xref: /openbmc/linux/mm/hugetlb.c (revision cff11abeca78aa782378401ca2800bd2194aa14e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
31 #include <linux/cma.h>
32 
33 #include <asm/page.h>
34 #include <asm/pgtable.h>
35 #include <asm/tlb.h>
36 
37 #include <linux/io.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/node.h>
41 #include <linux/userfaultfd_k.h>
42 #include <linux/page_owner.h>
43 #include "internal.h"
44 
45 int hugetlb_max_hstate __read_mostly;
46 unsigned int default_hstate_idx;
47 struct hstate hstates[HUGE_MAX_HSTATE];
48 
49 static struct cma *hugetlb_cma[MAX_NUMNODES];
50 
51 /*
52  * Minimum page order among possible hugepage sizes, set to a proper value
53  * at boot time.
54  */
55 static unsigned int minimum_order __read_mostly = UINT_MAX;
56 
57 __initdata LIST_HEAD(huge_boot_pages);
58 
59 /* for command line parsing */
60 static struct hstate * __initdata parsed_hstate;
61 static unsigned long __initdata default_hstate_max_huge_pages;
62 static bool __initdata parsed_valid_hugepagesz = true;
63 static bool __initdata parsed_default_hugepagesz;
64 
65 /*
66  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
67  * free_huge_pages, and surplus_huge_pages.
68  */
69 DEFINE_SPINLOCK(hugetlb_lock);
70 
71 /*
72  * Serializes faults on the same logical page.  This is used to
73  * prevent spurious OOMs when the hugepage pool is fully utilized.
74  */
75 static int num_fault_mutexes;
76 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
77 
78 /* Forward declaration */
79 static int hugetlb_acct_memory(struct hstate *h, long delta);
80 
81 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
82 {
83 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
84 
85 	spin_unlock(&spool->lock);
86 
87 	/* If no pages are used, and no other handles to the subpool
88 	 * remain, give up any reservations based on minimum size and
89 	 * free the subpool */
90 	if (free) {
91 		if (spool->min_hpages != -1)
92 			hugetlb_acct_memory(spool->hstate,
93 						-spool->min_hpages);
94 		kfree(spool);
95 	}
96 }
97 
98 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
99 						long min_hpages)
100 {
101 	struct hugepage_subpool *spool;
102 
103 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
104 	if (!spool)
105 		return NULL;
106 
107 	spin_lock_init(&spool->lock);
108 	spool->count = 1;
109 	spool->max_hpages = max_hpages;
110 	spool->hstate = h;
111 	spool->min_hpages = min_hpages;
112 
113 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
114 		kfree(spool);
115 		return NULL;
116 	}
117 	spool->rsv_hpages = min_hpages;
118 
119 	return spool;
120 }
121 
122 void hugepage_put_subpool(struct hugepage_subpool *spool)
123 {
124 	spin_lock(&spool->lock);
125 	BUG_ON(!spool->count);
126 	spool->count--;
127 	unlock_or_release_subpool(spool);
128 }
129 
130 /*
131  * Subpool accounting for allocating and reserving pages.
132  * Return -ENOMEM if there are not enough resources to satisfy the
133  * the request.  Otherwise, return the number of pages by which the
134  * global pools must be adjusted (upward).  The returned value may
135  * only be different than the passed value (delta) in the case where
136  * a subpool minimum size must be maintained.
137  */
138 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
139 				      long delta)
140 {
141 	long ret = delta;
142 
143 	if (!spool)
144 		return ret;
145 
146 	spin_lock(&spool->lock);
147 
148 	if (spool->max_hpages != -1) {		/* maximum size accounting */
149 		if ((spool->used_hpages + delta) <= spool->max_hpages)
150 			spool->used_hpages += delta;
151 		else {
152 			ret = -ENOMEM;
153 			goto unlock_ret;
154 		}
155 	}
156 
157 	/* minimum size accounting */
158 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
159 		if (delta > spool->rsv_hpages) {
160 			/*
161 			 * Asking for more reserves than those already taken on
162 			 * behalf of subpool.  Return difference.
163 			 */
164 			ret = delta - spool->rsv_hpages;
165 			spool->rsv_hpages = 0;
166 		} else {
167 			ret = 0;	/* reserves already accounted for */
168 			spool->rsv_hpages -= delta;
169 		}
170 	}
171 
172 unlock_ret:
173 	spin_unlock(&spool->lock);
174 	return ret;
175 }
176 
177 /*
178  * Subpool accounting for freeing and unreserving pages.
179  * Return the number of global page reservations that must be dropped.
180  * The return value may only be different than the passed value (delta)
181  * in the case where a subpool minimum size must be maintained.
182  */
183 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
184 				       long delta)
185 {
186 	long ret = delta;
187 
188 	if (!spool)
189 		return delta;
190 
191 	spin_lock(&spool->lock);
192 
193 	if (spool->max_hpages != -1)		/* maximum size accounting */
194 		spool->used_hpages -= delta;
195 
196 	 /* minimum size accounting */
197 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
198 		if (spool->rsv_hpages + delta <= spool->min_hpages)
199 			ret = 0;
200 		else
201 			ret = spool->rsv_hpages + delta - spool->min_hpages;
202 
203 		spool->rsv_hpages += delta;
204 		if (spool->rsv_hpages > spool->min_hpages)
205 			spool->rsv_hpages = spool->min_hpages;
206 	}
207 
208 	/*
209 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
210 	 * quota reference, free it now.
211 	 */
212 	unlock_or_release_subpool(spool);
213 
214 	return ret;
215 }
216 
217 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
218 {
219 	return HUGETLBFS_SB(inode->i_sb)->spool;
220 }
221 
222 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
223 {
224 	return subpool_inode(file_inode(vma->vm_file));
225 }
226 
227 /* Helper that removes a struct file_region from the resv_map cache and returns
228  * it for use.
229  */
230 static struct file_region *
231 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
232 {
233 	struct file_region *nrg = NULL;
234 
235 	VM_BUG_ON(resv->region_cache_count <= 0);
236 
237 	resv->region_cache_count--;
238 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
239 	VM_BUG_ON(!nrg);
240 	list_del(&nrg->link);
241 
242 	nrg->from = from;
243 	nrg->to = to;
244 
245 	return nrg;
246 }
247 
248 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
249 					      struct file_region *rg)
250 {
251 #ifdef CONFIG_CGROUP_HUGETLB
252 	nrg->reservation_counter = rg->reservation_counter;
253 	nrg->css = rg->css;
254 	if (rg->css)
255 		css_get(rg->css);
256 #endif
257 }
258 
259 /* Helper that records hugetlb_cgroup uncharge info. */
260 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
261 						struct hstate *h,
262 						struct resv_map *resv,
263 						struct file_region *nrg)
264 {
265 #ifdef CONFIG_CGROUP_HUGETLB
266 	if (h_cg) {
267 		nrg->reservation_counter =
268 			&h_cg->rsvd_hugepage[hstate_index(h)];
269 		nrg->css = &h_cg->css;
270 		if (!resv->pages_per_hpage)
271 			resv->pages_per_hpage = pages_per_huge_page(h);
272 		/* pages_per_hpage should be the same for all entries in
273 		 * a resv_map.
274 		 */
275 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
276 	} else {
277 		nrg->reservation_counter = NULL;
278 		nrg->css = NULL;
279 	}
280 #endif
281 }
282 
283 static bool has_same_uncharge_info(struct file_region *rg,
284 				   struct file_region *org)
285 {
286 #ifdef CONFIG_CGROUP_HUGETLB
287 	return rg && org &&
288 	       rg->reservation_counter == org->reservation_counter &&
289 	       rg->css == org->css;
290 
291 #else
292 	return true;
293 #endif
294 }
295 
296 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
297 {
298 	struct file_region *nrg = NULL, *prg = NULL;
299 
300 	prg = list_prev_entry(rg, link);
301 	if (&prg->link != &resv->regions && prg->to == rg->from &&
302 	    has_same_uncharge_info(prg, rg)) {
303 		prg->to = rg->to;
304 
305 		list_del(&rg->link);
306 		kfree(rg);
307 
308 		coalesce_file_region(resv, prg);
309 		return;
310 	}
311 
312 	nrg = list_next_entry(rg, link);
313 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
314 	    has_same_uncharge_info(nrg, rg)) {
315 		nrg->from = rg->from;
316 
317 		list_del(&rg->link);
318 		kfree(rg);
319 
320 		coalesce_file_region(resv, nrg);
321 		return;
322 	}
323 }
324 
325 /* Must be called with resv->lock held. Calling this with count_only == true
326  * will count the number of pages to be added but will not modify the linked
327  * list. If regions_needed != NULL and count_only == true, then regions_needed
328  * will indicate the number of file_regions needed in the cache to carry out to
329  * add the regions for this range.
330  */
331 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
332 				     struct hugetlb_cgroup *h_cg,
333 				     struct hstate *h, long *regions_needed,
334 				     bool count_only)
335 {
336 	long add = 0;
337 	struct list_head *head = &resv->regions;
338 	long last_accounted_offset = f;
339 	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
340 
341 	if (regions_needed)
342 		*regions_needed = 0;
343 
344 	/* In this loop, we essentially handle an entry for the range
345 	 * [last_accounted_offset, rg->from), at every iteration, with some
346 	 * bounds checking.
347 	 */
348 	list_for_each_entry_safe(rg, trg, head, link) {
349 		/* Skip irrelevant regions that start before our range. */
350 		if (rg->from < f) {
351 			/* If this region ends after the last accounted offset,
352 			 * then we need to update last_accounted_offset.
353 			 */
354 			if (rg->to > last_accounted_offset)
355 				last_accounted_offset = rg->to;
356 			continue;
357 		}
358 
359 		/* When we find a region that starts beyond our range, we've
360 		 * finished.
361 		 */
362 		if (rg->from > t)
363 			break;
364 
365 		/* Add an entry for last_accounted_offset -> rg->from, and
366 		 * update last_accounted_offset.
367 		 */
368 		if (rg->from > last_accounted_offset) {
369 			add += rg->from - last_accounted_offset;
370 			if (!count_only) {
371 				nrg = get_file_region_entry_from_cache(
372 					resv, last_accounted_offset, rg->from);
373 				record_hugetlb_cgroup_uncharge_info(h_cg, h,
374 								    resv, nrg);
375 				list_add(&nrg->link, rg->link.prev);
376 				coalesce_file_region(resv, nrg);
377 			} else if (regions_needed)
378 				*regions_needed += 1;
379 		}
380 
381 		last_accounted_offset = rg->to;
382 	}
383 
384 	/* Handle the case where our range extends beyond
385 	 * last_accounted_offset.
386 	 */
387 	if (last_accounted_offset < t) {
388 		add += t - last_accounted_offset;
389 		if (!count_only) {
390 			nrg = get_file_region_entry_from_cache(
391 				resv, last_accounted_offset, t);
392 			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
393 			list_add(&nrg->link, rg->link.prev);
394 			coalesce_file_region(resv, nrg);
395 		} else if (regions_needed)
396 			*regions_needed += 1;
397 	}
398 
399 	VM_BUG_ON(add < 0);
400 	return add;
401 }
402 
403 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
404  */
405 static int allocate_file_region_entries(struct resv_map *resv,
406 					int regions_needed)
407 	__must_hold(&resv->lock)
408 {
409 	struct list_head allocated_regions;
410 	int to_allocate = 0, i = 0;
411 	struct file_region *trg = NULL, *rg = NULL;
412 
413 	VM_BUG_ON(regions_needed < 0);
414 
415 	INIT_LIST_HEAD(&allocated_regions);
416 
417 	/*
418 	 * Check for sufficient descriptors in the cache to accommodate
419 	 * the number of in progress add operations plus regions_needed.
420 	 *
421 	 * This is a while loop because when we drop the lock, some other call
422 	 * to region_add or region_del may have consumed some region_entries,
423 	 * so we keep looping here until we finally have enough entries for
424 	 * (adds_in_progress + regions_needed).
425 	 */
426 	while (resv->region_cache_count <
427 	       (resv->adds_in_progress + regions_needed)) {
428 		to_allocate = resv->adds_in_progress + regions_needed -
429 			      resv->region_cache_count;
430 
431 		/* At this point, we should have enough entries in the cache
432 		 * for all the existings adds_in_progress. We should only be
433 		 * needing to allocate for regions_needed.
434 		 */
435 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
436 
437 		spin_unlock(&resv->lock);
438 		for (i = 0; i < to_allocate; i++) {
439 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
440 			if (!trg)
441 				goto out_of_memory;
442 			list_add(&trg->link, &allocated_regions);
443 		}
444 
445 		spin_lock(&resv->lock);
446 
447 		list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
448 			list_del(&rg->link);
449 			list_add(&rg->link, &resv->region_cache);
450 			resv->region_cache_count++;
451 		}
452 	}
453 
454 	return 0;
455 
456 out_of_memory:
457 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
458 		list_del(&rg->link);
459 		kfree(rg);
460 	}
461 	return -ENOMEM;
462 }
463 
464 /*
465  * Add the huge page range represented by [f, t) to the reserve
466  * map.  Regions will be taken from the cache to fill in this range.
467  * Sufficient regions should exist in the cache due to the previous
468  * call to region_chg with the same range, but in some cases the cache will not
469  * have sufficient entries due to races with other code doing region_add or
470  * region_del.  The extra needed entries will be allocated.
471  *
472  * regions_needed is the out value provided by a previous call to region_chg.
473  *
474  * Return the number of new huge pages added to the map.  This number is greater
475  * than or equal to zero.  If file_region entries needed to be allocated for
476  * this operation and we were not able to allocate, it returns -ENOMEM.
477  * region_add of regions of length 1 never allocate file_regions and cannot
478  * fail; region_chg will always allocate at least 1 entry and a region_add for
479  * 1 page will only require at most 1 entry.
480  */
481 static long region_add(struct resv_map *resv, long f, long t,
482 		       long in_regions_needed, struct hstate *h,
483 		       struct hugetlb_cgroup *h_cg)
484 {
485 	long add = 0, actual_regions_needed = 0;
486 
487 	spin_lock(&resv->lock);
488 retry:
489 
490 	/* Count how many regions are actually needed to execute this add. */
491 	add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
492 				 true);
493 
494 	/*
495 	 * Check for sufficient descriptors in the cache to accommodate
496 	 * this add operation. Note that actual_regions_needed may be greater
497 	 * than in_regions_needed, as the resv_map may have been modified since
498 	 * the region_chg call. In this case, we need to make sure that we
499 	 * allocate extra entries, such that we have enough for all the
500 	 * existing adds_in_progress, plus the excess needed for this
501 	 * operation.
502 	 */
503 	if (actual_regions_needed > in_regions_needed &&
504 	    resv->region_cache_count <
505 		    resv->adds_in_progress +
506 			    (actual_regions_needed - in_regions_needed)) {
507 		/* region_add operation of range 1 should never need to
508 		 * allocate file_region entries.
509 		 */
510 		VM_BUG_ON(t - f <= 1);
511 
512 		if (allocate_file_region_entries(
513 			    resv, actual_regions_needed - in_regions_needed)) {
514 			return -ENOMEM;
515 		}
516 
517 		goto retry;
518 	}
519 
520 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
521 
522 	resv->adds_in_progress -= in_regions_needed;
523 
524 	spin_unlock(&resv->lock);
525 	VM_BUG_ON(add < 0);
526 	return add;
527 }
528 
529 /*
530  * Examine the existing reserve map and determine how many
531  * huge pages in the specified range [f, t) are NOT currently
532  * represented.  This routine is called before a subsequent
533  * call to region_add that will actually modify the reserve
534  * map to add the specified range [f, t).  region_chg does
535  * not change the number of huge pages represented by the
536  * map.  A number of new file_region structures is added to the cache as a
537  * placeholder, for the subsequent region_add call to use. At least 1
538  * file_region structure is added.
539  *
540  * out_regions_needed is the number of regions added to the
541  * resv->adds_in_progress.  This value needs to be provided to a follow up call
542  * to region_add or region_abort for proper accounting.
543  *
544  * Returns the number of huge pages that need to be added to the existing
545  * reservation map for the range [f, t).  This number is greater or equal to
546  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
547  * is needed and can not be allocated.
548  */
549 static long region_chg(struct resv_map *resv, long f, long t,
550 		       long *out_regions_needed)
551 {
552 	long chg = 0;
553 
554 	spin_lock(&resv->lock);
555 
556 	/* Count how many hugepages in this range are NOT respresented. */
557 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
558 				       out_regions_needed, true);
559 
560 	if (*out_regions_needed == 0)
561 		*out_regions_needed = 1;
562 
563 	if (allocate_file_region_entries(resv, *out_regions_needed))
564 		return -ENOMEM;
565 
566 	resv->adds_in_progress += *out_regions_needed;
567 
568 	spin_unlock(&resv->lock);
569 	return chg;
570 }
571 
572 /*
573  * Abort the in progress add operation.  The adds_in_progress field
574  * of the resv_map keeps track of the operations in progress between
575  * calls to region_chg and region_add.  Operations are sometimes
576  * aborted after the call to region_chg.  In such cases, region_abort
577  * is called to decrement the adds_in_progress counter. regions_needed
578  * is the value returned by the region_chg call, it is used to decrement
579  * the adds_in_progress counter.
580  *
581  * NOTE: The range arguments [f, t) are not needed or used in this
582  * routine.  They are kept to make reading the calling code easier as
583  * arguments will match the associated region_chg call.
584  */
585 static void region_abort(struct resv_map *resv, long f, long t,
586 			 long regions_needed)
587 {
588 	spin_lock(&resv->lock);
589 	VM_BUG_ON(!resv->region_cache_count);
590 	resv->adds_in_progress -= regions_needed;
591 	spin_unlock(&resv->lock);
592 }
593 
594 /*
595  * Delete the specified range [f, t) from the reserve map.  If the
596  * t parameter is LONG_MAX, this indicates that ALL regions after f
597  * should be deleted.  Locate the regions which intersect [f, t)
598  * and either trim, delete or split the existing regions.
599  *
600  * Returns the number of huge pages deleted from the reserve map.
601  * In the normal case, the return value is zero or more.  In the
602  * case where a region must be split, a new region descriptor must
603  * be allocated.  If the allocation fails, -ENOMEM will be returned.
604  * NOTE: If the parameter t == LONG_MAX, then we will never split
605  * a region and possibly return -ENOMEM.  Callers specifying
606  * t == LONG_MAX do not need to check for -ENOMEM error.
607  */
608 static long region_del(struct resv_map *resv, long f, long t)
609 {
610 	struct list_head *head = &resv->regions;
611 	struct file_region *rg, *trg;
612 	struct file_region *nrg = NULL;
613 	long del = 0;
614 
615 retry:
616 	spin_lock(&resv->lock);
617 	list_for_each_entry_safe(rg, trg, head, link) {
618 		/*
619 		 * Skip regions before the range to be deleted.  file_region
620 		 * ranges are normally of the form [from, to).  However, there
621 		 * may be a "placeholder" entry in the map which is of the form
622 		 * (from, to) with from == to.  Check for placeholder entries
623 		 * at the beginning of the range to be deleted.
624 		 */
625 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
626 			continue;
627 
628 		if (rg->from >= t)
629 			break;
630 
631 		if (f > rg->from && t < rg->to) { /* Must split region */
632 			/*
633 			 * Check for an entry in the cache before dropping
634 			 * lock and attempting allocation.
635 			 */
636 			if (!nrg &&
637 			    resv->region_cache_count > resv->adds_in_progress) {
638 				nrg = list_first_entry(&resv->region_cache,
639 							struct file_region,
640 							link);
641 				list_del(&nrg->link);
642 				resv->region_cache_count--;
643 			}
644 
645 			if (!nrg) {
646 				spin_unlock(&resv->lock);
647 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
648 				if (!nrg)
649 					return -ENOMEM;
650 				goto retry;
651 			}
652 
653 			del += t - f;
654 
655 			/* New entry for end of split region */
656 			nrg->from = t;
657 			nrg->to = rg->to;
658 
659 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
660 
661 			INIT_LIST_HEAD(&nrg->link);
662 
663 			/* Original entry is trimmed */
664 			rg->to = f;
665 
666 			hugetlb_cgroup_uncharge_file_region(
667 				resv, rg, nrg->to - nrg->from);
668 
669 			list_add(&nrg->link, &rg->link);
670 			nrg = NULL;
671 			break;
672 		}
673 
674 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
675 			del += rg->to - rg->from;
676 			hugetlb_cgroup_uncharge_file_region(resv, rg,
677 							    rg->to - rg->from);
678 			list_del(&rg->link);
679 			kfree(rg);
680 			continue;
681 		}
682 
683 		if (f <= rg->from) {	/* Trim beginning of region */
684 			del += t - rg->from;
685 			rg->from = t;
686 
687 			hugetlb_cgroup_uncharge_file_region(resv, rg,
688 							    t - rg->from);
689 		} else {		/* Trim end of region */
690 			del += rg->to - f;
691 			rg->to = f;
692 
693 			hugetlb_cgroup_uncharge_file_region(resv, rg,
694 							    rg->to - f);
695 		}
696 	}
697 
698 	spin_unlock(&resv->lock);
699 	kfree(nrg);
700 	return del;
701 }
702 
703 /*
704  * A rare out of memory error was encountered which prevented removal of
705  * the reserve map region for a page.  The huge page itself was free'ed
706  * and removed from the page cache.  This routine will adjust the subpool
707  * usage count, and the global reserve count if needed.  By incrementing
708  * these counts, the reserve map entry which could not be deleted will
709  * appear as a "reserved" entry instead of simply dangling with incorrect
710  * counts.
711  */
712 void hugetlb_fix_reserve_counts(struct inode *inode)
713 {
714 	struct hugepage_subpool *spool = subpool_inode(inode);
715 	long rsv_adjust;
716 
717 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
718 	if (rsv_adjust) {
719 		struct hstate *h = hstate_inode(inode);
720 
721 		hugetlb_acct_memory(h, 1);
722 	}
723 }
724 
725 /*
726  * Count and return the number of huge pages in the reserve map
727  * that intersect with the range [f, t).
728  */
729 static long region_count(struct resv_map *resv, long f, long t)
730 {
731 	struct list_head *head = &resv->regions;
732 	struct file_region *rg;
733 	long chg = 0;
734 
735 	spin_lock(&resv->lock);
736 	/* Locate each segment we overlap with, and count that overlap. */
737 	list_for_each_entry(rg, head, link) {
738 		long seg_from;
739 		long seg_to;
740 
741 		if (rg->to <= f)
742 			continue;
743 		if (rg->from >= t)
744 			break;
745 
746 		seg_from = max(rg->from, f);
747 		seg_to = min(rg->to, t);
748 
749 		chg += seg_to - seg_from;
750 	}
751 	spin_unlock(&resv->lock);
752 
753 	return chg;
754 }
755 
756 /*
757  * Convert the address within this vma to the page offset within
758  * the mapping, in pagecache page units; huge pages here.
759  */
760 static pgoff_t vma_hugecache_offset(struct hstate *h,
761 			struct vm_area_struct *vma, unsigned long address)
762 {
763 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
764 			(vma->vm_pgoff >> huge_page_order(h));
765 }
766 
767 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
768 				     unsigned long address)
769 {
770 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
771 }
772 EXPORT_SYMBOL_GPL(linear_hugepage_index);
773 
774 /*
775  * Return the size of the pages allocated when backing a VMA. In the majority
776  * cases this will be same size as used by the page table entries.
777  */
778 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
779 {
780 	if (vma->vm_ops && vma->vm_ops->pagesize)
781 		return vma->vm_ops->pagesize(vma);
782 	return PAGE_SIZE;
783 }
784 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
785 
786 /*
787  * Return the page size being used by the MMU to back a VMA. In the majority
788  * of cases, the page size used by the kernel matches the MMU size. On
789  * architectures where it differs, an architecture-specific 'strong'
790  * version of this symbol is required.
791  */
792 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
793 {
794 	return vma_kernel_pagesize(vma);
795 }
796 
797 /*
798  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
799  * bits of the reservation map pointer, which are always clear due to
800  * alignment.
801  */
802 #define HPAGE_RESV_OWNER    (1UL << 0)
803 #define HPAGE_RESV_UNMAPPED (1UL << 1)
804 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
805 
806 /*
807  * These helpers are used to track how many pages are reserved for
808  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
809  * is guaranteed to have their future faults succeed.
810  *
811  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
812  * the reserve counters are updated with the hugetlb_lock held. It is safe
813  * to reset the VMA at fork() time as it is not in use yet and there is no
814  * chance of the global counters getting corrupted as a result of the values.
815  *
816  * The private mapping reservation is represented in a subtly different
817  * manner to a shared mapping.  A shared mapping has a region map associated
818  * with the underlying file, this region map represents the backing file
819  * pages which have ever had a reservation assigned which this persists even
820  * after the page is instantiated.  A private mapping has a region map
821  * associated with the original mmap which is attached to all VMAs which
822  * reference it, this region map represents those offsets which have consumed
823  * reservation ie. where pages have been instantiated.
824  */
825 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
826 {
827 	return (unsigned long)vma->vm_private_data;
828 }
829 
830 static void set_vma_private_data(struct vm_area_struct *vma,
831 							unsigned long value)
832 {
833 	vma->vm_private_data = (void *)value;
834 }
835 
836 static void
837 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
838 					  struct hugetlb_cgroup *h_cg,
839 					  struct hstate *h)
840 {
841 #ifdef CONFIG_CGROUP_HUGETLB
842 	if (!h_cg || !h) {
843 		resv_map->reservation_counter = NULL;
844 		resv_map->pages_per_hpage = 0;
845 		resv_map->css = NULL;
846 	} else {
847 		resv_map->reservation_counter =
848 			&h_cg->rsvd_hugepage[hstate_index(h)];
849 		resv_map->pages_per_hpage = pages_per_huge_page(h);
850 		resv_map->css = &h_cg->css;
851 	}
852 #endif
853 }
854 
855 struct resv_map *resv_map_alloc(void)
856 {
857 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
858 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
859 
860 	if (!resv_map || !rg) {
861 		kfree(resv_map);
862 		kfree(rg);
863 		return NULL;
864 	}
865 
866 	kref_init(&resv_map->refs);
867 	spin_lock_init(&resv_map->lock);
868 	INIT_LIST_HEAD(&resv_map->regions);
869 
870 	resv_map->adds_in_progress = 0;
871 	/*
872 	 * Initialize these to 0. On shared mappings, 0's here indicate these
873 	 * fields don't do cgroup accounting. On private mappings, these will be
874 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
875 	 * reservations are to be un-charged from here.
876 	 */
877 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
878 
879 	INIT_LIST_HEAD(&resv_map->region_cache);
880 	list_add(&rg->link, &resv_map->region_cache);
881 	resv_map->region_cache_count = 1;
882 
883 	return resv_map;
884 }
885 
886 void resv_map_release(struct kref *ref)
887 {
888 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
889 	struct list_head *head = &resv_map->region_cache;
890 	struct file_region *rg, *trg;
891 
892 	/* Clear out any active regions before we release the map. */
893 	region_del(resv_map, 0, LONG_MAX);
894 
895 	/* ... and any entries left in the cache */
896 	list_for_each_entry_safe(rg, trg, head, link) {
897 		list_del(&rg->link);
898 		kfree(rg);
899 	}
900 
901 	VM_BUG_ON(resv_map->adds_in_progress);
902 
903 	kfree(resv_map);
904 }
905 
906 static inline struct resv_map *inode_resv_map(struct inode *inode)
907 {
908 	/*
909 	 * At inode evict time, i_mapping may not point to the original
910 	 * address space within the inode.  This original address space
911 	 * contains the pointer to the resv_map.  So, always use the
912 	 * address space embedded within the inode.
913 	 * The VERY common case is inode->mapping == &inode->i_data but,
914 	 * this may not be true for device special inodes.
915 	 */
916 	return (struct resv_map *)(&inode->i_data)->private_data;
917 }
918 
919 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
920 {
921 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
922 	if (vma->vm_flags & VM_MAYSHARE) {
923 		struct address_space *mapping = vma->vm_file->f_mapping;
924 		struct inode *inode = mapping->host;
925 
926 		return inode_resv_map(inode);
927 
928 	} else {
929 		return (struct resv_map *)(get_vma_private_data(vma) &
930 							~HPAGE_RESV_MASK);
931 	}
932 }
933 
934 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
935 {
936 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
937 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
938 
939 	set_vma_private_data(vma, (get_vma_private_data(vma) &
940 				HPAGE_RESV_MASK) | (unsigned long)map);
941 }
942 
943 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
944 {
945 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
946 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
947 
948 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
949 }
950 
951 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
952 {
953 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
954 
955 	return (get_vma_private_data(vma) & flag) != 0;
956 }
957 
958 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
959 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
960 {
961 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
962 	if (!(vma->vm_flags & VM_MAYSHARE))
963 		vma->vm_private_data = (void *)0;
964 }
965 
966 /* Returns true if the VMA has associated reserve pages */
967 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
968 {
969 	if (vma->vm_flags & VM_NORESERVE) {
970 		/*
971 		 * This address is already reserved by other process(chg == 0),
972 		 * so, we should decrement reserved count. Without decrementing,
973 		 * reserve count remains after releasing inode, because this
974 		 * allocated page will go into page cache and is regarded as
975 		 * coming from reserved pool in releasing step.  Currently, we
976 		 * don't have any other solution to deal with this situation
977 		 * properly, so add work-around here.
978 		 */
979 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
980 			return true;
981 		else
982 			return false;
983 	}
984 
985 	/* Shared mappings always use reserves */
986 	if (vma->vm_flags & VM_MAYSHARE) {
987 		/*
988 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
989 		 * be a region map for all pages.  The only situation where
990 		 * there is no region map is if a hole was punched via
991 		 * fallocate.  In this case, there really are no reserves to
992 		 * use.  This situation is indicated if chg != 0.
993 		 */
994 		if (chg)
995 			return false;
996 		else
997 			return true;
998 	}
999 
1000 	/*
1001 	 * Only the process that called mmap() has reserves for
1002 	 * private mappings.
1003 	 */
1004 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1005 		/*
1006 		 * Like the shared case above, a hole punch or truncate
1007 		 * could have been performed on the private mapping.
1008 		 * Examine the value of chg to determine if reserves
1009 		 * actually exist or were previously consumed.
1010 		 * Very Subtle - The value of chg comes from a previous
1011 		 * call to vma_needs_reserves().  The reserve map for
1012 		 * private mappings has different (opposite) semantics
1013 		 * than that of shared mappings.  vma_needs_reserves()
1014 		 * has already taken this difference in semantics into
1015 		 * account.  Therefore, the meaning of chg is the same
1016 		 * as in the shared case above.  Code could easily be
1017 		 * combined, but keeping it separate draws attention to
1018 		 * subtle differences.
1019 		 */
1020 		if (chg)
1021 			return false;
1022 		else
1023 			return true;
1024 	}
1025 
1026 	return false;
1027 }
1028 
1029 static void enqueue_huge_page(struct hstate *h, struct page *page)
1030 {
1031 	int nid = page_to_nid(page);
1032 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1033 	h->free_huge_pages++;
1034 	h->free_huge_pages_node[nid]++;
1035 }
1036 
1037 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1038 {
1039 	struct page *page;
1040 
1041 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
1042 		if (!PageHWPoison(page))
1043 			break;
1044 	/*
1045 	 * if 'non-isolated free hugepage' not found on the list,
1046 	 * the allocation fails.
1047 	 */
1048 	if (&h->hugepage_freelists[nid] == &page->lru)
1049 		return NULL;
1050 	list_move(&page->lru, &h->hugepage_activelist);
1051 	set_page_refcounted(page);
1052 	h->free_huge_pages--;
1053 	h->free_huge_pages_node[nid]--;
1054 	return page;
1055 }
1056 
1057 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1058 		nodemask_t *nmask)
1059 {
1060 	unsigned int cpuset_mems_cookie;
1061 	struct zonelist *zonelist;
1062 	struct zone *zone;
1063 	struct zoneref *z;
1064 	int node = NUMA_NO_NODE;
1065 
1066 	zonelist = node_zonelist(nid, gfp_mask);
1067 
1068 retry_cpuset:
1069 	cpuset_mems_cookie = read_mems_allowed_begin();
1070 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1071 		struct page *page;
1072 
1073 		if (!cpuset_zone_allowed(zone, gfp_mask))
1074 			continue;
1075 		/*
1076 		 * no need to ask again on the same node. Pool is node rather than
1077 		 * zone aware
1078 		 */
1079 		if (zone_to_nid(zone) == node)
1080 			continue;
1081 		node = zone_to_nid(zone);
1082 
1083 		page = dequeue_huge_page_node_exact(h, node);
1084 		if (page)
1085 			return page;
1086 	}
1087 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1088 		goto retry_cpuset;
1089 
1090 	return NULL;
1091 }
1092 
1093 /* Movability of hugepages depends on migration support. */
1094 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1095 {
1096 	if (hugepage_movable_supported(h))
1097 		return GFP_HIGHUSER_MOVABLE;
1098 	else
1099 		return GFP_HIGHUSER;
1100 }
1101 
1102 static struct page *dequeue_huge_page_vma(struct hstate *h,
1103 				struct vm_area_struct *vma,
1104 				unsigned long address, int avoid_reserve,
1105 				long chg)
1106 {
1107 	struct page *page;
1108 	struct mempolicy *mpol;
1109 	gfp_t gfp_mask;
1110 	nodemask_t *nodemask;
1111 	int nid;
1112 
1113 	/*
1114 	 * A child process with MAP_PRIVATE mappings created by their parent
1115 	 * have no page reserves. This check ensures that reservations are
1116 	 * not "stolen". The child may still get SIGKILLed
1117 	 */
1118 	if (!vma_has_reserves(vma, chg) &&
1119 			h->free_huge_pages - h->resv_huge_pages == 0)
1120 		goto err;
1121 
1122 	/* If reserves cannot be used, ensure enough pages are in the pool */
1123 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1124 		goto err;
1125 
1126 	gfp_mask = htlb_alloc_mask(h);
1127 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1128 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1129 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1130 		SetPagePrivate(page);
1131 		h->resv_huge_pages--;
1132 	}
1133 
1134 	mpol_cond_put(mpol);
1135 	return page;
1136 
1137 err:
1138 	return NULL;
1139 }
1140 
1141 /*
1142  * common helper functions for hstate_next_node_to_{alloc|free}.
1143  * We may have allocated or freed a huge page based on a different
1144  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1145  * be outside of *nodes_allowed.  Ensure that we use an allowed
1146  * node for alloc or free.
1147  */
1148 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1149 {
1150 	nid = next_node_in(nid, *nodes_allowed);
1151 	VM_BUG_ON(nid >= MAX_NUMNODES);
1152 
1153 	return nid;
1154 }
1155 
1156 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1157 {
1158 	if (!node_isset(nid, *nodes_allowed))
1159 		nid = next_node_allowed(nid, nodes_allowed);
1160 	return nid;
1161 }
1162 
1163 /*
1164  * returns the previously saved node ["this node"] from which to
1165  * allocate a persistent huge page for the pool and advance the
1166  * next node from which to allocate, handling wrap at end of node
1167  * mask.
1168  */
1169 static int hstate_next_node_to_alloc(struct hstate *h,
1170 					nodemask_t *nodes_allowed)
1171 {
1172 	int nid;
1173 
1174 	VM_BUG_ON(!nodes_allowed);
1175 
1176 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1177 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1178 
1179 	return nid;
1180 }
1181 
1182 /*
1183  * helper for free_pool_huge_page() - return the previously saved
1184  * node ["this node"] from which to free a huge page.  Advance the
1185  * next node id whether or not we find a free huge page to free so
1186  * that the next attempt to free addresses the next node.
1187  */
1188 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1189 {
1190 	int nid;
1191 
1192 	VM_BUG_ON(!nodes_allowed);
1193 
1194 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1195 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1196 
1197 	return nid;
1198 }
1199 
1200 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1201 	for (nr_nodes = nodes_weight(*mask);				\
1202 		nr_nodes > 0 &&						\
1203 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1204 		nr_nodes--)
1205 
1206 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1207 	for (nr_nodes = nodes_weight(*mask);				\
1208 		nr_nodes > 0 &&						\
1209 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1210 		nr_nodes--)
1211 
1212 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1213 static void destroy_compound_gigantic_page(struct page *page,
1214 					unsigned int order)
1215 {
1216 	int i;
1217 	int nr_pages = 1 << order;
1218 	struct page *p = page + 1;
1219 
1220 	atomic_set(compound_mapcount_ptr(page), 0);
1221 	if (hpage_pincount_available(page))
1222 		atomic_set(compound_pincount_ptr(page), 0);
1223 
1224 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1225 		clear_compound_head(p);
1226 		set_page_refcounted(p);
1227 	}
1228 
1229 	set_compound_order(page, 0);
1230 	__ClearPageHead(page);
1231 }
1232 
1233 static void free_gigantic_page(struct page *page, unsigned int order)
1234 {
1235 	/*
1236 	 * If the page isn't allocated using the cma allocator,
1237 	 * cma_release() returns false.
1238 	 */
1239 	if (IS_ENABLED(CONFIG_CMA) &&
1240 	    cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1241 		return;
1242 
1243 	free_contig_range(page_to_pfn(page), 1 << order);
1244 }
1245 
1246 #ifdef CONFIG_CONTIG_ALLOC
1247 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1248 		int nid, nodemask_t *nodemask)
1249 {
1250 	unsigned long nr_pages = 1UL << huge_page_order(h);
1251 
1252 	if (IS_ENABLED(CONFIG_CMA)) {
1253 		struct page *page;
1254 		int node;
1255 
1256 		for_each_node_mask(node, *nodemask) {
1257 			if (!hugetlb_cma[node])
1258 				continue;
1259 
1260 			page = cma_alloc(hugetlb_cma[node], nr_pages,
1261 					 huge_page_order(h), true);
1262 			if (page)
1263 				return page;
1264 		}
1265 	}
1266 
1267 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1268 }
1269 
1270 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1271 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1272 #else /* !CONFIG_CONTIG_ALLOC */
1273 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1274 					int nid, nodemask_t *nodemask)
1275 {
1276 	return NULL;
1277 }
1278 #endif /* CONFIG_CONTIG_ALLOC */
1279 
1280 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1281 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1282 					int nid, nodemask_t *nodemask)
1283 {
1284 	return NULL;
1285 }
1286 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1287 static inline void destroy_compound_gigantic_page(struct page *page,
1288 						unsigned int order) { }
1289 #endif
1290 
1291 static void update_and_free_page(struct hstate *h, struct page *page)
1292 {
1293 	int i;
1294 
1295 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1296 		return;
1297 
1298 	h->nr_huge_pages--;
1299 	h->nr_huge_pages_node[page_to_nid(page)]--;
1300 	for (i = 0; i < pages_per_huge_page(h); i++) {
1301 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1302 				1 << PG_referenced | 1 << PG_dirty |
1303 				1 << PG_active | 1 << PG_private |
1304 				1 << PG_writeback);
1305 	}
1306 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1307 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1308 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1309 	set_page_refcounted(page);
1310 	if (hstate_is_gigantic(h)) {
1311 		/*
1312 		 * Temporarily drop the hugetlb_lock, because
1313 		 * we might block in free_gigantic_page().
1314 		 */
1315 		spin_unlock(&hugetlb_lock);
1316 		destroy_compound_gigantic_page(page, huge_page_order(h));
1317 		free_gigantic_page(page, huge_page_order(h));
1318 		spin_lock(&hugetlb_lock);
1319 	} else {
1320 		__free_pages(page, huge_page_order(h));
1321 	}
1322 }
1323 
1324 struct hstate *size_to_hstate(unsigned long size)
1325 {
1326 	struct hstate *h;
1327 
1328 	for_each_hstate(h) {
1329 		if (huge_page_size(h) == size)
1330 			return h;
1331 	}
1332 	return NULL;
1333 }
1334 
1335 /*
1336  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1337  * to hstate->hugepage_activelist.)
1338  *
1339  * This function can be called for tail pages, but never returns true for them.
1340  */
1341 bool page_huge_active(struct page *page)
1342 {
1343 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1344 	return PageHead(page) && PagePrivate(&page[1]);
1345 }
1346 
1347 /* never called for tail page */
1348 static void set_page_huge_active(struct page *page)
1349 {
1350 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1351 	SetPagePrivate(&page[1]);
1352 }
1353 
1354 static void clear_page_huge_active(struct page *page)
1355 {
1356 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1357 	ClearPagePrivate(&page[1]);
1358 }
1359 
1360 /*
1361  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1362  * code
1363  */
1364 static inline bool PageHugeTemporary(struct page *page)
1365 {
1366 	if (!PageHuge(page))
1367 		return false;
1368 
1369 	return (unsigned long)page[2].mapping == -1U;
1370 }
1371 
1372 static inline void SetPageHugeTemporary(struct page *page)
1373 {
1374 	page[2].mapping = (void *)-1U;
1375 }
1376 
1377 static inline void ClearPageHugeTemporary(struct page *page)
1378 {
1379 	page[2].mapping = NULL;
1380 }
1381 
1382 static void __free_huge_page(struct page *page)
1383 {
1384 	/*
1385 	 * Can't pass hstate in here because it is called from the
1386 	 * compound page destructor.
1387 	 */
1388 	struct hstate *h = page_hstate(page);
1389 	int nid = page_to_nid(page);
1390 	struct hugepage_subpool *spool =
1391 		(struct hugepage_subpool *)page_private(page);
1392 	bool restore_reserve;
1393 
1394 	VM_BUG_ON_PAGE(page_count(page), page);
1395 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1396 
1397 	set_page_private(page, 0);
1398 	page->mapping = NULL;
1399 	restore_reserve = PagePrivate(page);
1400 	ClearPagePrivate(page);
1401 
1402 	/*
1403 	 * If PagePrivate() was set on page, page allocation consumed a
1404 	 * reservation.  If the page was associated with a subpool, there
1405 	 * would have been a page reserved in the subpool before allocation
1406 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1407 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1408 	 * remove the reserved page from the subpool.
1409 	 */
1410 	if (!restore_reserve) {
1411 		/*
1412 		 * A return code of zero implies that the subpool will be
1413 		 * under its minimum size if the reservation is not restored
1414 		 * after page is free.  Therefore, force restore_reserve
1415 		 * operation.
1416 		 */
1417 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1418 			restore_reserve = true;
1419 	}
1420 
1421 	spin_lock(&hugetlb_lock);
1422 	clear_page_huge_active(page);
1423 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1424 				     pages_per_huge_page(h), page);
1425 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1426 					  pages_per_huge_page(h), page);
1427 	if (restore_reserve)
1428 		h->resv_huge_pages++;
1429 
1430 	if (PageHugeTemporary(page)) {
1431 		list_del(&page->lru);
1432 		ClearPageHugeTemporary(page);
1433 		update_and_free_page(h, page);
1434 	} else if (h->surplus_huge_pages_node[nid]) {
1435 		/* remove the page from active list */
1436 		list_del(&page->lru);
1437 		update_and_free_page(h, page);
1438 		h->surplus_huge_pages--;
1439 		h->surplus_huge_pages_node[nid]--;
1440 	} else {
1441 		arch_clear_hugepage_flags(page);
1442 		enqueue_huge_page(h, page);
1443 	}
1444 	spin_unlock(&hugetlb_lock);
1445 }
1446 
1447 /*
1448  * As free_huge_page() can be called from a non-task context, we have
1449  * to defer the actual freeing in a workqueue to prevent potential
1450  * hugetlb_lock deadlock.
1451  *
1452  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1453  * be freed and frees them one-by-one. As the page->mapping pointer is
1454  * going to be cleared in __free_huge_page() anyway, it is reused as the
1455  * llist_node structure of a lockless linked list of huge pages to be freed.
1456  */
1457 static LLIST_HEAD(hpage_freelist);
1458 
1459 static void free_hpage_workfn(struct work_struct *work)
1460 {
1461 	struct llist_node *node;
1462 	struct page *page;
1463 
1464 	node = llist_del_all(&hpage_freelist);
1465 
1466 	while (node) {
1467 		page = container_of((struct address_space **)node,
1468 				     struct page, mapping);
1469 		node = node->next;
1470 		__free_huge_page(page);
1471 	}
1472 }
1473 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1474 
1475 void free_huge_page(struct page *page)
1476 {
1477 	/*
1478 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1479 	 */
1480 	if (!in_task()) {
1481 		/*
1482 		 * Only call schedule_work() if hpage_freelist is previously
1483 		 * empty. Otherwise, schedule_work() had been called but the
1484 		 * workfn hasn't retrieved the list yet.
1485 		 */
1486 		if (llist_add((struct llist_node *)&page->mapping,
1487 			      &hpage_freelist))
1488 			schedule_work(&free_hpage_work);
1489 		return;
1490 	}
1491 
1492 	__free_huge_page(page);
1493 }
1494 
1495 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1496 {
1497 	INIT_LIST_HEAD(&page->lru);
1498 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1499 	spin_lock(&hugetlb_lock);
1500 	set_hugetlb_cgroup(page, NULL);
1501 	set_hugetlb_cgroup_rsvd(page, NULL);
1502 	h->nr_huge_pages++;
1503 	h->nr_huge_pages_node[nid]++;
1504 	spin_unlock(&hugetlb_lock);
1505 }
1506 
1507 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1508 {
1509 	int i;
1510 	int nr_pages = 1 << order;
1511 	struct page *p = page + 1;
1512 
1513 	/* we rely on prep_new_huge_page to set the destructor */
1514 	set_compound_order(page, order);
1515 	__ClearPageReserved(page);
1516 	__SetPageHead(page);
1517 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1518 		/*
1519 		 * For gigantic hugepages allocated through bootmem at
1520 		 * boot, it's safer to be consistent with the not-gigantic
1521 		 * hugepages and clear the PG_reserved bit from all tail pages
1522 		 * too.  Otherwise drivers using get_user_pages() to access tail
1523 		 * pages may get the reference counting wrong if they see
1524 		 * PG_reserved set on a tail page (despite the head page not
1525 		 * having PG_reserved set).  Enforcing this consistency between
1526 		 * head and tail pages allows drivers to optimize away a check
1527 		 * on the head page when they need know if put_page() is needed
1528 		 * after get_user_pages().
1529 		 */
1530 		__ClearPageReserved(p);
1531 		set_page_count(p, 0);
1532 		set_compound_head(p, page);
1533 	}
1534 	atomic_set(compound_mapcount_ptr(page), -1);
1535 
1536 	if (hpage_pincount_available(page))
1537 		atomic_set(compound_pincount_ptr(page), 0);
1538 }
1539 
1540 /*
1541  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1542  * transparent huge pages.  See the PageTransHuge() documentation for more
1543  * details.
1544  */
1545 int PageHuge(struct page *page)
1546 {
1547 	if (!PageCompound(page))
1548 		return 0;
1549 
1550 	page = compound_head(page);
1551 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1552 }
1553 EXPORT_SYMBOL_GPL(PageHuge);
1554 
1555 /*
1556  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1557  * normal or transparent huge pages.
1558  */
1559 int PageHeadHuge(struct page *page_head)
1560 {
1561 	if (!PageHead(page_head))
1562 		return 0;
1563 
1564 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1565 }
1566 
1567 /*
1568  * Find address_space associated with hugetlbfs page.
1569  * Upon entry page is locked and page 'was' mapped although mapped state
1570  * could change.  If necessary, use anon_vma to find vma and associated
1571  * address space.  The returned mapping may be stale, but it can not be
1572  * invalid as page lock (which is held) is required to destroy mapping.
1573  */
1574 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1575 {
1576 	struct anon_vma *anon_vma;
1577 	pgoff_t pgoff_start, pgoff_end;
1578 	struct anon_vma_chain *avc;
1579 	struct address_space *mapping = page_mapping(hpage);
1580 
1581 	/* Simple file based mapping */
1582 	if (mapping)
1583 		return mapping;
1584 
1585 	/*
1586 	 * Even anonymous hugetlbfs mappings are associated with an
1587 	 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1588 	 * code).  Find a vma associated with the anonymous vma, and
1589 	 * use the file pointer to get address_space.
1590 	 */
1591 	anon_vma = page_lock_anon_vma_read(hpage);
1592 	if (!anon_vma)
1593 		return mapping;  /* NULL */
1594 
1595 	/* Use first found vma */
1596 	pgoff_start = page_to_pgoff(hpage);
1597 	pgoff_end = pgoff_start + hpage_nr_pages(hpage) - 1;
1598 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1599 					pgoff_start, pgoff_end) {
1600 		struct vm_area_struct *vma = avc->vma;
1601 
1602 		mapping = vma->vm_file->f_mapping;
1603 		break;
1604 	}
1605 
1606 	anon_vma_unlock_read(anon_vma);
1607 	return mapping;
1608 }
1609 
1610 /*
1611  * Find and lock address space (mapping) in write mode.
1612  *
1613  * Upon entry, the page is locked which allows us to find the mapping
1614  * even in the case of an anon page.  However, locking order dictates
1615  * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1616  * specific.  So, we first try to lock the sema while still holding the
1617  * page lock.  If this works, great!  If not, then we need to drop the
1618  * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1619  * course, need to revalidate state along the way.
1620  */
1621 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1622 {
1623 	struct address_space *mapping, *mapping2;
1624 
1625 	mapping = _get_hugetlb_page_mapping(hpage);
1626 retry:
1627 	if (!mapping)
1628 		return mapping;
1629 
1630 	/*
1631 	 * If no contention, take lock and return
1632 	 */
1633 	if (i_mmap_trylock_write(mapping))
1634 		return mapping;
1635 
1636 	/*
1637 	 * Must drop page lock and wait on mapping sema.
1638 	 * Note:  Once page lock is dropped, mapping could become invalid.
1639 	 * As a hack, increase map count until we lock page again.
1640 	 */
1641 	atomic_inc(&hpage->_mapcount);
1642 	unlock_page(hpage);
1643 	i_mmap_lock_write(mapping);
1644 	lock_page(hpage);
1645 	atomic_add_negative(-1, &hpage->_mapcount);
1646 
1647 	/* verify page is still mapped */
1648 	if (!page_mapped(hpage)) {
1649 		i_mmap_unlock_write(mapping);
1650 		return NULL;
1651 	}
1652 
1653 	/*
1654 	 * Get address space again and verify it is the same one
1655 	 * we locked.  If not, drop lock and retry.
1656 	 */
1657 	mapping2 = _get_hugetlb_page_mapping(hpage);
1658 	if (mapping2 != mapping) {
1659 		i_mmap_unlock_write(mapping);
1660 		mapping = mapping2;
1661 		goto retry;
1662 	}
1663 
1664 	return mapping;
1665 }
1666 
1667 pgoff_t __basepage_index(struct page *page)
1668 {
1669 	struct page *page_head = compound_head(page);
1670 	pgoff_t index = page_index(page_head);
1671 	unsigned long compound_idx;
1672 
1673 	if (!PageHuge(page_head))
1674 		return page_index(page);
1675 
1676 	if (compound_order(page_head) >= MAX_ORDER)
1677 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1678 	else
1679 		compound_idx = page - page_head;
1680 
1681 	return (index << compound_order(page_head)) + compound_idx;
1682 }
1683 
1684 static struct page *alloc_buddy_huge_page(struct hstate *h,
1685 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1686 		nodemask_t *node_alloc_noretry)
1687 {
1688 	int order = huge_page_order(h);
1689 	struct page *page;
1690 	bool alloc_try_hard = true;
1691 
1692 	/*
1693 	 * By default we always try hard to allocate the page with
1694 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1695 	 * a loop (to adjust global huge page counts) and previous allocation
1696 	 * failed, do not continue to try hard on the same node.  Use the
1697 	 * node_alloc_noretry bitmap to manage this state information.
1698 	 */
1699 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1700 		alloc_try_hard = false;
1701 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1702 	if (alloc_try_hard)
1703 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1704 	if (nid == NUMA_NO_NODE)
1705 		nid = numa_mem_id();
1706 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1707 	if (page)
1708 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1709 	else
1710 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1711 
1712 	/*
1713 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1714 	 * indicates an overall state change.  Clear bit so that we resume
1715 	 * normal 'try hard' allocations.
1716 	 */
1717 	if (node_alloc_noretry && page && !alloc_try_hard)
1718 		node_clear(nid, *node_alloc_noretry);
1719 
1720 	/*
1721 	 * If we tried hard to get a page but failed, set bit so that
1722 	 * subsequent attempts will not try as hard until there is an
1723 	 * overall state change.
1724 	 */
1725 	if (node_alloc_noretry && !page && alloc_try_hard)
1726 		node_set(nid, *node_alloc_noretry);
1727 
1728 	return page;
1729 }
1730 
1731 /*
1732  * Common helper to allocate a fresh hugetlb page. All specific allocators
1733  * should use this function to get new hugetlb pages
1734  */
1735 static struct page *alloc_fresh_huge_page(struct hstate *h,
1736 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1737 		nodemask_t *node_alloc_noretry)
1738 {
1739 	struct page *page;
1740 
1741 	if (hstate_is_gigantic(h))
1742 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1743 	else
1744 		page = alloc_buddy_huge_page(h, gfp_mask,
1745 				nid, nmask, node_alloc_noretry);
1746 	if (!page)
1747 		return NULL;
1748 
1749 	if (hstate_is_gigantic(h))
1750 		prep_compound_gigantic_page(page, huge_page_order(h));
1751 	prep_new_huge_page(h, page, page_to_nid(page));
1752 
1753 	return page;
1754 }
1755 
1756 /*
1757  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1758  * manner.
1759  */
1760 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1761 				nodemask_t *node_alloc_noretry)
1762 {
1763 	struct page *page;
1764 	int nr_nodes, node;
1765 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1766 
1767 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1768 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1769 						node_alloc_noretry);
1770 		if (page)
1771 			break;
1772 	}
1773 
1774 	if (!page)
1775 		return 0;
1776 
1777 	put_page(page); /* free it into the hugepage allocator */
1778 
1779 	return 1;
1780 }
1781 
1782 /*
1783  * Free huge page from pool from next node to free.
1784  * Attempt to keep persistent huge pages more or less
1785  * balanced over allowed nodes.
1786  * Called with hugetlb_lock locked.
1787  */
1788 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1789 							 bool acct_surplus)
1790 {
1791 	int nr_nodes, node;
1792 	int ret = 0;
1793 
1794 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1795 		/*
1796 		 * If we're returning unused surplus pages, only examine
1797 		 * nodes with surplus pages.
1798 		 */
1799 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1800 		    !list_empty(&h->hugepage_freelists[node])) {
1801 			struct page *page =
1802 				list_entry(h->hugepage_freelists[node].next,
1803 					  struct page, lru);
1804 			list_del(&page->lru);
1805 			h->free_huge_pages--;
1806 			h->free_huge_pages_node[node]--;
1807 			if (acct_surplus) {
1808 				h->surplus_huge_pages--;
1809 				h->surplus_huge_pages_node[node]--;
1810 			}
1811 			update_and_free_page(h, page);
1812 			ret = 1;
1813 			break;
1814 		}
1815 	}
1816 
1817 	return ret;
1818 }
1819 
1820 /*
1821  * Dissolve a given free hugepage into free buddy pages. This function does
1822  * nothing for in-use hugepages and non-hugepages.
1823  * This function returns values like below:
1824  *
1825  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1826  *          (allocated or reserved.)
1827  *       0: successfully dissolved free hugepages or the page is not a
1828  *          hugepage (considered as already dissolved)
1829  */
1830 int dissolve_free_huge_page(struct page *page)
1831 {
1832 	int rc = -EBUSY;
1833 
1834 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1835 	if (!PageHuge(page))
1836 		return 0;
1837 
1838 	spin_lock(&hugetlb_lock);
1839 	if (!PageHuge(page)) {
1840 		rc = 0;
1841 		goto out;
1842 	}
1843 
1844 	if (!page_count(page)) {
1845 		struct page *head = compound_head(page);
1846 		struct hstate *h = page_hstate(head);
1847 		int nid = page_to_nid(head);
1848 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1849 			goto out;
1850 		/*
1851 		 * Move PageHWPoison flag from head page to the raw error page,
1852 		 * which makes any subpages rather than the error page reusable.
1853 		 */
1854 		if (PageHWPoison(head) && page != head) {
1855 			SetPageHWPoison(page);
1856 			ClearPageHWPoison(head);
1857 		}
1858 		list_del(&head->lru);
1859 		h->free_huge_pages--;
1860 		h->free_huge_pages_node[nid]--;
1861 		h->max_huge_pages--;
1862 		update_and_free_page(h, head);
1863 		rc = 0;
1864 	}
1865 out:
1866 	spin_unlock(&hugetlb_lock);
1867 	return rc;
1868 }
1869 
1870 /*
1871  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1872  * make specified memory blocks removable from the system.
1873  * Note that this will dissolve a free gigantic hugepage completely, if any
1874  * part of it lies within the given range.
1875  * Also note that if dissolve_free_huge_page() returns with an error, all
1876  * free hugepages that were dissolved before that error are lost.
1877  */
1878 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1879 {
1880 	unsigned long pfn;
1881 	struct page *page;
1882 	int rc = 0;
1883 
1884 	if (!hugepages_supported())
1885 		return rc;
1886 
1887 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1888 		page = pfn_to_page(pfn);
1889 		rc = dissolve_free_huge_page(page);
1890 		if (rc)
1891 			break;
1892 	}
1893 
1894 	return rc;
1895 }
1896 
1897 /*
1898  * Allocates a fresh surplus page from the page allocator.
1899  */
1900 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1901 		int nid, nodemask_t *nmask)
1902 {
1903 	struct page *page = NULL;
1904 
1905 	if (hstate_is_gigantic(h))
1906 		return NULL;
1907 
1908 	spin_lock(&hugetlb_lock);
1909 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1910 		goto out_unlock;
1911 	spin_unlock(&hugetlb_lock);
1912 
1913 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1914 	if (!page)
1915 		return NULL;
1916 
1917 	spin_lock(&hugetlb_lock);
1918 	/*
1919 	 * We could have raced with the pool size change.
1920 	 * Double check that and simply deallocate the new page
1921 	 * if we would end up overcommiting the surpluses. Abuse
1922 	 * temporary page to workaround the nasty free_huge_page
1923 	 * codeflow
1924 	 */
1925 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1926 		SetPageHugeTemporary(page);
1927 		spin_unlock(&hugetlb_lock);
1928 		put_page(page);
1929 		return NULL;
1930 	} else {
1931 		h->surplus_huge_pages++;
1932 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1933 	}
1934 
1935 out_unlock:
1936 	spin_unlock(&hugetlb_lock);
1937 
1938 	return page;
1939 }
1940 
1941 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1942 				     int nid, nodemask_t *nmask)
1943 {
1944 	struct page *page;
1945 
1946 	if (hstate_is_gigantic(h))
1947 		return NULL;
1948 
1949 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1950 	if (!page)
1951 		return NULL;
1952 
1953 	/*
1954 	 * We do not account these pages as surplus because they are only
1955 	 * temporary and will be released properly on the last reference
1956 	 */
1957 	SetPageHugeTemporary(page);
1958 
1959 	return page;
1960 }
1961 
1962 /*
1963  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1964  */
1965 static
1966 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1967 		struct vm_area_struct *vma, unsigned long addr)
1968 {
1969 	struct page *page;
1970 	struct mempolicy *mpol;
1971 	gfp_t gfp_mask = htlb_alloc_mask(h);
1972 	int nid;
1973 	nodemask_t *nodemask;
1974 
1975 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1976 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1977 	mpol_cond_put(mpol);
1978 
1979 	return page;
1980 }
1981 
1982 /* page migration callback function */
1983 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1984 {
1985 	gfp_t gfp_mask = htlb_alloc_mask(h);
1986 	struct page *page = NULL;
1987 
1988 	if (nid != NUMA_NO_NODE)
1989 		gfp_mask |= __GFP_THISNODE;
1990 
1991 	spin_lock(&hugetlb_lock);
1992 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1993 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1994 	spin_unlock(&hugetlb_lock);
1995 
1996 	if (!page)
1997 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1998 
1999 	return page;
2000 }
2001 
2002 /* page migration callback function */
2003 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2004 		nodemask_t *nmask)
2005 {
2006 	gfp_t gfp_mask = htlb_alloc_mask(h);
2007 
2008 	spin_lock(&hugetlb_lock);
2009 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2010 		struct page *page;
2011 
2012 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2013 		if (page) {
2014 			spin_unlock(&hugetlb_lock);
2015 			return page;
2016 		}
2017 	}
2018 	spin_unlock(&hugetlb_lock);
2019 
2020 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2021 }
2022 
2023 /* mempolicy aware migration callback */
2024 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2025 		unsigned long address)
2026 {
2027 	struct mempolicy *mpol;
2028 	nodemask_t *nodemask;
2029 	struct page *page;
2030 	gfp_t gfp_mask;
2031 	int node;
2032 
2033 	gfp_mask = htlb_alloc_mask(h);
2034 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2035 	page = alloc_huge_page_nodemask(h, node, nodemask);
2036 	mpol_cond_put(mpol);
2037 
2038 	return page;
2039 }
2040 
2041 /*
2042  * Increase the hugetlb pool such that it can accommodate a reservation
2043  * of size 'delta'.
2044  */
2045 static int gather_surplus_pages(struct hstate *h, int delta)
2046 	__must_hold(&hugetlb_lock)
2047 {
2048 	struct list_head surplus_list;
2049 	struct page *page, *tmp;
2050 	int ret, i;
2051 	int needed, allocated;
2052 	bool alloc_ok = true;
2053 
2054 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2055 	if (needed <= 0) {
2056 		h->resv_huge_pages += delta;
2057 		return 0;
2058 	}
2059 
2060 	allocated = 0;
2061 	INIT_LIST_HEAD(&surplus_list);
2062 
2063 	ret = -ENOMEM;
2064 retry:
2065 	spin_unlock(&hugetlb_lock);
2066 	for (i = 0; i < needed; i++) {
2067 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2068 				NUMA_NO_NODE, NULL);
2069 		if (!page) {
2070 			alloc_ok = false;
2071 			break;
2072 		}
2073 		list_add(&page->lru, &surplus_list);
2074 		cond_resched();
2075 	}
2076 	allocated += i;
2077 
2078 	/*
2079 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2080 	 * because either resv_huge_pages or free_huge_pages may have changed.
2081 	 */
2082 	spin_lock(&hugetlb_lock);
2083 	needed = (h->resv_huge_pages + delta) -
2084 			(h->free_huge_pages + allocated);
2085 	if (needed > 0) {
2086 		if (alloc_ok)
2087 			goto retry;
2088 		/*
2089 		 * We were not able to allocate enough pages to
2090 		 * satisfy the entire reservation so we free what
2091 		 * we've allocated so far.
2092 		 */
2093 		goto free;
2094 	}
2095 	/*
2096 	 * The surplus_list now contains _at_least_ the number of extra pages
2097 	 * needed to accommodate the reservation.  Add the appropriate number
2098 	 * of pages to the hugetlb pool and free the extras back to the buddy
2099 	 * allocator.  Commit the entire reservation here to prevent another
2100 	 * process from stealing the pages as they are added to the pool but
2101 	 * before they are reserved.
2102 	 */
2103 	needed += allocated;
2104 	h->resv_huge_pages += delta;
2105 	ret = 0;
2106 
2107 	/* Free the needed pages to the hugetlb pool */
2108 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2109 		if ((--needed) < 0)
2110 			break;
2111 		/*
2112 		 * This page is now managed by the hugetlb allocator and has
2113 		 * no users -- drop the buddy allocator's reference.
2114 		 */
2115 		put_page_testzero(page);
2116 		VM_BUG_ON_PAGE(page_count(page), page);
2117 		enqueue_huge_page(h, page);
2118 	}
2119 free:
2120 	spin_unlock(&hugetlb_lock);
2121 
2122 	/* Free unnecessary surplus pages to the buddy allocator */
2123 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2124 		put_page(page);
2125 	spin_lock(&hugetlb_lock);
2126 
2127 	return ret;
2128 }
2129 
2130 /*
2131  * This routine has two main purposes:
2132  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2133  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2134  *    to the associated reservation map.
2135  * 2) Free any unused surplus pages that may have been allocated to satisfy
2136  *    the reservation.  As many as unused_resv_pages may be freed.
2137  *
2138  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2139  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2140  * we must make sure nobody else can claim pages we are in the process of
2141  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2142  * number of huge pages we plan to free when dropping the lock.
2143  */
2144 static void return_unused_surplus_pages(struct hstate *h,
2145 					unsigned long unused_resv_pages)
2146 {
2147 	unsigned long nr_pages;
2148 
2149 	/* Cannot return gigantic pages currently */
2150 	if (hstate_is_gigantic(h))
2151 		goto out;
2152 
2153 	/*
2154 	 * Part (or even all) of the reservation could have been backed
2155 	 * by pre-allocated pages. Only free surplus pages.
2156 	 */
2157 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2158 
2159 	/*
2160 	 * We want to release as many surplus pages as possible, spread
2161 	 * evenly across all nodes with memory. Iterate across these nodes
2162 	 * until we can no longer free unreserved surplus pages. This occurs
2163 	 * when the nodes with surplus pages have no free pages.
2164 	 * free_pool_huge_page() will balance the the freed pages across the
2165 	 * on-line nodes with memory and will handle the hstate accounting.
2166 	 *
2167 	 * Note that we decrement resv_huge_pages as we free the pages.  If
2168 	 * we drop the lock, resv_huge_pages will still be sufficiently large
2169 	 * to cover subsequent pages we may free.
2170 	 */
2171 	while (nr_pages--) {
2172 		h->resv_huge_pages--;
2173 		unused_resv_pages--;
2174 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2175 			goto out;
2176 		cond_resched_lock(&hugetlb_lock);
2177 	}
2178 
2179 out:
2180 	/* Fully uncommit the reservation */
2181 	h->resv_huge_pages -= unused_resv_pages;
2182 }
2183 
2184 
2185 /*
2186  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2187  * are used by the huge page allocation routines to manage reservations.
2188  *
2189  * vma_needs_reservation is called to determine if the huge page at addr
2190  * within the vma has an associated reservation.  If a reservation is
2191  * needed, the value 1 is returned.  The caller is then responsible for
2192  * managing the global reservation and subpool usage counts.  After
2193  * the huge page has been allocated, vma_commit_reservation is called
2194  * to add the page to the reservation map.  If the page allocation fails,
2195  * the reservation must be ended instead of committed.  vma_end_reservation
2196  * is called in such cases.
2197  *
2198  * In the normal case, vma_commit_reservation returns the same value
2199  * as the preceding vma_needs_reservation call.  The only time this
2200  * is not the case is if a reserve map was changed between calls.  It
2201  * is the responsibility of the caller to notice the difference and
2202  * take appropriate action.
2203  *
2204  * vma_add_reservation is used in error paths where a reservation must
2205  * be restored when a newly allocated huge page must be freed.  It is
2206  * to be called after calling vma_needs_reservation to determine if a
2207  * reservation exists.
2208  */
2209 enum vma_resv_mode {
2210 	VMA_NEEDS_RESV,
2211 	VMA_COMMIT_RESV,
2212 	VMA_END_RESV,
2213 	VMA_ADD_RESV,
2214 };
2215 static long __vma_reservation_common(struct hstate *h,
2216 				struct vm_area_struct *vma, unsigned long addr,
2217 				enum vma_resv_mode mode)
2218 {
2219 	struct resv_map *resv;
2220 	pgoff_t idx;
2221 	long ret;
2222 	long dummy_out_regions_needed;
2223 
2224 	resv = vma_resv_map(vma);
2225 	if (!resv)
2226 		return 1;
2227 
2228 	idx = vma_hugecache_offset(h, vma, addr);
2229 	switch (mode) {
2230 	case VMA_NEEDS_RESV:
2231 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2232 		/* We assume that vma_reservation_* routines always operate on
2233 		 * 1 page, and that adding to resv map a 1 page entry can only
2234 		 * ever require 1 region.
2235 		 */
2236 		VM_BUG_ON(dummy_out_regions_needed != 1);
2237 		break;
2238 	case VMA_COMMIT_RESV:
2239 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2240 		/* region_add calls of range 1 should never fail. */
2241 		VM_BUG_ON(ret < 0);
2242 		break;
2243 	case VMA_END_RESV:
2244 		region_abort(resv, idx, idx + 1, 1);
2245 		ret = 0;
2246 		break;
2247 	case VMA_ADD_RESV:
2248 		if (vma->vm_flags & VM_MAYSHARE) {
2249 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2250 			/* region_add calls of range 1 should never fail. */
2251 			VM_BUG_ON(ret < 0);
2252 		} else {
2253 			region_abort(resv, idx, idx + 1, 1);
2254 			ret = region_del(resv, idx, idx + 1);
2255 		}
2256 		break;
2257 	default:
2258 		BUG();
2259 	}
2260 
2261 	if (vma->vm_flags & VM_MAYSHARE)
2262 		return ret;
2263 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2264 		/*
2265 		 * In most cases, reserves always exist for private mappings.
2266 		 * However, a file associated with mapping could have been
2267 		 * hole punched or truncated after reserves were consumed.
2268 		 * As subsequent fault on such a range will not use reserves.
2269 		 * Subtle - The reserve map for private mappings has the
2270 		 * opposite meaning than that of shared mappings.  If NO
2271 		 * entry is in the reserve map, it means a reservation exists.
2272 		 * If an entry exists in the reserve map, it means the
2273 		 * reservation has already been consumed.  As a result, the
2274 		 * return value of this routine is the opposite of the
2275 		 * value returned from reserve map manipulation routines above.
2276 		 */
2277 		if (ret)
2278 			return 0;
2279 		else
2280 			return 1;
2281 	}
2282 	else
2283 		return ret < 0 ? ret : 0;
2284 }
2285 
2286 static long vma_needs_reservation(struct hstate *h,
2287 			struct vm_area_struct *vma, unsigned long addr)
2288 {
2289 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2290 }
2291 
2292 static long vma_commit_reservation(struct hstate *h,
2293 			struct vm_area_struct *vma, unsigned long addr)
2294 {
2295 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2296 }
2297 
2298 static void vma_end_reservation(struct hstate *h,
2299 			struct vm_area_struct *vma, unsigned long addr)
2300 {
2301 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2302 }
2303 
2304 static long vma_add_reservation(struct hstate *h,
2305 			struct vm_area_struct *vma, unsigned long addr)
2306 {
2307 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2308 }
2309 
2310 /*
2311  * This routine is called to restore a reservation on error paths.  In the
2312  * specific error paths, a huge page was allocated (via alloc_huge_page)
2313  * and is about to be freed.  If a reservation for the page existed,
2314  * alloc_huge_page would have consumed the reservation and set PagePrivate
2315  * in the newly allocated page.  When the page is freed via free_huge_page,
2316  * the global reservation count will be incremented if PagePrivate is set.
2317  * However, free_huge_page can not adjust the reserve map.  Adjust the
2318  * reserve map here to be consistent with global reserve count adjustments
2319  * to be made by free_huge_page.
2320  */
2321 static void restore_reserve_on_error(struct hstate *h,
2322 			struct vm_area_struct *vma, unsigned long address,
2323 			struct page *page)
2324 {
2325 	if (unlikely(PagePrivate(page))) {
2326 		long rc = vma_needs_reservation(h, vma, address);
2327 
2328 		if (unlikely(rc < 0)) {
2329 			/*
2330 			 * Rare out of memory condition in reserve map
2331 			 * manipulation.  Clear PagePrivate so that
2332 			 * global reserve count will not be incremented
2333 			 * by free_huge_page.  This will make it appear
2334 			 * as though the reservation for this page was
2335 			 * consumed.  This may prevent the task from
2336 			 * faulting in the page at a later time.  This
2337 			 * is better than inconsistent global huge page
2338 			 * accounting of reserve counts.
2339 			 */
2340 			ClearPagePrivate(page);
2341 		} else if (rc) {
2342 			rc = vma_add_reservation(h, vma, address);
2343 			if (unlikely(rc < 0))
2344 				/*
2345 				 * See above comment about rare out of
2346 				 * memory condition.
2347 				 */
2348 				ClearPagePrivate(page);
2349 		} else
2350 			vma_end_reservation(h, vma, address);
2351 	}
2352 }
2353 
2354 struct page *alloc_huge_page(struct vm_area_struct *vma,
2355 				    unsigned long addr, int avoid_reserve)
2356 {
2357 	struct hugepage_subpool *spool = subpool_vma(vma);
2358 	struct hstate *h = hstate_vma(vma);
2359 	struct page *page;
2360 	long map_chg, map_commit;
2361 	long gbl_chg;
2362 	int ret, idx;
2363 	struct hugetlb_cgroup *h_cg;
2364 	bool deferred_reserve;
2365 
2366 	idx = hstate_index(h);
2367 	/*
2368 	 * Examine the region/reserve map to determine if the process
2369 	 * has a reservation for the page to be allocated.  A return
2370 	 * code of zero indicates a reservation exists (no change).
2371 	 */
2372 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2373 	if (map_chg < 0)
2374 		return ERR_PTR(-ENOMEM);
2375 
2376 	/*
2377 	 * Processes that did not create the mapping will have no
2378 	 * reserves as indicated by the region/reserve map. Check
2379 	 * that the allocation will not exceed the subpool limit.
2380 	 * Allocations for MAP_NORESERVE mappings also need to be
2381 	 * checked against any subpool limit.
2382 	 */
2383 	if (map_chg || avoid_reserve) {
2384 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2385 		if (gbl_chg < 0) {
2386 			vma_end_reservation(h, vma, addr);
2387 			return ERR_PTR(-ENOSPC);
2388 		}
2389 
2390 		/*
2391 		 * Even though there was no reservation in the region/reserve
2392 		 * map, there could be reservations associated with the
2393 		 * subpool that can be used.  This would be indicated if the
2394 		 * return value of hugepage_subpool_get_pages() is zero.
2395 		 * However, if avoid_reserve is specified we still avoid even
2396 		 * the subpool reservations.
2397 		 */
2398 		if (avoid_reserve)
2399 			gbl_chg = 1;
2400 	}
2401 
2402 	/* If this allocation is not consuming a reservation, charge it now.
2403 	 */
2404 	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2405 	if (deferred_reserve) {
2406 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2407 			idx, pages_per_huge_page(h), &h_cg);
2408 		if (ret)
2409 			goto out_subpool_put;
2410 	}
2411 
2412 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2413 	if (ret)
2414 		goto out_uncharge_cgroup_reservation;
2415 
2416 	spin_lock(&hugetlb_lock);
2417 	/*
2418 	 * glb_chg is passed to indicate whether or not a page must be taken
2419 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2420 	 * a reservation exists for the allocation.
2421 	 */
2422 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2423 	if (!page) {
2424 		spin_unlock(&hugetlb_lock);
2425 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2426 		if (!page)
2427 			goto out_uncharge_cgroup;
2428 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2429 			SetPagePrivate(page);
2430 			h->resv_huge_pages--;
2431 		}
2432 		spin_lock(&hugetlb_lock);
2433 		list_move(&page->lru, &h->hugepage_activelist);
2434 		/* Fall through */
2435 	}
2436 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2437 	/* If allocation is not consuming a reservation, also store the
2438 	 * hugetlb_cgroup pointer on the page.
2439 	 */
2440 	if (deferred_reserve) {
2441 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2442 						  h_cg, page);
2443 	}
2444 
2445 	spin_unlock(&hugetlb_lock);
2446 
2447 	set_page_private(page, (unsigned long)spool);
2448 
2449 	map_commit = vma_commit_reservation(h, vma, addr);
2450 	if (unlikely(map_chg > map_commit)) {
2451 		/*
2452 		 * The page was added to the reservation map between
2453 		 * vma_needs_reservation and vma_commit_reservation.
2454 		 * This indicates a race with hugetlb_reserve_pages.
2455 		 * Adjust for the subpool count incremented above AND
2456 		 * in hugetlb_reserve_pages for the same page.  Also,
2457 		 * the reservation count added in hugetlb_reserve_pages
2458 		 * no longer applies.
2459 		 */
2460 		long rsv_adjust;
2461 
2462 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2463 		hugetlb_acct_memory(h, -rsv_adjust);
2464 	}
2465 	return page;
2466 
2467 out_uncharge_cgroup:
2468 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2469 out_uncharge_cgroup_reservation:
2470 	if (deferred_reserve)
2471 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2472 						    h_cg);
2473 out_subpool_put:
2474 	if (map_chg || avoid_reserve)
2475 		hugepage_subpool_put_pages(spool, 1);
2476 	vma_end_reservation(h, vma, addr);
2477 	return ERR_PTR(-ENOSPC);
2478 }
2479 
2480 int alloc_bootmem_huge_page(struct hstate *h)
2481 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2482 int __alloc_bootmem_huge_page(struct hstate *h)
2483 {
2484 	struct huge_bootmem_page *m;
2485 	int nr_nodes, node;
2486 
2487 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2488 		void *addr;
2489 
2490 		addr = memblock_alloc_try_nid_raw(
2491 				huge_page_size(h), huge_page_size(h),
2492 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2493 		if (addr) {
2494 			/*
2495 			 * Use the beginning of the huge page to store the
2496 			 * huge_bootmem_page struct (until gather_bootmem
2497 			 * puts them into the mem_map).
2498 			 */
2499 			m = addr;
2500 			goto found;
2501 		}
2502 	}
2503 	return 0;
2504 
2505 found:
2506 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2507 	/* Put them into a private list first because mem_map is not up yet */
2508 	INIT_LIST_HEAD(&m->list);
2509 	list_add(&m->list, &huge_boot_pages);
2510 	m->hstate = h;
2511 	return 1;
2512 }
2513 
2514 static void __init prep_compound_huge_page(struct page *page,
2515 		unsigned int order)
2516 {
2517 	if (unlikely(order > (MAX_ORDER - 1)))
2518 		prep_compound_gigantic_page(page, order);
2519 	else
2520 		prep_compound_page(page, order);
2521 }
2522 
2523 /* Put bootmem huge pages into the standard lists after mem_map is up */
2524 static void __init gather_bootmem_prealloc(void)
2525 {
2526 	struct huge_bootmem_page *m;
2527 
2528 	list_for_each_entry(m, &huge_boot_pages, list) {
2529 		struct page *page = virt_to_page(m);
2530 		struct hstate *h = m->hstate;
2531 
2532 		WARN_ON(page_count(page) != 1);
2533 		prep_compound_huge_page(page, h->order);
2534 		WARN_ON(PageReserved(page));
2535 		prep_new_huge_page(h, page, page_to_nid(page));
2536 		put_page(page); /* free it into the hugepage allocator */
2537 
2538 		/*
2539 		 * If we had gigantic hugepages allocated at boot time, we need
2540 		 * to restore the 'stolen' pages to totalram_pages in order to
2541 		 * fix confusing memory reports from free(1) and another
2542 		 * side-effects, like CommitLimit going negative.
2543 		 */
2544 		if (hstate_is_gigantic(h))
2545 			adjust_managed_page_count(page, 1 << h->order);
2546 		cond_resched();
2547 	}
2548 }
2549 
2550 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2551 {
2552 	unsigned long i;
2553 	nodemask_t *node_alloc_noretry;
2554 
2555 	if (!hstate_is_gigantic(h)) {
2556 		/*
2557 		 * Bit mask controlling how hard we retry per-node allocations.
2558 		 * Ignore errors as lower level routines can deal with
2559 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2560 		 * time, we are likely in bigger trouble.
2561 		 */
2562 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2563 						GFP_KERNEL);
2564 	} else {
2565 		/* allocations done at boot time */
2566 		node_alloc_noretry = NULL;
2567 	}
2568 
2569 	/* bit mask controlling how hard we retry per-node allocations */
2570 	if (node_alloc_noretry)
2571 		nodes_clear(*node_alloc_noretry);
2572 
2573 	for (i = 0; i < h->max_huge_pages; ++i) {
2574 		if (hstate_is_gigantic(h)) {
2575 			if (IS_ENABLED(CONFIG_CMA) && hugetlb_cma[0]) {
2576 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2577 				break;
2578 			}
2579 			if (!alloc_bootmem_huge_page(h))
2580 				break;
2581 		} else if (!alloc_pool_huge_page(h,
2582 					 &node_states[N_MEMORY],
2583 					 node_alloc_noretry))
2584 			break;
2585 		cond_resched();
2586 	}
2587 	if (i < h->max_huge_pages) {
2588 		char buf[32];
2589 
2590 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2591 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2592 			h->max_huge_pages, buf, i);
2593 		h->max_huge_pages = i;
2594 	}
2595 
2596 	kfree(node_alloc_noretry);
2597 }
2598 
2599 static void __init hugetlb_init_hstates(void)
2600 {
2601 	struct hstate *h;
2602 
2603 	for_each_hstate(h) {
2604 		if (minimum_order > huge_page_order(h))
2605 			minimum_order = huge_page_order(h);
2606 
2607 		/* oversize hugepages were init'ed in early boot */
2608 		if (!hstate_is_gigantic(h))
2609 			hugetlb_hstate_alloc_pages(h);
2610 	}
2611 	VM_BUG_ON(minimum_order == UINT_MAX);
2612 }
2613 
2614 static void __init report_hugepages(void)
2615 {
2616 	struct hstate *h;
2617 
2618 	for_each_hstate(h) {
2619 		char buf[32];
2620 
2621 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2622 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2623 			buf, h->free_huge_pages);
2624 	}
2625 }
2626 
2627 #ifdef CONFIG_HIGHMEM
2628 static void try_to_free_low(struct hstate *h, unsigned long count,
2629 						nodemask_t *nodes_allowed)
2630 {
2631 	int i;
2632 
2633 	if (hstate_is_gigantic(h))
2634 		return;
2635 
2636 	for_each_node_mask(i, *nodes_allowed) {
2637 		struct page *page, *next;
2638 		struct list_head *freel = &h->hugepage_freelists[i];
2639 		list_for_each_entry_safe(page, next, freel, lru) {
2640 			if (count >= h->nr_huge_pages)
2641 				return;
2642 			if (PageHighMem(page))
2643 				continue;
2644 			list_del(&page->lru);
2645 			update_and_free_page(h, page);
2646 			h->free_huge_pages--;
2647 			h->free_huge_pages_node[page_to_nid(page)]--;
2648 		}
2649 	}
2650 }
2651 #else
2652 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2653 						nodemask_t *nodes_allowed)
2654 {
2655 }
2656 #endif
2657 
2658 /*
2659  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2660  * balanced by operating on them in a round-robin fashion.
2661  * Returns 1 if an adjustment was made.
2662  */
2663 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2664 				int delta)
2665 {
2666 	int nr_nodes, node;
2667 
2668 	VM_BUG_ON(delta != -1 && delta != 1);
2669 
2670 	if (delta < 0) {
2671 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2672 			if (h->surplus_huge_pages_node[node])
2673 				goto found;
2674 		}
2675 	} else {
2676 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2677 			if (h->surplus_huge_pages_node[node] <
2678 					h->nr_huge_pages_node[node])
2679 				goto found;
2680 		}
2681 	}
2682 	return 0;
2683 
2684 found:
2685 	h->surplus_huge_pages += delta;
2686 	h->surplus_huge_pages_node[node] += delta;
2687 	return 1;
2688 }
2689 
2690 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2691 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2692 			      nodemask_t *nodes_allowed)
2693 {
2694 	unsigned long min_count, ret;
2695 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2696 
2697 	/*
2698 	 * Bit mask controlling how hard we retry per-node allocations.
2699 	 * If we can not allocate the bit mask, do not attempt to allocate
2700 	 * the requested huge pages.
2701 	 */
2702 	if (node_alloc_noretry)
2703 		nodes_clear(*node_alloc_noretry);
2704 	else
2705 		return -ENOMEM;
2706 
2707 	spin_lock(&hugetlb_lock);
2708 
2709 	/*
2710 	 * Check for a node specific request.
2711 	 * Changing node specific huge page count may require a corresponding
2712 	 * change to the global count.  In any case, the passed node mask
2713 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2714 	 */
2715 	if (nid != NUMA_NO_NODE) {
2716 		unsigned long old_count = count;
2717 
2718 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2719 		/*
2720 		 * User may have specified a large count value which caused the
2721 		 * above calculation to overflow.  In this case, they wanted
2722 		 * to allocate as many huge pages as possible.  Set count to
2723 		 * largest possible value to align with their intention.
2724 		 */
2725 		if (count < old_count)
2726 			count = ULONG_MAX;
2727 	}
2728 
2729 	/*
2730 	 * Gigantic pages runtime allocation depend on the capability for large
2731 	 * page range allocation.
2732 	 * If the system does not provide this feature, return an error when
2733 	 * the user tries to allocate gigantic pages but let the user free the
2734 	 * boottime allocated gigantic pages.
2735 	 */
2736 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2737 		if (count > persistent_huge_pages(h)) {
2738 			spin_unlock(&hugetlb_lock);
2739 			NODEMASK_FREE(node_alloc_noretry);
2740 			return -EINVAL;
2741 		}
2742 		/* Fall through to decrease pool */
2743 	}
2744 
2745 	/*
2746 	 * Increase the pool size
2747 	 * First take pages out of surplus state.  Then make up the
2748 	 * remaining difference by allocating fresh huge pages.
2749 	 *
2750 	 * We might race with alloc_surplus_huge_page() here and be unable
2751 	 * to convert a surplus huge page to a normal huge page. That is
2752 	 * not critical, though, it just means the overall size of the
2753 	 * pool might be one hugepage larger than it needs to be, but
2754 	 * within all the constraints specified by the sysctls.
2755 	 */
2756 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2757 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2758 			break;
2759 	}
2760 
2761 	while (count > persistent_huge_pages(h)) {
2762 		/*
2763 		 * If this allocation races such that we no longer need the
2764 		 * page, free_huge_page will handle it by freeing the page
2765 		 * and reducing the surplus.
2766 		 */
2767 		spin_unlock(&hugetlb_lock);
2768 
2769 		/* yield cpu to avoid soft lockup */
2770 		cond_resched();
2771 
2772 		ret = alloc_pool_huge_page(h, nodes_allowed,
2773 						node_alloc_noretry);
2774 		spin_lock(&hugetlb_lock);
2775 		if (!ret)
2776 			goto out;
2777 
2778 		/* Bail for signals. Probably ctrl-c from user */
2779 		if (signal_pending(current))
2780 			goto out;
2781 	}
2782 
2783 	/*
2784 	 * Decrease the pool size
2785 	 * First return free pages to the buddy allocator (being careful
2786 	 * to keep enough around to satisfy reservations).  Then place
2787 	 * pages into surplus state as needed so the pool will shrink
2788 	 * to the desired size as pages become free.
2789 	 *
2790 	 * By placing pages into the surplus state independent of the
2791 	 * overcommit value, we are allowing the surplus pool size to
2792 	 * exceed overcommit. There are few sane options here. Since
2793 	 * alloc_surplus_huge_page() is checking the global counter,
2794 	 * though, we'll note that we're not allowed to exceed surplus
2795 	 * and won't grow the pool anywhere else. Not until one of the
2796 	 * sysctls are changed, or the surplus pages go out of use.
2797 	 */
2798 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2799 	min_count = max(count, min_count);
2800 	try_to_free_low(h, min_count, nodes_allowed);
2801 	while (min_count < persistent_huge_pages(h)) {
2802 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2803 			break;
2804 		cond_resched_lock(&hugetlb_lock);
2805 	}
2806 	while (count < persistent_huge_pages(h)) {
2807 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2808 			break;
2809 	}
2810 out:
2811 	h->max_huge_pages = persistent_huge_pages(h);
2812 	spin_unlock(&hugetlb_lock);
2813 
2814 	NODEMASK_FREE(node_alloc_noretry);
2815 
2816 	return 0;
2817 }
2818 
2819 #define HSTATE_ATTR_RO(_name) \
2820 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2821 
2822 #define HSTATE_ATTR(_name) \
2823 	static struct kobj_attribute _name##_attr = \
2824 		__ATTR(_name, 0644, _name##_show, _name##_store)
2825 
2826 static struct kobject *hugepages_kobj;
2827 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2828 
2829 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2830 
2831 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2832 {
2833 	int i;
2834 
2835 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2836 		if (hstate_kobjs[i] == kobj) {
2837 			if (nidp)
2838 				*nidp = NUMA_NO_NODE;
2839 			return &hstates[i];
2840 		}
2841 
2842 	return kobj_to_node_hstate(kobj, nidp);
2843 }
2844 
2845 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2846 					struct kobj_attribute *attr, char *buf)
2847 {
2848 	struct hstate *h;
2849 	unsigned long nr_huge_pages;
2850 	int nid;
2851 
2852 	h = kobj_to_hstate(kobj, &nid);
2853 	if (nid == NUMA_NO_NODE)
2854 		nr_huge_pages = h->nr_huge_pages;
2855 	else
2856 		nr_huge_pages = h->nr_huge_pages_node[nid];
2857 
2858 	return sprintf(buf, "%lu\n", nr_huge_pages);
2859 }
2860 
2861 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2862 					   struct hstate *h, int nid,
2863 					   unsigned long count, size_t len)
2864 {
2865 	int err;
2866 	nodemask_t nodes_allowed, *n_mask;
2867 
2868 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2869 		return -EINVAL;
2870 
2871 	if (nid == NUMA_NO_NODE) {
2872 		/*
2873 		 * global hstate attribute
2874 		 */
2875 		if (!(obey_mempolicy &&
2876 				init_nodemask_of_mempolicy(&nodes_allowed)))
2877 			n_mask = &node_states[N_MEMORY];
2878 		else
2879 			n_mask = &nodes_allowed;
2880 	} else {
2881 		/*
2882 		 * Node specific request.  count adjustment happens in
2883 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2884 		 */
2885 		init_nodemask_of_node(&nodes_allowed, nid);
2886 		n_mask = &nodes_allowed;
2887 	}
2888 
2889 	err = set_max_huge_pages(h, count, nid, n_mask);
2890 
2891 	return err ? err : len;
2892 }
2893 
2894 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2895 					 struct kobject *kobj, const char *buf,
2896 					 size_t len)
2897 {
2898 	struct hstate *h;
2899 	unsigned long count;
2900 	int nid;
2901 	int err;
2902 
2903 	err = kstrtoul(buf, 10, &count);
2904 	if (err)
2905 		return err;
2906 
2907 	h = kobj_to_hstate(kobj, &nid);
2908 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2909 }
2910 
2911 static ssize_t nr_hugepages_show(struct kobject *kobj,
2912 				       struct kobj_attribute *attr, char *buf)
2913 {
2914 	return nr_hugepages_show_common(kobj, attr, buf);
2915 }
2916 
2917 static ssize_t nr_hugepages_store(struct kobject *kobj,
2918 	       struct kobj_attribute *attr, const char *buf, size_t len)
2919 {
2920 	return nr_hugepages_store_common(false, kobj, buf, len);
2921 }
2922 HSTATE_ATTR(nr_hugepages);
2923 
2924 #ifdef CONFIG_NUMA
2925 
2926 /*
2927  * hstate attribute for optionally mempolicy-based constraint on persistent
2928  * huge page alloc/free.
2929  */
2930 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2931 				       struct kobj_attribute *attr, char *buf)
2932 {
2933 	return nr_hugepages_show_common(kobj, attr, buf);
2934 }
2935 
2936 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2937 	       struct kobj_attribute *attr, const char *buf, size_t len)
2938 {
2939 	return nr_hugepages_store_common(true, kobj, buf, len);
2940 }
2941 HSTATE_ATTR(nr_hugepages_mempolicy);
2942 #endif
2943 
2944 
2945 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2946 					struct kobj_attribute *attr, char *buf)
2947 {
2948 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2949 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2950 }
2951 
2952 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2953 		struct kobj_attribute *attr, const char *buf, size_t count)
2954 {
2955 	int err;
2956 	unsigned long input;
2957 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2958 
2959 	if (hstate_is_gigantic(h))
2960 		return -EINVAL;
2961 
2962 	err = kstrtoul(buf, 10, &input);
2963 	if (err)
2964 		return err;
2965 
2966 	spin_lock(&hugetlb_lock);
2967 	h->nr_overcommit_huge_pages = input;
2968 	spin_unlock(&hugetlb_lock);
2969 
2970 	return count;
2971 }
2972 HSTATE_ATTR(nr_overcommit_hugepages);
2973 
2974 static ssize_t free_hugepages_show(struct kobject *kobj,
2975 					struct kobj_attribute *attr, char *buf)
2976 {
2977 	struct hstate *h;
2978 	unsigned long free_huge_pages;
2979 	int nid;
2980 
2981 	h = kobj_to_hstate(kobj, &nid);
2982 	if (nid == NUMA_NO_NODE)
2983 		free_huge_pages = h->free_huge_pages;
2984 	else
2985 		free_huge_pages = h->free_huge_pages_node[nid];
2986 
2987 	return sprintf(buf, "%lu\n", free_huge_pages);
2988 }
2989 HSTATE_ATTR_RO(free_hugepages);
2990 
2991 static ssize_t resv_hugepages_show(struct kobject *kobj,
2992 					struct kobj_attribute *attr, char *buf)
2993 {
2994 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2995 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2996 }
2997 HSTATE_ATTR_RO(resv_hugepages);
2998 
2999 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3000 					struct kobj_attribute *attr, char *buf)
3001 {
3002 	struct hstate *h;
3003 	unsigned long surplus_huge_pages;
3004 	int nid;
3005 
3006 	h = kobj_to_hstate(kobj, &nid);
3007 	if (nid == NUMA_NO_NODE)
3008 		surplus_huge_pages = h->surplus_huge_pages;
3009 	else
3010 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3011 
3012 	return sprintf(buf, "%lu\n", surplus_huge_pages);
3013 }
3014 HSTATE_ATTR_RO(surplus_hugepages);
3015 
3016 static struct attribute *hstate_attrs[] = {
3017 	&nr_hugepages_attr.attr,
3018 	&nr_overcommit_hugepages_attr.attr,
3019 	&free_hugepages_attr.attr,
3020 	&resv_hugepages_attr.attr,
3021 	&surplus_hugepages_attr.attr,
3022 #ifdef CONFIG_NUMA
3023 	&nr_hugepages_mempolicy_attr.attr,
3024 #endif
3025 	NULL,
3026 };
3027 
3028 static const struct attribute_group hstate_attr_group = {
3029 	.attrs = hstate_attrs,
3030 };
3031 
3032 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3033 				    struct kobject **hstate_kobjs,
3034 				    const struct attribute_group *hstate_attr_group)
3035 {
3036 	int retval;
3037 	int hi = hstate_index(h);
3038 
3039 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3040 	if (!hstate_kobjs[hi])
3041 		return -ENOMEM;
3042 
3043 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3044 	if (retval)
3045 		kobject_put(hstate_kobjs[hi]);
3046 
3047 	return retval;
3048 }
3049 
3050 static void __init hugetlb_sysfs_init(void)
3051 {
3052 	struct hstate *h;
3053 	int err;
3054 
3055 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3056 	if (!hugepages_kobj)
3057 		return;
3058 
3059 	for_each_hstate(h) {
3060 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3061 					 hstate_kobjs, &hstate_attr_group);
3062 		if (err)
3063 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3064 	}
3065 }
3066 
3067 #ifdef CONFIG_NUMA
3068 
3069 /*
3070  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3071  * with node devices in node_devices[] using a parallel array.  The array
3072  * index of a node device or _hstate == node id.
3073  * This is here to avoid any static dependency of the node device driver, in
3074  * the base kernel, on the hugetlb module.
3075  */
3076 struct node_hstate {
3077 	struct kobject		*hugepages_kobj;
3078 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3079 };
3080 static struct node_hstate node_hstates[MAX_NUMNODES];
3081 
3082 /*
3083  * A subset of global hstate attributes for node devices
3084  */
3085 static struct attribute *per_node_hstate_attrs[] = {
3086 	&nr_hugepages_attr.attr,
3087 	&free_hugepages_attr.attr,
3088 	&surplus_hugepages_attr.attr,
3089 	NULL,
3090 };
3091 
3092 static const struct attribute_group per_node_hstate_attr_group = {
3093 	.attrs = per_node_hstate_attrs,
3094 };
3095 
3096 /*
3097  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3098  * Returns node id via non-NULL nidp.
3099  */
3100 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3101 {
3102 	int nid;
3103 
3104 	for (nid = 0; nid < nr_node_ids; nid++) {
3105 		struct node_hstate *nhs = &node_hstates[nid];
3106 		int i;
3107 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3108 			if (nhs->hstate_kobjs[i] == kobj) {
3109 				if (nidp)
3110 					*nidp = nid;
3111 				return &hstates[i];
3112 			}
3113 	}
3114 
3115 	BUG();
3116 	return NULL;
3117 }
3118 
3119 /*
3120  * Unregister hstate attributes from a single node device.
3121  * No-op if no hstate attributes attached.
3122  */
3123 static void hugetlb_unregister_node(struct node *node)
3124 {
3125 	struct hstate *h;
3126 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3127 
3128 	if (!nhs->hugepages_kobj)
3129 		return;		/* no hstate attributes */
3130 
3131 	for_each_hstate(h) {
3132 		int idx = hstate_index(h);
3133 		if (nhs->hstate_kobjs[idx]) {
3134 			kobject_put(nhs->hstate_kobjs[idx]);
3135 			nhs->hstate_kobjs[idx] = NULL;
3136 		}
3137 	}
3138 
3139 	kobject_put(nhs->hugepages_kobj);
3140 	nhs->hugepages_kobj = NULL;
3141 }
3142 
3143 
3144 /*
3145  * Register hstate attributes for a single node device.
3146  * No-op if attributes already registered.
3147  */
3148 static void hugetlb_register_node(struct node *node)
3149 {
3150 	struct hstate *h;
3151 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3152 	int err;
3153 
3154 	if (nhs->hugepages_kobj)
3155 		return;		/* already allocated */
3156 
3157 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3158 							&node->dev.kobj);
3159 	if (!nhs->hugepages_kobj)
3160 		return;
3161 
3162 	for_each_hstate(h) {
3163 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3164 						nhs->hstate_kobjs,
3165 						&per_node_hstate_attr_group);
3166 		if (err) {
3167 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3168 				h->name, node->dev.id);
3169 			hugetlb_unregister_node(node);
3170 			break;
3171 		}
3172 	}
3173 }
3174 
3175 /*
3176  * hugetlb init time:  register hstate attributes for all registered node
3177  * devices of nodes that have memory.  All on-line nodes should have
3178  * registered their associated device by this time.
3179  */
3180 static void __init hugetlb_register_all_nodes(void)
3181 {
3182 	int nid;
3183 
3184 	for_each_node_state(nid, N_MEMORY) {
3185 		struct node *node = node_devices[nid];
3186 		if (node->dev.id == nid)
3187 			hugetlb_register_node(node);
3188 	}
3189 
3190 	/*
3191 	 * Let the node device driver know we're here so it can
3192 	 * [un]register hstate attributes on node hotplug.
3193 	 */
3194 	register_hugetlbfs_with_node(hugetlb_register_node,
3195 				     hugetlb_unregister_node);
3196 }
3197 #else	/* !CONFIG_NUMA */
3198 
3199 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3200 {
3201 	BUG();
3202 	if (nidp)
3203 		*nidp = -1;
3204 	return NULL;
3205 }
3206 
3207 static void hugetlb_register_all_nodes(void) { }
3208 
3209 #endif
3210 
3211 static int __init hugetlb_init(void)
3212 {
3213 	int i;
3214 
3215 	if (!hugepages_supported()) {
3216 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3217 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3218 		return 0;
3219 	}
3220 
3221 	/*
3222 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3223 	 * architectures depend on setup being done here.
3224 	 */
3225 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3226 	if (!parsed_default_hugepagesz) {
3227 		/*
3228 		 * If we did not parse a default huge page size, set
3229 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3230 		 * number of huge pages for this default size was implicitly
3231 		 * specified, set that here as well.
3232 		 * Note that the implicit setting will overwrite an explicit
3233 		 * setting.  A warning will be printed in this case.
3234 		 */
3235 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3236 		if (default_hstate_max_huge_pages) {
3237 			if (default_hstate.max_huge_pages) {
3238 				char buf[32];
3239 
3240 				string_get_size(huge_page_size(&default_hstate),
3241 					1, STRING_UNITS_2, buf, 32);
3242 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3243 					default_hstate.max_huge_pages, buf);
3244 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3245 					default_hstate_max_huge_pages);
3246 			}
3247 			default_hstate.max_huge_pages =
3248 				default_hstate_max_huge_pages;
3249 		}
3250 	}
3251 
3252 	hugetlb_cma_check();
3253 	hugetlb_init_hstates();
3254 	gather_bootmem_prealloc();
3255 	report_hugepages();
3256 
3257 	hugetlb_sysfs_init();
3258 	hugetlb_register_all_nodes();
3259 	hugetlb_cgroup_file_init();
3260 
3261 #ifdef CONFIG_SMP
3262 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3263 #else
3264 	num_fault_mutexes = 1;
3265 #endif
3266 	hugetlb_fault_mutex_table =
3267 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3268 			      GFP_KERNEL);
3269 	BUG_ON(!hugetlb_fault_mutex_table);
3270 
3271 	for (i = 0; i < num_fault_mutexes; i++)
3272 		mutex_init(&hugetlb_fault_mutex_table[i]);
3273 	return 0;
3274 }
3275 subsys_initcall(hugetlb_init);
3276 
3277 /* Overwritten by architectures with more huge page sizes */
3278 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3279 {
3280 	return size == HPAGE_SIZE;
3281 }
3282 
3283 void __init hugetlb_add_hstate(unsigned int order)
3284 {
3285 	struct hstate *h;
3286 	unsigned long i;
3287 
3288 	if (size_to_hstate(PAGE_SIZE << order)) {
3289 		return;
3290 	}
3291 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3292 	BUG_ON(order == 0);
3293 	h = &hstates[hugetlb_max_hstate++];
3294 	h->order = order;
3295 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3296 	h->nr_huge_pages = 0;
3297 	h->free_huge_pages = 0;
3298 	for (i = 0; i < MAX_NUMNODES; ++i)
3299 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3300 	INIT_LIST_HEAD(&h->hugepage_activelist);
3301 	h->next_nid_to_alloc = first_memory_node;
3302 	h->next_nid_to_free = first_memory_node;
3303 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3304 					huge_page_size(h)/1024);
3305 
3306 	parsed_hstate = h;
3307 }
3308 
3309 /*
3310  * hugepages command line processing
3311  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3312  * specification.  If not, ignore the hugepages value.  hugepages can also
3313  * be the first huge page command line  option in which case it implicitly
3314  * specifies the number of huge pages for the default size.
3315  */
3316 static int __init hugepages_setup(char *s)
3317 {
3318 	unsigned long *mhp;
3319 	static unsigned long *last_mhp;
3320 
3321 	if (!parsed_valid_hugepagesz) {
3322 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3323 		parsed_valid_hugepagesz = true;
3324 		return 0;
3325 	}
3326 
3327 	/*
3328 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3329 	 * yet, so this hugepages= parameter goes to the "default hstate".
3330 	 * Otherwise, it goes with the previously parsed hugepagesz or
3331 	 * default_hugepagesz.
3332 	 */
3333 	else if (!hugetlb_max_hstate)
3334 		mhp = &default_hstate_max_huge_pages;
3335 	else
3336 		mhp = &parsed_hstate->max_huge_pages;
3337 
3338 	if (mhp == last_mhp) {
3339 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3340 		return 0;
3341 	}
3342 
3343 	if (sscanf(s, "%lu", mhp) <= 0)
3344 		*mhp = 0;
3345 
3346 	/*
3347 	 * Global state is always initialized later in hugetlb_init.
3348 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3349 	 * use the bootmem allocator.
3350 	 */
3351 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3352 		hugetlb_hstate_alloc_pages(parsed_hstate);
3353 
3354 	last_mhp = mhp;
3355 
3356 	return 1;
3357 }
3358 __setup("hugepages=", hugepages_setup);
3359 
3360 /*
3361  * hugepagesz command line processing
3362  * A specific huge page size can only be specified once with hugepagesz.
3363  * hugepagesz is followed by hugepages on the command line.  The global
3364  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3365  * hugepagesz argument was valid.
3366  */
3367 static int __init hugepagesz_setup(char *s)
3368 {
3369 	unsigned long size;
3370 	struct hstate *h;
3371 
3372 	parsed_valid_hugepagesz = false;
3373 	size = (unsigned long)memparse(s, NULL);
3374 
3375 	if (!arch_hugetlb_valid_size(size)) {
3376 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3377 		return 0;
3378 	}
3379 
3380 	h = size_to_hstate(size);
3381 	if (h) {
3382 		/*
3383 		 * hstate for this size already exists.  This is normally
3384 		 * an error, but is allowed if the existing hstate is the
3385 		 * default hstate.  More specifically, it is only allowed if
3386 		 * the number of huge pages for the default hstate was not
3387 		 * previously specified.
3388 		 */
3389 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3390 		    default_hstate.max_huge_pages) {
3391 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3392 			return 0;
3393 		}
3394 
3395 		/*
3396 		 * No need to call hugetlb_add_hstate() as hstate already
3397 		 * exists.  But, do set parsed_hstate so that a following
3398 		 * hugepages= parameter will be applied to this hstate.
3399 		 */
3400 		parsed_hstate = h;
3401 		parsed_valid_hugepagesz = true;
3402 		return 1;
3403 	}
3404 
3405 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3406 	parsed_valid_hugepagesz = true;
3407 	return 1;
3408 }
3409 __setup("hugepagesz=", hugepagesz_setup);
3410 
3411 /*
3412  * default_hugepagesz command line input
3413  * Only one instance of default_hugepagesz allowed on command line.
3414  */
3415 static int __init default_hugepagesz_setup(char *s)
3416 {
3417 	unsigned long size;
3418 
3419 	parsed_valid_hugepagesz = false;
3420 	if (parsed_default_hugepagesz) {
3421 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3422 		return 0;
3423 	}
3424 
3425 	size = (unsigned long)memparse(s, NULL);
3426 
3427 	if (!arch_hugetlb_valid_size(size)) {
3428 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3429 		return 0;
3430 	}
3431 
3432 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3433 	parsed_valid_hugepagesz = true;
3434 	parsed_default_hugepagesz = true;
3435 	default_hstate_idx = hstate_index(size_to_hstate(size));
3436 
3437 	/*
3438 	 * The number of default huge pages (for this size) could have been
3439 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3440 	 * then default_hstate_max_huge_pages is set.  If the default huge
3441 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3442 	 * allocated here from bootmem allocator.
3443 	 */
3444 	if (default_hstate_max_huge_pages) {
3445 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3446 		if (hstate_is_gigantic(&default_hstate))
3447 			hugetlb_hstate_alloc_pages(&default_hstate);
3448 		default_hstate_max_huge_pages = 0;
3449 	}
3450 
3451 	return 1;
3452 }
3453 __setup("default_hugepagesz=", default_hugepagesz_setup);
3454 
3455 static unsigned int cpuset_mems_nr(unsigned int *array)
3456 {
3457 	int node;
3458 	unsigned int nr = 0;
3459 
3460 	for_each_node_mask(node, cpuset_current_mems_allowed)
3461 		nr += array[node];
3462 
3463 	return nr;
3464 }
3465 
3466 #ifdef CONFIG_SYSCTL
3467 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3468 			 struct ctl_table *table, int write,
3469 			 void *buffer, size_t *length, loff_t *ppos)
3470 {
3471 	struct hstate *h = &default_hstate;
3472 	unsigned long tmp = h->max_huge_pages;
3473 	int ret;
3474 
3475 	if (!hugepages_supported())
3476 		return -EOPNOTSUPP;
3477 
3478 	table->data = &tmp;
3479 	table->maxlen = sizeof(unsigned long);
3480 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3481 	if (ret)
3482 		goto out;
3483 
3484 	if (write)
3485 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3486 						  NUMA_NO_NODE, tmp, *length);
3487 out:
3488 	return ret;
3489 }
3490 
3491 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3492 			  void *buffer, size_t *length, loff_t *ppos)
3493 {
3494 
3495 	return hugetlb_sysctl_handler_common(false, table, write,
3496 							buffer, length, ppos);
3497 }
3498 
3499 #ifdef CONFIG_NUMA
3500 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3501 			  void *buffer, size_t *length, loff_t *ppos)
3502 {
3503 	return hugetlb_sysctl_handler_common(true, table, write,
3504 							buffer, length, ppos);
3505 }
3506 #endif /* CONFIG_NUMA */
3507 
3508 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3509 		void *buffer, size_t *length, loff_t *ppos)
3510 {
3511 	struct hstate *h = &default_hstate;
3512 	unsigned long tmp;
3513 	int ret;
3514 
3515 	if (!hugepages_supported())
3516 		return -EOPNOTSUPP;
3517 
3518 	tmp = h->nr_overcommit_huge_pages;
3519 
3520 	if (write && hstate_is_gigantic(h))
3521 		return -EINVAL;
3522 
3523 	table->data = &tmp;
3524 	table->maxlen = sizeof(unsigned long);
3525 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3526 	if (ret)
3527 		goto out;
3528 
3529 	if (write) {
3530 		spin_lock(&hugetlb_lock);
3531 		h->nr_overcommit_huge_pages = tmp;
3532 		spin_unlock(&hugetlb_lock);
3533 	}
3534 out:
3535 	return ret;
3536 }
3537 
3538 #endif /* CONFIG_SYSCTL */
3539 
3540 void hugetlb_report_meminfo(struct seq_file *m)
3541 {
3542 	struct hstate *h;
3543 	unsigned long total = 0;
3544 
3545 	if (!hugepages_supported())
3546 		return;
3547 
3548 	for_each_hstate(h) {
3549 		unsigned long count = h->nr_huge_pages;
3550 
3551 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3552 
3553 		if (h == &default_hstate)
3554 			seq_printf(m,
3555 				   "HugePages_Total:   %5lu\n"
3556 				   "HugePages_Free:    %5lu\n"
3557 				   "HugePages_Rsvd:    %5lu\n"
3558 				   "HugePages_Surp:    %5lu\n"
3559 				   "Hugepagesize:   %8lu kB\n",
3560 				   count,
3561 				   h->free_huge_pages,
3562 				   h->resv_huge_pages,
3563 				   h->surplus_huge_pages,
3564 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3565 	}
3566 
3567 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3568 }
3569 
3570 int hugetlb_report_node_meminfo(int nid, char *buf)
3571 {
3572 	struct hstate *h = &default_hstate;
3573 	if (!hugepages_supported())
3574 		return 0;
3575 	return sprintf(buf,
3576 		"Node %d HugePages_Total: %5u\n"
3577 		"Node %d HugePages_Free:  %5u\n"
3578 		"Node %d HugePages_Surp:  %5u\n",
3579 		nid, h->nr_huge_pages_node[nid],
3580 		nid, h->free_huge_pages_node[nid],
3581 		nid, h->surplus_huge_pages_node[nid]);
3582 }
3583 
3584 void hugetlb_show_meminfo(void)
3585 {
3586 	struct hstate *h;
3587 	int nid;
3588 
3589 	if (!hugepages_supported())
3590 		return;
3591 
3592 	for_each_node_state(nid, N_MEMORY)
3593 		for_each_hstate(h)
3594 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3595 				nid,
3596 				h->nr_huge_pages_node[nid],
3597 				h->free_huge_pages_node[nid],
3598 				h->surplus_huge_pages_node[nid],
3599 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3600 }
3601 
3602 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3603 {
3604 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3605 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3606 }
3607 
3608 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3609 unsigned long hugetlb_total_pages(void)
3610 {
3611 	struct hstate *h;
3612 	unsigned long nr_total_pages = 0;
3613 
3614 	for_each_hstate(h)
3615 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3616 	return nr_total_pages;
3617 }
3618 
3619 static int hugetlb_acct_memory(struct hstate *h, long delta)
3620 {
3621 	int ret = -ENOMEM;
3622 
3623 	spin_lock(&hugetlb_lock);
3624 	/*
3625 	 * When cpuset is configured, it breaks the strict hugetlb page
3626 	 * reservation as the accounting is done on a global variable. Such
3627 	 * reservation is completely rubbish in the presence of cpuset because
3628 	 * the reservation is not checked against page availability for the
3629 	 * current cpuset. Application can still potentially OOM'ed by kernel
3630 	 * with lack of free htlb page in cpuset that the task is in.
3631 	 * Attempt to enforce strict accounting with cpuset is almost
3632 	 * impossible (or too ugly) because cpuset is too fluid that
3633 	 * task or memory node can be dynamically moved between cpusets.
3634 	 *
3635 	 * The change of semantics for shared hugetlb mapping with cpuset is
3636 	 * undesirable. However, in order to preserve some of the semantics,
3637 	 * we fall back to check against current free page availability as
3638 	 * a best attempt and hopefully to minimize the impact of changing
3639 	 * semantics that cpuset has.
3640 	 */
3641 	if (delta > 0) {
3642 		if (gather_surplus_pages(h, delta) < 0)
3643 			goto out;
3644 
3645 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3646 			return_unused_surplus_pages(h, delta);
3647 			goto out;
3648 		}
3649 	}
3650 
3651 	ret = 0;
3652 	if (delta < 0)
3653 		return_unused_surplus_pages(h, (unsigned long) -delta);
3654 
3655 out:
3656 	spin_unlock(&hugetlb_lock);
3657 	return ret;
3658 }
3659 
3660 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3661 {
3662 	struct resv_map *resv = vma_resv_map(vma);
3663 
3664 	/*
3665 	 * This new VMA should share its siblings reservation map if present.
3666 	 * The VMA will only ever have a valid reservation map pointer where
3667 	 * it is being copied for another still existing VMA.  As that VMA
3668 	 * has a reference to the reservation map it cannot disappear until
3669 	 * after this open call completes.  It is therefore safe to take a
3670 	 * new reference here without additional locking.
3671 	 */
3672 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3673 		kref_get(&resv->refs);
3674 }
3675 
3676 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3677 {
3678 	struct hstate *h = hstate_vma(vma);
3679 	struct resv_map *resv = vma_resv_map(vma);
3680 	struct hugepage_subpool *spool = subpool_vma(vma);
3681 	unsigned long reserve, start, end;
3682 	long gbl_reserve;
3683 
3684 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3685 		return;
3686 
3687 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3688 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3689 
3690 	reserve = (end - start) - region_count(resv, start, end);
3691 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3692 	if (reserve) {
3693 		/*
3694 		 * Decrement reserve counts.  The global reserve count may be
3695 		 * adjusted if the subpool has a minimum size.
3696 		 */
3697 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3698 		hugetlb_acct_memory(h, -gbl_reserve);
3699 	}
3700 
3701 	kref_put(&resv->refs, resv_map_release);
3702 }
3703 
3704 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3705 {
3706 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3707 		return -EINVAL;
3708 	return 0;
3709 }
3710 
3711 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3712 {
3713 	struct hstate *hstate = hstate_vma(vma);
3714 
3715 	return 1UL << huge_page_shift(hstate);
3716 }
3717 
3718 /*
3719  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3720  * handle_mm_fault() to try to instantiate regular-sized pages in the
3721  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3722  * this far.
3723  */
3724 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3725 {
3726 	BUG();
3727 	return 0;
3728 }
3729 
3730 /*
3731  * When a new function is introduced to vm_operations_struct and added
3732  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3733  * This is because under System V memory model, mappings created via
3734  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3735  * their original vm_ops are overwritten with shm_vm_ops.
3736  */
3737 const struct vm_operations_struct hugetlb_vm_ops = {
3738 	.fault = hugetlb_vm_op_fault,
3739 	.open = hugetlb_vm_op_open,
3740 	.close = hugetlb_vm_op_close,
3741 	.split = hugetlb_vm_op_split,
3742 	.pagesize = hugetlb_vm_op_pagesize,
3743 };
3744 
3745 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3746 				int writable)
3747 {
3748 	pte_t entry;
3749 
3750 	if (writable) {
3751 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3752 					 vma->vm_page_prot)));
3753 	} else {
3754 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3755 					   vma->vm_page_prot));
3756 	}
3757 	entry = pte_mkyoung(entry);
3758 	entry = pte_mkhuge(entry);
3759 	entry = arch_make_huge_pte(entry, vma, page, writable);
3760 
3761 	return entry;
3762 }
3763 
3764 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3765 				   unsigned long address, pte_t *ptep)
3766 {
3767 	pte_t entry;
3768 
3769 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3770 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3771 		update_mmu_cache(vma, address, ptep);
3772 }
3773 
3774 bool is_hugetlb_entry_migration(pte_t pte)
3775 {
3776 	swp_entry_t swp;
3777 
3778 	if (huge_pte_none(pte) || pte_present(pte))
3779 		return false;
3780 	swp = pte_to_swp_entry(pte);
3781 	if (non_swap_entry(swp) && is_migration_entry(swp))
3782 		return true;
3783 	else
3784 		return false;
3785 }
3786 
3787 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3788 {
3789 	swp_entry_t swp;
3790 
3791 	if (huge_pte_none(pte) || pte_present(pte))
3792 		return 0;
3793 	swp = pte_to_swp_entry(pte);
3794 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3795 		return 1;
3796 	else
3797 		return 0;
3798 }
3799 
3800 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3801 			    struct vm_area_struct *vma)
3802 {
3803 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3804 	struct page *ptepage;
3805 	unsigned long addr;
3806 	int cow;
3807 	struct hstate *h = hstate_vma(vma);
3808 	unsigned long sz = huge_page_size(h);
3809 	struct address_space *mapping = vma->vm_file->f_mapping;
3810 	struct mmu_notifier_range range;
3811 	int ret = 0;
3812 
3813 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3814 
3815 	if (cow) {
3816 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3817 					vma->vm_start,
3818 					vma->vm_end);
3819 		mmu_notifier_invalidate_range_start(&range);
3820 	} else {
3821 		/*
3822 		 * For shared mappings i_mmap_rwsem must be held to call
3823 		 * huge_pte_alloc, otherwise the returned ptep could go
3824 		 * away if part of a shared pmd and another thread calls
3825 		 * huge_pmd_unshare.
3826 		 */
3827 		i_mmap_lock_read(mapping);
3828 	}
3829 
3830 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3831 		spinlock_t *src_ptl, *dst_ptl;
3832 		src_pte = huge_pte_offset(src, addr, sz);
3833 		if (!src_pte)
3834 			continue;
3835 		dst_pte = huge_pte_alloc(dst, addr, sz);
3836 		if (!dst_pte) {
3837 			ret = -ENOMEM;
3838 			break;
3839 		}
3840 
3841 		/*
3842 		 * If the pagetables are shared don't copy or take references.
3843 		 * dst_pte == src_pte is the common case of src/dest sharing.
3844 		 *
3845 		 * However, src could have 'unshared' and dst shares with
3846 		 * another vma.  If dst_pte !none, this implies sharing.
3847 		 * Check here before taking page table lock, and once again
3848 		 * after taking the lock below.
3849 		 */
3850 		dst_entry = huge_ptep_get(dst_pte);
3851 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3852 			continue;
3853 
3854 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3855 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3856 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3857 		entry = huge_ptep_get(src_pte);
3858 		dst_entry = huge_ptep_get(dst_pte);
3859 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3860 			/*
3861 			 * Skip if src entry none.  Also, skip in the
3862 			 * unlikely case dst entry !none as this implies
3863 			 * sharing with another vma.
3864 			 */
3865 			;
3866 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3867 				    is_hugetlb_entry_hwpoisoned(entry))) {
3868 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3869 
3870 			if (is_write_migration_entry(swp_entry) && cow) {
3871 				/*
3872 				 * COW mappings require pages in both
3873 				 * parent and child to be set to read.
3874 				 */
3875 				make_migration_entry_read(&swp_entry);
3876 				entry = swp_entry_to_pte(swp_entry);
3877 				set_huge_swap_pte_at(src, addr, src_pte,
3878 						     entry, sz);
3879 			}
3880 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3881 		} else {
3882 			if (cow) {
3883 				/*
3884 				 * No need to notify as we are downgrading page
3885 				 * table protection not changing it to point
3886 				 * to a new page.
3887 				 *
3888 				 * See Documentation/vm/mmu_notifier.rst
3889 				 */
3890 				huge_ptep_set_wrprotect(src, addr, src_pte);
3891 			}
3892 			entry = huge_ptep_get(src_pte);
3893 			ptepage = pte_page(entry);
3894 			get_page(ptepage);
3895 			page_dup_rmap(ptepage, true);
3896 			set_huge_pte_at(dst, addr, dst_pte, entry);
3897 			hugetlb_count_add(pages_per_huge_page(h), dst);
3898 		}
3899 		spin_unlock(src_ptl);
3900 		spin_unlock(dst_ptl);
3901 	}
3902 
3903 	if (cow)
3904 		mmu_notifier_invalidate_range_end(&range);
3905 	else
3906 		i_mmap_unlock_read(mapping);
3907 
3908 	return ret;
3909 }
3910 
3911 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3912 			    unsigned long start, unsigned long end,
3913 			    struct page *ref_page)
3914 {
3915 	struct mm_struct *mm = vma->vm_mm;
3916 	unsigned long address;
3917 	pte_t *ptep;
3918 	pte_t pte;
3919 	spinlock_t *ptl;
3920 	struct page *page;
3921 	struct hstate *h = hstate_vma(vma);
3922 	unsigned long sz = huge_page_size(h);
3923 	struct mmu_notifier_range range;
3924 
3925 	WARN_ON(!is_vm_hugetlb_page(vma));
3926 	BUG_ON(start & ~huge_page_mask(h));
3927 	BUG_ON(end & ~huge_page_mask(h));
3928 
3929 	/*
3930 	 * This is a hugetlb vma, all the pte entries should point
3931 	 * to huge page.
3932 	 */
3933 	tlb_change_page_size(tlb, sz);
3934 	tlb_start_vma(tlb, vma);
3935 
3936 	/*
3937 	 * If sharing possible, alert mmu notifiers of worst case.
3938 	 */
3939 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3940 				end);
3941 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3942 	mmu_notifier_invalidate_range_start(&range);
3943 	address = start;
3944 	for (; address < end; address += sz) {
3945 		ptep = huge_pte_offset(mm, address, sz);
3946 		if (!ptep)
3947 			continue;
3948 
3949 		ptl = huge_pte_lock(h, mm, ptep);
3950 		if (huge_pmd_unshare(mm, &address, ptep)) {
3951 			spin_unlock(ptl);
3952 			/*
3953 			 * We just unmapped a page of PMDs by clearing a PUD.
3954 			 * The caller's TLB flush range should cover this area.
3955 			 */
3956 			continue;
3957 		}
3958 
3959 		pte = huge_ptep_get(ptep);
3960 		if (huge_pte_none(pte)) {
3961 			spin_unlock(ptl);
3962 			continue;
3963 		}
3964 
3965 		/*
3966 		 * Migrating hugepage or HWPoisoned hugepage is already
3967 		 * unmapped and its refcount is dropped, so just clear pte here.
3968 		 */
3969 		if (unlikely(!pte_present(pte))) {
3970 			huge_pte_clear(mm, address, ptep, sz);
3971 			spin_unlock(ptl);
3972 			continue;
3973 		}
3974 
3975 		page = pte_page(pte);
3976 		/*
3977 		 * If a reference page is supplied, it is because a specific
3978 		 * page is being unmapped, not a range. Ensure the page we
3979 		 * are about to unmap is the actual page of interest.
3980 		 */
3981 		if (ref_page) {
3982 			if (page != ref_page) {
3983 				spin_unlock(ptl);
3984 				continue;
3985 			}
3986 			/*
3987 			 * Mark the VMA as having unmapped its page so that
3988 			 * future faults in this VMA will fail rather than
3989 			 * looking like data was lost
3990 			 */
3991 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3992 		}
3993 
3994 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3995 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3996 		if (huge_pte_dirty(pte))
3997 			set_page_dirty(page);
3998 
3999 		hugetlb_count_sub(pages_per_huge_page(h), mm);
4000 		page_remove_rmap(page, true);
4001 
4002 		spin_unlock(ptl);
4003 		tlb_remove_page_size(tlb, page, huge_page_size(h));
4004 		/*
4005 		 * Bail out after unmapping reference page if supplied
4006 		 */
4007 		if (ref_page)
4008 			break;
4009 	}
4010 	mmu_notifier_invalidate_range_end(&range);
4011 	tlb_end_vma(tlb, vma);
4012 }
4013 
4014 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4015 			  struct vm_area_struct *vma, unsigned long start,
4016 			  unsigned long end, struct page *ref_page)
4017 {
4018 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4019 
4020 	/*
4021 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4022 	 * test will fail on a vma being torn down, and not grab a page table
4023 	 * on its way out.  We're lucky that the flag has such an appropriate
4024 	 * name, and can in fact be safely cleared here. We could clear it
4025 	 * before the __unmap_hugepage_range above, but all that's necessary
4026 	 * is to clear it before releasing the i_mmap_rwsem. This works
4027 	 * because in the context this is called, the VMA is about to be
4028 	 * destroyed and the i_mmap_rwsem is held.
4029 	 */
4030 	vma->vm_flags &= ~VM_MAYSHARE;
4031 }
4032 
4033 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4034 			  unsigned long end, struct page *ref_page)
4035 {
4036 	struct mm_struct *mm;
4037 	struct mmu_gather tlb;
4038 	unsigned long tlb_start = start;
4039 	unsigned long tlb_end = end;
4040 
4041 	/*
4042 	 * If shared PMDs were possibly used within this vma range, adjust
4043 	 * start/end for worst case tlb flushing.
4044 	 * Note that we can not be sure if PMDs are shared until we try to
4045 	 * unmap pages.  However, we want to make sure TLB flushing covers
4046 	 * the largest possible range.
4047 	 */
4048 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4049 
4050 	mm = vma->vm_mm;
4051 
4052 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4053 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4054 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4055 }
4056 
4057 /*
4058  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4059  * mappping it owns the reserve page for. The intention is to unmap the page
4060  * from other VMAs and let the children be SIGKILLed if they are faulting the
4061  * same region.
4062  */
4063 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4064 			      struct page *page, unsigned long address)
4065 {
4066 	struct hstate *h = hstate_vma(vma);
4067 	struct vm_area_struct *iter_vma;
4068 	struct address_space *mapping;
4069 	pgoff_t pgoff;
4070 
4071 	/*
4072 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4073 	 * from page cache lookup which is in HPAGE_SIZE units.
4074 	 */
4075 	address = address & huge_page_mask(h);
4076 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4077 			vma->vm_pgoff;
4078 	mapping = vma->vm_file->f_mapping;
4079 
4080 	/*
4081 	 * Take the mapping lock for the duration of the table walk. As
4082 	 * this mapping should be shared between all the VMAs,
4083 	 * __unmap_hugepage_range() is called as the lock is already held
4084 	 */
4085 	i_mmap_lock_write(mapping);
4086 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4087 		/* Do not unmap the current VMA */
4088 		if (iter_vma == vma)
4089 			continue;
4090 
4091 		/*
4092 		 * Shared VMAs have their own reserves and do not affect
4093 		 * MAP_PRIVATE accounting but it is possible that a shared
4094 		 * VMA is using the same page so check and skip such VMAs.
4095 		 */
4096 		if (iter_vma->vm_flags & VM_MAYSHARE)
4097 			continue;
4098 
4099 		/*
4100 		 * Unmap the page from other VMAs without their own reserves.
4101 		 * They get marked to be SIGKILLed if they fault in these
4102 		 * areas. This is because a future no-page fault on this VMA
4103 		 * could insert a zeroed page instead of the data existing
4104 		 * from the time of fork. This would look like data corruption
4105 		 */
4106 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4107 			unmap_hugepage_range(iter_vma, address,
4108 					     address + huge_page_size(h), page);
4109 	}
4110 	i_mmap_unlock_write(mapping);
4111 }
4112 
4113 /*
4114  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4115  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4116  * cannot race with other handlers or page migration.
4117  * Keep the pte_same checks anyway to make transition from the mutex easier.
4118  */
4119 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4120 		       unsigned long address, pte_t *ptep,
4121 		       struct page *pagecache_page, spinlock_t *ptl)
4122 {
4123 	pte_t pte;
4124 	struct hstate *h = hstate_vma(vma);
4125 	struct page *old_page, *new_page;
4126 	int outside_reserve = 0;
4127 	vm_fault_t ret = 0;
4128 	unsigned long haddr = address & huge_page_mask(h);
4129 	struct mmu_notifier_range range;
4130 
4131 	pte = huge_ptep_get(ptep);
4132 	old_page = pte_page(pte);
4133 
4134 retry_avoidcopy:
4135 	/* If no-one else is actually using this page, avoid the copy
4136 	 * and just make the page writable */
4137 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4138 		page_move_anon_rmap(old_page, vma);
4139 		set_huge_ptep_writable(vma, haddr, ptep);
4140 		return 0;
4141 	}
4142 
4143 	/*
4144 	 * If the process that created a MAP_PRIVATE mapping is about to
4145 	 * perform a COW due to a shared page count, attempt to satisfy
4146 	 * the allocation without using the existing reserves. The pagecache
4147 	 * page is used to determine if the reserve at this address was
4148 	 * consumed or not. If reserves were used, a partial faulted mapping
4149 	 * at the time of fork() could consume its reserves on COW instead
4150 	 * of the full address range.
4151 	 */
4152 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4153 			old_page != pagecache_page)
4154 		outside_reserve = 1;
4155 
4156 	get_page(old_page);
4157 
4158 	/*
4159 	 * Drop page table lock as buddy allocator may be called. It will
4160 	 * be acquired again before returning to the caller, as expected.
4161 	 */
4162 	spin_unlock(ptl);
4163 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4164 
4165 	if (IS_ERR(new_page)) {
4166 		/*
4167 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4168 		 * it is due to references held by a child and an insufficient
4169 		 * huge page pool. To guarantee the original mappers
4170 		 * reliability, unmap the page from child processes. The child
4171 		 * may get SIGKILLed if it later faults.
4172 		 */
4173 		if (outside_reserve) {
4174 			put_page(old_page);
4175 			BUG_ON(huge_pte_none(pte));
4176 			unmap_ref_private(mm, vma, old_page, haddr);
4177 			BUG_ON(huge_pte_none(pte));
4178 			spin_lock(ptl);
4179 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4180 			if (likely(ptep &&
4181 				   pte_same(huge_ptep_get(ptep), pte)))
4182 				goto retry_avoidcopy;
4183 			/*
4184 			 * race occurs while re-acquiring page table
4185 			 * lock, and our job is done.
4186 			 */
4187 			return 0;
4188 		}
4189 
4190 		ret = vmf_error(PTR_ERR(new_page));
4191 		goto out_release_old;
4192 	}
4193 
4194 	/*
4195 	 * When the original hugepage is shared one, it does not have
4196 	 * anon_vma prepared.
4197 	 */
4198 	if (unlikely(anon_vma_prepare(vma))) {
4199 		ret = VM_FAULT_OOM;
4200 		goto out_release_all;
4201 	}
4202 
4203 	copy_user_huge_page(new_page, old_page, address, vma,
4204 			    pages_per_huge_page(h));
4205 	__SetPageUptodate(new_page);
4206 
4207 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4208 				haddr + huge_page_size(h));
4209 	mmu_notifier_invalidate_range_start(&range);
4210 
4211 	/*
4212 	 * Retake the page table lock to check for racing updates
4213 	 * before the page tables are altered
4214 	 */
4215 	spin_lock(ptl);
4216 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4217 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4218 		ClearPagePrivate(new_page);
4219 
4220 		/* Break COW */
4221 		huge_ptep_clear_flush(vma, haddr, ptep);
4222 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4223 		set_huge_pte_at(mm, haddr, ptep,
4224 				make_huge_pte(vma, new_page, 1));
4225 		page_remove_rmap(old_page, true);
4226 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4227 		set_page_huge_active(new_page);
4228 		/* Make the old page be freed below */
4229 		new_page = old_page;
4230 	}
4231 	spin_unlock(ptl);
4232 	mmu_notifier_invalidate_range_end(&range);
4233 out_release_all:
4234 	restore_reserve_on_error(h, vma, haddr, new_page);
4235 	put_page(new_page);
4236 out_release_old:
4237 	put_page(old_page);
4238 
4239 	spin_lock(ptl); /* Caller expects lock to be held */
4240 	return ret;
4241 }
4242 
4243 /* Return the pagecache page at a given address within a VMA */
4244 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4245 			struct vm_area_struct *vma, unsigned long address)
4246 {
4247 	struct address_space *mapping;
4248 	pgoff_t idx;
4249 
4250 	mapping = vma->vm_file->f_mapping;
4251 	idx = vma_hugecache_offset(h, vma, address);
4252 
4253 	return find_lock_page(mapping, idx);
4254 }
4255 
4256 /*
4257  * Return whether there is a pagecache page to back given address within VMA.
4258  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4259  */
4260 static bool hugetlbfs_pagecache_present(struct hstate *h,
4261 			struct vm_area_struct *vma, unsigned long address)
4262 {
4263 	struct address_space *mapping;
4264 	pgoff_t idx;
4265 	struct page *page;
4266 
4267 	mapping = vma->vm_file->f_mapping;
4268 	idx = vma_hugecache_offset(h, vma, address);
4269 
4270 	page = find_get_page(mapping, idx);
4271 	if (page)
4272 		put_page(page);
4273 	return page != NULL;
4274 }
4275 
4276 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4277 			   pgoff_t idx)
4278 {
4279 	struct inode *inode = mapping->host;
4280 	struct hstate *h = hstate_inode(inode);
4281 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4282 
4283 	if (err)
4284 		return err;
4285 	ClearPagePrivate(page);
4286 
4287 	/*
4288 	 * set page dirty so that it will not be removed from cache/file
4289 	 * by non-hugetlbfs specific code paths.
4290 	 */
4291 	set_page_dirty(page);
4292 
4293 	spin_lock(&inode->i_lock);
4294 	inode->i_blocks += blocks_per_huge_page(h);
4295 	spin_unlock(&inode->i_lock);
4296 	return 0;
4297 }
4298 
4299 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4300 			struct vm_area_struct *vma,
4301 			struct address_space *mapping, pgoff_t idx,
4302 			unsigned long address, pte_t *ptep, unsigned int flags)
4303 {
4304 	struct hstate *h = hstate_vma(vma);
4305 	vm_fault_t ret = VM_FAULT_SIGBUS;
4306 	int anon_rmap = 0;
4307 	unsigned long size;
4308 	struct page *page;
4309 	pte_t new_pte;
4310 	spinlock_t *ptl;
4311 	unsigned long haddr = address & huge_page_mask(h);
4312 	bool new_page = false;
4313 
4314 	/*
4315 	 * Currently, we are forced to kill the process in the event the
4316 	 * original mapper has unmapped pages from the child due to a failed
4317 	 * COW. Warn that such a situation has occurred as it may not be obvious
4318 	 */
4319 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4320 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4321 			   current->pid);
4322 		return ret;
4323 	}
4324 
4325 	/*
4326 	 * We can not race with truncation due to holding i_mmap_rwsem.
4327 	 * i_size is modified when holding i_mmap_rwsem, so check here
4328 	 * once for faults beyond end of file.
4329 	 */
4330 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4331 	if (idx >= size)
4332 		goto out;
4333 
4334 retry:
4335 	page = find_lock_page(mapping, idx);
4336 	if (!page) {
4337 		/*
4338 		 * Check for page in userfault range
4339 		 */
4340 		if (userfaultfd_missing(vma)) {
4341 			u32 hash;
4342 			struct vm_fault vmf = {
4343 				.vma = vma,
4344 				.address = haddr,
4345 				.flags = flags,
4346 				/*
4347 				 * Hard to debug if it ends up being
4348 				 * used by a callee that assumes
4349 				 * something about the other
4350 				 * uninitialized fields... same as in
4351 				 * memory.c
4352 				 */
4353 			};
4354 
4355 			/*
4356 			 * hugetlb_fault_mutex and i_mmap_rwsem must be
4357 			 * dropped before handling userfault.  Reacquire
4358 			 * after handling fault to make calling code simpler.
4359 			 */
4360 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4361 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4362 			i_mmap_unlock_read(mapping);
4363 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4364 			i_mmap_lock_read(mapping);
4365 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4366 			goto out;
4367 		}
4368 
4369 		page = alloc_huge_page(vma, haddr, 0);
4370 		if (IS_ERR(page)) {
4371 			/*
4372 			 * Returning error will result in faulting task being
4373 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4374 			 * tasks from racing to fault in the same page which
4375 			 * could result in false unable to allocate errors.
4376 			 * Page migration does not take the fault mutex, but
4377 			 * does a clear then write of pte's under page table
4378 			 * lock.  Page fault code could race with migration,
4379 			 * notice the clear pte and try to allocate a page
4380 			 * here.  Before returning error, get ptl and make
4381 			 * sure there really is no pte entry.
4382 			 */
4383 			ptl = huge_pte_lock(h, mm, ptep);
4384 			if (!huge_pte_none(huge_ptep_get(ptep))) {
4385 				ret = 0;
4386 				spin_unlock(ptl);
4387 				goto out;
4388 			}
4389 			spin_unlock(ptl);
4390 			ret = vmf_error(PTR_ERR(page));
4391 			goto out;
4392 		}
4393 		clear_huge_page(page, address, pages_per_huge_page(h));
4394 		__SetPageUptodate(page);
4395 		new_page = true;
4396 
4397 		if (vma->vm_flags & VM_MAYSHARE) {
4398 			int err = huge_add_to_page_cache(page, mapping, idx);
4399 			if (err) {
4400 				put_page(page);
4401 				if (err == -EEXIST)
4402 					goto retry;
4403 				goto out;
4404 			}
4405 		} else {
4406 			lock_page(page);
4407 			if (unlikely(anon_vma_prepare(vma))) {
4408 				ret = VM_FAULT_OOM;
4409 				goto backout_unlocked;
4410 			}
4411 			anon_rmap = 1;
4412 		}
4413 	} else {
4414 		/*
4415 		 * If memory error occurs between mmap() and fault, some process
4416 		 * don't have hwpoisoned swap entry for errored virtual address.
4417 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4418 		 */
4419 		if (unlikely(PageHWPoison(page))) {
4420 			ret = VM_FAULT_HWPOISON |
4421 				VM_FAULT_SET_HINDEX(hstate_index(h));
4422 			goto backout_unlocked;
4423 		}
4424 	}
4425 
4426 	/*
4427 	 * If we are going to COW a private mapping later, we examine the
4428 	 * pending reservations for this page now. This will ensure that
4429 	 * any allocations necessary to record that reservation occur outside
4430 	 * the spinlock.
4431 	 */
4432 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4433 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4434 			ret = VM_FAULT_OOM;
4435 			goto backout_unlocked;
4436 		}
4437 		/* Just decrements count, does not deallocate */
4438 		vma_end_reservation(h, vma, haddr);
4439 	}
4440 
4441 	ptl = huge_pte_lock(h, mm, ptep);
4442 	ret = 0;
4443 	if (!huge_pte_none(huge_ptep_get(ptep)))
4444 		goto backout;
4445 
4446 	if (anon_rmap) {
4447 		ClearPagePrivate(page);
4448 		hugepage_add_new_anon_rmap(page, vma, haddr);
4449 	} else
4450 		page_dup_rmap(page, true);
4451 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4452 				&& (vma->vm_flags & VM_SHARED)));
4453 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4454 
4455 	hugetlb_count_add(pages_per_huge_page(h), mm);
4456 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4457 		/* Optimization, do the COW without a second fault */
4458 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4459 	}
4460 
4461 	spin_unlock(ptl);
4462 
4463 	/*
4464 	 * Only make newly allocated pages active.  Existing pages found
4465 	 * in the pagecache could be !page_huge_active() if they have been
4466 	 * isolated for migration.
4467 	 */
4468 	if (new_page)
4469 		set_page_huge_active(page);
4470 
4471 	unlock_page(page);
4472 out:
4473 	return ret;
4474 
4475 backout:
4476 	spin_unlock(ptl);
4477 backout_unlocked:
4478 	unlock_page(page);
4479 	restore_reserve_on_error(h, vma, haddr, page);
4480 	put_page(page);
4481 	goto out;
4482 }
4483 
4484 #ifdef CONFIG_SMP
4485 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4486 {
4487 	unsigned long key[2];
4488 	u32 hash;
4489 
4490 	key[0] = (unsigned long) mapping;
4491 	key[1] = idx;
4492 
4493 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4494 
4495 	return hash & (num_fault_mutexes - 1);
4496 }
4497 #else
4498 /*
4499  * For uniprocesor systems we always use a single mutex, so just
4500  * return 0 and avoid the hashing overhead.
4501  */
4502 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4503 {
4504 	return 0;
4505 }
4506 #endif
4507 
4508 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4509 			unsigned long address, unsigned int flags)
4510 {
4511 	pte_t *ptep, entry;
4512 	spinlock_t *ptl;
4513 	vm_fault_t ret;
4514 	u32 hash;
4515 	pgoff_t idx;
4516 	struct page *page = NULL;
4517 	struct page *pagecache_page = NULL;
4518 	struct hstate *h = hstate_vma(vma);
4519 	struct address_space *mapping;
4520 	int need_wait_lock = 0;
4521 	unsigned long haddr = address & huge_page_mask(h);
4522 
4523 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4524 	if (ptep) {
4525 		/*
4526 		 * Since we hold no locks, ptep could be stale.  That is
4527 		 * OK as we are only making decisions based on content and
4528 		 * not actually modifying content here.
4529 		 */
4530 		entry = huge_ptep_get(ptep);
4531 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4532 			migration_entry_wait_huge(vma, mm, ptep);
4533 			return 0;
4534 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4535 			return VM_FAULT_HWPOISON_LARGE |
4536 				VM_FAULT_SET_HINDEX(hstate_index(h));
4537 	} else {
4538 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4539 		if (!ptep)
4540 			return VM_FAULT_OOM;
4541 	}
4542 
4543 	/*
4544 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4545 	 * until finished with ptep.  This serves two purposes:
4546 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4547 	 *    and making the ptep no longer valid.
4548 	 * 2) It synchronizes us with i_size modifications during truncation.
4549 	 *
4550 	 * ptep could have already be assigned via huge_pte_offset.  That
4551 	 * is OK, as huge_pte_alloc will return the same value unless
4552 	 * something has changed.
4553 	 */
4554 	mapping = vma->vm_file->f_mapping;
4555 	i_mmap_lock_read(mapping);
4556 	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4557 	if (!ptep) {
4558 		i_mmap_unlock_read(mapping);
4559 		return VM_FAULT_OOM;
4560 	}
4561 
4562 	/*
4563 	 * Serialize hugepage allocation and instantiation, so that we don't
4564 	 * get spurious allocation failures if two CPUs race to instantiate
4565 	 * the same page in the page cache.
4566 	 */
4567 	idx = vma_hugecache_offset(h, vma, haddr);
4568 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4569 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4570 
4571 	entry = huge_ptep_get(ptep);
4572 	if (huge_pte_none(entry)) {
4573 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4574 		goto out_mutex;
4575 	}
4576 
4577 	ret = 0;
4578 
4579 	/*
4580 	 * entry could be a migration/hwpoison entry at this point, so this
4581 	 * check prevents the kernel from going below assuming that we have
4582 	 * an active hugepage in pagecache. This goto expects the 2nd page
4583 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4584 	 * properly handle it.
4585 	 */
4586 	if (!pte_present(entry))
4587 		goto out_mutex;
4588 
4589 	/*
4590 	 * If we are going to COW the mapping later, we examine the pending
4591 	 * reservations for this page now. This will ensure that any
4592 	 * allocations necessary to record that reservation occur outside the
4593 	 * spinlock. For private mappings, we also lookup the pagecache
4594 	 * page now as it is used to determine if a reservation has been
4595 	 * consumed.
4596 	 */
4597 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4598 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4599 			ret = VM_FAULT_OOM;
4600 			goto out_mutex;
4601 		}
4602 		/* Just decrements count, does not deallocate */
4603 		vma_end_reservation(h, vma, haddr);
4604 
4605 		if (!(vma->vm_flags & VM_MAYSHARE))
4606 			pagecache_page = hugetlbfs_pagecache_page(h,
4607 								vma, haddr);
4608 	}
4609 
4610 	ptl = huge_pte_lock(h, mm, ptep);
4611 
4612 	/* Check for a racing update before calling hugetlb_cow */
4613 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4614 		goto out_ptl;
4615 
4616 	/*
4617 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4618 	 * pagecache_page, so here we need take the former one
4619 	 * when page != pagecache_page or !pagecache_page.
4620 	 */
4621 	page = pte_page(entry);
4622 	if (page != pagecache_page)
4623 		if (!trylock_page(page)) {
4624 			need_wait_lock = 1;
4625 			goto out_ptl;
4626 		}
4627 
4628 	get_page(page);
4629 
4630 	if (flags & FAULT_FLAG_WRITE) {
4631 		if (!huge_pte_write(entry)) {
4632 			ret = hugetlb_cow(mm, vma, address, ptep,
4633 					  pagecache_page, ptl);
4634 			goto out_put_page;
4635 		}
4636 		entry = huge_pte_mkdirty(entry);
4637 	}
4638 	entry = pte_mkyoung(entry);
4639 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4640 						flags & FAULT_FLAG_WRITE))
4641 		update_mmu_cache(vma, haddr, ptep);
4642 out_put_page:
4643 	if (page != pagecache_page)
4644 		unlock_page(page);
4645 	put_page(page);
4646 out_ptl:
4647 	spin_unlock(ptl);
4648 
4649 	if (pagecache_page) {
4650 		unlock_page(pagecache_page);
4651 		put_page(pagecache_page);
4652 	}
4653 out_mutex:
4654 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4655 	i_mmap_unlock_read(mapping);
4656 	/*
4657 	 * Generally it's safe to hold refcount during waiting page lock. But
4658 	 * here we just wait to defer the next page fault to avoid busy loop and
4659 	 * the page is not used after unlocked before returning from the current
4660 	 * page fault. So we are safe from accessing freed page, even if we wait
4661 	 * here without taking refcount.
4662 	 */
4663 	if (need_wait_lock)
4664 		wait_on_page_locked(page);
4665 	return ret;
4666 }
4667 
4668 /*
4669  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4670  * modifications for huge pages.
4671  */
4672 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4673 			    pte_t *dst_pte,
4674 			    struct vm_area_struct *dst_vma,
4675 			    unsigned long dst_addr,
4676 			    unsigned long src_addr,
4677 			    struct page **pagep)
4678 {
4679 	struct address_space *mapping;
4680 	pgoff_t idx;
4681 	unsigned long size;
4682 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4683 	struct hstate *h = hstate_vma(dst_vma);
4684 	pte_t _dst_pte;
4685 	spinlock_t *ptl;
4686 	int ret;
4687 	struct page *page;
4688 
4689 	if (!*pagep) {
4690 		ret = -ENOMEM;
4691 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4692 		if (IS_ERR(page))
4693 			goto out;
4694 
4695 		ret = copy_huge_page_from_user(page,
4696 						(const void __user *) src_addr,
4697 						pages_per_huge_page(h), false);
4698 
4699 		/* fallback to copy_from_user outside mmap_sem */
4700 		if (unlikely(ret)) {
4701 			ret = -ENOENT;
4702 			*pagep = page;
4703 			/* don't free the page */
4704 			goto out;
4705 		}
4706 	} else {
4707 		page = *pagep;
4708 		*pagep = NULL;
4709 	}
4710 
4711 	/*
4712 	 * The memory barrier inside __SetPageUptodate makes sure that
4713 	 * preceding stores to the page contents become visible before
4714 	 * the set_pte_at() write.
4715 	 */
4716 	__SetPageUptodate(page);
4717 
4718 	mapping = dst_vma->vm_file->f_mapping;
4719 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4720 
4721 	/*
4722 	 * If shared, add to page cache
4723 	 */
4724 	if (vm_shared) {
4725 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4726 		ret = -EFAULT;
4727 		if (idx >= size)
4728 			goto out_release_nounlock;
4729 
4730 		/*
4731 		 * Serialization between remove_inode_hugepages() and
4732 		 * huge_add_to_page_cache() below happens through the
4733 		 * hugetlb_fault_mutex_table that here must be hold by
4734 		 * the caller.
4735 		 */
4736 		ret = huge_add_to_page_cache(page, mapping, idx);
4737 		if (ret)
4738 			goto out_release_nounlock;
4739 	}
4740 
4741 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4742 	spin_lock(ptl);
4743 
4744 	/*
4745 	 * Recheck the i_size after holding PT lock to make sure not
4746 	 * to leave any page mapped (as page_mapped()) beyond the end
4747 	 * of the i_size (remove_inode_hugepages() is strict about
4748 	 * enforcing that). If we bail out here, we'll also leave a
4749 	 * page in the radix tree in the vm_shared case beyond the end
4750 	 * of the i_size, but remove_inode_hugepages() will take care
4751 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4752 	 */
4753 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4754 	ret = -EFAULT;
4755 	if (idx >= size)
4756 		goto out_release_unlock;
4757 
4758 	ret = -EEXIST;
4759 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4760 		goto out_release_unlock;
4761 
4762 	if (vm_shared) {
4763 		page_dup_rmap(page, true);
4764 	} else {
4765 		ClearPagePrivate(page);
4766 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4767 	}
4768 
4769 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4770 	if (dst_vma->vm_flags & VM_WRITE)
4771 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4772 	_dst_pte = pte_mkyoung(_dst_pte);
4773 
4774 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4775 
4776 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4777 					dst_vma->vm_flags & VM_WRITE);
4778 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4779 
4780 	/* No need to invalidate - it was non-present before */
4781 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4782 
4783 	spin_unlock(ptl);
4784 	set_page_huge_active(page);
4785 	if (vm_shared)
4786 		unlock_page(page);
4787 	ret = 0;
4788 out:
4789 	return ret;
4790 out_release_unlock:
4791 	spin_unlock(ptl);
4792 	if (vm_shared)
4793 		unlock_page(page);
4794 out_release_nounlock:
4795 	put_page(page);
4796 	goto out;
4797 }
4798 
4799 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4800 			 struct page **pages, struct vm_area_struct **vmas,
4801 			 unsigned long *position, unsigned long *nr_pages,
4802 			 long i, unsigned int flags, int *locked)
4803 {
4804 	unsigned long pfn_offset;
4805 	unsigned long vaddr = *position;
4806 	unsigned long remainder = *nr_pages;
4807 	struct hstate *h = hstate_vma(vma);
4808 	int err = -EFAULT;
4809 
4810 	while (vaddr < vma->vm_end && remainder) {
4811 		pte_t *pte;
4812 		spinlock_t *ptl = NULL;
4813 		int absent;
4814 		struct page *page;
4815 
4816 		/*
4817 		 * If we have a pending SIGKILL, don't keep faulting pages and
4818 		 * potentially allocating memory.
4819 		 */
4820 		if (fatal_signal_pending(current)) {
4821 			remainder = 0;
4822 			break;
4823 		}
4824 
4825 		/*
4826 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4827 		 * each hugepage.  We have to make sure we get the
4828 		 * first, for the page indexing below to work.
4829 		 *
4830 		 * Note that page table lock is not held when pte is null.
4831 		 */
4832 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4833 				      huge_page_size(h));
4834 		if (pte)
4835 			ptl = huge_pte_lock(h, mm, pte);
4836 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4837 
4838 		/*
4839 		 * When coredumping, it suits get_dump_page if we just return
4840 		 * an error where there's an empty slot with no huge pagecache
4841 		 * to back it.  This way, we avoid allocating a hugepage, and
4842 		 * the sparse dumpfile avoids allocating disk blocks, but its
4843 		 * huge holes still show up with zeroes where they need to be.
4844 		 */
4845 		if (absent && (flags & FOLL_DUMP) &&
4846 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4847 			if (pte)
4848 				spin_unlock(ptl);
4849 			remainder = 0;
4850 			break;
4851 		}
4852 
4853 		/*
4854 		 * We need call hugetlb_fault for both hugepages under migration
4855 		 * (in which case hugetlb_fault waits for the migration,) and
4856 		 * hwpoisoned hugepages (in which case we need to prevent the
4857 		 * caller from accessing to them.) In order to do this, we use
4858 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4859 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4860 		 * both cases, and because we can't follow correct pages
4861 		 * directly from any kind of swap entries.
4862 		 */
4863 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4864 		    ((flags & FOLL_WRITE) &&
4865 		      !huge_pte_write(huge_ptep_get(pte)))) {
4866 			vm_fault_t ret;
4867 			unsigned int fault_flags = 0;
4868 
4869 			if (pte)
4870 				spin_unlock(ptl);
4871 			if (flags & FOLL_WRITE)
4872 				fault_flags |= FAULT_FLAG_WRITE;
4873 			if (locked)
4874 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4875 					FAULT_FLAG_KILLABLE;
4876 			if (flags & FOLL_NOWAIT)
4877 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4878 					FAULT_FLAG_RETRY_NOWAIT;
4879 			if (flags & FOLL_TRIED) {
4880 				/*
4881 				 * Note: FAULT_FLAG_ALLOW_RETRY and
4882 				 * FAULT_FLAG_TRIED can co-exist
4883 				 */
4884 				fault_flags |= FAULT_FLAG_TRIED;
4885 			}
4886 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4887 			if (ret & VM_FAULT_ERROR) {
4888 				err = vm_fault_to_errno(ret, flags);
4889 				remainder = 0;
4890 				break;
4891 			}
4892 			if (ret & VM_FAULT_RETRY) {
4893 				if (locked &&
4894 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4895 					*locked = 0;
4896 				*nr_pages = 0;
4897 				/*
4898 				 * VM_FAULT_RETRY must not return an
4899 				 * error, it will return zero
4900 				 * instead.
4901 				 *
4902 				 * No need to update "position" as the
4903 				 * caller will not check it after
4904 				 * *nr_pages is set to 0.
4905 				 */
4906 				return i;
4907 			}
4908 			continue;
4909 		}
4910 
4911 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4912 		page = pte_page(huge_ptep_get(pte));
4913 
4914 		/*
4915 		 * If subpage information not requested, update counters
4916 		 * and skip the same_page loop below.
4917 		 */
4918 		if (!pages && !vmas && !pfn_offset &&
4919 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4920 		    (remainder >= pages_per_huge_page(h))) {
4921 			vaddr += huge_page_size(h);
4922 			remainder -= pages_per_huge_page(h);
4923 			i += pages_per_huge_page(h);
4924 			spin_unlock(ptl);
4925 			continue;
4926 		}
4927 
4928 same_page:
4929 		if (pages) {
4930 			pages[i] = mem_map_offset(page, pfn_offset);
4931 			/*
4932 			 * try_grab_page() should always succeed here, because:
4933 			 * a) we hold the ptl lock, and b) we've just checked
4934 			 * that the huge page is present in the page tables. If
4935 			 * the huge page is present, then the tail pages must
4936 			 * also be present. The ptl prevents the head page and
4937 			 * tail pages from being rearranged in any way. So this
4938 			 * page must be available at this point, unless the page
4939 			 * refcount overflowed:
4940 			 */
4941 			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4942 				spin_unlock(ptl);
4943 				remainder = 0;
4944 				err = -ENOMEM;
4945 				break;
4946 			}
4947 		}
4948 
4949 		if (vmas)
4950 			vmas[i] = vma;
4951 
4952 		vaddr += PAGE_SIZE;
4953 		++pfn_offset;
4954 		--remainder;
4955 		++i;
4956 		if (vaddr < vma->vm_end && remainder &&
4957 				pfn_offset < pages_per_huge_page(h)) {
4958 			/*
4959 			 * We use pfn_offset to avoid touching the pageframes
4960 			 * of this compound page.
4961 			 */
4962 			goto same_page;
4963 		}
4964 		spin_unlock(ptl);
4965 	}
4966 	*nr_pages = remainder;
4967 	/*
4968 	 * setting position is actually required only if remainder is
4969 	 * not zero but it's faster not to add a "if (remainder)"
4970 	 * branch.
4971 	 */
4972 	*position = vaddr;
4973 
4974 	return i ? i : err;
4975 }
4976 
4977 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4978 /*
4979  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4980  * implement this.
4981  */
4982 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4983 #endif
4984 
4985 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4986 		unsigned long address, unsigned long end, pgprot_t newprot)
4987 {
4988 	struct mm_struct *mm = vma->vm_mm;
4989 	unsigned long start = address;
4990 	pte_t *ptep;
4991 	pte_t pte;
4992 	struct hstate *h = hstate_vma(vma);
4993 	unsigned long pages = 0;
4994 	bool shared_pmd = false;
4995 	struct mmu_notifier_range range;
4996 
4997 	/*
4998 	 * In the case of shared PMDs, the area to flush could be beyond
4999 	 * start/end.  Set range.start/range.end to cover the maximum possible
5000 	 * range if PMD sharing is possible.
5001 	 */
5002 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5003 				0, vma, mm, start, end);
5004 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5005 
5006 	BUG_ON(address >= end);
5007 	flush_cache_range(vma, range.start, range.end);
5008 
5009 	mmu_notifier_invalidate_range_start(&range);
5010 	i_mmap_lock_write(vma->vm_file->f_mapping);
5011 	for (; address < end; address += huge_page_size(h)) {
5012 		spinlock_t *ptl;
5013 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5014 		if (!ptep)
5015 			continue;
5016 		ptl = huge_pte_lock(h, mm, ptep);
5017 		if (huge_pmd_unshare(mm, &address, ptep)) {
5018 			pages++;
5019 			spin_unlock(ptl);
5020 			shared_pmd = true;
5021 			continue;
5022 		}
5023 		pte = huge_ptep_get(ptep);
5024 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5025 			spin_unlock(ptl);
5026 			continue;
5027 		}
5028 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5029 			swp_entry_t entry = pte_to_swp_entry(pte);
5030 
5031 			if (is_write_migration_entry(entry)) {
5032 				pte_t newpte;
5033 
5034 				make_migration_entry_read(&entry);
5035 				newpte = swp_entry_to_pte(entry);
5036 				set_huge_swap_pte_at(mm, address, ptep,
5037 						     newpte, huge_page_size(h));
5038 				pages++;
5039 			}
5040 			spin_unlock(ptl);
5041 			continue;
5042 		}
5043 		if (!huge_pte_none(pte)) {
5044 			pte_t old_pte;
5045 
5046 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5047 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5048 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5049 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5050 			pages++;
5051 		}
5052 		spin_unlock(ptl);
5053 	}
5054 	/*
5055 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5056 	 * may have cleared our pud entry and done put_page on the page table:
5057 	 * once we release i_mmap_rwsem, another task can do the final put_page
5058 	 * and that page table be reused and filled with junk.  If we actually
5059 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5060 	 */
5061 	if (shared_pmd)
5062 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5063 	else
5064 		flush_hugetlb_tlb_range(vma, start, end);
5065 	/*
5066 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5067 	 * page table protection not changing it to point to a new page.
5068 	 *
5069 	 * See Documentation/vm/mmu_notifier.rst
5070 	 */
5071 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5072 	mmu_notifier_invalidate_range_end(&range);
5073 
5074 	return pages << h->order;
5075 }
5076 
5077 int hugetlb_reserve_pages(struct inode *inode,
5078 					long from, long to,
5079 					struct vm_area_struct *vma,
5080 					vm_flags_t vm_flags)
5081 {
5082 	long ret, chg, add = -1;
5083 	struct hstate *h = hstate_inode(inode);
5084 	struct hugepage_subpool *spool = subpool_inode(inode);
5085 	struct resv_map *resv_map;
5086 	struct hugetlb_cgroup *h_cg = NULL;
5087 	long gbl_reserve, regions_needed = 0;
5088 
5089 	/* This should never happen */
5090 	if (from > to) {
5091 		VM_WARN(1, "%s called with a negative range\n", __func__);
5092 		return -EINVAL;
5093 	}
5094 
5095 	/*
5096 	 * Only apply hugepage reservation if asked. At fault time, an
5097 	 * attempt will be made for VM_NORESERVE to allocate a page
5098 	 * without using reserves
5099 	 */
5100 	if (vm_flags & VM_NORESERVE)
5101 		return 0;
5102 
5103 	/*
5104 	 * Shared mappings base their reservation on the number of pages that
5105 	 * are already allocated on behalf of the file. Private mappings need
5106 	 * to reserve the full area even if read-only as mprotect() may be
5107 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5108 	 */
5109 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5110 		/*
5111 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5112 		 * called for inodes for which resv_maps were created (see
5113 		 * hugetlbfs_get_inode).
5114 		 */
5115 		resv_map = inode_resv_map(inode);
5116 
5117 		chg = region_chg(resv_map, from, to, &regions_needed);
5118 
5119 	} else {
5120 		/* Private mapping. */
5121 		resv_map = resv_map_alloc();
5122 		if (!resv_map)
5123 			return -ENOMEM;
5124 
5125 		chg = to - from;
5126 
5127 		set_vma_resv_map(vma, resv_map);
5128 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5129 	}
5130 
5131 	if (chg < 0) {
5132 		ret = chg;
5133 		goto out_err;
5134 	}
5135 
5136 	ret = hugetlb_cgroup_charge_cgroup_rsvd(
5137 		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5138 
5139 	if (ret < 0) {
5140 		ret = -ENOMEM;
5141 		goto out_err;
5142 	}
5143 
5144 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5145 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5146 		 * of the resv_map.
5147 		 */
5148 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5149 	}
5150 
5151 	/*
5152 	 * There must be enough pages in the subpool for the mapping. If
5153 	 * the subpool has a minimum size, there may be some global
5154 	 * reservations already in place (gbl_reserve).
5155 	 */
5156 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5157 	if (gbl_reserve < 0) {
5158 		ret = -ENOSPC;
5159 		goto out_uncharge_cgroup;
5160 	}
5161 
5162 	/*
5163 	 * Check enough hugepages are available for the reservation.
5164 	 * Hand the pages back to the subpool if there are not
5165 	 */
5166 	ret = hugetlb_acct_memory(h, gbl_reserve);
5167 	if (ret < 0) {
5168 		goto out_put_pages;
5169 	}
5170 
5171 	/*
5172 	 * Account for the reservations made. Shared mappings record regions
5173 	 * that have reservations as they are shared by multiple VMAs.
5174 	 * When the last VMA disappears, the region map says how much
5175 	 * the reservation was and the page cache tells how much of
5176 	 * the reservation was consumed. Private mappings are per-VMA and
5177 	 * only the consumed reservations are tracked. When the VMA
5178 	 * disappears, the original reservation is the VMA size and the
5179 	 * consumed reservations are stored in the map. Hence, nothing
5180 	 * else has to be done for private mappings here
5181 	 */
5182 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5183 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5184 
5185 		if (unlikely(add < 0)) {
5186 			hugetlb_acct_memory(h, -gbl_reserve);
5187 			goto out_put_pages;
5188 		} else if (unlikely(chg > add)) {
5189 			/*
5190 			 * pages in this range were added to the reserve
5191 			 * map between region_chg and region_add.  This
5192 			 * indicates a race with alloc_huge_page.  Adjust
5193 			 * the subpool and reserve counts modified above
5194 			 * based on the difference.
5195 			 */
5196 			long rsv_adjust;
5197 
5198 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5199 				hstate_index(h),
5200 				(chg - add) * pages_per_huge_page(h), h_cg);
5201 
5202 			rsv_adjust = hugepage_subpool_put_pages(spool,
5203 								chg - add);
5204 			hugetlb_acct_memory(h, -rsv_adjust);
5205 		}
5206 	}
5207 	return 0;
5208 out_put_pages:
5209 	/* put back original number of pages, chg */
5210 	(void)hugepage_subpool_put_pages(spool, chg);
5211 out_uncharge_cgroup:
5212 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5213 					    chg * pages_per_huge_page(h), h_cg);
5214 out_err:
5215 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5216 		/* Only call region_abort if the region_chg succeeded but the
5217 		 * region_add failed or didn't run.
5218 		 */
5219 		if (chg >= 0 && add < 0)
5220 			region_abort(resv_map, from, to, regions_needed);
5221 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5222 		kref_put(&resv_map->refs, resv_map_release);
5223 	return ret;
5224 }
5225 
5226 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5227 								long freed)
5228 {
5229 	struct hstate *h = hstate_inode(inode);
5230 	struct resv_map *resv_map = inode_resv_map(inode);
5231 	long chg = 0;
5232 	struct hugepage_subpool *spool = subpool_inode(inode);
5233 	long gbl_reserve;
5234 
5235 	/*
5236 	 * Since this routine can be called in the evict inode path for all
5237 	 * hugetlbfs inodes, resv_map could be NULL.
5238 	 */
5239 	if (resv_map) {
5240 		chg = region_del(resv_map, start, end);
5241 		/*
5242 		 * region_del() can fail in the rare case where a region
5243 		 * must be split and another region descriptor can not be
5244 		 * allocated.  If end == LONG_MAX, it will not fail.
5245 		 */
5246 		if (chg < 0)
5247 			return chg;
5248 	}
5249 
5250 	spin_lock(&inode->i_lock);
5251 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5252 	spin_unlock(&inode->i_lock);
5253 
5254 	/*
5255 	 * If the subpool has a minimum size, the number of global
5256 	 * reservations to be released may be adjusted.
5257 	 */
5258 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5259 	hugetlb_acct_memory(h, -gbl_reserve);
5260 
5261 	return 0;
5262 }
5263 
5264 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5265 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5266 				struct vm_area_struct *vma,
5267 				unsigned long addr, pgoff_t idx)
5268 {
5269 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5270 				svma->vm_start;
5271 	unsigned long sbase = saddr & PUD_MASK;
5272 	unsigned long s_end = sbase + PUD_SIZE;
5273 
5274 	/* Allow segments to share if only one is marked locked */
5275 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5276 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5277 
5278 	/*
5279 	 * match the virtual addresses, permission and the alignment of the
5280 	 * page table page.
5281 	 */
5282 	if (pmd_index(addr) != pmd_index(saddr) ||
5283 	    vm_flags != svm_flags ||
5284 	    sbase < svma->vm_start || svma->vm_end < s_end)
5285 		return 0;
5286 
5287 	return saddr;
5288 }
5289 
5290 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5291 {
5292 	unsigned long base = addr & PUD_MASK;
5293 	unsigned long end = base + PUD_SIZE;
5294 
5295 	/*
5296 	 * check on proper vm_flags and page table alignment
5297 	 */
5298 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5299 		return true;
5300 	return false;
5301 }
5302 
5303 /*
5304  * Determine if start,end range within vma could be mapped by shared pmd.
5305  * If yes, adjust start and end to cover range associated with possible
5306  * shared pmd mappings.
5307  */
5308 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5309 				unsigned long *start, unsigned long *end)
5310 {
5311 	unsigned long check_addr;
5312 
5313 	if (!(vma->vm_flags & VM_MAYSHARE))
5314 		return;
5315 
5316 	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
5317 		unsigned long a_start = check_addr & PUD_MASK;
5318 		unsigned long a_end = a_start + PUD_SIZE;
5319 
5320 		/*
5321 		 * If sharing is possible, adjust start/end if necessary.
5322 		 */
5323 		if (range_in_vma(vma, a_start, a_end)) {
5324 			if (a_start < *start)
5325 				*start = a_start;
5326 			if (a_end > *end)
5327 				*end = a_end;
5328 		}
5329 	}
5330 }
5331 
5332 /*
5333  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5334  * and returns the corresponding pte. While this is not necessary for the
5335  * !shared pmd case because we can allocate the pmd later as well, it makes the
5336  * code much cleaner.
5337  *
5338  * This routine must be called with i_mmap_rwsem held in at least read mode.
5339  * For hugetlbfs, this prevents removal of any page table entries associated
5340  * with the address space.  This is important as we are setting up sharing
5341  * based on existing page table entries (mappings).
5342  */
5343 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5344 {
5345 	struct vm_area_struct *vma = find_vma(mm, addr);
5346 	struct address_space *mapping = vma->vm_file->f_mapping;
5347 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5348 			vma->vm_pgoff;
5349 	struct vm_area_struct *svma;
5350 	unsigned long saddr;
5351 	pte_t *spte = NULL;
5352 	pte_t *pte;
5353 	spinlock_t *ptl;
5354 
5355 	if (!vma_shareable(vma, addr))
5356 		return (pte_t *)pmd_alloc(mm, pud, addr);
5357 
5358 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5359 		if (svma == vma)
5360 			continue;
5361 
5362 		saddr = page_table_shareable(svma, vma, addr, idx);
5363 		if (saddr) {
5364 			spte = huge_pte_offset(svma->vm_mm, saddr,
5365 					       vma_mmu_pagesize(svma));
5366 			if (spte) {
5367 				get_page(virt_to_page(spte));
5368 				break;
5369 			}
5370 		}
5371 	}
5372 
5373 	if (!spte)
5374 		goto out;
5375 
5376 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5377 	if (pud_none(*pud)) {
5378 		pud_populate(mm, pud,
5379 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5380 		mm_inc_nr_pmds(mm);
5381 	} else {
5382 		put_page(virt_to_page(spte));
5383 	}
5384 	spin_unlock(ptl);
5385 out:
5386 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5387 	return pte;
5388 }
5389 
5390 /*
5391  * unmap huge page backed by shared pte.
5392  *
5393  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5394  * indicated by page_count > 1, unmap is achieved by clearing pud and
5395  * decrementing the ref count. If count == 1, the pte page is not shared.
5396  *
5397  * Called with page table lock held and i_mmap_rwsem held in write mode.
5398  *
5399  * returns: 1 successfully unmapped a shared pte page
5400  *	    0 the underlying pte page is not shared, or it is the last user
5401  */
5402 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5403 {
5404 	pgd_t *pgd = pgd_offset(mm, *addr);
5405 	p4d_t *p4d = p4d_offset(pgd, *addr);
5406 	pud_t *pud = pud_offset(p4d, *addr);
5407 
5408 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5409 	if (page_count(virt_to_page(ptep)) == 1)
5410 		return 0;
5411 
5412 	pud_clear(pud);
5413 	put_page(virt_to_page(ptep));
5414 	mm_dec_nr_pmds(mm);
5415 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5416 	return 1;
5417 }
5418 #define want_pmd_share()	(1)
5419 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5420 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5421 {
5422 	return NULL;
5423 }
5424 
5425 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5426 {
5427 	return 0;
5428 }
5429 
5430 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5431 				unsigned long *start, unsigned long *end)
5432 {
5433 }
5434 #define want_pmd_share()	(0)
5435 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5436 
5437 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5438 pte_t *huge_pte_alloc(struct mm_struct *mm,
5439 			unsigned long addr, unsigned long sz)
5440 {
5441 	pgd_t *pgd;
5442 	p4d_t *p4d;
5443 	pud_t *pud;
5444 	pte_t *pte = NULL;
5445 
5446 	pgd = pgd_offset(mm, addr);
5447 	p4d = p4d_alloc(mm, pgd, addr);
5448 	if (!p4d)
5449 		return NULL;
5450 	pud = pud_alloc(mm, p4d, addr);
5451 	if (pud) {
5452 		if (sz == PUD_SIZE) {
5453 			pte = (pte_t *)pud;
5454 		} else {
5455 			BUG_ON(sz != PMD_SIZE);
5456 			if (want_pmd_share() && pud_none(*pud))
5457 				pte = huge_pmd_share(mm, addr, pud);
5458 			else
5459 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5460 		}
5461 	}
5462 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5463 
5464 	return pte;
5465 }
5466 
5467 /*
5468  * huge_pte_offset() - Walk the page table to resolve the hugepage
5469  * entry at address @addr
5470  *
5471  * Return: Pointer to page table entry (PUD or PMD) for
5472  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5473  * size @sz doesn't match the hugepage size at this level of the page
5474  * table.
5475  */
5476 pte_t *huge_pte_offset(struct mm_struct *mm,
5477 		       unsigned long addr, unsigned long sz)
5478 {
5479 	pgd_t *pgd;
5480 	p4d_t *p4d;
5481 	pud_t *pud;
5482 	pmd_t *pmd;
5483 
5484 	pgd = pgd_offset(mm, addr);
5485 	if (!pgd_present(*pgd))
5486 		return NULL;
5487 	p4d = p4d_offset(pgd, addr);
5488 	if (!p4d_present(*p4d))
5489 		return NULL;
5490 
5491 	pud = pud_offset(p4d, addr);
5492 	if (sz == PUD_SIZE)
5493 		/* must be pud huge, non-present or none */
5494 		return (pte_t *)pud;
5495 	if (!pud_present(*pud))
5496 		return NULL;
5497 	/* must have a valid entry and size to go further */
5498 
5499 	pmd = pmd_offset(pud, addr);
5500 	/* must be pmd huge, non-present or none */
5501 	return (pte_t *)pmd;
5502 }
5503 
5504 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5505 
5506 /*
5507  * These functions are overwritable if your architecture needs its own
5508  * behavior.
5509  */
5510 struct page * __weak
5511 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5512 			      int write)
5513 {
5514 	return ERR_PTR(-EINVAL);
5515 }
5516 
5517 struct page * __weak
5518 follow_huge_pd(struct vm_area_struct *vma,
5519 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5520 {
5521 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5522 	return NULL;
5523 }
5524 
5525 struct page * __weak
5526 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5527 		pmd_t *pmd, int flags)
5528 {
5529 	struct page *page = NULL;
5530 	spinlock_t *ptl;
5531 	pte_t pte;
5532 
5533 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5534 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5535 			 (FOLL_PIN | FOLL_GET)))
5536 		return NULL;
5537 
5538 retry:
5539 	ptl = pmd_lockptr(mm, pmd);
5540 	spin_lock(ptl);
5541 	/*
5542 	 * make sure that the address range covered by this pmd is not
5543 	 * unmapped from other threads.
5544 	 */
5545 	if (!pmd_huge(*pmd))
5546 		goto out;
5547 	pte = huge_ptep_get((pte_t *)pmd);
5548 	if (pte_present(pte)) {
5549 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5550 		/*
5551 		 * try_grab_page() should always succeed here, because: a) we
5552 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5553 		 * huge pmd (head) page is present in the page tables. The ptl
5554 		 * prevents the head page and tail pages from being rearranged
5555 		 * in any way. So this page must be available at this point,
5556 		 * unless the page refcount overflowed:
5557 		 */
5558 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5559 			page = NULL;
5560 			goto out;
5561 		}
5562 	} else {
5563 		if (is_hugetlb_entry_migration(pte)) {
5564 			spin_unlock(ptl);
5565 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5566 			goto retry;
5567 		}
5568 		/*
5569 		 * hwpoisoned entry is treated as no_page_table in
5570 		 * follow_page_mask().
5571 		 */
5572 	}
5573 out:
5574 	spin_unlock(ptl);
5575 	return page;
5576 }
5577 
5578 struct page * __weak
5579 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5580 		pud_t *pud, int flags)
5581 {
5582 	if (flags & (FOLL_GET | FOLL_PIN))
5583 		return NULL;
5584 
5585 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5586 }
5587 
5588 struct page * __weak
5589 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5590 {
5591 	if (flags & (FOLL_GET | FOLL_PIN))
5592 		return NULL;
5593 
5594 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5595 }
5596 
5597 bool isolate_huge_page(struct page *page, struct list_head *list)
5598 {
5599 	bool ret = true;
5600 
5601 	VM_BUG_ON_PAGE(!PageHead(page), page);
5602 	spin_lock(&hugetlb_lock);
5603 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5604 		ret = false;
5605 		goto unlock;
5606 	}
5607 	clear_page_huge_active(page);
5608 	list_move_tail(&page->lru, list);
5609 unlock:
5610 	spin_unlock(&hugetlb_lock);
5611 	return ret;
5612 }
5613 
5614 void putback_active_hugepage(struct page *page)
5615 {
5616 	VM_BUG_ON_PAGE(!PageHead(page), page);
5617 	spin_lock(&hugetlb_lock);
5618 	set_page_huge_active(page);
5619 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5620 	spin_unlock(&hugetlb_lock);
5621 	put_page(page);
5622 }
5623 
5624 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5625 {
5626 	struct hstate *h = page_hstate(oldpage);
5627 
5628 	hugetlb_cgroup_migrate(oldpage, newpage);
5629 	set_page_owner_migrate_reason(newpage, reason);
5630 
5631 	/*
5632 	 * transfer temporary state of the new huge page. This is
5633 	 * reverse to other transitions because the newpage is going to
5634 	 * be final while the old one will be freed so it takes over
5635 	 * the temporary status.
5636 	 *
5637 	 * Also note that we have to transfer the per-node surplus state
5638 	 * here as well otherwise the global surplus count will not match
5639 	 * the per-node's.
5640 	 */
5641 	if (PageHugeTemporary(newpage)) {
5642 		int old_nid = page_to_nid(oldpage);
5643 		int new_nid = page_to_nid(newpage);
5644 
5645 		SetPageHugeTemporary(oldpage);
5646 		ClearPageHugeTemporary(newpage);
5647 
5648 		spin_lock(&hugetlb_lock);
5649 		if (h->surplus_huge_pages_node[old_nid]) {
5650 			h->surplus_huge_pages_node[old_nid]--;
5651 			h->surplus_huge_pages_node[new_nid]++;
5652 		}
5653 		spin_unlock(&hugetlb_lock);
5654 	}
5655 }
5656 
5657 #ifdef CONFIG_CMA
5658 static unsigned long hugetlb_cma_size __initdata;
5659 static bool cma_reserve_called __initdata;
5660 
5661 static int __init cmdline_parse_hugetlb_cma(char *p)
5662 {
5663 	hugetlb_cma_size = memparse(p, &p);
5664 	return 0;
5665 }
5666 
5667 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5668 
5669 void __init hugetlb_cma_reserve(int order)
5670 {
5671 	unsigned long size, reserved, per_node;
5672 	int nid;
5673 
5674 	cma_reserve_called = true;
5675 
5676 	if (!hugetlb_cma_size)
5677 		return;
5678 
5679 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5680 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5681 			(PAGE_SIZE << order) / SZ_1M);
5682 		return;
5683 	}
5684 
5685 	/*
5686 	 * If 3 GB area is requested on a machine with 4 numa nodes,
5687 	 * let's allocate 1 GB on first three nodes and ignore the last one.
5688 	 */
5689 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5690 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5691 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5692 
5693 	reserved = 0;
5694 	for_each_node_state(nid, N_ONLINE) {
5695 		int res;
5696 
5697 		size = min(per_node, hugetlb_cma_size - reserved);
5698 		size = round_up(size, PAGE_SIZE << order);
5699 
5700 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5701 						 0, false, "hugetlb",
5702 						 &hugetlb_cma[nid], nid);
5703 		if (res) {
5704 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5705 				res, nid);
5706 			continue;
5707 		}
5708 
5709 		reserved += size;
5710 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5711 			size / SZ_1M, nid);
5712 
5713 		if (reserved >= hugetlb_cma_size)
5714 			break;
5715 	}
5716 }
5717 
5718 void __init hugetlb_cma_check(void)
5719 {
5720 	if (!hugetlb_cma_size || cma_reserve_called)
5721 		return;
5722 
5723 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5724 }
5725 
5726 #endif /* CONFIG_CMA */
5727