(page_head)) + compound_idx; 1688 } 1689 1690 static struct page *alloc_buddy_huge_page(struct hstate *h, 1691 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1692 nodemask_t *node_alloc_noretry) 1693 { 1694 int order = huge_page_order(h); 1695 struct page *page; 1696 bool alloc_try_hard = true; 1697 1698 /* 1699 * By default we always try hard to allocate the page with 1700 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1701 * a loop (to adjust global huge page counts) and previous allocation 1702 * failed, do not continue to try hard on the same node. Use the 1703 * node_alloc_noretry bitmap to manage this state information. 1704 */ 1705 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1706 alloc_try_hard = false; 1707 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1708 if (alloc_try_hard) 1709 gfp_mask |= __GFP_RETRY_MAYFAIL; 1710 if (nid == NUMA_NO_NODE) 1711 nid = numa_mem_id(); 1712 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1713 if (page) 1714 __count_vm_event(HTLB_BUDDY_PGALLOC); 1715 else 1716 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1717 1718 /* 1719 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1720 * indicates an overall state change. Clear bit so that we resume 1721 * normal 'try hard' allocations. 1722 */ 1723 if (node_alloc_noretry && page && !alloc_try_hard) 1724 node_clear(nid, *node_alloc_noretry); 1725 1726 /* 1727 * If we tried hard to get a page but failed, set bit so that 1728 * subsequent attempts will not try as hard until there is an 1729 * overall state change. 1730 */ 1731 if (node_alloc_noretry && !page && alloc_try_hard) 1732 node_set(nid, *node_alloc_noretry); 1733 1734 return page; 1735 } 1736 1737 /* 1738 * Common helper to allocate a fresh hugetlb page. All specific allocators 1739 * should use this function to get new hugetlb pages 1740 */ 1741 static struct page *alloc_fresh_huge_page(struct hstate *h, 1742 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1743 nodemask_t *node_alloc_noretry) 1744 { 1745 struct page *page; 1746 1747 if (hstate_is_gigantic(h)) 1748 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1749 else 1750 page = alloc_buddy_huge_page(h, gfp_mask, 1751 nid, nmask, node_alloc_noretry); 1752 if (!page) 1753 return NULL; 1754 1755 if (hstate_is_gigantic(h)) 1756 prep_compound_gigantic_page(page, huge_page_order(h)); 1757 prep_new_huge_page(h, page, page_to_nid(page)); 1758 1759 return page; 1760 } 1761 1762 /* 1763 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1764 * manner. 1765 */ 1766 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1767 nodemask_t *node_alloc_noretry) 1768 { 1769 struct page *page; 1770 int nr_nodes, node; 1771 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1772 1773 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1774 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1775 node_alloc_noretry); 1776 if (page) 1777 break; 1778 } 1779 1780 if (!page) 1781 return 0; 1782 1783 put_page(page); /* free it into the hugepage allocator */ 1784 1785 return 1; 1786 } 1787 1788 /* 1789 * Free huge page from pool from next node to free. 1790 * Attempt to keep persistent huge pages more or less 1791 * balanced over allowed nodes. 1792 * Called with hugetlb_lock locked. 1793 */ 1794 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1795 bool acct_surplus) 1796 { 1797 int nr_nodes, node; 1798 int ret = 0; 1799 1800 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1801 /* 1802 * If we're returning unused surplus pages, only examine 1803 * nodes with surplus pages. 1804 */ 1805 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1806 !list_empty(&h->hugepage_freelists[node])) { 1807 struct page *page = 1808 list_entry(h->hugepage_freelists[node].next, 1809 struct page, lru); 1810 list_del(&page->lru); 1811 h->free_huge_pages--; 1812 h->free_huge_pages_node[node]--; 1813 if (acct_surplus) { 1814 h->surplus_huge_pages--; 1815 h->surplus_huge_pages_node[node]--; 1816 } 1817 update_and_free_page(h, page); 1818 ret = 1; 1819 break; 1820 } 1821 } 1822 1823 return ret; 1824 } 1825 1826 /* 1827 * Dissolve a given free hugepage into free buddy pages. This function does 1828 * nothing for in-use hugepages and non-hugepages. 1829 * This function returns values like below: 1830 * 1831 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 1832 * (allocated or reserved.) 1833 * 0: successfully dissolved free hugepages or the page is not a 1834 * hugepage (considered as already dissolved) 1835 */ 1836 int dissolve_free_huge_page(struct page *page) 1837 { 1838 int rc = -EBUSY; 1839 1840 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 1841 if (!PageHuge(page)) 1842 return 0; 1843 1844 spin_lock(&hugetlb_lock); 1845 if (!PageHuge(page)) { 1846 rc = 0; 1847 goto out; 1848 } 1849 1850 if (!page_count(page)) { 1851 struct page *head = compound_head(page); 1852 struct hstate *h = page_hstate(head); 1853 int nid = page_to_nid(head); 1854 if (h->free_huge_pages - h->resv_huge_pages == 0) 1855 goto out; 1856 /* 1857 * Move PageHWPoison flag from head page to the raw error page, 1858 * which makes any subpages rather than the error page reusable. 1859 */ 1860 if (PageHWPoison(head) && page != head) { 1861 SetPageHWPoison(page); 1862 ClearPageHWPoison(head); 1863 } 1864 list_del(&head->lru); 1865 h->free_huge_pages--; 1866 h->free_huge_pages_node[nid]--; 1867 h->max_huge_pages--; 1868 update_and_free_page(h, head); 1869 rc = 0; 1870 } 1871 out: 1872 spin_unlock(&hugetlb_lock); 1873 return rc; 1874 } 1875 1876 /* 1877 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1878 * make specified memory blocks removable from the system. 1879 * Note that this will dissolve a free gigantic hugepage completely, if any 1880 * part of it lies within the given range. 1881 * Also note that if dissolve_free_huge_page() returns with an error, all 1882 * free hugepages that were dissolved before that error are lost. 1883 */ 1884 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1885 { 1886 unsigned long pfn; 1887 struct page *page; 1888 int rc = 0; 1889 1890 if (!hugepages_supported()) 1891 return rc; 1892 1893 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1894 page = pfn_to_page(pfn); 1895 rc = dissolve_free_huge_page(page); 1896 if (rc) 1897 break; 1898 } 1899 1900 return rc; 1901 } 1902 1903 /* 1904 * Allocates a fresh surplus page from the page allocator. 1905 */ 1906 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1907 int nid, nodemask_t *nmask) 1908 { 1909 struct page *page = NULL; 1910 1911 if (hstate_is_gigantic(h)) 1912 return NULL; 1913 1914 spin_lock(&hugetlb_lock); 1915 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1916 goto out_unlock; 1917 spin_unlock(&hugetlb_lock); 1918 1919 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1920 if (!page) 1921 return NULL; 1922 1923 spin_lock(&hugetlb_lock); 1924 /* 1925 * We could have raced with the pool size change. 1926 * Double check that and simply deallocate the new page 1927 * if we would end up overcommiting the surpluses. Abuse 1928 * temporary page to workaround the nasty free_huge_page 1929 * codeflow 1930 */ 1931 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1932 SetPageHugeTemporary(page); 1933 spin_unlock(&hugetlb_lock); 1934 put_page(page); 1935 return NULL; 1936 } else { 1937 h->surplus_huge_pages++; 1938 h->surplus_huge_pages_node[page_to_nid(page)]++; 1939 } 1940 1941 out_unlock: 1942 spin_unlock(&hugetlb_lock); 1943 1944 return page; 1945 } 1946 1947 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1948 int nid, nodemask_t *nmask) 1949 { 1950 struct page *page; 1951 1952 if (hstate_is_gigantic(h)) 1953 return NULL; 1954 1955 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1956 if (!page) 1957 return NULL; 1958 1959 /* 1960 * We do not account these pages as surplus because they are only 1961 * temporary and will be released properly on the last reference 1962 */ 1963 SetPageHugeTemporary(page); 1964 1965 return page; 1966 } 1967 1968 /* 1969 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1970 */ 1971 static 1972 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1973 struct vm_area_struct *vma, unsigned long addr) 1974 { 1975 struct page *page; 1976 struct mempolicy *mpol; 1977 gfp_t gfp_mask = htlb_alloc_mask(h); 1978 int nid; 1979 nodemask_t *nodemask; 1980 1981 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1982 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1983 mpol_cond_put(mpol); 1984 1985 return page; 1986 } 1987 1988 /* page migration callback function */ 1989 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1990 { 1991 gfp_t gfp_mask = htlb_alloc_mask(h); 1992 struct page *page = NULL; 1993 1994 if (nid != NUMA_NO_NODE) 1995 gfp_mask |= __GFP_THISNODE; 1996 1997 spin_lock(&hugetlb_lock); 1998 if (h->free_huge_pages - h->resv_huge_pages > 0) 1999 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); 2000 spin_unlock(&hugetlb_lock); 2001 2002 if (!page) 2003 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 2004 2005 return page; 2006 } 2007 2008 /* page migration callback function */ 2009 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 2010 nodemask_t *nmask) 2011 { 2012 gfp_t gfp_mask = htlb_alloc_mask(h); 2013 2014 spin_lock(&hugetlb_lock); 2015 if (h->free_huge_pages - h->resv_huge_pages > 0) { 2016 struct page *page; 2017 2018 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 2019 if (page) { 2020 spin_unlock(&hugetlb_lock); 2021 return page; 2022 } 2023 } 2024 spin_unlock(&hugetlb_lock); 2025 2026 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2027 } 2028 2029 /* mempolicy aware migration callback */ 2030 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2031 unsigned long address) 2032 { 2033 struct mempolicy *mpol; 2034 nodemask_t *nodemask; 2035 struct page *page; 2036 gfp_t gfp_mask; 2037 int node; 2038 2039 gfp_mask = htlb_alloc_mask(h); 2040 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2041 page = alloc_huge_page_nodemask(h, node, nodemask); 2042 mpol_cond_put(mpol); 2043 2044 return page; 2045 } 2046 2047 /* 2048 * Increase the hugetlb pool such that it can accommodate a reservation 2049 * of size 'delta'. 2050 */ 2051 static int gather_surplus_pages(struct hstate *h, int delta) 2052 __must_hold(&hugetlb_lock) 2053 { 2054 struct list_head surplus_list; 2055 struct page *page, *tmp; 2056 int ret, i; 2057 int needed, allocated; 2058 bool alloc_ok = true; 2059 2060 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2061 if (needed <= 0) { 2062 h->resv_huge_pages += delta; 2063 return 0; 2064 } 2065 2066 allocated = 0; 2067 INIT_LIST_HEAD(&surplus_list); 2068 2069 ret = -ENOMEM; 2070 retry: 2071 spin_unlock(&hugetlb_lock); 2072 for (i = 0; i < needed; i++) { 2073 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2074 NUMA_NO_NODE, NULL); 2075 if (!page) { 2076 alloc_ok = false; 2077 break; 2078 } 2079 list_add(&page->lru, &surplus_list); 2080 cond_resched(); 2081 } 2082 allocated += i; 2083 2084 /* 2085 * After retaking hugetlb_lock, we need to recalculate 'needed' 2086 * because either resv_huge_pages or free_huge_pages may have changed. 2087 */ 2088 spin_lock(&hugetlb_lock); 2089 needed = (h->resv_huge_pages + delta) - 2090 (h->free_huge_pages + allocated); 2091 if (needed > 0) { 2092 if (alloc_ok) 2093 goto retry; 2094 /* 2095 * We were not able to allocate enough pages to 2096 * satisfy the entire reservation so we free what 2097 * we've allocated so far. 2098 */ 2099 goto free; 2100 } 2101 /* 2102 * The surplus_list now contains _at_least_ the number of extra pages 2103 * needed to accommodate the reservation. Add the appropriate number 2104 * of pages to the hugetlb pool and free the extras back to the buddy 2105 * allocator. Commit the entire reservation here to prevent another 2106 * process from stealing the pages as they are added to the pool but 2107 * before they are reserved. 2108 */ 2109 needed += allocated; 2110 h->resv_huge_pages += delta; 2111 ret = 0; 2112 2113 /* Free the needed pages to the hugetlb pool */ 2114 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2115 if ((--needed) < 0) 2116 break; 2117 /* 2118 * This page is now managed by the hugetlb allocator and has 2119 * no users -- drop the buddy allocator's reference. 2120 */ 2121 put_page_testzero(page); 2122 VM_BUG_ON_PAGE(page_count(page), page); 2123 enqueue_huge_page(h, page); 2124 } 2125 free: 2126 spin_unlock(&hugetlb_lock); 2127 2128 /* Free unnecessary surplus pages to the buddy allocator */ 2129 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2130 put_page(page); 2131 spin_lock(&hugetlb_lock); 2132 2133 return ret; 2134 } 2135 2136 /* 2137 * This routine has two main purposes: 2138 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2139 * in unused_resv_pages. This corresponds to the prior adjustments made 2140 * to the associated reservation map. 2141 * 2) Free any unused surplus pages that may have been allocated to satisfy 2142 * the reservation. As many as unused_resv_pages may be freed. 2143 * 2144 * Called with hugetlb_lock held. However, the lock could be dropped (and 2145 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 2146 * we must make sure nobody else can claim pages we are in the process of 2147 * freeing. Do this by ensuring resv_huge_page always is greater than the 2148 * number of huge pages we plan to free when dropping the lock. 2149 */ 2150 static void return_unused_surplus_pages(struct hstate *h, 2151 unsigned long unused_resv_pages) 2152 { 2153 unsigned long nr_pages; 2154 2155 /* Cannot return gigantic pages currently */ 2156 if (hstate_is_gigantic(h)) 2157 goto out; 2158 2159 /* 2160 * Part (or even all) of the reservation could have been backed 2161 * by pre-allocated pages. Only free surplus pages. 2162 */ 2163 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2164 2165 /* 2166 * We want to release as many surplus pages as possible, spread 2167 * evenly across all nodes with memory. Iterate across these nodes 2168 * until we can no longer free unreserved surplus pages. This occurs 2169 * when the nodes with surplus pages have no free pages. 2170 * free_pool_huge_page() will balance the freed pages across the 2171 * on-line nodes with memory and will handle the hstate accounting. 2172 * 2173 * Note that we decrement resv_huge_pages as we free the pages. If 2174 * we drop the lock, resv_huge_pages will still be sufficiently large 2175 * to cover subsequent pages we may free. 2176 */ 2177 while (nr_pages--) { 2178 h->resv_huge_pages--; 2179 unused_resv_pages--; 2180 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 2181 goto out; 2182 cond_resched_lock(&hugetlb_lock); 2183 } 2184 2185 out: 2186 /* Fully uncommit the reservation */ 2187 h->resv_huge_pages -= unused_resv_pages; 2188 } 2189 2190 2191 /* 2192 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2193 * are used by the huge page allocation routines to manage reservations. 2194 * 2195 * vma_needs_reservation is called to determine if the huge page at addr 2196 * within the vma has an associated reservation. If a reservation is 2197 * needed, the value 1 is returned. The caller is then responsible for 2198 * managing the global reservation and subpool usage counts. After 2199 * the huge page has been allocated, vma_commit_reservation is called 2200 * to add the page to the reservation map. If the page allocation fails, 2201 * the reservation must be ended instead of committed. vma_end_reservation 2202 * is called in such cases. 2203 * 2204 * In the normal case, vma_commit_reservation returns the same value 2205 * as the preceding vma_needs_reservation call. The only time this 2206 * is not the case is if a reserve map was changed between calls. It 2207 * is the responsibility of the caller to notice the difference and 2208 * take appropriate action. 2209 * 2210 * vma_add_reservation is used in error paths where a reservation must 2211 * be restored when a newly allocated huge page must be freed. It is 2212 * to be called after calling vma_needs_reservation to determine if a 2213 * reservation exists. 2214 */ 2215 enum vma_resv_mode { 2216 VMA_NEEDS_RESV, 2217 VMA_COMMIT_RESV, 2218 VMA_END_RESV, 2219 VMA_ADD_RESV, 2220 }; 2221 static long __vma_reservation_common(struct hstate *h, 2222 struct vm_area_struct *vma, unsigned long addr, 2223 enum vma_resv_mode mode) 2224 { 2225 struct resv_map *resv; 2226 pgoff_t idx; 2227 long ret; 2228 long dummy_out_regions_needed; 2229 2230 resv = vma_resv_map(vma); 2231 if (!resv) 2232 return 1; 2233 2234 idx = vma_hugecache_offset(h, vma, addr); 2235 switch (mode) { 2236 case VMA_NEEDS_RESV: 2237 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2238 /* We assume that vma_reservation_* routines always operate on 2239 * 1 page, and that adding to resv map a 1 page entry can only 2240 * ever require 1 region. 2241 */ 2242 VM_BUG_ON(dummy_out_regions_needed != 1); 2243 break; 2244 case VMA_COMMIT_RESV: 2245 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2246 /* region_add calls of range 1 should never fail. */ 2247 VM_BUG_ON(ret < 0); 2248 break; 2249 case VMA_END_RESV: 2250 region_abort(resv, idx, idx + 1, 1); 2251 ret = 0; 2252 break; 2253 case VMA_ADD_RESV: 2254 if (vma->vm_flags & VM_MAYSHARE) { 2255 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2256 /* region_add calls of range 1 should never fail. */ 2257 VM_BUG_ON(ret < 0); 2258 } else { 2259 region_abort(resv, idx, idx + 1, 1); 2260 ret = region_del(resv, idx, idx + 1); 2261 } 2262 break; 2263 default: 2264 BUG(); 2265 } 2266 2267 if (vma->vm_flags & VM_MAYSHARE) 2268 return ret; 2269 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 2270 /* 2271 * In most cases, reserves always exist for private mappings. 2272 * However, a file associated with mapping could have been 2273 * hole punched or truncated after reserves were consumed. 2274 * As subsequent fault on such a range will not use reserves. 2275 * Subtle - The reserve map for private mappings has the 2276 * opposite meaning than that of shared mappings. If NO 2277 * entry is in the reserve map, it means a reservation exists. 2278 * If an entry exists in the reserve map, it means the 2279 * reservation has already been consumed. As a result, the 2280 * return value of this routine is the opposite of the 2281 * value returned from reserve map manipulation routines above. 2282 */ 2283 if (ret) 2284 return 0; 2285 else 2286 return 1; 2287 } 2288 else 2289 return ret < 0 ? ret : 0; 2290 } 2291 2292 static long vma_needs_reservation(struct hstate *h, 2293 struct vm_area_struct *vma, unsigned long addr) 2294 { 2295 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2296 } 2297 2298 static long vma_commit_reservation(struct hstate *h, 2299 struct vm_area_struct *vma, unsigned long addr) 2300 { 2301 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2302 } 2303 2304 static void vma_end_reservation(struct hstate *h, 2305 struct vm_area_struct *vma, unsigned long addr) 2306 { 2307 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2308 } 2309 2310 static long vma_add_reservation(struct hstate *h, 2311 struct vm_area_struct *vma, unsigned long addr) 2312 { 2313 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2314 } 2315 2316 /* 2317 * This routine is called to restore a reservation on error paths. In the 2318 * specific error paths, a huge page was allocated (via alloc_huge_page) 2319 * and is about to be freed. If a reservation for the page existed, 2320 * alloc_huge_page would have consumed the reservation and set PagePrivate 2321 * in the newly allocated page. When the page is freed via free_huge_page, 2322 * the global reservation count will be incremented if PagePrivate is set. 2323 * However, free_huge_page can not adjust the reserve map. Adjust the 2324 * reserve map here to be consistent with global reserve count adjustments 2325 * to be made by free_huge_page. 2326 */ 2327 static void restore_reserve_on_error(struct hstate *h, 2328 struct vm_area_struct *vma, unsigned long address, 2329 struct page *page) 2330 { 2331 if (unlikely(PagePrivate(page))) { 2332 long rc = vma_needs_reservation(h, vma, address); 2333 2334 if (unlikely(rc < 0)) { 2335 /* 2336 * Rare out of memory condition in reserve map 2337 * manipulation. Clear PagePrivate so that 2338 * global reserve count will not be incremented 2339 * by free_huge_page. This will make it appear 2340 * as though the reservation for this page was 2341 * consumed. This may prevent the task from 2342 * faulting in the page at a later time. This 2343 * is better than inconsistent global huge page 2344 * accounting of reserve counts. 2345 */ 2346 ClearPagePrivate(page); 2347 } else if (rc) { 2348 rc = vma_add_reservation(h, vma, address); 2349 if (unlikely(rc < 0)) 2350 /* 2351 * See above comment about rare out of 2352 * memory condition. 2353 */ 2354 ClearPagePrivate(page); 2355 } else 2356 vma_end_reservation(h, vma, address); 2357 } 2358 } 2359 2360 struct page *alloc_huge_page(struct vm_area_struct *vma, 2361 unsigned long addr, int avoid_reserve) 2362 { 2363 struct hugepage_subpool *spool = subpool_vma(vma); 2364 struct hstate *h = hstate_vma(vma); 2365 struct page *page; 2366 long map_chg, map_commit; 2367 long gbl_chg; 2368 int ret, idx; 2369 struct hugetlb_cgroup *h_cg; 2370 bool deferred_reserve; 2371 2372 idx = hstate_index(h); 2373 /* 2374 * Examine the region/reserve map to determine if the process 2375 * has a reservation for the page to be allocated. A return 2376 * code of zero indicates a reservation exists (no change). 2377 */ 2378 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2379 if (map_chg < 0) 2380 return ERR_PTR(-ENOMEM); 2381 2382 /* 2383 * Processes that did not create the mapping will have no 2384 * reserves as indicated by the region/reserve map. Check 2385 * that the allocation will not exceed the subpool limit. 2386 * Allocations for MAP_NORESERVE mappings also need to be 2387 * checked against any subpool limit. 2388 */ 2389 if (map_chg || avoid_reserve) { 2390 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2391 if (gbl_chg < 0) { 2392 vma_end_reservation(h, vma, addr); 2393 return ERR_PTR(-ENOSPC); 2394 } 2395 2396 /* 2397 * Even though there was no reservation in the region/reserve 2398 * map, there could be reservations associated with the 2399 * subpool that can be used. This would be indicated if the 2400 * return value of hugepage_subpool_get_pages() is zero. 2401 * However, if avoid_reserve is specified we still avoid even 2402 * the subpool reservations. 2403 */ 2404 if (avoid_reserve) 2405 gbl_chg = 1; 2406 } 2407 2408 /* If this allocation is not consuming a reservation, charge it now. 2409 */ 2410 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma); 2411 if (deferred_reserve) { 2412 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2413 idx, pages_per_huge_page(h), &h_cg); 2414 if (ret) 2415 goto out_subpool_put; 2416 } 2417 2418 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2419 if (ret) 2420 goto out_uncharge_cgroup_reservation; 2421 2422 spin_lock(&hugetlb_lock); 2423 /* 2424 * glb_chg is passed to indicate whether or not a page must be taken 2425 * from the global free pool (global change). gbl_chg == 0 indicates 2426 * a reservation exists for the allocation. 2427 */ 2428 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2429 if (!page) { 2430 spin_unlock(&hugetlb_lock); 2431 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2432 if (!page) 2433 goto out_uncharge_cgroup; 2434 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2435 SetPagePrivate(page); 2436 h->resv_huge_pages--; 2437 } 2438 spin_lock(&hugetlb_lock); 2439 list_move(&page->lru, &h->hugepage_activelist); 2440 /* Fall through */ 2441 } 2442 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2443 /* If allocation is not consuming a reservation, also store the 2444 * hugetlb_cgroup pointer on the page. 2445 */ 2446 if (deferred_reserve) { 2447 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2448 h_cg, page); 2449 } 2450 2451 spin_unlock(&hugetlb_lock); 2452 2453 set_page_private(page, (unsigned long)spool); 2454 2455 map_commit = vma_commit_reservation(h, vma, addr); 2456 if (unlikely(map_chg > map_commit)) { 2457 /* 2458 * The page was added to the reservation map between 2459 * vma_needs_reservation and vma_commit_reservation. 2460 * This indicates a race with hugetlb_reserve_pages. 2461 * Adjust for the subpool count incremented above AND 2462 * in hugetlb_reserve_pages for the same page. Also, 2463 * the reservation count added in hugetlb_reserve_pages 2464 * no longer applies. 2465 */ 2466 long rsv_adjust; 2467 2468 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2469 hugetlb_acct_memory(h, -rsv_adjust); 2470 } 2471 return page; 2472 2473 out_uncharge_cgroup: 2474 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2475 out_uncharge_cgroup_reservation: 2476 if (deferred_reserve) 2477 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2478 h_cg); 2479 out_subpool_put: 2480 if (map_chg || avoid_reserve) 2481 hugepage_subpool_put_pages(spool, 1); 2482 vma_end_reservation(h, vma, addr); 2483 return ERR_PTR(-ENOSPC); 2484 } 2485 2486 int alloc_bootmem_huge_page(struct hstate *h) 2487 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2488 int __alloc_bootmem_huge_page(struct hstate *h) 2489 { 2490 struct huge_bootmem_page *m; 2491 int nr_nodes, node; 2492 2493 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2494 void *addr; 2495 2496 addr = memblock_alloc_try_nid_raw( 2497 huge_page_size(h), huge_page_size(h), 2498 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2499 if (addr) { 2500 /* 2501 * Use the beginning of the huge page to store the 2502 * huge_bootmem_page struct (until gather_bootmem 2503 * puts them into the mem_map). 2504 */ 2505 m = addr; 2506 goto found; 2507 } 2508 } 2509 return 0; 2510 2511 found: 2512 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2513 /* Put them into a private list first because mem_map is not up yet */ 2514 INIT_LIST_HEAD(&m->list); 2515 list_add(&m->list, &huge_boot_pages); 2516 m->hstate = h; 2517 return 1; 2518 } 2519 2520 static void __init prep_compound_huge_page(struct page *page, 2521 unsigned int order) 2522 { 2523 if (unlikely(order > (MAX_ORDER - 1))) 2524 prep_compound_gigantic_page(page, order); 2525 else 2526 prep_compound_page(page, order); 2527 } 2528 2529 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2530 static void __init gather_bootmem_prealloc(void) 2531 { 2532 struct huge_bootmem_page *m; 2533 2534 list_for_each_entry(m, &huge_boot_pages, list) { 2535 struct page *page = virt_to_page(m); 2536 struct hstate *h = m->hstate; 2537 2538 WARN_ON(page_count(page) != 1); 2539 prep_compound_huge_page(page, h->order); 2540 WARN_ON(PageReserved(page)); 2541 prep_new_huge_page(h, page, page_to_nid(page)); 2542 put_page(page); /* free it into the hugepage allocator */ 2543 2544 /* 2545 * If we had gigantic hugepages allocated at boot time, we need 2546 * to restore the 'stolen' pages to totalram_pages in order to 2547 * fix confusing memory reports from free(1) and another 2548 * side-effects, like CommitLimit going negative. 2549 */ 2550 if (hstate_is_gigantic(h)) 2551 adjust_managed_page_count(page, 1 << h->order); 2552 cond_resched(); 2553 } 2554 } 2555 2556 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2557 { 2558 unsigned long i; 2559 nodemask_t *node_alloc_noretry; 2560 2561 if (!hstate_is_gigantic(h)) { 2562 /* 2563 * Bit mask controlling how hard we retry per-node allocations. 2564 * Ignore errors as lower level routines can deal with 2565 * node_alloc_noretry == NULL. If this kmalloc fails at boot 2566 * time, we are likely in bigger trouble. 2567 */ 2568 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 2569 GFP_KERNEL); 2570 } else { 2571 /* allocations done at boot time */ 2572 node_alloc_noretry = NULL; 2573 } 2574 2575 /* bit mask controlling how hard we retry per-node allocations */ 2576 if (node_alloc_noretry) 2577 nodes_clear(*node_alloc_noretry); 2578 2579 for (i = 0; i < h->max_huge_pages; ++i) { 2580 if (hstate_is_gigantic(h)) { 2581 if (hugetlb_cma_size) { 2582 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 2583 break; 2584 } 2585 if (!alloc_bootmem_huge_page(h)) 2586 break; 2587 } else if (!alloc_pool_huge_page(h, 2588 &node_states[N_MEMORY], 2589 node_alloc_noretry)) 2590 break; 2591 cond_resched(); 2592 } 2593 if (i < h->max_huge_pages) { 2594 char buf[32]; 2595 2596 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2597 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2598 h->max_huge_pages, buf, i); 2599 h->max_huge_pages = i; 2600 } 2601 2602 kfree(node_alloc_noretry); 2603 } 2604 2605 static void __init hugetlb_init_hstates(void) 2606 { 2607 struct hstate *h; 2608 2609 for_each_hstate(h) { 2610 if (minimum_order > huge_page_order(h)) 2611 minimum_order = huge_page_order(h); 2612 2613 /* oversize hugepages were init'ed in early boot */ 2614 if (!hstate_is_gigantic(h)) 2615 hugetlb_hstate_alloc_pages(h); 2616 } 2617 VM_BUG_ON(minimum_order == UINT_MAX); 2618 } 2619 2620 static void __init report_hugepages(void) 2621 { 2622 struct hstate *h; 2623 2624 for_each_hstate(h) { 2625 char buf[32]; 2626 2627 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2628 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2629 buf, h->free_huge_pages); 2630 } 2631 } 2632 2633 #ifdef CONFIG_HIGHMEM 2634 static void try_to_free_low(struct hstate *h, unsigned long count, 2635 nodemask_t *nodes_allowed) 2636 { 2637 int i; 2638 2639 if (hstate_is_gigantic(h)) 2640 return; 2641 2642 for_each_node_mask(i, *nodes_allowed) { 2643 struct page *page, *next; 2644 struct list_head *freel = &h->hugepage_freelists[i]; 2645 list_for_each_entry_safe(page, next, freel, lru) { 2646 if (count >= h->nr_huge_pages) 2647 return; 2648 if (PageHighMem(page)) 2649 continue; 2650 list_del(&page->lru); 2651 update_and_free_page(h, page); 2652 h->free_huge_pages--; 2653 h->free_huge_pages_node[page_to_nid(page)]--; 2654 } 2655 } 2656 } 2657 #else 2658 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2659 nodemask_t *nodes_allowed) 2660 { 2661 } 2662 #endif 2663 2664 /* 2665 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2666 * balanced by operating on them in a round-robin fashion. 2667 * Returns 1 if an adjustment was made. 2668 */ 2669 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2670 int delta) 2671 { 2672 int nr_nodes, node; 2673 2674 VM_BUG_ON(delta != -1 && delta != 1); 2675 2676 if (delta < 0) { 2677 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2678 if (h->surplus_huge_pages_node[node]) 2679 goto found; 2680 } 2681 } else { 2682 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2683 if (h->surplus_huge_pages_node[node] < 2684 h->nr_huge_pages_node[node]) 2685 goto found; 2686 } 2687 } 2688 return 0; 2689 2690 found: 2691 h->surplus_huge_pages += delta; 2692 h->surplus_huge_pages_node[node] += delta; 2693 return 1; 2694 } 2695 2696 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2697 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2698 nodemask_t *nodes_allowed) 2699 { 2700 unsigned long min_count, ret; 2701 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 2702 2703 /* 2704 * Bit mask controlling how hard we retry per-node allocations. 2705 * If we can not allocate the bit mask, do not attempt to allocate 2706 * the requested huge pages. 2707 */ 2708 if (node_alloc_noretry) 2709 nodes_clear(*node_alloc_noretry); 2710 else 2711 return -ENOMEM; 2712 2713 spin_lock(&hugetlb_lock); 2714 2715 /* 2716 * Check for a node specific request. 2717 * Changing node specific huge page count may require a corresponding 2718 * change to the global count. In any case, the passed node mask 2719 * (nodes_allowed) will restrict alloc/free to the specified node. 2720 */ 2721 if (nid != NUMA_NO_NODE) { 2722 unsigned long old_count = count; 2723 2724 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2725 /* 2726 * User may have specified a large count value which caused the 2727 * above calculation to overflow. In this case, they wanted 2728 * to allocate as many huge pages as possible. Set count to 2729 * largest possible value to align with their intention. 2730 */ 2731 if (count < old_count) 2732 count = ULONG_MAX; 2733 } 2734 2735 /* 2736 * Gigantic pages runtime allocation depend on the capability for large 2737 * page range allocation. 2738 * If the system does not provide this feature, return an error when 2739 * the user tries to allocate gigantic pages but let the user free the 2740 * boottime allocated gigantic pages. 2741 */ 2742 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2743 if (count > persistent_huge_pages(h)) { 2744 spin_unlock(&hugetlb_lock); 2745 NODEMASK_FREE(node_alloc_noretry); 2746 return -EINVAL; 2747 } 2748 /* Fall through to decrease pool */ 2749 } 2750 2751 /* 2752 * Increase the pool size 2753 * First take pages out of surplus state. Then make up the 2754 * remaining difference by allocating fresh huge pages. 2755 * 2756 * We might race with alloc_surplus_huge_page() here and be unable 2757 * to convert a surplus huge page to a normal huge page. That is 2758 * not critical, though, it just means the overall size of the 2759 * pool might be one hugepage larger than it needs to be, but 2760 * within all the constraints specified by the sysctls. 2761 */ 2762 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2763 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2764 break; 2765 } 2766 2767 while (count > persistent_huge_pages(h)) { 2768 /* 2769 * If this allocation races such that we no longer need the 2770 * page, free_huge_page will handle it by freeing the page 2771 * and reducing the surplus. 2772 */ 2773 spin_unlock(&hugetlb_lock); 2774 2775 /* yield cpu to avoid soft lockup */ 2776 cond_resched(); 2777 2778 ret = alloc_pool_huge_page(h, nodes_allowed, 2779 node_alloc_noretry); 2780 spin_lock(&hugetlb_lock); 2781 if (!ret) 2782 goto out; 2783 2784 /* Bail for signals. Probably ctrl-c from user */ 2785 if (signal_pending(current)) 2786 goto out; 2787 } 2788 2789 /* 2790 * Decrease the pool size 2791 * First return free pages to the buddy allocator (being careful 2792 * to keep enough around to satisfy reservations). Then place 2793 * pages into surplus state as needed so the pool will shrink 2794 * to the desired size as pages become free. 2795 * 2796 * By placing pages into the surplus state independent of the 2797 * overcommit value, we are allowing the surplus pool size to 2798 * exceed overcommit. There are few sane options here. Since 2799 * alloc_surplus_huge_page() is checking the global counter, 2800 * though, we'll note that we're not allowed to exceed surplus 2801 * and won't grow the pool anywhere else. Not until one of the 2802 * sysctls are changed, or the surplus pages go out of use. 2803 */ 2804 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2805 min_count = max(count, min_count); 2806 try_to_free_low(h, min_count, nodes_allowed); 2807 while (min_count < persistent_huge_pages(h)) { 2808 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2809 break; 2810 cond_resched_lock(&hugetlb_lock); 2811 } 2812 while (count < persistent_huge_pages(h)) { 2813 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2814 break; 2815 } 2816 out: 2817 h->max_huge_pages = persistent_huge_pages(h); 2818 spin_unlock(&hugetlb_lock); 2819 2820 NODEMASK_FREE(node_alloc_noretry); 2821 2822 return 0; 2823 } 2824 2825 #define HSTATE_ATTR_RO(_name) \ 2826 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2827 2828 #define HSTATE_ATTR(_name) \ 2829 static struct kobj_attribute _name##_attr = \ 2830 __ATTR(_name, 0644, _name##_show, _name##_store) 2831 2832 static struct kobject *hugepages_kobj; 2833 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2834 2835 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2836 2837 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2838 { 2839 int i; 2840 2841 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2842 if (hstate_kobjs[i] == kobj) { 2843 if (nidp) 2844 *nidp = NUMA_NO_NODE; 2845 return &hstates[i]; 2846 } 2847 2848 return kobj_to_node_hstate(kobj, nidp); 2849 } 2850 2851 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2852 struct kobj_attribute *attr, char *buf) 2853 { 2854 struct hstate *h; 2855 unsigned long nr_huge_pages; 2856 int nid; 2857 2858 h = kobj_to_hstate(kobj, &nid); 2859 if (nid == NUMA_NO_NODE) 2860 nr_huge_pages = h->nr_huge_pages; 2861 else 2862 nr_huge_pages = h->nr_huge_pages_node[nid]; 2863 2864 return sprintf(buf, "%lu\n", nr_huge_pages); 2865 } 2866 2867 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2868 struct hstate *h, int nid, 2869 unsigned long count, size_t len) 2870 { 2871 int err; 2872 nodemask_t nodes_allowed, *n_mask; 2873 2874 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2875 return -EINVAL; 2876 2877 if (nid == NUMA_NO_NODE) { 2878 /* 2879 * global hstate attribute 2880 */ 2881 if (!(obey_mempolicy && 2882 init_nodemask_of_mempolicy(&nodes_allowed))) 2883 n_mask = &node_states[N_MEMORY]; 2884 else 2885 n_mask = &nodes_allowed; 2886 } else { 2887 /* 2888 * Node specific request. count adjustment happens in 2889 * set_max_huge_pages() after acquiring hugetlb_lock. 2890 */ 2891 init_nodemask_of_node(&nodes_allowed, nid); 2892 n_mask = &nodes_allowed; 2893 } 2894 2895 err = set_max_huge_pages(h, count, nid, n_mask); 2896 2897 return err ? err : len; 2898 } 2899 2900 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2901 struct kobject *kobj, const char *buf, 2902 size_t len) 2903 { 2904 struct hstate *h; 2905 unsigned long count; 2906 int nid; 2907 int err; 2908 2909 err = kstrtoul(buf, 10, &count); 2910 if (err) 2911 return err; 2912 2913 h = kobj_to_hstate(kobj, &nid); 2914 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2915 } 2916 2917 static ssize_t nr_hugepages_show(struct kobject *kobj, 2918 struct kobj_attribute *attr, char *buf) 2919 { 2920 return nr_hugepages_show_common(kobj, attr, buf); 2921 } 2922 2923 static ssize_t nr_hugepages_store(struct kobject *kobj, 2924 struct kobj_attribute *attr, const char *buf, size_t len) 2925 { 2926 return nr_hugepages_store_common(false, kobj, buf, len); 2927 } 2928 HSTATE_ATTR(nr_hugepages); 2929 2930 #ifdef CONFIG_NUMA 2931 2932 /* 2933 * hstate attribute for optionally mempolicy-based constraint on persistent 2934 * huge page alloc/free. 2935 */ 2936 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2937 struct kobj_attribute *attr, char *buf) 2938 { 2939 return nr_hugepages_show_common(kobj, attr, buf); 2940 } 2941 2942 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2943 struct kobj_attribute *attr, const char *buf, size_t len) 2944 { 2945 return nr_hugepages_store_common(true, kobj, buf, len); 2946 } 2947 HSTATE_ATTR(nr_hugepages_mempolicy); 2948 #endif 2949 2950 2951 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2952 struct kobj_attribute *attr, char *buf) 2953 { 2954 struct hstate *h = kobj_to_hstate(kobj, NULL); 2955 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2956 } 2957 2958 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2959 struct kobj_attribute *attr, const char *buf, size_t count) 2960 { 2961 int err; 2962 unsigned long input; 2963 struct hstate *h = kobj_to_hstate(kobj, NULL); 2964 2965 if (hstate_is_gigantic(h)) 2966 return -EINVAL; 2967 2968 err = kstrtoul(buf, 10, &input); 2969 if (err) 2970 return err; 2971 2972 spin_lock(&hugetlb_lock); 2973 h->nr_overcommit_huge_pages = input; 2974 spin_unlock(&hugetlb_lock); 2975 2976 return count; 2977 } 2978 HSTATE_ATTR(nr_overcommit_hugepages); 2979 2980 static ssize_t free_hugepages_show(struct kobject *kobj, 2981 struct kobj_attribute *attr, char *buf) 2982 { 2983 struct hstate *h; 2984 unsigned long free_huge_pages; 2985 int nid; 2986 2987 h = kobj_to_hstate(kobj, &nid); 2988 if (nid == NUMA_NO_NODE) 2989 free_huge_pages = h->free_huge_pages; 2990 else 2991 free_huge_pages = h->free_huge_pages_node[nid]; 2992 2993 return sprintf(buf, "%lu\n", free_huge_pages); 2994 } 2995 HSTATE_ATTR_RO(free_hugepages); 2996 2997 static ssize_t resv_hugepages_show(struct kobject *kobj, 2998 struct kobj_attribute *attr, char *buf) 2999 { 3000 struct hstate *h = kobj_to_hstate(kobj, NULL); 3001 return sprintf(buf, "%lu\n", h->resv_huge_pages); 3002 } 3003 HSTATE_ATTR_RO(resv_hugepages); 3004 3005 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3006 struct kobj_attribute *attr, char *buf) 3007 { 3008 struct hstate *h; 3009 unsigned long surplus_huge_pages; 3010 int nid; 3011 3012 h = kobj_to_hstate(kobj, &nid); 3013 if (nid == NUMA_NO_NODE) 3014 surplus_huge_pages = h->surplus_huge_pages; 3015 else 3016 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3017 3018 return sprintf(buf, "%lu\n", surplus_huge_pages); 3019 } 3020 HSTATE_ATTR_RO(surplus_hugepages); 3021 3022 static struct attribute *hstate_attrs[] = { 3023 &nr_hugepages_attr.attr, 3024 &nr_overcommit_hugepages_attr.attr, 3025 &free_hugepages_attr.attr, 3026 &resv_hugepages_attr.attr, 3027 &surplus_hugepages_attr.attr, 3028 #ifdef CONFIG_NUMA 3029 &nr_hugepages_mempolicy_attr.attr, 3030 #endif 3031 NULL, 3032 }; 3033 3034 static const struct attribute_group hstate_attr_group = { 3035 .attrs = hstate_attrs, 3036 }; 3037 3038 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3039 struct kobject **hstate_kobjs, 3040 const struct attribute_group *hstate_attr_group) 3041 { 3042 int retval; 3043 int hi = hstate_index(h); 3044 3045 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3046 if (!hstate_kobjs[hi]) 3047 return -ENOMEM; 3048 3049 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3050 if (retval) 3051 kobject_put(hstate_kobjs[hi]); 3052 3053 return retval; 3054 } 3055 3056 static void __init hugetlb_sysfs_init(void) 3057 { 3058 struct hstate *h; 3059 int err; 3060 3061 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3062 if (!hugepages_kobj) 3063 return; 3064 3065 for_each_hstate(h) { 3066 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3067 hstate_kobjs, &hstate_attr_group); 3068 if (err) 3069 pr_err("HugeTLB: Unable to add hstate %s", h->name); 3070 } 3071 } 3072 3073 #ifdef CONFIG_NUMA 3074 3075 /* 3076 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3077 * with node devices in node_devices[] using a parallel array. The array 3078 * index of a node device or _hstate == node id. 3079 * This is here to avoid any static dependency of the node device driver, in 3080 * the base kernel, on the hugetlb module. 3081 */ 3082 struct node_hstate { 3083 struct kobject *hugepages_kobj; 3084 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3085 }; 3086 static struct node_hstate node_hstates[MAX_NUMNODES]; 3087 3088 /* 3089 * A subset of global hstate attributes for node devices 3090 */ 3091 static struct attribute *per_node_hstate_attrs[] = { 3092 &nr_hugepages_attr.attr, 3093 &free_hugepages_attr.attr, 3094 &surplus_hugepages_attr.attr, 3095 NULL, 3096 }; 3097 3098 static const struct attribute_group per_node_hstate_attr_group = { 3099 .attrs = per_node_hstate_attrs, 3100 }; 3101 3102 /* 3103 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3104 * Returns node id via non-NULL nidp. 3105 */ 3106 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3107 { 3108 int nid; 3109 3110 for (nid = 0; nid < nr_node_ids; nid++) { 3111 struct node_hstate *nhs = &node_hstates[nid]; 3112 int i; 3113 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3114 if (nhs->hstate_kobjs[i] == kobj) { 3115 if (nidp) 3116 *nidp = nid; 3117 return &hstates[i]; 3118 } 3119 } 3120 3121 BUG(); 3122 return NULL; 3123 } 3124 3125 /* 3126 * Unregister hstate attributes from a single node device. 3127 * No-op if no hstate attributes attached. 3128 */ 3129 static void hugetlb_unregister_node(struct node *node) 3130 { 3131 struct hstate *h; 3132 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3133 3134 if (!nhs->hugepages_kobj) 3135 return; /* no hstate attributes */ 3136 3137 for_each_hstate(h) { 3138 int idx = hstate_index(h); 3139 if (nhs->hstate_kobjs[idx]) { 3140 kobject_put(nhs->hstate_kobjs[idx]); 3141 nhs->hstate_kobjs[idx] = NULL; 3142 } 3143 } 3144 3145 kobject_put(nhs->hugepages_kobj); 3146 nhs->hugepages_kobj = NULL; 3147 } 3148 3149 3150 /* 3151 * Register hstate attributes for a single node device. 3152 * No-op if attributes already registered. 3153 */ 3154 static void hugetlb_register_node(struct node *node) 3155 { 3156 struct hstate *h; 3157 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3158 int err; 3159 3160 if (nhs->hugepages_kobj) 3161 return; /* already allocated */ 3162 3163 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3164 &node->dev.kobj); 3165 if (!nhs->hugepages_kobj) 3166 return; 3167 3168 for_each_hstate(h) { 3169 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3170 nhs->hstate_kobjs, 3171 &per_node_hstate_attr_group); 3172 if (err) { 3173 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3174 h->name, node->dev.id); 3175 hugetlb_unregister_node(node); 3176 break; 3177 } 3178 } 3179 } 3180 3181 /* 3182 * hugetlb init time: register hstate attributes for all registered node 3183 * devices of nodes that have memory. All on-line nodes should have 3184 * registered their associated device by this time. 3185 */ 3186 static void __init hugetlb_register_all_nodes(void) 3187 { 3188 int nid; 3189 3190 for_each_node_state(nid, N_MEMORY) { 3191 struct node *node = node_devices[nid]; 3192 if (node->dev.id == nid) 3193 hugetlb_register_node(node); 3194 } 3195 3196 /* 3197 * Let the node device driver know we're here so it can 3198 * [un]register hstate attributes on node hotplug. 3199 */ 3200 register_hugetlbfs_with_node(hugetlb_register_node, 3201 hugetlb_unregister_node); 3202 } 3203 #else /* !CONFIG_NUMA */ 3204 3205 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3206 { 3207 BUG(); 3208 if (nidp) 3209 *nidp = -1; 3210 return NULL; 3211 } 3212 3213 static void hugetlb_register_all_nodes(void) { } 3214 3215 #endif 3216 3217 static int __init hugetlb_init(void) 3218 { 3219 int i; 3220 3221 if (!hugepages_supported()) { 3222 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 3223 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 3224 return 0; 3225 } 3226 3227 /* 3228 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 3229 * architectures depend on setup being done here. 3230 */ 3231 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 3232 if (!parsed_default_hugepagesz) { 3233 /* 3234 * If we did not parse a default huge page size, set 3235 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 3236 * number of huge pages for this default size was implicitly 3237 * specified, set that here as well. 3238 * Note that the implicit setting will overwrite an explicit 3239 * setting. A warning will be printed in this case. 3240 */ 3241 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 3242 if (default_hstate_max_huge_pages) { 3243 if (default_hstate.max_huge_pages) { 3244 char buf[32]; 3245 3246 string_get_size(huge_page_size(&default_hstate), 3247 1, STRING_UNITS_2, buf, 32); 3248 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 3249 default_hstate.max_huge_pages, buf); 3250 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 3251 default_hstate_max_huge_pages); 3252 } 3253 default_hstate.max_huge_pages = 3254 default_hstate_max_huge_pages; 3255 } 3256 } 3257 3258 hugetlb_cma_check(); 3259 hugetlb_init_hstates(); 3260 gather_bootmem_prealloc(); 3261 report_hugepages(); 3262 3263 hugetlb_sysfs_init(); 3264 hugetlb_register_all_nodes(); 3265 hugetlb_cgroup_file_init(); 3266 3267 #ifdef CONFIG_SMP 3268 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 3269 #else 3270 num_fault_mutexes = 1; 3271 #endif 3272 hugetlb_fault_mutex_table = 3273 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 3274 GFP_KERNEL); 3275 BUG_ON(!hugetlb_fault_mutex_table); 3276 3277 for (i = 0; i < num_fault_mutexes; i++) 3278 mutex_init(&hugetlb_fault_mutex_table[i]); 3279 return 0; 3280 } 3281 subsys_initcall(hugetlb_init); 3282 3283 /* Overwritten by architectures with more huge page sizes */ 3284 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 3285 { 3286 return size == HPAGE_SIZE; 3287 } 3288 3289 void __init hugetlb_add_hstate(unsigned int order) 3290 { 3291 struct hstate *h; 3292 unsigned long i; 3293 3294 if (size_to_hstate(PAGE_SIZE << order)) { 3295 return; 3296 } 3297 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 3298 BUG_ON(order == 0); 3299 h = &hstates[hugetlb_max_hstate++]; 3300 h->order = order; 3301 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 3302 h->nr_huge_pages = 0; 3303 h->free_huge_pages = 0; 3304 for (i = 0; i < MAX_NUMNODES; ++i) 3305 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 3306 INIT_LIST_HEAD(&h->hugepage_activelist); 3307 h->next_nid_to_alloc = first_memory_node; 3308 h->next_nid_to_free = first_memory_node; 3309 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 3310 huge_page_size(h)/1024); 3311 3312 parsed_hstate = h; 3313 } 3314 3315 /* 3316 * hugepages command line processing 3317 * hugepages normally follows a valid hugepagsz or default_hugepagsz 3318 * specification. If not, ignore the hugepages value. hugepages can also 3319 * be the first huge page command line option in which case it implicitly 3320 * specifies the number of huge pages for the default size. 3321 */ 3322 static int __init hugepages_setup(char *s) 3323 { 3324 unsigned long *mhp; 3325 static unsigned long *last_mhp; 3326 3327 if (!parsed_valid_hugepagesz) { 3328 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 3329 parsed_valid_hugepagesz = true; 3330 return 0; 3331 } 3332 3333 /* 3334 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 3335 * yet, so this hugepages= parameter goes to the "default hstate". 3336 * Otherwise, it goes with the previously parsed hugepagesz or 3337 * default_hugepagesz. 3338 */ 3339 else if (!hugetlb_max_hstate) 3340 mhp = &default_hstate_max_huge_pages; 3341 else 3342 mhp = &parsed_hstate->max_huge_pages; 3343 3344 if (mhp == last_mhp) { 3345 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 3346 return 0; 3347 } 3348 3349 if (sscanf(s, "%lu", mhp) <= 0) 3350 *mhp = 0; 3351 3352 /* 3353 * Global state is always initialized later in hugetlb_init. 3354 * But we need to allocate >= MAX_ORDER hstates here early to still 3355 * use the bootmem allocator. 3356 */ 3357 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 3358 hugetlb_hstate_alloc_pages(parsed_hstate); 3359 3360 last_mhp = mhp; 3361 3362 return 1; 3363 } 3364 __setup("hugepages=", hugepages_setup); 3365 3366 /* 3367 * hugepagesz command line processing 3368 * A specific huge page size can only be specified once with hugepagesz. 3369 * hugepagesz is followed by hugepages on the command line. The global 3370 * variable 'parsed_valid_hugepagesz' is used to determine if prior 3371 * hugepagesz argument was valid. 3372 */ 3373 static int __init hugepagesz_setup(char *s) 3374 { 3375 unsigned long size; 3376 struct hstate *h; 3377 3378 parsed_valid_hugepagesz = false; 3379 size = (unsigned long)memparse(s, NULL); 3380 3381 if (!arch_hugetlb_valid_size(size)) { 3382 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 3383 return 0; 3384 } 3385 3386 h = size_to_hstate(size); 3387 if (h) { 3388 /* 3389 * hstate for this size already exists. This is normally 3390 * an error, but is allowed if the existing hstate is the 3391 * default hstate. More specifically, it is only allowed if 3392 * the number of huge pages for the default hstate was not 3393 * previously specified. 3394 */ 3395 if (!parsed_default_hugepagesz || h != &default_hstate || 3396 default_hstate.max_huge_pages) { 3397 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 3398 return 0; 3399 } 3400 3401 /* 3402 * No need to call hugetlb_add_hstate() as hstate already 3403 * exists. But, do set parsed_hstate so that a following 3404 * hugepages= parameter will be applied to this hstate. 3405 */ 3406 parsed_hstate = h; 3407 parsed_valid_hugepagesz = true; 3408 return 1; 3409 } 3410 3411 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3412 parsed_valid_hugepagesz = true; 3413 return 1; 3414 } 3415 __setup("hugepagesz=", hugepagesz_setup); 3416 3417 /* 3418 * default_hugepagesz command line input 3419 * Only one instance of default_hugepagesz allowed on command line. 3420 */ 3421 static int __init default_hugepagesz_setup(char *s) 3422 { 3423 unsigned long size; 3424 3425 parsed_valid_hugepagesz = false; 3426 if (parsed_default_hugepagesz) { 3427 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 3428 return 0; 3429 } 3430 3431 size = (unsigned long)memparse(s, NULL); 3432 3433 if (!arch_hugetlb_valid_size(size)) { 3434 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 3435 return 0; 3436 } 3437 3438 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3439 parsed_valid_hugepagesz = true; 3440 parsed_default_hugepagesz = true; 3441 default_hstate_idx = hstate_index(size_to_hstate(size)); 3442 3443 /* 3444 * The number of default huge pages (for this size) could have been 3445 * specified as the first hugetlb parameter: hugepages=X. If so, 3446 * then default_hstate_max_huge_pages is set. If the default huge 3447 * page size is gigantic (>= MAX_ORDER), then the pages must be 3448 * allocated here from bootmem allocator. 3449 */ 3450 if (default_hstate_max_huge_pages) { 3451 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 3452 if (hstate_is_gigantic(&default_hstate)) 3453 hugetlb_hstate_alloc_pages(&default_hstate); 3454 default_hstate_max_huge_pages = 0; 3455 } 3456 3457 return 1; 3458 } 3459 __setup("default_hugepagesz=", default_hugepagesz_setup); 3460 3461 static unsigned int allowed_mems_nr(struct hstate *h) 3462 { 3463 int node; 3464 unsigned int nr = 0; 3465 nodemask_t *mpol_allowed; 3466 unsigned int *array = h->free_huge_pages_node; 3467 gfp_t gfp_mask = htlb_alloc_mask(h); 3468 3469 mpol_allowed = policy_nodemask_current(gfp_mask); 3470 3471 for_each_node_mask(node, cpuset_current_mems_allowed) { 3472 if (!mpol_allowed || 3473 (mpol_allowed && node_isset(node, *mpol_allowed))) 3474 nr += array[node]; 3475 } 3476 3477 return nr; 3478 } 3479 3480 #ifdef CONFIG_SYSCTL 3481 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 3482 struct ctl_table *table, int write, 3483 void *buffer, size_t *length, loff_t *ppos) 3484 { 3485 struct hstate *h = &default_hstate; 3486 unsigned long tmp = h->max_huge_pages; 3487 int ret; 3488 3489 if (!hugepages_supported()) 3490 return -EOPNOTSUPP; 3491 3492 table->data = &tmp; 3493 table->maxlen = sizeof(unsigned long); 3494 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 3495 if (ret) 3496 goto out; 3497 3498 if (write) 3499 ret = __nr_hugepages_store_common(obey_mempolicy, h, 3500 NUMA_NO_NODE, tmp, *length); 3501 out: 3502 return ret; 3503 } 3504 3505 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 3506 void *buffer, size_t *length, loff_t *ppos) 3507 { 3508 3509 return hugetlb_sysctl_handler_common(false, table, write, 3510 buffer, length, ppos); 3511 } 3512 3513 #ifdef CONFIG_NUMA 3514 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 3515 void *buffer, size_t *length, loff_t *ppos) 3516 { 3517 return hugetlb_sysctl_handler_common(true, table, write, 3518 buffer, length, ppos); 3519 } 3520 #endif /* CONFIG_NUMA */ 3521 3522 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 3523 void *buffer, size_t *length, loff_t *ppos) 3524 { 3525 struct hstate *h = &default_hstate; 3526 unsigned long tmp; 3527 int ret; 3528 3529 if (!hugepages_supported()) 3530 return -EOPNOTSUPP; 3531 3532 tmp = h->nr_overcommit_huge_pages; 3533 3534 if (write && hstate_is_gigantic(h)) 3535 return -EINVAL; 3536 3537 table->data = &tmp; 3538 table->maxlen = sizeof(unsigned long); 3539 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 3540 if (ret) 3541 goto out; 3542 3543 if (write) { 3544 spin_lock(&hugetlb_lock); 3545 h->nr_overcommit_huge_pages = tmp; 3546 spin_unlock(&hugetlb_lock); 3547 } 3548 out: 3549 return ret; 3550 } 3551 3552 #endif /* CONFIG_SYSCTL */ 3553 3554 void hugetlb_report_meminfo(struct seq_file *m) 3555 { 3556 struct hstate *h; 3557 unsigned long total = 0; 3558 3559 if (!hugepages_supported()) 3560 return; 3561 3562 for_each_hstate(h) { 3563 unsigned long count = h->nr_huge_pages; 3564 3565 total += (PAGE_SIZE << huge_page_order(h)) * count; 3566 3567 if (h == &default_hstate) 3568 seq_printf(m, 3569 "HugePages_Total: %5lu\n" 3570 "HugePages_Free: %5lu\n" 3571 "HugePages_Rsvd: %5lu\n" 3572 "HugePages_Surp: %5lu\n" 3573 "Hugepagesize: %8lu kB\n", 3574 count, 3575 h->free_huge_pages, 3576 h->resv_huge_pages, 3577 h->surplus_huge_pages, 3578 (PAGE_SIZE << huge_page_order(h)) / 1024); 3579 } 3580 3581 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3582 } 3583 3584 int hugetlb_report_node_meminfo(int nid, char *buf) 3585 { 3586 struct hstate *h = &default_hstate; 3587 if (!hugepages_supported()) 3588 return 0; 3589 return sprintf(buf, 3590 "Node %d HugePages_Total: %5u\n" 3591 "Node %d HugePages_Free: %5u\n" 3592 "Node %d HugePages_Surp: %5u\n", 3593 nid, h->nr_huge_pages_node[nid], 3594 nid, h->free_huge_pages_node[nid], 3595 nid, h->surplus_huge_pages_node[nid]); 3596 } 3597 3598 void hugetlb_show_meminfo(void) 3599 { 3600 struct hstate *h; 3601 int nid; 3602 3603 if (!hugepages_supported()) 3604 return; 3605 3606 for_each_node_state(nid, N_MEMORY) 3607 for_each_hstate(h) 3608 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3609 nid, 3610 h->nr_huge_pages_node[nid], 3611 h->free_huge_pages_node[nid], 3612 h->surplus_huge_pages_node[nid], 3613 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3614 } 3615 3616 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3617 { 3618 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3619 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3620 } 3621 3622 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3623 unsigned long hugetlb_total_pages(void) 3624 { 3625 struct hstate *h; 3626 unsigned long nr_total_pages = 0; 3627 3628 for_each_hstate(h) 3629 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3630 return nr_total_pages; 3631 } 3632 3633 static int hugetlb_acct_memory(struct hstate *h, long delta) 3634 { 3635 int ret = -ENOMEM; 3636 3637 spin_lock(&hugetlb_lock); 3638 /* 3639 * When cpuset is configured, it breaks the strict hugetlb page 3640 * reservation as the accounting is done on a global variable. Such 3641 * reservation is completely rubbish in the presence of cpuset because 3642 * the reservation is not checked against page availability for the 3643 * current cpuset. Application can still potentially OOM'ed by kernel 3644 * with lack of free htlb page in cpuset that the task is in. 3645 * Attempt to enforce strict accounting with cpuset is almost 3646 * impossible (or too ugly) because cpuset is too fluid that 3647 * task or memory node can be dynamically moved between cpusets. 3648 * 3649 * The change of semantics for shared hugetlb mapping with cpuset is 3650 * undesirable. However, in order to preserve some of the semantics, 3651 * we fall back to check against current free page availability as 3652 * a best attempt and hopefully to minimize the impact of changing 3653 * semantics that cpuset has. 3654 * 3655 * Apart from cpuset, we also have memory policy mechanism that 3656 * also determines from which node the kernel will allocate memory 3657 * in a NUMA system. So similar to cpuset, we also should consider 3658 * the memory policy of the current task. Similar to the description 3659 * above. 3660 */ 3661 if (delta > 0) { 3662 if (gather_surplus_pages(h, delta) < 0) 3663 goto out; 3664 3665 if (delta > allowed_mems_nr(h)) { 3666 return_unused_surplus_pages(h, delta); 3667 goto out; 3668 } 3669 } 3670 3671 ret = 0; 3672 if (delta < 0) 3673 return_unused_surplus_pages(h, (unsigned long) -delta); 3674 3675 out: 3676 spin_unlock(&hugetlb_lock); 3677 return ret; 3678 } 3679 3680 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3681 { 3682 struct resv_map *resv = vma_resv_map(vma); 3683 3684 /* 3685 * This new VMA should share its siblings reservation map if present. 3686 * The VMA will only ever have a valid reservation map pointer where 3687 * it is being copied for another still existing VMA. As that VMA 3688 * has a reference to the reservation map it cannot disappear until 3689 * after this open call completes. It is therefore safe to take a 3690 * new reference here without additional locking. 3691 */ 3692 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3693 kref_get(&resv->refs); 3694 } 3695 3696 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3697 { 3698 struct hstate *h = hstate_vma(vma); 3699 struct resv_map *resv = vma_resv_map(vma); 3700 struct hugepage_subpool *spool = subpool_vma(vma); 3701 unsigned long reserve, start, end; 3702 long gbl_reserve; 3703 3704 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3705 return; 3706 3707 start = vma_hugecache_offset(h, vma, vma->vm_start); 3708 end = vma_hugecache_offset(h, vma, vma->vm_end); 3709 3710 reserve = (end - start) - region_count(resv, start, end); 3711 hugetlb_cgroup_uncharge_counter(resv, start, end); 3712 if (reserve) { 3713 /* 3714 * Decrement reserve counts. The global reserve count may be 3715 * adjusted if the subpool has a minimum size. 3716 */ 3717 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3718 hugetlb_acct_memory(h, -gbl_reserve); 3719 } 3720 3721 kref_put(&resv->refs, resv_map_release); 3722 } 3723 3724 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3725 { 3726 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3727 return -EINVAL; 3728 return 0; 3729 } 3730 3731 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3732 { 3733 struct hstate *hstate = hstate_vma(vma); 3734 3735 return 1UL << huge_page_shift(hstate); 3736 } 3737 3738 /* 3739 * We cannot handle pagefaults against hugetlb pages at all. They cause 3740 * handle_mm_fault() to try to instantiate regular-sized pages in the 3741 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3742 * this far. 3743 */ 3744 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3745 { 3746 BUG(); 3747 return 0; 3748 } 3749 3750 /* 3751 * When a new function is introduced to vm_operations_struct and added 3752 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3753 * This is because under System V memory model, mappings created via 3754 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3755 * their original vm_ops are overwritten with shm_vm_ops. 3756 */ 3757 const struct vm_operations_struct hugetlb_vm_ops = { 3758 .fault = hugetlb_vm_op_fault, 3759 .open = hugetlb_vm_op_open, 3760 .close = hugetlb_vm_op_close, 3761 .split = hugetlb_vm_op_split, 3762 .pagesize = hugetlb_vm_op_pagesize, 3763 }; 3764 3765 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3766 int writable) 3767 { 3768 pte_t entry; 3769 3770 if (writable) { 3771 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3772 vma->vm_page_prot))); 3773 } else { 3774 entry = huge_pte_wrprotect(mk_huge_pte(page, 3775 vma->vm_page_prot)); 3776 } 3777 entry = pte_mkyoung(entry); 3778 entry = pte_mkhuge(entry); 3779 entry = arch_make_huge_pte(entry, vma, page, writable); 3780 3781 return entry; 3782 } 3783 3784 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3785 unsigned long address, pte_t *ptep) 3786 { 3787 pte_t entry; 3788 3789 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3790 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3791 update_mmu_cache(vma, address, ptep); 3792 } 3793 3794 bool is_hugetlb_entry_migration(pte_t pte) 3795 { 3796 swp_entry_t swp; 3797 3798 if (huge_pte_none(pte) || pte_present(pte)) 3799 return false; 3800 swp = pte_to_swp_entry(pte); 3801 if (non_swap_entry(swp) && is_migration_entry(swp)) 3802 return true; 3803 else 3804 return false; 3805 } 3806 3807 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3808 { 3809 swp_entry_t swp; 3810 3811 if (huge_pte_none(pte) || pte_present(pte)) 3812 return 0; 3813 swp = pte_to_swp_entry(pte); 3814 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3815 return 1; 3816 else 3817 return 0; 3818 } 3819 3820 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3821 struct vm_area_struct *vma) 3822 { 3823 pte_t *src_pte, *dst_pte, entry, dst_entry; 3824 struct page *ptepage; 3825 unsigned long addr; 3826 int cow; 3827 struct hstate *h = hstate_vma(vma); 3828 unsigned long sz = huge_page_size(h); 3829 struct address_space *mapping = vma->vm_file->f_mapping; 3830 struct mmu_notifier_range range; 3831 int ret = 0; 3832 3833 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3834 3835 if (cow) { 3836 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 3837 vma->vm_start, 3838 vma->vm_end); 3839 mmu_notifier_invalidate_range_start(&range); 3840 } else { 3841 /* 3842 * For shared mappings i_mmap_rwsem must be held to call 3843 * huge_pte_alloc, otherwise the returned ptep could go 3844 * away if part of a shared pmd and another thread calls 3845 * huge_pmd_unshare. 3846 */ 3847 i_mmap_lock_read(mapping); 3848 } 3849 3850 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3851 spinlock_t *src_ptl, *dst_ptl; 3852 src_pte = huge_pte_offset(src, addr, sz); 3853 if (!src_pte) 3854 continue; 3855 dst_pte = huge_pte_alloc(dst, addr, sz); 3856 if (!dst_pte) { 3857 ret = -ENOMEM; 3858 break; 3859 } 3860 3861 /* 3862 * If the pagetables are shared don't copy or take references. 3863 * dst_pte == src_pte is the common case of src/dest sharing. 3864 * 3865 * However, src could have 'unshared' and dst shares with 3866 * another vma. If dst_pte !none, this implies sharing. 3867 * Check here before taking page table lock, and once again 3868 * after taking the lock below. 3869 */ 3870 dst_entry = huge_ptep_get(dst_pte); 3871 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3872 continue; 3873 3874 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3875 src_ptl = huge_pte_lockptr(h, src, src_pte); 3876 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3877 entry = huge_ptep_get(src_pte); 3878 dst_entry = huge_ptep_get(dst_pte); 3879 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3880 /* 3881 * Skip if src entry none. Also, skip in the 3882 * unlikely case dst entry !none as this implies 3883 * sharing with another vma. 3884 */ 3885 ; 3886 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3887 is_hugetlb_entry_hwpoisoned(entry))) { 3888 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3889 3890 if (is_write_migration_entry(swp_entry) && cow) { 3891 /* 3892 * COW mappings require pages in both 3893 * parent and child to be set to read. 3894 */ 3895 make_migration_entry_read(&swp_entry); 3896 entry = swp_entry_to_pte(swp_entry); 3897 set_huge_swap_pte_at(src, addr, src_pte, 3898 entry, sz); 3899 } 3900 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3901 } else { 3902 if (cow) { 3903 /* 3904 * No need to notify as we are downgrading page 3905 * table protection not changing it to point 3906 * to a new page. 3907 * 3908 * See Documentation/vm/mmu_notifier.rst 3909 */ 3910 huge_ptep_set_wrprotect(src, addr, src_pte); 3911 } 3912 entry = huge_ptep_get(src_pte); 3913 ptepage = pte_page(entry); 3914 get_page(ptepage); 3915 page_dup_rmap(ptepage, true); 3916 set_huge_pte_at(dst, addr, dst_pte, entry); 3917 hugetlb_count_add(pages_per_huge_page(h), dst); 3918 } 3919 spin_unlock(src_ptl); 3920 spin_unlock(dst_ptl); 3921 } 3922 3923 if (cow) 3924 mmu_notifier_invalidate_range_end(&range); 3925 else 3926 i_mmap_unlock_read(mapping); 3927 3928 return ret; 3929 } 3930 3931 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3932 unsigned long start, unsigned long end, 3933 struct page *ref_page) 3934 { 3935 struct mm_struct *mm = vma->vm_mm; 3936 unsigned long address; 3937 pte_t *ptep; 3938 pte_t pte; 3939 spinlock_t *ptl; 3940 struct page *page; 3941 struct hstate *h = hstate_vma(vma); 3942 unsigned long sz = huge_page_size(h); 3943 struct mmu_notifier_range range; 3944 3945 WARN_ON(!is_vm_hugetlb_page(vma)); 3946 BUG_ON(start & ~huge_page_mask(h)); 3947 BUG_ON(end & ~huge_page_mask(h)); 3948 3949 /* 3950 * This is a hugetlb vma, all the pte entries should point 3951 * to huge page. 3952 */ 3953 tlb_change_page_size(tlb, sz); 3954 tlb_start_vma(tlb, vma); 3955 3956 /* 3957 * If sharing possible, alert mmu notifiers of worst case. 3958 */ 3959 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 3960 end); 3961 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3962 mmu_notifier_invalidate_range_start(&range); 3963 address = start; 3964 for (; address < end; address += sz) { 3965 ptep = huge_pte_offset(mm, address, sz); 3966 if (!ptep) 3967 continue; 3968 3969 ptl = huge_pte_lock(h, mm, ptep); 3970 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 3971 spin_unlock(ptl); 3972 /* 3973 * We just unmapped a page of PMDs by clearing a PUD. 3974 * The caller's TLB flush range should cover this area. 3975 */ 3976 continue; 3977 } 3978 3979 pte = huge_ptep_get(ptep); 3980 if (huge_pte_none(pte)) { 3981 spin_unlock(ptl); 3982 continue; 3983 } 3984 3985 /* 3986 * Migrating hugepage or HWPoisoned hugepage is already 3987 * unmapped and its refcount is dropped, so just clear pte here. 3988 */ 3989 if (unlikely(!pte_present(pte))) { 3990 huge_pte_clear(mm, address, ptep, sz); 3991 spin_unlock(ptl); 3992 continue; 3993 } 3994 3995 page = pte_page(pte); 3996 /* 3997 * If a reference page is supplied, it is because a specific 3998 * page is being unmapped, not a range. Ensure the page we 3999 * are about to unmap is the actual page of interest. 4000 */ 4001 if (ref_page) { 4002 if (page != ref_page) { 4003 spin_unlock(ptl); 4004 continue; 4005 } 4006 /* 4007 * Mark the VMA as having unmapped its page so that 4008 * future faults in this VMA will fail rather than 4009 * looking like data was lost 4010 */ 4011 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 4012 } 4013 4014 pte = huge_ptep_get_and_clear(mm, address, ptep); 4015 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 4016 if (huge_pte_dirty(pte)) 4017 set_page_dirty(page); 4018 4019 hugetlb_count_sub(pages_per_huge_page(h), mm); 4020 page_remove_rmap(page, true); 4021 4022 spin_unlock(ptl); 4023 tlb_remove_page_size(tlb, page, huge_page_size(h)); 4024 /* 4025 * Bail out after unmapping reference page if supplied 4026 */ 4027 if (ref_page) 4028 break; 4029 } 4030 mmu_notifier_invalidate_range_end(&range); 4031 tlb_end_vma(tlb, vma); 4032 } 4033 4034 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 4035 struct vm_area_struct *vma, unsigned long start, 4036 unsigned long end, struct page *ref_page) 4037 { 4038 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 4039 4040 /* 4041 * Clear this flag so that x86's huge_pmd_share page_table_shareable 4042 * test will fail on a vma being torn down, and not grab a page table 4043 * on its way out. We're lucky that the flag has such an appropriate 4044 * name, and can in fact be safely cleared here. We could clear it 4045 * before the __unmap_hugepage_range above, but all that's necessary 4046 * is to clear it before releasing the i_mmap_rwsem. This works 4047 * because in the context this is called, the VMA is about to be 4048 * destroyed and the i_mmap_rwsem is held. 4049 */ 4050 vma->vm_flags &= ~VM_MAYSHARE; 4051 } 4052 4053 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 4054 unsigned long end, struct page *ref_page) 4055 { 4056 struct mm_struct *mm; 4057 struct mmu_gather tlb; 4058 unsigned long tlb_start = start; 4059 unsigned long tlb_end = end; 4060 4061 /* 4062 * If shared PMDs were possibly used within this vma range, adjust 4063 * start/end for worst case tlb flushing. 4064 * Note that we can not be sure if PMDs are shared until we try to 4065 * unmap pages. However, we want to make sure TLB flushing covers 4066 * the largest possible range. 4067 */ 4068 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); 4069 4070 mm = vma->vm_mm; 4071 4072 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); 4073 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 4074 tlb_finish_mmu(&tlb, tlb_start, tlb_end); 4075 } 4076 4077 /* 4078 * This is called when the original mapper is failing to COW a MAP_PRIVATE 4079 * mappping it owns the reserve page for. The intention is to unmap the page 4080 * from other VMAs and let the children be SIGKILLed if they are faulting the 4081 * same region. 4082 */ 4083 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 4084 struct page *page, unsigned long address) 4085 { 4086 struct hstate *h = hstate_vma(vma); 4087 struct vm_area_struct *iter_vma; 4088 struct address_space *mapping; 4089 pgoff_t pgoff; 4090 4091 /* 4092 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 4093 * from page cache lookup which is in HPAGE_SIZE units. 4094 */ 4095 address = address & huge_page_mask(h); 4096 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 4097 vma->vm_pgoff; 4098 mapping = vma->vm_file->f_mapping; 4099 4100 /* 4101 * Take the mapping lock for the duration of the table walk. As 4102 * this mapping should be shared between all the VMAs, 4103 * __unmap_hugepage_range() is called as the lock is already held 4104 */ 4105 i_mmap_lock_write(mapping); 4106 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 4107 /* Do not unmap the current VMA */ 4108 if (iter_vma == vma) 4109 continue; 4110 4111 /* 4112 * Shared VMAs have their own reserves and do not affect 4113 * MAP_PRIVATE accounting but it is possible that a shared 4114 * VMA is using the same page so check and skip such VMAs. 4115 */ 4116 if (iter_vma->vm_flags & VM_MAYSHARE) 4117 continue; 4118 4119 /* 4120 * Unmap the page from other VMAs without their own reserves. 4121 * They get marked to be SIGKILLed if they fault in these 4122 * areas. This is because a future no-page fault on this VMA 4123 * could insert a zeroed page instead of the data existing 4124 * from the time of fork. This would look like data corruption 4125 */ 4126 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 4127 unmap_hugepage_range(iter_vma, address, 4128 address + huge_page_size(h), page); 4129 } 4130 i_mmap_unlock_write(mapping); 4131 } 4132 4133 /* 4134 * Hugetlb_cow() should be called with page lock of the original hugepage held. 4135 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 4136 * cannot race with other handlers or page migration. 4137 * Keep the pte_same checks anyway to make transition from the mutex easier. 4138 */ 4139 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 4140 unsigned long address, pte_t *ptep, 4141 struct page *pagecache_page, spinlock_t *ptl) 4142 { 4143 pte_t pte; 4144 struct hstate *h = hstate_vma(vma); 4145 struct page *old_page, *new_page; 4146 int outside_reserve = 0; 4147 vm_fault_t ret = 0; 4148 unsigned long haddr = address & huge_page_mask(h); 4149 struct mmu_notifier_range range; 4150 4151 pte = huge_ptep_get(ptep); 4152 old_page = pte_page(pte); 4153 4154 retry_avoidcopy: 4155 /* If no-one else is actually using this page, avoid the copy 4156 * and just make the page writable */ 4157 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 4158 page_move_anon_rmap(old_page, vma); 4159 set_huge_ptep_writable(vma, haddr, ptep); 4160 return 0; 4161 } 4162 4163 /* 4164 * If the process that created a MAP_PRIVATE mapping is about to 4165 * perform a COW due to a shared page count, attempt to satisfy 4166 * the allocation without using the existing reserves. The pagecache 4167 * page is used to determine if the reserve at this address was 4168 * consumed or not. If reserves were used, a partial faulted mapping 4169 * at the time of fork() could consume its reserves on COW instead 4170 * of the full address range. 4171 */ 4172 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 4173 old_page != pagecache_page) 4174 outside_reserve = 1; 4175 4176 get_page(old_page); 4177 4178 /* 4179 * Drop page table lock as buddy allocator may be called. It will 4180 * be acquired again before returning to the caller, as expected. 4181 */ 4182 spin_unlock(ptl); 4183 new_page = alloc_huge_page(vma, haddr, outside_reserve); 4184 4185 if (IS_ERR(new_page)) { 4186 /* 4187 * If a process owning a MAP_PRIVATE mapping fails to COW, 4188 * it is due to references held by a child and an insufficient 4189 * huge page pool. To guarantee the original mappers 4190 * reliability, unmap the page from child processes. The child 4191 * may get SIGKILLed if it later faults. 4192 */ 4193 if (outside_reserve) { 4194 put_page(old_page); 4195 BUG_ON(huge_pte_none(pte)); 4196 unmap_ref_private(mm, vma, old_page, haddr); 4197 BUG_ON(huge_pte_none(pte)); 4198 spin_lock(ptl); 4199 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4200 if (likely(ptep && 4201 pte_same(huge_ptep_get(ptep), pte))) 4202 goto retry_avoidcopy; 4203 /* 4204 * race occurs while re-acquiring page table 4205 * lock, and our job is done. 4206 */ 4207 return 0; 4208 } 4209 4210 ret = vmf_error(PTR_ERR(new_page)); 4211 goto out_release_old; 4212 } 4213 4214 /* 4215 * When the original hugepage is shared one, it does not have 4216 * anon_vma prepared. 4217 */ 4218 if (unlikely(anon_vma_prepare(vma))) { 4219 ret = VM_FAULT_OOM; 4220 goto out_release_all; 4221 } 4222 4223 copy_user_huge_page(new_page, old_page, address, vma, 4224 pages_per_huge_page(h)); 4225 __SetPageUptodate(new_page); 4226 4227 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 4228 haddr + huge_page_size(h)); 4229 mmu_notifier_invalidate_range_start(&range); 4230 4231 /* 4232 * Retake the page table lock to check for racing updates 4233 * before the page tables are altered 4234 */ 4235 spin_lock(ptl); 4236 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4237 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 4238 ClearPagePrivate(new_page); 4239 4240 /* Break COW */ 4241 huge_ptep_clear_flush(vma, haddr, ptep); 4242 mmu_notifier_invalidate_range(mm, range.start, range.end); 4243 set_huge_pte_at(mm, haddr, ptep, 4244 make_huge_pte(vma, new_page, 1)); 4245 page_remove_rmap(old_page, true); 4246 hugepage_add_new_anon_rmap(new_page, vma, haddr); 4247 set_page_huge_active(new_page); 4248 /* Make the old page be freed below */ 4249 new_page = old_page; 4250 } 4251 spin_unlock(ptl); 4252 mmu_notifier_invalidate_range_end(&range); 4253 out_release_all: 4254 restore_reserve_on_error(h, vma, haddr, new_page); 4255 put_page(new_page); 4256 out_release_old: 4257 put_page(old_page); 4258 4259 spin_lock(ptl); /* Caller expects lock to be held */ 4260 return ret; 4261 } 4262 4263 /* Return the pagecache page at a given address within a VMA */ 4264 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 4265 struct vm_area_struct *vma, unsigned long address) 4266 { 4267 struct address_space *mapping; 4268 pgoff_t idx; 4269 4270 mapping = vma->vm_file->f_mapping; 4271 idx = vma_hugecache_offset(h, vma, address); 4272 4273 return find_lock_page(mapping, idx); 4274 } 4275 4276 /* 4277 * Return whether there is a pagecache page to back given address within VMA. 4278 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 4279 */ 4280 static bool hugetlbfs_pagecache_present(struct hstate *h, 4281 struct vm_area_struct *vma, unsigned long address) 4282 { 4283 struct address_space *mapping; 4284 pgoff_t idx; 4285 struct page *page; 4286 4287 mapping = vma->vm_file->f_mapping; 4288 idx = vma_hugecache_offset(h, vma, address); 4289 4290 page = find_get_page(mapping, idx); 4291 if (page) 4292 put_page(page); 4293 return page != NULL; 4294 } 4295 4296 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 4297 pgoff_t idx) 4298 { 4299 struct inode *inode = mapping->host; 4300 struct hstate *h = hstate_inode(inode); 4301 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 4302 4303 if (err) 4304 return err; 4305 ClearPagePrivate(page); 4306 4307 /* 4308 * set page dirty so that it will not be removed from cache/file 4309 * by non-hugetlbfs specific code paths. 4310 */ 4311 set_page_dirty(page); 4312 4313 spin_lock(&inode->i_lock); 4314 inode->i_blocks += blocks_per_huge_page(h); 4315 spin_unlock(&inode->i_lock); 4316 return 0; 4317 } 4318 4319 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 4320 struct vm_area_struct *vma, 4321 struct address_space *mapping, pgoff_t idx, 4322 unsigned long address, pte_t *ptep, unsigned int flags) 4323 { 4324 struct hstate *h = hstate_vma(vma); 4325 vm_fault_t ret = VM_FAULT_SIGBUS; 4326 int anon_rmap = 0; 4327 unsigned long size; 4328 struct page *page; 4329 pte_t new_pte; 4330 spinlock_t *ptl; 4331 unsigned long haddr = address & huge_page_mask(h); 4332 bool new_page = false; 4333 4334 /* 4335 * Currently, we are forced to kill the process in the event the 4336 * original mapper has unmapped pages from the child due to a failed 4337 * COW. Warn that such a situation has occurred as it may not be obvious 4338 */ 4339 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 4340 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 4341 current->pid); 4342 return ret; 4343 } 4344 4345 /* 4346 * We can not race with truncation due to holding i_mmap_rwsem. 4347 * i_size is modified when holding i_mmap_rwsem, so check here 4348 * once for faults beyond end of file. 4349 */ 4350 size = i_size_read(mapping->host) >> huge_page_shift(h); 4351 if (idx >= size) 4352 goto out; 4353 4354 retry: 4355 page = find_lock_page(mapping, idx); 4356 if (!page) { 4357 /* 4358 * Check for page in userfault range 4359 */ 4360 if (userfaultfd_missing(vma)) { 4361 u32 hash; 4362 struct vm_fault vmf = { 4363 .vma = vma, 4364 .address = haddr, 4365 .flags = flags, 4366 /* 4367 * Hard to debug if it ends up being 4368 * used by a callee that assumes 4369 * something about the other 4370 * uninitialized fields... same as in 4371 * memory.c 4372 */ 4373 }; 4374 4375 /* 4376 * hugetlb_fault_mutex and i_mmap_rwsem must be 4377 * dropped before handling userfault. Reacquire 4378 * after handling fault to make calling code simpler. 4379 */ 4380 hash = hugetlb_fault_mutex_hash(mapping, idx); 4381 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4382 i_mmap_unlock_read(mapping); 4383 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 4384 i_mmap_lock_read(mapping); 4385 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4386 goto out; 4387 } 4388 4389 page = alloc_huge_page(vma, haddr, 0); 4390 if (IS_ERR(page)) { 4391 /* 4392 * Returning error will result in faulting task being 4393 * sent SIGBUS. The hugetlb fault mutex prevents two 4394 * tasks from racing to fault in the same page which 4395 * could result in false unable to allocate errors. 4396 * Page migration does not take the fault mutex, but 4397 * does a clear then write of pte's under page table 4398 * lock. Page fault code could race with migration, 4399 * notice the clear pte and try to allocate a page 4400 * here. Before returning error, get ptl and make 4401 * sure there really is no pte entry. 4402 */ 4403 ptl = huge_pte_lock(h, mm, ptep); 4404 if (!huge_pte_none(huge_ptep_get(ptep))) { 4405 ret = 0; 4406 spin_unlock(ptl); 4407 goto out; 4408 } 4409 spin_unlock(ptl); 4410 ret = vmf_error(PTR_ERR(page)); 4411 goto out; 4412 } 4413 clear_huge_page(page, address, pages_per_huge_page(h)); 4414 __SetPageUptodate(page); 4415 new_page = true; 4416 4417 if (vma->vm_flags & VM_MAYSHARE) { 4418 int err = huge_add_to_page_cache(page, mapping, idx); 4419 if (err) { 4420 put_page(page); 4421 if (err == -EEXIST) 4422 goto retry; 4423 goto out; 4424 } 4425 } else { 4426 lock_page(page); 4427 if (unlikely(anon_vma_prepare(vma))) { 4428 ret = VM_FAULT_OOM; 4429 goto backout_unlocked; 4430 } 4431 anon_rmap = 1; 4432 } 4433 } else { 4434 /* 4435 * If memory error occurs between mmap() and fault, some process 4436 * don't have hwpoisoned swap entry for errored virtual address. 4437 * So we need to block hugepage fault by PG_hwpoison bit check. 4438 */ 4439 if (unlikely(PageHWPoison(page))) { 4440 ret = VM_FAULT_HWPOISON | 4441 VM_FAULT_SET_HINDEX(hstate_index(h)); 4442 goto backout_unlocked; 4443 } 4444 } 4445 4446 /* 4447 * If we are going to COW a private mapping later, we examine the 4448 * pending reservations for this page now. This will ensure that 4449 * any allocations necessary to record that reservation occur outside 4450 * the spinlock. 4451 */ 4452 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4453 if (vma_needs_reservation(h, vma, haddr) < 0) { 4454 ret = VM_FAULT_OOM; 4455 goto backout_unlocked; 4456 } 4457 /* Just decrements count, does not deallocate */ 4458 vma_end_reservation(h, vma, haddr); 4459 } 4460 4461 ptl = huge_pte_lock(h, mm, ptep); 4462 ret = 0; 4463 if (!huge_pte_none(huge_ptep_get(ptep))) 4464 goto backout; 4465 4466 if (anon_rmap) { 4467 ClearPagePrivate(page); 4468 hugepage_add_new_anon_rmap(page, vma, haddr); 4469 } else 4470 page_dup_rmap(page, true); 4471 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 4472 && (vma->vm_flags & VM_SHARED))); 4473 set_huge_pte_at(mm, haddr, ptep, new_pte); 4474 4475 hugetlb_count_add(pages_per_huge_page(h), mm); 4476 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4477 /* Optimization, do the COW without a second fault */ 4478 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 4479 } 4480 4481 spin_unlock(ptl); 4482 4483 /* 4484 * Only make newly allocated pages active. Existing pages found 4485 * in the pagecache could be !page_huge_active() if they have been 4486 * isolated for migration. 4487 */ 4488 if (new_page) 4489 set_page_huge_active(page); 4490 4491 unlock_page(page); 4492 out: 4493 return ret; 4494 4495 backout: 4496 spin_unlock(ptl); 4497 backout_unlocked: 4498 unlock_page(page); 4499 restore_reserve_on_error(h, vma, haddr, page); 4500 put_page(page); 4501 goto out; 4502 } 4503 4504 #ifdef CONFIG_SMP 4505 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4506 { 4507 unsigned long key[2]; 4508 u32 hash; 4509 4510 key[0] = (unsigned long) mapping; 4511 key[1] = idx; 4512 4513 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 4514 4515 return hash & (num_fault_mutexes - 1); 4516 } 4517 #else 4518 /* 4519 * For uniprocesor systems we always use a single mutex, so just 4520 * return 0 and avoid the hashing overhead. 4521 */ 4522 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4523 { 4524 return 0; 4525 } 4526 #endif 4527 4528 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 4529 unsigned long address, unsigned int flags) 4530 { 4531 pte_t *ptep, entry; 4532 spinlock_t *ptl; 4533 vm_fault_t ret; 4534 u32 hash; 4535 pgoff_t idx; 4536 struct page *page = NULL; 4537 struct page *pagecache_page = NULL; 4538 struct hstate *h = hstate_vma(vma); 4539 struct address_space *mapping; 4540 int need_wait_lock = 0; 4541 unsigned long haddr = address & huge_page_mask(h); 4542 4543 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4544 if (ptep) { 4545 /* 4546 * Since we hold no locks, ptep could be stale. That is 4547 * OK as we are only making decisions based on content and 4548 * not actually modifying content here. 4549 */ 4550 entry = huge_ptep_get(ptep); 4551 if (unlikely(is_hugetlb_entry_migration(entry))) { 4552 migration_entry_wait_huge(vma, mm, ptep); 4553 return 0; 4554 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 4555 return VM_FAULT_HWPOISON_LARGE | 4556 VM_FAULT_SET_HINDEX(hstate_index(h)); 4557 } 4558 4559 /* 4560 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 4561 * until finished with ptep. This serves two purposes: 4562 * 1) It prevents huge_pmd_unshare from being called elsewhere 4563 * and making the ptep no longer valid. 4564 * 2) It synchronizes us with i_size modifications during truncation. 4565 * 4566 * ptep could have already be assigned via huge_pte_offset. That 4567 * is OK, as huge_pte_alloc will return the same value unless 4568 * something has changed. 4569 */ 4570 mapping = vma->vm_file->f_mapping; 4571 i_mmap_lock_read(mapping); 4572 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 4573 if (!ptep) { 4574 i_mmap_unlock_read(mapping); 4575 return VM_FAULT_OOM; 4576 } 4577 4578 /* 4579 * Serialize hugepage allocation and instantiation, so that we don't 4580 * get spurious allocation failures if two CPUs race to instantiate 4581 * the same page in the page cache. 4582 */ 4583 idx = vma_hugecache_offset(h, vma, haddr); 4584 hash = hugetlb_fault_mutex_hash(mapping, idx); 4585 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4586 4587 entry = huge_ptep_get(ptep); 4588 if (huge_pte_none(entry)) { 4589 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4590 goto out_mutex; 4591 } 4592 4593 ret = 0; 4594 4595 /* 4596 * entry could be a migration/hwpoison entry at this point, so this 4597 * check prevents the kernel from going below assuming that we have 4598 * an active hugepage in pagecache. This goto expects the 2nd page 4599 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 4600 * properly handle it. 4601 */ 4602 if (!pte_present(entry)) 4603 goto out_mutex; 4604 4605 /* 4606 * If we are going to COW the mapping later, we examine the pending 4607 * reservations for this page now. This will ensure that any 4608 * allocations necessary to record that reservation occur outside the 4609 * spinlock. For private mappings, we also lookup the pagecache 4610 * page now as it is used to determine if a reservation has been 4611 * consumed. 4612 */ 4613 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4614 if (vma_needs_reservation(h, vma, haddr) < 0) { 4615 ret = VM_FAULT_OOM; 4616 goto out_mutex; 4617 } 4618 /* Just decrements count, does not deallocate */ 4619 vma_end_reservation(h, vma, haddr); 4620 4621 if (!(vma->vm_flags & VM_MAYSHARE)) 4622 pagecache_page = hugetlbfs_pagecache_page(h, 4623 vma, haddr); 4624 } 4625 4626 ptl = huge_pte_lock(h, mm, ptep); 4627 4628 /* Check for a racing update before calling hugetlb_cow */ 4629 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4630 goto out_ptl; 4631 4632 /* 4633 * hugetlb_cow() requires page locks of pte_page(entry) and 4634 * pagecache_page, so here we need take the former one 4635 * when page != pagecache_page or !pagecache_page. 4636 */ 4637 page = pte_page(entry); 4638 if (page != pagecache_page) 4639 if (!trylock_page(page)) { 4640 need_wait_lock = 1; 4641 goto out_ptl; 4642 } 4643 4644 get_page(page); 4645 4646 if (flags & FAULT_FLAG_WRITE) { 4647 if (!huge_pte_write(entry)) { 4648 ret = hugetlb_cow(mm, vma, address, ptep, 4649 pagecache_page, ptl); 4650 goto out_put_page; 4651 } 4652 entry = huge_pte_mkdirty(entry); 4653 } 4654 entry = pte_mkyoung(entry); 4655 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4656 flags & FAULT_FLAG_WRITE)) 4657 update_mmu_cache(vma, haddr, ptep); 4658 out_put_page: 4659 if (page != pagecache_page) 4660 unlock_page(page); 4661 put_page(page); 4662 out_ptl: 4663 spin_unlock(ptl); 4664 4665 if (pagecache_page) { 4666 unlock_page(pagecache_page); 4667 put_page(pagecache_page); 4668 } 4669 out_mutex: 4670 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4671 i_mmap_unlock_read(mapping); 4672 /* 4673 * Generally it's safe to hold refcount during waiting page lock. But 4674 * here we just wait to defer the next page fault to avoid busy loop and 4675 * the page is not used after unlocked before returning from the current 4676 * page fault. So we are safe from accessing freed page, even if we wait 4677 * here without taking refcount. 4678 */ 4679 if (need_wait_lock) 4680 wait_on_page_locked(page); 4681 return ret; 4682 } 4683 4684 /* 4685 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4686 * modifications for huge pages. 4687 */ 4688 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4689 pte_t *dst_pte, 4690 struct vm_area_struct *dst_vma, 4691 unsigned long dst_addr, 4692 unsigned long src_addr, 4693 struct page **pagep) 4694 { 4695 struct address_space *mapping; 4696 pgoff_t idx; 4697 unsigned long size; 4698 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4699 struct hstate *h = hstate_vma(dst_vma); 4700 pte_t _dst_pte; 4701 spinlock_t *ptl; 4702 int ret; 4703 struct page *page; 4704 4705 if (!*pagep) { 4706 ret = -ENOMEM; 4707 page = alloc_huge_page(dst_vma, dst_addr, 0); 4708 if (IS_ERR(page)) 4709 goto out; 4710 4711 ret = copy_huge_page_from_user(page, 4712 (const void __user *) src_addr, 4713 pages_per_huge_page(h), false); 4714 4715 /* fallback to copy_from_user outside mmap_lock */ 4716 if (unlikely(ret)) { 4717 ret = -ENOENT; 4718 *pagep = page; 4719 /* don't free the page */ 4720 goto out; 4721 } 4722 } else { 4723 page = *pagep; 4724 *pagep = NULL; 4725 } 4726 4727 /* 4728 * The memory barrier inside __SetPageUptodate makes sure that 4729 * preceding stores to the page contents become visible before 4730 * the set_pte_at() write. 4731 */ 4732 __SetPageUptodate(page); 4733 4734 mapping = dst_vma->vm_file->f_mapping; 4735 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4736 4737 /* 4738 * If shared, add to page cache 4739 */ 4740 if (vm_shared) { 4741 size = i_size_read(mapping->host) >> huge_page_shift(h); 4742 ret = -EFAULT; 4743 if (idx >= size) 4744 goto out_release_nounlock; 4745 4746 /* 4747 * Serialization between remove_inode_hugepages() and 4748 * huge_add_to_page_cache() below happens through the 4749 * hugetlb_fault_mutex_table that here must be hold by 4750 * the caller. 4751 */ 4752 ret = huge_add_to_page_cache(page, mapping, idx); 4753 if (ret) 4754 goto out_release_nounlock; 4755 } 4756 4757 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4758 spin_lock(ptl); 4759 4760 /* 4761 * Recheck the i_size after holding PT lock to make sure not 4762 * to leave any page mapped (as page_mapped()) beyond the end 4763 * of the i_size (remove_inode_hugepages() is strict about 4764 * enforcing that). If we bail out here, we'll also leave a 4765 * page in the radix tree in the vm_shared case beyond the end 4766 * of the i_size, but remove_inode_hugepages() will take care 4767 * of it as soon as we drop the hugetlb_fault_mutex_table. 4768 */ 4769 size = i_size_read(mapping->host) >> huge_page_shift(h); 4770 ret = -EFAULT; 4771 if (idx >= size) 4772 goto out_release_unlock; 4773 4774 ret = -EEXIST; 4775 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4776 goto out_release_unlock; 4777 4778 if (vm_shared) { 4779 page_dup_rmap(page, true); 4780 } else { 4781 ClearPagePrivate(page); 4782 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4783 } 4784 4785 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4786 if (dst_vma->vm_flags & VM_WRITE) 4787 _dst_pte = huge_pte_mkdirty(_dst_pte); 4788 _dst_pte = pte_mkyoung(_dst_pte); 4789 4790 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4791 4792 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4793 dst_vma->vm_flags & VM_WRITE); 4794 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4795 4796 /* No need to invalidate - it was non-present before */ 4797 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4798 4799 spin_unlock(ptl); 4800 set_page_huge_active(page); 4801 if (vm_shared) 4802 unlock_page(page); 4803 ret = 0; 4804 out: 4805 return ret; 4806 out_release_unlock: 4807 spin_unlock(ptl); 4808 if (vm_shared) 4809 unlock_page(page); 4810 out_release_nounlock: 4811 put_page(page); 4812 goto out; 4813 } 4814 4815 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4816 struct page **pages, struct vm_area_struct **vmas, 4817 unsigned long *position, unsigned long *nr_pages, 4818 long i, unsigned int flags, int *locked) 4819 { 4820 unsigned long pfn_offset; 4821 unsigned long vaddr = *position; 4822 unsigned long remainder = *nr_pages; 4823 struct hstate *h = hstate_vma(vma); 4824 int err = -EFAULT; 4825 4826 while (vaddr < vma->vm_end && remainder) { 4827 pte_t *pte; 4828 spinlock_t *ptl = NULL; 4829 int absent; 4830 struct page *page; 4831 4832 /* 4833 * If we have a pending SIGKILL, don't keep faulting pages and 4834 * potentially allocating memory. 4835 */ 4836 if (fatal_signal_pending(current)) { 4837 remainder = 0; 4838 break; 4839 } 4840 4841 /* 4842 * Some archs (sparc64, sh*) have multiple pte_ts to 4843 * each hugepage. We have to make sure we get the 4844 * first, for the page indexing below to work. 4845 * 4846 * Note that page table lock is not held when pte is null. 4847 */ 4848 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4849 huge_page_size(h)); 4850 if (pte) 4851 ptl = huge_pte_lock(h, mm, pte); 4852 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4853 4854 /* 4855 * When coredumping, it suits get_dump_page if we just return 4856 * an error where there's an empty slot with no huge pagecache 4857 * to back it. This way, we avoid allocating a hugepage, and 4858 * the sparse dumpfile avoids allocating disk blocks, but its 4859 * huge holes still show up with zeroes where they need to be. 4860 */ 4861 if (absent && (flags & FOLL_DUMP) && 4862 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4863 if (pte) 4864 spin_unlock(ptl); 4865 remainder = 0; 4866 break; 4867 } 4868 4869 /* 4870 * We need call hugetlb_fault for both hugepages under migration 4871 * (in which case hugetlb_fault waits for the migration,) and 4872 * hwpoisoned hugepages (in which case we need to prevent the 4873 * caller from accessing to them.) In order to do this, we use 4874 * here is_swap_pte instead of is_hugetlb_entry_migration and 4875 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4876 * both cases, and because we can't follow correct pages 4877 * directly from any kind of swap entries. 4878 */ 4879 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4880 ((flags & FOLL_WRITE) && 4881 !huge_pte_write(huge_ptep_get(pte)))) { 4882 vm_fault_t ret; 4883 unsigned int fault_flags = 0; 4884 4885 if (pte) 4886 spin_unlock(ptl); 4887 if (flags & FOLL_WRITE) 4888 fault_flags |= FAULT_FLAG_WRITE; 4889 if (locked) 4890 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4891 FAULT_FLAG_KILLABLE; 4892 if (flags & FOLL_NOWAIT) 4893 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4894 FAULT_FLAG_RETRY_NOWAIT; 4895 if (flags & FOLL_TRIED) { 4896 /* 4897 * Note: FAULT_FLAG_ALLOW_RETRY and 4898 * FAULT_FLAG_TRIED can co-exist 4899 */ 4900 fault_flags |= FAULT_FLAG_TRIED; 4901 } 4902 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4903 if (ret & VM_FAULT_ERROR) { 4904 err = vm_fault_to_errno(ret, flags); 4905 remainder = 0; 4906 break; 4907 } 4908 if (ret & VM_FAULT_RETRY) { 4909 if (locked && 4910 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4911 *locked = 0; 4912 *nr_pages = 0; 4913 /* 4914 * VM_FAULT_RETRY must not return an 4915 * error, it will return zero 4916 * instead. 4917 * 4918 * No need to update "position" as the 4919 * caller will not check it after 4920 * *nr_pages is set to 0. 4921 */ 4922 return i; 4923 } 4924 continue; 4925 } 4926 4927 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4928 page = pte_page(huge_ptep_get(pte)); 4929 4930 /* 4931 * If subpage information not requested, update counters 4932 * and skip the same_page loop below. 4933 */ 4934 if (!pages && !vmas && !pfn_offset && 4935 (vaddr + huge_page_size(h) < vma->vm_end) && 4936 (remainder >= pages_per_huge_page(h))) { 4937 vaddr += huge_page_size(h); 4938 remainder -= pages_per_huge_page(h); 4939 i += pages_per_huge_page(h); 4940 spin_unlock(ptl); 4941 continue; 4942 } 4943 4944 same_page: 4945 if (pages) { 4946 pages[i] = mem_map_offset(page, pfn_offset); 4947 /* 4948 * try_grab_page() should always succeed here, because: 4949 * a) we hold the ptl lock, and b) we've just checked 4950 * that the huge page is present in the page tables. If 4951 * the huge page is present, then the tail pages must 4952 * also be present. The ptl prevents the head page and 4953 * tail pages from being rearranged in any way. So this 4954 * page must be available at this point, unless the page 4955 * refcount overflowed: 4956 */ 4957 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) { 4958 spin_unlock(ptl); 4959 remainder = 0; 4960 err = -ENOMEM; 4961 break; 4962 } 4963 } 4964 4965 if (vmas) 4966 vmas[i] = vma; 4967 4968 vaddr += PAGE_SIZE; 4969 ++pfn_offset; 4970 --remainder; 4971 ++i; 4972 if (vaddr < vma->vm_end && remainder && 4973 pfn_offset < pages_per_huge_page(h)) { 4974 /* 4975 * We use pfn_offset to avoid touching the pageframes 4976 * of this compound page. 4977 */ 4978 goto same_page; 4979 } 4980 spin_unlock(ptl); 4981 } 4982 *nr_pages = remainder; 4983 /* 4984 * setting position is actually required only if remainder is 4985 * not zero but it's faster not to add a "if (remainder)" 4986 * branch. 4987 */ 4988 *position = vaddr; 4989 4990 return i ? i : err; 4991 } 4992 4993 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4994 /* 4995 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4996 * implement this. 4997 */ 4998 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4999 #endif 5000 5001 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 5002 unsigned long address, unsigned long end, pgprot_t newprot) 5003 { 5004 struct mm_struct *mm = vma->vm_mm; 5005 unsigned long start = address; 5006 pte_t *ptep; 5007 pte_t pte; 5008 struct hstate *h = hstate_vma(vma); 5009 unsigned long pages = 0; 5010 bool shared_pmd = false; 5011 struct mmu_notifier_range range; 5012 5013 /* 5014 * In the case of shared PMDs, the area to flush could be beyond 5015 * start/end. Set range.start/range.end to cover the maximum possible 5016 * range if PMD sharing is possible. 5017 */ 5018 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 5019 0, vma, mm, start, end); 5020 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5021 5022 BUG_ON(address >= end); 5023 flush_cache_range(vma, range.start, range.end); 5024 5025 mmu_notifier_invalidate_range_start(&range); 5026 i_mmap_lock_write(vma->vm_file->f_mapping); 5027 for (; address < end; address += huge_page_size(h)) { 5028 spinlock_t *ptl; 5029 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 5030 if (!ptep) 5031 continue; 5032 ptl = huge_pte_lock(h, mm, ptep); 5033 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 5034 pages++; 5035 spin_unlock(ptl); 5036 shared_pmd = true; 5037 continue; 5038 } 5039 pte = huge_ptep_get(ptep); 5040 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 5041 spin_unlock(ptl); 5042 continue; 5043 } 5044 if (unlikely(is_hugetlb_entry_migration(pte))) { 5045 swp_entry_t entry = pte_to_swp_entry(pte); 5046 5047 if (is_write_migration_entry(entry)) { 5048 pte_t newpte; 5049 5050 make_migration_entry_read(&entry); 5051 newpte = swp_entry_to_pte(entry); 5052 set_huge_swap_pte_at(mm, address, ptep, 5053 newpte, huge_page_size(h)); 5054 pages++; 5055 } 5056 spin_unlock(ptl); 5057 continue; 5058 } 5059 if (!huge_pte_none(pte)) { 5060 pte_t old_pte; 5061 5062 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 5063 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 5064 pte = arch_make_huge_pte(pte, vma, NULL, 0); 5065 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 5066 pages++; 5067 } 5068 spin_unlock(ptl); 5069 } 5070 /* 5071 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 5072 * may have cleared our pud entry and done put_page on the page table: 5073 * once we release i_mmap_rwsem, another task can do the final put_page 5074 * and that page table be reused and filled with junk. If we actually 5075 * did unshare a page of pmds, flush the range corresponding to the pud. 5076 */ 5077 if (shared_pmd) 5078 flush_hugetlb_tlb_range(vma, range.start, range.end); 5079 else 5080 flush_hugetlb_tlb_range(vma, start, end); 5081 /* 5082 * No need to call mmu_notifier_invalidate_range() we are downgrading 5083 * page table protection not changing it to point to a new page. 5084 * 5085 * See Documentation/vm/mmu_notifier.rst 5086 */ 5087 i_mmap_unlock_write(vma->vm_file->f_mapping); 5088 mmu_notifier_invalidate_range_end(&range); 5089 5090 return pages << h->order; 5091 } 5092 5093 int hugetlb_reserve_pages(struct inode *inode, 5094 long from, long to, 5095 struct vm_area_struct *vma, 5096 vm_flags_t vm_flags) 5097 { 5098 long ret, chg, add = -1; 5099 struct hstate *h = hstate_inode(inode); 5100 struct hugepage_subpool *spool = subpool_inode(inode); 5101 struct resv_map *resv_map; 5102 struct hugetlb_cgroup *h_cg = NULL; 5103 long gbl_reserve, regions_needed = 0; 5104 5105 /* This should never happen */ 5106 if (from > to) { 5107 VM_WARN(1, "%s called with a negative range\n", __func__); 5108 return -EINVAL; 5109 } 5110 5111 /* 5112 * Only apply hugepage reservation if asked. At fault time, an 5113 * attempt will be made for VM_NORESERVE to allocate a page 5114 * without using reserves 5115 */ 5116 if (vm_flags & VM_NORESERVE) 5117 return 0; 5118 5119 /* 5120 * Shared mappings base their reservation on the number of pages that 5121 * are already allocated on behalf of the file. Private mappings need 5122 * to reserve the full area even if read-only as mprotect() may be 5123 * called to make the mapping read-write. Assume !vma is a shm mapping 5124 */ 5125 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5126 /* 5127 * resv_map can not be NULL as hugetlb_reserve_pages is only 5128 * called for inodes for which resv_maps were created (see 5129 * hugetlbfs_get_inode). 5130 */ 5131 resv_map = inode_resv_map(inode); 5132 5133 chg = region_chg(resv_map, from, to, ®ions_needed); 5134 5135 } else { 5136 /* Private mapping. */ 5137 resv_map = resv_map_alloc(); 5138 if (!resv_map) 5139 return -ENOMEM; 5140 5141 chg = to - from; 5142 5143 set_vma_resv_map(vma, resv_map); 5144 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 5145 } 5146 5147 if (chg < 0) { 5148 ret = chg; 5149 goto out_err; 5150 } 5151 5152 ret = hugetlb_cgroup_charge_cgroup_rsvd( 5153 hstate_index(h), chg * pages_per_huge_page(h), &h_cg); 5154 5155 if (ret < 0) { 5156 ret = -ENOMEM; 5157 goto out_err; 5158 } 5159 5160 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 5161 /* For private mappings, the hugetlb_cgroup uncharge info hangs 5162 * of the resv_map. 5163 */ 5164 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 5165 } 5166 5167 /* 5168 * There must be enough pages in the subpool for the mapping. If 5169 * the subpool has a minimum size, there may be some global 5170 * reservations already in place (gbl_reserve). 5171 */ 5172 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 5173 if (gbl_reserve < 0) { 5174 ret = -ENOSPC; 5175 goto out_uncharge_cgroup; 5176 } 5177 5178 /* 5179 * Check enough hugepages are available for the reservation. 5180 * Hand the pages back to the subpool if there are not 5181 */ 5182 ret = hugetlb_acct_memory(h, gbl_reserve); 5183 if (ret < 0) { 5184 goto out_put_pages; 5185 } 5186 5187 /* 5188 * Account for the reservations made. Shared mappings record regions 5189 * that have reservations as they are shared by multiple VMAs. 5190 * When the last VMA disappears, the region map says how much 5191 * the reservation was and the page cache tells how much of 5192 * the reservation was consumed. Private mappings are per-VMA and 5193 * only the consumed reservations are tracked. When the VMA 5194 * disappears, the original reservation is the VMA size and the 5195 * consumed reservations are stored in the map. Hence, nothing 5196 * else has to be done for private mappings here 5197 */ 5198 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5199 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 5200 5201 if (unlikely(add < 0)) { 5202 hugetlb_acct_memory(h, -gbl_reserve); 5203 goto out_put_pages; 5204 } else if (unlikely(chg > add)) { 5205 /* 5206 * pages in this range were added to the reserve 5207 * map between region_chg and region_add. This 5208 * indicates a race with alloc_huge_page. Adjust 5209 * the subpool and reserve counts modified above 5210 * based on the difference. 5211 */ 5212 long rsv_adjust; 5213 5214 hugetlb_cgroup_uncharge_cgroup_rsvd( 5215 hstate_index(h), 5216 (chg - add) * pages_per_huge_page(h), h_cg); 5217 5218 rsv_adjust = hugepage_subpool_put_pages(spool, 5219 chg - add); 5220 hugetlb_acct_memory(h, -rsv_adjust); 5221 } 5222 } 5223 return 0; 5224 out_put_pages: 5225 /* put back original number of pages, chg */ 5226 (void)hugepage_subpool_put_pages(spool, chg); 5227 out_uncharge_cgroup: 5228 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 5229 chg * pages_per_huge_page(h), h_cg); 5230 out_err: 5231 if (!vma || vma->vm_flags & VM_MAYSHARE) 5232 /* Only call region_abort if the region_chg succeeded but the 5233 * region_add failed or didn't run. 5234 */ 5235 if (chg >= 0 && add < 0) 5236 region_abort(resv_map, from, to, regions_needed); 5237 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5238 kref_put(&resv_map->refs, resv_map_release); 5239 return ret; 5240 } 5241 5242 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 5243 long freed) 5244 { 5245 struct hstate *h = hstate_inode(inode); 5246 struct resv_map *resv_map = inode_resv_map(inode); 5247 long chg = 0; 5248 struct hugepage_subpool *spool = subpool_inode(inode); 5249 long gbl_reserve; 5250 5251 /* 5252 * Since this routine can be called in the evict inode path for all 5253 * hugetlbfs inodes, resv_map could be NULL. 5254 */ 5255 if (resv_map) { 5256 chg = region_del(resv_map, start, end); 5257 /* 5258 * region_del() can fail in the rare case where a region 5259 * must be split and another region descriptor can not be 5260 * allocated. If end == LONG_MAX, it will not fail. 5261 */ 5262 if (chg < 0) 5263 return chg; 5264 } 5265 5266 spin_lock(&inode->i_lock); 5267 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 5268 spin_unlock(&inode->i_lock); 5269 5270 /* 5271 * If the subpool has a minimum size, the number of global 5272 * reservations to be released may be adjusted. 5273 */ 5274 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 5275 hugetlb_acct_memory(h, -gbl_reserve); 5276 5277 return 0; 5278 } 5279 5280 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 5281 static unsigned long page_table_shareable(struct vm_area_struct *svma, 5282 struct vm_area_struct *vma, 5283 unsigned long addr, pgoff_t idx) 5284 { 5285 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 5286 svma->vm_start; 5287 unsigned long sbase = saddr & PUD_MASK; 5288 unsigned long s_end = sbase + PUD_SIZE; 5289 5290 /* Allow segments to share if only one is marked locked */ 5291 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 5292 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 5293 5294 /* 5295 * match the virtual addresses, permission and the alignment of the 5296 * page table page. 5297 */ 5298 if (pmd_index(addr) != pmd_index(saddr) || 5299 vm_flags != svm_flags || 5300 sbase < svma->vm_start || svma->vm_end < s_end) 5301 return 0; 5302 5303 return saddr; 5304 } 5305 5306 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 5307 { 5308 unsigned long base = addr & PUD_MASK; 5309 unsigned long end = base + PUD_SIZE; 5310 5311 /* 5312 * check on proper vm_flags and page table alignment 5313 */ 5314 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 5315 return true; 5316 return false; 5317 } 5318 5319 /* 5320 * Determine if start,end range within vma could be mapped by shared pmd. 5321 * If yes, adjust start and end to cover range associated with possible 5322 * shared pmd mappings. 5323 */ 5324 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5325 unsigned long *start, unsigned long *end) 5326 { 5327 unsigned long a_start, a_end; 5328 5329 if (!(vma->vm_flags & VM_MAYSHARE)) 5330 return; 5331 5332 /* Extend the range to be PUD aligned for a worst case scenario */ 5333 a_start = ALIGN_DOWN(*start, PUD_SIZE); 5334 a_end = ALIGN(*end, PUD_SIZE); 5335 5336 /* 5337 * Intersect the range with the vma range, since pmd sharing won't be 5338 * across vma after all 5339 */ 5340 *start = max(vma->vm_start, a_start); 5341 *end = min(vma->vm_end, a_end); 5342 } 5343 5344 /* 5345 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 5346 * and returns the corresponding pte. While this is not necessary for the 5347 * !shared pmd case because we can allocate the pmd later as well, it makes the 5348 * code much cleaner. 5349 * 5350 * This routine must be called with i_mmap_rwsem held in at least read mode. 5351 * For hugetlbfs, this prevents removal of any page table entries associated 5352 * with the address space. This is important as we are setting up sharing 5353 * based on existing page table entries (mappings). 5354 */ 5355 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5356 { 5357 struct vm_area_struct *vma = find_vma(mm, addr); 5358 struct address_space *mapping = vma->vm_file->f_mapping; 5359 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 5360 vma->vm_pgoff; 5361 struct vm_area_struct *svma; 5362 unsigned long saddr; 5363 pte_t *spte = NULL; 5364 pte_t *pte; 5365 spinlock_t *ptl; 5366 5367 if (!vma_shareable(vma, addr)) 5368 return (pte_t *)pmd_alloc(mm, pud, addr); 5369 5370 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 5371 if (svma == vma) 5372 continue; 5373 5374 saddr = page_table_shareable(svma, vma, addr, idx); 5375 if (saddr) { 5376 spte = huge_pte_offset(svma->vm_mm, saddr, 5377 vma_mmu_pagesize(svma)); 5378 if (spte) { 5379 get_page(virt_to_page(spte)); 5380 break; 5381 } 5382 } 5383 } 5384 5385 if (!spte) 5386 goto out; 5387 5388 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 5389 if (pud_none(*pud)) { 5390 pud_populate(mm, pud, 5391 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 5392 mm_inc_nr_pmds(mm); 5393 } else { 5394 put_page(virt_to_page(spte)); 5395 } 5396 spin_unlock(ptl); 5397 out: 5398 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5399 return pte; 5400 } 5401 5402 /* 5403 * unmap huge page backed by shared pte. 5404 * 5405 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 5406 * indicated by page_count > 1, unmap is achieved by clearing pud and 5407 * decrementing the ref count. If count == 1, the pte page is not shared. 5408 * 5409 * Called with page table lock held and i_mmap_rwsem held in write mode. 5410 * 5411 * returns: 1 successfully unmapped a shared pte page 5412 * 0 the underlying pte page is not shared, or it is the last user 5413 */ 5414 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5415 unsigned long *addr, pte_t *ptep) 5416 { 5417 pgd_t *pgd = pgd_offset(mm, *addr); 5418 p4d_t *p4d = p4d_offset(pgd, *addr); 5419 pud_t *pud = pud_offset(p4d, *addr); 5420 5421 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 5422 BUG_ON(page_count(virt_to_page(ptep)) == 0); 5423 if (page_count(virt_to_page(ptep)) == 1) 5424 return 0; 5425 5426 pud_clear(pud); 5427 put_page(virt_to_page(ptep)); 5428 mm_dec_nr_pmds(mm); 5429 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 5430 return 1; 5431 } 5432 #define want_pmd_share() (1) 5433 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5434 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5435 { 5436 return NULL; 5437 } 5438 5439 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5440 unsigned long *addr, pte_t *ptep) 5441 { 5442 return 0; 5443 } 5444 5445 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5446 unsigned long *start, unsigned long *end) 5447 { 5448 } 5449 #define want_pmd_share() (0) 5450 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5451 5452 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 5453 pte_t *huge_pte_alloc(struct mm_struct *mm, 5454 unsigned long addr, unsigned long sz) 5455 { 5456 pgd_t *pgd; 5457 p4d_t *p4d; 5458 pud_t *pud; 5459 pte_t *pte = NULL; 5460 5461 pgd = pgd_offset(mm, addr); 5462 p4d = p4d_alloc(mm, pgd, addr); 5463 if (!p4d) 5464 return NULL; 5465 pud = pud_alloc(mm, p4d, addr); 5466 if (pud) { 5467 if (sz == PUD_SIZE) { 5468 pte = (pte_t *)pud; 5469 } else { 5470 BUG_ON(sz != PMD_SIZE); 5471 if (want_pmd_share() && pud_none(*pud)) 5472 pte = huge_pmd_share(mm, addr, pud); 5473 else 5474 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5475 } 5476 } 5477 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 5478 5479 return pte; 5480 } 5481 5482 /* 5483 * huge_pte_offset() - Walk the page table to resolve the hugepage 5484 * entry at address @addr 5485 * 5486 * Return: Pointer to page table entry (PUD or PMD) for 5487 * address @addr, or NULL if a !p*d_present() entry is encountered and the 5488 * size @sz doesn't match the hugepage size at this level of the page 5489 * table. 5490 */ 5491 pte_t *huge_pte_offset(struct mm_struct *mm, 5492 unsigned long addr, unsigned long sz) 5493 { 5494 pgd_t *pgd; 5495 p4d_t *p4d; 5496 pud_t *pud; 5497 pmd_t *pmd; 5498 5499 pgd = pgd_offset(mm, addr); 5500 if (!pgd_present(*pgd)) 5501 return NULL; 5502 p4d = p4d_offset(pgd, addr); 5503 if (!p4d_present(*p4d)) 5504 return NULL; 5505 5506 pud = pud_offset(p4d, addr); 5507 if (sz == PUD_SIZE) 5508 /* must be pud huge, non-present or none */ 5509 return (pte_t *)pud; 5510 if (!pud_present(*pud)) 5511 return NULL; 5512 /* must have a valid entry and size to go further */ 5513 5514 pmd = pmd_offset(pud, addr); 5515 /* must be pmd huge, non-present or none */ 5516 return (pte_t *)pmd; 5517 } 5518 5519 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 5520 5521 /* 5522 * These functions are overwritable if your architecture needs its own 5523 * behavior. 5524 */ 5525 struct page * __weak 5526 follow_huge_addr(struct mm_struct *mm, unsigned long address, 5527 int write) 5528 { 5529 return ERR_PTR(-EINVAL); 5530 } 5531 5532 struct page * __weak 5533 follow_huge_pd(struct vm_area_struct *vma, 5534 unsigned long address, hugepd_t hpd, int flags, int pdshift) 5535 { 5536 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 5537 return NULL; 5538 } 5539 5540 struct page * __weak 5541 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 5542 pmd_t *pmd, int flags) 5543 { 5544 struct page *page = NULL; 5545 spinlock_t *ptl; 5546 pte_t pte; 5547 5548 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 5549 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 5550 (FOLL_PIN | FOLL_GET))) 5551 return NULL; 5552 5553 retry: 5554 ptl = pmd_lockptr(mm, pmd); 5555 spin_lock(ptl); 5556 /* 5557 * make sure that the address range covered by this pmd is not 5558 * unmapped from other threads. 5559 */ 5560 if (!pmd_huge(*pmd)) 5561 goto out; 5562 pte = huge_ptep_get((pte_t *)pmd); 5563 if (pte_present(pte)) { 5564 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 5565 /* 5566 * try_grab_page() should always succeed here, because: a) we 5567 * hold the pmd (ptl) lock, and b) we've just checked that the 5568 * huge pmd (head) page is present in the page tables. The ptl 5569 * prevents the head page and tail pages from being rearranged 5570 * in any way. So this page must be available at this point, 5571 * unless the page refcount overflowed: 5572 */ 5573 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 5574 page = NULL; 5575 goto out; 5576 } 5577 } else { 5578 if (is_hugetlb_entry_migration(pte)) { 5579 spin_unlock(ptl); 5580 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 5581 goto retry; 5582 } 5583 /* 5584 * hwpoisoned entry is treated as no_page_table in 5585 * follow_page_mask(). 5586 */ 5587 } 5588 out: 5589 spin_unlock(ptl); 5590 return page; 5591 } 5592 5593 struct page * __weak 5594 follow_huge_pud(struct mm_struct *mm, unsigned long address, 5595 pud_t *pud, int flags) 5596 { 5597 if (flags & (FOLL_GET | FOLL_PIN)) 5598 return NULL; 5599 5600 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 5601 } 5602 5603 struct page * __weak 5604 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 5605 { 5606 if (flags & (FOLL_GET | FOLL_PIN)) 5607 return NULL; 5608 5609 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 5610 } 5611 5612 bool isolate_huge_page(struct page *page, struct list_head *list) 5613 { 5614 bool ret = true; 5615 5616 VM_BUG_ON_PAGE(!PageHead(page), page); 5617 spin_lock(&hugetlb_lock); 5618 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 5619 ret = false; 5620 goto unlock; 5621 } 5622 clear_page_huge_active(page); 5623 list_move_tail(&page->lru, list); 5624 unlock: 5625 spin_unlock(&hugetlb_lock); 5626 return ret; 5627 } 5628 5629 void putback_active_hugepage(struct page *page) 5630 { 5631 VM_BUG_ON_PAGE(!PageHead(page), page); 5632 spin_lock(&hugetlb_lock); 5633 set_page_huge_active(page); 5634 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 5635 spin_unlock(&hugetlb_lock); 5636 put_page(page); 5637 } 5638 5639 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5640 { 5641 struct hstate *h = page_hstate(oldpage); 5642 5643 hugetlb_cgroup_migrate(oldpage, newpage); 5644 set_page_owner_migrate_reason(newpage, reason); 5645 5646 /* 5647 * transfer temporary state of the new huge page. This is 5648 * reverse to other transitions because the newpage is going to 5649 * be final while the old one will be freed so it takes over 5650 * the temporary status. 5651 * 5652 * Also note that we have to transfer the per-node surplus state 5653 * here as well otherwise the global surplus count will not match 5654 * the per-node's. 5655 */ 5656 if (PageHugeTemporary(newpage)) { 5657 int old_nid = page_to_nid(oldpage); 5658 int new_nid = page_to_nid(newpage); 5659 5660 SetPageHugeTemporary(oldpage); 5661 ClearPageHugeTemporary(newpage); 5662 5663 spin_lock(&hugetlb_lock); 5664 if (h->surplus_huge_pages_node[old_nid]) { 5665 h->surplus_huge_pages_node[old_nid]--; 5666 h->surplus_huge_pages_node[new_nid]++; 5667 } 5668 spin_unlock(&hugetlb_lock); 5669 } 5670 } 5671 5672 #ifdef CONFIG_CMA 5673 static bool cma_reserve_called __initdata; 5674 5675 static int __init cmdline_parse_hugetlb_cma(char *p) 5676 { 5677 hugetlb_cma_size = memparse(p, &p); 5678 return 0; 5679 } 5680 5681 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 5682 5683 void __init hugetlb_cma_reserve(int order) 5684 { 5685 unsigned long size, reserved, per_node; 5686 int nid; 5687 5688 cma_reserve_called = true; 5689 5690 if (!hugetlb_cma_size) 5691 return; 5692 5693 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 5694 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 5695 (PAGE_SIZE << order) / SZ_1M); 5696 return; 5697 } 5698 5699 /* 5700 * If 3 GB area is requested on a machine with 4 numa nodes, 5701 * let's allocate 1 GB on first three nodes and ignore the last one. 5702 */ 5703 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 5704 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 5705 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 5706 5707 reserved = 0; 5708 for_each_node_state(nid, N_ONLINE) { 5709 int res; 5710 char name[20]; 5711 5712 size = min(per_node, hugetlb_cma_size - reserved); 5713 size = round_up(size, PAGE_SIZE << order); 5714 5715 snprintf(name, 20, "hugetlb%d", nid); 5716 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order, 5717 0, false, name, 5718 &hugetlb_cma[nid], nid); 5719 if (res) { 5720 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 5721 res, nid); 5722 continue; 5723 } 5724 5725 reserved += size; 5726 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 5727 size / SZ_1M, nid); 5728 5729 if (reserved >= hugetlb_cma_size) 5730 break; 5731 } 5732 } 5733 5734 void __init hugetlb_cma_check(void) 5735 { 5736 if (!hugetlb_cma_size || cma_reserve_called) 5737 return; 5738 5739 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 5740 } 5741 5742 #endif /* CONFIG_CMA */ 5743