xref: /openbmc/linux/mm/hugetlb.c (revision d21077fb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41 
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49 
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53 
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60 				1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65 	return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69 
70 __initdata LIST_HEAD(huge_boot_pages);
71 
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78 
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84 
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91 
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 		unsigned long start, unsigned long end);
99 
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102 	if (spool->count)
103 		return false;
104 	if (spool->max_hpages != -1)
105 		return spool->used_hpages == 0;
106 	if (spool->min_hpages != -1)
107 		return spool->rsv_hpages == spool->min_hpages;
108 
109 	return true;
110 }
111 
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 						unsigned long irq_flags)
114 {
115 	spin_unlock_irqrestore(&spool->lock, irq_flags);
116 
117 	/* If no pages are used, and no other handles to the subpool
118 	 * remain, give up any reservations based on minimum size and
119 	 * free the subpool */
120 	if (subpool_is_free(spool)) {
121 		if (spool->min_hpages != -1)
122 			hugetlb_acct_memory(spool->hstate,
123 						-spool->min_hpages);
124 		kfree(spool);
125 	}
126 }
127 
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 						long min_hpages)
130 {
131 	struct hugepage_subpool *spool;
132 
133 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134 	if (!spool)
135 		return NULL;
136 
137 	spin_lock_init(&spool->lock);
138 	spool->count = 1;
139 	spool->max_hpages = max_hpages;
140 	spool->hstate = h;
141 	spool->min_hpages = min_hpages;
142 
143 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144 		kfree(spool);
145 		return NULL;
146 	}
147 	spool->rsv_hpages = min_hpages;
148 
149 	return spool;
150 }
151 
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154 	unsigned long flags;
155 
156 	spin_lock_irqsave(&spool->lock, flags);
157 	BUG_ON(!spool->count);
158 	spool->count--;
159 	unlock_or_release_subpool(spool, flags);
160 }
161 
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171 				      long delta)
172 {
173 	long ret = delta;
174 
175 	if (!spool)
176 		return ret;
177 
178 	spin_lock_irq(&spool->lock);
179 
180 	if (spool->max_hpages != -1) {		/* maximum size accounting */
181 		if ((spool->used_hpages + delta) <= spool->max_hpages)
182 			spool->used_hpages += delta;
183 		else {
184 			ret = -ENOMEM;
185 			goto unlock_ret;
186 		}
187 	}
188 
189 	/* minimum size accounting */
190 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 		if (delta > spool->rsv_hpages) {
192 			/*
193 			 * Asking for more reserves than those already taken on
194 			 * behalf of subpool.  Return difference.
195 			 */
196 			ret = delta - spool->rsv_hpages;
197 			spool->rsv_hpages = 0;
198 		} else {
199 			ret = 0;	/* reserves already accounted for */
200 			spool->rsv_hpages -= delta;
201 		}
202 	}
203 
204 unlock_ret:
205 	spin_unlock_irq(&spool->lock);
206 	return ret;
207 }
208 
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216 				       long delta)
217 {
218 	long ret = delta;
219 	unsigned long flags;
220 
221 	if (!spool)
222 		return delta;
223 
224 	spin_lock_irqsave(&spool->lock, flags);
225 
226 	if (spool->max_hpages != -1)		/* maximum size accounting */
227 		spool->used_hpages -= delta;
228 
229 	 /* minimum size accounting */
230 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 		if (spool->rsv_hpages + delta <= spool->min_hpages)
232 			ret = 0;
233 		else
234 			ret = spool->rsv_hpages + delta - spool->min_hpages;
235 
236 		spool->rsv_hpages += delta;
237 		if (spool->rsv_hpages > spool->min_hpages)
238 			spool->rsv_hpages = spool->min_hpages;
239 	}
240 
241 	/*
242 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 	 * quota reference, free it now.
244 	 */
245 	unlock_or_release_subpool(spool, flags);
246 
247 	return ret;
248 }
249 
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252 	return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254 
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257 	return subpool_inode(file_inode(vma->vm_file));
258 }
259 
260 /*
261  * hugetlb vma_lock helper routines
262  */
263 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
264 {
265 	if (__vma_shareable_lock(vma)) {
266 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
267 
268 		down_read(&vma_lock->rw_sema);
269 	}
270 }
271 
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
273 {
274 	if (__vma_shareable_lock(vma)) {
275 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
276 
277 		up_read(&vma_lock->rw_sema);
278 	}
279 }
280 
281 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
282 {
283 	if (__vma_shareable_lock(vma)) {
284 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285 
286 		down_write(&vma_lock->rw_sema);
287 	}
288 }
289 
290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
291 {
292 	if (__vma_shareable_lock(vma)) {
293 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
294 
295 		up_write(&vma_lock->rw_sema);
296 	}
297 }
298 
299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
300 {
301 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
302 
303 	if (!__vma_shareable_lock(vma))
304 		return 1;
305 
306 	return down_write_trylock(&vma_lock->rw_sema);
307 }
308 
309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
310 {
311 	if (__vma_shareable_lock(vma)) {
312 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313 
314 		lockdep_assert_held(&vma_lock->rw_sema);
315 	}
316 }
317 
318 void hugetlb_vma_lock_release(struct kref *kref)
319 {
320 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
321 			struct hugetlb_vma_lock, refs);
322 
323 	kfree(vma_lock);
324 }
325 
326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
327 {
328 	struct vm_area_struct *vma = vma_lock->vma;
329 
330 	/*
331 	 * vma_lock structure may or not be released as a result of put,
332 	 * it certainly will no longer be attached to vma so clear pointer.
333 	 * Semaphore synchronizes access to vma_lock->vma field.
334 	 */
335 	vma_lock->vma = NULL;
336 	vma->vm_private_data = NULL;
337 	up_write(&vma_lock->rw_sema);
338 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
339 }
340 
341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
342 {
343 	if (__vma_shareable_lock(vma)) {
344 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
345 
346 		__hugetlb_vma_unlock_write_put(vma_lock);
347 	}
348 }
349 
350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
351 {
352 	/*
353 	 * Only present in sharable vmas.
354 	 */
355 	if (!vma || !__vma_shareable_lock(vma))
356 		return;
357 
358 	if (vma->vm_private_data) {
359 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
360 
361 		down_write(&vma_lock->rw_sema);
362 		__hugetlb_vma_unlock_write_put(vma_lock);
363 	}
364 }
365 
366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
367 {
368 	struct hugetlb_vma_lock *vma_lock;
369 
370 	/* Only establish in (flags) sharable vmas */
371 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
372 		return;
373 
374 	/* Should never get here with non-NULL vm_private_data */
375 	if (vma->vm_private_data)
376 		return;
377 
378 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
379 	if (!vma_lock) {
380 		/*
381 		 * If we can not allocate structure, then vma can not
382 		 * participate in pmd sharing.  This is only a possible
383 		 * performance enhancement and memory saving issue.
384 		 * However, the lock is also used to synchronize page
385 		 * faults with truncation.  If the lock is not present,
386 		 * unlikely races could leave pages in a file past i_size
387 		 * until the file is removed.  Warn in the unlikely case of
388 		 * allocation failure.
389 		 */
390 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
391 		return;
392 	}
393 
394 	kref_init(&vma_lock->refs);
395 	init_rwsem(&vma_lock->rw_sema);
396 	vma_lock->vma = vma;
397 	vma->vm_private_data = vma_lock;
398 }
399 
400 /* Helper that removes a struct file_region from the resv_map cache and returns
401  * it for use.
402  */
403 static struct file_region *
404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
405 {
406 	struct file_region *nrg;
407 
408 	VM_BUG_ON(resv->region_cache_count <= 0);
409 
410 	resv->region_cache_count--;
411 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412 	list_del(&nrg->link);
413 
414 	nrg->from = from;
415 	nrg->to = to;
416 
417 	return nrg;
418 }
419 
420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421 					      struct file_region *rg)
422 {
423 #ifdef CONFIG_CGROUP_HUGETLB
424 	nrg->reservation_counter = rg->reservation_counter;
425 	nrg->css = rg->css;
426 	if (rg->css)
427 		css_get(rg->css);
428 #endif
429 }
430 
431 /* Helper that records hugetlb_cgroup uncharge info. */
432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
433 						struct hstate *h,
434 						struct resv_map *resv,
435 						struct file_region *nrg)
436 {
437 #ifdef CONFIG_CGROUP_HUGETLB
438 	if (h_cg) {
439 		nrg->reservation_counter =
440 			&h_cg->rsvd_hugepage[hstate_index(h)];
441 		nrg->css = &h_cg->css;
442 		/*
443 		 * The caller will hold exactly one h_cg->css reference for the
444 		 * whole contiguous reservation region. But this area might be
445 		 * scattered when there are already some file_regions reside in
446 		 * it. As a result, many file_regions may share only one css
447 		 * reference. In order to ensure that one file_region must hold
448 		 * exactly one h_cg->css reference, we should do css_get for
449 		 * each file_region and leave the reference held by caller
450 		 * untouched.
451 		 */
452 		css_get(&h_cg->css);
453 		if (!resv->pages_per_hpage)
454 			resv->pages_per_hpage = pages_per_huge_page(h);
455 		/* pages_per_hpage should be the same for all entries in
456 		 * a resv_map.
457 		 */
458 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
459 	} else {
460 		nrg->reservation_counter = NULL;
461 		nrg->css = NULL;
462 	}
463 #endif
464 }
465 
466 static void put_uncharge_info(struct file_region *rg)
467 {
468 #ifdef CONFIG_CGROUP_HUGETLB
469 	if (rg->css)
470 		css_put(rg->css);
471 #endif
472 }
473 
474 static bool has_same_uncharge_info(struct file_region *rg,
475 				   struct file_region *org)
476 {
477 #ifdef CONFIG_CGROUP_HUGETLB
478 	return rg->reservation_counter == org->reservation_counter &&
479 	       rg->css == org->css;
480 
481 #else
482 	return true;
483 #endif
484 }
485 
486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
487 {
488 	struct file_region *nrg, *prg;
489 
490 	prg = list_prev_entry(rg, link);
491 	if (&prg->link != &resv->regions && prg->to == rg->from &&
492 	    has_same_uncharge_info(prg, rg)) {
493 		prg->to = rg->to;
494 
495 		list_del(&rg->link);
496 		put_uncharge_info(rg);
497 		kfree(rg);
498 
499 		rg = prg;
500 	}
501 
502 	nrg = list_next_entry(rg, link);
503 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504 	    has_same_uncharge_info(nrg, rg)) {
505 		nrg->from = rg->from;
506 
507 		list_del(&rg->link);
508 		put_uncharge_info(rg);
509 		kfree(rg);
510 	}
511 }
512 
513 static inline long
514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
516 		     long *regions_needed)
517 {
518 	struct file_region *nrg;
519 
520 	if (!regions_needed) {
521 		nrg = get_file_region_entry_from_cache(map, from, to);
522 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523 		list_add(&nrg->link, rg);
524 		coalesce_file_region(map, nrg);
525 	} else
526 		*regions_needed += 1;
527 
528 	return to - from;
529 }
530 
531 /*
532  * Must be called with resv->lock held.
533  *
534  * Calling this with regions_needed != NULL will count the number of pages
535  * to be added but will not modify the linked list. And regions_needed will
536  * indicate the number of file_regions needed in the cache to carry out to add
537  * the regions for this range.
538  */
539 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540 				     struct hugetlb_cgroup *h_cg,
541 				     struct hstate *h, long *regions_needed)
542 {
543 	long add = 0;
544 	struct list_head *head = &resv->regions;
545 	long last_accounted_offset = f;
546 	struct file_region *iter, *trg = NULL;
547 	struct list_head *rg = NULL;
548 
549 	if (regions_needed)
550 		*regions_needed = 0;
551 
552 	/* In this loop, we essentially handle an entry for the range
553 	 * [last_accounted_offset, iter->from), at every iteration, with some
554 	 * bounds checking.
555 	 */
556 	list_for_each_entry_safe(iter, trg, head, link) {
557 		/* Skip irrelevant regions that start before our range. */
558 		if (iter->from < f) {
559 			/* If this region ends after the last accounted offset,
560 			 * then we need to update last_accounted_offset.
561 			 */
562 			if (iter->to > last_accounted_offset)
563 				last_accounted_offset = iter->to;
564 			continue;
565 		}
566 
567 		/* When we find a region that starts beyond our range, we've
568 		 * finished.
569 		 */
570 		if (iter->from >= t) {
571 			rg = iter->link.prev;
572 			break;
573 		}
574 
575 		/* Add an entry for last_accounted_offset -> iter->from, and
576 		 * update last_accounted_offset.
577 		 */
578 		if (iter->from > last_accounted_offset)
579 			add += hugetlb_resv_map_add(resv, iter->link.prev,
580 						    last_accounted_offset,
581 						    iter->from, h, h_cg,
582 						    regions_needed);
583 
584 		last_accounted_offset = iter->to;
585 	}
586 
587 	/* Handle the case where our range extends beyond
588 	 * last_accounted_offset.
589 	 */
590 	if (!rg)
591 		rg = head->prev;
592 	if (last_accounted_offset < t)
593 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594 					    t, h, h_cg, regions_needed);
595 
596 	return add;
597 }
598 
599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
600  */
601 static int allocate_file_region_entries(struct resv_map *resv,
602 					int regions_needed)
603 	__must_hold(&resv->lock)
604 {
605 	LIST_HEAD(allocated_regions);
606 	int to_allocate = 0, i = 0;
607 	struct file_region *trg = NULL, *rg = NULL;
608 
609 	VM_BUG_ON(regions_needed < 0);
610 
611 	/*
612 	 * Check for sufficient descriptors in the cache to accommodate
613 	 * the number of in progress add operations plus regions_needed.
614 	 *
615 	 * This is a while loop because when we drop the lock, some other call
616 	 * to region_add or region_del may have consumed some region_entries,
617 	 * so we keep looping here until we finally have enough entries for
618 	 * (adds_in_progress + regions_needed).
619 	 */
620 	while (resv->region_cache_count <
621 	       (resv->adds_in_progress + regions_needed)) {
622 		to_allocate = resv->adds_in_progress + regions_needed -
623 			      resv->region_cache_count;
624 
625 		/* At this point, we should have enough entries in the cache
626 		 * for all the existing adds_in_progress. We should only be
627 		 * needing to allocate for regions_needed.
628 		 */
629 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
630 
631 		spin_unlock(&resv->lock);
632 		for (i = 0; i < to_allocate; i++) {
633 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
634 			if (!trg)
635 				goto out_of_memory;
636 			list_add(&trg->link, &allocated_regions);
637 		}
638 
639 		spin_lock(&resv->lock);
640 
641 		list_splice(&allocated_regions, &resv->region_cache);
642 		resv->region_cache_count += to_allocate;
643 	}
644 
645 	return 0;
646 
647 out_of_memory:
648 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
649 		list_del(&rg->link);
650 		kfree(rg);
651 	}
652 	return -ENOMEM;
653 }
654 
655 /*
656  * Add the huge page range represented by [f, t) to the reserve
657  * map.  Regions will be taken from the cache to fill in this range.
658  * Sufficient regions should exist in the cache due to the previous
659  * call to region_chg with the same range, but in some cases the cache will not
660  * have sufficient entries due to races with other code doing region_add or
661  * region_del.  The extra needed entries will be allocated.
662  *
663  * regions_needed is the out value provided by a previous call to region_chg.
664  *
665  * Return the number of new huge pages added to the map.  This number is greater
666  * than or equal to zero.  If file_region entries needed to be allocated for
667  * this operation and we were not able to allocate, it returns -ENOMEM.
668  * region_add of regions of length 1 never allocate file_regions and cannot
669  * fail; region_chg will always allocate at least 1 entry and a region_add for
670  * 1 page will only require at most 1 entry.
671  */
672 static long region_add(struct resv_map *resv, long f, long t,
673 		       long in_regions_needed, struct hstate *h,
674 		       struct hugetlb_cgroup *h_cg)
675 {
676 	long add = 0, actual_regions_needed = 0;
677 
678 	spin_lock(&resv->lock);
679 retry:
680 
681 	/* Count how many regions are actually needed to execute this add. */
682 	add_reservation_in_range(resv, f, t, NULL, NULL,
683 				 &actual_regions_needed);
684 
685 	/*
686 	 * Check for sufficient descriptors in the cache to accommodate
687 	 * this add operation. Note that actual_regions_needed may be greater
688 	 * than in_regions_needed, as the resv_map may have been modified since
689 	 * the region_chg call. In this case, we need to make sure that we
690 	 * allocate extra entries, such that we have enough for all the
691 	 * existing adds_in_progress, plus the excess needed for this
692 	 * operation.
693 	 */
694 	if (actual_regions_needed > in_regions_needed &&
695 	    resv->region_cache_count <
696 		    resv->adds_in_progress +
697 			    (actual_regions_needed - in_regions_needed)) {
698 		/* region_add operation of range 1 should never need to
699 		 * allocate file_region entries.
700 		 */
701 		VM_BUG_ON(t - f <= 1);
702 
703 		if (allocate_file_region_entries(
704 			    resv, actual_regions_needed - in_regions_needed)) {
705 			return -ENOMEM;
706 		}
707 
708 		goto retry;
709 	}
710 
711 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
712 
713 	resv->adds_in_progress -= in_regions_needed;
714 
715 	spin_unlock(&resv->lock);
716 	return add;
717 }
718 
719 /*
720  * Examine the existing reserve map and determine how many
721  * huge pages in the specified range [f, t) are NOT currently
722  * represented.  This routine is called before a subsequent
723  * call to region_add that will actually modify the reserve
724  * map to add the specified range [f, t).  region_chg does
725  * not change the number of huge pages represented by the
726  * map.  A number of new file_region structures is added to the cache as a
727  * placeholder, for the subsequent region_add call to use. At least 1
728  * file_region structure is added.
729  *
730  * out_regions_needed is the number of regions added to the
731  * resv->adds_in_progress.  This value needs to be provided to a follow up call
732  * to region_add or region_abort for proper accounting.
733  *
734  * Returns the number of huge pages that need to be added to the existing
735  * reservation map for the range [f, t).  This number is greater or equal to
736  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
737  * is needed and can not be allocated.
738  */
739 static long region_chg(struct resv_map *resv, long f, long t,
740 		       long *out_regions_needed)
741 {
742 	long chg = 0;
743 
744 	spin_lock(&resv->lock);
745 
746 	/* Count how many hugepages in this range are NOT represented. */
747 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
748 				       out_regions_needed);
749 
750 	if (*out_regions_needed == 0)
751 		*out_regions_needed = 1;
752 
753 	if (allocate_file_region_entries(resv, *out_regions_needed))
754 		return -ENOMEM;
755 
756 	resv->adds_in_progress += *out_regions_needed;
757 
758 	spin_unlock(&resv->lock);
759 	return chg;
760 }
761 
762 /*
763  * Abort the in progress add operation.  The adds_in_progress field
764  * of the resv_map keeps track of the operations in progress between
765  * calls to region_chg and region_add.  Operations are sometimes
766  * aborted after the call to region_chg.  In such cases, region_abort
767  * is called to decrement the adds_in_progress counter. regions_needed
768  * is the value returned by the region_chg call, it is used to decrement
769  * the adds_in_progress counter.
770  *
771  * NOTE: The range arguments [f, t) are not needed or used in this
772  * routine.  They are kept to make reading the calling code easier as
773  * arguments will match the associated region_chg call.
774  */
775 static void region_abort(struct resv_map *resv, long f, long t,
776 			 long regions_needed)
777 {
778 	spin_lock(&resv->lock);
779 	VM_BUG_ON(!resv->region_cache_count);
780 	resv->adds_in_progress -= regions_needed;
781 	spin_unlock(&resv->lock);
782 }
783 
784 /*
785  * Delete the specified range [f, t) from the reserve map.  If the
786  * t parameter is LONG_MAX, this indicates that ALL regions after f
787  * should be deleted.  Locate the regions which intersect [f, t)
788  * and either trim, delete or split the existing regions.
789  *
790  * Returns the number of huge pages deleted from the reserve map.
791  * In the normal case, the return value is zero or more.  In the
792  * case where a region must be split, a new region descriptor must
793  * be allocated.  If the allocation fails, -ENOMEM will be returned.
794  * NOTE: If the parameter t == LONG_MAX, then we will never split
795  * a region and possibly return -ENOMEM.  Callers specifying
796  * t == LONG_MAX do not need to check for -ENOMEM error.
797  */
798 static long region_del(struct resv_map *resv, long f, long t)
799 {
800 	struct list_head *head = &resv->regions;
801 	struct file_region *rg, *trg;
802 	struct file_region *nrg = NULL;
803 	long del = 0;
804 
805 retry:
806 	spin_lock(&resv->lock);
807 	list_for_each_entry_safe(rg, trg, head, link) {
808 		/*
809 		 * Skip regions before the range to be deleted.  file_region
810 		 * ranges are normally of the form [from, to).  However, there
811 		 * may be a "placeholder" entry in the map which is of the form
812 		 * (from, to) with from == to.  Check for placeholder entries
813 		 * at the beginning of the range to be deleted.
814 		 */
815 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
816 			continue;
817 
818 		if (rg->from >= t)
819 			break;
820 
821 		if (f > rg->from && t < rg->to) { /* Must split region */
822 			/*
823 			 * Check for an entry in the cache before dropping
824 			 * lock and attempting allocation.
825 			 */
826 			if (!nrg &&
827 			    resv->region_cache_count > resv->adds_in_progress) {
828 				nrg = list_first_entry(&resv->region_cache,
829 							struct file_region,
830 							link);
831 				list_del(&nrg->link);
832 				resv->region_cache_count--;
833 			}
834 
835 			if (!nrg) {
836 				spin_unlock(&resv->lock);
837 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
838 				if (!nrg)
839 					return -ENOMEM;
840 				goto retry;
841 			}
842 
843 			del += t - f;
844 			hugetlb_cgroup_uncharge_file_region(
845 				resv, rg, t - f, false);
846 
847 			/* New entry for end of split region */
848 			nrg->from = t;
849 			nrg->to = rg->to;
850 
851 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
852 
853 			INIT_LIST_HEAD(&nrg->link);
854 
855 			/* Original entry is trimmed */
856 			rg->to = f;
857 
858 			list_add(&nrg->link, &rg->link);
859 			nrg = NULL;
860 			break;
861 		}
862 
863 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864 			del += rg->to - rg->from;
865 			hugetlb_cgroup_uncharge_file_region(resv, rg,
866 							    rg->to - rg->from, true);
867 			list_del(&rg->link);
868 			kfree(rg);
869 			continue;
870 		}
871 
872 		if (f <= rg->from) {	/* Trim beginning of region */
873 			hugetlb_cgroup_uncharge_file_region(resv, rg,
874 							    t - rg->from, false);
875 
876 			del += t - rg->from;
877 			rg->from = t;
878 		} else {		/* Trim end of region */
879 			hugetlb_cgroup_uncharge_file_region(resv, rg,
880 							    rg->to - f, false);
881 
882 			del += rg->to - f;
883 			rg->to = f;
884 		}
885 	}
886 
887 	spin_unlock(&resv->lock);
888 	kfree(nrg);
889 	return del;
890 }
891 
892 /*
893  * A rare out of memory error was encountered which prevented removal of
894  * the reserve map region for a page.  The huge page itself was free'ed
895  * and removed from the page cache.  This routine will adjust the subpool
896  * usage count, and the global reserve count if needed.  By incrementing
897  * these counts, the reserve map entry which could not be deleted will
898  * appear as a "reserved" entry instead of simply dangling with incorrect
899  * counts.
900  */
901 void hugetlb_fix_reserve_counts(struct inode *inode)
902 {
903 	struct hugepage_subpool *spool = subpool_inode(inode);
904 	long rsv_adjust;
905 	bool reserved = false;
906 
907 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908 	if (rsv_adjust > 0) {
909 		struct hstate *h = hstate_inode(inode);
910 
911 		if (!hugetlb_acct_memory(h, 1))
912 			reserved = true;
913 	} else if (!rsv_adjust) {
914 		reserved = true;
915 	}
916 
917 	if (!reserved)
918 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
919 }
920 
921 /*
922  * Count and return the number of huge pages in the reserve map
923  * that intersect with the range [f, t).
924  */
925 static long region_count(struct resv_map *resv, long f, long t)
926 {
927 	struct list_head *head = &resv->regions;
928 	struct file_region *rg;
929 	long chg = 0;
930 
931 	spin_lock(&resv->lock);
932 	/* Locate each segment we overlap with, and count that overlap. */
933 	list_for_each_entry(rg, head, link) {
934 		long seg_from;
935 		long seg_to;
936 
937 		if (rg->to <= f)
938 			continue;
939 		if (rg->from >= t)
940 			break;
941 
942 		seg_from = max(rg->from, f);
943 		seg_to = min(rg->to, t);
944 
945 		chg += seg_to - seg_from;
946 	}
947 	spin_unlock(&resv->lock);
948 
949 	return chg;
950 }
951 
952 /*
953  * Convert the address within this vma to the page offset within
954  * the mapping, in pagecache page units; huge pages here.
955  */
956 static pgoff_t vma_hugecache_offset(struct hstate *h,
957 			struct vm_area_struct *vma, unsigned long address)
958 {
959 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
960 			(vma->vm_pgoff >> huge_page_order(h));
961 }
962 
963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964 				     unsigned long address)
965 {
966 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
967 }
968 EXPORT_SYMBOL_GPL(linear_hugepage_index);
969 
970 /*
971  * Return the size of the pages allocated when backing a VMA. In the majority
972  * cases this will be same size as used by the page table entries.
973  */
974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
975 {
976 	if (vma->vm_ops && vma->vm_ops->pagesize)
977 		return vma->vm_ops->pagesize(vma);
978 	return PAGE_SIZE;
979 }
980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
981 
982 /*
983  * Return the page size being used by the MMU to back a VMA. In the majority
984  * of cases, the page size used by the kernel matches the MMU size. On
985  * architectures where it differs, an architecture-specific 'strong'
986  * version of this symbol is required.
987  */
988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
989 {
990 	return vma_kernel_pagesize(vma);
991 }
992 
993 /*
994  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
995  * bits of the reservation map pointer, which are always clear due to
996  * alignment.
997  */
998 #define HPAGE_RESV_OWNER    (1UL << 0)
999 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1001 
1002 /*
1003  * These helpers are used to track how many pages are reserved for
1004  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005  * is guaranteed to have their future faults succeed.
1006  *
1007  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008  * the reserve counters are updated with the hugetlb_lock held. It is safe
1009  * to reset the VMA at fork() time as it is not in use yet and there is no
1010  * chance of the global counters getting corrupted as a result of the values.
1011  *
1012  * The private mapping reservation is represented in a subtly different
1013  * manner to a shared mapping.  A shared mapping has a region map associated
1014  * with the underlying file, this region map represents the backing file
1015  * pages which have ever had a reservation assigned which this persists even
1016  * after the page is instantiated.  A private mapping has a region map
1017  * associated with the original mmap which is attached to all VMAs which
1018  * reference it, this region map represents those offsets which have consumed
1019  * reservation ie. where pages have been instantiated.
1020  */
1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1022 {
1023 	return (unsigned long)vma->vm_private_data;
1024 }
1025 
1026 static void set_vma_private_data(struct vm_area_struct *vma,
1027 							unsigned long value)
1028 {
1029 	vma->vm_private_data = (void *)value;
1030 }
1031 
1032 static void
1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034 					  struct hugetlb_cgroup *h_cg,
1035 					  struct hstate *h)
1036 {
1037 #ifdef CONFIG_CGROUP_HUGETLB
1038 	if (!h_cg || !h) {
1039 		resv_map->reservation_counter = NULL;
1040 		resv_map->pages_per_hpage = 0;
1041 		resv_map->css = NULL;
1042 	} else {
1043 		resv_map->reservation_counter =
1044 			&h_cg->rsvd_hugepage[hstate_index(h)];
1045 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1046 		resv_map->css = &h_cg->css;
1047 	}
1048 #endif
1049 }
1050 
1051 struct resv_map *resv_map_alloc(void)
1052 {
1053 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1055 
1056 	if (!resv_map || !rg) {
1057 		kfree(resv_map);
1058 		kfree(rg);
1059 		return NULL;
1060 	}
1061 
1062 	kref_init(&resv_map->refs);
1063 	spin_lock_init(&resv_map->lock);
1064 	INIT_LIST_HEAD(&resv_map->regions);
1065 
1066 	resv_map->adds_in_progress = 0;
1067 	/*
1068 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1069 	 * fields don't do cgroup accounting. On private mappings, these will be
1070 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1071 	 * reservations are to be un-charged from here.
1072 	 */
1073 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1074 
1075 	INIT_LIST_HEAD(&resv_map->region_cache);
1076 	list_add(&rg->link, &resv_map->region_cache);
1077 	resv_map->region_cache_count = 1;
1078 
1079 	return resv_map;
1080 }
1081 
1082 void resv_map_release(struct kref *ref)
1083 {
1084 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085 	struct list_head *head = &resv_map->region_cache;
1086 	struct file_region *rg, *trg;
1087 
1088 	/* Clear out any active regions before we release the map. */
1089 	region_del(resv_map, 0, LONG_MAX);
1090 
1091 	/* ... and any entries left in the cache */
1092 	list_for_each_entry_safe(rg, trg, head, link) {
1093 		list_del(&rg->link);
1094 		kfree(rg);
1095 	}
1096 
1097 	VM_BUG_ON(resv_map->adds_in_progress);
1098 
1099 	kfree(resv_map);
1100 }
1101 
1102 static inline struct resv_map *inode_resv_map(struct inode *inode)
1103 {
1104 	/*
1105 	 * At inode evict time, i_mapping may not point to the original
1106 	 * address space within the inode.  This original address space
1107 	 * contains the pointer to the resv_map.  So, always use the
1108 	 * address space embedded within the inode.
1109 	 * The VERY common case is inode->mapping == &inode->i_data but,
1110 	 * this may not be true for device special inodes.
1111 	 */
1112 	return (struct resv_map *)(&inode->i_data)->private_data;
1113 }
1114 
1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1116 {
1117 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118 	if (vma->vm_flags & VM_MAYSHARE) {
1119 		struct address_space *mapping = vma->vm_file->f_mapping;
1120 		struct inode *inode = mapping->host;
1121 
1122 		return inode_resv_map(inode);
1123 
1124 	} else {
1125 		return (struct resv_map *)(get_vma_private_data(vma) &
1126 							~HPAGE_RESV_MASK);
1127 	}
1128 }
1129 
1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1131 {
1132 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1134 
1135 	set_vma_private_data(vma, (get_vma_private_data(vma) &
1136 				HPAGE_RESV_MASK) | (unsigned long)map);
1137 }
1138 
1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1140 {
1141 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1143 
1144 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1145 }
1146 
1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1148 {
1149 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150 
1151 	return (get_vma_private_data(vma) & flag) != 0;
1152 }
1153 
1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1155 {
1156 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157 	/*
1158 	 * Clear vm_private_data
1159 	 * - For shared mappings this is a per-vma semaphore that may be
1160 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1161 	 *   Before clearing, make sure pointer is not associated with vma
1162 	 *   as this will leak the structure.  This is the case when called
1163 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164 	 *   been called to allocate a new structure.
1165 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1166 	 *   not apply to children.  Faults generated by the children are
1167 	 *   not guaranteed to succeed, even if read-only.
1168 	 */
1169 	if (vma->vm_flags & VM_MAYSHARE) {
1170 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1171 
1172 		if (vma_lock && vma_lock->vma != vma)
1173 			vma->vm_private_data = NULL;
1174 	} else
1175 		vma->vm_private_data = NULL;
1176 }
1177 
1178 /*
1179  * Reset and decrement one ref on hugepage private reservation.
1180  * Called with mm->mmap_lock writer semaphore held.
1181  * This function should be only used by move_vma() and operate on
1182  * same sized vma. It should never come here with last ref on the
1183  * reservation.
1184  */
1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1186 {
1187 	/*
1188 	 * Clear the old hugetlb private page reservation.
1189 	 * It has already been transferred to new_vma.
1190 	 *
1191 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1192 	 * which copies vma into new_vma and unmaps vma. After the copy
1193 	 * operation both new_vma and vma share a reference to the resv_map
1194 	 * struct, and at that point vma is about to be unmapped. We don't
1195 	 * want to return the reservation to the pool at unmap of vma because
1196 	 * the reservation still lives on in new_vma, so simply decrement the
1197 	 * ref here and remove the resv_map reference from this vma.
1198 	 */
1199 	struct resv_map *reservations = vma_resv_map(vma);
1200 
1201 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203 		kref_put(&reservations->refs, resv_map_release);
1204 	}
1205 
1206 	hugetlb_dup_vma_private(vma);
1207 }
1208 
1209 /* Returns true if the VMA has associated reserve pages */
1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1211 {
1212 	if (vma->vm_flags & VM_NORESERVE) {
1213 		/*
1214 		 * This address is already reserved by other process(chg == 0),
1215 		 * so, we should decrement reserved count. Without decrementing,
1216 		 * reserve count remains after releasing inode, because this
1217 		 * allocated page will go into page cache and is regarded as
1218 		 * coming from reserved pool in releasing step.  Currently, we
1219 		 * don't have any other solution to deal with this situation
1220 		 * properly, so add work-around here.
1221 		 */
1222 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1223 			return true;
1224 		else
1225 			return false;
1226 	}
1227 
1228 	/* Shared mappings always use reserves */
1229 	if (vma->vm_flags & VM_MAYSHARE) {
1230 		/*
1231 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1232 		 * be a region map for all pages.  The only situation where
1233 		 * there is no region map is if a hole was punched via
1234 		 * fallocate.  In this case, there really are no reserves to
1235 		 * use.  This situation is indicated if chg != 0.
1236 		 */
1237 		if (chg)
1238 			return false;
1239 		else
1240 			return true;
1241 	}
1242 
1243 	/*
1244 	 * Only the process that called mmap() has reserves for
1245 	 * private mappings.
1246 	 */
1247 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1248 		/*
1249 		 * Like the shared case above, a hole punch or truncate
1250 		 * could have been performed on the private mapping.
1251 		 * Examine the value of chg to determine if reserves
1252 		 * actually exist or were previously consumed.
1253 		 * Very Subtle - The value of chg comes from a previous
1254 		 * call to vma_needs_reserves().  The reserve map for
1255 		 * private mappings has different (opposite) semantics
1256 		 * than that of shared mappings.  vma_needs_reserves()
1257 		 * has already taken this difference in semantics into
1258 		 * account.  Therefore, the meaning of chg is the same
1259 		 * as in the shared case above.  Code could easily be
1260 		 * combined, but keeping it separate draws attention to
1261 		 * subtle differences.
1262 		 */
1263 		if (chg)
1264 			return false;
1265 		else
1266 			return true;
1267 	}
1268 
1269 	return false;
1270 }
1271 
1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1273 {
1274 	int nid = folio_nid(folio);
1275 
1276 	lockdep_assert_held(&hugetlb_lock);
1277 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1278 
1279 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280 	h->free_huge_pages++;
1281 	h->free_huge_pages_node[nid]++;
1282 	folio_set_hugetlb_freed(folio);
1283 }
1284 
1285 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1286 								int nid)
1287 {
1288 	struct folio *folio;
1289 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1290 
1291 	lockdep_assert_held(&hugetlb_lock);
1292 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1293 		if (pin && !folio_is_longterm_pinnable(folio))
1294 			continue;
1295 
1296 		if (folio_test_hwpoison(folio))
1297 			continue;
1298 
1299 		list_move(&folio->lru, &h->hugepage_activelist);
1300 		folio_ref_unfreeze(folio, 1);
1301 		folio_clear_hugetlb_freed(folio);
1302 		h->free_huge_pages--;
1303 		h->free_huge_pages_node[nid]--;
1304 		return folio;
1305 	}
1306 
1307 	return NULL;
1308 }
1309 
1310 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1311 							int nid, nodemask_t *nmask)
1312 {
1313 	unsigned int cpuset_mems_cookie;
1314 	struct zonelist *zonelist;
1315 	struct zone *zone;
1316 	struct zoneref *z;
1317 	int node = NUMA_NO_NODE;
1318 
1319 	zonelist = node_zonelist(nid, gfp_mask);
1320 
1321 retry_cpuset:
1322 	cpuset_mems_cookie = read_mems_allowed_begin();
1323 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1324 		struct folio *folio;
1325 
1326 		if (!cpuset_zone_allowed(zone, gfp_mask))
1327 			continue;
1328 		/*
1329 		 * no need to ask again on the same node. Pool is node rather than
1330 		 * zone aware
1331 		 */
1332 		if (zone_to_nid(zone) == node)
1333 			continue;
1334 		node = zone_to_nid(zone);
1335 
1336 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1337 		if (folio)
1338 			return folio;
1339 	}
1340 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1341 		goto retry_cpuset;
1342 
1343 	return NULL;
1344 }
1345 
1346 static unsigned long available_huge_pages(struct hstate *h)
1347 {
1348 	return h->free_huge_pages - h->resv_huge_pages;
1349 }
1350 
1351 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1352 				struct vm_area_struct *vma,
1353 				unsigned long address, int avoid_reserve,
1354 				long chg)
1355 {
1356 	struct folio *folio = NULL;
1357 	struct mempolicy *mpol;
1358 	gfp_t gfp_mask;
1359 	nodemask_t *nodemask;
1360 	int nid;
1361 
1362 	/*
1363 	 * A child process with MAP_PRIVATE mappings created by their parent
1364 	 * have no page reserves. This check ensures that reservations are
1365 	 * not "stolen". The child may still get SIGKILLed
1366 	 */
1367 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1368 		goto err;
1369 
1370 	/* If reserves cannot be used, ensure enough pages are in the pool */
1371 	if (avoid_reserve && !available_huge_pages(h))
1372 		goto err;
1373 
1374 	gfp_mask = htlb_alloc_mask(h);
1375 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1376 
1377 	if (mpol_is_preferred_many(mpol)) {
1378 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1379 							nid, nodemask);
1380 
1381 		/* Fallback to all nodes if page==NULL */
1382 		nodemask = NULL;
1383 	}
1384 
1385 	if (!folio)
1386 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1387 							nid, nodemask);
1388 
1389 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1390 		folio_set_hugetlb_restore_reserve(folio);
1391 		h->resv_huge_pages--;
1392 	}
1393 
1394 	mpol_cond_put(mpol);
1395 	return folio;
1396 
1397 err:
1398 	return NULL;
1399 }
1400 
1401 /*
1402  * common helper functions for hstate_next_node_to_{alloc|free}.
1403  * We may have allocated or freed a huge page based on a different
1404  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1405  * be outside of *nodes_allowed.  Ensure that we use an allowed
1406  * node for alloc or free.
1407  */
1408 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1409 {
1410 	nid = next_node_in(nid, *nodes_allowed);
1411 	VM_BUG_ON(nid >= MAX_NUMNODES);
1412 
1413 	return nid;
1414 }
1415 
1416 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1417 {
1418 	if (!node_isset(nid, *nodes_allowed))
1419 		nid = next_node_allowed(nid, nodes_allowed);
1420 	return nid;
1421 }
1422 
1423 /*
1424  * returns the previously saved node ["this node"] from which to
1425  * allocate a persistent huge page for the pool and advance the
1426  * next node from which to allocate, handling wrap at end of node
1427  * mask.
1428  */
1429 static int hstate_next_node_to_alloc(struct hstate *h,
1430 					nodemask_t *nodes_allowed)
1431 {
1432 	int nid;
1433 
1434 	VM_BUG_ON(!nodes_allowed);
1435 
1436 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1437 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1438 
1439 	return nid;
1440 }
1441 
1442 /*
1443  * helper for remove_pool_huge_page() - return the previously saved
1444  * node ["this node"] from which to free a huge page.  Advance the
1445  * next node id whether or not we find a free huge page to free so
1446  * that the next attempt to free addresses the next node.
1447  */
1448 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1449 {
1450 	int nid;
1451 
1452 	VM_BUG_ON(!nodes_allowed);
1453 
1454 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1455 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1456 
1457 	return nid;
1458 }
1459 
1460 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1461 	for (nr_nodes = nodes_weight(*mask);				\
1462 		nr_nodes > 0 &&						\
1463 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1464 		nr_nodes--)
1465 
1466 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1467 	for (nr_nodes = nodes_weight(*mask);				\
1468 		nr_nodes > 0 &&						\
1469 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1470 		nr_nodes--)
1471 
1472 /* used to demote non-gigantic_huge pages as well */
1473 static void __destroy_compound_gigantic_folio(struct folio *folio,
1474 					unsigned int order, bool demote)
1475 {
1476 	int i;
1477 	int nr_pages = 1 << order;
1478 	struct page *p;
1479 
1480 	atomic_set(&folio->_entire_mapcount, 0);
1481 	atomic_set(&folio->_nr_pages_mapped, 0);
1482 	atomic_set(&folio->_pincount, 0);
1483 
1484 	for (i = 1; i < nr_pages; i++) {
1485 		p = folio_page(folio, i);
1486 		p->mapping = NULL;
1487 		clear_compound_head(p);
1488 		if (!demote)
1489 			set_page_refcounted(p);
1490 	}
1491 
1492 	folio_set_order(folio, 0);
1493 	__folio_clear_head(folio);
1494 }
1495 
1496 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1497 					unsigned int order)
1498 {
1499 	__destroy_compound_gigantic_folio(folio, order, true);
1500 }
1501 
1502 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1503 static void destroy_compound_gigantic_folio(struct folio *folio,
1504 					unsigned int order)
1505 {
1506 	__destroy_compound_gigantic_folio(folio, order, false);
1507 }
1508 
1509 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1510 {
1511 	/*
1512 	 * If the page isn't allocated using the cma allocator,
1513 	 * cma_release() returns false.
1514 	 */
1515 #ifdef CONFIG_CMA
1516 	int nid = folio_nid(folio);
1517 
1518 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1519 		return;
1520 #endif
1521 
1522 	free_contig_range(folio_pfn(folio), 1 << order);
1523 }
1524 
1525 #ifdef CONFIG_CONTIG_ALLOC
1526 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1527 		int nid, nodemask_t *nodemask)
1528 {
1529 	struct page *page;
1530 	unsigned long nr_pages = pages_per_huge_page(h);
1531 	if (nid == NUMA_NO_NODE)
1532 		nid = numa_mem_id();
1533 
1534 #ifdef CONFIG_CMA
1535 	{
1536 		int node;
1537 
1538 		if (hugetlb_cma[nid]) {
1539 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1540 					huge_page_order(h), true);
1541 			if (page)
1542 				return page_folio(page);
1543 		}
1544 
1545 		if (!(gfp_mask & __GFP_THISNODE)) {
1546 			for_each_node_mask(node, *nodemask) {
1547 				if (node == nid || !hugetlb_cma[node])
1548 					continue;
1549 
1550 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1551 						huge_page_order(h), true);
1552 				if (page)
1553 					return page_folio(page);
1554 			}
1555 		}
1556 	}
1557 #endif
1558 
1559 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1560 	return page ? page_folio(page) : NULL;
1561 }
1562 
1563 #else /* !CONFIG_CONTIG_ALLOC */
1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565 					int nid, nodemask_t *nodemask)
1566 {
1567 	return NULL;
1568 }
1569 #endif /* CONFIG_CONTIG_ALLOC */
1570 
1571 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1572 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1573 					int nid, nodemask_t *nodemask)
1574 {
1575 	return NULL;
1576 }
1577 static inline void free_gigantic_folio(struct folio *folio,
1578 						unsigned int order) { }
1579 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1580 						unsigned int order) { }
1581 #endif
1582 
1583 /*
1584  * Remove hugetlb folio from lists, and update dtor so that the folio appears
1585  * as just a compound page.
1586  *
1587  * A reference is held on the folio, except in the case of demote.
1588  *
1589  * Must be called with hugetlb lock held.
1590  */
1591 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1592 							bool adjust_surplus,
1593 							bool demote)
1594 {
1595 	int nid = folio_nid(folio);
1596 
1597 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1598 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1599 
1600 	lockdep_assert_held(&hugetlb_lock);
1601 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1602 		return;
1603 
1604 	list_del(&folio->lru);
1605 
1606 	if (folio_test_hugetlb_freed(folio)) {
1607 		h->free_huge_pages--;
1608 		h->free_huge_pages_node[nid]--;
1609 	}
1610 	if (adjust_surplus) {
1611 		h->surplus_huge_pages--;
1612 		h->surplus_huge_pages_node[nid]--;
1613 	}
1614 
1615 	/*
1616 	 * Very subtle
1617 	 *
1618 	 * For non-gigantic pages set the destructor to the normal compound
1619 	 * page dtor.  This is needed in case someone takes an additional
1620 	 * temporary ref to the page, and freeing is delayed until they drop
1621 	 * their reference.
1622 	 *
1623 	 * For gigantic pages set the destructor to the null dtor.  This
1624 	 * destructor will never be called.  Before freeing the gigantic
1625 	 * page destroy_compound_gigantic_folio will turn the folio into a
1626 	 * simple group of pages.  After this the destructor does not
1627 	 * apply.
1628 	 *
1629 	 * This handles the case where more than one ref is held when and
1630 	 * after update_and_free_hugetlb_folio is called.
1631 	 *
1632 	 * In the case of demote we do not ref count the page as it will soon
1633 	 * be turned into a page of smaller size.
1634 	 */
1635 	if (!demote)
1636 		folio_ref_unfreeze(folio, 1);
1637 	if (hstate_is_gigantic(h))
1638 		folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1639 	else
1640 		folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1641 
1642 	h->nr_huge_pages--;
1643 	h->nr_huge_pages_node[nid]--;
1644 }
1645 
1646 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647 							bool adjust_surplus)
1648 {
1649 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1650 }
1651 
1652 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1653 							bool adjust_surplus)
1654 {
1655 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1656 }
1657 
1658 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1659 			     bool adjust_surplus)
1660 {
1661 	int zeroed;
1662 	int nid = folio_nid(folio);
1663 
1664 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1665 
1666 	lockdep_assert_held(&hugetlb_lock);
1667 
1668 	INIT_LIST_HEAD(&folio->lru);
1669 	h->nr_huge_pages++;
1670 	h->nr_huge_pages_node[nid]++;
1671 
1672 	if (adjust_surplus) {
1673 		h->surplus_huge_pages++;
1674 		h->surplus_huge_pages_node[nid]++;
1675 	}
1676 
1677 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1678 	folio_change_private(folio, NULL);
1679 	/*
1680 	 * We have to set hugetlb_vmemmap_optimized again as above
1681 	 * folio_change_private(folio, NULL) cleared it.
1682 	 */
1683 	folio_set_hugetlb_vmemmap_optimized(folio);
1684 
1685 	/*
1686 	 * This folio is about to be managed by the hugetlb allocator and
1687 	 * should have no users.  Drop our reference, and check for others
1688 	 * just in case.
1689 	 */
1690 	zeroed = folio_put_testzero(folio);
1691 	if (unlikely(!zeroed))
1692 		/*
1693 		 * It is VERY unlikely soneone else has taken a ref on
1694 		 * the page.  In this case, we simply return as the
1695 		 * hugetlb destructor (free_huge_page) will be called
1696 		 * when this other ref is dropped.
1697 		 */
1698 		return;
1699 
1700 	arch_clear_hugepage_flags(&folio->page);
1701 	enqueue_hugetlb_folio(h, folio);
1702 }
1703 
1704 static void __update_and_free_hugetlb_folio(struct hstate *h,
1705 						struct folio *folio)
1706 {
1707 	int i;
1708 	struct page *subpage;
1709 
1710 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1711 		return;
1712 
1713 	/*
1714 	 * If we don't know which subpages are hwpoisoned, we can't free
1715 	 * the hugepage, so it's leaked intentionally.
1716 	 */
1717 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1718 		return;
1719 
1720 	if (hugetlb_vmemmap_restore(h, &folio->page)) {
1721 		spin_lock_irq(&hugetlb_lock);
1722 		/*
1723 		 * If we cannot allocate vmemmap pages, just refuse to free the
1724 		 * page and put the page back on the hugetlb free list and treat
1725 		 * as a surplus page.
1726 		 */
1727 		add_hugetlb_folio(h, folio, true);
1728 		spin_unlock_irq(&hugetlb_lock);
1729 		return;
1730 	}
1731 
1732 	/*
1733 	 * Move PageHWPoison flag from head page to the raw error pages,
1734 	 * which makes any healthy subpages reusable.
1735 	 */
1736 	if (unlikely(folio_test_hwpoison(folio)))
1737 		folio_clear_hugetlb_hwpoison(folio);
1738 
1739 	for (i = 0; i < pages_per_huge_page(h); i++) {
1740 		subpage = folio_page(folio, i);
1741 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1742 				1 << PG_referenced | 1 << PG_dirty |
1743 				1 << PG_active | 1 << PG_private |
1744 				1 << PG_writeback);
1745 	}
1746 
1747 	/*
1748 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1749 	 * need to be given back to CMA in free_gigantic_folio.
1750 	 */
1751 	if (hstate_is_gigantic(h) ||
1752 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1753 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1754 		free_gigantic_folio(folio, huge_page_order(h));
1755 	} else {
1756 		__free_pages(&folio->page, huge_page_order(h));
1757 	}
1758 }
1759 
1760 /*
1761  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1762  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1763  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1764  * the vmemmap pages.
1765  *
1766  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1767  * freed and frees them one-by-one. As the page->mapping pointer is going
1768  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1769  * structure of a lockless linked list of huge pages to be freed.
1770  */
1771 static LLIST_HEAD(hpage_freelist);
1772 
1773 static void free_hpage_workfn(struct work_struct *work)
1774 {
1775 	struct llist_node *node;
1776 
1777 	node = llist_del_all(&hpage_freelist);
1778 
1779 	while (node) {
1780 		struct page *page;
1781 		struct hstate *h;
1782 
1783 		page = container_of((struct address_space **)node,
1784 				     struct page, mapping);
1785 		node = node->next;
1786 		page->mapping = NULL;
1787 		/*
1788 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1789 		 * is going to trigger because a previous call to
1790 		 * remove_hugetlb_folio() will call folio_set_compound_dtor
1791 		 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1792 		 * directly.
1793 		 */
1794 		h = size_to_hstate(page_size(page));
1795 
1796 		__update_and_free_hugetlb_folio(h, page_folio(page));
1797 
1798 		cond_resched();
1799 	}
1800 }
1801 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1802 
1803 static inline void flush_free_hpage_work(struct hstate *h)
1804 {
1805 	if (hugetlb_vmemmap_optimizable(h))
1806 		flush_work(&free_hpage_work);
1807 }
1808 
1809 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1810 				 bool atomic)
1811 {
1812 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1813 		__update_and_free_hugetlb_folio(h, folio);
1814 		return;
1815 	}
1816 
1817 	/*
1818 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1819 	 *
1820 	 * Only call schedule_work() if hpage_freelist is previously
1821 	 * empty. Otherwise, schedule_work() had been called but the workfn
1822 	 * hasn't retrieved the list yet.
1823 	 */
1824 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1825 		schedule_work(&free_hpage_work);
1826 }
1827 
1828 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1829 {
1830 	struct page *page, *t_page;
1831 	struct folio *folio;
1832 
1833 	list_for_each_entry_safe(page, t_page, list, lru) {
1834 		folio = page_folio(page);
1835 		update_and_free_hugetlb_folio(h, folio, false);
1836 		cond_resched();
1837 	}
1838 }
1839 
1840 struct hstate *size_to_hstate(unsigned long size)
1841 {
1842 	struct hstate *h;
1843 
1844 	for_each_hstate(h) {
1845 		if (huge_page_size(h) == size)
1846 			return h;
1847 	}
1848 	return NULL;
1849 }
1850 
1851 void free_huge_page(struct page *page)
1852 {
1853 	/*
1854 	 * Can't pass hstate in here because it is called from the
1855 	 * compound page destructor.
1856 	 */
1857 	struct folio *folio = page_folio(page);
1858 	struct hstate *h = folio_hstate(folio);
1859 	int nid = folio_nid(folio);
1860 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1861 	bool restore_reserve;
1862 	unsigned long flags;
1863 
1864 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1865 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1866 
1867 	hugetlb_set_folio_subpool(folio, NULL);
1868 	if (folio_test_anon(folio))
1869 		__ClearPageAnonExclusive(&folio->page);
1870 	folio->mapping = NULL;
1871 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1872 	folio_clear_hugetlb_restore_reserve(folio);
1873 
1874 	/*
1875 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1876 	 * reservation.  If the page was associated with a subpool, there
1877 	 * would have been a page reserved in the subpool before allocation
1878 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1879 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1880 	 * remove the reserved page from the subpool.
1881 	 */
1882 	if (!restore_reserve) {
1883 		/*
1884 		 * A return code of zero implies that the subpool will be
1885 		 * under its minimum size if the reservation is not restored
1886 		 * after page is free.  Therefore, force restore_reserve
1887 		 * operation.
1888 		 */
1889 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1890 			restore_reserve = true;
1891 	}
1892 
1893 	spin_lock_irqsave(&hugetlb_lock, flags);
1894 	folio_clear_hugetlb_migratable(folio);
1895 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1896 				     pages_per_huge_page(h), folio);
1897 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1898 					  pages_per_huge_page(h), folio);
1899 	if (restore_reserve)
1900 		h->resv_huge_pages++;
1901 
1902 	if (folio_test_hugetlb_temporary(folio)) {
1903 		remove_hugetlb_folio(h, folio, false);
1904 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1905 		update_and_free_hugetlb_folio(h, folio, true);
1906 	} else if (h->surplus_huge_pages_node[nid]) {
1907 		/* remove the page from active list */
1908 		remove_hugetlb_folio(h, folio, true);
1909 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1910 		update_and_free_hugetlb_folio(h, folio, true);
1911 	} else {
1912 		arch_clear_hugepage_flags(page);
1913 		enqueue_hugetlb_folio(h, folio);
1914 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1915 	}
1916 }
1917 
1918 /*
1919  * Must be called with the hugetlb lock held
1920  */
1921 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1922 {
1923 	lockdep_assert_held(&hugetlb_lock);
1924 	h->nr_huge_pages++;
1925 	h->nr_huge_pages_node[nid]++;
1926 }
1927 
1928 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1929 {
1930 	hugetlb_vmemmap_optimize(h, &folio->page);
1931 	INIT_LIST_HEAD(&folio->lru);
1932 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1933 	hugetlb_set_folio_subpool(folio, NULL);
1934 	set_hugetlb_cgroup(folio, NULL);
1935 	set_hugetlb_cgroup_rsvd(folio, NULL);
1936 }
1937 
1938 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1939 {
1940 	__prep_new_hugetlb_folio(h, folio);
1941 	spin_lock_irq(&hugetlb_lock);
1942 	__prep_account_new_huge_page(h, nid);
1943 	spin_unlock_irq(&hugetlb_lock);
1944 }
1945 
1946 static bool __prep_compound_gigantic_folio(struct folio *folio,
1947 					unsigned int order, bool demote)
1948 {
1949 	int i, j;
1950 	int nr_pages = 1 << order;
1951 	struct page *p;
1952 
1953 	__folio_clear_reserved(folio);
1954 	__folio_set_head(folio);
1955 	/* we rely on prep_new_hugetlb_folio to set the destructor */
1956 	folio_set_order(folio, order);
1957 	for (i = 0; i < nr_pages; i++) {
1958 		p = folio_page(folio, i);
1959 
1960 		/*
1961 		 * For gigantic hugepages allocated through bootmem at
1962 		 * boot, it's safer to be consistent with the not-gigantic
1963 		 * hugepages and clear the PG_reserved bit from all tail pages
1964 		 * too.  Otherwise drivers using get_user_pages() to access tail
1965 		 * pages may get the reference counting wrong if they see
1966 		 * PG_reserved set on a tail page (despite the head page not
1967 		 * having PG_reserved set).  Enforcing this consistency between
1968 		 * head and tail pages allows drivers to optimize away a check
1969 		 * on the head page when they need know if put_page() is needed
1970 		 * after get_user_pages().
1971 		 */
1972 		if (i != 0)	/* head page cleared above */
1973 			__ClearPageReserved(p);
1974 		/*
1975 		 * Subtle and very unlikely
1976 		 *
1977 		 * Gigantic 'page allocators' such as memblock or cma will
1978 		 * return a set of pages with each page ref counted.  We need
1979 		 * to turn this set of pages into a compound page with tail
1980 		 * page ref counts set to zero.  Code such as speculative page
1981 		 * cache adding could take a ref on a 'to be' tail page.
1982 		 * We need to respect any increased ref count, and only set
1983 		 * the ref count to zero if count is currently 1.  If count
1984 		 * is not 1, we return an error.  An error return indicates
1985 		 * the set of pages can not be converted to a gigantic page.
1986 		 * The caller who allocated the pages should then discard the
1987 		 * pages using the appropriate free interface.
1988 		 *
1989 		 * In the case of demote, the ref count will be zero.
1990 		 */
1991 		if (!demote) {
1992 			if (!page_ref_freeze(p, 1)) {
1993 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1994 				goto out_error;
1995 			}
1996 		} else {
1997 			VM_BUG_ON_PAGE(page_count(p), p);
1998 		}
1999 		if (i != 0)
2000 			set_compound_head(p, &folio->page);
2001 	}
2002 	atomic_set(&folio->_entire_mapcount, -1);
2003 	atomic_set(&folio->_nr_pages_mapped, 0);
2004 	atomic_set(&folio->_pincount, 0);
2005 	return true;
2006 
2007 out_error:
2008 	/* undo page modifications made above */
2009 	for (j = 0; j < i; j++) {
2010 		p = folio_page(folio, j);
2011 		if (j != 0)
2012 			clear_compound_head(p);
2013 		set_page_refcounted(p);
2014 	}
2015 	/* need to clear PG_reserved on remaining tail pages  */
2016 	for (; j < nr_pages; j++) {
2017 		p = folio_page(folio, j);
2018 		__ClearPageReserved(p);
2019 	}
2020 	folio_set_order(folio, 0);
2021 	__folio_clear_head(folio);
2022 	return false;
2023 }
2024 
2025 static bool prep_compound_gigantic_folio(struct folio *folio,
2026 							unsigned int order)
2027 {
2028 	return __prep_compound_gigantic_folio(folio, order, false);
2029 }
2030 
2031 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2032 							unsigned int order)
2033 {
2034 	return __prep_compound_gigantic_folio(folio, order, true);
2035 }
2036 
2037 /*
2038  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2039  * transparent huge pages.  See the PageTransHuge() documentation for more
2040  * details.
2041  */
2042 int PageHuge(struct page *page)
2043 {
2044 	struct folio *folio;
2045 
2046 	if (!PageCompound(page))
2047 		return 0;
2048 	folio = page_folio(page);
2049 	return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2050 }
2051 EXPORT_SYMBOL_GPL(PageHuge);
2052 
2053 /**
2054  * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs
2055  * @folio: The folio to test.
2056  *
2057  * Context: Any context.  Caller should have a reference on the folio to
2058  * prevent it from being turned into a tail page.
2059  * Return: True for hugetlbfs folios, false for anon folios or folios
2060  * belonging to other filesystems.
2061  */
2062 bool folio_test_hugetlb(struct folio *folio)
2063 {
2064 	if (!folio_test_large(folio))
2065 		return false;
2066 
2067 	return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2068 }
2069 EXPORT_SYMBOL_GPL(folio_test_hugetlb);
2070 
2071 /*
2072  * Find and lock address space (mapping) in write mode.
2073  *
2074  * Upon entry, the page is locked which means that page_mapping() is
2075  * stable.  Due to locking order, we can only trylock_write.  If we can
2076  * not get the lock, simply return NULL to caller.
2077  */
2078 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2079 {
2080 	struct address_space *mapping = page_mapping(hpage);
2081 
2082 	if (!mapping)
2083 		return mapping;
2084 
2085 	if (i_mmap_trylock_write(mapping))
2086 		return mapping;
2087 
2088 	return NULL;
2089 }
2090 
2091 pgoff_t hugetlb_basepage_index(struct page *page)
2092 {
2093 	struct page *page_head = compound_head(page);
2094 	pgoff_t index = page_index(page_head);
2095 	unsigned long compound_idx;
2096 
2097 	if (compound_order(page_head) > MAX_ORDER)
2098 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2099 	else
2100 		compound_idx = page - page_head;
2101 
2102 	return (index << compound_order(page_head)) + compound_idx;
2103 }
2104 
2105 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2106 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2107 		nodemask_t *node_alloc_noretry)
2108 {
2109 	int order = huge_page_order(h);
2110 	struct page *page;
2111 	bool alloc_try_hard = true;
2112 	bool retry = true;
2113 
2114 	/*
2115 	 * By default we always try hard to allocate the page with
2116 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2117 	 * a loop (to adjust global huge page counts) and previous allocation
2118 	 * failed, do not continue to try hard on the same node.  Use the
2119 	 * node_alloc_noretry bitmap to manage this state information.
2120 	 */
2121 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2122 		alloc_try_hard = false;
2123 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2124 	if (alloc_try_hard)
2125 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2126 	if (nid == NUMA_NO_NODE)
2127 		nid = numa_mem_id();
2128 retry:
2129 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2130 
2131 	/* Freeze head page */
2132 	if (page && !page_ref_freeze(page, 1)) {
2133 		__free_pages(page, order);
2134 		if (retry) {	/* retry once */
2135 			retry = false;
2136 			goto retry;
2137 		}
2138 		/* WOW!  twice in a row. */
2139 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2140 		page = NULL;
2141 	}
2142 
2143 	/*
2144 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2145 	 * indicates an overall state change.  Clear bit so that we resume
2146 	 * normal 'try hard' allocations.
2147 	 */
2148 	if (node_alloc_noretry && page && !alloc_try_hard)
2149 		node_clear(nid, *node_alloc_noretry);
2150 
2151 	/*
2152 	 * If we tried hard to get a page but failed, set bit so that
2153 	 * subsequent attempts will not try as hard until there is an
2154 	 * overall state change.
2155 	 */
2156 	if (node_alloc_noretry && !page && alloc_try_hard)
2157 		node_set(nid, *node_alloc_noretry);
2158 
2159 	if (!page) {
2160 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2161 		return NULL;
2162 	}
2163 
2164 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2165 	return page_folio(page);
2166 }
2167 
2168 /*
2169  * Common helper to allocate a fresh hugetlb page. All specific allocators
2170  * should use this function to get new hugetlb pages
2171  *
2172  * Note that returned page is 'frozen':  ref count of head page and all tail
2173  * pages is zero.
2174  */
2175 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2176 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2177 		nodemask_t *node_alloc_noretry)
2178 {
2179 	struct folio *folio;
2180 	bool retry = false;
2181 
2182 retry:
2183 	if (hstate_is_gigantic(h))
2184 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2185 	else
2186 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2187 				nid, nmask, node_alloc_noretry);
2188 	if (!folio)
2189 		return NULL;
2190 	if (hstate_is_gigantic(h)) {
2191 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2192 			/*
2193 			 * Rare failure to convert pages to compound page.
2194 			 * Free pages and try again - ONCE!
2195 			 */
2196 			free_gigantic_folio(folio, huge_page_order(h));
2197 			if (!retry) {
2198 				retry = true;
2199 				goto retry;
2200 			}
2201 			return NULL;
2202 		}
2203 	}
2204 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2205 
2206 	return folio;
2207 }
2208 
2209 /*
2210  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2211  * manner.
2212  */
2213 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2214 				nodemask_t *node_alloc_noretry)
2215 {
2216 	struct folio *folio;
2217 	int nr_nodes, node;
2218 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2219 
2220 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2221 		folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2222 					nodes_allowed, node_alloc_noretry);
2223 		if (folio) {
2224 			free_huge_page(&folio->page); /* free it into the hugepage allocator */
2225 			return 1;
2226 		}
2227 	}
2228 
2229 	return 0;
2230 }
2231 
2232 /*
2233  * Remove huge page from pool from next node to free.  Attempt to keep
2234  * persistent huge pages more or less balanced over allowed nodes.
2235  * This routine only 'removes' the hugetlb page.  The caller must make
2236  * an additional call to free the page to low level allocators.
2237  * Called with hugetlb_lock locked.
2238  */
2239 static struct page *remove_pool_huge_page(struct hstate *h,
2240 						nodemask_t *nodes_allowed,
2241 						 bool acct_surplus)
2242 {
2243 	int nr_nodes, node;
2244 	struct page *page = NULL;
2245 	struct folio *folio;
2246 
2247 	lockdep_assert_held(&hugetlb_lock);
2248 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2249 		/*
2250 		 * If we're returning unused surplus pages, only examine
2251 		 * nodes with surplus pages.
2252 		 */
2253 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2254 		    !list_empty(&h->hugepage_freelists[node])) {
2255 			page = list_entry(h->hugepage_freelists[node].next,
2256 					  struct page, lru);
2257 			folio = page_folio(page);
2258 			remove_hugetlb_folio(h, folio, acct_surplus);
2259 			break;
2260 		}
2261 	}
2262 
2263 	return page;
2264 }
2265 
2266 /*
2267  * Dissolve a given free hugepage into free buddy pages. This function does
2268  * nothing for in-use hugepages and non-hugepages.
2269  * This function returns values like below:
2270  *
2271  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2272  *           when the system is under memory pressure and the feature of
2273  *           freeing unused vmemmap pages associated with each hugetlb page
2274  *           is enabled.
2275  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2276  *           (allocated or reserved.)
2277  *       0:  successfully dissolved free hugepages or the page is not a
2278  *           hugepage (considered as already dissolved)
2279  */
2280 int dissolve_free_huge_page(struct page *page)
2281 {
2282 	int rc = -EBUSY;
2283 	struct folio *folio = page_folio(page);
2284 
2285 retry:
2286 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2287 	if (!folio_test_hugetlb(folio))
2288 		return 0;
2289 
2290 	spin_lock_irq(&hugetlb_lock);
2291 	if (!folio_test_hugetlb(folio)) {
2292 		rc = 0;
2293 		goto out;
2294 	}
2295 
2296 	if (!folio_ref_count(folio)) {
2297 		struct hstate *h = folio_hstate(folio);
2298 		if (!available_huge_pages(h))
2299 			goto out;
2300 
2301 		/*
2302 		 * We should make sure that the page is already on the free list
2303 		 * when it is dissolved.
2304 		 */
2305 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2306 			spin_unlock_irq(&hugetlb_lock);
2307 			cond_resched();
2308 
2309 			/*
2310 			 * Theoretically, we should return -EBUSY when we
2311 			 * encounter this race. In fact, we have a chance
2312 			 * to successfully dissolve the page if we do a
2313 			 * retry. Because the race window is quite small.
2314 			 * If we seize this opportunity, it is an optimization
2315 			 * for increasing the success rate of dissolving page.
2316 			 */
2317 			goto retry;
2318 		}
2319 
2320 		remove_hugetlb_folio(h, folio, false);
2321 		h->max_huge_pages--;
2322 		spin_unlock_irq(&hugetlb_lock);
2323 
2324 		/*
2325 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2326 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2327 		 * free the page if it can not allocate required vmemmap.  We
2328 		 * need to adjust max_huge_pages if the page is not freed.
2329 		 * Attempt to allocate vmemmmap here so that we can take
2330 		 * appropriate action on failure.
2331 		 */
2332 		rc = hugetlb_vmemmap_restore(h, &folio->page);
2333 		if (!rc) {
2334 			update_and_free_hugetlb_folio(h, folio, false);
2335 		} else {
2336 			spin_lock_irq(&hugetlb_lock);
2337 			add_hugetlb_folio(h, folio, false);
2338 			h->max_huge_pages++;
2339 			spin_unlock_irq(&hugetlb_lock);
2340 		}
2341 
2342 		return rc;
2343 	}
2344 out:
2345 	spin_unlock_irq(&hugetlb_lock);
2346 	return rc;
2347 }
2348 
2349 /*
2350  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2351  * make specified memory blocks removable from the system.
2352  * Note that this will dissolve a free gigantic hugepage completely, if any
2353  * part of it lies within the given range.
2354  * Also note that if dissolve_free_huge_page() returns with an error, all
2355  * free hugepages that were dissolved before that error are lost.
2356  */
2357 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2358 {
2359 	unsigned long pfn;
2360 	struct page *page;
2361 	int rc = 0;
2362 	unsigned int order;
2363 	struct hstate *h;
2364 
2365 	if (!hugepages_supported())
2366 		return rc;
2367 
2368 	order = huge_page_order(&default_hstate);
2369 	for_each_hstate(h)
2370 		order = min(order, huge_page_order(h));
2371 
2372 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2373 		page = pfn_to_page(pfn);
2374 		rc = dissolve_free_huge_page(page);
2375 		if (rc)
2376 			break;
2377 	}
2378 
2379 	return rc;
2380 }
2381 
2382 /*
2383  * Allocates a fresh surplus page from the page allocator.
2384  */
2385 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2386 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2387 {
2388 	struct folio *folio = NULL;
2389 
2390 	if (hstate_is_gigantic(h))
2391 		return NULL;
2392 
2393 	spin_lock_irq(&hugetlb_lock);
2394 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2395 		goto out_unlock;
2396 	spin_unlock_irq(&hugetlb_lock);
2397 
2398 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2399 	if (!folio)
2400 		return NULL;
2401 
2402 	spin_lock_irq(&hugetlb_lock);
2403 	/*
2404 	 * We could have raced with the pool size change.
2405 	 * Double check that and simply deallocate the new page
2406 	 * if we would end up overcommiting the surpluses. Abuse
2407 	 * temporary page to workaround the nasty free_huge_page
2408 	 * codeflow
2409 	 */
2410 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2411 		folio_set_hugetlb_temporary(folio);
2412 		spin_unlock_irq(&hugetlb_lock);
2413 		free_huge_page(&folio->page);
2414 		return NULL;
2415 	}
2416 
2417 	h->surplus_huge_pages++;
2418 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2419 
2420 out_unlock:
2421 	spin_unlock_irq(&hugetlb_lock);
2422 
2423 	return folio;
2424 }
2425 
2426 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2427 				     int nid, nodemask_t *nmask)
2428 {
2429 	struct folio *folio;
2430 
2431 	if (hstate_is_gigantic(h))
2432 		return NULL;
2433 
2434 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2435 	if (!folio)
2436 		return NULL;
2437 
2438 	/* fresh huge pages are frozen */
2439 	folio_ref_unfreeze(folio, 1);
2440 	/*
2441 	 * We do not account these pages as surplus because they are only
2442 	 * temporary and will be released properly on the last reference
2443 	 */
2444 	folio_set_hugetlb_temporary(folio);
2445 
2446 	return folio;
2447 }
2448 
2449 /*
2450  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2451  */
2452 static
2453 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2454 		struct vm_area_struct *vma, unsigned long addr)
2455 {
2456 	struct folio *folio = NULL;
2457 	struct mempolicy *mpol;
2458 	gfp_t gfp_mask = htlb_alloc_mask(h);
2459 	int nid;
2460 	nodemask_t *nodemask;
2461 
2462 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2463 	if (mpol_is_preferred_many(mpol)) {
2464 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2465 
2466 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2467 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2468 
2469 		/* Fallback to all nodes if page==NULL */
2470 		nodemask = NULL;
2471 	}
2472 
2473 	if (!folio)
2474 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2475 	mpol_cond_put(mpol);
2476 	return folio;
2477 }
2478 
2479 /* folio migration callback function */
2480 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2481 		nodemask_t *nmask, gfp_t gfp_mask)
2482 {
2483 	spin_lock_irq(&hugetlb_lock);
2484 	if (available_huge_pages(h)) {
2485 		struct folio *folio;
2486 
2487 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2488 						preferred_nid, nmask);
2489 		if (folio) {
2490 			spin_unlock_irq(&hugetlb_lock);
2491 			return folio;
2492 		}
2493 	}
2494 	spin_unlock_irq(&hugetlb_lock);
2495 
2496 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2497 }
2498 
2499 /* mempolicy aware migration callback */
2500 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2501 		unsigned long address)
2502 {
2503 	struct mempolicy *mpol;
2504 	nodemask_t *nodemask;
2505 	struct folio *folio;
2506 	gfp_t gfp_mask;
2507 	int node;
2508 
2509 	gfp_mask = htlb_alloc_mask(h);
2510 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2511 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2512 	mpol_cond_put(mpol);
2513 
2514 	return folio;
2515 }
2516 
2517 /*
2518  * Increase the hugetlb pool such that it can accommodate a reservation
2519  * of size 'delta'.
2520  */
2521 static int gather_surplus_pages(struct hstate *h, long delta)
2522 	__must_hold(&hugetlb_lock)
2523 {
2524 	LIST_HEAD(surplus_list);
2525 	struct folio *folio;
2526 	struct page *page, *tmp;
2527 	int ret;
2528 	long i;
2529 	long needed, allocated;
2530 	bool alloc_ok = true;
2531 
2532 	lockdep_assert_held(&hugetlb_lock);
2533 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2534 	if (needed <= 0) {
2535 		h->resv_huge_pages += delta;
2536 		return 0;
2537 	}
2538 
2539 	allocated = 0;
2540 
2541 	ret = -ENOMEM;
2542 retry:
2543 	spin_unlock_irq(&hugetlb_lock);
2544 	for (i = 0; i < needed; i++) {
2545 		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2546 				NUMA_NO_NODE, NULL);
2547 		if (!folio) {
2548 			alloc_ok = false;
2549 			break;
2550 		}
2551 		list_add(&folio->lru, &surplus_list);
2552 		cond_resched();
2553 	}
2554 	allocated += i;
2555 
2556 	/*
2557 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2558 	 * because either resv_huge_pages or free_huge_pages may have changed.
2559 	 */
2560 	spin_lock_irq(&hugetlb_lock);
2561 	needed = (h->resv_huge_pages + delta) -
2562 			(h->free_huge_pages + allocated);
2563 	if (needed > 0) {
2564 		if (alloc_ok)
2565 			goto retry;
2566 		/*
2567 		 * We were not able to allocate enough pages to
2568 		 * satisfy the entire reservation so we free what
2569 		 * we've allocated so far.
2570 		 */
2571 		goto free;
2572 	}
2573 	/*
2574 	 * The surplus_list now contains _at_least_ the number of extra pages
2575 	 * needed to accommodate the reservation.  Add the appropriate number
2576 	 * of pages to the hugetlb pool and free the extras back to the buddy
2577 	 * allocator.  Commit the entire reservation here to prevent another
2578 	 * process from stealing the pages as they are added to the pool but
2579 	 * before they are reserved.
2580 	 */
2581 	needed += allocated;
2582 	h->resv_huge_pages += delta;
2583 	ret = 0;
2584 
2585 	/* Free the needed pages to the hugetlb pool */
2586 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2587 		if ((--needed) < 0)
2588 			break;
2589 		/* Add the page to the hugetlb allocator */
2590 		enqueue_hugetlb_folio(h, page_folio(page));
2591 	}
2592 free:
2593 	spin_unlock_irq(&hugetlb_lock);
2594 
2595 	/*
2596 	 * Free unnecessary surplus pages to the buddy allocator.
2597 	 * Pages have no ref count, call free_huge_page directly.
2598 	 */
2599 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2600 		free_huge_page(page);
2601 	spin_lock_irq(&hugetlb_lock);
2602 
2603 	return ret;
2604 }
2605 
2606 /*
2607  * This routine has two main purposes:
2608  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2609  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2610  *    to the associated reservation map.
2611  * 2) Free any unused surplus pages that may have been allocated to satisfy
2612  *    the reservation.  As many as unused_resv_pages may be freed.
2613  */
2614 static void return_unused_surplus_pages(struct hstate *h,
2615 					unsigned long unused_resv_pages)
2616 {
2617 	unsigned long nr_pages;
2618 	struct page *page;
2619 	LIST_HEAD(page_list);
2620 
2621 	lockdep_assert_held(&hugetlb_lock);
2622 	/* Uncommit the reservation */
2623 	h->resv_huge_pages -= unused_resv_pages;
2624 
2625 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2626 		goto out;
2627 
2628 	/*
2629 	 * Part (or even all) of the reservation could have been backed
2630 	 * by pre-allocated pages. Only free surplus pages.
2631 	 */
2632 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2633 
2634 	/*
2635 	 * We want to release as many surplus pages as possible, spread
2636 	 * evenly across all nodes with memory. Iterate across these nodes
2637 	 * until we can no longer free unreserved surplus pages. This occurs
2638 	 * when the nodes with surplus pages have no free pages.
2639 	 * remove_pool_huge_page() will balance the freed pages across the
2640 	 * on-line nodes with memory and will handle the hstate accounting.
2641 	 */
2642 	while (nr_pages--) {
2643 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2644 		if (!page)
2645 			goto out;
2646 
2647 		list_add(&page->lru, &page_list);
2648 	}
2649 
2650 out:
2651 	spin_unlock_irq(&hugetlb_lock);
2652 	update_and_free_pages_bulk(h, &page_list);
2653 	spin_lock_irq(&hugetlb_lock);
2654 }
2655 
2656 
2657 /*
2658  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2659  * are used by the huge page allocation routines to manage reservations.
2660  *
2661  * vma_needs_reservation is called to determine if the huge page at addr
2662  * within the vma has an associated reservation.  If a reservation is
2663  * needed, the value 1 is returned.  The caller is then responsible for
2664  * managing the global reservation and subpool usage counts.  After
2665  * the huge page has been allocated, vma_commit_reservation is called
2666  * to add the page to the reservation map.  If the page allocation fails,
2667  * the reservation must be ended instead of committed.  vma_end_reservation
2668  * is called in such cases.
2669  *
2670  * In the normal case, vma_commit_reservation returns the same value
2671  * as the preceding vma_needs_reservation call.  The only time this
2672  * is not the case is if a reserve map was changed between calls.  It
2673  * is the responsibility of the caller to notice the difference and
2674  * take appropriate action.
2675  *
2676  * vma_add_reservation is used in error paths where a reservation must
2677  * be restored when a newly allocated huge page must be freed.  It is
2678  * to be called after calling vma_needs_reservation to determine if a
2679  * reservation exists.
2680  *
2681  * vma_del_reservation is used in error paths where an entry in the reserve
2682  * map was created during huge page allocation and must be removed.  It is to
2683  * be called after calling vma_needs_reservation to determine if a reservation
2684  * exists.
2685  */
2686 enum vma_resv_mode {
2687 	VMA_NEEDS_RESV,
2688 	VMA_COMMIT_RESV,
2689 	VMA_END_RESV,
2690 	VMA_ADD_RESV,
2691 	VMA_DEL_RESV,
2692 };
2693 static long __vma_reservation_common(struct hstate *h,
2694 				struct vm_area_struct *vma, unsigned long addr,
2695 				enum vma_resv_mode mode)
2696 {
2697 	struct resv_map *resv;
2698 	pgoff_t idx;
2699 	long ret;
2700 	long dummy_out_regions_needed;
2701 
2702 	resv = vma_resv_map(vma);
2703 	if (!resv)
2704 		return 1;
2705 
2706 	idx = vma_hugecache_offset(h, vma, addr);
2707 	switch (mode) {
2708 	case VMA_NEEDS_RESV:
2709 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2710 		/* We assume that vma_reservation_* routines always operate on
2711 		 * 1 page, and that adding to resv map a 1 page entry can only
2712 		 * ever require 1 region.
2713 		 */
2714 		VM_BUG_ON(dummy_out_regions_needed != 1);
2715 		break;
2716 	case VMA_COMMIT_RESV:
2717 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2718 		/* region_add calls of range 1 should never fail. */
2719 		VM_BUG_ON(ret < 0);
2720 		break;
2721 	case VMA_END_RESV:
2722 		region_abort(resv, idx, idx + 1, 1);
2723 		ret = 0;
2724 		break;
2725 	case VMA_ADD_RESV:
2726 		if (vma->vm_flags & VM_MAYSHARE) {
2727 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2728 			/* region_add calls of range 1 should never fail. */
2729 			VM_BUG_ON(ret < 0);
2730 		} else {
2731 			region_abort(resv, idx, idx + 1, 1);
2732 			ret = region_del(resv, idx, idx + 1);
2733 		}
2734 		break;
2735 	case VMA_DEL_RESV:
2736 		if (vma->vm_flags & VM_MAYSHARE) {
2737 			region_abort(resv, idx, idx + 1, 1);
2738 			ret = region_del(resv, idx, idx + 1);
2739 		} else {
2740 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2741 			/* region_add calls of range 1 should never fail. */
2742 			VM_BUG_ON(ret < 0);
2743 		}
2744 		break;
2745 	default:
2746 		BUG();
2747 	}
2748 
2749 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2750 		return ret;
2751 	/*
2752 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2753 	 *
2754 	 * In most cases, reserves always exist for private mappings.
2755 	 * However, a file associated with mapping could have been
2756 	 * hole punched or truncated after reserves were consumed.
2757 	 * As subsequent fault on such a range will not use reserves.
2758 	 * Subtle - The reserve map for private mappings has the
2759 	 * opposite meaning than that of shared mappings.  If NO
2760 	 * entry is in the reserve map, it means a reservation exists.
2761 	 * If an entry exists in the reserve map, it means the
2762 	 * reservation has already been consumed.  As a result, the
2763 	 * return value of this routine is the opposite of the
2764 	 * value returned from reserve map manipulation routines above.
2765 	 */
2766 	if (ret > 0)
2767 		return 0;
2768 	if (ret == 0)
2769 		return 1;
2770 	return ret;
2771 }
2772 
2773 static long vma_needs_reservation(struct hstate *h,
2774 			struct vm_area_struct *vma, unsigned long addr)
2775 {
2776 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2777 }
2778 
2779 static long vma_commit_reservation(struct hstate *h,
2780 			struct vm_area_struct *vma, unsigned long addr)
2781 {
2782 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2783 }
2784 
2785 static void vma_end_reservation(struct hstate *h,
2786 			struct vm_area_struct *vma, unsigned long addr)
2787 {
2788 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2789 }
2790 
2791 static long vma_add_reservation(struct hstate *h,
2792 			struct vm_area_struct *vma, unsigned long addr)
2793 {
2794 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2795 }
2796 
2797 static long vma_del_reservation(struct hstate *h,
2798 			struct vm_area_struct *vma, unsigned long addr)
2799 {
2800 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2801 }
2802 
2803 /*
2804  * This routine is called to restore reservation information on error paths.
2805  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2806  * and the hugetlb mutex should remain held when calling this routine.
2807  *
2808  * It handles two specific cases:
2809  * 1) A reservation was in place and the folio consumed the reservation.
2810  *    hugetlb_restore_reserve is set in the folio.
2811  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2812  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2813  *
2814  * In case 1, free_huge_page later in the error path will increment the
2815  * global reserve count.  But, free_huge_page does not have enough context
2816  * to adjust the reservation map.  This case deals primarily with private
2817  * mappings.  Adjust the reserve map here to be consistent with global
2818  * reserve count adjustments to be made by free_huge_page.  Make sure the
2819  * reserve map indicates there is a reservation present.
2820  *
2821  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2822  */
2823 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2824 			unsigned long address, struct folio *folio)
2825 {
2826 	long rc = vma_needs_reservation(h, vma, address);
2827 
2828 	if (folio_test_hugetlb_restore_reserve(folio)) {
2829 		if (unlikely(rc < 0))
2830 			/*
2831 			 * Rare out of memory condition in reserve map
2832 			 * manipulation.  Clear hugetlb_restore_reserve so
2833 			 * that global reserve count will not be incremented
2834 			 * by free_huge_page.  This will make it appear
2835 			 * as though the reservation for this folio was
2836 			 * consumed.  This may prevent the task from
2837 			 * faulting in the folio at a later time.  This
2838 			 * is better than inconsistent global huge page
2839 			 * accounting of reserve counts.
2840 			 */
2841 			folio_clear_hugetlb_restore_reserve(folio);
2842 		else if (rc)
2843 			(void)vma_add_reservation(h, vma, address);
2844 		else
2845 			vma_end_reservation(h, vma, address);
2846 	} else {
2847 		if (!rc) {
2848 			/*
2849 			 * This indicates there is an entry in the reserve map
2850 			 * not added by alloc_hugetlb_folio.  We know it was added
2851 			 * before the alloc_hugetlb_folio call, otherwise
2852 			 * hugetlb_restore_reserve would be set on the folio.
2853 			 * Remove the entry so that a subsequent allocation
2854 			 * does not consume a reservation.
2855 			 */
2856 			rc = vma_del_reservation(h, vma, address);
2857 			if (rc < 0)
2858 				/*
2859 				 * VERY rare out of memory condition.  Since
2860 				 * we can not delete the entry, set
2861 				 * hugetlb_restore_reserve so that the reserve
2862 				 * count will be incremented when the folio
2863 				 * is freed.  This reserve will be consumed
2864 				 * on a subsequent allocation.
2865 				 */
2866 				folio_set_hugetlb_restore_reserve(folio);
2867 		} else if (rc < 0) {
2868 			/*
2869 			 * Rare out of memory condition from
2870 			 * vma_needs_reservation call.  Memory allocation is
2871 			 * only attempted if a new entry is needed.  Therefore,
2872 			 * this implies there is not an entry in the
2873 			 * reserve map.
2874 			 *
2875 			 * For shared mappings, no entry in the map indicates
2876 			 * no reservation.  We are done.
2877 			 */
2878 			if (!(vma->vm_flags & VM_MAYSHARE))
2879 				/*
2880 				 * For private mappings, no entry indicates
2881 				 * a reservation is present.  Since we can
2882 				 * not add an entry, set hugetlb_restore_reserve
2883 				 * on the folio so reserve count will be
2884 				 * incremented when freed.  This reserve will
2885 				 * be consumed on a subsequent allocation.
2886 				 */
2887 				folio_set_hugetlb_restore_reserve(folio);
2888 		} else
2889 			/*
2890 			 * No reservation present, do nothing
2891 			 */
2892 			 vma_end_reservation(h, vma, address);
2893 	}
2894 }
2895 
2896 /*
2897  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2898  * the old one
2899  * @h: struct hstate old page belongs to
2900  * @old_folio: Old folio to dissolve
2901  * @list: List to isolate the page in case we need to
2902  * Returns 0 on success, otherwise negated error.
2903  */
2904 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2905 			struct folio *old_folio, struct list_head *list)
2906 {
2907 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2908 	int nid = folio_nid(old_folio);
2909 	struct folio *new_folio;
2910 	int ret = 0;
2911 
2912 	/*
2913 	 * Before dissolving the folio, we need to allocate a new one for the
2914 	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
2915 	 * by doing everything but actually updating counters and adding to
2916 	 * the pool.  This simplifies and let us do most of the processing
2917 	 * under the lock.
2918 	 */
2919 	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2920 	if (!new_folio)
2921 		return -ENOMEM;
2922 	__prep_new_hugetlb_folio(h, new_folio);
2923 
2924 retry:
2925 	spin_lock_irq(&hugetlb_lock);
2926 	if (!folio_test_hugetlb(old_folio)) {
2927 		/*
2928 		 * Freed from under us. Drop new_folio too.
2929 		 */
2930 		goto free_new;
2931 	} else if (folio_ref_count(old_folio)) {
2932 		bool isolated;
2933 
2934 		/*
2935 		 * Someone has grabbed the folio, try to isolate it here.
2936 		 * Fail with -EBUSY if not possible.
2937 		 */
2938 		spin_unlock_irq(&hugetlb_lock);
2939 		isolated = isolate_hugetlb(old_folio, list);
2940 		ret = isolated ? 0 : -EBUSY;
2941 		spin_lock_irq(&hugetlb_lock);
2942 		goto free_new;
2943 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2944 		/*
2945 		 * Folio's refcount is 0 but it has not been enqueued in the
2946 		 * freelist yet. Race window is small, so we can succeed here if
2947 		 * we retry.
2948 		 */
2949 		spin_unlock_irq(&hugetlb_lock);
2950 		cond_resched();
2951 		goto retry;
2952 	} else {
2953 		/*
2954 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2955 		 * the freelist and decrease the counters. These will be
2956 		 * incremented again when calling __prep_account_new_huge_page()
2957 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2958 		 * remain stable since this happens under the lock.
2959 		 */
2960 		remove_hugetlb_folio(h, old_folio, false);
2961 
2962 		/*
2963 		 * Ref count on new_folio is already zero as it was dropped
2964 		 * earlier.  It can be directly added to the pool free list.
2965 		 */
2966 		__prep_account_new_huge_page(h, nid);
2967 		enqueue_hugetlb_folio(h, new_folio);
2968 
2969 		/*
2970 		 * Folio has been replaced, we can safely free the old one.
2971 		 */
2972 		spin_unlock_irq(&hugetlb_lock);
2973 		update_and_free_hugetlb_folio(h, old_folio, false);
2974 	}
2975 
2976 	return ret;
2977 
2978 free_new:
2979 	spin_unlock_irq(&hugetlb_lock);
2980 	/* Folio has a zero ref count, but needs a ref to be freed */
2981 	folio_ref_unfreeze(new_folio, 1);
2982 	update_and_free_hugetlb_folio(h, new_folio, false);
2983 
2984 	return ret;
2985 }
2986 
2987 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2988 {
2989 	struct hstate *h;
2990 	struct folio *folio = page_folio(page);
2991 	int ret = -EBUSY;
2992 
2993 	/*
2994 	 * The page might have been dissolved from under our feet, so make sure
2995 	 * to carefully check the state under the lock.
2996 	 * Return success when racing as if we dissolved the page ourselves.
2997 	 */
2998 	spin_lock_irq(&hugetlb_lock);
2999 	if (folio_test_hugetlb(folio)) {
3000 		h = folio_hstate(folio);
3001 	} else {
3002 		spin_unlock_irq(&hugetlb_lock);
3003 		return 0;
3004 	}
3005 	spin_unlock_irq(&hugetlb_lock);
3006 
3007 	/*
3008 	 * Fence off gigantic pages as there is a cyclic dependency between
3009 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3010 	 * of bailing out right away without further retrying.
3011 	 */
3012 	if (hstate_is_gigantic(h))
3013 		return -ENOMEM;
3014 
3015 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3016 		ret = 0;
3017 	else if (!folio_ref_count(folio))
3018 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3019 
3020 	return ret;
3021 }
3022 
3023 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3024 				    unsigned long addr, int avoid_reserve)
3025 {
3026 	struct hugepage_subpool *spool = subpool_vma(vma);
3027 	struct hstate *h = hstate_vma(vma);
3028 	struct folio *folio;
3029 	long map_chg, map_commit;
3030 	long gbl_chg;
3031 	int ret, idx;
3032 	struct hugetlb_cgroup *h_cg = NULL;
3033 	bool deferred_reserve;
3034 
3035 	idx = hstate_index(h);
3036 	/*
3037 	 * Examine the region/reserve map to determine if the process
3038 	 * has a reservation for the page to be allocated.  A return
3039 	 * code of zero indicates a reservation exists (no change).
3040 	 */
3041 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3042 	if (map_chg < 0)
3043 		return ERR_PTR(-ENOMEM);
3044 
3045 	/*
3046 	 * Processes that did not create the mapping will have no
3047 	 * reserves as indicated by the region/reserve map. Check
3048 	 * that the allocation will not exceed the subpool limit.
3049 	 * Allocations for MAP_NORESERVE mappings also need to be
3050 	 * checked against any subpool limit.
3051 	 */
3052 	if (map_chg || avoid_reserve) {
3053 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3054 		if (gbl_chg < 0) {
3055 			vma_end_reservation(h, vma, addr);
3056 			return ERR_PTR(-ENOSPC);
3057 		}
3058 
3059 		/*
3060 		 * Even though there was no reservation in the region/reserve
3061 		 * map, there could be reservations associated with the
3062 		 * subpool that can be used.  This would be indicated if the
3063 		 * return value of hugepage_subpool_get_pages() is zero.
3064 		 * However, if avoid_reserve is specified we still avoid even
3065 		 * the subpool reservations.
3066 		 */
3067 		if (avoid_reserve)
3068 			gbl_chg = 1;
3069 	}
3070 
3071 	/* If this allocation is not consuming a reservation, charge it now.
3072 	 */
3073 	deferred_reserve = map_chg || avoid_reserve;
3074 	if (deferred_reserve) {
3075 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3076 			idx, pages_per_huge_page(h), &h_cg);
3077 		if (ret)
3078 			goto out_subpool_put;
3079 	}
3080 
3081 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3082 	if (ret)
3083 		goto out_uncharge_cgroup_reservation;
3084 
3085 	spin_lock_irq(&hugetlb_lock);
3086 	/*
3087 	 * glb_chg is passed to indicate whether or not a page must be taken
3088 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3089 	 * a reservation exists for the allocation.
3090 	 */
3091 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3092 	if (!folio) {
3093 		spin_unlock_irq(&hugetlb_lock);
3094 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3095 		if (!folio)
3096 			goto out_uncharge_cgroup;
3097 		spin_lock_irq(&hugetlb_lock);
3098 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3099 			folio_set_hugetlb_restore_reserve(folio);
3100 			h->resv_huge_pages--;
3101 		}
3102 		list_add(&folio->lru, &h->hugepage_activelist);
3103 		folio_ref_unfreeze(folio, 1);
3104 		/* Fall through */
3105 	}
3106 
3107 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3108 	/* If allocation is not consuming a reservation, also store the
3109 	 * hugetlb_cgroup pointer on the page.
3110 	 */
3111 	if (deferred_reserve) {
3112 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3113 						  h_cg, folio);
3114 	}
3115 
3116 	spin_unlock_irq(&hugetlb_lock);
3117 
3118 	hugetlb_set_folio_subpool(folio, spool);
3119 
3120 	map_commit = vma_commit_reservation(h, vma, addr);
3121 	if (unlikely(map_chg > map_commit)) {
3122 		/*
3123 		 * The page was added to the reservation map between
3124 		 * vma_needs_reservation and vma_commit_reservation.
3125 		 * This indicates a race with hugetlb_reserve_pages.
3126 		 * Adjust for the subpool count incremented above AND
3127 		 * in hugetlb_reserve_pages for the same page.  Also,
3128 		 * the reservation count added in hugetlb_reserve_pages
3129 		 * no longer applies.
3130 		 */
3131 		long rsv_adjust;
3132 
3133 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3134 		hugetlb_acct_memory(h, -rsv_adjust);
3135 		if (deferred_reserve)
3136 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3137 					pages_per_huge_page(h), folio);
3138 	}
3139 	return folio;
3140 
3141 out_uncharge_cgroup:
3142 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3143 out_uncharge_cgroup_reservation:
3144 	if (deferred_reserve)
3145 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3146 						    h_cg);
3147 out_subpool_put:
3148 	if (map_chg || avoid_reserve)
3149 		hugepage_subpool_put_pages(spool, 1);
3150 	vma_end_reservation(h, vma, addr);
3151 	return ERR_PTR(-ENOSPC);
3152 }
3153 
3154 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3155 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3156 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3157 {
3158 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3159 	int nr_nodes, node;
3160 
3161 	/* do node specific alloc */
3162 	if (nid != NUMA_NO_NODE) {
3163 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3164 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3165 		if (!m)
3166 			return 0;
3167 		goto found;
3168 	}
3169 	/* allocate from next node when distributing huge pages */
3170 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3171 		m = memblock_alloc_try_nid_raw(
3172 				huge_page_size(h), huge_page_size(h),
3173 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3174 		/*
3175 		 * Use the beginning of the huge page to store the
3176 		 * huge_bootmem_page struct (until gather_bootmem
3177 		 * puts them into the mem_map).
3178 		 */
3179 		if (!m)
3180 			return 0;
3181 		goto found;
3182 	}
3183 
3184 found:
3185 	/* Put them into a private list first because mem_map is not up yet */
3186 	INIT_LIST_HEAD(&m->list);
3187 	list_add(&m->list, &huge_boot_pages);
3188 	m->hstate = h;
3189 	return 1;
3190 }
3191 
3192 /*
3193  * Put bootmem huge pages into the standard lists after mem_map is up.
3194  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3195  */
3196 static void __init gather_bootmem_prealloc(void)
3197 {
3198 	struct huge_bootmem_page *m;
3199 
3200 	list_for_each_entry(m, &huge_boot_pages, list) {
3201 		struct page *page = virt_to_page(m);
3202 		struct folio *folio = page_folio(page);
3203 		struct hstate *h = m->hstate;
3204 
3205 		VM_BUG_ON(!hstate_is_gigantic(h));
3206 		WARN_ON(folio_ref_count(folio) != 1);
3207 		if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3208 			WARN_ON(folio_test_reserved(folio));
3209 			prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3210 			free_huge_page(page); /* add to the hugepage allocator */
3211 		} else {
3212 			/* VERY unlikely inflated ref count on a tail page */
3213 			free_gigantic_folio(folio, huge_page_order(h));
3214 		}
3215 
3216 		/*
3217 		 * We need to restore the 'stolen' pages to totalram_pages
3218 		 * in order to fix confusing memory reports from free(1) and
3219 		 * other side-effects, like CommitLimit going negative.
3220 		 */
3221 		adjust_managed_page_count(page, pages_per_huge_page(h));
3222 		cond_resched();
3223 	}
3224 }
3225 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3226 {
3227 	unsigned long i;
3228 	char buf[32];
3229 
3230 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3231 		if (hstate_is_gigantic(h)) {
3232 			if (!alloc_bootmem_huge_page(h, nid))
3233 				break;
3234 		} else {
3235 			struct folio *folio;
3236 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3237 
3238 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3239 					&node_states[N_MEMORY], NULL);
3240 			if (!folio)
3241 				break;
3242 			free_huge_page(&folio->page); /* free it into the hugepage allocator */
3243 		}
3244 		cond_resched();
3245 	}
3246 	if (i == h->max_huge_pages_node[nid])
3247 		return;
3248 
3249 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3250 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3251 		h->max_huge_pages_node[nid], buf, nid, i);
3252 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3253 	h->max_huge_pages_node[nid] = i;
3254 }
3255 
3256 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3257 {
3258 	unsigned long i;
3259 	nodemask_t *node_alloc_noretry;
3260 	bool node_specific_alloc = false;
3261 
3262 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3263 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3264 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3265 		return;
3266 	}
3267 
3268 	/* do node specific alloc */
3269 	for_each_online_node(i) {
3270 		if (h->max_huge_pages_node[i] > 0) {
3271 			hugetlb_hstate_alloc_pages_onenode(h, i);
3272 			node_specific_alloc = true;
3273 		}
3274 	}
3275 
3276 	if (node_specific_alloc)
3277 		return;
3278 
3279 	/* below will do all node balanced alloc */
3280 	if (!hstate_is_gigantic(h)) {
3281 		/*
3282 		 * Bit mask controlling how hard we retry per-node allocations.
3283 		 * Ignore errors as lower level routines can deal with
3284 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3285 		 * time, we are likely in bigger trouble.
3286 		 */
3287 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3288 						GFP_KERNEL);
3289 	} else {
3290 		/* allocations done at boot time */
3291 		node_alloc_noretry = NULL;
3292 	}
3293 
3294 	/* bit mask controlling how hard we retry per-node allocations */
3295 	if (node_alloc_noretry)
3296 		nodes_clear(*node_alloc_noretry);
3297 
3298 	for (i = 0; i < h->max_huge_pages; ++i) {
3299 		if (hstate_is_gigantic(h)) {
3300 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3301 				break;
3302 		} else if (!alloc_pool_huge_page(h,
3303 					 &node_states[N_MEMORY],
3304 					 node_alloc_noretry))
3305 			break;
3306 		cond_resched();
3307 	}
3308 	if (i < h->max_huge_pages) {
3309 		char buf[32];
3310 
3311 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3312 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3313 			h->max_huge_pages, buf, i);
3314 		h->max_huge_pages = i;
3315 	}
3316 	kfree(node_alloc_noretry);
3317 }
3318 
3319 static void __init hugetlb_init_hstates(void)
3320 {
3321 	struct hstate *h, *h2;
3322 
3323 	for_each_hstate(h) {
3324 		/* oversize hugepages were init'ed in early boot */
3325 		if (!hstate_is_gigantic(h))
3326 			hugetlb_hstate_alloc_pages(h);
3327 
3328 		/*
3329 		 * Set demote order for each hstate.  Note that
3330 		 * h->demote_order is initially 0.
3331 		 * - We can not demote gigantic pages if runtime freeing
3332 		 *   is not supported, so skip this.
3333 		 * - If CMA allocation is possible, we can not demote
3334 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3335 		 */
3336 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3337 			continue;
3338 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3339 			continue;
3340 		for_each_hstate(h2) {
3341 			if (h2 == h)
3342 				continue;
3343 			if (h2->order < h->order &&
3344 			    h2->order > h->demote_order)
3345 				h->demote_order = h2->order;
3346 		}
3347 	}
3348 }
3349 
3350 static void __init report_hugepages(void)
3351 {
3352 	struct hstate *h;
3353 
3354 	for_each_hstate(h) {
3355 		char buf[32];
3356 
3357 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3358 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3359 			buf, h->free_huge_pages);
3360 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3361 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3362 	}
3363 }
3364 
3365 #ifdef CONFIG_HIGHMEM
3366 static void try_to_free_low(struct hstate *h, unsigned long count,
3367 						nodemask_t *nodes_allowed)
3368 {
3369 	int i;
3370 	LIST_HEAD(page_list);
3371 
3372 	lockdep_assert_held(&hugetlb_lock);
3373 	if (hstate_is_gigantic(h))
3374 		return;
3375 
3376 	/*
3377 	 * Collect pages to be freed on a list, and free after dropping lock
3378 	 */
3379 	for_each_node_mask(i, *nodes_allowed) {
3380 		struct page *page, *next;
3381 		struct list_head *freel = &h->hugepage_freelists[i];
3382 		list_for_each_entry_safe(page, next, freel, lru) {
3383 			if (count >= h->nr_huge_pages)
3384 				goto out;
3385 			if (PageHighMem(page))
3386 				continue;
3387 			remove_hugetlb_folio(h, page_folio(page), false);
3388 			list_add(&page->lru, &page_list);
3389 		}
3390 	}
3391 
3392 out:
3393 	spin_unlock_irq(&hugetlb_lock);
3394 	update_and_free_pages_bulk(h, &page_list);
3395 	spin_lock_irq(&hugetlb_lock);
3396 }
3397 #else
3398 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3399 						nodemask_t *nodes_allowed)
3400 {
3401 }
3402 #endif
3403 
3404 /*
3405  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3406  * balanced by operating on them in a round-robin fashion.
3407  * Returns 1 if an adjustment was made.
3408  */
3409 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3410 				int delta)
3411 {
3412 	int nr_nodes, node;
3413 
3414 	lockdep_assert_held(&hugetlb_lock);
3415 	VM_BUG_ON(delta != -1 && delta != 1);
3416 
3417 	if (delta < 0) {
3418 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3419 			if (h->surplus_huge_pages_node[node])
3420 				goto found;
3421 		}
3422 	} else {
3423 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3424 			if (h->surplus_huge_pages_node[node] <
3425 					h->nr_huge_pages_node[node])
3426 				goto found;
3427 		}
3428 	}
3429 	return 0;
3430 
3431 found:
3432 	h->surplus_huge_pages += delta;
3433 	h->surplus_huge_pages_node[node] += delta;
3434 	return 1;
3435 }
3436 
3437 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3438 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3439 			      nodemask_t *nodes_allowed)
3440 {
3441 	unsigned long min_count, ret;
3442 	struct page *page;
3443 	LIST_HEAD(page_list);
3444 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3445 
3446 	/*
3447 	 * Bit mask controlling how hard we retry per-node allocations.
3448 	 * If we can not allocate the bit mask, do not attempt to allocate
3449 	 * the requested huge pages.
3450 	 */
3451 	if (node_alloc_noretry)
3452 		nodes_clear(*node_alloc_noretry);
3453 	else
3454 		return -ENOMEM;
3455 
3456 	/*
3457 	 * resize_lock mutex prevents concurrent adjustments to number of
3458 	 * pages in hstate via the proc/sysfs interfaces.
3459 	 */
3460 	mutex_lock(&h->resize_lock);
3461 	flush_free_hpage_work(h);
3462 	spin_lock_irq(&hugetlb_lock);
3463 
3464 	/*
3465 	 * Check for a node specific request.
3466 	 * Changing node specific huge page count may require a corresponding
3467 	 * change to the global count.  In any case, the passed node mask
3468 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3469 	 */
3470 	if (nid != NUMA_NO_NODE) {
3471 		unsigned long old_count = count;
3472 
3473 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3474 		/*
3475 		 * User may have specified a large count value which caused the
3476 		 * above calculation to overflow.  In this case, they wanted
3477 		 * to allocate as many huge pages as possible.  Set count to
3478 		 * largest possible value to align with their intention.
3479 		 */
3480 		if (count < old_count)
3481 			count = ULONG_MAX;
3482 	}
3483 
3484 	/*
3485 	 * Gigantic pages runtime allocation depend on the capability for large
3486 	 * page range allocation.
3487 	 * If the system does not provide this feature, return an error when
3488 	 * the user tries to allocate gigantic pages but let the user free the
3489 	 * boottime allocated gigantic pages.
3490 	 */
3491 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3492 		if (count > persistent_huge_pages(h)) {
3493 			spin_unlock_irq(&hugetlb_lock);
3494 			mutex_unlock(&h->resize_lock);
3495 			NODEMASK_FREE(node_alloc_noretry);
3496 			return -EINVAL;
3497 		}
3498 		/* Fall through to decrease pool */
3499 	}
3500 
3501 	/*
3502 	 * Increase the pool size
3503 	 * First take pages out of surplus state.  Then make up the
3504 	 * remaining difference by allocating fresh huge pages.
3505 	 *
3506 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3507 	 * to convert a surplus huge page to a normal huge page. That is
3508 	 * not critical, though, it just means the overall size of the
3509 	 * pool might be one hugepage larger than it needs to be, but
3510 	 * within all the constraints specified by the sysctls.
3511 	 */
3512 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3513 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3514 			break;
3515 	}
3516 
3517 	while (count > persistent_huge_pages(h)) {
3518 		/*
3519 		 * If this allocation races such that we no longer need the
3520 		 * page, free_huge_page will handle it by freeing the page
3521 		 * and reducing the surplus.
3522 		 */
3523 		spin_unlock_irq(&hugetlb_lock);
3524 
3525 		/* yield cpu to avoid soft lockup */
3526 		cond_resched();
3527 
3528 		ret = alloc_pool_huge_page(h, nodes_allowed,
3529 						node_alloc_noretry);
3530 		spin_lock_irq(&hugetlb_lock);
3531 		if (!ret)
3532 			goto out;
3533 
3534 		/* Bail for signals. Probably ctrl-c from user */
3535 		if (signal_pending(current))
3536 			goto out;
3537 	}
3538 
3539 	/*
3540 	 * Decrease the pool size
3541 	 * First return free pages to the buddy allocator (being careful
3542 	 * to keep enough around to satisfy reservations).  Then place
3543 	 * pages into surplus state as needed so the pool will shrink
3544 	 * to the desired size as pages become free.
3545 	 *
3546 	 * By placing pages into the surplus state independent of the
3547 	 * overcommit value, we are allowing the surplus pool size to
3548 	 * exceed overcommit. There are few sane options here. Since
3549 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3550 	 * though, we'll note that we're not allowed to exceed surplus
3551 	 * and won't grow the pool anywhere else. Not until one of the
3552 	 * sysctls are changed, or the surplus pages go out of use.
3553 	 */
3554 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3555 	min_count = max(count, min_count);
3556 	try_to_free_low(h, min_count, nodes_allowed);
3557 
3558 	/*
3559 	 * Collect pages to be removed on list without dropping lock
3560 	 */
3561 	while (min_count < persistent_huge_pages(h)) {
3562 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3563 		if (!page)
3564 			break;
3565 
3566 		list_add(&page->lru, &page_list);
3567 	}
3568 	/* free the pages after dropping lock */
3569 	spin_unlock_irq(&hugetlb_lock);
3570 	update_and_free_pages_bulk(h, &page_list);
3571 	flush_free_hpage_work(h);
3572 	spin_lock_irq(&hugetlb_lock);
3573 
3574 	while (count < persistent_huge_pages(h)) {
3575 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3576 			break;
3577 	}
3578 out:
3579 	h->max_huge_pages = persistent_huge_pages(h);
3580 	spin_unlock_irq(&hugetlb_lock);
3581 	mutex_unlock(&h->resize_lock);
3582 
3583 	NODEMASK_FREE(node_alloc_noretry);
3584 
3585 	return 0;
3586 }
3587 
3588 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3589 {
3590 	int i, nid = folio_nid(folio);
3591 	struct hstate *target_hstate;
3592 	struct page *subpage;
3593 	struct folio *inner_folio;
3594 	int rc = 0;
3595 
3596 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3597 
3598 	remove_hugetlb_folio_for_demote(h, folio, false);
3599 	spin_unlock_irq(&hugetlb_lock);
3600 
3601 	rc = hugetlb_vmemmap_restore(h, &folio->page);
3602 	if (rc) {
3603 		/* Allocation of vmemmmap failed, we can not demote folio */
3604 		spin_lock_irq(&hugetlb_lock);
3605 		folio_ref_unfreeze(folio, 1);
3606 		add_hugetlb_folio(h, folio, false);
3607 		return rc;
3608 	}
3609 
3610 	/*
3611 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3612 	 * sizes as it will not ref count folios.
3613 	 */
3614 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3615 
3616 	/*
3617 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3618 	 * Without the mutex, pages added to target hstate could be marked
3619 	 * as surplus.
3620 	 *
3621 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3622 	 * use the convention of always taking larger size hstate mutex first.
3623 	 */
3624 	mutex_lock(&target_hstate->resize_lock);
3625 	for (i = 0; i < pages_per_huge_page(h);
3626 				i += pages_per_huge_page(target_hstate)) {
3627 		subpage = folio_page(folio, i);
3628 		inner_folio = page_folio(subpage);
3629 		if (hstate_is_gigantic(target_hstate))
3630 			prep_compound_gigantic_folio_for_demote(inner_folio,
3631 							target_hstate->order);
3632 		else
3633 			prep_compound_page(subpage, target_hstate->order);
3634 		folio_change_private(inner_folio, NULL);
3635 		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3636 		free_huge_page(subpage);
3637 	}
3638 	mutex_unlock(&target_hstate->resize_lock);
3639 
3640 	spin_lock_irq(&hugetlb_lock);
3641 
3642 	/*
3643 	 * Not absolutely necessary, but for consistency update max_huge_pages
3644 	 * based on pool changes for the demoted page.
3645 	 */
3646 	h->max_huge_pages--;
3647 	target_hstate->max_huge_pages +=
3648 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3649 
3650 	return rc;
3651 }
3652 
3653 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3654 	__must_hold(&hugetlb_lock)
3655 {
3656 	int nr_nodes, node;
3657 	struct folio *folio;
3658 
3659 	lockdep_assert_held(&hugetlb_lock);
3660 
3661 	/* We should never get here if no demote order */
3662 	if (!h->demote_order) {
3663 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3664 		return -EINVAL;		/* internal error */
3665 	}
3666 
3667 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3668 		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3669 			if (folio_test_hwpoison(folio))
3670 				continue;
3671 			return demote_free_hugetlb_folio(h, folio);
3672 		}
3673 	}
3674 
3675 	/*
3676 	 * Only way to get here is if all pages on free lists are poisoned.
3677 	 * Return -EBUSY so that caller will not retry.
3678 	 */
3679 	return -EBUSY;
3680 }
3681 
3682 #define HSTATE_ATTR_RO(_name) \
3683 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3684 
3685 #define HSTATE_ATTR_WO(_name) \
3686 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3687 
3688 #define HSTATE_ATTR(_name) \
3689 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3690 
3691 static struct kobject *hugepages_kobj;
3692 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3693 
3694 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3695 
3696 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3697 {
3698 	int i;
3699 
3700 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3701 		if (hstate_kobjs[i] == kobj) {
3702 			if (nidp)
3703 				*nidp = NUMA_NO_NODE;
3704 			return &hstates[i];
3705 		}
3706 
3707 	return kobj_to_node_hstate(kobj, nidp);
3708 }
3709 
3710 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3711 					struct kobj_attribute *attr, char *buf)
3712 {
3713 	struct hstate *h;
3714 	unsigned long nr_huge_pages;
3715 	int nid;
3716 
3717 	h = kobj_to_hstate(kobj, &nid);
3718 	if (nid == NUMA_NO_NODE)
3719 		nr_huge_pages = h->nr_huge_pages;
3720 	else
3721 		nr_huge_pages = h->nr_huge_pages_node[nid];
3722 
3723 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3724 }
3725 
3726 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3727 					   struct hstate *h, int nid,
3728 					   unsigned long count, size_t len)
3729 {
3730 	int err;
3731 	nodemask_t nodes_allowed, *n_mask;
3732 
3733 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3734 		return -EINVAL;
3735 
3736 	if (nid == NUMA_NO_NODE) {
3737 		/*
3738 		 * global hstate attribute
3739 		 */
3740 		if (!(obey_mempolicy &&
3741 				init_nodemask_of_mempolicy(&nodes_allowed)))
3742 			n_mask = &node_states[N_MEMORY];
3743 		else
3744 			n_mask = &nodes_allowed;
3745 	} else {
3746 		/*
3747 		 * Node specific request.  count adjustment happens in
3748 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3749 		 */
3750 		init_nodemask_of_node(&nodes_allowed, nid);
3751 		n_mask = &nodes_allowed;
3752 	}
3753 
3754 	err = set_max_huge_pages(h, count, nid, n_mask);
3755 
3756 	return err ? err : len;
3757 }
3758 
3759 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3760 					 struct kobject *kobj, const char *buf,
3761 					 size_t len)
3762 {
3763 	struct hstate *h;
3764 	unsigned long count;
3765 	int nid;
3766 	int err;
3767 
3768 	err = kstrtoul(buf, 10, &count);
3769 	if (err)
3770 		return err;
3771 
3772 	h = kobj_to_hstate(kobj, &nid);
3773 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3774 }
3775 
3776 static ssize_t nr_hugepages_show(struct kobject *kobj,
3777 				       struct kobj_attribute *attr, char *buf)
3778 {
3779 	return nr_hugepages_show_common(kobj, attr, buf);
3780 }
3781 
3782 static ssize_t nr_hugepages_store(struct kobject *kobj,
3783 	       struct kobj_attribute *attr, const char *buf, size_t len)
3784 {
3785 	return nr_hugepages_store_common(false, kobj, buf, len);
3786 }
3787 HSTATE_ATTR(nr_hugepages);
3788 
3789 #ifdef CONFIG_NUMA
3790 
3791 /*
3792  * hstate attribute for optionally mempolicy-based constraint on persistent
3793  * huge page alloc/free.
3794  */
3795 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3796 					   struct kobj_attribute *attr,
3797 					   char *buf)
3798 {
3799 	return nr_hugepages_show_common(kobj, attr, buf);
3800 }
3801 
3802 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3803 	       struct kobj_attribute *attr, const char *buf, size_t len)
3804 {
3805 	return nr_hugepages_store_common(true, kobj, buf, len);
3806 }
3807 HSTATE_ATTR(nr_hugepages_mempolicy);
3808 #endif
3809 
3810 
3811 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3812 					struct kobj_attribute *attr, char *buf)
3813 {
3814 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3815 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3816 }
3817 
3818 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3819 		struct kobj_attribute *attr, const char *buf, size_t count)
3820 {
3821 	int err;
3822 	unsigned long input;
3823 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3824 
3825 	if (hstate_is_gigantic(h))
3826 		return -EINVAL;
3827 
3828 	err = kstrtoul(buf, 10, &input);
3829 	if (err)
3830 		return err;
3831 
3832 	spin_lock_irq(&hugetlb_lock);
3833 	h->nr_overcommit_huge_pages = input;
3834 	spin_unlock_irq(&hugetlb_lock);
3835 
3836 	return count;
3837 }
3838 HSTATE_ATTR(nr_overcommit_hugepages);
3839 
3840 static ssize_t free_hugepages_show(struct kobject *kobj,
3841 					struct kobj_attribute *attr, char *buf)
3842 {
3843 	struct hstate *h;
3844 	unsigned long free_huge_pages;
3845 	int nid;
3846 
3847 	h = kobj_to_hstate(kobj, &nid);
3848 	if (nid == NUMA_NO_NODE)
3849 		free_huge_pages = h->free_huge_pages;
3850 	else
3851 		free_huge_pages = h->free_huge_pages_node[nid];
3852 
3853 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3854 }
3855 HSTATE_ATTR_RO(free_hugepages);
3856 
3857 static ssize_t resv_hugepages_show(struct kobject *kobj,
3858 					struct kobj_attribute *attr, char *buf)
3859 {
3860 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3861 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3862 }
3863 HSTATE_ATTR_RO(resv_hugepages);
3864 
3865 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3866 					struct kobj_attribute *attr, char *buf)
3867 {
3868 	struct hstate *h;
3869 	unsigned long surplus_huge_pages;
3870 	int nid;
3871 
3872 	h = kobj_to_hstate(kobj, &nid);
3873 	if (nid == NUMA_NO_NODE)
3874 		surplus_huge_pages = h->surplus_huge_pages;
3875 	else
3876 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3877 
3878 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3879 }
3880 HSTATE_ATTR_RO(surplus_hugepages);
3881 
3882 static ssize_t demote_store(struct kobject *kobj,
3883 	       struct kobj_attribute *attr, const char *buf, size_t len)
3884 {
3885 	unsigned long nr_demote;
3886 	unsigned long nr_available;
3887 	nodemask_t nodes_allowed, *n_mask;
3888 	struct hstate *h;
3889 	int err;
3890 	int nid;
3891 
3892 	err = kstrtoul(buf, 10, &nr_demote);
3893 	if (err)
3894 		return err;
3895 	h = kobj_to_hstate(kobj, &nid);
3896 
3897 	if (nid != NUMA_NO_NODE) {
3898 		init_nodemask_of_node(&nodes_allowed, nid);
3899 		n_mask = &nodes_allowed;
3900 	} else {
3901 		n_mask = &node_states[N_MEMORY];
3902 	}
3903 
3904 	/* Synchronize with other sysfs operations modifying huge pages */
3905 	mutex_lock(&h->resize_lock);
3906 	spin_lock_irq(&hugetlb_lock);
3907 
3908 	while (nr_demote) {
3909 		/*
3910 		 * Check for available pages to demote each time thorough the
3911 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3912 		 */
3913 		if (nid != NUMA_NO_NODE)
3914 			nr_available = h->free_huge_pages_node[nid];
3915 		else
3916 			nr_available = h->free_huge_pages;
3917 		nr_available -= h->resv_huge_pages;
3918 		if (!nr_available)
3919 			break;
3920 
3921 		err = demote_pool_huge_page(h, n_mask);
3922 		if (err)
3923 			break;
3924 
3925 		nr_demote--;
3926 	}
3927 
3928 	spin_unlock_irq(&hugetlb_lock);
3929 	mutex_unlock(&h->resize_lock);
3930 
3931 	if (err)
3932 		return err;
3933 	return len;
3934 }
3935 HSTATE_ATTR_WO(demote);
3936 
3937 static ssize_t demote_size_show(struct kobject *kobj,
3938 					struct kobj_attribute *attr, char *buf)
3939 {
3940 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3941 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3942 
3943 	return sysfs_emit(buf, "%lukB\n", demote_size);
3944 }
3945 
3946 static ssize_t demote_size_store(struct kobject *kobj,
3947 					struct kobj_attribute *attr,
3948 					const char *buf, size_t count)
3949 {
3950 	struct hstate *h, *demote_hstate;
3951 	unsigned long demote_size;
3952 	unsigned int demote_order;
3953 
3954 	demote_size = (unsigned long)memparse(buf, NULL);
3955 
3956 	demote_hstate = size_to_hstate(demote_size);
3957 	if (!demote_hstate)
3958 		return -EINVAL;
3959 	demote_order = demote_hstate->order;
3960 	if (demote_order < HUGETLB_PAGE_ORDER)
3961 		return -EINVAL;
3962 
3963 	/* demote order must be smaller than hstate order */
3964 	h = kobj_to_hstate(kobj, NULL);
3965 	if (demote_order >= h->order)
3966 		return -EINVAL;
3967 
3968 	/* resize_lock synchronizes access to demote size and writes */
3969 	mutex_lock(&h->resize_lock);
3970 	h->demote_order = demote_order;
3971 	mutex_unlock(&h->resize_lock);
3972 
3973 	return count;
3974 }
3975 HSTATE_ATTR(demote_size);
3976 
3977 static struct attribute *hstate_attrs[] = {
3978 	&nr_hugepages_attr.attr,
3979 	&nr_overcommit_hugepages_attr.attr,
3980 	&free_hugepages_attr.attr,
3981 	&resv_hugepages_attr.attr,
3982 	&surplus_hugepages_attr.attr,
3983 #ifdef CONFIG_NUMA
3984 	&nr_hugepages_mempolicy_attr.attr,
3985 #endif
3986 	NULL,
3987 };
3988 
3989 static const struct attribute_group hstate_attr_group = {
3990 	.attrs = hstate_attrs,
3991 };
3992 
3993 static struct attribute *hstate_demote_attrs[] = {
3994 	&demote_size_attr.attr,
3995 	&demote_attr.attr,
3996 	NULL,
3997 };
3998 
3999 static const struct attribute_group hstate_demote_attr_group = {
4000 	.attrs = hstate_demote_attrs,
4001 };
4002 
4003 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4004 				    struct kobject **hstate_kobjs,
4005 				    const struct attribute_group *hstate_attr_group)
4006 {
4007 	int retval;
4008 	int hi = hstate_index(h);
4009 
4010 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4011 	if (!hstate_kobjs[hi])
4012 		return -ENOMEM;
4013 
4014 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4015 	if (retval) {
4016 		kobject_put(hstate_kobjs[hi]);
4017 		hstate_kobjs[hi] = NULL;
4018 		return retval;
4019 	}
4020 
4021 	if (h->demote_order) {
4022 		retval = sysfs_create_group(hstate_kobjs[hi],
4023 					    &hstate_demote_attr_group);
4024 		if (retval) {
4025 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4026 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4027 			kobject_put(hstate_kobjs[hi]);
4028 			hstate_kobjs[hi] = NULL;
4029 			return retval;
4030 		}
4031 	}
4032 
4033 	return 0;
4034 }
4035 
4036 #ifdef CONFIG_NUMA
4037 static bool hugetlb_sysfs_initialized __ro_after_init;
4038 
4039 /*
4040  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4041  * with node devices in node_devices[] using a parallel array.  The array
4042  * index of a node device or _hstate == node id.
4043  * This is here to avoid any static dependency of the node device driver, in
4044  * the base kernel, on the hugetlb module.
4045  */
4046 struct node_hstate {
4047 	struct kobject		*hugepages_kobj;
4048 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4049 };
4050 static struct node_hstate node_hstates[MAX_NUMNODES];
4051 
4052 /*
4053  * A subset of global hstate attributes for node devices
4054  */
4055 static struct attribute *per_node_hstate_attrs[] = {
4056 	&nr_hugepages_attr.attr,
4057 	&free_hugepages_attr.attr,
4058 	&surplus_hugepages_attr.attr,
4059 	NULL,
4060 };
4061 
4062 static const struct attribute_group per_node_hstate_attr_group = {
4063 	.attrs = per_node_hstate_attrs,
4064 };
4065 
4066 /*
4067  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4068  * Returns node id via non-NULL nidp.
4069  */
4070 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4071 {
4072 	int nid;
4073 
4074 	for (nid = 0; nid < nr_node_ids; nid++) {
4075 		struct node_hstate *nhs = &node_hstates[nid];
4076 		int i;
4077 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4078 			if (nhs->hstate_kobjs[i] == kobj) {
4079 				if (nidp)
4080 					*nidp = nid;
4081 				return &hstates[i];
4082 			}
4083 	}
4084 
4085 	BUG();
4086 	return NULL;
4087 }
4088 
4089 /*
4090  * Unregister hstate attributes from a single node device.
4091  * No-op if no hstate attributes attached.
4092  */
4093 void hugetlb_unregister_node(struct node *node)
4094 {
4095 	struct hstate *h;
4096 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4097 
4098 	if (!nhs->hugepages_kobj)
4099 		return;		/* no hstate attributes */
4100 
4101 	for_each_hstate(h) {
4102 		int idx = hstate_index(h);
4103 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4104 
4105 		if (!hstate_kobj)
4106 			continue;
4107 		if (h->demote_order)
4108 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4109 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4110 		kobject_put(hstate_kobj);
4111 		nhs->hstate_kobjs[idx] = NULL;
4112 	}
4113 
4114 	kobject_put(nhs->hugepages_kobj);
4115 	nhs->hugepages_kobj = NULL;
4116 }
4117 
4118 
4119 /*
4120  * Register hstate attributes for a single node device.
4121  * No-op if attributes already registered.
4122  */
4123 void hugetlb_register_node(struct node *node)
4124 {
4125 	struct hstate *h;
4126 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4127 	int err;
4128 
4129 	if (!hugetlb_sysfs_initialized)
4130 		return;
4131 
4132 	if (nhs->hugepages_kobj)
4133 		return;		/* already allocated */
4134 
4135 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4136 							&node->dev.kobj);
4137 	if (!nhs->hugepages_kobj)
4138 		return;
4139 
4140 	for_each_hstate(h) {
4141 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4142 						nhs->hstate_kobjs,
4143 						&per_node_hstate_attr_group);
4144 		if (err) {
4145 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4146 				h->name, node->dev.id);
4147 			hugetlb_unregister_node(node);
4148 			break;
4149 		}
4150 	}
4151 }
4152 
4153 /*
4154  * hugetlb init time:  register hstate attributes for all registered node
4155  * devices of nodes that have memory.  All on-line nodes should have
4156  * registered their associated device by this time.
4157  */
4158 static void __init hugetlb_register_all_nodes(void)
4159 {
4160 	int nid;
4161 
4162 	for_each_online_node(nid)
4163 		hugetlb_register_node(node_devices[nid]);
4164 }
4165 #else	/* !CONFIG_NUMA */
4166 
4167 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4168 {
4169 	BUG();
4170 	if (nidp)
4171 		*nidp = -1;
4172 	return NULL;
4173 }
4174 
4175 static void hugetlb_register_all_nodes(void) { }
4176 
4177 #endif
4178 
4179 #ifdef CONFIG_CMA
4180 static void __init hugetlb_cma_check(void);
4181 #else
4182 static inline __init void hugetlb_cma_check(void)
4183 {
4184 }
4185 #endif
4186 
4187 static void __init hugetlb_sysfs_init(void)
4188 {
4189 	struct hstate *h;
4190 	int err;
4191 
4192 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4193 	if (!hugepages_kobj)
4194 		return;
4195 
4196 	for_each_hstate(h) {
4197 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4198 					 hstate_kobjs, &hstate_attr_group);
4199 		if (err)
4200 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4201 	}
4202 
4203 #ifdef CONFIG_NUMA
4204 	hugetlb_sysfs_initialized = true;
4205 #endif
4206 	hugetlb_register_all_nodes();
4207 }
4208 
4209 static int __init hugetlb_init(void)
4210 {
4211 	int i;
4212 
4213 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4214 			__NR_HPAGEFLAGS);
4215 
4216 	if (!hugepages_supported()) {
4217 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4218 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4219 		return 0;
4220 	}
4221 
4222 	/*
4223 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4224 	 * architectures depend on setup being done here.
4225 	 */
4226 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4227 	if (!parsed_default_hugepagesz) {
4228 		/*
4229 		 * If we did not parse a default huge page size, set
4230 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4231 		 * number of huge pages for this default size was implicitly
4232 		 * specified, set that here as well.
4233 		 * Note that the implicit setting will overwrite an explicit
4234 		 * setting.  A warning will be printed in this case.
4235 		 */
4236 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4237 		if (default_hstate_max_huge_pages) {
4238 			if (default_hstate.max_huge_pages) {
4239 				char buf[32];
4240 
4241 				string_get_size(huge_page_size(&default_hstate),
4242 					1, STRING_UNITS_2, buf, 32);
4243 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4244 					default_hstate.max_huge_pages, buf);
4245 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4246 					default_hstate_max_huge_pages);
4247 			}
4248 			default_hstate.max_huge_pages =
4249 				default_hstate_max_huge_pages;
4250 
4251 			for_each_online_node(i)
4252 				default_hstate.max_huge_pages_node[i] =
4253 					default_hugepages_in_node[i];
4254 		}
4255 	}
4256 
4257 	hugetlb_cma_check();
4258 	hugetlb_init_hstates();
4259 	gather_bootmem_prealloc();
4260 	report_hugepages();
4261 
4262 	hugetlb_sysfs_init();
4263 	hugetlb_cgroup_file_init();
4264 
4265 #ifdef CONFIG_SMP
4266 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4267 #else
4268 	num_fault_mutexes = 1;
4269 #endif
4270 	hugetlb_fault_mutex_table =
4271 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4272 			      GFP_KERNEL);
4273 	BUG_ON(!hugetlb_fault_mutex_table);
4274 
4275 	for (i = 0; i < num_fault_mutexes; i++)
4276 		mutex_init(&hugetlb_fault_mutex_table[i]);
4277 	return 0;
4278 }
4279 subsys_initcall(hugetlb_init);
4280 
4281 /* Overwritten by architectures with more huge page sizes */
4282 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4283 {
4284 	return size == HPAGE_SIZE;
4285 }
4286 
4287 void __init hugetlb_add_hstate(unsigned int order)
4288 {
4289 	struct hstate *h;
4290 	unsigned long i;
4291 
4292 	if (size_to_hstate(PAGE_SIZE << order)) {
4293 		return;
4294 	}
4295 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4296 	BUG_ON(order == 0);
4297 	h = &hstates[hugetlb_max_hstate++];
4298 	mutex_init(&h->resize_lock);
4299 	h->order = order;
4300 	h->mask = ~(huge_page_size(h) - 1);
4301 	for (i = 0; i < MAX_NUMNODES; ++i)
4302 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4303 	INIT_LIST_HEAD(&h->hugepage_activelist);
4304 	h->next_nid_to_alloc = first_memory_node;
4305 	h->next_nid_to_free = first_memory_node;
4306 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4307 					huge_page_size(h)/SZ_1K);
4308 
4309 	parsed_hstate = h;
4310 }
4311 
4312 bool __init __weak hugetlb_node_alloc_supported(void)
4313 {
4314 	return true;
4315 }
4316 
4317 static void __init hugepages_clear_pages_in_node(void)
4318 {
4319 	if (!hugetlb_max_hstate) {
4320 		default_hstate_max_huge_pages = 0;
4321 		memset(default_hugepages_in_node, 0,
4322 			sizeof(default_hugepages_in_node));
4323 	} else {
4324 		parsed_hstate->max_huge_pages = 0;
4325 		memset(parsed_hstate->max_huge_pages_node, 0,
4326 			sizeof(parsed_hstate->max_huge_pages_node));
4327 	}
4328 }
4329 
4330 /*
4331  * hugepages command line processing
4332  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4333  * specification.  If not, ignore the hugepages value.  hugepages can also
4334  * be the first huge page command line  option in which case it implicitly
4335  * specifies the number of huge pages for the default size.
4336  */
4337 static int __init hugepages_setup(char *s)
4338 {
4339 	unsigned long *mhp;
4340 	static unsigned long *last_mhp;
4341 	int node = NUMA_NO_NODE;
4342 	int count;
4343 	unsigned long tmp;
4344 	char *p = s;
4345 
4346 	if (!parsed_valid_hugepagesz) {
4347 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4348 		parsed_valid_hugepagesz = true;
4349 		return 1;
4350 	}
4351 
4352 	/*
4353 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4354 	 * yet, so this hugepages= parameter goes to the "default hstate".
4355 	 * Otherwise, it goes with the previously parsed hugepagesz or
4356 	 * default_hugepagesz.
4357 	 */
4358 	else if (!hugetlb_max_hstate)
4359 		mhp = &default_hstate_max_huge_pages;
4360 	else
4361 		mhp = &parsed_hstate->max_huge_pages;
4362 
4363 	if (mhp == last_mhp) {
4364 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4365 		return 1;
4366 	}
4367 
4368 	while (*p) {
4369 		count = 0;
4370 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4371 			goto invalid;
4372 		/* Parameter is node format */
4373 		if (p[count] == ':') {
4374 			if (!hugetlb_node_alloc_supported()) {
4375 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4376 				return 1;
4377 			}
4378 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4379 				goto invalid;
4380 			node = array_index_nospec(tmp, MAX_NUMNODES);
4381 			p += count + 1;
4382 			/* Parse hugepages */
4383 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4384 				goto invalid;
4385 			if (!hugetlb_max_hstate)
4386 				default_hugepages_in_node[node] = tmp;
4387 			else
4388 				parsed_hstate->max_huge_pages_node[node] = tmp;
4389 			*mhp += tmp;
4390 			/* Go to parse next node*/
4391 			if (p[count] == ',')
4392 				p += count + 1;
4393 			else
4394 				break;
4395 		} else {
4396 			if (p != s)
4397 				goto invalid;
4398 			*mhp = tmp;
4399 			break;
4400 		}
4401 	}
4402 
4403 	/*
4404 	 * Global state is always initialized later in hugetlb_init.
4405 	 * But we need to allocate gigantic hstates here early to still
4406 	 * use the bootmem allocator.
4407 	 */
4408 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4409 		hugetlb_hstate_alloc_pages(parsed_hstate);
4410 
4411 	last_mhp = mhp;
4412 
4413 	return 1;
4414 
4415 invalid:
4416 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4417 	hugepages_clear_pages_in_node();
4418 	return 1;
4419 }
4420 __setup("hugepages=", hugepages_setup);
4421 
4422 /*
4423  * hugepagesz command line processing
4424  * A specific huge page size can only be specified once with hugepagesz.
4425  * hugepagesz is followed by hugepages on the command line.  The global
4426  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4427  * hugepagesz argument was valid.
4428  */
4429 static int __init hugepagesz_setup(char *s)
4430 {
4431 	unsigned long size;
4432 	struct hstate *h;
4433 
4434 	parsed_valid_hugepagesz = false;
4435 	size = (unsigned long)memparse(s, NULL);
4436 
4437 	if (!arch_hugetlb_valid_size(size)) {
4438 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4439 		return 1;
4440 	}
4441 
4442 	h = size_to_hstate(size);
4443 	if (h) {
4444 		/*
4445 		 * hstate for this size already exists.  This is normally
4446 		 * an error, but is allowed if the existing hstate is the
4447 		 * default hstate.  More specifically, it is only allowed if
4448 		 * the number of huge pages for the default hstate was not
4449 		 * previously specified.
4450 		 */
4451 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4452 		    default_hstate.max_huge_pages) {
4453 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4454 			return 1;
4455 		}
4456 
4457 		/*
4458 		 * No need to call hugetlb_add_hstate() as hstate already
4459 		 * exists.  But, do set parsed_hstate so that a following
4460 		 * hugepages= parameter will be applied to this hstate.
4461 		 */
4462 		parsed_hstate = h;
4463 		parsed_valid_hugepagesz = true;
4464 		return 1;
4465 	}
4466 
4467 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4468 	parsed_valid_hugepagesz = true;
4469 	return 1;
4470 }
4471 __setup("hugepagesz=", hugepagesz_setup);
4472 
4473 /*
4474  * default_hugepagesz command line input
4475  * Only one instance of default_hugepagesz allowed on command line.
4476  */
4477 static int __init default_hugepagesz_setup(char *s)
4478 {
4479 	unsigned long size;
4480 	int i;
4481 
4482 	parsed_valid_hugepagesz = false;
4483 	if (parsed_default_hugepagesz) {
4484 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4485 		return 1;
4486 	}
4487 
4488 	size = (unsigned long)memparse(s, NULL);
4489 
4490 	if (!arch_hugetlb_valid_size(size)) {
4491 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4492 		return 1;
4493 	}
4494 
4495 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4496 	parsed_valid_hugepagesz = true;
4497 	parsed_default_hugepagesz = true;
4498 	default_hstate_idx = hstate_index(size_to_hstate(size));
4499 
4500 	/*
4501 	 * The number of default huge pages (for this size) could have been
4502 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4503 	 * then default_hstate_max_huge_pages is set.  If the default huge
4504 	 * page size is gigantic (> MAX_ORDER), then the pages must be
4505 	 * allocated here from bootmem allocator.
4506 	 */
4507 	if (default_hstate_max_huge_pages) {
4508 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4509 		for_each_online_node(i)
4510 			default_hstate.max_huge_pages_node[i] =
4511 				default_hugepages_in_node[i];
4512 		if (hstate_is_gigantic(&default_hstate))
4513 			hugetlb_hstate_alloc_pages(&default_hstate);
4514 		default_hstate_max_huge_pages = 0;
4515 	}
4516 
4517 	return 1;
4518 }
4519 __setup("default_hugepagesz=", default_hugepagesz_setup);
4520 
4521 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4522 {
4523 #ifdef CONFIG_NUMA
4524 	struct mempolicy *mpol = get_task_policy(current);
4525 
4526 	/*
4527 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4528 	 * (from policy_nodemask) specifically for hugetlb case
4529 	 */
4530 	if (mpol->mode == MPOL_BIND &&
4531 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4532 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4533 		return &mpol->nodes;
4534 #endif
4535 	return NULL;
4536 }
4537 
4538 static unsigned int allowed_mems_nr(struct hstate *h)
4539 {
4540 	int node;
4541 	unsigned int nr = 0;
4542 	nodemask_t *mbind_nodemask;
4543 	unsigned int *array = h->free_huge_pages_node;
4544 	gfp_t gfp_mask = htlb_alloc_mask(h);
4545 
4546 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4547 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4548 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4549 			nr += array[node];
4550 	}
4551 
4552 	return nr;
4553 }
4554 
4555 #ifdef CONFIG_SYSCTL
4556 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4557 					  void *buffer, size_t *length,
4558 					  loff_t *ppos, unsigned long *out)
4559 {
4560 	struct ctl_table dup_table;
4561 
4562 	/*
4563 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4564 	 * can duplicate the @table and alter the duplicate of it.
4565 	 */
4566 	dup_table = *table;
4567 	dup_table.data = out;
4568 
4569 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4570 }
4571 
4572 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4573 			 struct ctl_table *table, int write,
4574 			 void *buffer, size_t *length, loff_t *ppos)
4575 {
4576 	struct hstate *h = &default_hstate;
4577 	unsigned long tmp = h->max_huge_pages;
4578 	int ret;
4579 
4580 	if (!hugepages_supported())
4581 		return -EOPNOTSUPP;
4582 
4583 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4584 					     &tmp);
4585 	if (ret)
4586 		goto out;
4587 
4588 	if (write)
4589 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4590 						  NUMA_NO_NODE, tmp, *length);
4591 out:
4592 	return ret;
4593 }
4594 
4595 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4596 			  void *buffer, size_t *length, loff_t *ppos)
4597 {
4598 
4599 	return hugetlb_sysctl_handler_common(false, table, write,
4600 							buffer, length, ppos);
4601 }
4602 
4603 #ifdef CONFIG_NUMA
4604 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4605 			  void *buffer, size_t *length, loff_t *ppos)
4606 {
4607 	return hugetlb_sysctl_handler_common(true, table, write,
4608 							buffer, length, ppos);
4609 }
4610 #endif /* CONFIG_NUMA */
4611 
4612 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4613 		void *buffer, size_t *length, loff_t *ppos)
4614 {
4615 	struct hstate *h = &default_hstate;
4616 	unsigned long tmp;
4617 	int ret;
4618 
4619 	if (!hugepages_supported())
4620 		return -EOPNOTSUPP;
4621 
4622 	tmp = h->nr_overcommit_huge_pages;
4623 
4624 	if (write && hstate_is_gigantic(h))
4625 		return -EINVAL;
4626 
4627 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4628 					     &tmp);
4629 	if (ret)
4630 		goto out;
4631 
4632 	if (write) {
4633 		spin_lock_irq(&hugetlb_lock);
4634 		h->nr_overcommit_huge_pages = tmp;
4635 		spin_unlock_irq(&hugetlb_lock);
4636 	}
4637 out:
4638 	return ret;
4639 }
4640 
4641 #endif /* CONFIG_SYSCTL */
4642 
4643 void hugetlb_report_meminfo(struct seq_file *m)
4644 {
4645 	struct hstate *h;
4646 	unsigned long total = 0;
4647 
4648 	if (!hugepages_supported())
4649 		return;
4650 
4651 	for_each_hstate(h) {
4652 		unsigned long count = h->nr_huge_pages;
4653 
4654 		total += huge_page_size(h) * count;
4655 
4656 		if (h == &default_hstate)
4657 			seq_printf(m,
4658 				   "HugePages_Total:   %5lu\n"
4659 				   "HugePages_Free:    %5lu\n"
4660 				   "HugePages_Rsvd:    %5lu\n"
4661 				   "HugePages_Surp:    %5lu\n"
4662 				   "Hugepagesize:   %8lu kB\n",
4663 				   count,
4664 				   h->free_huge_pages,
4665 				   h->resv_huge_pages,
4666 				   h->surplus_huge_pages,
4667 				   huge_page_size(h) / SZ_1K);
4668 	}
4669 
4670 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4671 }
4672 
4673 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4674 {
4675 	struct hstate *h = &default_hstate;
4676 
4677 	if (!hugepages_supported())
4678 		return 0;
4679 
4680 	return sysfs_emit_at(buf, len,
4681 			     "Node %d HugePages_Total: %5u\n"
4682 			     "Node %d HugePages_Free:  %5u\n"
4683 			     "Node %d HugePages_Surp:  %5u\n",
4684 			     nid, h->nr_huge_pages_node[nid],
4685 			     nid, h->free_huge_pages_node[nid],
4686 			     nid, h->surplus_huge_pages_node[nid]);
4687 }
4688 
4689 void hugetlb_show_meminfo_node(int nid)
4690 {
4691 	struct hstate *h;
4692 
4693 	if (!hugepages_supported())
4694 		return;
4695 
4696 	for_each_hstate(h)
4697 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4698 			nid,
4699 			h->nr_huge_pages_node[nid],
4700 			h->free_huge_pages_node[nid],
4701 			h->surplus_huge_pages_node[nid],
4702 			huge_page_size(h) / SZ_1K);
4703 }
4704 
4705 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4706 {
4707 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4708 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4709 }
4710 
4711 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4712 unsigned long hugetlb_total_pages(void)
4713 {
4714 	struct hstate *h;
4715 	unsigned long nr_total_pages = 0;
4716 
4717 	for_each_hstate(h)
4718 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4719 	return nr_total_pages;
4720 }
4721 
4722 static int hugetlb_acct_memory(struct hstate *h, long delta)
4723 {
4724 	int ret = -ENOMEM;
4725 
4726 	if (!delta)
4727 		return 0;
4728 
4729 	spin_lock_irq(&hugetlb_lock);
4730 	/*
4731 	 * When cpuset is configured, it breaks the strict hugetlb page
4732 	 * reservation as the accounting is done on a global variable. Such
4733 	 * reservation is completely rubbish in the presence of cpuset because
4734 	 * the reservation is not checked against page availability for the
4735 	 * current cpuset. Application can still potentially OOM'ed by kernel
4736 	 * with lack of free htlb page in cpuset that the task is in.
4737 	 * Attempt to enforce strict accounting with cpuset is almost
4738 	 * impossible (or too ugly) because cpuset is too fluid that
4739 	 * task or memory node can be dynamically moved between cpusets.
4740 	 *
4741 	 * The change of semantics for shared hugetlb mapping with cpuset is
4742 	 * undesirable. However, in order to preserve some of the semantics,
4743 	 * we fall back to check against current free page availability as
4744 	 * a best attempt and hopefully to minimize the impact of changing
4745 	 * semantics that cpuset has.
4746 	 *
4747 	 * Apart from cpuset, we also have memory policy mechanism that
4748 	 * also determines from which node the kernel will allocate memory
4749 	 * in a NUMA system. So similar to cpuset, we also should consider
4750 	 * the memory policy of the current task. Similar to the description
4751 	 * above.
4752 	 */
4753 	if (delta > 0) {
4754 		if (gather_surplus_pages(h, delta) < 0)
4755 			goto out;
4756 
4757 		if (delta > allowed_mems_nr(h)) {
4758 			return_unused_surplus_pages(h, delta);
4759 			goto out;
4760 		}
4761 	}
4762 
4763 	ret = 0;
4764 	if (delta < 0)
4765 		return_unused_surplus_pages(h, (unsigned long) -delta);
4766 
4767 out:
4768 	spin_unlock_irq(&hugetlb_lock);
4769 	return ret;
4770 }
4771 
4772 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4773 {
4774 	struct resv_map *resv = vma_resv_map(vma);
4775 
4776 	/*
4777 	 * HPAGE_RESV_OWNER indicates a private mapping.
4778 	 * This new VMA should share its siblings reservation map if present.
4779 	 * The VMA will only ever have a valid reservation map pointer where
4780 	 * it is being copied for another still existing VMA.  As that VMA
4781 	 * has a reference to the reservation map it cannot disappear until
4782 	 * after this open call completes.  It is therefore safe to take a
4783 	 * new reference here without additional locking.
4784 	 */
4785 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4786 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4787 		kref_get(&resv->refs);
4788 	}
4789 
4790 	/*
4791 	 * vma_lock structure for sharable mappings is vma specific.
4792 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4793 	 * new structure.  Before clearing, make sure vma_lock is not
4794 	 * for this vma.
4795 	 */
4796 	if (vma->vm_flags & VM_MAYSHARE) {
4797 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4798 
4799 		if (vma_lock) {
4800 			if (vma_lock->vma != vma) {
4801 				vma->vm_private_data = NULL;
4802 				hugetlb_vma_lock_alloc(vma);
4803 			} else
4804 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4805 		} else
4806 			hugetlb_vma_lock_alloc(vma);
4807 	}
4808 }
4809 
4810 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4811 {
4812 	struct hstate *h = hstate_vma(vma);
4813 	struct resv_map *resv;
4814 	struct hugepage_subpool *spool = subpool_vma(vma);
4815 	unsigned long reserve, start, end;
4816 	long gbl_reserve;
4817 
4818 	hugetlb_vma_lock_free(vma);
4819 
4820 	resv = vma_resv_map(vma);
4821 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4822 		return;
4823 
4824 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4825 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4826 
4827 	reserve = (end - start) - region_count(resv, start, end);
4828 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4829 	if (reserve) {
4830 		/*
4831 		 * Decrement reserve counts.  The global reserve count may be
4832 		 * adjusted if the subpool has a minimum size.
4833 		 */
4834 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4835 		hugetlb_acct_memory(h, -gbl_reserve);
4836 	}
4837 
4838 	kref_put(&resv->refs, resv_map_release);
4839 }
4840 
4841 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4842 {
4843 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4844 		return -EINVAL;
4845 
4846 	/*
4847 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4848 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4849 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4850 	 */
4851 	if (addr & ~PUD_MASK) {
4852 		/*
4853 		 * hugetlb_vm_op_split is called right before we attempt to
4854 		 * split the VMA. We will need to unshare PMDs in the old and
4855 		 * new VMAs, so let's unshare before we split.
4856 		 */
4857 		unsigned long floor = addr & PUD_MASK;
4858 		unsigned long ceil = floor + PUD_SIZE;
4859 
4860 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
4861 			hugetlb_unshare_pmds(vma, floor, ceil);
4862 	}
4863 
4864 	return 0;
4865 }
4866 
4867 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4868 {
4869 	return huge_page_size(hstate_vma(vma));
4870 }
4871 
4872 /*
4873  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4874  * handle_mm_fault() to try to instantiate regular-sized pages in the
4875  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4876  * this far.
4877  */
4878 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4879 {
4880 	BUG();
4881 	return 0;
4882 }
4883 
4884 /*
4885  * When a new function is introduced to vm_operations_struct and added
4886  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4887  * This is because under System V memory model, mappings created via
4888  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4889  * their original vm_ops are overwritten with shm_vm_ops.
4890  */
4891 const struct vm_operations_struct hugetlb_vm_ops = {
4892 	.fault = hugetlb_vm_op_fault,
4893 	.open = hugetlb_vm_op_open,
4894 	.close = hugetlb_vm_op_close,
4895 	.may_split = hugetlb_vm_op_split,
4896 	.pagesize = hugetlb_vm_op_pagesize,
4897 };
4898 
4899 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4900 				int writable)
4901 {
4902 	pte_t entry;
4903 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4904 
4905 	if (writable) {
4906 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4907 					 vma->vm_page_prot)));
4908 	} else {
4909 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4910 					   vma->vm_page_prot));
4911 	}
4912 	entry = pte_mkyoung(entry);
4913 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4914 
4915 	return entry;
4916 }
4917 
4918 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4919 				   unsigned long address, pte_t *ptep)
4920 {
4921 	pte_t entry;
4922 
4923 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4924 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4925 		update_mmu_cache(vma, address, ptep);
4926 }
4927 
4928 bool is_hugetlb_entry_migration(pte_t pte)
4929 {
4930 	swp_entry_t swp;
4931 
4932 	if (huge_pte_none(pte) || pte_present(pte))
4933 		return false;
4934 	swp = pte_to_swp_entry(pte);
4935 	if (is_migration_entry(swp))
4936 		return true;
4937 	else
4938 		return false;
4939 }
4940 
4941 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4942 {
4943 	swp_entry_t swp;
4944 
4945 	if (huge_pte_none(pte) || pte_present(pte))
4946 		return false;
4947 	swp = pte_to_swp_entry(pte);
4948 	if (is_hwpoison_entry(swp))
4949 		return true;
4950 	else
4951 		return false;
4952 }
4953 
4954 static void
4955 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4956 		      struct folio *new_folio, pte_t old)
4957 {
4958 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
4959 
4960 	__folio_mark_uptodate(new_folio);
4961 	hugepage_add_new_anon_rmap(new_folio, vma, addr);
4962 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
4963 		newpte = huge_pte_mkuffd_wp(newpte);
4964 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
4965 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4966 	folio_set_hugetlb_migratable(new_folio);
4967 }
4968 
4969 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4970 			    struct vm_area_struct *dst_vma,
4971 			    struct vm_area_struct *src_vma)
4972 {
4973 	pte_t *src_pte, *dst_pte, entry;
4974 	struct page *ptepage;
4975 	unsigned long addr;
4976 	bool cow = is_cow_mapping(src_vma->vm_flags);
4977 	struct hstate *h = hstate_vma(src_vma);
4978 	unsigned long sz = huge_page_size(h);
4979 	unsigned long npages = pages_per_huge_page(h);
4980 	struct mmu_notifier_range range;
4981 	unsigned long last_addr_mask;
4982 	int ret = 0;
4983 
4984 	if (cow) {
4985 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
4986 					src_vma->vm_start,
4987 					src_vma->vm_end);
4988 		mmu_notifier_invalidate_range_start(&range);
4989 		mmap_assert_write_locked(src);
4990 		raw_write_seqcount_begin(&src->write_protect_seq);
4991 	} else {
4992 		/*
4993 		 * For shared mappings the vma lock must be held before
4994 		 * calling hugetlb_walk() in the src vma. Otherwise, the
4995 		 * returned ptep could go away if part of a shared pmd and
4996 		 * another thread calls huge_pmd_unshare.
4997 		 */
4998 		hugetlb_vma_lock_read(src_vma);
4999 	}
5000 
5001 	last_addr_mask = hugetlb_mask_last_page(h);
5002 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5003 		spinlock_t *src_ptl, *dst_ptl;
5004 		src_pte = hugetlb_walk(src_vma, addr, sz);
5005 		if (!src_pte) {
5006 			addr |= last_addr_mask;
5007 			continue;
5008 		}
5009 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5010 		if (!dst_pte) {
5011 			ret = -ENOMEM;
5012 			break;
5013 		}
5014 
5015 		/*
5016 		 * If the pagetables are shared don't copy or take references.
5017 		 *
5018 		 * dst_pte == src_pte is the common case of src/dest sharing.
5019 		 * However, src could have 'unshared' and dst shares with
5020 		 * another vma. So page_count of ptep page is checked instead
5021 		 * to reliably determine whether pte is shared.
5022 		 */
5023 		if (page_count(virt_to_page(dst_pte)) > 1) {
5024 			addr |= last_addr_mask;
5025 			continue;
5026 		}
5027 
5028 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5029 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5030 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5031 		entry = huge_ptep_get(src_pte);
5032 again:
5033 		if (huge_pte_none(entry)) {
5034 			/*
5035 			 * Skip if src entry none.
5036 			 */
5037 			;
5038 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5039 			if (!userfaultfd_wp(dst_vma))
5040 				entry = huge_pte_clear_uffd_wp(entry);
5041 			set_huge_pte_at(dst, addr, dst_pte, entry);
5042 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5043 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5044 			bool uffd_wp = pte_swp_uffd_wp(entry);
5045 
5046 			if (!is_readable_migration_entry(swp_entry) && cow) {
5047 				/*
5048 				 * COW mappings require pages in both
5049 				 * parent and child to be set to read.
5050 				 */
5051 				swp_entry = make_readable_migration_entry(
5052 							swp_offset(swp_entry));
5053 				entry = swp_entry_to_pte(swp_entry);
5054 				if (userfaultfd_wp(src_vma) && uffd_wp)
5055 					entry = pte_swp_mkuffd_wp(entry);
5056 				set_huge_pte_at(src, addr, src_pte, entry);
5057 			}
5058 			if (!userfaultfd_wp(dst_vma))
5059 				entry = huge_pte_clear_uffd_wp(entry);
5060 			set_huge_pte_at(dst, addr, dst_pte, entry);
5061 		} else if (unlikely(is_pte_marker(entry))) {
5062 			/* No swap on hugetlb */
5063 			WARN_ON_ONCE(
5064 			    is_swapin_error_entry(pte_to_swp_entry(entry)));
5065 			/*
5066 			 * We copy the pte marker only if the dst vma has
5067 			 * uffd-wp enabled.
5068 			 */
5069 			if (userfaultfd_wp(dst_vma))
5070 				set_huge_pte_at(dst, addr, dst_pte, entry);
5071 		} else {
5072 			entry = huge_ptep_get(src_pte);
5073 			ptepage = pte_page(entry);
5074 			get_page(ptepage);
5075 
5076 			/*
5077 			 * Failing to duplicate the anon rmap is a rare case
5078 			 * where we see pinned hugetlb pages while they're
5079 			 * prone to COW. We need to do the COW earlier during
5080 			 * fork.
5081 			 *
5082 			 * When pre-allocating the page or copying data, we
5083 			 * need to be without the pgtable locks since we could
5084 			 * sleep during the process.
5085 			 */
5086 			if (!PageAnon(ptepage)) {
5087 				page_dup_file_rmap(ptepage, true);
5088 			} else if (page_try_dup_anon_rmap(ptepage, true,
5089 							  src_vma)) {
5090 				pte_t src_pte_old = entry;
5091 				struct folio *new_folio;
5092 
5093 				spin_unlock(src_ptl);
5094 				spin_unlock(dst_ptl);
5095 				/* Do not use reserve as it's private owned */
5096 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5097 				if (IS_ERR(new_folio)) {
5098 					put_page(ptepage);
5099 					ret = PTR_ERR(new_folio);
5100 					break;
5101 				}
5102 				ret = copy_user_large_folio(new_folio,
5103 						      page_folio(ptepage),
5104 						      addr, dst_vma);
5105 				put_page(ptepage);
5106 				if (ret) {
5107 					folio_put(new_folio);
5108 					break;
5109 				}
5110 
5111 				/* Install the new hugetlb folio if src pte stable */
5112 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5113 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5114 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5115 				entry = huge_ptep_get(src_pte);
5116 				if (!pte_same(src_pte_old, entry)) {
5117 					restore_reserve_on_error(h, dst_vma, addr,
5118 								new_folio);
5119 					folio_put(new_folio);
5120 					/* huge_ptep of dst_pte won't change as in child */
5121 					goto again;
5122 				}
5123 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5124 						      new_folio, src_pte_old);
5125 				spin_unlock(src_ptl);
5126 				spin_unlock(dst_ptl);
5127 				continue;
5128 			}
5129 
5130 			if (cow) {
5131 				/*
5132 				 * No need to notify as we are downgrading page
5133 				 * table protection not changing it to point
5134 				 * to a new page.
5135 				 *
5136 				 * See Documentation/mm/mmu_notifier.rst
5137 				 */
5138 				huge_ptep_set_wrprotect(src, addr, src_pte);
5139 				entry = huge_pte_wrprotect(entry);
5140 			}
5141 
5142 			if (!userfaultfd_wp(dst_vma))
5143 				entry = huge_pte_clear_uffd_wp(entry);
5144 
5145 			set_huge_pte_at(dst, addr, dst_pte, entry);
5146 			hugetlb_count_add(npages, dst);
5147 		}
5148 		spin_unlock(src_ptl);
5149 		spin_unlock(dst_ptl);
5150 	}
5151 
5152 	if (cow) {
5153 		raw_write_seqcount_end(&src->write_protect_seq);
5154 		mmu_notifier_invalidate_range_end(&range);
5155 	} else {
5156 		hugetlb_vma_unlock_read(src_vma);
5157 	}
5158 
5159 	return ret;
5160 }
5161 
5162 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5163 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5164 {
5165 	struct hstate *h = hstate_vma(vma);
5166 	struct mm_struct *mm = vma->vm_mm;
5167 	spinlock_t *src_ptl, *dst_ptl;
5168 	pte_t pte;
5169 
5170 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5171 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5172 
5173 	/*
5174 	 * We don't have to worry about the ordering of src and dst ptlocks
5175 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5176 	 */
5177 	if (src_ptl != dst_ptl)
5178 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5179 
5180 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5181 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
5182 
5183 	if (src_ptl != dst_ptl)
5184 		spin_unlock(src_ptl);
5185 	spin_unlock(dst_ptl);
5186 }
5187 
5188 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5189 			     struct vm_area_struct *new_vma,
5190 			     unsigned long old_addr, unsigned long new_addr,
5191 			     unsigned long len)
5192 {
5193 	struct hstate *h = hstate_vma(vma);
5194 	struct address_space *mapping = vma->vm_file->f_mapping;
5195 	unsigned long sz = huge_page_size(h);
5196 	struct mm_struct *mm = vma->vm_mm;
5197 	unsigned long old_end = old_addr + len;
5198 	unsigned long last_addr_mask;
5199 	pte_t *src_pte, *dst_pte;
5200 	struct mmu_notifier_range range;
5201 	bool shared_pmd = false;
5202 
5203 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5204 				old_end);
5205 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5206 	/*
5207 	 * In case of shared PMDs, we should cover the maximum possible
5208 	 * range.
5209 	 */
5210 	flush_cache_range(vma, range.start, range.end);
5211 
5212 	mmu_notifier_invalidate_range_start(&range);
5213 	last_addr_mask = hugetlb_mask_last_page(h);
5214 	/* Prevent race with file truncation */
5215 	hugetlb_vma_lock_write(vma);
5216 	i_mmap_lock_write(mapping);
5217 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5218 		src_pte = hugetlb_walk(vma, old_addr, sz);
5219 		if (!src_pte) {
5220 			old_addr |= last_addr_mask;
5221 			new_addr |= last_addr_mask;
5222 			continue;
5223 		}
5224 		if (huge_pte_none(huge_ptep_get(src_pte)))
5225 			continue;
5226 
5227 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5228 			shared_pmd = true;
5229 			old_addr |= last_addr_mask;
5230 			new_addr |= last_addr_mask;
5231 			continue;
5232 		}
5233 
5234 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5235 		if (!dst_pte)
5236 			break;
5237 
5238 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5239 	}
5240 
5241 	if (shared_pmd)
5242 		flush_tlb_range(vma, range.start, range.end);
5243 	else
5244 		flush_tlb_range(vma, old_end - len, old_end);
5245 	mmu_notifier_invalidate_range_end(&range);
5246 	i_mmap_unlock_write(mapping);
5247 	hugetlb_vma_unlock_write(vma);
5248 
5249 	return len + old_addr - old_end;
5250 }
5251 
5252 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5253 				   unsigned long start, unsigned long end,
5254 				   struct page *ref_page, zap_flags_t zap_flags)
5255 {
5256 	struct mm_struct *mm = vma->vm_mm;
5257 	unsigned long address;
5258 	pte_t *ptep;
5259 	pte_t pte;
5260 	spinlock_t *ptl;
5261 	struct page *page;
5262 	struct hstate *h = hstate_vma(vma);
5263 	unsigned long sz = huge_page_size(h);
5264 	unsigned long last_addr_mask;
5265 	bool force_flush = false;
5266 
5267 	WARN_ON(!is_vm_hugetlb_page(vma));
5268 	BUG_ON(start & ~huge_page_mask(h));
5269 	BUG_ON(end & ~huge_page_mask(h));
5270 
5271 	/*
5272 	 * This is a hugetlb vma, all the pte entries should point
5273 	 * to huge page.
5274 	 */
5275 	tlb_change_page_size(tlb, sz);
5276 	tlb_start_vma(tlb, vma);
5277 
5278 	last_addr_mask = hugetlb_mask_last_page(h);
5279 	address = start;
5280 	for (; address < end; address += sz) {
5281 		ptep = hugetlb_walk(vma, address, sz);
5282 		if (!ptep) {
5283 			address |= last_addr_mask;
5284 			continue;
5285 		}
5286 
5287 		ptl = huge_pte_lock(h, mm, ptep);
5288 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5289 			spin_unlock(ptl);
5290 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5291 			force_flush = true;
5292 			address |= last_addr_mask;
5293 			continue;
5294 		}
5295 
5296 		pte = huge_ptep_get(ptep);
5297 		if (huge_pte_none(pte)) {
5298 			spin_unlock(ptl);
5299 			continue;
5300 		}
5301 
5302 		/*
5303 		 * Migrating hugepage or HWPoisoned hugepage is already
5304 		 * unmapped and its refcount is dropped, so just clear pte here.
5305 		 */
5306 		if (unlikely(!pte_present(pte))) {
5307 			/*
5308 			 * If the pte was wr-protected by uffd-wp in any of the
5309 			 * swap forms, meanwhile the caller does not want to
5310 			 * drop the uffd-wp bit in this zap, then replace the
5311 			 * pte with a marker.
5312 			 */
5313 			if (pte_swp_uffd_wp_any(pte) &&
5314 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5315 				set_huge_pte_at(mm, address, ptep,
5316 						make_pte_marker(PTE_MARKER_UFFD_WP));
5317 			else
5318 				huge_pte_clear(mm, address, ptep, sz);
5319 			spin_unlock(ptl);
5320 			continue;
5321 		}
5322 
5323 		page = pte_page(pte);
5324 		/*
5325 		 * If a reference page is supplied, it is because a specific
5326 		 * page is being unmapped, not a range. Ensure the page we
5327 		 * are about to unmap is the actual page of interest.
5328 		 */
5329 		if (ref_page) {
5330 			if (page != ref_page) {
5331 				spin_unlock(ptl);
5332 				continue;
5333 			}
5334 			/*
5335 			 * Mark the VMA as having unmapped its page so that
5336 			 * future faults in this VMA will fail rather than
5337 			 * looking like data was lost
5338 			 */
5339 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5340 		}
5341 
5342 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5343 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5344 		if (huge_pte_dirty(pte))
5345 			set_page_dirty(page);
5346 		/* Leave a uffd-wp pte marker if needed */
5347 		if (huge_pte_uffd_wp(pte) &&
5348 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5349 			set_huge_pte_at(mm, address, ptep,
5350 					make_pte_marker(PTE_MARKER_UFFD_WP));
5351 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5352 		page_remove_rmap(page, vma, true);
5353 
5354 		spin_unlock(ptl);
5355 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5356 		/*
5357 		 * Bail out after unmapping reference page if supplied
5358 		 */
5359 		if (ref_page)
5360 			break;
5361 	}
5362 	tlb_end_vma(tlb, vma);
5363 
5364 	/*
5365 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5366 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5367 	 * guaranteed that the last refernece would not be dropped. But we must
5368 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5369 	 * dropped and the last reference to the shared PMDs page might be
5370 	 * dropped as well.
5371 	 *
5372 	 * In theory we could defer the freeing of the PMD pages as well, but
5373 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5374 	 * detect sharing, so we cannot defer the release of the page either.
5375 	 * Instead, do flush now.
5376 	 */
5377 	if (force_flush)
5378 		tlb_flush_mmu_tlbonly(tlb);
5379 }
5380 
5381 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5382 			  struct vm_area_struct *vma, unsigned long start,
5383 			  unsigned long end, struct page *ref_page,
5384 			  zap_flags_t zap_flags)
5385 {
5386 	hugetlb_vma_lock_write(vma);
5387 	i_mmap_lock_write(vma->vm_file->f_mapping);
5388 
5389 	/* mmu notification performed in caller */
5390 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5391 
5392 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5393 		/*
5394 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5395 		 * When the vma_lock is freed, this makes the vma ineligible
5396 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5397 		 * pmd sharing.  This is important as page tables for this
5398 		 * unmapped range will be asynchrously deleted.  If the page
5399 		 * tables are shared, there will be issues when accessed by
5400 		 * someone else.
5401 		 */
5402 		__hugetlb_vma_unlock_write_free(vma);
5403 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5404 	} else {
5405 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5406 		hugetlb_vma_unlock_write(vma);
5407 	}
5408 }
5409 
5410 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5411 			  unsigned long end, struct page *ref_page,
5412 			  zap_flags_t zap_flags)
5413 {
5414 	struct mmu_notifier_range range;
5415 	struct mmu_gather tlb;
5416 
5417 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5418 				start, end);
5419 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5420 	mmu_notifier_invalidate_range_start(&range);
5421 	tlb_gather_mmu(&tlb, vma->vm_mm);
5422 
5423 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5424 
5425 	mmu_notifier_invalidate_range_end(&range);
5426 	tlb_finish_mmu(&tlb);
5427 }
5428 
5429 /*
5430  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5431  * mapping it owns the reserve page for. The intention is to unmap the page
5432  * from other VMAs and let the children be SIGKILLed if they are faulting the
5433  * same region.
5434  */
5435 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5436 			      struct page *page, unsigned long address)
5437 {
5438 	struct hstate *h = hstate_vma(vma);
5439 	struct vm_area_struct *iter_vma;
5440 	struct address_space *mapping;
5441 	pgoff_t pgoff;
5442 
5443 	/*
5444 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5445 	 * from page cache lookup which is in HPAGE_SIZE units.
5446 	 */
5447 	address = address & huge_page_mask(h);
5448 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5449 			vma->vm_pgoff;
5450 	mapping = vma->vm_file->f_mapping;
5451 
5452 	/*
5453 	 * Take the mapping lock for the duration of the table walk. As
5454 	 * this mapping should be shared between all the VMAs,
5455 	 * __unmap_hugepage_range() is called as the lock is already held
5456 	 */
5457 	i_mmap_lock_write(mapping);
5458 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5459 		/* Do not unmap the current VMA */
5460 		if (iter_vma == vma)
5461 			continue;
5462 
5463 		/*
5464 		 * Shared VMAs have their own reserves and do not affect
5465 		 * MAP_PRIVATE accounting but it is possible that a shared
5466 		 * VMA is using the same page so check and skip such VMAs.
5467 		 */
5468 		if (iter_vma->vm_flags & VM_MAYSHARE)
5469 			continue;
5470 
5471 		/*
5472 		 * Unmap the page from other VMAs without their own reserves.
5473 		 * They get marked to be SIGKILLed if they fault in these
5474 		 * areas. This is because a future no-page fault on this VMA
5475 		 * could insert a zeroed page instead of the data existing
5476 		 * from the time of fork. This would look like data corruption
5477 		 */
5478 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5479 			unmap_hugepage_range(iter_vma, address,
5480 					     address + huge_page_size(h), page, 0);
5481 	}
5482 	i_mmap_unlock_write(mapping);
5483 }
5484 
5485 /*
5486  * hugetlb_wp() should be called with page lock of the original hugepage held.
5487  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5488  * cannot race with other handlers or page migration.
5489  * Keep the pte_same checks anyway to make transition from the mutex easier.
5490  */
5491 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5492 		       unsigned long address, pte_t *ptep, unsigned int flags,
5493 		       struct folio *pagecache_folio, spinlock_t *ptl)
5494 {
5495 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5496 	pte_t pte = huge_ptep_get(ptep);
5497 	struct hstate *h = hstate_vma(vma);
5498 	struct page *old_page;
5499 	struct folio *new_folio;
5500 	int outside_reserve = 0;
5501 	vm_fault_t ret = 0;
5502 	unsigned long haddr = address & huge_page_mask(h);
5503 	struct mmu_notifier_range range;
5504 
5505 	/*
5506 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5507 	 * handled when the uffd-wp protection is removed.
5508 	 *
5509 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5510 	 * can trigger this, because hugetlb_fault() will always resolve
5511 	 * uffd-wp bit first.
5512 	 */
5513 	if (!unshare && huge_pte_uffd_wp(pte))
5514 		return 0;
5515 
5516 	/*
5517 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5518 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5519 	 */
5520 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5521 		return VM_FAULT_SIGSEGV;
5522 
5523 	/* Let's take out MAP_SHARED mappings first. */
5524 	if (vma->vm_flags & VM_MAYSHARE) {
5525 		set_huge_ptep_writable(vma, haddr, ptep);
5526 		return 0;
5527 	}
5528 
5529 	old_page = pte_page(pte);
5530 
5531 	delayacct_wpcopy_start();
5532 
5533 retry_avoidcopy:
5534 	/*
5535 	 * If no-one else is actually using this page, we're the exclusive
5536 	 * owner and can reuse this page.
5537 	 */
5538 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5539 		if (!PageAnonExclusive(old_page))
5540 			page_move_anon_rmap(old_page, vma);
5541 		if (likely(!unshare))
5542 			set_huge_ptep_writable(vma, haddr, ptep);
5543 
5544 		delayacct_wpcopy_end();
5545 		return 0;
5546 	}
5547 	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5548 		       old_page);
5549 
5550 	/*
5551 	 * If the process that created a MAP_PRIVATE mapping is about to
5552 	 * perform a COW due to a shared page count, attempt to satisfy
5553 	 * the allocation without using the existing reserves. The pagecache
5554 	 * page is used to determine if the reserve at this address was
5555 	 * consumed or not. If reserves were used, a partial faulted mapping
5556 	 * at the time of fork() could consume its reserves on COW instead
5557 	 * of the full address range.
5558 	 */
5559 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5560 			page_folio(old_page) != pagecache_folio)
5561 		outside_reserve = 1;
5562 
5563 	get_page(old_page);
5564 
5565 	/*
5566 	 * Drop page table lock as buddy allocator may be called. It will
5567 	 * be acquired again before returning to the caller, as expected.
5568 	 */
5569 	spin_unlock(ptl);
5570 	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5571 
5572 	if (IS_ERR(new_folio)) {
5573 		/*
5574 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5575 		 * it is due to references held by a child and an insufficient
5576 		 * huge page pool. To guarantee the original mappers
5577 		 * reliability, unmap the page from child processes. The child
5578 		 * may get SIGKILLed if it later faults.
5579 		 */
5580 		if (outside_reserve) {
5581 			struct address_space *mapping = vma->vm_file->f_mapping;
5582 			pgoff_t idx;
5583 			u32 hash;
5584 
5585 			put_page(old_page);
5586 			/*
5587 			 * Drop hugetlb_fault_mutex and vma_lock before
5588 			 * unmapping.  unmapping needs to hold vma_lock
5589 			 * in write mode.  Dropping vma_lock in read mode
5590 			 * here is OK as COW mappings do not interact with
5591 			 * PMD sharing.
5592 			 *
5593 			 * Reacquire both after unmap operation.
5594 			 */
5595 			idx = vma_hugecache_offset(h, vma, haddr);
5596 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5597 			hugetlb_vma_unlock_read(vma);
5598 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5599 
5600 			unmap_ref_private(mm, vma, old_page, haddr);
5601 
5602 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5603 			hugetlb_vma_lock_read(vma);
5604 			spin_lock(ptl);
5605 			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5606 			if (likely(ptep &&
5607 				   pte_same(huge_ptep_get(ptep), pte)))
5608 				goto retry_avoidcopy;
5609 			/*
5610 			 * race occurs while re-acquiring page table
5611 			 * lock, and our job is done.
5612 			 */
5613 			delayacct_wpcopy_end();
5614 			return 0;
5615 		}
5616 
5617 		ret = vmf_error(PTR_ERR(new_folio));
5618 		goto out_release_old;
5619 	}
5620 
5621 	/*
5622 	 * When the original hugepage is shared one, it does not have
5623 	 * anon_vma prepared.
5624 	 */
5625 	if (unlikely(anon_vma_prepare(vma))) {
5626 		ret = VM_FAULT_OOM;
5627 		goto out_release_all;
5628 	}
5629 
5630 	if (copy_user_large_folio(new_folio, page_folio(old_page), address, vma)) {
5631 		ret = VM_FAULT_HWPOISON_LARGE;
5632 		goto out_release_all;
5633 	}
5634 	__folio_mark_uptodate(new_folio);
5635 
5636 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5637 				haddr + huge_page_size(h));
5638 	mmu_notifier_invalidate_range_start(&range);
5639 
5640 	/*
5641 	 * Retake the page table lock to check for racing updates
5642 	 * before the page tables are altered
5643 	 */
5644 	spin_lock(ptl);
5645 	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5646 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5647 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5648 
5649 		/* Break COW or unshare */
5650 		huge_ptep_clear_flush(vma, haddr, ptep);
5651 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5652 		page_remove_rmap(old_page, vma, true);
5653 		hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5654 		if (huge_pte_uffd_wp(pte))
5655 			newpte = huge_pte_mkuffd_wp(newpte);
5656 		set_huge_pte_at(mm, haddr, ptep, newpte);
5657 		folio_set_hugetlb_migratable(new_folio);
5658 		/* Make the old page be freed below */
5659 		new_folio = page_folio(old_page);
5660 	}
5661 	spin_unlock(ptl);
5662 	mmu_notifier_invalidate_range_end(&range);
5663 out_release_all:
5664 	/*
5665 	 * No restore in case of successful pagetable update (Break COW or
5666 	 * unshare)
5667 	 */
5668 	if (new_folio != page_folio(old_page))
5669 		restore_reserve_on_error(h, vma, haddr, new_folio);
5670 	folio_put(new_folio);
5671 out_release_old:
5672 	put_page(old_page);
5673 
5674 	spin_lock(ptl); /* Caller expects lock to be held */
5675 
5676 	delayacct_wpcopy_end();
5677 	return ret;
5678 }
5679 
5680 /*
5681  * Return whether there is a pagecache page to back given address within VMA.
5682  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5683  */
5684 static bool hugetlbfs_pagecache_present(struct hstate *h,
5685 			struct vm_area_struct *vma, unsigned long address)
5686 {
5687 	struct address_space *mapping = vma->vm_file->f_mapping;
5688 	pgoff_t idx = vma_hugecache_offset(h, vma, address);
5689 	bool present;
5690 
5691 	rcu_read_lock();
5692 	present = page_cache_next_miss(mapping, idx, 1) != idx;
5693 	rcu_read_unlock();
5694 
5695 	return present;
5696 }
5697 
5698 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5699 			   pgoff_t idx)
5700 {
5701 	struct inode *inode = mapping->host;
5702 	struct hstate *h = hstate_inode(inode);
5703 	int err;
5704 
5705 	__folio_set_locked(folio);
5706 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5707 
5708 	if (unlikely(err)) {
5709 		__folio_clear_locked(folio);
5710 		return err;
5711 	}
5712 	folio_clear_hugetlb_restore_reserve(folio);
5713 
5714 	/*
5715 	 * mark folio dirty so that it will not be removed from cache/file
5716 	 * by non-hugetlbfs specific code paths.
5717 	 */
5718 	folio_mark_dirty(folio);
5719 
5720 	spin_lock(&inode->i_lock);
5721 	inode->i_blocks += blocks_per_huge_page(h);
5722 	spin_unlock(&inode->i_lock);
5723 	return 0;
5724 }
5725 
5726 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5727 						  struct address_space *mapping,
5728 						  pgoff_t idx,
5729 						  unsigned int flags,
5730 						  unsigned long haddr,
5731 						  unsigned long addr,
5732 						  unsigned long reason)
5733 {
5734 	u32 hash;
5735 	struct vm_fault vmf = {
5736 		.vma = vma,
5737 		.address = haddr,
5738 		.real_address = addr,
5739 		.flags = flags,
5740 
5741 		/*
5742 		 * Hard to debug if it ends up being
5743 		 * used by a callee that assumes
5744 		 * something about the other
5745 		 * uninitialized fields... same as in
5746 		 * memory.c
5747 		 */
5748 	};
5749 
5750 	/*
5751 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5752 	 * userfault. Also mmap_lock could be dropped due to handling
5753 	 * userfault, any vma operation should be careful from here.
5754 	 */
5755 	hugetlb_vma_unlock_read(vma);
5756 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5757 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5758 	return handle_userfault(&vmf, reason);
5759 }
5760 
5761 /*
5762  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5763  * false if pte changed or is changing.
5764  */
5765 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5766 			       pte_t *ptep, pte_t old_pte)
5767 {
5768 	spinlock_t *ptl;
5769 	bool same;
5770 
5771 	ptl = huge_pte_lock(h, mm, ptep);
5772 	same = pte_same(huge_ptep_get(ptep), old_pte);
5773 	spin_unlock(ptl);
5774 
5775 	return same;
5776 }
5777 
5778 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5779 			struct vm_area_struct *vma,
5780 			struct address_space *mapping, pgoff_t idx,
5781 			unsigned long address, pte_t *ptep,
5782 			pte_t old_pte, unsigned int flags)
5783 {
5784 	struct hstate *h = hstate_vma(vma);
5785 	vm_fault_t ret = VM_FAULT_SIGBUS;
5786 	int anon_rmap = 0;
5787 	unsigned long size;
5788 	struct folio *folio;
5789 	pte_t new_pte;
5790 	spinlock_t *ptl;
5791 	unsigned long haddr = address & huge_page_mask(h);
5792 	bool new_folio, new_pagecache_folio = false;
5793 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5794 
5795 	/*
5796 	 * Currently, we are forced to kill the process in the event the
5797 	 * original mapper has unmapped pages from the child due to a failed
5798 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5799 	 * be obvious.
5800 	 */
5801 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5802 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5803 			   current->pid);
5804 		goto out;
5805 	}
5806 
5807 	/*
5808 	 * Use page lock to guard against racing truncation
5809 	 * before we get page_table_lock.
5810 	 */
5811 	new_folio = false;
5812 	folio = filemap_lock_folio(mapping, idx);
5813 	if (IS_ERR(folio)) {
5814 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5815 		if (idx >= size)
5816 			goto out;
5817 		/* Check for page in userfault range */
5818 		if (userfaultfd_missing(vma)) {
5819 			/*
5820 			 * Since hugetlb_no_page() was examining pte
5821 			 * without pgtable lock, we need to re-test under
5822 			 * lock because the pte may not be stable and could
5823 			 * have changed from under us.  Try to detect
5824 			 * either changed or during-changing ptes and retry
5825 			 * properly when needed.
5826 			 *
5827 			 * Note that userfaultfd is actually fine with
5828 			 * false positives (e.g. caused by pte changed),
5829 			 * but not wrong logical events (e.g. caused by
5830 			 * reading a pte during changing).  The latter can
5831 			 * confuse the userspace, so the strictness is very
5832 			 * much preferred.  E.g., MISSING event should
5833 			 * never happen on the page after UFFDIO_COPY has
5834 			 * correctly installed the page and returned.
5835 			 */
5836 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5837 				ret = 0;
5838 				goto out;
5839 			}
5840 
5841 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5842 							haddr, address,
5843 							VM_UFFD_MISSING);
5844 		}
5845 
5846 		folio = alloc_hugetlb_folio(vma, haddr, 0);
5847 		if (IS_ERR(folio)) {
5848 			/*
5849 			 * Returning error will result in faulting task being
5850 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5851 			 * tasks from racing to fault in the same page which
5852 			 * could result in false unable to allocate errors.
5853 			 * Page migration does not take the fault mutex, but
5854 			 * does a clear then write of pte's under page table
5855 			 * lock.  Page fault code could race with migration,
5856 			 * notice the clear pte and try to allocate a page
5857 			 * here.  Before returning error, get ptl and make
5858 			 * sure there really is no pte entry.
5859 			 */
5860 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5861 				ret = vmf_error(PTR_ERR(folio));
5862 			else
5863 				ret = 0;
5864 			goto out;
5865 		}
5866 		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5867 		__folio_mark_uptodate(folio);
5868 		new_folio = true;
5869 
5870 		if (vma->vm_flags & VM_MAYSHARE) {
5871 			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5872 			if (err) {
5873 				/*
5874 				 * err can't be -EEXIST which implies someone
5875 				 * else consumed the reservation since hugetlb
5876 				 * fault mutex is held when add a hugetlb page
5877 				 * to the page cache. So it's safe to call
5878 				 * restore_reserve_on_error() here.
5879 				 */
5880 				restore_reserve_on_error(h, vma, haddr, folio);
5881 				folio_put(folio);
5882 				goto out;
5883 			}
5884 			new_pagecache_folio = true;
5885 		} else {
5886 			folio_lock(folio);
5887 			if (unlikely(anon_vma_prepare(vma))) {
5888 				ret = VM_FAULT_OOM;
5889 				goto backout_unlocked;
5890 			}
5891 			anon_rmap = 1;
5892 		}
5893 	} else {
5894 		/*
5895 		 * If memory error occurs between mmap() and fault, some process
5896 		 * don't have hwpoisoned swap entry for errored virtual address.
5897 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5898 		 */
5899 		if (unlikely(folio_test_hwpoison(folio))) {
5900 			ret = VM_FAULT_HWPOISON_LARGE |
5901 				VM_FAULT_SET_HINDEX(hstate_index(h));
5902 			goto backout_unlocked;
5903 		}
5904 
5905 		/* Check for page in userfault range. */
5906 		if (userfaultfd_minor(vma)) {
5907 			folio_unlock(folio);
5908 			folio_put(folio);
5909 			/* See comment in userfaultfd_missing() block above */
5910 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5911 				ret = 0;
5912 				goto out;
5913 			}
5914 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5915 							haddr, address,
5916 							VM_UFFD_MINOR);
5917 		}
5918 	}
5919 
5920 	/*
5921 	 * If we are going to COW a private mapping later, we examine the
5922 	 * pending reservations for this page now. This will ensure that
5923 	 * any allocations necessary to record that reservation occur outside
5924 	 * the spinlock.
5925 	 */
5926 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5927 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5928 			ret = VM_FAULT_OOM;
5929 			goto backout_unlocked;
5930 		}
5931 		/* Just decrements count, does not deallocate */
5932 		vma_end_reservation(h, vma, haddr);
5933 	}
5934 
5935 	ptl = huge_pte_lock(h, mm, ptep);
5936 	ret = 0;
5937 	/* If pte changed from under us, retry */
5938 	if (!pte_same(huge_ptep_get(ptep), old_pte))
5939 		goto backout;
5940 
5941 	if (anon_rmap)
5942 		hugepage_add_new_anon_rmap(folio, vma, haddr);
5943 	else
5944 		page_dup_file_rmap(&folio->page, true);
5945 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5946 				&& (vma->vm_flags & VM_SHARED)));
5947 	/*
5948 	 * If this pte was previously wr-protected, keep it wr-protected even
5949 	 * if populated.
5950 	 */
5951 	if (unlikely(pte_marker_uffd_wp(old_pte)))
5952 		new_pte = huge_pte_mkuffd_wp(new_pte);
5953 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5954 
5955 	hugetlb_count_add(pages_per_huge_page(h), mm);
5956 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5957 		/* Optimization, do the COW without a second fault */
5958 		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
5959 	}
5960 
5961 	spin_unlock(ptl);
5962 
5963 	/*
5964 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
5965 	 * found in the pagecache may not have hugetlb_migratable if they have
5966 	 * been isolated for migration.
5967 	 */
5968 	if (new_folio)
5969 		folio_set_hugetlb_migratable(folio);
5970 
5971 	folio_unlock(folio);
5972 out:
5973 	hugetlb_vma_unlock_read(vma);
5974 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5975 	return ret;
5976 
5977 backout:
5978 	spin_unlock(ptl);
5979 backout_unlocked:
5980 	if (new_folio && !new_pagecache_folio)
5981 		restore_reserve_on_error(h, vma, haddr, folio);
5982 
5983 	folio_unlock(folio);
5984 	folio_put(folio);
5985 	goto out;
5986 }
5987 
5988 #ifdef CONFIG_SMP
5989 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5990 {
5991 	unsigned long key[2];
5992 	u32 hash;
5993 
5994 	key[0] = (unsigned long) mapping;
5995 	key[1] = idx;
5996 
5997 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5998 
5999 	return hash & (num_fault_mutexes - 1);
6000 }
6001 #else
6002 /*
6003  * For uniprocessor systems we always use a single mutex, so just
6004  * return 0 and avoid the hashing overhead.
6005  */
6006 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6007 {
6008 	return 0;
6009 }
6010 #endif
6011 
6012 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6013 			unsigned long address, unsigned int flags)
6014 {
6015 	pte_t *ptep, entry;
6016 	spinlock_t *ptl;
6017 	vm_fault_t ret;
6018 	u32 hash;
6019 	pgoff_t idx;
6020 	struct page *page = NULL;
6021 	struct folio *pagecache_folio = NULL;
6022 	struct hstate *h = hstate_vma(vma);
6023 	struct address_space *mapping;
6024 	int need_wait_lock = 0;
6025 	unsigned long haddr = address & huge_page_mask(h);
6026 
6027 	/*
6028 	 * Serialize hugepage allocation and instantiation, so that we don't
6029 	 * get spurious allocation failures if two CPUs race to instantiate
6030 	 * the same page in the page cache.
6031 	 */
6032 	mapping = vma->vm_file->f_mapping;
6033 	idx = vma_hugecache_offset(h, vma, haddr);
6034 	hash = hugetlb_fault_mutex_hash(mapping, idx);
6035 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6036 
6037 	/*
6038 	 * Acquire vma lock before calling huge_pte_alloc and hold
6039 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6040 	 * being called elsewhere and making the ptep no longer valid.
6041 	 */
6042 	hugetlb_vma_lock_read(vma);
6043 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6044 	if (!ptep) {
6045 		hugetlb_vma_unlock_read(vma);
6046 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6047 		return VM_FAULT_OOM;
6048 	}
6049 
6050 	entry = huge_ptep_get(ptep);
6051 	/* PTE markers should be handled the same way as none pte */
6052 	if (huge_pte_none_mostly(entry))
6053 		/*
6054 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6055 		 * mutex internally, which make us return immediately.
6056 		 */
6057 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6058 				      entry, flags);
6059 
6060 	ret = 0;
6061 
6062 	/*
6063 	 * entry could be a migration/hwpoison entry at this point, so this
6064 	 * check prevents the kernel from going below assuming that we have
6065 	 * an active hugepage in pagecache. This goto expects the 2nd page
6066 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6067 	 * properly handle it.
6068 	 */
6069 	if (!pte_present(entry)) {
6070 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6071 			/*
6072 			 * Release the hugetlb fault lock now, but retain
6073 			 * the vma lock, because it is needed to guard the
6074 			 * huge_pte_lockptr() later in
6075 			 * migration_entry_wait_huge(). The vma lock will
6076 			 * be released there.
6077 			 */
6078 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6079 			migration_entry_wait_huge(vma, ptep);
6080 			return 0;
6081 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6082 			ret = VM_FAULT_HWPOISON_LARGE |
6083 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6084 		goto out_mutex;
6085 	}
6086 
6087 	/*
6088 	 * If we are going to COW/unshare the mapping later, we examine the
6089 	 * pending reservations for this page now. This will ensure that any
6090 	 * allocations necessary to record that reservation occur outside the
6091 	 * spinlock. Also lookup the pagecache page now as it is used to
6092 	 * determine if a reservation has been consumed.
6093 	 */
6094 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6095 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6096 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6097 			ret = VM_FAULT_OOM;
6098 			goto out_mutex;
6099 		}
6100 		/* Just decrements count, does not deallocate */
6101 		vma_end_reservation(h, vma, haddr);
6102 
6103 		pagecache_folio = filemap_lock_folio(mapping, idx);
6104 		if (IS_ERR(pagecache_folio))
6105 			pagecache_folio = NULL;
6106 	}
6107 
6108 	ptl = huge_pte_lock(h, mm, ptep);
6109 
6110 	/* Check for a racing update before calling hugetlb_wp() */
6111 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6112 		goto out_ptl;
6113 
6114 	/* Handle userfault-wp first, before trying to lock more pages */
6115 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6116 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6117 		struct vm_fault vmf = {
6118 			.vma = vma,
6119 			.address = haddr,
6120 			.real_address = address,
6121 			.flags = flags,
6122 		};
6123 
6124 		spin_unlock(ptl);
6125 		if (pagecache_folio) {
6126 			folio_unlock(pagecache_folio);
6127 			folio_put(pagecache_folio);
6128 		}
6129 		hugetlb_vma_unlock_read(vma);
6130 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6131 		return handle_userfault(&vmf, VM_UFFD_WP);
6132 	}
6133 
6134 	/*
6135 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6136 	 * pagecache_folio, so here we need take the former one
6137 	 * when page != pagecache_folio or !pagecache_folio.
6138 	 */
6139 	page = pte_page(entry);
6140 	if (page_folio(page) != pagecache_folio)
6141 		if (!trylock_page(page)) {
6142 			need_wait_lock = 1;
6143 			goto out_ptl;
6144 		}
6145 
6146 	get_page(page);
6147 
6148 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6149 		if (!huge_pte_write(entry)) {
6150 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6151 					 pagecache_folio, ptl);
6152 			goto out_put_page;
6153 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6154 			entry = huge_pte_mkdirty(entry);
6155 		}
6156 	}
6157 	entry = pte_mkyoung(entry);
6158 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6159 						flags & FAULT_FLAG_WRITE))
6160 		update_mmu_cache(vma, haddr, ptep);
6161 out_put_page:
6162 	if (page_folio(page) != pagecache_folio)
6163 		unlock_page(page);
6164 	put_page(page);
6165 out_ptl:
6166 	spin_unlock(ptl);
6167 
6168 	if (pagecache_folio) {
6169 		folio_unlock(pagecache_folio);
6170 		folio_put(pagecache_folio);
6171 	}
6172 out_mutex:
6173 	hugetlb_vma_unlock_read(vma);
6174 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6175 	/*
6176 	 * Generally it's safe to hold refcount during waiting page lock. But
6177 	 * here we just wait to defer the next page fault to avoid busy loop and
6178 	 * the page is not used after unlocked before returning from the current
6179 	 * page fault. So we are safe from accessing freed page, even if we wait
6180 	 * here without taking refcount.
6181 	 */
6182 	if (need_wait_lock)
6183 		wait_on_page_locked(page);
6184 	return ret;
6185 }
6186 
6187 #ifdef CONFIG_USERFAULTFD
6188 /*
6189  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6190  * with modifications for hugetlb pages.
6191  */
6192 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6193 			     struct vm_area_struct *dst_vma,
6194 			     unsigned long dst_addr,
6195 			     unsigned long src_addr,
6196 			     uffd_flags_t flags,
6197 			     struct folio **foliop)
6198 {
6199 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6200 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6201 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6202 	struct hstate *h = hstate_vma(dst_vma);
6203 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6204 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6205 	unsigned long size;
6206 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6207 	pte_t _dst_pte;
6208 	spinlock_t *ptl;
6209 	int ret = -ENOMEM;
6210 	struct folio *folio;
6211 	int writable;
6212 	bool folio_in_pagecache = false;
6213 
6214 	if (is_continue) {
6215 		ret = -EFAULT;
6216 		folio = filemap_lock_folio(mapping, idx);
6217 		if (IS_ERR(folio))
6218 			goto out;
6219 		folio_in_pagecache = true;
6220 	} else if (!*foliop) {
6221 		/* If a folio already exists, then it's UFFDIO_COPY for
6222 		 * a non-missing case. Return -EEXIST.
6223 		 */
6224 		if (vm_shared &&
6225 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6226 			ret = -EEXIST;
6227 			goto out;
6228 		}
6229 
6230 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6231 		if (IS_ERR(folio)) {
6232 			ret = -ENOMEM;
6233 			goto out;
6234 		}
6235 
6236 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6237 					   false);
6238 
6239 		/* fallback to copy_from_user outside mmap_lock */
6240 		if (unlikely(ret)) {
6241 			ret = -ENOENT;
6242 			/* Free the allocated folio which may have
6243 			 * consumed a reservation.
6244 			 */
6245 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6246 			folio_put(folio);
6247 
6248 			/* Allocate a temporary folio to hold the copied
6249 			 * contents.
6250 			 */
6251 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6252 			if (!folio) {
6253 				ret = -ENOMEM;
6254 				goto out;
6255 			}
6256 			*foliop = folio;
6257 			/* Set the outparam foliop and return to the caller to
6258 			 * copy the contents outside the lock. Don't free the
6259 			 * folio.
6260 			 */
6261 			goto out;
6262 		}
6263 	} else {
6264 		if (vm_shared &&
6265 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6266 			folio_put(*foliop);
6267 			ret = -EEXIST;
6268 			*foliop = NULL;
6269 			goto out;
6270 		}
6271 
6272 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6273 		if (IS_ERR(folio)) {
6274 			folio_put(*foliop);
6275 			ret = -ENOMEM;
6276 			*foliop = NULL;
6277 			goto out;
6278 		}
6279 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6280 		folio_put(*foliop);
6281 		*foliop = NULL;
6282 		if (ret) {
6283 			folio_put(folio);
6284 			goto out;
6285 		}
6286 	}
6287 
6288 	/*
6289 	 * The memory barrier inside __folio_mark_uptodate makes sure that
6290 	 * preceding stores to the page contents become visible before
6291 	 * the set_pte_at() write.
6292 	 */
6293 	__folio_mark_uptodate(folio);
6294 
6295 	/* Add shared, newly allocated pages to the page cache. */
6296 	if (vm_shared && !is_continue) {
6297 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6298 		ret = -EFAULT;
6299 		if (idx >= size)
6300 			goto out_release_nounlock;
6301 
6302 		/*
6303 		 * Serialization between remove_inode_hugepages() and
6304 		 * hugetlb_add_to_page_cache() below happens through the
6305 		 * hugetlb_fault_mutex_table that here must be hold by
6306 		 * the caller.
6307 		 */
6308 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6309 		if (ret)
6310 			goto out_release_nounlock;
6311 		folio_in_pagecache = true;
6312 	}
6313 
6314 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6315 
6316 	ret = -EIO;
6317 	if (folio_test_hwpoison(folio))
6318 		goto out_release_unlock;
6319 
6320 	/*
6321 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6322 	 * registered, we firstly wr-protect a none pte which has no page cache
6323 	 * page backing it, then access the page.
6324 	 */
6325 	ret = -EEXIST;
6326 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6327 		goto out_release_unlock;
6328 
6329 	if (folio_in_pagecache)
6330 		page_dup_file_rmap(&folio->page, true);
6331 	else
6332 		hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6333 
6334 	/*
6335 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6336 	 * with wp flag set, don't set pte write bit.
6337 	 */
6338 	if (wp_enabled || (is_continue && !vm_shared))
6339 		writable = 0;
6340 	else
6341 		writable = dst_vma->vm_flags & VM_WRITE;
6342 
6343 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6344 	/*
6345 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6346 	 * extremely important for hugetlbfs for now since swapping is not
6347 	 * supported, but we should still be clear in that this page cannot be
6348 	 * thrown away at will, even if write bit not set.
6349 	 */
6350 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6351 	_dst_pte = pte_mkyoung(_dst_pte);
6352 
6353 	if (wp_enabled)
6354 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6355 
6356 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6357 
6358 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6359 
6360 	/* No need to invalidate - it was non-present before */
6361 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6362 
6363 	spin_unlock(ptl);
6364 	if (!is_continue)
6365 		folio_set_hugetlb_migratable(folio);
6366 	if (vm_shared || is_continue)
6367 		folio_unlock(folio);
6368 	ret = 0;
6369 out:
6370 	return ret;
6371 out_release_unlock:
6372 	spin_unlock(ptl);
6373 	if (vm_shared || is_continue)
6374 		folio_unlock(folio);
6375 out_release_nounlock:
6376 	if (!folio_in_pagecache)
6377 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6378 	folio_put(folio);
6379 	goto out;
6380 }
6381 #endif /* CONFIG_USERFAULTFD */
6382 
6383 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6384 				 int refs, struct page **pages,
6385 				 struct vm_area_struct **vmas)
6386 {
6387 	int nr;
6388 
6389 	for (nr = 0; nr < refs; nr++) {
6390 		if (likely(pages))
6391 			pages[nr] = nth_page(page, nr);
6392 		if (vmas)
6393 			vmas[nr] = vma;
6394 	}
6395 }
6396 
6397 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6398 					       unsigned int flags, pte_t *pte,
6399 					       bool *unshare)
6400 {
6401 	pte_t pteval = huge_ptep_get(pte);
6402 
6403 	*unshare = false;
6404 	if (is_swap_pte(pteval))
6405 		return true;
6406 	if (huge_pte_write(pteval))
6407 		return false;
6408 	if (flags & FOLL_WRITE)
6409 		return true;
6410 	if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6411 		*unshare = true;
6412 		return true;
6413 	}
6414 	return false;
6415 }
6416 
6417 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6418 				unsigned long address, unsigned int flags)
6419 {
6420 	struct hstate *h = hstate_vma(vma);
6421 	struct mm_struct *mm = vma->vm_mm;
6422 	unsigned long haddr = address & huge_page_mask(h);
6423 	struct page *page = NULL;
6424 	spinlock_t *ptl;
6425 	pte_t *pte, entry;
6426 
6427 	/*
6428 	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6429 	 * follow_hugetlb_page().
6430 	 */
6431 	if (WARN_ON_ONCE(flags & FOLL_PIN))
6432 		return NULL;
6433 
6434 	hugetlb_vma_lock_read(vma);
6435 	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6436 	if (!pte)
6437 		goto out_unlock;
6438 
6439 	ptl = huge_pte_lock(h, mm, pte);
6440 	entry = huge_ptep_get(pte);
6441 	if (pte_present(entry)) {
6442 		page = pte_page(entry) +
6443 				((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6444 		/*
6445 		 * Note that page may be a sub-page, and with vmemmap
6446 		 * optimizations the page struct may be read only.
6447 		 * try_grab_page() will increase the ref count on the
6448 		 * head page, so this will be OK.
6449 		 *
6450 		 * try_grab_page() should always be able to get the page here,
6451 		 * because we hold the ptl lock and have verified pte_present().
6452 		 */
6453 		if (try_grab_page(page, flags)) {
6454 			page = NULL;
6455 			goto out;
6456 		}
6457 	}
6458 out:
6459 	spin_unlock(ptl);
6460 out_unlock:
6461 	hugetlb_vma_unlock_read(vma);
6462 	return page;
6463 }
6464 
6465 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6466 			 struct page **pages, struct vm_area_struct **vmas,
6467 			 unsigned long *position, unsigned long *nr_pages,
6468 			 long i, unsigned int flags, int *locked)
6469 {
6470 	unsigned long pfn_offset;
6471 	unsigned long vaddr = *position;
6472 	unsigned long remainder = *nr_pages;
6473 	struct hstate *h = hstate_vma(vma);
6474 	int err = -EFAULT, refs;
6475 
6476 	while (vaddr < vma->vm_end && remainder) {
6477 		pte_t *pte;
6478 		spinlock_t *ptl = NULL;
6479 		bool unshare = false;
6480 		int absent;
6481 		struct page *page;
6482 
6483 		/*
6484 		 * If we have a pending SIGKILL, don't keep faulting pages and
6485 		 * potentially allocating memory.
6486 		 */
6487 		if (fatal_signal_pending(current)) {
6488 			remainder = 0;
6489 			break;
6490 		}
6491 
6492 		hugetlb_vma_lock_read(vma);
6493 		/*
6494 		 * Some archs (sparc64, sh*) have multiple pte_ts to
6495 		 * each hugepage.  We have to make sure we get the
6496 		 * first, for the page indexing below to work.
6497 		 *
6498 		 * Note that page table lock is not held when pte is null.
6499 		 */
6500 		pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6501 				   huge_page_size(h));
6502 		if (pte)
6503 			ptl = huge_pte_lock(h, mm, pte);
6504 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
6505 
6506 		/*
6507 		 * When coredumping, it suits get_dump_page if we just return
6508 		 * an error where there's an empty slot with no huge pagecache
6509 		 * to back it.  This way, we avoid allocating a hugepage, and
6510 		 * the sparse dumpfile avoids allocating disk blocks, but its
6511 		 * huge holes still show up with zeroes where they need to be.
6512 		 */
6513 		if (absent && (flags & FOLL_DUMP) &&
6514 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6515 			if (pte)
6516 				spin_unlock(ptl);
6517 			hugetlb_vma_unlock_read(vma);
6518 			remainder = 0;
6519 			break;
6520 		}
6521 
6522 		/*
6523 		 * We need call hugetlb_fault for both hugepages under migration
6524 		 * (in which case hugetlb_fault waits for the migration,) and
6525 		 * hwpoisoned hugepages (in which case we need to prevent the
6526 		 * caller from accessing to them.) In order to do this, we use
6527 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6528 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6529 		 * both cases, and because we can't follow correct pages
6530 		 * directly from any kind of swap entries.
6531 		 */
6532 		if (absent ||
6533 		    __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6534 			vm_fault_t ret;
6535 			unsigned int fault_flags = 0;
6536 
6537 			if (pte)
6538 				spin_unlock(ptl);
6539 			hugetlb_vma_unlock_read(vma);
6540 
6541 			if (flags & FOLL_WRITE)
6542 				fault_flags |= FAULT_FLAG_WRITE;
6543 			else if (unshare)
6544 				fault_flags |= FAULT_FLAG_UNSHARE;
6545 			if (locked) {
6546 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6547 					FAULT_FLAG_KILLABLE;
6548 				if (flags & FOLL_INTERRUPTIBLE)
6549 					fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6550 			}
6551 			if (flags & FOLL_NOWAIT)
6552 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6553 					FAULT_FLAG_RETRY_NOWAIT;
6554 			if (flags & FOLL_TRIED) {
6555 				/*
6556 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6557 				 * FAULT_FLAG_TRIED can co-exist
6558 				 */
6559 				fault_flags |= FAULT_FLAG_TRIED;
6560 			}
6561 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6562 			if (ret & VM_FAULT_ERROR) {
6563 				err = vm_fault_to_errno(ret, flags);
6564 				remainder = 0;
6565 				break;
6566 			}
6567 			if (ret & VM_FAULT_RETRY) {
6568 				if (locked &&
6569 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6570 					*locked = 0;
6571 				*nr_pages = 0;
6572 				/*
6573 				 * VM_FAULT_RETRY must not return an
6574 				 * error, it will return zero
6575 				 * instead.
6576 				 *
6577 				 * No need to update "position" as the
6578 				 * caller will not check it after
6579 				 * *nr_pages is set to 0.
6580 				 */
6581 				return i;
6582 			}
6583 			continue;
6584 		}
6585 
6586 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6587 		page = pte_page(huge_ptep_get(pte));
6588 
6589 		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6590 			       !PageAnonExclusive(page), page);
6591 
6592 		/*
6593 		 * If subpage information not requested, update counters
6594 		 * and skip the same_page loop below.
6595 		 */
6596 		if (!pages && !vmas && !pfn_offset &&
6597 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6598 		    (remainder >= pages_per_huge_page(h))) {
6599 			vaddr += huge_page_size(h);
6600 			remainder -= pages_per_huge_page(h);
6601 			i += pages_per_huge_page(h);
6602 			spin_unlock(ptl);
6603 			hugetlb_vma_unlock_read(vma);
6604 			continue;
6605 		}
6606 
6607 		/* vaddr may not be aligned to PAGE_SIZE */
6608 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6609 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6610 
6611 		if (pages || vmas)
6612 			record_subpages_vmas(nth_page(page, pfn_offset),
6613 					     vma, refs,
6614 					     likely(pages) ? pages + i : NULL,
6615 					     vmas ? vmas + i : NULL);
6616 
6617 		if (pages) {
6618 			/*
6619 			 * try_grab_folio() should always succeed here,
6620 			 * because: a) we hold the ptl lock, and b) we've just
6621 			 * checked that the huge page is present in the page
6622 			 * tables. If the huge page is present, then the tail
6623 			 * pages must also be present. The ptl prevents the
6624 			 * head page and tail pages from being rearranged in
6625 			 * any way. As this is hugetlb, the pages will never
6626 			 * be p2pdma or not longterm pinable. So this page
6627 			 * must be available at this point, unless the page
6628 			 * refcount overflowed:
6629 			 */
6630 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6631 							 flags))) {
6632 				spin_unlock(ptl);
6633 				hugetlb_vma_unlock_read(vma);
6634 				remainder = 0;
6635 				err = -ENOMEM;
6636 				break;
6637 			}
6638 		}
6639 
6640 		vaddr += (refs << PAGE_SHIFT);
6641 		remainder -= refs;
6642 		i += refs;
6643 
6644 		spin_unlock(ptl);
6645 		hugetlb_vma_unlock_read(vma);
6646 	}
6647 	*nr_pages = remainder;
6648 	/*
6649 	 * setting position is actually required only if remainder is
6650 	 * not zero but it's faster not to add a "if (remainder)"
6651 	 * branch.
6652 	 */
6653 	*position = vaddr;
6654 
6655 	return i ? i : err;
6656 }
6657 
6658 long hugetlb_change_protection(struct vm_area_struct *vma,
6659 		unsigned long address, unsigned long end,
6660 		pgprot_t newprot, unsigned long cp_flags)
6661 {
6662 	struct mm_struct *mm = vma->vm_mm;
6663 	unsigned long start = address;
6664 	pte_t *ptep;
6665 	pte_t pte;
6666 	struct hstate *h = hstate_vma(vma);
6667 	long pages = 0, psize = huge_page_size(h);
6668 	bool shared_pmd = false;
6669 	struct mmu_notifier_range range;
6670 	unsigned long last_addr_mask;
6671 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6672 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6673 
6674 	/*
6675 	 * In the case of shared PMDs, the area to flush could be beyond
6676 	 * start/end.  Set range.start/range.end to cover the maximum possible
6677 	 * range if PMD sharing is possible.
6678 	 */
6679 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6680 				0, mm, start, end);
6681 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6682 
6683 	BUG_ON(address >= end);
6684 	flush_cache_range(vma, range.start, range.end);
6685 
6686 	mmu_notifier_invalidate_range_start(&range);
6687 	hugetlb_vma_lock_write(vma);
6688 	i_mmap_lock_write(vma->vm_file->f_mapping);
6689 	last_addr_mask = hugetlb_mask_last_page(h);
6690 	for (; address < end; address += psize) {
6691 		spinlock_t *ptl;
6692 		ptep = hugetlb_walk(vma, address, psize);
6693 		if (!ptep) {
6694 			if (!uffd_wp) {
6695 				address |= last_addr_mask;
6696 				continue;
6697 			}
6698 			/*
6699 			 * Userfaultfd wr-protect requires pgtable
6700 			 * pre-allocations to install pte markers.
6701 			 */
6702 			ptep = huge_pte_alloc(mm, vma, address, psize);
6703 			if (!ptep) {
6704 				pages = -ENOMEM;
6705 				break;
6706 			}
6707 		}
6708 		ptl = huge_pte_lock(h, mm, ptep);
6709 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6710 			/*
6711 			 * When uffd-wp is enabled on the vma, unshare
6712 			 * shouldn't happen at all.  Warn about it if it
6713 			 * happened due to some reason.
6714 			 */
6715 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6716 			pages++;
6717 			spin_unlock(ptl);
6718 			shared_pmd = true;
6719 			address |= last_addr_mask;
6720 			continue;
6721 		}
6722 		pte = huge_ptep_get(ptep);
6723 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6724 			/* Nothing to do. */
6725 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6726 			swp_entry_t entry = pte_to_swp_entry(pte);
6727 			struct page *page = pfn_swap_entry_to_page(entry);
6728 			pte_t newpte = pte;
6729 
6730 			if (is_writable_migration_entry(entry)) {
6731 				if (PageAnon(page))
6732 					entry = make_readable_exclusive_migration_entry(
6733 								swp_offset(entry));
6734 				else
6735 					entry = make_readable_migration_entry(
6736 								swp_offset(entry));
6737 				newpte = swp_entry_to_pte(entry);
6738 				pages++;
6739 			}
6740 
6741 			if (uffd_wp)
6742 				newpte = pte_swp_mkuffd_wp(newpte);
6743 			else if (uffd_wp_resolve)
6744 				newpte = pte_swp_clear_uffd_wp(newpte);
6745 			if (!pte_same(pte, newpte))
6746 				set_huge_pte_at(mm, address, ptep, newpte);
6747 		} else if (unlikely(is_pte_marker(pte))) {
6748 			/* No other markers apply for now. */
6749 			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6750 			if (uffd_wp_resolve)
6751 				/* Safe to modify directly (non-present->none). */
6752 				huge_pte_clear(mm, address, ptep, psize);
6753 		} else if (!huge_pte_none(pte)) {
6754 			pte_t old_pte;
6755 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6756 
6757 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6758 			pte = huge_pte_modify(old_pte, newprot);
6759 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6760 			if (uffd_wp)
6761 				pte = huge_pte_mkuffd_wp(pte);
6762 			else if (uffd_wp_resolve)
6763 				pte = huge_pte_clear_uffd_wp(pte);
6764 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6765 			pages++;
6766 		} else {
6767 			/* None pte */
6768 			if (unlikely(uffd_wp))
6769 				/* Safe to modify directly (none->non-present). */
6770 				set_huge_pte_at(mm, address, ptep,
6771 						make_pte_marker(PTE_MARKER_UFFD_WP));
6772 		}
6773 		spin_unlock(ptl);
6774 	}
6775 	/*
6776 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6777 	 * may have cleared our pud entry and done put_page on the page table:
6778 	 * once we release i_mmap_rwsem, another task can do the final put_page
6779 	 * and that page table be reused and filled with junk.  If we actually
6780 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6781 	 */
6782 	if (shared_pmd)
6783 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6784 	else
6785 		flush_hugetlb_tlb_range(vma, start, end);
6786 	/*
6787 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6788 	 * page table protection not changing it to point to a new page.
6789 	 *
6790 	 * See Documentation/mm/mmu_notifier.rst
6791 	 */
6792 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6793 	hugetlb_vma_unlock_write(vma);
6794 	mmu_notifier_invalidate_range_end(&range);
6795 
6796 	return pages > 0 ? (pages << h->order) : pages;
6797 }
6798 
6799 /* Return true if reservation was successful, false otherwise.  */
6800 bool hugetlb_reserve_pages(struct inode *inode,
6801 					long from, long to,
6802 					struct vm_area_struct *vma,
6803 					vm_flags_t vm_flags)
6804 {
6805 	long chg = -1, add = -1;
6806 	struct hstate *h = hstate_inode(inode);
6807 	struct hugepage_subpool *spool = subpool_inode(inode);
6808 	struct resv_map *resv_map;
6809 	struct hugetlb_cgroup *h_cg = NULL;
6810 	long gbl_reserve, regions_needed = 0;
6811 
6812 	/* This should never happen */
6813 	if (from > to) {
6814 		VM_WARN(1, "%s called with a negative range\n", __func__);
6815 		return false;
6816 	}
6817 
6818 	/*
6819 	 * vma specific semaphore used for pmd sharing and fault/truncation
6820 	 * synchronization
6821 	 */
6822 	hugetlb_vma_lock_alloc(vma);
6823 
6824 	/*
6825 	 * Only apply hugepage reservation if asked. At fault time, an
6826 	 * attempt will be made for VM_NORESERVE to allocate a page
6827 	 * without using reserves
6828 	 */
6829 	if (vm_flags & VM_NORESERVE)
6830 		return true;
6831 
6832 	/*
6833 	 * Shared mappings base their reservation on the number of pages that
6834 	 * are already allocated on behalf of the file. Private mappings need
6835 	 * to reserve the full area even if read-only as mprotect() may be
6836 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6837 	 */
6838 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6839 		/*
6840 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6841 		 * called for inodes for which resv_maps were created (see
6842 		 * hugetlbfs_get_inode).
6843 		 */
6844 		resv_map = inode_resv_map(inode);
6845 
6846 		chg = region_chg(resv_map, from, to, &regions_needed);
6847 	} else {
6848 		/* Private mapping. */
6849 		resv_map = resv_map_alloc();
6850 		if (!resv_map)
6851 			goto out_err;
6852 
6853 		chg = to - from;
6854 
6855 		set_vma_resv_map(vma, resv_map);
6856 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6857 	}
6858 
6859 	if (chg < 0)
6860 		goto out_err;
6861 
6862 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6863 				chg * pages_per_huge_page(h), &h_cg) < 0)
6864 		goto out_err;
6865 
6866 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6867 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6868 		 * of the resv_map.
6869 		 */
6870 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6871 	}
6872 
6873 	/*
6874 	 * There must be enough pages in the subpool for the mapping. If
6875 	 * the subpool has a minimum size, there may be some global
6876 	 * reservations already in place (gbl_reserve).
6877 	 */
6878 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6879 	if (gbl_reserve < 0)
6880 		goto out_uncharge_cgroup;
6881 
6882 	/*
6883 	 * Check enough hugepages are available for the reservation.
6884 	 * Hand the pages back to the subpool if there are not
6885 	 */
6886 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6887 		goto out_put_pages;
6888 
6889 	/*
6890 	 * Account for the reservations made. Shared mappings record regions
6891 	 * that have reservations as they are shared by multiple VMAs.
6892 	 * When the last VMA disappears, the region map says how much
6893 	 * the reservation was and the page cache tells how much of
6894 	 * the reservation was consumed. Private mappings are per-VMA and
6895 	 * only the consumed reservations are tracked. When the VMA
6896 	 * disappears, the original reservation is the VMA size and the
6897 	 * consumed reservations are stored in the map. Hence, nothing
6898 	 * else has to be done for private mappings here
6899 	 */
6900 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6901 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6902 
6903 		if (unlikely(add < 0)) {
6904 			hugetlb_acct_memory(h, -gbl_reserve);
6905 			goto out_put_pages;
6906 		} else if (unlikely(chg > add)) {
6907 			/*
6908 			 * pages in this range were added to the reserve
6909 			 * map between region_chg and region_add.  This
6910 			 * indicates a race with alloc_hugetlb_folio.  Adjust
6911 			 * the subpool and reserve counts modified above
6912 			 * based on the difference.
6913 			 */
6914 			long rsv_adjust;
6915 
6916 			/*
6917 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6918 			 * reference to h_cg->css. See comment below for detail.
6919 			 */
6920 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6921 				hstate_index(h),
6922 				(chg - add) * pages_per_huge_page(h), h_cg);
6923 
6924 			rsv_adjust = hugepage_subpool_put_pages(spool,
6925 								chg - add);
6926 			hugetlb_acct_memory(h, -rsv_adjust);
6927 		} else if (h_cg) {
6928 			/*
6929 			 * The file_regions will hold their own reference to
6930 			 * h_cg->css. So we should release the reference held
6931 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6932 			 * done.
6933 			 */
6934 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6935 		}
6936 	}
6937 	return true;
6938 
6939 out_put_pages:
6940 	/* put back original number of pages, chg */
6941 	(void)hugepage_subpool_put_pages(spool, chg);
6942 out_uncharge_cgroup:
6943 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6944 					    chg * pages_per_huge_page(h), h_cg);
6945 out_err:
6946 	hugetlb_vma_lock_free(vma);
6947 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6948 		/* Only call region_abort if the region_chg succeeded but the
6949 		 * region_add failed or didn't run.
6950 		 */
6951 		if (chg >= 0 && add < 0)
6952 			region_abort(resv_map, from, to, regions_needed);
6953 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6954 		kref_put(&resv_map->refs, resv_map_release);
6955 	return false;
6956 }
6957 
6958 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6959 								long freed)
6960 {
6961 	struct hstate *h = hstate_inode(inode);
6962 	struct resv_map *resv_map = inode_resv_map(inode);
6963 	long chg = 0;
6964 	struct hugepage_subpool *spool = subpool_inode(inode);
6965 	long gbl_reserve;
6966 
6967 	/*
6968 	 * Since this routine can be called in the evict inode path for all
6969 	 * hugetlbfs inodes, resv_map could be NULL.
6970 	 */
6971 	if (resv_map) {
6972 		chg = region_del(resv_map, start, end);
6973 		/*
6974 		 * region_del() can fail in the rare case where a region
6975 		 * must be split and another region descriptor can not be
6976 		 * allocated.  If end == LONG_MAX, it will not fail.
6977 		 */
6978 		if (chg < 0)
6979 			return chg;
6980 	}
6981 
6982 	spin_lock(&inode->i_lock);
6983 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6984 	spin_unlock(&inode->i_lock);
6985 
6986 	/*
6987 	 * If the subpool has a minimum size, the number of global
6988 	 * reservations to be released may be adjusted.
6989 	 *
6990 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6991 	 * won't go negative.
6992 	 */
6993 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6994 	hugetlb_acct_memory(h, -gbl_reserve);
6995 
6996 	return 0;
6997 }
6998 
6999 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7000 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7001 				struct vm_area_struct *vma,
7002 				unsigned long addr, pgoff_t idx)
7003 {
7004 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7005 				svma->vm_start;
7006 	unsigned long sbase = saddr & PUD_MASK;
7007 	unsigned long s_end = sbase + PUD_SIZE;
7008 
7009 	/* Allow segments to share if only one is marked locked */
7010 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7011 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7012 
7013 	/*
7014 	 * match the virtual addresses, permission and the alignment of the
7015 	 * page table page.
7016 	 *
7017 	 * Also, vma_lock (vm_private_data) is required for sharing.
7018 	 */
7019 	if (pmd_index(addr) != pmd_index(saddr) ||
7020 	    vm_flags != svm_flags ||
7021 	    !range_in_vma(svma, sbase, s_end) ||
7022 	    !svma->vm_private_data)
7023 		return 0;
7024 
7025 	return saddr;
7026 }
7027 
7028 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7029 {
7030 	unsigned long start = addr & PUD_MASK;
7031 	unsigned long end = start + PUD_SIZE;
7032 
7033 #ifdef CONFIG_USERFAULTFD
7034 	if (uffd_disable_huge_pmd_share(vma))
7035 		return false;
7036 #endif
7037 	/*
7038 	 * check on proper vm_flags and page table alignment
7039 	 */
7040 	if (!(vma->vm_flags & VM_MAYSHARE))
7041 		return false;
7042 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7043 		return false;
7044 	if (!range_in_vma(vma, start, end))
7045 		return false;
7046 	return true;
7047 }
7048 
7049 /*
7050  * Determine if start,end range within vma could be mapped by shared pmd.
7051  * If yes, adjust start and end to cover range associated with possible
7052  * shared pmd mappings.
7053  */
7054 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7055 				unsigned long *start, unsigned long *end)
7056 {
7057 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7058 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7059 
7060 	/*
7061 	 * vma needs to span at least one aligned PUD size, and the range
7062 	 * must be at least partially within in.
7063 	 */
7064 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7065 		(*end <= v_start) || (*start >= v_end))
7066 		return;
7067 
7068 	/* Extend the range to be PUD aligned for a worst case scenario */
7069 	if (*start > v_start)
7070 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7071 
7072 	if (*end < v_end)
7073 		*end = ALIGN(*end, PUD_SIZE);
7074 }
7075 
7076 /*
7077  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7078  * and returns the corresponding pte. While this is not necessary for the
7079  * !shared pmd case because we can allocate the pmd later as well, it makes the
7080  * code much cleaner. pmd allocation is essential for the shared case because
7081  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7082  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7083  * bad pmd for sharing.
7084  */
7085 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7086 		      unsigned long addr, pud_t *pud)
7087 {
7088 	struct address_space *mapping = vma->vm_file->f_mapping;
7089 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7090 			vma->vm_pgoff;
7091 	struct vm_area_struct *svma;
7092 	unsigned long saddr;
7093 	pte_t *spte = NULL;
7094 	pte_t *pte;
7095 	spinlock_t *ptl;
7096 
7097 	i_mmap_lock_read(mapping);
7098 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7099 		if (svma == vma)
7100 			continue;
7101 
7102 		saddr = page_table_shareable(svma, vma, addr, idx);
7103 		if (saddr) {
7104 			spte = hugetlb_walk(svma, saddr,
7105 					    vma_mmu_pagesize(svma));
7106 			if (spte) {
7107 				get_page(virt_to_page(spte));
7108 				break;
7109 			}
7110 		}
7111 	}
7112 
7113 	if (!spte)
7114 		goto out;
7115 
7116 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7117 	if (pud_none(*pud)) {
7118 		pud_populate(mm, pud,
7119 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7120 		mm_inc_nr_pmds(mm);
7121 	} else {
7122 		put_page(virt_to_page(spte));
7123 	}
7124 	spin_unlock(ptl);
7125 out:
7126 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7127 	i_mmap_unlock_read(mapping);
7128 	return pte;
7129 }
7130 
7131 /*
7132  * unmap huge page backed by shared pte.
7133  *
7134  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7135  * indicated by page_count > 1, unmap is achieved by clearing pud and
7136  * decrementing the ref count. If count == 1, the pte page is not shared.
7137  *
7138  * Called with page table lock held.
7139  *
7140  * returns: 1 successfully unmapped a shared pte page
7141  *	    0 the underlying pte page is not shared, or it is the last user
7142  */
7143 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7144 					unsigned long addr, pte_t *ptep)
7145 {
7146 	pgd_t *pgd = pgd_offset(mm, addr);
7147 	p4d_t *p4d = p4d_offset(pgd, addr);
7148 	pud_t *pud = pud_offset(p4d, addr);
7149 
7150 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7151 	hugetlb_vma_assert_locked(vma);
7152 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7153 	if (page_count(virt_to_page(ptep)) == 1)
7154 		return 0;
7155 
7156 	pud_clear(pud);
7157 	put_page(virt_to_page(ptep));
7158 	mm_dec_nr_pmds(mm);
7159 	return 1;
7160 }
7161 
7162 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7163 
7164 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7165 		      unsigned long addr, pud_t *pud)
7166 {
7167 	return NULL;
7168 }
7169 
7170 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7171 				unsigned long addr, pte_t *ptep)
7172 {
7173 	return 0;
7174 }
7175 
7176 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7177 				unsigned long *start, unsigned long *end)
7178 {
7179 }
7180 
7181 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7182 {
7183 	return false;
7184 }
7185 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7186 
7187 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7188 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7189 			unsigned long addr, unsigned long sz)
7190 {
7191 	pgd_t *pgd;
7192 	p4d_t *p4d;
7193 	pud_t *pud;
7194 	pte_t *pte = NULL;
7195 
7196 	pgd = pgd_offset(mm, addr);
7197 	p4d = p4d_alloc(mm, pgd, addr);
7198 	if (!p4d)
7199 		return NULL;
7200 	pud = pud_alloc(mm, p4d, addr);
7201 	if (pud) {
7202 		if (sz == PUD_SIZE) {
7203 			pte = (pte_t *)pud;
7204 		} else {
7205 			BUG_ON(sz != PMD_SIZE);
7206 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7207 				pte = huge_pmd_share(mm, vma, addr, pud);
7208 			else
7209 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7210 		}
7211 	}
7212 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7213 
7214 	return pte;
7215 }
7216 
7217 /*
7218  * huge_pte_offset() - Walk the page table to resolve the hugepage
7219  * entry at address @addr
7220  *
7221  * Return: Pointer to page table entry (PUD or PMD) for
7222  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7223  * size @sz doesn't match the hugepage size at this level of the page
7224  * table.
7225  */
7226 pte_t *huge_pte_offset(struct mm_struct *mm,
7227 		       unsigned long addr, unsigned long sz)
7228 {
7229 	pgd_t *pgd;
7230 	p4d_t *p4d;
7231 	pud_t *pud;
7232 	pmd_t *pmd;
7233 
7234 	pgd = pgd_offset(mm, addr);
7235 	if (!pgd_present(*pgd))
7236 		return NULL;
7237 	p4d = p4d_offset(pgd, addr);
7238 	if (!p4d_present(*p4d))
7239 		return NULL;
7240 
7241 	pud = pud_offset(p4d, addr);
7242 	if (sz == PUD_SIZE)
7243 		/* must be pud huge, non-present or none */
7244 		return (pte_t *)pud;
7245 	if (!pud_present(*pud))
7246 		return NULL;
7247 	/* must have a valid entry and size to go further */
7248 
7249 	pmd = pmd_offset(pud, addr);
7250 	/* must be pmd huge, non-present or none */
7251 	return (pte_t *)pmd;
7252 }
7253 
7254 /*
7255  * Return a mask that can be used to update an address to the last huge
7256  * page in a page table page mapping size.  Used to skip non-present
7257  * page table entries when linearly scanning address ranges.  Architectures
7258  * with unique huge page to page table relationships can define their own
7259  * version of this routine.
7260  */
7261 unsigned long hugetlb_mask_last_page(struct hstate *h)
7262 {
7263 	unsigned long hp_size = huge_page_size(h);
7264 
7265 	if (hp_size == PUD_SIZE)
7266 		return P4D_SIZE - PUD_SIZE;
7267 	else if (hp_size == PMD_SIZE)
7268 		return PUD_SIZE - PMD_SIZE;
7269 	else
7270 		return 0UL;
7271 }
7272 
7273 #else
7274 
7275 /* See description above.  Architectures can provide their own version. */
7276 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7277 {
7278 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7279 	if (huge_page_size(h) == PMD_SIZE)
7280 		return PUD_SIZE - PMD_SIZE;
7281 #endif
7282 	return 0UL;
7283 }
7284 
7285 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7286 
7287 /*
7288  * These functions are overwritable if your architecture needs its own
7289  * behavior.
7290  */
7291 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7292 {
7293 	bool ret = true;
7294 
7295 	spin_lock_irq(&hugetlb_lock);
7296 	if (!folio_test_hugetlb(folio) ||
7297 	    !folio_test_hugetlb_migratable(folio) ||
7298 	    !folio_try_get(folio)) {
7299 		ret = false;
7300 		goto unlock;
7301 	}
7302 	folio_clear_hugetlb_migratable(folio);
7303 	list_move_tail(&folio->lru, list);
7304 unlock:
7305 	spin_unlock_irq(&hugetlb_lock);
7306 	return ret;
7307 }
7308 
7309 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7310 {
7311 	int ret = 0;
7312 
7313 	*hugetlb = false;
7314 	spin_lock_irq(&hugetlb_lock);
7315 	if (folio_test_hugetlb(folio)) {
7316 		*hugetlb = true;
7317 		if (folio_test_hugetlb_freed(folio))
7318 			ret = 0;
7319 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7320 			ret = folio_try_get(folio);
7321 		else
7322 			ret = -EBUSY;
7323 	}
7324 	spin_unlock_irq(&hugetlb_lock);
7325 	return ret;
7326 }
7327 
7328 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7329 				bool *migratable_cleared)
7330 {
7331 	int ret;
7332 
7333 	spin_lock_irq(&hugetlb_lock);
7334 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7335 	spin_unlock_irq(&hugetlb_lock);
7336 	return ret;
7337 }
7338 
7339 void folio_putback_active_hugetlb(struct folio *folio)
7340 {
7341 	spin_lock_irq(&hugetlb_lock);
7342 	folio_set_hugetlb_migratable(folio);
7343 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7344 	spin_unlock_irq(&hugetlb_lock);
7345 	folio_put(folio);
7346 }
7347 
7348 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7349 {
7350 	struct hstate *h = folio_hstate(old_folio);
7351 
7352 	hugetlb_cgroup_migrate(old_folio, new_folio);
7353 	set_page_owner_migrate_reason(&new_folio->page, reason);
7354 
7355 	/*
7356 	 * transfer temporary state of the new hugetlb folio. This is
7357 	 * reverse to other transitions because the newpage is going to
7358 	 * be final while the old one will be freed so it takes over
7359 	 * the temporary status.
7360 	 *
7361 	 * Also note that we have to transfer the per-node surplus state
7362 	 * here as well otherwise the global surplus count will not match
7363 	 * the per-node's.
7364 	 */
7365 	if (folio_test_hugetlb_temporary(new_folio)) {
7366 		int old_nid = folio_nid(old_folio);
7367 		int new_nid = folio_nid(new_folio);
7368 
7369 		folio_set_hugetlb_temporary(old_folio);
7370 		folio_clear_hugetlb_temporary(new_folio);
7371 
7372 
7373 		/*
7374 		 * There is no need to transfer the per-node surplus state
7375 		 * when we do not cross the node.
7376 		 */
7377 		if (new_nid == old_nid)
7378 			return;
7379 		spin_lock_irq(&hugetlb_lock);
7380 		if (h->surplus_huge_pages_node[old_nid]) {
7381 			h->surplus_huge_pages_node[old_nid]--;
7382 			h->surplus_huge_pages_node[new_nid]++;
7383 		}
7384 		spin_unlock_irq(&hugetlb_lock);
7385 	}
7386 }
7387 
7388 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7389 				   unsigned long start,
7390 				   unsigned long end)
7391 {
7392 	struct hstate *h = hstate_vma(vma);
7393 	unsigned long sz = huge_page_size(h);
7394 	struct mm_struct *mm = vma->vm_mm;
7395 	struct mmu_notifier_range range;
7396 	unsigned long address;
7397 	spinlock_t *ptl;
7398 	pte_t *ptep;
7399 
7400 	if (!(vma->vm_flags & VM_MAYSHARE))
7401 		return;
7402 
7403 	if (start >= end)
7404 		return;
7405 
7406 	flush_cache_range(vma, start, end);
7407 	/*
7408 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7409 	 * we have already done the PUD_SIZE alignment.
7410 	 */
7411 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7412 				start, end);
7413 	mmu_notifier_invalidate_range_start(&range);
7414 	hugetlb_vma_lock_write(vma);
7415 	i_mmap_lock_write(vma->vm_file->f_mapping);
7416 	for (address = start; address < end; address += PUD_SIZE) {
7417 		ptep = hugetlb_walk(vma, address, sz);
7418 		if (!ptep)
7419 			continue;
7420 		ptl = huge_pte_lock(h, mm, ptep);
7421 		huge_pmd_unshare(mm, vma, address, ptep);
7422 		spin_unlock(ptl);
7423 	}
7424 	flush_hugetlb_tlb_range(vma, start, end);
7425 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7426 	hugetlb_vma_unlock_write(vma);
7427 	/*
7428 	 * No need to call mmu_notifier_invalidate_range(), see
7429 	 * Documentation/mm/mmu_notifier.rst.
7430 	 */
7431 	mmu_notifier_invalidate_range_end(&range);
7432 }
7433 
7434 /*
7435  * This function will unconditionally remove all the shared pmd pgtable entries
7436  * within the specific vma for a hugetlbfs memory range.
7437  */
7438 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7439 {
7440 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7441 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7442 }
7443 
7444 #ifdef CONFIG_CMA
7445 static bool cma_reserve_called __initdata;
7446 
7447 static int __init cmdline_parse_hugetlb_cma(char *p)
7448 {
7449 	int nid, count = 0;
7450 	unsigned long tmp;
7451 	char *s = p;
7452 
7453 	while (*s) {
7454 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7455 			break;
7456 
7457 		if (s[count] == ':') {
7458 			if (tmp >= MAX_NUMNODES)
7459 				break;
7460 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7461 
7462 			s += count + 1;
7463 			tmp = memparse(s, &s);
7464 			hugetlb_cma_size_in_node[nid] = tmp;
7465 			hugetlb_cma_size += tmp;
7466 
7467 			/*
7468 			 * Skip the separator if have one, otherwise
7469 			 * break the parsing.
7470 			 */
7471 			if (*s == ',')
7472 				s++;
7473 			else
7474 				break;
7475 		} else {
7476 			hugetlb_cma_size = memparse(p, &p);
7477 			break;
7478 		}
7479 	}
7480 
7481 	return 0;
7482 }
7483 
7484 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7485 
7486 void __init hugetlb_cma_reserve(int order)
7487 {
7488 	unsigned long size, reserved, per_node;
7489 	bool node_specific_cma_alloc = false;
7490 	int nid;
7491 
7492 	cma_reserve_called = true;
7493 
7494 	if (!hugetlb_cma_size)
7495 		return;
7496 
7497 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7498 		if (hugetlb_cma_size_in_node[nid] == 0)
7499 			continue;
7500 
7501 		if (!node_online(nid)) {
7502 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7503 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7504 			hugetlb_cma_size_in_node[nid] = 0;
7505 			continue;
7506 		}
7507 
7508 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7509 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7510 				nid, (PAGE_SIZE << order) / SZ_1M);
7511 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7512 			hugetlb_cma_size_in_node[nid] = 0;
7513 		} else {
7514 			node_specific_cma_alloc = true;
7515 		}
7516 	}
7517 
7518 	/* Validate the CMA size again in case some invalid nodes specified. */
7519 	if (!hugetlb_cma_size)
7520 		return;
7521 
7522 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7523 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7524 			(PAGE_SIZE << order) / SZ_1M);
7525 		hugetlb_cma_size = 0;
7526 		return;
7527 	}
7528 
7529 	if (!node_specific_cma_alloc) {
7530 		/*
7531 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7532 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7533 		 */
7534 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7535 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7536 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7537 	}
7538 
7539 	reserved = 0;
7540 	for_each_online_node(nid) {
7541 		int res;
7542 		char name[CMA_MAX_NAME];
7543 
7544 		if (node_specific_cma_alloc) {
7545 			if (hugetlb_cma_size_in_node[nid] == 0)
7546 				continue;
7547 
7548 			size = hugetlb_cma_size_in_node[nid];
7549 		} else {
7550 			size = min(per_node, hugetlb_cma_size - reserved);
7551 		}
7552 
7553 		size = round_up(size, PAGE_SIZE << order);
7554 
7555 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7556 		/*
7557 		 * Note that 'order per bit' is based on smallest size that
7558 		 * may be returned to CMA allocator in the case of
7559 		 * huge page demotion.
7560 		 */
7561 		res = cma_declare_contiguous_nid(0, size, 0,
7562 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7563 						 0, false, name,
7564 						 &hugetlb_cma[nid], nid);
7565 		if (res) {
7566 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7567 				res, nid);
7568 			continue;
7569 		}
7570 
7571 		reserved += size;
7572 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7573 			size / SZ_1M, nid);
7574 
7575 		if (reserved >= hugetlb_cma_size)
7576 			break;
7577 	}
7578 
7579 	if (!reserved)
7580 		/*
7581 		 * hugetlb_cma_size is used to determine if allocations from
7582 		 * cma are possible.  Set to zero if no cma regions are set up.
7583 		 */
7584 		hugetlb_cma_size = 0;
7585 }
7586 
7587 static void __init hugetlb_cma_check(void)
7588 {
7589 	if (!hugetlb_cma_size || cma_reserve_called)
7590 		return;
7591 
7592 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7593 }
7594 
7595 #endif /* CONFIG_CMA */
7596