1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/mm.h> 8 #include <linux/seq_file.h> 9 #include <linux/sysctl.h> 10 #include <linux/highmem.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/compiler.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/mmdebug.h> 22 #include <linux/sched/signal.h> 23 #include <linux/rmap.h> 24 #include <linux/string_helpers.h> 25 #include <linux/swap.h> 26 #include <linux/swapops.h> 27 #include <linux/jhash.h> 28 29 #include <asm/page.h> 30 #include <asm/pgtable.h> 31 #include <asm/tlb.h> 32 33 #include <linux/io.h> 34 #include <linux/hugetlb.h> 35 #include <linux/hugetlb_cgroup.h> 36 #include <linux/node.h> 37 #include <linux/userfaultfd_k.h> 38 #include <linux/page_owner.h> 39 #include "internal.h" 40 41 int hugetlb_max_hstate __read_mostly; 42 unsigned int default_hstate_idx; 43 struct hstate hstates[HUGE_MAX_HSTATE]; 44 /* 45 * Minimum page order among possible hugepage sizes, set to a proper value 46 * at boot time. 47 */ 48 static unsigned int minimum_order __read_mostly = UINT_MAX; 49 50 __initdata LIST_HEAD(huge_boot_pages); 51 52 /* for command line parsing */ 53 static struct hstate * __initdata parsed_hstate; 54 static unsigned long __initdata default_hstate_max_huge_pages; 55 static unsigned long __initdata default_hstate_size; 56 static bool __initdata parsed_valid_hugepagesz = true; 57 58 /* 59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 60 * free_huge_pages, and surplus_huge_pages. 61 */ 62 DEFINE_SPINLOCK(hugetlb_lock); 63 64 /* 65 * Serializes faults on the same logical page. This is used to 66 * prevent spurious OOMs when the hugepage pool is fully utilized. 67 */ 68 static int num_fault_mutexes; 69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 70 71 /* Forward declaration */ 72 static int hugetlb_acct_memory(struct hstate *h, long delta); 73 74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 75 { 76 bool free = (spool->count == 0) && (spool->used_hpages == 0); 77 78 spin_unlock(&spool->lock); 79 80 /* If no pages are used, and no other handles to the subpool 81 * remain, give up any reservations mased on minimum size and 82 * free the subpool */ 83 if (free) { 84 if (spool->min_hpages != -1) 85 hugetlb_acct_memory(spool->hstate, 86 -spool->min_hpages); 87 kfree(spool); 88 } 89 } 90 91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 92 long min_hpages) 93 { 94 struct hugepage_subpool *spool; 95 96 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 97 if (!spool) 98 return NULL; 99 100 spin_lock_init(&spool->lock); 101 spool->count = 1; 102 spool->max_hpages = max_hpages; 103 spool->hstate = h; 104 spool->min_hpages = min_hpages; 105 106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 107 kfree(spool); 108 return NULL; 109 } 110 spool->rsv_hpages = min_hpages; 111 112 return spool; 113 } 114 115 void hugepage_put_subpool(struct hugepage_subpool *spool) 116 { 117 spin_lock(&spool->lock); 118 BUG_ON(!spool->count); 119 spool->count--; 120 unlock_or_release_subpool(spool); 121 } 122 123 /* 124 * Subpool accounting for allocating and reserving pages. 125 * Return -ENOMEM if there are not enough resources to satisfy the 126 * the request. Otherwise, return the number of pages by which the 127 * global pools must be adjusted (upward). The returned value may 128 * only be different than the passed value (delta) in the case where 129 * a subpool minimum size must be manitained. 130 */ 131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 132 long delta) 133 { 134 long ret = delta; 135 136 if (!spool) 137 return ret; 138 139 spin_lock(&spool->lock); 140 141 if (spool->max_hpages != -1) { /* maximum size accounting */ 142 if ((spool->used_hpages + delta) <= spool->max_hpages) 143 spool->used_hpages += delta; 144 else { 145 ret = -ENOMEM; 146 goto unlock_ret; 147 } 148 } 149 150 /* minimum size accounting */ 151 if (spool->min_hpages != -1 && spool->rsv_hpages) { 152 if (delta > spool->rsv_hpages) { 153 /* 154 * Asking for more reserves than those already taken on 155 * behalf of subpool. Return difference. 156 */ 157 ret = delta - spool->rsv_hpages; 158 spool->rsv_hpages = 0; 159 } else { 160 ret = 0; /* reserves already accounted for */ 161 spool->rsv_hpages -= delta; 162 } 163 } 164 165 unlock_ret: 166 spin_unlock(&spool->lock); 167 return ret; 168 } 169 170 /* 171 * Subpool accounting for freeing and unreserving pages. 172 * Return the number of global page reservations that must be dropped. 173 * The return value may only be different than the passed value (delta) 174 * in the case where a subpool minimum size must be maintained. 175 */ 176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 177 long delta) 178 { 179 long ret = delta; 180 181 if (!spool) 182 return delta; 183 184 spin_lock(&spool->lock); 185 186 if (spool->max_hpages != -1) /* maximum size accounting */ 187 spool->used_hpages -= delta; 188 189 /* minimum size accounting */ 190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 191 if (spool->rsv_hpages + delta <= spool->min_hpages) 192 ret = 0; 193 else 194 ret = spool->rsv_hpages + delta - spool->min_hpages; 195 196 spool->rsv_hpages += delta; 197 if (spool->rsv_hpages > spool->min_hpages) 198 spool->rsv_hpages = spool->min_hpages; 199 } 200 201 /* 202 * If hugetlbfs_put_super couldn't free spool due to an outstanding 203 * quota reference, free it now. 204 */ 205 unlock_or_release_subpool(spool); 206 207 return ret; 208 } 209 210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 211 { 212 return HUGETLBFS_SB(inode->i_sb)->spool; 213 } 214 215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 216 { 217 return subpool_inode(file_inode(vma->vm_file)); 218 } 219 220 /* 221 * Region tracking -- allows tracking of reservations and instantiated pages 222 * across the pages in a mapping. 223 * 224 * The region data structures are embedded into a resv_map and protected 225 * by a resv_map's lock. The set of regions within the resv_map represent 226 * reservations for huge pages, or huge pages that have already been 227 * instantiated within the map. The from and to elements are huge page 228 * indicies into the associated mapping. from indicates the starting index 229 * of the region. to represents the first index past the end of the region. 230 * 231 * For example, a file region structure with from == 0 and to == 4 represents 232 * four huge pages in a mapping. It is important to note that the to element 233 * represents the first element past the end of the region. This is used in 234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 235 * 236 * Interval notation of the form [from, to) will be used to indicate that 237 * the endpoint from is inclusive and to is exclusive. 238 */ 239 struct file_region { 240 struct list_head link; 241 long from; 242 long to; 243 }; 244 245 /* 246 * Add the huge page range represented by [f, t) to the reserve 247 * map. In the normal case, existing regions will be expanded 248 * to accommodate the specified range. Sufficient regions should 249 * exist for expansion due to the previous call to region_chg 250 * with the same range. However, it is possible that region_del 251 * could have been called after region_chg and modifed the map 252 * in such a way that no region exists to be expanded. In this 253 * case, pull a region descriptor from the cache associated with 254 * the map and use that for the new range. 255 * 256 * Return the number of new huge pages added to the map. This 257 * number is greater than or equal to zero. 258 */ 259 static long region_add(struct resv_map *resv, long f, long t) 260 { 261 struct list_head *head = &resv->regions; 262 struct file_region *rg, *nrg, *trg; 263 long add = 0; 264 265 spin_lock(&resv->lock); 266 /* Locate the region we are either in or before. */ 267 list_for_each_entry(rg, head, link) 268 if (f <= rg->to) 269 break; 270 271 /* 272 * If no region exists which can be expanded to include the 273 * specified range, the list must have been modified by an 274 * interleving call to region_del(). Pull a region descriptor 275 * from the cache and use it for this range. 276 */ 277 if (&rg->link == head || t < rg->from) { 278 VM_BUG_ON(resv->region_cache_count <= 0); 279 280 resv->region_cache_count--; 281 nrg = list_first_entry(&resv->region_cache, struct file_region, 282 link); 283 list_del(&nrg->link); 284 285 nrg->from = f; 286 nrg->to = t; 287 list_add(&nrg->link, rg->link.prev); 288 289 add += t - f; 290 goto out_locked; 291 } 292 293 /* Round our left edge to the current segment if it encloses us. */ 294 if (f > rg->from) 295 f = rg->from; 296 297 /* Check for and consume any regions we now overlap with. */ 298 nrg = rg; 299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 300 if (&rg->link == head) 301 break; 302 if (rg->from > t) 303 break; 304 305 /* If this area reaches higher then extend our area to 306 * include it completely. If this is not the first area 307 * which we intend to reuse, free it. */ 308 if (rg->to > t) 309 t = rg->to; 310 if (rg != nrg) { 311 /* Decrement return value by the deleted range. 312 * Another range will span this area so that by 313 * end of routine add will be >= zero 314 */ 315 add -= (rg->to - rg->from); 316 list_del(&rg->link); 317 kfree(rg); 318 } 319 } 320 321 add += (nrg->from - f); /* Added to beginning of region */ 322 nrg->from = f; 323 add += t - nrg->to; /* Added to end of region */ 324 nrg->to = t; 325 326 out_locked: 327 resv->adds_in_progress--; 328 spin_unlock(&resv->lock); 329 VM_BUG_ON(add < 0); 330 return add; 331 } 332 333 /* 334 * Examine the existing reserve map and determine how many 335 * huge pages in the specified range [f, t) are NOT currently 336 * represented. This routine is called before a subsequent 337 * call to region_add that will actually modify the reserve 338 * map to add the specified range [f, t). region_chg does 339 * not change the number of huge pages represented by the 340 * map. However, if the existing regions in the map can not 341 * be expanded to represent the new range, a new file_region 342 * structure is added to the map as a placeholder. This is 343 * so that the subsequent region_add call will have all the 344 * regions it needs and will not fail. 345 * 346 * Upon entry, region_chg will also examine the cache of region descriptors 347 * associated with the map. If there are not enough descriptors cached, one 348 * will be allocated for the in progress add operation. 349 * 350 * Returns the number of huge pages that need to be added to the existing 351 * reservation map for the range [f, t). This number is greater or equal to 352 * zero. -ENOMEM is returned if a new file_region structure or cache entry 353 * is needed and can not be allocated. 354 */ 355 static long region_chg(struct resv_map *resv, long f, long t) 356 { 357 struct list_head *head = &resv->regions; 358 struct file_region *rg, *nrg = NULL; 359 long chg = 0; 360 361 retry: 362 spin_lock(&resv->lock); 363 retry_locked: 364 resv->adds_in_progress++; 365 366 /* 367 * Check for sufficient descriptors in the cache to accommodate 368 * the number of in progress add operations. 369 */ 370 if (resv->adds_in_progress > resv->region_cache_count) { 371 struct file_region *trg; 372 373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 374 /* Must drop lock to allocate a new descriptor. */ 375 resv->adds_in_progress--; 376 spin_unlock(&resv->lock); 377 378 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 379 if (!trg) { 380 kfree(nrg); 381 return -ENOMEM; 382 } 383 384 spin_lock(&resv->lock); 385 list_add(&trg->link, &resv->region_cache); 386 resv->region_cache_count++; 387 goto retry_locked; 388 } 389 390 /* Locate the region we are before or in. */ 391 list_for_each_entry(rg, head, link) 392 if (f <= rg->to) 393 break; 394 395 /* If we are below the current region then a new region is required. 396 * Subtle, allocate a new region at the position but make it zero 397 * size such that we can guarantee to record the reservation. */ 398 if (&rg->link == head || t < rg->from) { 399 if (!nrg) { 400 resv->adds_in_progress--; 401 spin_unlock(&resv->lock); 402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 403 if (!nrg) 404 return -ENOMEM; 405 406 nrg->from = f; 407 nrg->to = f; 408 INIT_LIST_HEAD(&nrg->link); 409 goto retry; 410 } 411 412 list_add(&nrg->link, rg->link.prev); 413 chg = t - f; 414 goto out_nrg; 415 } 416 417 /* Round our left edge to the current segment if it encloses us. */ 418 if (f > rg->from) 419 f = rg->from; 420 chg = t - f; 421 422 /* Check for and consume any regions we now overlap with. */ 423 list_for_each_entry(rg, rg->link.prev, link) { 424 if (&rg->link == head) 425 break; 426 if (rg->from > t) 427 goto out; 428 429 /* We overlap with this area, if it extends further than 430 * us then we must extend ourselves. Account for its 431 * existing reservation. */ 432 if (rg->to > t) { 433 chg += rg->to - t; 434 t = rg->to; 435 } 436 chg -= rg->to - rg->from; 437 } 438 439 out: 440 spin_unlock(&resv->lock); 441 /* We already know we raced and no longer need the new region */ 442 kfree(nrg); 443 return chg; 444 out_nrg: 445 spin_unlock(&resv->lock); 446 return chg; 447 } 448 449 /* 450 * Abort the in progress add operation. The adds_in_progress field 451 * of the resv_map keeps track of the operations in progress between 452 * calls to region_chg and region_add. Operations are sometimes 453 * aborted after the call to region_chg. In such cases, region_abort 454 * is called to decrement the adds_in_progress counter. 455 * 456 * NOTE: The range arguments [f, t) are not needed or used in this 457 * routine. They are kept to make reading the calling code easier as 458 * arguments will match the associated region_chg call. 459 */ 460 static void region_abort(struct resv_map *resv, long f, long t) 461 { 462 spin_lock(&resv->lock); 463 VM_BUG_ON(!resv->region_cache_count); 464 resv->adds_in_progress--; 465 spin_unlock(&resv->lock); 466 } 467 468 /* 469 * Delete the specified range [f, t) from the reserve map. If the 470 * t parameter is LONG_MAX, this indicates that ALL regions after f 471 * should be deleted. Locate the regions which intersect [f, t) 472 * and either trim, delete or split the existing regions. 473 * 474 * Returns the number of huge pages deleted from the reserve map. 475 * In the normal case, the return value is zero or more. In the 476 * case where a region must be split, a new region descriptor must 477 * be allocated. If the allocation fails, -ENOMEM will be returned. 478 * NOTE: If the parameter t == LONG_MAX, then we will never split 479 * a region and possibly return -ENOMEM. Callers specifying 480 * t == LONG_MAX do not need to check for -ENOMEM error. 481 */ 482 static long region_del(struct resv_map *resv, long f, long t) 483 { 484 struct list_head *head = &resv->regions; 485 struct file_region *rg, *trg; 486 struct file_region *nrg = NULL; 487 long del = 0; 488 489 retry: 490 spin_lock(&resv->lock); 491 list_for_each_entry_safe(rg, trg, head, link) { 492 /* 493 * Skip regions before the range to be deleted. file_region 494 * ranges are normally of the form [from, to). However, there 495 * may be a "placeholder" entry in the map which is of the form 496 * (from, to) with from == to. Check for placeholder entries 497 * at the beginning of the range to be deleted. 498 */ 499 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 500 continue; 501 502 if (rg->from >= t) 503 break; 504 505 if (f > rg->from && t < rg->to) { /* Must split region */ 506 /* 507 * Check for an entry in the cache before dropping 508 * lock and attempting allocation. 509 */ 510 if (!nrg && 511 resv->region_cache_count > resv->adds_in_progress) { 512 nrg = list_first_entry(&resv->region_cache, 513 struct file_region, 514 link); 515 list_del(&nrg->link); 516 resv->region_cache_count--; 517 } 518 519 if (!nrg) { 520 spin_unlock(&resv->lock); 521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 522 if (!nrg) 523 return -ENOMEM; 524 goto retry; 525 } 526 527 del += t - f; 528 529 /* New entry for end of split region */ 530 nrg->from = t; 531 nrg->to = rg->to; 532 INIT_LIST_HEAD(&nrg->link); 533 534 /* Original entry is trimmed */ 535 rg->to = f; 536 537 list_add(&nrg->link, &rg->link); 538 nrg = NULL; 539 break; 540 } 541 542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 543 del += rg->to - rg->from; 544 list_del(&rg->link); 545 kfree(rg); 546 continue; 547 } 548 549 if (f <= rg->from) { /* Trim beginning of region */ 550 del += t - rg->from; 551 rg->from = t; 552 } else { /* Trim end of region */ 553 del += rg->to - f; 554 rg->to = f; 555 } 556 } 557 558 spin_unlock(&resv->lock); 559 kfree(nrg); 560 return del; 561 } 562 563 /* 564 * A rare out of memory error was encountered which prevented removal of 565 * the reserve map region for a page. The huge page itself was free'ed 566 * and removed from the page cache. This routine will adjust the subpool 567 * usage count, and the global reserve count if needed. By incrementing 568 * these counts, the reserve map entry which could not be deleted will 569 * appear as a "reserved" entry instead of simply dangling with incorrect 570 * counts. 571 */ 572 void hugetlb_fix_reserve_counts(struct inode *inode) 573 { 574 struct hugepage_subpool *spool = subpool_inode(inode); 575 long rsv_adjust; 576 577 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 578 if (rsv_adjust) { 579 struct hstate *h = hstate_inode(inode); 580 581 hugetlb_acct_memory(h, 1); 582 } 583 } 584 585 /* 586 * Count and return the number of huge pages in the reserve map 587 * that intersect with the range [f, t). 588 */ 589 static long region_count(struct resv_map *resv, long f, long t) 590 { 591 struct list_head *head = &resv->regions; 592 struct file_region *rg; 593 long chg = 0; 594 595 spin_lock(&resv->lock); 596 /* Locate each segment we overlap with, and count that overlap. */ 597 list_for_each_entry(rg, head, link) { 598 long seg_from; 599 long seg_to; 600 601 if (rg->to <= f) 602 continue; 603 if (rg->from >= t) 604 break; 605 606 seg_from = max(rg->from, f); 607 seg_to = min(rg->to, t); 608 609 chg += seg_to - seg_from; 610 } 611 spin_unlock(&resv->lock); 612 613 return chg; 614 } 615 616 /* 617 * Convert the address within this vma to the page offset within 618 * the mapping, in pagecache page units; huge pages here. 619 */ 620 static pgoff_t vma_hugecache_offset(struct hstate *h, 621 struct vm_area_struct *vma, unsigned long address) 622 { 623 return ((address - vma->vm_start) >> huge_page_shift(h)) + 624 (vma->vm_pgoff >> huge_page_order(h)); 625 } 626 627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 628 unsigned long address) 629 { 630 return vma_hugecache_offset(hstate_vma(vma), vma, address); 631 } 632 EXPORT_SYMBOL_GPL(linear_hugepage_index); 633 634 /* 635 * Return the size of the pages allocated when backing a VMA. In the majority 636 * cases this will be same size as used by the page table entries. 637 */ 638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 639 { 640 if (vma->vm_ops && vma->vm_ops->pagesize) 641 return vma->vm_ops->pagesize(vma); 642 return PAGE_SIZE; 643 } 644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 645 646 /* 647 * Return the page size being used by the MMU to back a VMA. In the majority 648 * of cases, the page size used by the kernel matches the MMU size. On 649 * architectures where it differs, an architecture-specific 'strong' 650 * version of this symbol is required. 651 */ 652 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 653 { 654 return vma_kernel_pagesize(vma); 655 } 656 657 /* 658 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 659 * bits of the reservation map pointer, which are always clear due to 660 * alignment. 661 */ 662 #define HPAGE_RESV_OWNER (1UL << 0) 663 #define HPAGE_RESV_UNMAPPED (1UL << 1) 664 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 665 666 /* 667 * These helpers are used to track how many pages are reserved for 668 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 669 * is guaranteed to have their future faults succeed. 670 * 671 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 672 * the reserve counters are updated with the hugetlb_lock held. It is safe 673 * to reset the VMA at fork() time as it is not in use yet and there is no 674 * chance of the global counters getting corrupted as a result of the values. 675 * 676 * The private mapping reservation is represented in a subtly different 677 * manner to a shared mapping. A shared mapping has a region map associated 678 * with the underlying file, this region map represents the backing file 679 * pages which have ever had a reservation assigned which this persists even 680 * after the page is instantiated. A private mapping has a region map 681 * associated with the original mmap which is attached to all VMAs which 682 * reference it, this region map represents those offsets which have consumed 683 * reservation ie. where pages have been instantiated. 684 */ 685 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 686 { 687 return (unsigned long)vma->vm_private_data; 688 } 689 690 static void set_vma_private_data(struct vm_area_struct *vma, 691 unsigned long value) 692 { 693 vma->vm_private_data = (void *)value; 694 } 695 696 struct resv_map *resv_map_alloc(void) 697 { 698 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 699 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 700 701 if (!resv_map || !rg) { 702 kfree(resv_map); 703 kfree(rg); 704 return NULL; 705 } 706 707 kref_init(&resv_map->refs); 708 spin_lock_init(&resv_map->lock); 709 INIT_LIST_HEAD(&resv_map->regions); 710 711 resv_map->adds_in_progress = 0; 712 713 INIT_LIST_HEAD(&resv_map->region_cache); 714 list_add(&rg->link, &resv_map->region_cache); 715 resv_map->region_cache_count = 1; 716 717 return resv_map; 718 } 719 720 void resv_map_release(struct kref *ref) 721 { 722 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 723 struct list_head *head = &resv_map->region_cache; 724 struct file_region *rg, *trg; 725 726 /* Clear out any active regions before we release the map. */ 727 region_del(resv_map, 0, LONG_MAX); 728 729 /* ... and any entries left in the cache */ 730 list_for_each_entry_safe(rg, trg, head, link) { 731 list_del(&rg->link); 732 kfree(rg); 733 } 734 735 VM_BUG_ON(resv_map->adds_in_progress); 736 737 kfree(resv_map); 738 } 739 740 static inline struct resv_map *inode_resv_map(struct inode *inode) 741 { 742 return inode->i_mapping->private_data; 743 } 744 745 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 746 { 747 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 748 if (vma->vm_flags & VM_MAYSHARE) { 749 struct address_space *mapping = vma->vm_file->f_mapping; 750 struct inode *inode = mapping->host; 751 752 return inode_resv_map(inode); 753 754 } else { 755 return (struct resv_map *)(get_vma_private_data(vma) & 756 ~HPAGE_RESV_MASK); 757 } 758 } 759 760 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 761 { 762 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 763 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 764 765 set_vma_private_data(vma, (get_vma_private_data(vma) & 766 HPAGE_RESV_MASK) | (unsigned long)map); 767 } 768 769 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 770 { 771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 772 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 773 774 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 775 } 776 777 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 778 { 779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 780 781 return (get_vma_private_data(vma) & flag) != 0; 782 } 783 784 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 785 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 786 { 787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 788 if (!(vma->vm_flags & VM_MAYSHARE)) 789 vma->vm_private_data = (void *)0; 790 } 791 792 /* Returns true if the VMA has associated reserve pages */ 793 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 794 { 795 if (vma->vm_flags & VM_NORESERVE) { 796 /* 797 * This address is already reserved by other process(chg == 0), 798 * so, we should decrement reserved count. Without decrementing, 799 * reserve count remains after releasing inode, because this 800 * allocated page will go into page cache and is regarded as 801 * coming from reserved pool in releasing step. Currently, we 802 * don't have any other solution to deal with this situation 803 * properly, so add work-around here. 804 */ 805 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 806 return true; 807 else 808 return false; 809 } 810 811 /* Shared mappings always use reserves */ 812 if (vma->vm_flags & VM_MAYSHARE) { 813 /* 814 * We know VM_NORESERVE is not set. Therefore, there SHOULD 815 * be a region map for all pages. The only situation where 816 * there is no region map is if a hole was punched via 817 * fallocate. In this case, there really are no reverves to 818 * use. This situation is indicated if chg != 0. 819 */ 820 if (chg) 821 return false; 822 else 823 return true; 824 } 825 826 /* 827 * Only the process that called mmap() has reserves for 828 * private mappings. 829 */ 830 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 831 /* 832 * Like the shared case above, a hole punch or truncate 833 * could have been performed on the private mapping. 834 * Examine the value of chg to determine if reserves 835 * actually exist or were previously consumed. 836 * Very Subtle - The value of chg comes from a previous 837 * call to vma_needs_reserves(). The reserve map for 838 * private mappings has different (opposite) semantics 839 * than that of shared mappings. vma_needs_reserves() 840 * has already taken this difference in semantics into 841 * account. Therefore, the meaning of chg is the same 842 * as in the shared case above. Code could easily be 843 * combined, but keeping it separate draws attention to 844 * subtle differences. 845 */ 846 if (chg) 847 return false; 848 else 849 return true; 850 } 851 852 return false; 853 } 854 855 static void enqueue_huge_page(struct hstate *h, struct page *page) 856 { 857 int nid = page_to_nid(page); 858 list_move(&page->lru, &h->hugepage_freelists[nid]); 859 h->free_huge_pages++; 860 h->free_huge_pages_node[nid]++; 861 } 862 863 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 864 { 865 struct page *page; 866 867 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 868 if (!PageHWPoison(page)) 869 break; 870 /* 871 * if 'non-isolated free hugepage' not found on the list, 872 * the allocation fails. 873 */ 874 if (&h->hugepage_freelists[nid] == &page->lru) 875 return NULL; 876 list_move(&page->lru, &h->hugepage_activelist); 877 set_page_refcounted(page); 878 h->free_huge_pages--; 879 h->free_huge_pages_node[nid]--; 880 return page; 881 } 882 883 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 884 nodemask_t *nmask) 885 { 886 unsigned int cpuset_mems_cookie; 887 struct zonelist *zonelist; 888 struct zone *zone; 889 struct zoneref *z; 890 int node = -1; 891 892 zonelist = node_zonelist(nid, gfp_mask); 893 894 retry_cpuset: 895 cpuset_mems_cookie = read_mems_allowed_begin(); 896 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 897 struct page *page; 898 899 if (!cpuset_zone_allowed(zone, gfp_mask)) 900 continue; 901 /* 902 * no need to ask again on the same node. Pool is node rather than 903 * zone aware 904 */ 905 if (zone_to_nid(zone) == node) 906 continue; 907 node = zone_to_nid(zone); 908 909 page = dequeue_huge_page_node_exact(h, node); 910 if (page) 911 return page; 912 } 913 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 914 goto retry_cpuset; 915 916 return NULL; 917 } 918 919 /* Movability of hugepages depends on migration support. */ 920 static inline gfp_t htlb_alloc_mask(struct hstate *h) 921 { 922 if (hugepage_migration_supported(h)) 923 return GFP_HIGHUSER_MOVABLE; 924 else 925 return GFP_HIGHUSER; 926 } 927 928 static struct page *dequeue_huge_page_vma(struct hstate *h, 929 struct vm_area_struct *vma, 930 unsigned long address, int avoid_reserve, 931 long chg) 932 { 933 struct page *page; 934 struct mempolicy *mpol; 935 gfp_t gfp_mask; 936 nodemask_t *nodemask; 937 int nid; 938 939 /* 940 * A child process with MAP_PRIVATE mappings created by their parent 941 * have no page reserves. This check ensures that reservations are 942 * not "stolen". The child may still get SIGKILLed 943 */ 944 if (!vma_has_reserves(vma, chg) && 945 h->free_huge_pages - h->resv_huge_pages == 0) 946 goto err; 947 948 /* If reserves cannot be used, ensure enough pages are in the pool */ 949 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 950 goto err; 951 952 gfp_mask = htlb_alloc_mask(h); 953 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 954 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 955 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 956 SetPagePrivate(page); 957 h->resv_huge_pages--; 958 } 959 960 mpol_cond_put(mpol); 961 return page; 962 963 err: 964 return NULL; 965 } 966 967 /* 968 * common helper functions for hstate_next_node_to_{alloc|free}. 969 * We may have allocated or freed a huge page based on a different 970 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 971 * be outside of *nodes_allowed. Ensure that we use an allowed 972 * node for alloc or free. 973 */ 974 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 975 { 976 nid = next_node_in(nid, *nodes_allowed); 977 VM_BUG_ON(nid >= MAX_NUMNODES); 978 979 return nid; 980 } 981 982 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 983 { 984 if (!node_isset(nid, *nodes_allowed)) 985 nid = next_node_allowed(nid, nodes_allowed); 986 return nid; 987 } 988 989 /* 990 * returns the previously saved node ["this node"] from which to 991 * allocate a persistent huge page for the pool and advance the 992 * next node from which to allocate, handling wrap at end of node 993 * mask. 994 */ 995 static int hstate_next_node_to_alloc(struct hstate *h, 996 nodemask_t *nodes_allowed) 997 { 998 int nid; 999 1000 VM_BUG_ON(!nodes_allowed); 1001 1002 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1003 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1004 1005 return nid; 1006 } 1007 1008 /* 1009 * helper for free_pool_huge_page() - return the previously saved 1010 * node ["this node"] from which to free a huge page. Advance the 1011 * next node id whether or not we find a free huge page to free so 1012 * that the next attempt to free addresses the next node. 1013 */ 1014 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1015 { 1016 int nid; 1017 1018 VM_BUG_ON(!nodes_allowed); 1019 1020 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1021 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1022 1023 return nid; 1024 } 1025 1026 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1027 for (nr_nodes = nodes_weight(*mask); \ 1028 nr_nodes > 0 && \ 1029 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1030 nr_nodes--) 1031 1032 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1033 for (nr_nodes = nodes_weight(*mask); \ 1034 nr_nodes > 0 && \ 1035 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1036 nr_nodes--) 1037 1038 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1039 static void destroy_compound_gigantic_page(struct page *page, 1040 unsigned int order) 1041 { 1042 int i; 1043 int nr_pages = 1 << order; 1044 struct page *p = page + 1; 1045 1046 atomic_set(compound_mapcount_ptr(page), 0); 1047 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1048 clear_compound_head(p); 1049 set_page_refcounted(p); 1050 } 1051 1052 set_compound_order(page, 0); 1053 __ClearPageHead(page); 1054 } 1055 1056 static void free_gigantic_page(struct page *page, unsigned int order) 1057 { 1058 free_contig_range(page_to_pfn(page), 1 << order); 1059 } 1060 1061 static int __alloc_gigantic_page(unsigned long start_pfn, 1062 unsigned long nr_pages, gfp_t gfp_mask) 1063 { 1064 unsigned long end_pfn = start_pfn + nr_pages; 1065 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 1066 gfp_mask); 1067 } 1068 1069 static bool pfn_range_valid_gigantic(struct zone *z, 1070 unsigned long start_pfn, unsigned long nr_pages) 1071 { 1072 unsigned long i, end_pfn = start_pfn + nr_pages; 1073 struct page *page; 1074 1075 for (i = start_pfn; i < end_pfn; i++) { 1076 if (!pfn_valid(i)) 1077 return false; 1078 1079 page = pfn_to_page(i); 1080 1081 if (page_zone(page) != z) 1082 return false; 1083 1084 if (PageReserved(page)) 1085 return false; 1086 1087 if (page_count(page) > 0) 1088 return false; 1089 1090 if (PageHuge(page)) 1091 return false; 1092 } 1093 1094 return true; 1095 } 1096 1097 static bool zone_spans_last_pfn(const struct zone *zone, 1098 unsigned long start_pfn, unsigned long nr_pages) 1099 { 1100 unsigned long last_pfn = start_pfn + nr_pages - 1; 1101 return zone_spans_pfn(zone, last_pfn); 1102 } 1103 1104 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1105 int nid, nodemask_t *nodemask) 1106 { 1107 unsigned int order = huge_page_order(h); 1108 unsigned long nr_pages = 1 << order; 1109 unsigned long ret, pfn, flags; 1110 struct zonelist *zonelist; 1111 struct zone *zone; 1112 struct zoneref *z; 1113 1114 zonelist = node_zonelist(nid, gfp_mask); 1115 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) { 1116 spin_lock_irqsave(&zone->lock, flags); 1117 1118 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 1119 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 1120 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) { 1121 /* 1122 * We release the zone lock here because 1123 * alloc_contig_range() will also lock the zone 1124 * at some point. If there's an allocation 1125 * spinning on this lock, it may win the race 1126 * and cause alloc_contig_range() to fail... 1127 */ 1128 spin_unlock_irqrestore(&zone->lock, flags); 1129 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask); 1130 if (!ret) 1131 return pfn_to_page(pfn); 1132 spin_lock_irqsave(&zone->lock, flags); 1133 } 1134 pfn += nr_pages; 1135 } 1136 1137 spin_unlock_irqrestore(&zone->lock, flags); 1138 } 1139 1140 return NULL; 1141 } 1142 1143 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1144 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1145 1146 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1147 static inline bool gigantic_page_supported(void) { return false; } 1148 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1149 int nid, nodemask_t *nodemask) { return NULL; } 1150 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1151 static inline void destroy_compound_gigantic_page(struct page *page, 1152 unsigned int order) { } 1153 #endif 1154 1155 static void update_and_free_page(struct hstate *h, struct page *page) 1156 { 1157 int i; 1158 1159 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1160 return; 1161 1162 h->nr_huge_pages--; 1163 h->nr_huge_pages_node[page_to_nid(page)]--; 1164 for (i = 0; i < pages_per_huge_page(h); i++) { 1165 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1166 1 << PG_referenced | 1 << PG_dirty | 1167 1 << PG_active | 1 << PG_private | 1168 1 << PG_writeback); 1169 } 1170 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1171 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1172 set_page_refcounted(page); 1173 if (hstate_is_gigantic(h)) { 1174 destroy_compound_gigantic_page(page, huge_page_order(h)); 1175 free_gigantic_page(page, huge_page_order(h)); 1176 } else { 1177 __free_pages(page, huge_page_order(h)); 1178 } 1179 } 1180 1181 struct hstate *size_to_hstate(unsigned long size) 1182 { 1183 struct hstate *h; 1184 1185 for_each_hstate(h) { 1186 if (huge_page_size(h) == size) 1187 return h; 1188 } 1189 return NULL; 1190 } 1191 1192 /* 1193 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1194 * to hstate->hugepage_activelist.) 1195 * 1196 * This function can be called for tail pages, but never returns true for them. 1197 */ 1198 bool page_huge_active(struct page *page) 1199 { 1200 VM_BUG_ON_PAGE(!PageHuge(page), page); 1201 return PageHead(page) && PagePrivate(&page[1]); 1202 } 1203 1204 /* never called for tail page */ 1205 static void set_page_huge_active(struct page *page) 1206 { 1207 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1208 SetPagePrivate(&page[1]); 1209 } 1210 1211 static void clear_page_huge_active(struct page *page) 1212 { 1213 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1214 ClearPagePrivate(&page[1]); 1215 } 1216 1217 /* 1218 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1219 * code 1220 */ 1221 static inline bool PageHugeTemporary(struct page *page) 1222 { 1223 if (!PageHuge(page)) 1224 return false; 1225 1226 return (unsigned long)page[2].mapping == -1U; 1227 } 1228 1229 static inline void SetPageHugeTemporary(struct page *page) 1230 { 1231 page[2].mapping = (void *)-1U; 1232 } 1233 1234 static inline void ClearPageHugeTemporary(struct page *page) 1235 { 1236 page[2].mapping = NULL; 1237 } 1238 1239 void free_huge_page(struct page *page) 1240 { 1241 /* 1242 * Can't pass hstate in here because it is called from the 1243 * compound page destructor. 1244 */ 1245 struct hstate *h = page_hstate(page); 1246 int nid = page_to_nid(page); 1247 struct hugepage_subpool *spool = 1248 (struct hugepage_subpool *)page_private(page); 1249 bool restore_reserve; 1250 1251 set_page_private(page, 0); 1252 page->mapping = NULL; 1253 VM_BUG_ON_PAGE(page_count(page), page); 1254 VM_BUG_ON_PAGE(page_mapcount(page), page); 1255 restore_reserve = PagePrivate(page); 1256 ClearPagePrivate(page); 1257 1258 /* 1259 * A return code of zero implies that the subpool will be under its 1260 * minimum size if the reservation is not restored after page is free. 1261 * Therefore, force restore_reserve operation. 1262 */ 1263 if (hugepage_subpool_put_pages(spool, 1) == 0) 1264 restore_reserve = true; 1265 1266 spin_lock(&hugetlb_lock); 1267 clear_page_huge_active(page); 1268 hugetlb_cgroup_uncharge_page(hstate_index(h), 1269 pages_per_huge_page(h), page); 1270 if (restore_reserve) 1271 h->resv_huge_pages++; 1272 1273 if (PageHugeTemporary(page)) { 1274 list_del(&page->lru); 1275 ClearPageHugeTemporary(page); 1276 update_and_free_page(h, page); 1277 } else if (h->surplus_huge_pages_node[nid]) { 1278 /* remove the page from active list */ 1279 list_del(&page->lru); 1280 update_and_free_page(h, page); 1281 h->surplus_huge_pages--; 1282 h->surplus_huge_pages_node[nid]--; 1283 } else { 1284 arch_clear_hugepage_flags(page); 1285 enqueue_huge_page(h, page); 1286 } 1287 spin_unlock(&hugetlb_lock); 1288 } 1289 1290 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1291 { 1292 INIT_LIST_HEAD(&page->lru); 1293 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1294 spin_lock(&hugetlb_lock); 1295 set_hugetlb_cgroup(page, NULL); 1296 h->nr_huge_pages++; 1297 h->nr_huge_pages_node[nid]++; 1298 spin_unlock(&hugetlb_lock); 1299 } 1300 1301 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1302 { 1303 int i; 1304 int nr_pages = 1 << order; 1305 struct page *p = page + 1; 1306 1307 /* we rely on prep_new_huge_page to set the destructor */ 1308 set_compound_order(page, order); 1309 __ClearPageReserved(page); 1310 __SetPageHead(page); 1311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1312 /* 1313 * For gigantic hugepages allocated through bootmem at 1314 * boot, it's safer to be consistent with the not-gigantic 1315 * hugepages and clear the PG_reserved bit from all tail pages 1316 * too. Otherwse drivers using get_user_pages() to access tail 1317 * pages may get the reference counting wrong if they see 1318 * PG_reserved set on a tail page (despite the head page not 1319 * having PG_reserved set). Enforcing this consistency between 1320 * head and tail pages allows drivers to optimize away a check 1321 * on the head page when they need know if put_page() is needed 1322 * after get_user_pages(). 1323 */ 1324 __ClearPageReserved(p); 1325 set_page_count(p, 0); 1326 set_compound_head(p, page); 1327 } 1328 atomic_set(compound_mapcount_ptr(page), -1); 1329 } 1330 1331 /* 1332 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1333 * transparent huge pages. See the PageTransHuge() documentation for more 1334 * details. 1335 */ 1336 int PageHuge(struct page *page) 1337 { 1338 if (!PageCompound(page)) 1339 return 0; 1340 1341 page = compound_head(page); 1342 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1343 } 1344 EXPORT_SYMBOL_GPL(PageHuge); 1345 1346 /* 1347 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1348 * normal or transparent huge pages. 1349 */ 1350 int PageHeadHuge(struct page *page_head) 1351 { 1352 if (!PageHead(page_head)) 1353 return 0; 1354 1355 return get_compound_page_dtor(page_head) == free_huge_page; 1356 } 1357 1358 pgoff_t __basepage_index(struct page *page) 1359 { 1360 struct page *page_head = compound_head(page); 1361 pgoff_t index = page_index(page_head); 1362 unsigned long compound_idx; 1363 1364 if (!PageHuge(page_head)) 1365 return page_index(page); 1366 1367 if (compound_order(page_head) >= MAX_ORDER) 1368 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1369 else 1370 compound_idx = page - page_head; 1371 1372 return (index << compound_order(page_head)) + compound_idx; 1373 } 1374 1375 static struct page *alloc_buddy_huge_page(struct hstate *h, 1376 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1377 { 1378 int order = huge_page_order(h); 1379 struct page *page; 1380 1381 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; 1382 if (nid == NUMA_NO_NODE) 1383 nid = numa_mem_id(); 1384 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1385 if (page) 1386 __count_vm_event(HTLB_BUDDY_PGALLOC); 1387 else 1388 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1389 1390 return page; 1391 } 1392 1393 /* 1394 * Common helper to allocate a fresh hugetlb page. All specific allocators 1395 * should use this function to get new hugetlb pages 1396 */ 1397 static struct page *alloc_fresh_huge_page(struct hstate *h, 1398 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1399 { 1400 struct page *page; 1401 1402 if (hstate_is_gigantic(h)) 1403 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1404 else 1405 page = alloc_buddy_huge_page(h, gfp_mask, 1406 nid, nmask); 1407 if (!page) 1408 return NULL; 1409 1410 if (hstate_is_gigantic(h)) 1411 prep_compound_gigantic_page(page, huge_page_order(h)); 1412 prep_new_huge_page(h, page, page_to_nid(page)); 1413 1414 return page; 1415 } 1416 1417 /* 1418 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1419 * manner. 1420 */ 1421 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1422 { 1423 struct page *page; 1424 int nr_nodes, node; 1425 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1426 1427 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1428 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed); 1429 if (page) 1430 break; 1431 } 1432 1433 if (!page) 1434 return 0; 1435 1436 put_page(page); /* free it into the hugepage allocator */ 1437 1438 return 1; 1439 } 1440 1441 /* 1442 * Free huge page from pool from next node to free. 1443 * Attempt to keep persistent huge pages more or less 1444 * balanced over allowed nodes. 1445 * Called with hugetlb_lock locked. 1446 */ 1447 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1448 bool acct_surplus) 1449 { 1450 int nr_nodes, node; 1451 int ret = 0; 1452 1453 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1454 /* 1455 * If we're returning unused surplus pages, only examine 1456 * nodes with surplus pages. 1457 */ 1458 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1459 !list_empty(&h->hugepage_freelists[node])) { 1460 struct page *page = 1461 list_entry(h->hugepage_freelists[node].next, 1462 struct page, lru); 1463 list_del(&page->lru); 1464 h->free_huge_pages--; 1465 h->free_huge_pages_node[node]--; 1466 if (acct_surplus) { 1467 h->surplus_huge_pages--; 1468 h->surplus_huge_pages_node[node]--; 1469 } 1470 update_and_free_page(h, page); 1471 ret = 1; 1472 break; 1473 } 1474 } 1475 1476 return ret; 1477 } 1478 1479 /* 1480 * Dissolve a given free hugepage into free buddy pages. This function does 1481 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the 1482 * number of free hugepages would be reduced below the number of reserved 1483 * hugepages. 1484 */ 1485 int dissolve_free_huge_page(struct page *page) 1486 { 1487 int rc = 0; 1488 1489 spin_lock(&hugetlb_lock); 1490 if (PageHuge(page) && !page_count(page)) { 1491 struct page *head = compound_head(page); 1492 struct hstate *h = page_hstate(head); 1493 int nid = page_to_nid(head); 1494 if (h->free_huge_pages - h->resv_huge_pages == 0) { 1495 rc = -EBUSY; 1496 goto out; 1497 } 1498 /* 1499 * Move PageHWPoison flag from head page to the raw error page, 1500 * which makes any subpages rather than the error page reusable. 1501 */ 1502 if (PageHWPoison(head) && page != head) { 1503 SetPageHWPoison(page); 1504 ClearPageHWPoison(head); 1505 } 1506 list_del(&head->lru); 1507 h->free_huge_pages--; 1508 h->free_huge_pages_node[nid]--; 1509 h->max_huge_pages--; 1510 update_and_free_page(h, head); 1511 } 1512 out: 1513 spin_unlock(&hugetlb_lock); 1514 return rc; 1515 } 1516 1517 /* 1518 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1519 * make specified memory blocks removable from the system. 1520 * Note that this will dissolve a free gigantic hugepage completely, if any 1521 * part of it lies within the given range. 1522 * Also note that if dissolve_free_huge_page() returns with an error, all 1523 * free hugepages that were dissolved before that error are lost. 1524 */ 1525 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1526 { 1527 unsigned long pfn; 1528 struct page *page; 1529 int rc = 0; 1530 1531 if (!hugepages_supported()) 1532 return rc; 1533 1534 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1535 page = pfn_to_page(pfn); 1536 if (PageHuge(page) && !page_count(page)) { 1537 rc = dissolve_free_huge_page(page); 1538 if (rc) 1539 break; 1540 } 1541 } 1542 1543 return rc; 1544 } 1545 1546 /* 1547 * Allocates a fresh surplus page from the page allocator. 1548 */ 1549 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1550 int nid, nodemask_t *nmask) 1551 { 1552 struct page *page = NULL; 1553 1554 if (hstate_is_gigantic(h)) 1555 return NULL; 1556 1557 spin_lock(&hugetlb_lock); 1558 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1559 goto out_unlock; 1560 spin_unlock(&hugetlb_lock); 1561 1562 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1563 if (!page) 1564 return NULL; 1565 1566 spin_lock(&hugetlb_lock); 1567 /* 1568 * We could have raced with the pool size change. 1569 * Double check that and simply deallocate the new page 1570 * if we would end up overcommiting the surpluses. Abuse 1571 * temporary page to workaround the nasty free_huge_page 1572 * codeflow 1573 */ 1574 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1575 SetPageHugeTemporary(page); 1576 put_page(page); 1577 page = NULL; 1578 } else { 1579 h->surplus_huge_pages++; 1580 h->surplus_huge_pages_node[page_to_nid(page)]++; 1581 } 1582 1583 out_unlock: 1584 spin_unlock(&hugetlb_lock); 1585 1586 return page; 1587 } 1588 1589 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1590 int nid, nodemask_t *nmask) 1591 { 1592 struct page *page; 1593 1594 if (hstate_is_gigantic(h)) 1595 return NULL; 1596 1597 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1598 if (!page) 1599 return NULL; 1600 1601 /* 1602 * We do not account these pages as surplus because they are only 1603 * temporary and will be released properly on the last reference 1604 */ 1605 SetPageHugeTemporary(page); 1606 1607 return page; 1608 } 1609 1610 /* 1611 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1612 */ 1613 static 1614 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1615 struct vm_area_struct *vma, unsigned long addr) 1616 { 1617 struct page *page; 1618 struct mempolicy *mpol; 1619 gfp_t gfp_mask = htlb_alloc_mask(h); 1620 int nid; 1621 nodemask_t *nodemask; 1622 1623 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1624 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1625 mpol_cond_put(mpol); 1626 1627 return page; 1628 } 1629 1630 /* page migration callback function */ 1631 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1632 { 1633 gfp_t gfp_mask = htlb_alloc_mask(h); 1634 struct page *page = NULL; 1635 1636 if (nid != NUMA_NO_NODE) 1637 gfp_mask |= __GFP_THISNODE; 1638 1639 spin_lock(&hugetlb_lock); 1640 if (h->free_huge_pages - h->resv_huge_pages > 0) 1641 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); 1642 spin_unlock(&hugetlb_lock); 1643 1644 if (!page) 1645 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1646 1647 return page; 1648 } 1649 1650 /* page migration callback function */ 1651 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1652 nodemask_t *nmask) 1653 { 1654 gfp_t gfp_mask = htlb_alloc_mask(h); 1655 1656 spin_lock(&hugetlb_lock); 1657 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1658 struct page *page; 1659 1660 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1661 if (page) { 1662 spin_unlock(&hugetlb_lock); 1663 return page; 1664 } 1665 } 1666 spin_unlock(&hugetlb_lock); 1667 1668 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1669 } 1670 1671 /* mempolicy aware migration callback */ 1672 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1673 unsigned long address) 1674 { 1675 struct mempolicy *mpol; 1676 nodemask_t *nodemask; 1677 struct page *page; 1678 gfp_t gfp_mask; 1679 int node; 1680 1681 gfp_mask = htlb_alloc_mask(h); 1682 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1683 page = alloc_huge_page_nodemask(h, node, nodemask); 1684 mpol_cond_put(mpol); 1685 1686 return page; 1687 } 1688 1689 /* 1690 * Increase the hugetlb pool such that it can accommodate a reservation 1691 * of size 'delta'. 1692 */ 1693 static int gather_surplus_pages(struct hstate *h, int delta) 1694 { 1695 struct list_head surplus_list; 1696 struct page *page, *tmp; 1697 int ret, i; 1698 int needed, allocated; 1699 bool alloc_ok = true; 1700 1701 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1702 if (needed <= 0) { 1703 h->resv_huge_pages += delta; 1704 return 0; 1705 } 1706 1707 allocated = 0; 1708 INIT_LIST_HEAD(&surplus_list); 1709 1710 ret = -ENOMEM; 1711 retry: 1712 spin_unlock(&hugetlb_lock); 1713 for (i = 0; i < needed; i++) { 1714 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1715 NUMA_NO_NODE, NULL); 1716 if (!page) { 1717 alloc_ok = false; 1718 break; 1719 } 1720 list_add(&page->lru, &surplus_list); 1721 cond_resched(); 1722 } 1723 allocated += i; 1724 1725 /* 1726 * After retaking hugetlb_lock, we need to recalculate 'needed' 1727 * because either resv_huge_pages or free_huge_pages may have changed. 1728 */ 1729 spin_lock(&hugetlb_lock); 1730 needed = (h->resv_huge_pages + delta) - 1731 (h->free_huge_pages + allocated); 1732 if (needed > 0) { 1733 if (alloc_ok) 1734 goto retry; 1735 /* 1736 * We were not able to allocate enough pages to 1737 * satisfy the entire reservation so we free what 1738 * we've allocated so far. 1739 */ 1740 goto free; 1741 } 1742 /* 1743 * The surplus_list now contains _at_least_ the number of extra pages 1744 * needed to accommodate the reservation. Add the appropriate number 1745 * of pages to the hugetlb pool and free the extras back to the buddy 1746 * allocator. Commit the entire reservation here to prevent another 1747 * process from stealing the pages as they are added to the pool but 1748 * before they are reserved. 1749 */ 1750 needed += allocated; 1751 h->resv_huge_pages += delta; 1752 ret = 0; 1753 1754 /* Free the needed pages to the hugetlb pool */ 1755 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1756 if ((--needed) < 0) 1757 break; 1758 /* 1759 * This page is now managed by the hugetlb allocator and has 1760 * no users -- drop the buddy allocator's reference. 1761 */ 1762 put_page_testzero(page); 1763 VM_BUG_ON_PAGE(page_count(page), page); 1764 enqueue_huge_page(h, page); 1765 } 1766 free: 1767 spin_unlock(&hugetlb_lock); 1768 1769 /* Free unnecessary surplus pages to the buddy allocator */ 1770 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1771 put_page(page); 1772 spin_lock(&hugetlb_lock); 1773 1774 return ret; 1775 } 1776 1777 /* 1778 * This routine has two main purposes: 1779 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 1780 * in unused_resv_pages. This corresponds to the prior adjustments made 1781 * to the associated reservation map. 1782 * 2) Free any unused surplus pages that may have been allocated to satisfy 1783 * the reservation. As many as unused_resv_pages may be freed. 1784 * 1785 * Called with hugetlb_lock held. However, the lock could be dropped (and 1786 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 1787 * we must make sure nobody else can claim pages we are in the process of 1788 * freeing. Do this by ensuring resv_huge_page always is greater than the 1789 * number of huge pages we plan to free when dropping the lock. 1790 */ 1791 static void return_unused_surplus_pages(struct hstate *h, 1792 unsigned long unused_resv_pages) 1793 { 1794 unsigned long nr_pages; 1795 1796 /* Cannot return gigantic pages currently */ 1797 if (hstate_is_gigantic(h)) 1798 goto out; 1799 1800 /* 1801 * Part (or even all) of the reservation could have been backed 1802 * by pre-allocated pages. Only free surplus pages. 1803 */ 1804 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1805 1806 /* 1807 * We want to release as many surplus pages as possible, spread 1808 * evenly across all nodes with memory. Iterate across these nodes 1809 * until we can no longer free unreserved surplus pages. This occurs 1810 * when the nodes with surplus pages have no free pages. 1811 * free_pool_huge_page() will balance the the freed pages across the 1812 * on-line nodes with memory and will handle the hstate accounting. 1813 * 1814 * Note that we decrement resv_huge_pages as we free the pages. If 1815 * we drop the lock, resv_huge_pages will still be sufficiently large 1816 * to cover subsequent pages we may free. 1817 */ 1818 while (nr_pages--) { 1819 h->resv_huge_pages--; 1820 unused_resv_pages--; 1821 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1822 goto out; 1823 cond_resched_lock(&hugetlb_lock); 1824 } 1825 1826 out: 1827 /* Fully uncommit the reservation */ 1828 h->resv_huge_pages -= unused_resv_pages; 1829 } 1830 1831 1832 /* 1833 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1834 * are used by the huge page allocation routines to manage reservations. 1835 * 1836 * vma_needs_reservation is called to determine if the huge page at addr 1837 * within the vma has an associated reservation. If a reservation is 1838 * needed, the value 1 is returned. The caller is then responsible for 1839 * managing the global reservation and subpool usage counts. After 1840 * the huge page has been allocated, vma_commit_reservation is called 1841 * to add the page to the reservation map. If the page allocation fails, 1842 * the reservation must be ended instead of committed. vma_end_reservation 1843 * is called in such cases. 1844 * 1845 * In the normal case, vma_commit_reservation returns the same value 1846 * as the preceding vma_needs_reservation call. The only time this 1847 * is not the case is if a reserve map was changed between calls. It 1848 * is the responsibility of the caller to notice the difference and 1849 * take appropriate action. 1850 * 1851 * vma_add_reservation is used in error paths where a reservation must 1852 * be restored when a newly allocated huge page must be freed. It is 1853 * to be called after calling vma_needs_reservation to determine if a 1854 * reservation exists. 1855 */ 1856 enum vma_resv_mode { 1857 VMA_NEEDS_RESV, 1858 VMA_COMMIT_RESV, 1859 VMA_END_RESV, 1860 VMA_ADD_RESV, 1861 }; 1862 static long __vma_reservation_common(struct hstate *h, 1863 struct vm_area_struct *vma, unsigned long addr, 1864 enum vma_resv_mode mode) 1865 { 1866 struct resv_map *resv; 1867 pgoff_t idx; 1868 long ret; 1869 1870 resv = vma_resv_map(vma); 1871 if (!resv) 1872 return 1; 1873 1874 idx = vma_hugecache_offset(h, vma, addr); 1875 switch (mode) { 1876 case VMA_NEEDS_RESV: 1877 ret = region_chg(resv, idx, idx + 1); 1878 break; 1879 case VMA_COMMIT_RESV: 1880 ret = region_add(resv, idx, idx + 1); 1881 break; 1882 case VMA_END_RESV: 1883 region_abort(resv, idx, idx + 1); 1884 ret = 0; 1885 break; 1886 case VMA_ADD_RESV: 1887 if (vma->vm_flags & VM_MAYSHARE) 1888 ret = region_add(resv, idx, idx + 1); 1889 else { 1890 region_abort(resv, idx, idx + 1); 1891 ret = region_del(resv, idx, idx + 1); 1892 } 1893 break; 1894 default: 1895 BUG(); 1896 } 1897 1898 if (vma->vm_flags & VM_MAYSHARE) 1899 return ret; 1900 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1901 /* 1902 * In most cases, reserves always exist for private mappings. 1903 * However, a file associated with mapping could have been 1904 * hole punched or truncated after reserves were consumed. 1905 * As subsequent fault on such a range will not use reserves. 1906 * Subtle - The reserve map for private mappings has the 1907 * opposite meaning than that of shared mappings. If NO 1908 * entry is in the reserve map, it means a reservation exists. 1909 * If an entry exists in the reserve map, it means the 1910 * reservation has already been consumed. As a result, the 1911 * return value of this routine is the opposite of the 1912 * value returned from reserve map manipulation routines above. 1913 */ 1914 if (ret) 1915 return 0; 1916 else 1917 return 1; 1918 } 1919 else 1920 return ret < 0 ? ret : 0; 1921 } 1922 1923 static long vma_needs_reservation(struct hstate *h, 1924 struct vm_area_struct *vma, unsigned long addr) 1925 { 1926 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1927 } 1928 1929 static long vma_commit_reservation(struct hstate *h, 1930 struct vm_area_struct *vma, unsigned long addr) 1931 { 1932 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1933 } 1934 1935 static void vma_end_reservation(struct hstate *h, 1936 struct vm_area_struct *vma, unsigned long addr) 1937 { 1938 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1939 } 1940 1941 static long vma_add_reservation(struct hstate *h, 1942 struct vm_area_struct *vma, unsigned long addr) 1943 { 1944 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 1945 } 1946 1947 /* 1948 * This routine is called to restore a reservation on error paths. In the 1949 * specific error paths, a huge page was allocated (via alloc_huge_page) 1950 * and is about to be freed. If a reservation for the page existed, 1951 * alloc_huge_page would have consumed the reservation and set PagePrivate 1952 * in the newly allocated page. When the page is freed via free_huge_page, 1953 * the global reservation count will be incremented if PagePrivate is set. 1954 * However, free_huge_page can not adjust the reserve map. Adjust the 1955 * reserve map here to be consistent with global reserve count adjustments 1956 * to be made by free_huge_page. 1957 */ 1958 static void restore_reserve_on_error(struct hstate *h, 1959 struct vm_area_struct *vma, unsigned long address, 1960 struct page *page) 1961 { 1962 if (unlikely(PagePrivate(page))) { 1963 long rc = vma_needs_reservation(h, vma, address); 1964 1965 if (unlikely(rc < 0)) { 1966 /* 1967 * Rare out of memory condition in reserve map 1968 * manipulation. Clear PagePrivate so that 1969 * global reserve count will not be incremented 1970 * by free_huge_page. This will make it appear 1971 * as though the reservation for this page was 1972 * consumed. This may prevent the task from 1973 * faulting in the page at a later time. This 1974 * is better than inconsistent global huge page 1975 * accounting of reserve counts. 1976 */ 1977 ClearPagePrivate(page); 1978 } else if (rc) { 1979 rc = vma_add_reservation(h, vma, address); 1980 if (unlikely(rc < 0)) 1981 /* 1982 * See above comment about rare out of 1983 * memory condition. 1984 */ 1985 ClearPagePrivate(page); 1986 } else 1987 vma_end_reservation(h, vma, address); 1988 } 1989 } 1990 1991 struct page *alloc_huge_page(struct vm_area_struct *vma, 1992 unsigned long addr, int avoid_reserve) 1993 { 1994 struct hugepage_subpool *spool = subpool_vma(vma); 1995 struct hstate *h = hstate_vma(vma); 1996 struct page *page; 1997 long map_chg, map_commit; 1998 long gbl_chg; 1999 int ret, idx; 2000 struct hugetlb_cgroup *h_cg; 2001 2002 idx = hstate_index(h); 2003 /* 2004 * Examine the region/reserve map to determine if the process 2005 * has a reservation for the page to be allocated. A return 2006 * code of zero indicates a reservation exists (no change). 2007 */ 2008 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2009 if (map_chg < 0) 2010 return ERR_PTR(-ENOMEM); 2011 2012 /* 2013 * Processes that did not create the mapping will have no 2014 * reserves as indicated by the region/reserve map. Check 2015 * that the allocation will not exceed the subpool limit. 2016 * Allocations for MAP_NORESERVE mappings also need to be 2017 * checked against any subpool limit. 2018 */ 2019 if (map_chg || avoid_reserve) { 2020 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2021 if (gbl_chg < 0) { 2022 vma_end_reservation(h, vma, addr); 2023 return ERR_PTR(-ENOSPC); 2024 } 2025 2026 /* 2027 * Even though there was no reservation in the region/reserve 2028 * map, there could be reservations associated with the 2029 * subpool that can be used. This would be indicated if the 2030 * return value of hugepage_subpool_get_pages() is zero. 2031 * However, if avoid_reserve is specified we still avoid even 2032 * the subpool reservations. 2033 */ 2034 if (avoid_reserve) 2035 gbl_chg = 1; 2036 } 2037 2038 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2039 if (ret) 2040 goto out_subpool_put; 2041 2042 spin_lock(&hugetlb_lock); 2043 /* 2044 * glb_chg is passed to indicate whether or not a page must be taken 2045 * from the global free pool (global change). gbl_chg == 0 indicates 2046 * a reservation exists for the allocation. 2047 */ 2048 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2049 if (!page) { 2050 spin_unlock(&hugetlb_lock); 2051 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2052 if (!page) 2053 goto out_uncharge_cgroup; 2054 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2055 SetPagePrivate(page); 2056 h->resv_huge_pages--; 2057 } 2058 spin_lock(&hugetlb_lock); 2059 list_move(&page->lru, &h->hugepage_activelist); 2060 /* Fall through */ 2061 } 2062 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2063 spin_unlock(&hugetlb_lock); 2064 2065 set_page_private(page, (unsigned long)spool); 2066 2067 map_commit = vma_commit_reservation(h, vma, addr); 2068 if (unlikely(map_chg > map_commit)) { 2069 /* 2070 * The page was added to the reservation map between 2071 * vma_needs_reservation and vma_commit_reservation. 2072 * This indicates a race with hugetlb_reserve_pages. 2073 * Adjust for the subpool count incremented above AND 2074 * in hugetlb_reserve_pages for the same page. Also, 2075 * the reservation count added in hugetlb_reserve_pages 2076 * no longer applies. 2077 */ 2078 long rsv_adjust; 2079 2080 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2081 hugetlb_acct_memory(h, -rsv_adjust); 2082 } 2083 return page; 2084 2085 out_uncharge_cgroup: 2086 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2087 out_subpool_put: 2088 if (map_chg || avoid_reserve) 2089 hugepage_subpool_put_pages(spool, 1); 2090 vma_end_reservation(h, vma, addr); 2091 return ERR_PTR(-ENOSPC); 2092 } 2093 2094 int alloc_bootmem_huge_page(struct hstate *h) 2095 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2096 int __alloc_bootmem_huge_page(struct hstate *h) 2097 { 2098 struct huge_bootmem_page *m; 2099 int nr_nodes, node; 2100 2101 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2102 void *addr; 2103 2104 addr = memblock_virt_alloc_try_nid_nopanic( 2105 huge_page_size(h), huge_page_size(h), 2106 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 2107 if (addr) { 2108 /* 2109 * Use the beginning of the huge page to store the 2110 * huge_bootmem_page struct (until gather_bootmem 2111 * puts them into the mem_map). 2112 */ 2113 m = addr; 2114 goto found; 2115 } 2116 } 2117 return 0; 2118 2119 found: 2120 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2121 /* Put them into a private list first because mem_map is not up yet */ 2122 list_add(&m->list, &huge_boot_pages); 2123 m->hstate = h; 2124 return 1; 2125 } 2126 2127 static void __init prep_compound_huge_page(struct page *page, 2128 unsigned int order) 2129 { 2130 if (unlikely(order > (MAX_ORDER - 1))) 2131 prep_compound_gigantic_page(page, order); 2132 else 2133 prep_compound_page(page, order); 2134 } 2135 2136 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2137 static void __init gather_bootmem_prealloc(void) 2138 { 2139 struct huge_bootmem_page *m; 2140 2141 list_for_each_entry(m, &huge_boot_pages, list) { 2142 struct hstate *h = m->hstate; 2143 struct page *page; 2144 2145 #ifdef CONFIG_HIGHMEM 2146 page = pfn_to_page(m->phys >> PAGE_SHIFT); 2147 memblock_free_late(__pa(m), 2148 sizeof(struct huge_bootmem_page)); 2149 #else 2150 page = virt_to_page(m); 2151 #endif 2152 WARN_ON(page_count(page) != 1); 2153 prep_compound_huge_page(page, h->order); 2154 WARN_ON(PageReserved(page)); 2155 prep_new_huge_page(h, page, page_to_nid(page)); 2156 put_page(page); /* free it into the hugepage allocator */ 2157 2158 /* 2159 * If we had gigantic hugepages allocated at boot time, we need 2160 * to restore the 'stolen' pages to totalram_pages in order to 2161 * fix confusing memory reports from free(1) and another 2162 * side-effects, like CommitLimit going negative. 2163 */ 2164 if (hstate_is_gigantic(h)) 2165 adjust_managed_page_count(page, 1 << h->order); 2166 } 2167 } 2168 2169 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2170 { 2171 unsigned long i; 2172 2173 for (i = 0; i < h->max_huge_pages; ++i) { 2174 if (hstate_is_gigantic(h)) { 2175 if (!alloc_bootmem_huge_page(h)) 2176 break; 2177 } else if (!alloc_pool_huge_page(h, 2178 &node_states[N_MEMORY])) 2179 break; 2180 cond_resched(); 2181 } 2182 if (i < h->max_huge_pages) { 2183 char buf[32]; 2184 2185 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2186 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2187 h->max_huge_pages, buf, i); 2188 h->max_huge_pages = i; 2189 } 2190 } 2191 2192 static void __init hugetlb_init_hstates(void) 2193 { 2194 struct hstate *h; 2195 2196 for_each_hstate(h) { 2197 if (minimum_order > huge_page_order(h)) 2198 minimum_order = huge_page_order(h); 2199 2200 /* oversize hugepages were init'ed in early boot */ 2201 if (!hstate_is_gigantic(h)) 2202 hugetlb_hstate_alloc_pages(h); 2203 } 2204 VM_BUG_ON(minimum_order == UINT_MAX); 2205 } 2206 2207 static void __init report_hugepages(void) 2208 { 2209 struct hstate *h; 2210 2211 for_each_hstate(h) { 2212 char buf[32]; 2213 2214 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2215 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2216 buf, h->free_huge_pages); 2217 } 2218 } 2219 2220 #ifdef CONFIG_HIGHMEM 2221 static void try_to_free_low(struct hstate *h, unsigned long count, 2222 nodemask_t *nodes_allowed) 2223 { 2224 int i; 2225 2226 if (hstate_is_gigantic(h)) 2227 return; 2228 2229 for_each_node_mask(i, *nodes_allowed) { 2230 struct page *page, *next; 2231 struct list_head *freel = &h->hugepage_freelists[i]; 2232 list_for_each_entry_safe(page, next, freel, lru) { 2233 if (count >= h->nr_huge_pages) 2234 return; 2235 if (PageHighMem(page)) 2236 continue; 2237 list_del(&page->lru); 2238 update_and_free_page(h, page); 2239 h->free_huge_pages--; 2240 h->free_huge_pages_node[page_to_nid(page)]--; 2241 } 2242 } 2243 } 2244 #else 2245 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2246 nodemask_t *nodes_allowed) 2247 { 2248 } 2249 #endif 2250 2251 /* 2252 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2253 * balanced by operating on them in a round-robin fashion. 2254 * Returns 1 if an adjustment was made. 2255 */ 2256 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2257 int delta) 2258 { 2259 int nr_nodes, node; 2260 2261 VM_BUG_ON(delta != -1 && delta != 1); 2262 2263 if (delta < 0) { 2264 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2265 if (h->surplus_huge_pages_node[node]) 2266 goto found; 2267 } 2268 } else { 2269 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2270 if (h->surplus_huge_pages_node[node] < 2271 h->nr_huge_pages_node[node]) 2272 goto found; 2273 } 2274 } 2275 return 0; 2276 2277 found: 2278 h->surplus_huge_pages += delta; 2279 h->surplus_huge_pages_node[node] += delta; 2280 return 1; 2281 } 2282 2283 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2284 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2285 nodemask_t *nodes_allowed) 2286 { 2287 unsigned long min_count, ret; 2288 2289 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2290 return h->max_huge_pages; 2291 2292 /* 2293 * Increase the pool size 2294 * First take pages out of surplus state. Then make up the 2295 * remaining difference by allocating fresh huge pages. 2296 * 2297 * We might race with alloc_surplus_huge_page() here and be unable 2298 * to convert a surplus huge page to a normal huge page. That is 2299 * not critical, though, it just means the overall size of the 2300 * pool might be one hugepage larger than it needs to be, but 2301 * within all the constraints specified by the sysctls. 2302 */ 2303 spin_lock(&hugetlb_lock); 2304 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2305 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2306 break; 2307 } 2308 2309 while (count > persistent_huge_pages(h)) { 2310 /* 2311 * If this allocation races such that we no longer need the 2312 * page, free_huge_page will handle it by freeing the page 2313 * and reducing the surplus. 2314 */ 2315 spin_unlock(&hugetlb_lock); 2316 2317 /* yield cpu to avoid soft lockup */ 2318 cond_resched(); 2319 2320 ret = alloc_pool_huge_page(h, nodes_allowed); 2321 spin_lock(&hugetlb_lock); 2322 if (!ret) 2323 goto out; 2324 2325 /* Bail for signals. Probably ctrl-c from user */ 2326 if (signal_pending(current)) 2327 goto out; 2328 } 2329 2330 /* 2331 * Decrease the pool size 2332 * First return free pages to the buddy allocator (being careful 2333 * to keep enough around to satisfy reservations). Then place 2334 * pages into surplus state as needed so the pool will shrink 2335 * to the desired size as pages become free. 2336 * 2337 * By placing pages into the surplus state independent of the 2338 * overcommit value, we are allowing the surplus pool size to 2339 * exceed overcommit. There are few sane options here. Since 2340 * alloc_surplus_huge_page() is checking the global counter, 2341 * though, we'll note that we're not allowed to exceed surplus 2342 * and won't grow the pool anywhere else. Not until one of the 2343 * sysctls are changed, or the surplus pages go out of use. 2344 */ 2345 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2346 min_count = max(count, min_count); 2347 try_to_free_low(h, min_count, nodes_allowed); 2348 while (min_count < persistent_huge_pages(h)) { 2349 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2350 break; 2351 cond_resched_lock(&hugetlb_lock); 2352 } 2353 while (count < persistent_huge_pages(h)) { 2354 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2355 break; 2356 } 2357 out: 2358 ret = persistent_huge_pages(h); 2359 spin_unlock(&hugetlb_lock); 2360 return ret; 2361 } 2362 2363 #define HSTATE_ATTR_RO(_name) \ 2364 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2365 2366 #define HSTATE_ATTR(_name) \ 2367 static struct kobj_attribute _name##_attr = \ 2368 __ATTR(_name, 0644, _name##_show, _name##_store) 2369 2370 static struct kobject *hugepages_kobj; 2371 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2372 2373 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2374 2375 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2376 { 2377 int i; 2378 2379 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2380 if (hstate_kobjs[i] == kobj) { 2381 if (nidp) 2382 *nidp = NUMA_NO_NODE; 2383 return &hstates[i]; 2384 } 2385 2386 return kobj_to_node_hstate(kobj, nidp); 2387 } 2388 2389 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2390 struct kobj_attribute *attr, char *buf) 2391 { 2392 struct hstate *h; 2393 unsigned long nr_huge_pages; 2394 int nid; 2395 2396 h = kobj_to_hstate(kobj, &nid); 2397 if (nid == NUMA_NO_NODE) 2398 nr_huge_pages = h->nr_huge_pages; 2399 else 2400 nr_huge_pages = h->nr_huge_pages_node[nid]; 2401 2402 return sprintf(buf, "%lu\n", nr_huge_pages); 2403 } 2404 2405 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2406 struct hstate *h, int nid, 2407 unsigned long count, size_t len) 2408 { 2409 int err; 2410 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2411 2412 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2413 err = -EINVAL; 2414 goto out; 2415 } 2416 2417 if (nid == NUMA_NO_NODE) { 2418 /* 2419 * global hstate attribute 2420 */ 2421 if (!(obey_mempolicy && 2422 init_nodemask_of_mempolicy(nodes_allowed))) { 2423 NODEMASK_FREE(nodes_allowed); 2424 nodes_allowed = &node_states[N_MEMORY]; 2425 } 2426 } else if (nodes_allowed) { 2427 /* 2428 * per node hstate attribute: adjust count to global, 2429 * but restrict alloc/free to the specified node. 2430 */ 2431 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2432 init_nodemask_of_node(nodes_allowed, nid); 2433 } else 2434 nodes_allowed = &node_states[N_MEMORY]; 2435 2436 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2437 2438 if (nodes_allowed != &node_states[N_MEMORY]) 2439 NODEMASK_FREE(nodes_allowed); 2440 2441 return len; 2442 out: 2443 NODEMASK_FREE(nodes_allowed); 2444 return err; 2445 } 2446 2447 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2448 struct kobject *kobj, const char *buf, 2449 size_t len) 2450 { 2451 struct hstate *h; 2452 unsigned long count; 2453 int nid; 2454 int err; 2455 2456 err = kstrtoul(buf, 10, &count); 2457 if (err) 2458 return err; 2459 2460 h = kobj_to_hstate(kobj, &nid); 2461 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2462 } 2463 2464 static ssize_t nr_hugepages_show(struct kobject *kobj, 2465 struct kobj_attribute *attr, char *buf) 2466 { 2467 return nr_hugepages_show_common(kobj, attr, buf); 2468 } 2469 2470 static ssize_t nr_hugepages_store(struct kobject *kobj, 2471 struct kobj_attribute *attr, const char *buf, size_t len) 2472 { 2473 return nr_hugepages_store_common(false, kobj, buf, len); 2474 } 2475 HSTATE_ATTR(nr_hugepages); 2476 2477 #ifdef CONFIG_NUMA 2478 2479 /* 2480 * hstate attribute for optionally mempolicy-based constraint on persistent 2481 * huge page alloc/free. 2482 */ 2483 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2484 struct kobj_attribute *attr, char *buf) 2485 { 2486 return nr_hugepages_show_common(kobj, attr, buf); 2487 } 2488 2489 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2490 struct kobj_attribute *attr, const char *buf, size_t len) 2491 { 2492 return nr_hugepages_store_common(true, kobj, buf, len); 2493 } 2494 HSTATE_ATTR(nr_hugepages_mempolicy); 2495 #endif 2496 2497 2498 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2499 struct kobj_attribute *attr, char *buf) 2500 { 2501 struct hstate *h = kobj_to_hstate(kobj, NULL); 2502 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2503 } 2504 2505 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2506 struct kobj_attribute *attr, const char *buf, size_t count) 2507 { 2508 int err; 2509 unsigned long input; 2510 struct hstate *h = kobj_to_hstate(kobj, NULL); 2511 2512 if (hstate_is_gigantic(h)) 2513 return -EINVAL; 2514 2515 err = kstrtoul(buf, 10, &input); 2516 if (err) 2517 return err; 2518 2519 spin_lock(&hugetlb_lock); 2520 h->nr_overcommit_huge_pages = input; 2521 spin_unlock(&hugetlb_lock); 2522 2523 return count; 2524 } 2525 HSTATE_ATTR(nr_overcommit_hugepages); 2526 2527 static ssize_t free_hugepages_show(struct kobject *kobj, 2528 struct kobj_attribute *attr, char *buf) 2529 { 2530 struct hstate *h; 2531 unsigned long free_huge_pages; 2532 int nid; 2533 2534 h = kobj_to_hstate(kobj, &nid); 2535 if (nid == NUMA_NO_NODE) 2536 free_huge_pages = h->free_huge_pages; 2537 else 2538 free_huge_pages = h->free_huge_pages_node[nid]; 2539 2540 return sprintf(buf, "%lu\n", free_huge_pages); 2541 } 2542 HSTATE_ATTR_RO(free_hugepages); 2543 2544 static ssize_t resv_hugepages_show(struct kobject *kobj, 2545 struct kobj_attribute *attr, char *buf) 2546 { 2547 struct hstate *h = kobj_to_hstate(kobj, NULL); 2548 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2549 } 2550 HSTATE_ATTR_RO(resv_hugepages); 2551 2552 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2553 struct kobj_attribute *attr, char *buf) 2554 { 2555 struct hstate *h; 2556 unsigned long surplus_huge_pages; 2557 int nid; 2558 2559 h = kobj_to_hstate(kobj, &nid); 2560 if (nid == NUMA_NO_NODE) 2561 surplus_huge_pages = h->surplus_huge_pages; 2562 else 2563 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2564 2565 return sprintf(buf, "%lu\n", surplus_huge_pages); 2566 } 2567 HSTATE_ATTR_RO(surplus_hugepages); 2568 2569 static struct attribute *hstate_attrs[] = { 2570 &nr_hugepages_attr.attr, 2571 &nr_overcommit_hugepages_attr.attr, 2572 &free_hugepages_attr.attr, 2573 &resv_hugepages_attr.attr, 2574 &surplus_hugepages_attr.attr, 2575 #ifdef CONFIG_NUMA 2576 &nr_hugepages_mempolicy_attr.attr, 2577 #endif 2578 NULL, 2579 }; 2580 2581 static const struct attribute_group hstate_attr_group = { 2582 .attrs = hstate_attrs, 2583 }; 2584 2585 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2586 struct kobject **hstate_kobjs, 2587 const struct attribute_group *hstate_attr_group) 2588 { 2589 int retval; 2590 int hi = hstate_index(h); 2591 2592 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2593 if (!hstate_kobjs[hi]) 2594 return -ENOMEM; 2595 2596 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2597 if (retval) 2598 kobject_put(hstate_kobjs[hi]); 2599 2600 return retval; 2601 } 2602 2603 static void __init hugetlb_sysfs_init(void) 2604 { 2605 struct hstate *h; 2606 int err; 2607 2608 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2609 if (!hugepages_kobj) 2610 return; 2611 2612 for_each_hstate(h) { 2613 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2614 hstate_kobjs, &hstate_attr_group); 2615 if (err) 2616 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2617 } 2618 } 2619 2620 #ifdef CONFIG_NUMA 2621 2622 /* 2623 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2624 * with node devices in node_devices[] using a parallel array. The array 2625 * index of a node device or _hstate == node id. 2626 * This is here to avoid any static dependency of the node device driver, in 2627 * the base kernel, on the hugetlb module. 2628 */ 2629 struct node_hstate { 2630 struct kobject *hugepages_kobj; 2631 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2632 }; 2633 static struct node_hstate node_hstates[MAX_NUMNODES]; 2634 2635 /* 2636 * A subset of global hstate attributes for node devices 2637 */ 2638 static struct attribute *per_node_hstate_attrs[] = { 2639 &nr_hugepages_attr.attr, 2640 &free_hugepages_attr.attr, 2641 &surplus_hugepages_attr.attr, 2642 NULL, 2643 }; 2644 2645 static const struct attribute_group per_node_hstate_attr_group = { 2646 .attrs = per_node_hstate_attrs, 2647 }; 2648 2649 /* 2650 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2651 * Returns node id via non-NULL nidp. 2652 */ 2653 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2654 { 2655 int nid; 2656 2657 for (nid = 0; nid < nr_node_ids; nid++) { 2658 struct node_hstate *nhs = &node_hstates[nid]; 2659 int i; 2660 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2661 if (nhs->hstate_kobjs[i] == kobj) { 2662 if (nidp) 2663 *nidp = nid; 2664 return &hstates[i]; 2665 } 2666 } 2667 2668 BUG(); 2669 return NULL; 2670 } 2671 2672 /* 2673 * Unregister hstate attributes from a single node device. 2674 * No-op if no hstate attributes attached. 2675 */ 2676 static void hugetlb_unregister_node(struct node *node) 2677 { 2678 struct hstate *h; 2679 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2680 2681 if (!nhs->hugepages_kobj) 2682 return; /* no hstate attributes */ 2683 2684 for_each_hstate(h) { 2685 int idx = hstate_index(h); 2686 if (nhs->hstate_kobjs[idx]) { 2687 kobject_put(nhs->hstate_kobjs[idx]); 2688 nhs->hstate_kobjs[idx] = NULL; 2689 } 2690 } 2691 2692 kobject_put(nhs->hugepages_kobj); 2693 nhs->hugepages_kobj = NULL; 2694 } 2695 2696 2697 /* 2698 * Register hstate attributes for a single node device. 2699 * No-op if attributes already registered. 2700 */ 2701 static void hugetlb_register_node(struct node *node) 2702 { 2703 struct hstate *h; 2704 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2705 int err; 2706 2707 if (nhs->hugepages_kobj) 2708 return; /* already allocated */ 2709 2710 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2711 &node->dev.kobj); 2712 if (!nhs->hugepages_kobj) 2713 return; 2714 2715 for_each_hstate(h) { 2716 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2717 nhs->hstate_kobjs, 2718 &per_node_hstate_attr_group); 2719 if (err) { 2720 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2721 h->name, node->dev.id); 2722 hugetlb_unregister_node(node); 2723 break; 2724 } 2725 } 2726 } 2727 2728 /* 2729 * hugetlb init time: register hstate attributes for all registered node 2730 * devices of nodes that have memory. All on-line nodes should have 2731 * registered their associated device by this time. 2732 */ 2733 static void __init hugetlb_register_all_nodes(void) 2734 { 2735 int nid; 2736 2737 for_each_node_state(nid, N_MEMORY) { 2738 struct node *node = node_devices[nid]; 2739 if (node->dev.id == nid) 2740 hugetlb_register_node(node); 2741 } 2742 2743 /* 2744 * Let the node device driver know we're here so it can 2745 * [un]register hstate attributes on node hotplug. 2746 */ 2747 register_hugetlbfs_with_node(hugetlb_register_node, 2748 hugetlb_unregister_node); 2749 } 2750 #else /* !CONFIG_NUMA */ 2751 2752 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2753 { 2754 BUG(); 2755 if (nidp) 2756 *nidp = -1; 2757 return NULL; 2758 } 2759 2760 static void hugetlb_register_all_nodes(void) { } 2761 2762 #endif 2763 2764 static int __init hugetlb_init(void) 2765 { 2766 int i; 2767 2768 if (!hugepages_supported()) 2769 return 0; 2770 2771 if (!size_to_hstate(default_hstate_size)) { 2772 if (default_hstate_size != 0) { 2773 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", 2774 default_hstate_size, HPAGE_SIZE); 2775 } 2776 2777 default_hstate_size = HPAGE_SIZE; 2778 if (!size_to_hstate(default_hstate_size)) 2779 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2780 } 2781 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2782 if (default_hstate_max_huge_pages) { 2783 if (!default_hstate.max_huge_pages) 2784 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2785 } 2786 2787 hugetlb_init_hstates(); 2788 gather_bootmem_prealloc(); 2789 report_hugepages(); 2790 2791 hugetlb_sysfs_init(); 2792 hugetlb_register_all_nodes(); 2793 hugetlb_cgroup_file_init(); 2794 2795 #ifdef CONFIG_SMP 2796 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2797 #else 2798 num_fault_mutexes = 1; 2799 #endif 2800 hugetlb_fault_mutex_table = 2801 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 2802 GFP_KERNEL); 2803 BUG_ON(!hugetlb_fault_mutex_table); 2804 2805 for (i = 0; i < num_fault_mutexes; i++) 2806 mutex_init(&hugetlb_fault_mutex_table[i]); 2807 return 0; 2808 } 2809 subsys_initcall(hugetlb_init); 2810 2811 /* Should be called on processing a hugepagesz=... option */ 2812 void __init hugetlb_bad_size(void) 2813 { 2814 parsed_valid_hugepagesz = false; 2815 } 2816 2817 void __init hugetlb_add_hstate(unsigned int order) 2818 { 2819 struct hstate *h; 2820 unsigned long i; 2821 2822 if (size_to_hstate(PAGE_SIZE << order)) { 2823 pr_warn("hugepagesz= specified twice, ignoring\n"); 2824 return; 2825 } 2826 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2827 BUG_ON(order == 0); 2828 h = &hstates[hugetlb_max_hstate++]; 2829 h->order = order; 2830 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2831 h->nr_huge_pages = 0; 2832 h->free_huge_pages = 0; 2833 for (i = 0; i < MAX_NUMNODES; ++i) 2834 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2835 INIT_LIST_HEAD(&h->hugepage_activelist); 2836 h->next_nid_to_alloc = first_memory_node; 2837 h->next_nid_to_free = first_memory_node; 2838 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2839 huge_page_size(h)/1024); 2840 2841 parsed_hstate = h; 2842 } 2843 2844 static int __init hugetlb_nrpages_setup(char *s) 2845 { 2846 unsigned long *mhp; 2847 static unsigned long *last_mhp; 2848 2849 if (!parsed_valid_hugepagesz) { 2850 pr_warn("hugepages = %s preceded by " 2851 "an unsupported hugepagesz, ignoring\n", s); 2852 parsed_valid_hugepagesz = true; 2853 return 1; 2854 } 2855 /* 2856 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2857 * so this hugepages= parameter goes to the "default hstate". 2858 */ 2859 else if (!hugetlb_max_hstate) 2860 mhp = &default_hstate_max_huge_pages; 2861 else 2862 mhp = &parsed_hstate->max_huge_pages; 2863 2864 if (mhp == last_mhp) { 2865 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2866 return 1; 2867 } 2868 2869 if (sscanf(s, "%lu", mhp) <= 0) 2870 *mhp = 0; 2871 2872 /* 2873 * Global state is always initialized later in hugetlb_init. 2874 * But we need to allocate >= MAX_ORDER hstates here early to still 2875 * use the bootmem allocator. 2876 */ 2877 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2878 hugetlb_hstate_alloc_pages(parsed_hstate); 2879 2880 last_mhp = mhp; 2881 2882 return 1; 2883 } 2884 __setup("hugepages=", hugetlb_nrpages_setup); 2885 2886 static int __init hugetlb_default_setup(char *s) 2887 { 2888 default_hstate_size = memparse(s, &s); 2889 return 1; 2890 } 2891 __setup("default_hugepagesz=", hugetlb_default_setup); 2892 2893 static unsigned int cpuset_mems_nr(unsigned int *array) 2894 { 2895 int node; 2896 unsigned int nr = 0; 2897 2898 for_each_node_mask(node, cpuset_current_mems_allowed) 2899 nr += array[node]; 2900 2901 return nr; 2902 } 2903 2904 #ifdef CONFIG_SYSCTL 2905 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2906 struct ctl_table *table, int write, 2907 void __user *buffer, size_t *length, loff_t *ppos) 2908 { 2909 struct hstate *h = &default_hstate; 2910 unsigned long tmp = h->max_huge_pages; 2911 int ret; 2912 2913 if (!hugepages_supported()) 2914 return -EOPNOTSUPP; 2915 2916 table->data = &tmp; 2917 table->maxlen = sizeof(unsigned long); 2918 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2919 if (ret) 2920 goto out; 2921 2922 if (write) 2923 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2924 NUMA_NO_NODE, tmp, *length); 2925 out: 2926 return ret; 2927 } 2928 2929 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2930 void __user *buffer, size_t *length, loff_t *ppos) 2931 { 2932 2933 return hugetlb_sysctl_handler_common(false, table, write, 2934 buffer, length, ppos); 2935 } 2936 2937 #ifdef CONFIG_NUMA 2938 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2939 void __user *buffer, size_t *length, loff_t *ppos) 2940 { 2941 return hugetlb_sysctl_handler_common(true, table, write, 2942 buffer, length, ppos); 2943 } 2944 #endif /* CONFIG_NUMA */ 2945 2946 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2947 void __user *buffer, 2948 size_t *length, loff_t *ppos) 2949 { 2950 struct hstate *h = &default_hstate; 2951 unsigned long tmp; 2952 int ret; 2953 2954 if (!hugepages_supported()) 2955 return -EOPNOTSUPP; 2956 2957 tmp = h->nr_overcommit_huge_pages; 2958 2959 if (write && hstate_is_gigantic(h)) 2960 return -EINVAL; 2961 2962 table->data = &tmp; 2963 table->maxlen = sizeof(unsigned long); 2964 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2965 if (ret) 2966 goto out; 2967 2968 if (write) { 2969 spin_lock(&hugetlb_lock); 2970 h->nr_overcommit_huge_pages = tmp; 2971 spin_unlock(&hugetlb_lock); 2972 } 2973 out: 2974 return ret; 2975 } 2976 2977 #endif /* CONFIG_SYSCTL */ 2978 2979 void hugetlb_report_meminfo(struct seq_file *m) 2980 { 2981 struct hstate *h; 2982 unsigned long total = 0; 2983 2984 if (!hugepages_supported()) 2985 return; 2986 2987 for_each_hstate(h) { 2988 unsigned long count = h->nr_huge_pages; 2989 2990 total += (PAGE_SIZE << huge_page_order(h)) * count; 2991 2992 if (h == &default_hstate) 2993 seq_printf(m, 2994 "HugePages_Total: %5lu\n" 2995 "HugePages_Free: %5lu\n" 2996 "HugePages_Rsvd: %5lu\n" 2997 "HugePages_Surp: %5lu\n" 2998 "Hugepagesize: %8lu kB\n", 2999 count, 3000 h->free_huge_pages, 3001 h->resv_huge_pages, 3002 h->surplus_huge_pages, 3003 (PAGE_SIZE << huge_page_order(h)) / 1024); 3004 } 3005 3006 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3007 } 3008 3009 int hugetlb_report_node_meminfo(int nid, char *buf) 3010 { 3011 struct hstate *h = &default_hstate; 3012 if (!hugepages_supported()) 3013 return 0; 3014 return sprintf(buf, 3015 "Node %d HugePages_Total: %5u\n" 3016 "Node %d HugePages_Free: %5u\n" 3017 "Node %d HugePages_Surp: %5u\n", 3018 nid, h->nr_huge_pages_node[nid], 3019 nid, h->free_huge_pages_node[nid], 3020 nid, h->surplus_huge_pages_node[nid]); 3021 } 3022 3023 void hugetlb_show_meminfo(void) 3024 { 3025 struct hstate *h; 3026 int nid; 3027 3028 if (!hugepages_supported()) 3029 return; 3030 3031 for_each_node_state(nid, N_MEMORY) 3032 for_each_hstate(h) 3033 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3034 nid, 3035 h->nr_huge_pages_node[nid], 3036 h->free_huge_pages_node[nid], 3037 h->surplus_huge_pages_node[nid], 3038 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3039 } 3040 3041 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3042 { 3043 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3044 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3045 } 3046 3047 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3048 unsigned long hugetlb_total_pages(void) 3049 { 3050 struct hstate *h; 3051 unsigned long nr_total_pages = 0; 3052 3053 for_each_hstate(h) 3054 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3055 return nr_total_pages; 3056 } 3057 3058 static int hugetlb_acct_memory(struct hstate *h, long delta) 3059 { 3060 int ret = -ENOMEM; 3061 3062 spin_lock(&hugetlb_lock); 3063 /* 3064 * When cpuset is configured, it breaks the strict hugetlb page 3065 * reservation as the accounting is done on a global variable. Such 3066 * reservation is completely rubbish in the presence of cpuset because 3067 * the reservation is not checked against page availability for the 3068 * current cpuset. Application can still potentially OOM'ed by kernel 3069 * with lack of free htlb page in cpuset that the task is in. 3070 * Attempt to enforce strict accounting with cpuset is almost 3071 * impossible (or too ugly) because cpuset is too fluid that 3072 * task or memory node can be dynamically moved between cpusets. 3073 * 3074 * The change of semantics for shared hugetlb mapping with cpuset is 3075 * undesirable. However, in order to preserve some of the semantics, 3076 * we fall back to check against current free page availability as 3077 * a best attempt and hopefully to minimize the impact of changing 3078 * semantics that cpuset has. 3079 */ 3080 if (delta > 0) { 3081 if (gather_surplus_pages(h, delta) < 0) 3082 goto out; 3083 3084 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 3085 return_unused_surplus_pages(h, delta); 3086 goto out; 3087 } 3088 } 3089 3090 ret = 0; 3091 if (delta < 0) 3092 return_unused_surplus_pages(h, (unsigned long) -delta); 3093 3094 out: 3095 spin_unlock(&hugetlb_lock); 3096 return ret; 3097 } 3098 3099 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3100 { 3101 struct resv_map *resv = vma_resv_map(vma); 3102 3103 /* 3104 * This new VMA should share its siblings reservation map if present. 3105 * The VMA will only ever have a valid reservation map pointer where 3106 * it is being copied for another still existing VMA. As that VMA 3107 * has a reference to the reservation map it cannot disappear until 3108 * after this open call completes. It is therefore safe to take a 3109 * new reference here without additional locking. 3110 */ 3111 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3112 kref_get(&resv->refs); 3113 } 3114 3115 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3116 { 3117 struct hstate *h = hstate_vma(vma); 3118 struct resv_map *resv = vma_resv_map(vma); 3119 struct hugepage_subpool *spool = subpool_vma(vma); 3120 unsigned long reserve, start, end; 3121 long gbl_reserve; 3122 3123 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3124 return; 3125 3126 start = vma_hugecache_offset(h, vma, vma->vm_start); 3127 end = vma_hugecache_offset(h, vma, vma->vm_end); 3128 3129 reserve = (end - start) - region_count(resv, start, end); 3130 3131 kref_put(&resv->refs, resv_map_release); 3132 3133 if (reserve) { 3134 /* 3135 * Decrement reserve counts. The global reserve count may be 3136 * adjusted if the subpool has a minimum size. 3137 */ 3138 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3139 hugetlb_acct_memory(h, -gbl_reserve); 3140 } 3141 } 3142 3143 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3144 { 3145 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3146 return -EINVAL; 3147 return 0; 3148 } 3149 3150 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3151 { 3152 struct hstate *hstate = hstate_vma(vma); 3153 3154 return 1UL << huge_page_shift(hstate); 3155 } 3156 3157 /* 3158 * We cannot handle pagefaults against hugetlb pages at all. They cause 3159 * handle_mm_fault() to try to instantiate regular-sized pages in the 3160 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3161 * this far. 3162 */ 3163 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3164 { 3165 BUG(); 3166 return 0; 3167 } 3168 3169 const struct vm_operations_struct hugetlb_vm_ops = { 3170 .fault = hugetlb_vm_op_fault, 3171 .open = hugetlb_vm_op_open, 3172 .close = hugetlb_vm_op_close, 3173 .split = hugetlb_vm_op_split, 3174 .pagesize = hugetlb_vm_op_pagesize, 3175 }; 3176 3177 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3178 int writable) 3179 { 3180 pte_t entry; 3181 3182 if (writable) { 3183 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3184 vma->vm_page_prot))); 3185 } else { 3186 entry = huge_pte_wrprotect(mk_huge_pte(page, 3187 vma->vm_page_prot)); 3188 } 3189 entry = pte_mkyoung(entry); 3190 entry = pte_mkhuge(entry); 3191 entry = arch_make_huge_pte(entry, vma, page, writable); 3192 3193 return entry; 3194 } 3195 3196 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3197 unsigned long address, pte_t *ptep) 3198 { 3199 pte_t entry; 3200 3201 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3202 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3203 update_mmu_cache(vma, address, ptep); 3204 } 3205 3206 bool is_hugetlb_entry_migration(pte_t pte) 3207 { 3208 swp_entry_t swp; 3209 3210 if (huge_pte_none(pte) || pte_present(pte)) 3211 return false; 3212 swp = pte_to_swp_entry(pte); 3213 if (non_swap_entry(swp) && is_migration_entry(swp)) 3214 return true; 3215 else 3216 return false; 3217 } 3218 3219 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3220 { 3221 swp_entry_t swp; 3222 3223 if (huge_pte_none(pte) || pte_present(pte)) 3224 return 0; 3225 swp = pte_to_swp_entry(pte); 3226 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3227 return 1; 3228 else 3229 return 0; 3230 } 3231 3232 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3233 struct vm_area_struct *vma) 3234 { 3235 pte_t *src_pte, *dst_pte, entry; 3236 struct page *ptepage; 3237 unsigned long addr; 3238 int cow; 3239 struct hstate *h = hstate_vma(vma); 3240 unsigned long sz = huge_page_size(h); 3241 unsigned long mmun_start; /* For mmu_notifiers */ 3242 unsigned long mmun_end; /* For mmu_notifiers */ 3243 int ret = 0; 3244 3245 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3246 3247 mmun_start = vma->vm_start; 3248 mmun_end = vma->vm_end; 3249 if (cow) 3250 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 3251 3252 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3253 spinlock_t *src_ptl, *dst_ptl; 3254 src_pte = huge_pte_offset(src, addr, sz); 3255 if (!src_pte) 3256 continue; 3257 dst_pte = huge_pte_alloc(dst, addr, sz); 3258 if (!dst_pte) { 3259 ret = -ENOMEM; 3260 break; 3261 } 3262 3263 /* If the pagetables are shared don't copy or take references */ 3264 if (dst_pte == src_pte) 3265 continue; 3266 3267 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3268 src_ptl = huge_pte_lockptr(h, src, src_pte); 3269 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3270 entry = huge_ptep_get(src_pte); 3271 if (huge_pte_none(entry)) { /* skip none entry */ 3272 ; 3273 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3274 is_hugetlb_entry_hwpoisoned(entry))) { 3275 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3276 3277 if (is_write_migration_entry(swp_entry) && cow) { 3278 /* 3279 * COW mappings require pages in both 3280 * parent and child to be set to read. 3281 */ 3282 make_migration_entry_read(&swp_entry); 3283 entry = swp_entry_to_pte(swp_entry); 3284 set_huge_swap_pte_at(src, addr, src_pte, 3285 entry, sz); 3286 } 3287 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3288 } else { 3289 if (cow) { 3290 /* 3291 * No need to notify as we are downgrading page 3292 * table protection not changing it to point 3293 * to a new page. 3294 * 3295 * See Documentation/vm/mmu_notifier.rst 3296 */ 3297 huge_ptep_set_wrprotect(src, addr, src_pte); 3298 } 3299 entry = huge_ptep_get(src_pte); 3300 ptepage = pte_page(entry); 3301 get_page(ptepage); 3302 page_dup_rmap(ptepage, true); 3303 set_huge_pte_at(dst, addr, dst_pte, entry); 3304 hugetlb_count_add(pages_per_huge_page(h), dst); 3305 } 3306 spin_unlock(src_ptl); 3307 spin_unlock(dst_ptl); 3308 } 3309 3310 if (cow) 3311 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 3312 3313 return ret; 3314 } 3315 3316 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3317 unsigned long start, unsigned long end, 3318 struct page *ref_page) 3319 { 3320 struct mm_struct *mm = vma->vm_mm; 3321 unsigned long address; 3322 pte_t *ptep; 3323 pte_t pte; 3324 spinlock_t *ptl; 3325 struct page *page; 3326 struct hstate *h = hstate_vma(vma); 3327 unsigned long sz = huge_page_size(h); 3328 const unsigned long mmun_start = start; /* For mmu_notifiers */ 3329 const unsigned long mmun_end = end; /* For mmu_notifiers */ 3330 3331 WARN_ON(!is_vm_hugetlb_page(vma)); 3332 BUG_ON(start & ~huge_page_mask(h)); 3333 BUG_ON(end & ~huge_page_mask(h)); 3334 3335 /* 3336 * This is a hugetlb vma, all the pte entries should point 3337 * to huge page. 3338 */ 3339 tlb_remove_check_page_size_change(tlb, sz); 3340 tlb_start_vma(tlb, vma); 3341 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3342 address = start; 3343 for (; address < end; address += sz) { 3344 ptep = huge_pte_offset(mm, address, sz); 3345 if (!ptep) 3346 continue; 3347 3348 ptl = huge_pte_lock(h, mm, ptep); 3349 if (huge_pmd_unshare(mm, &address, ptep)) { 3350 spin_unlock(ptl); 3351 continue; 3352 } 3353 3354 pte = huge_ptep_get(ptep); 3355 if (huge_pte_none(pte)) { 3356 spin_unlock(ptl); 3357 continue; 3358 } 3359 3360 /* 3361 * Migrating hugepage or HWPoisoned hugepage is already 3362 * unmapped and its refcount is dropped, so just clear pte here. 3363 */ 3364 if (unlikely(!pte_present(pte))) { 3365 huge_pte_clear(mm, address, ptep, sz); 3366 spin_unlock(ptl); 3367 continue; 3368 } 3369 3370 page = pte_page(pte); 3371 /* 3372 * If a reference page is supplied, it is because a specific 3373 * page is being unmapped, not a range. Ensure the page we 3374 * are about to unmap is the actual page of interest. 3375 */ 3376 if (ref_page) { 3377 if (page != ref_page) { 3378 spin_unlock(ptl); 3379 continue; 3380 } 3381 /* 3382 * Mark the VMA as having unmapped its page so that 3383 * future faults in this VMA will fail rather than 3384 * looking like data was lost 3385 */ 3386 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3387 } 3388 3389 pte = huge_ptep_get_and_clear(mm, address, ptep); 3390 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3391 if (huge_pte_dirty(pte)) 3392 set_page_dirty(page); 3393 3394 hugetlb_count_sub(pages_per_huge_page(h), mm); 3395 page_remove_rmap(page, true); 3396 3397 spin_unlock(ptl); 3398 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3399 /* 3400 * Bail out after unmapping reference page if supplied 3401 */ 3402 if (ref_page) 3403 break; 3404 } 3405 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3406 tlb_end_vma(tlb, vma); 3407 } 3408 3409 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3410 struct vm_area_struct *vma, unsigned long start, 3411 unsigned long end, struct page *ref_page) 3412 { 3413 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3414 3415 /* 3416 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3417 * test will fail on a vma being torn down, and not grab a page table 3418 * on its way out. We're lucky that the flag has such an appropriate 3419 * name, and can in fact be safely cleared here. We could clear it 3420 * before the __unmap_hugepage_range above, but all that's necessary 3421 * is to clear it before releasing the i_mmap_rwsem. This works 3422 * because in the context this is called, the VMA is about to be 3423 * destroyed and the i_mmap_rwsem is held. 3424 */ 3425 vma->vm_flags &= ~VM_MAYSHARE; 3426 } 3427 3428 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3429 unsigned long end, struct page *ref_page) 3430 { 3431 struct mm_struct *mm; 3432 struct mmu_gather tlb; 3433 3434 mm = vma->vm_mm; 3435 3436 tlb_gather_mmu(&tlb, mm, start, end); 3437 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3438 tlb_finish_mmu(&tlb, start, end); 3439 } 3440 3441 /* 3442 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3443 * mappping it owns the reserve page for. The intention is to unmap the page 3444 * from other VMAs and let the children be SIGKILLed if they are faulting the 3445 * same region. 3446 */ 3447 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3448 struct page *page, unsigned long address) 3449 { 3450 struct hstate *h = hstate_vma(vma); 3451 struct vm_area_struct *iter_vma; 3452 struct address_space *mapping; 3453 pgoff_t pgoff; 3454 3455 /* 3456 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3457 * from page cache lookup which is in HPAGE_SIZE units. 3458 */ 3459 address = address & huge_page_mask(h); 3460 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3461 vma->vm_pgoff; 3462 mapping = vma->vm_file->f_mapping; 3463 3464 /* 3465 * Take the mapping lock for the duration of the table walk. As 3466 * this mapping should be shared between all the VMAs, 3467 * __unmap_hugepage_range() is called as the lock is already held 3468 */ 3469 i_mmap_lock_write(mapping); 3470 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3471 /* Do not unmap the current VMA */ 3472 if (iter_vma == vma) 3473 continue; 3474 3475 /* 3476 * Shared VMAs have their own reserves and do not affect 3477 * MAP_PRIVATE accounting but it is possible that a shared 3478 * VMA is using the same page so check and skip such VMAs. 3479 */ 3480 if (iter_vma->vm_flags & VM_MAYSHARE) 3481 continue; 3482 3483 /* 3484 * Unmap the page from other VMAs without their own reserves. 3485 * They get marked to be SIGKILLed if they fault in these 3486 * areas. This is because a future no-page fault on this VMA 3487 * could insert a zeroed page instead of the data existing 3488 * from the time of fork. This would look like data corruption 3489 */ 3490 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3491 unmap_hugepage_range(iter_vma, address, 3492 address + huge_page_size(h), page); 3493 } 3494 i_mmap_unlock_write(mapping); 3495 } 3496 3497 /* 3498 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3499 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3500 * cannot race with other handlers or page migration. 3501 * Keep the pte_same checks anyway to make transition from the mutex easier. 3502 */ 3503 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3504 unsigned long address, pte_t *ptep, 3505 struct page *pagecache_page, spinlock_t *ptl) 3506 { 3507 pte_t pte; 3508 struct hstate *h = hstate_vma(vma); 3509 struct page *old_page, *new_page; 3510 int ret = 0, outside_reserve = 0; 3511 unsigned long mmun_start; /* For mmu_notifiers */ 3512 unsigned long mmun_end; /* For mmu_notifiers */ 3513 3514 pte = huge_ptep_get(ptep); 3515 old_page = pte_page(pte); 3516 3517 retry_avoidcopy: 3518 /* If no-one else is actually using this page, avoid the copy 3519 * and just make the page writable */ 3520 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3521 page_move_anon_rmap(old_page, vma); 3522 set_huge_ptep_writable(vma, address, ptep); 3523 return 0; 3524 } 3525 3526 /* 3527 * If the process that created a MAP_PRIVATE mapping is about to 3528 * perform a COW due to a shared page count, attempt to satisfy 3529 * the allocation without using the existing reserves. The pagecache 3530 * page is used to determine if the reserve at this address was 3531 * consumed or not. If reserves were used, a partial faulted mapping 3532 * at the time of fork() could consume its reserves on COW instead 3533 * of the full address range. 3534 */ 3535 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3536 old_page != pagecache_page) 3537 outside_reserve = 1; 3538 3539 get_page(old_page); 3540 3541 /* 3542 * Drop page table lock as buddy allocator may be called. It will 3543 * be acquired again before returning to the caller, as expected. 3544 */ 3545 spin_unlock(ptl); 3546 new_page = alloc_huge_page(vma, address, outside_reserve); 3547 3548 if (IS_ERR(new_page)) { 3549 /* 3550 * If a process owning a MAP_PRIVATE mapping fails to COW, 3551 * it is due to references held by a child and an insufficient 3552 * huge page pool. To guarantee the original mappers 3553 * reliability, unmap the page from child processes. The child 3554 * may get SIGKILLed if it later faults. 3555 */ 3556 if (outside_reserve) { 3557 put_page(old_page); 3558 BUG_ON(huge_pte_none(pte)); 3559 unmap_ref_private(mm, vma, old_page, address); 3560 BUG_ON(huge_pte_none(pte)); 3561 spin_lock(ptl); 3562 ptep = huge_pte_offset(mm, address & huge_page_mask(h), 3563 huge_page_size(h)); 3564 if (likely(ptep && 3565 pte_same(huge_ptep_get(ptep), pte))) 3566 goto retry_avoidcopy; 3567 /* 3568 * race occurs while re-acquiring page table 3569 * lock, and our job is done. 3570 */ 3571 return 0; 3572 } 3573 3574 ret = (PTR_ERR(new_page) == -ENOMEM) ? 3575 VM_FAULT_OOM : VM_FAULT_SIGBUS; 3576 goto out_release_old; 3577 } 3578 3579 /* 3580 * When the original hugepage is shared one, it does not have 3581 * anon_vma prepared. 3582 */ 3583 if (unlikely(anon_vma_prepare(vma))) { 3584 ret = VM_FAULT_OOM; 3585 goto out_release_all; 3586 } 3587 3588 copy_user_huge_page(new_page, old_page, address, vma, 3589 pages_per_huge_page(h)); 3590 __SetPageUptodate(new_page); 3591 set_page_huge_active(new_page); 3592 3593 mmun_start = address & huge_page_mask(h); 3594 mmun_end = mmun_start + huge_page_size(h); 3595 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3596 3597 /* 3598 * Retake the page table lock to check for racing updates 3599 * before the page tables are altered 3600 */ 3601 spin_lock(ptl); 3602 ptep = huge_pte_offset(mm, address & huge_page_mask(h), 3603 huge_page_size(h)); 3604 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3605 ClearPagePrivate(new_page); 3606 3607 /* Break COW */ 3608 huge_ptep_clear_flush(vma, address, ptep); 3609 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 3610 set_huge_pte_at(mm, address, ptep, 3611 make_huge_pte(vma, new_page, 1)); 3612 page_remove_rmap(old_page, true); 3613 hugepage_add_new_anon_rmap(new_page, vma, address); 3614 /* Make the old page be freed below */ 3615 new_page = old_page; 3616 } 3617 spin_unlock(ptl); 3618 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3619 out_release_all: 3620 restore_reserve_on_error(h, vma, address, new_page); 3621 put_page(new_page); 3622 out_release_old: 3623 put_page(old_page); 3624 3625 spin_lock(ptl); /* Caller expects lock to be held */ 3626 return ret; 3627 } 3628 3629 /* Return the pagecache page at a given address within a VMA */ 3630 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3631 struct vm_area_struct *vma, unsigned long address) 3632 { 3633 struct address_space *mapping; 3634 pgoff_t idx; 3635 3636 mapping = vma->vm_file->f_mapping; 3637 idx = vma_hugecache_offset(h, vma, address); 3638 3639 return find_lock_page(mapping, idx); 3640 } 3641 3642 /* 3643 * Return whether there is a pagecache page to back given address within VMA. 3644 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3645 */ 3646 static bool hugetlbfs_pagecache_present(struct hstate *h, 3647 struct vm_area_struct *vma, unsigned long address) 3648 { 3649 struct address_space *mapping; 3650 pgoff_t idx; 3651 struct page *page; 3652 3653 mapping = vma->vm_file->f_mapping; 3654 idx = vma_hugecache_offset(h, vma, address); 3655 3656 page = find_get_page(mapping, idx); 3657 if (page) 3658 put_page(page); 3659 return page != NULL; 3660 } 3661 3662 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3663 pgoff_t idx) 3664 { 3665 struct inode *inode = mapping->host; 3666 struct hstate *h = hstate_inode(inode); 3667 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3668 3669 if (err) 3670 return err; 3671 ClearPagePrivate(page); 3672 3673 spin_lock(&inode->i_lock); 3674 inode->i_blocks += blocks_per_huge_page(h); 3675 spin_unlock(&inode->i_lock); 3676 return 0; 3677 } 3678 3679 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 3680 struct address_space *mapping, pgoff_t idx, 3681 unsigned long address, pte_t *ptep, unsigned int flags) 3682 { 3683 struct hstate *h = hstate_vma(vma); 3684 int ret = VM_FAULT_SIGBUS; 3685 int anon_rmap = 0; 3686 unsigned long size; 3687 struct page *page; 3688 pte_t new_pte; 3689 spinlock_t *ptl; 3690 unsigned long haddr = address & huge_page_mask(h); 3691 3692 /* 3693 * Currently, we are forced to kill the process in the event the 3694 * original mapper has unmapped pages from the child due to a failed 3695 * COW. Warn that such a situation has occurred as it may not be obvious 3696 */ 3697 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3698 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3699 current->pid); 3700 return ret; 3701 } 3702 3703 /* 3704 * Use page lock to guard against racing truncation 3705 * before we get page_table_lock. 3706 */ 3707 retry: 3708 page = find_lock_page(mapping, idx); 3709 if (!page) { 3710 size = i_size_read(mapping->host) >> huge_page_shift(h); 3711 if (idx >= size) 3712 goto out; 3713 3714 /* 3715 * Check for page in userfault range 3716 */ 3717 if (userfaultfd_missing(vma)) { 3718 u32 hash; 3719 struct vm_fault vmf = { 3720 .vma = vma, 3721 .address = haddr, 3722 .flags = flags, 3723 /* 3724 * Hard to debug if it ends up being 3725 * used by a callee that assumes 3726 * something about the other 3727 * uninitialized fields... same as in 3728 * memory.c 3729 */ 3730 }; 3731 3732 /* 3733 * hugetlb_fault_mutex must be dropped before 3734 * handling userfault. Reacquire after handling 3735 * fault to make calling code simpler. 3736 */ 3737 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, 3738 idx, haddr); 3739 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3740 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 3741 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3742 goto out; 3743 } 3744 3745 page = alloc_huge_page(vma, haddr, 0); 3746 if (IS_ERR(page)) { 3747 ret = PTR_ERR(page); 3748 if (ret == -ENOMEM) 3749 ret = VM_FAULT_OOM; 3750 else 3751 ret = VM_FAULT_SIGBUS; 3752 goto out; 3753 } 3754 clear_huge_page(page, address, pages_per_huge_page(h)); 3755 __SetPageUptodate(page); 3756 set_page_huge_active(page); 3757 3758 if (vma->vm_flags & VM_MAYSHARE) { 3759 int err = huge_add_to_page_cache(page, mapping, idx); 3760 if (err) { 3761 put_page(page); 3762 if (err == -EEXIST) 3763 goto retry; 3764 goto out; 3765 } 3766 } else { 3767 lock_page(page); 3768 if (unlikely(anon_vma_prepare(vma))) { 3769 ret = VM_FAULT_OOM; 3770 goto backout_unlocked; 3771 } 3772 anon_rmap = 1; 3773 } 3774 } else { 3775 /* 3776 * If memory error occurs between mmap() and fault, some process 3777 * don't have hwpoisoned swap entry for errored virtual address. 3778 * So we need to block hugepage fault by PG_hwpoison bit check. 3779 */ 3780 if (unlikely(PageHWPoison(page))) { 3781 ret = VM_FAULT_HWPOISON | 3782 VM_FAULT_SET_HINDEX(hstate_index(h)); 3783 goto backout_unlocked; 3784 } 3785 } 3786 3787 /* 3788 * If we are going to COW a private mapping later, we examine the 3789 * pending reservations for this page now. This will ensure that 3790 * any allocations necessary to record that reservation occur outside 3791 * the spinlock. 3792 */ 3793 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3794 if (vma_needs_reservation(h, vma, haddr) < 0) { 3795 ret = VM_FAULT_OOM; 3796 goto backout_unlocked; 3797 } 3798 /* Just decrements count, does not deallocate */ 3799 vma_end_reservation(h, vma, haddr); 3800 } 3801 3802 ptl = huge_pte_lock(h, mm, ptep); 3803 size = i_size_read(mapping->host) >> huge_page_shift(h); 3804 if (idx >= size) 3805 goto backout; 3806 3807 ret = 0; 3808 if (!huge_pte_none(huge_ptep_get(ptep))) 3809 goto backout; 3810 3811 if (anon_rmap) { 3812 ClearPagePrivate(page); 3813 hugepage_add_new_anon_rmap(page, vma, haddr); 3814 } else 3815 page_dup_rmap(page, true); 3816 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3817 && (vma->vm_flags & VM_SHARED))); 3818 set_huge_pte_at(mm, haddr, ptep, new_pte); 3819 3820 hugetlb_count_add(pages_per_huge_page(h), mm); 3821 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3822 /* Optimization, do the COW without a second fault */ 3823 ret = hugetlb_cow(mm, vma, haddr, ptep, page, ptl); 3824 } 3825 3826 spin_unlock(ptl); 3827 unlock_page(page); 3828 out: 3829 return ret; 3830 3831 backout: 3832 spin_unlock(ptl); 3833 backout_unlocked: 3834 unlock_page(page); 3835 restore_reserve_on_error(h, vma, haddr, page); 3836 put_page(page); 3837 goto out; 3838 } 3839 3840 #ifdef CONFIG_SMP 3841 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3842 struct vm_area_struct *vma, 3843 struct address_space *mapping, 3844 pgoff_t idx, unsigned long address) 3845 { 3846 unsigned long key[2]; 3847 u32 hash; 3848 3849 if (vma->vm_flags & VM_SHARED) { 3850 key[0] = (unsigned long) mapping; 3851 key[1] = idx; 3852 } else { 3853 key[0] = (unsigned long) mm; 3854 key[1] = address >> huge_page_shift(h); 3855 } 3856 3857 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3858 3859 return hash & (num_fault_mutexes - 1); 3860 } 3861 #else 3862 /* 3863 * For uniprocesor systems we always use a single mutex, so just 3864 * return 0 and avoid the hashing overhead. 3865 */ 3866 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3867 struct vm_area_struct *vma, 3868 struct address_space *mapping, 3869 pgoff_t idx, unsigned long address) 3870 { 3871 return 0; 3872 } 3873 #endif 3874 3875 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3876 unsigned long address, unsigned int flags) 3877 { 3878 pte_t *ptep, entry; 3879 spinlock_t *ptl; 3880 int ret; 3881 u32 hash; 3882 pgoff_t idx; 3883 struct page *page = NULL; 3884 struct page *pagecache_page = NULL; 3885 struct hstate *h = hstate_vma(vma); 3886 struct address_space *mapping; 3887 int need_wait_lock = 0; 3888 unsigned long haddr = address & huge_page_mask(h); 3889 3890 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3891 if (ptep) { 3892 entry = huge_ptep_get(ptep); 3893 if (unlikely(is_hugetlb_entry_migration(entry))) { 3894 migration_entry_wait_huge(vma, mm, ptep); 3895 return 0; 3896 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3897 return VM_FAULT_HWPOISON_LARGE | 3898 VM_FAULT_SET_HINDEX(hstate_index(h)); 3899 } else { 3900 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 3901 if (!ptep) 3902 return VM_FAULT_OOM; 3903 } 3904 3905 mapping = vma->vm_file->f_mapping; 3906 idx = vma_hugecache_offset(h, vma, haddr); 3907 3908 /* 3909 * Serialize hugepage allocation and instantiation, so that we don't 3910 * get spurious allocation failures if two CPUs race to instantiate 3911 * the same page in the page cache. 3912 */ 3913 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr); 3914 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3915 3916 entry = huge_ptep_get(ptep); 3917 if (huge_pte_none(entry)) { 3918 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3919 goto out_mutex; 3920 } 3921 3922 ret = 0; 3923 3924 /* 3925 * entry could be a migration/hwpoison entry at this point, so this 3926 * check prevents the kernel from going below assuming that we have 3927 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3928 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3929 * handle it. 3930 */ 3931 if (!pte_present(entry)) 3932 goto out_mutex; 3933 3934 /* 3935 * If we are going to COW the mapping later, we examine the pending 3936 * reservations for this page now. This will ensure that any 3937 * allocations necessary to record that reservation occur outside the 3938 * spinlock. For private mappings, we also lookup the pagecache 3939 * page now as it is used to determine if a reservation has been 3940 * consumed. 3941 */ 3942 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3943 if (vma_needs_reservation(h, vma, haddr) < 0) { 3944 ret = VM_FAULT_OOM; 3945 goto out_mutex; 3946 } 3947 /* Just decrements count, does not deallocate */ 3948 vma_end_reservation(h, vma, haddr); 3949 3950 if (!(vma->vm_flags & VM_MAYSHARE)) 3951 pagecache_page = hugetlbfs_pagecache_page(h, 3952 vma, haddr); 3953 } 3954 3955 ptl = huge_pte_lock(h, mm, ptep); 3956 3957 /* Check for a racing update before calling hugetlb_cow */ 3958 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3959 goto out_ptl; 3960 3961 /* 3962 * hugetlb_cow() requires page locks of pte_page(entry) and 3963 * pagecache_page, so here we need take the former one 3964 * when page != pagecache_page or !pagecache_page. 3965 */ 3966 page = pte_page(entry); 3967 if (page != pagecache_page) 3968 if (!trylock_page(page)) { 3969 need_wait_lock = 1; 3970 goto out_ptl; 3971 } 3972 3973 get_page(page); 3974 3975 if (flags & FAULT_FLAG_WRITE) { 3976 if (!huge_pte_write(entry)) { 3977 ret = hugetlb_cow(mm, vma, haddr, ptep, 3978 pagecache_page, ptl); 3979 goto out_put_page; 3980 } 3981 entry = huge_pte_mkdirty(entry); 3982 } 3983 entry = pte_mkyoung(entry); 3984 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 3985 flags & FAULT_FLAG_WRITE)) 3986 update_mmu_cache(vma, haddr, ptep); 3987 out_put_page: 3988 if (page != pagecache_page) 3989 unlock_page(page); 3990 put_page(page); 3991 out_ptl: 3992 spin_unlock(ptl); 3993 3994 if (pagecache_page) { 3995 unlock_page(pagecache_page); 3996 put_page(pagecache_page); 3997 } 3998 out_mutex: 3999 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4000 /* 4001 * Generally it's safe to hold refcount during waiting page lock. But 4002 * here we just wait to defer the next page fault to avoid busy loop and 4003 * the page is not used after unlocked before returning from the current 4004 * page fault. So we are safe from accessing freed page, even if we wait 4005 * here without taking refcount. 4006 */ 4007 if (need_wait_lock) 4008 wait_on_page_locked(page); 4009 return ret; 4010 } 4011 4012 /* 4013 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4014 * modifications for huge pages. 4015 */ 4016 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4017 pte_t *dst_pte, 4018 struct vm_area_struct *dst_vma, 4019 unsigned long dst_addr, 4020 unsigned long src_addr, 4021 struct page **pagep) 4022 { 4023 struct address_space *mapping; 4024 pgoff_t idx; 4025 unsigned long size; 4026 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4027 struct hstate *h = hstate_vma(dst_vma); 4028 pte_t _dst_pte; 4029 spinlock_t *ptl; 4030 int ret; 4031 struct page *page; 4032 4033 if (!*pagep) { 4034 ret = -ENOMEM; 4035 page = alloc_huge_page(dst_vma, dst_addr, 0); 4036 if (IS_ERR(page)) 4037 goto out; 4038 4039 ret = copy_huge_page_from_user(page, 4040 (const void __user *) src_addr, 4041 pages_per_huge_page(h), false); 4042 4043 /* fallback to copy_from_user outside mmap_sem */ 4044 if (unlikely(ret)) { 4045 ret = -EFAULT; 4046 *pagep = page; 4047 /* don't free the page */ 4048 goto out; 4049 } 4050 } else { 4051 page = *pagep; 4052 *pagep = NULL; 4053 } 4054 4055 /* 4056 * The memory barrier inside __SetPageUptodate makes sure that 4057 * preceding stores to the page contents become visible before 4058 * the set_pte_at() write. 4059 */ 4060 __SetPageUptodate(page); 4061 set_page_huge_active(page); 4062 4063 mapping = dst_vma->vm_file->f_mapping; 4064 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4065 4066 /* 4067 * If shared, add to page cache 4068 */ 4069 if (vm_shared) { 4070 size = i_size_read(mapping->host) >> huge_page_shift(h); 4071 ret = -EFAULT; 4072 if (idx >= size) 4073 goto out_release_nounlock; 4074 4075 /* 4076 * Serialization between remove_inode_hugepages() and 4077 * huge_add_to_page_cache() below happens through the 4078 * hugetlb_fault_mutex_table that here must be hold by 4079 * the caller. 4080 */ 4081 ret = huge_add_to_page_cache(page, mapping, idx); 4082 if (ret) 4083 goto out_release_nounlock; 4084 } 4085 4086 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4087 spin_lock(ptl); 4088 4089 /* 4090 * Recheck the i_size after holding PT lock to make sure not 4091 * to leave any page mapped (as page_mapped()) beyond the end 4092 * of the i_size (remove_inode_hugepages() is strict about 4093 * enforcing that). If we bail out here, we'll also leave a 4094 * page in the radix tree in the vm_shared case beyond the end 4095 * of the i_size, but remove_inode_hugepages() will take care 4096 * of it as soon as we drop the hugetlb_fault_mutex_table. 4097 */ 4098 size = i_size_read(mapping->host) >> huge_page_shift(h); 4099 ret = -EFAULT; 4100 if (idx >= size) 4101 goto out_release_unlock; 4102 4103 ret = -EEXIST; 4104 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4105 goto out_release_unlock; 4106 4107 if (vm_shared) { 4108 page_dup_rmap(page, true); 4109 } else { 4110 ClearPagePrivate(page); 4111 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4112 } 4113 4114 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4115 if (dst_vma->vm_flags & VM_WRITE) 4116 _dst_pte = huge_pte_mkdirty(_dst_pte); 4117 _dst_pte = pte_mkyoung(_dst_pte); 4118 4119 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4120 4121 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4122 dst_vma->vm_flags & VM_WRITE); 4123 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4124 4125 /* No need to invalidate - it was non-present before */ 4126 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4127 4128 spin_unlock(ptl); 4129 if (vm_shared) 4130 unlock_page(page); 4131 ret = 0; 4132 out: 4133 return ret; 4134 out_release_unlock: 4135 spin_unlock(ptl); 4136 if (vm_shared) 4137 unlock_page(page); 4138 out_release_nounlock: 4139 put_page(page); 4140 goto out; 4141 } 4142 4143 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4144 struct page **pages, struct vm_area_struct **vmas, 4145 unsigned long *position, unsigned long *nr_pages, 4146 long i, unsigned int flags, int *nonblocking) 4147 { 4148 unsigned long pfn_offset; 4149 unsigned long vaddr = *position; 4150 unsigned long remainder = *nr_pages; 4151 struct hstate *h = hstate_vma(vma); 4152 int err = -EFAULT; 4153 4154 while (vaddr < vma->vm_end && remainder) { 4155 pte_t *pte; 4156 spinlock_t *ptl = NULL; 4157 int absent; 4158 struct page *page; 4159 4160 /* 4161 * If we have a pending SIGKILL, don't keep faulting pages and 4162 * potentially allocating memory. 4163 */ 4164 if (unlikely(fatal_signal_pending(current))) { 4165 remainder = 0; 4166 break; 4167 } 4168 4169 /* 4170 * Some archs (sparc64, sh*) have multiple pte_ts to 4171 * each hugepage. We have to make sure we get the 4172 * first, for the page indexing below to work. 4173 * 4174 * Note that page table lock is not held when pte is null. 4175 */ 4176 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4177 huge_page_size(h)); 4178 if (pte) 4179 ptl = huge_pte_lock(h, mm, pte); 4180 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4181 4182 /* 4183 * When coredumping, it suits get_dump_page if we just return 4184 * an error where there's an empty slot with no huge pagecache 4185 * to back it. This way, we avoid allocating a hugepage, and 4186 * the sparse dumpfile avoids allocating disk blocks, but its 4187 * huge holes still show up with zeroes where they need to be. 4188 */ 4189 if (absent && (flags & FOLL_DUMP) && 4190 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4191 if (pte) 4192 spin_unlock(ptl); 4193 remainder = 0; 4194 break; 4195 } 4196 4197 /* 4198 * We need call hugetlb_fault for both hugepages under migration 4199 * (in which case hugetlb_fault waits for the migration,) and 4200 * hwpoisoned hugepages (in which case we need to prevent the 4201 * caller from accessing to them.) In order to do this, we use 4202 * here is_swap_pte instead of is_hugetlb_entry_migration and 4203 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4204 * both cases, and because we can't follow correct pages 4205 * directly from any kind of swap entries. 4206 */ 4207 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4208 ((flags & FOLL_WRITE) && 4209 !huge_pte_write(huge_ptep_get(pte)))) { 4210 int ret; 4211 unsigned int fault_flags = 0; 4212 4213 if (pte) 4214 spin_unlock(ptl); 4215 if (flags & FOLL_WRITE) 4216 fault_flags |= FAULT_FLAG_WRITE; 4217 if (nonblocking) 4218 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 4219 if (flags & FOLL_NOWAIT) 4220 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4221 FAULT_FLAG_RETRY_NOWAIT; 4222 if (flags & FOLL_TRIED) { 4223 VM_WARN_ON_ONCE(fault_flags & 4224 FAULT_FLAG_ALLOW_RETRY); 4225 fault_flags |= FAULT_FLAG_TRIED; 4226 } 4227 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4228 if (ret & VM_FAULT_ERROR) { 4229 err = vm_fault_to_errno(ret, flags); 4230 remainder = 0; 4231 break; 4232 } 4233 if (ret & VM_FAULT_RETRY) { 4234 if (nonblocking) 4235 *nonblocking = 0; 4236 *nr_pages = 0; 4237 /* 4238 * VM_FAULT_RETRY must not return an 4239 * error, it will return zero 4240 * instead. 4241 * 4242 * No need to update "position" as the 4243 * caller will not check it after 4244 * *nr_pages is set to 0. 4245 */ 4246 return i; 4247 } 4248 continue; 4249 } 4250 4251 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4252 page = pte_page(huge_ptep_get(pte)); 4253 same_page: 4254 if (pages) { 4255 pages[i] = mem_map_offset(page, pfn_offset); 4256 get_page(pages[i]); 4257 } 4258 4259 if (vmas) 4260 vmas[i] = vma; 4261 4262 vaddr += PAGE_SIZE; 4263 ++pfn_offset; 4264 --remainder; 4265 ++i; 4266 if (vaddr < vma->vm_end && remainder && 4267 pfn_offset < pages_per_huge_page(h)) { 4268 /* 4269 * We use pfn_offset to avoid touching the pageframes 4270 * of this compound page. 4271 */ 4272 goto same_page; 4273 } 4274 spin_unlock(ptl); 4275 } 4276 *nr_pages = remainder; 4277 /* 4278 * setting position is actually required only if remainder is 4279 * not zero but it's faster not to add a "if (remainder)" 4280 * branch. 4281 */ 4282 *position = vaddr; 4283 4284 return i ? i : err; 4285 } 4286 4287 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4288 /* 4289 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4290 * implement this. 4291 */ 4292 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4293 #endif 4294 4295 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4296 unsigned long address, unsigned long end, pgprot_t newprot) 4297 { 4298 struct mm_struct *mm = vma->vm_mm; 4299 unsigned long start = address; 4300 pte_t *ptep; 4301 pte_t pte; 4302 struct hstate *h = hstate_vma(vma); 4303 unsigned long pages = 0; 4304 4305 BUG_ON(address >= end); 4306 flush_cache_range(vma, address, end); 4307 4308 mmu_notifier_invalidate_range_start(mm, start, end); 4309 i_mmap_lock_write(vma->vm_file->f_mapping); 4310 for (; address < end; address += huge_page_size(h)) { 4311 spinlock_t *ptl; 4312 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 4313 if (!ptep) 4314 continue; 4315 ptl = huge_pte_lock(h, mm, ptep); 4316 if (huge_pmd_unshare(mm, &address, ptep)) { 4317 pages++; 4318 spin_unlock(ptl); 4319 continue; 4320 } 4321 pte = huge_ptep_get(ptep); 4322 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 4323 spin_unlock(ptl); 4324 continue; 4325 } 4326 if (unlikely(is_hugetlb_entry_migration(pte))) { 4327 swp_entry_t entry = pte_to_swp_entry(pte); 4328 4329 if (is_write_migration_entry(entry)) { 4330 pte_t newpte; 4331 4332 make_migration_entry_read(&entry); 4333 newpte = swp_entry_to_pte(entry); 4334 set_huge_swap_pte_at(mm, address, ptep, 4335 newpte, huge_page_size(h)); 4336 pages++; 4337 } 4338 spin_unlock(ptl); 4339 continue; 4340 } 4341 if (!huge_pte_none(pte)) { 4342 pte = huge_ptep_get_and_clear(mm, address, ptep); 4343 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 4344 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4345 set_huge_pte_at(mm, address, ptep, pte); 4346 pages++; 4347 } 4348 spin_unlock(ptl); 4349 } 4350 /* 4351 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4352 * may have cleared our pud entry and done put_page on the page table: 4353 * once we release i_mmap_rwsem, another task can do the final put_page 4354 * and that page table be reused and filled with junk. 4355 */ 4356 flush_hugetlb_tlb_range(vma, start, end); 4357 /* 4358 * No need to call mmu_notifier_invalidate_range() we are downgrading 4359 * page table protection not changing it to point to a new page. 4360 * 4361 * See Documentation/vm/mmu_notifier.rst 4362 */ 4363 i_mmap_unlock_write(vma->vm_file->f_mapping); 4364 mmu_notifier_invalidate_range_end(mm, start, end); 4365 4366 return pages << h->order; 4367 } 4368 4369 int hugetlb_reserve_pages(struct inode *inode, 4370 long from, long to, 4371 struct vm_area_struct *vma, 4372 vm_flags_t vm_flags) 4373 { 4374 long ret, chg; 4375 struct hstate *h = hstate_inode(inode); 4376 struct hugepage_subpool *spool = subpool_inode(inode); 4377 struct resv_map *resv_map; 4378 long gbl_reserve; 4379 4380 /* This should never happen */ 4381 if (from > to) { 4382 VM_WARN(1, "%s called with a negative range\n", __func__); 4383 return -EINVAL; 4384 } 4385 4386 /* 4387 * Only apply hugepage reservation if asked. At fault time, an 4388 * attempt will be made for VM_NORESERVE to allocate a page 4389 * without using reserves 4390 */ 4391 if (vm_flags & VM_NORESERVE) 4392 return 0; 4393 4394 /* 4395 * Shared mappings base their reservation on the number of pages that 4396 * are already allocated on behalf of the file. Private mappings need 4397 * to reserve the full area even if read-only as mprotect() may be 4398 * called to make the mapping read-write. Assume !vma is a shm mapping 4399 */ 4400 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4401 resv_map = inode_resv_map(inode); 4402 4403 chg = region_chg(resv_map, from, to); 4404 4405 } else { 4406 resv_map = resv_map_alloc(); 4407 if (!resv_map) 4408 return -ENOMEM; 4409 4410 chg = to - from; 4411 4412 set_vma_resv_map(vma, resv_map); 4413 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4414 } 4415 4416 if (chg < 0) { 4417 ret = chg; 4418 goto out_err; 4419 } 4420 4421 /* 4422 * There must be enough pages in the subpool for the mapping. If 4423 * the subpool has a minimum size, there may be some global 4424 * reservations already in place (gbl_reserve). 4425 */ 4426 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4427 if (gbl_reserve < 0) { 4428 ret = -ENOSPC; 4429 goto out_err; 4430 } 4431 4432 /* 4433 * Check enough hugepages are available for the reservation. 4434 * Hand the pages back to the subpool if there are not 4435 */ 4436 ret = hugetlb_acct_memory(h, gbl_reserve); 4437 if (ret < 0) { 4438 /* put back original number of pages, chg */ 4439 (void)hugepage_subpool_put_pages(spool, chg); 4440 goto out_err; 4441 } 4442 4443 /* 4444 * Account for the reservations made. Shared mappings record regions 4445 * that have reservations as they are shared by multiple VMAs. 4446 * When the last VMA disappears, the region map says how much 4447 * the reservation was and the page cache tells how much of 4448 * the reservation was consumed. Private mappings are per-VMA and 4449 * only the consumed reservations are tracked. When the VMA 4450 * disappears, the original reservation is the VMA size and the 4451 * consumed reservations are stored in the map. Hence, nothing 4452 * else has to be done for private mappings here 4453 */ 4454 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4455 long add = region_add(resv_map, from, to); 4456 4457 if (unlikely(chg > add)) { 4458 /* 4459 * pages in this range were added to the reserve 4460 * map between region_chg and region_add. This 4461 * indicates a race with alloc_huge_page. Adjust 4462 * the subpool and reserve counts modified above 4463 * based on the difference. 4464 */ 4465 long rsv_adjust; 4466 4467 rsv_adjust = hugepage_subpool_put_pages(spool, 4468 chg - add); 4469 hugetlb_acct_memory(h, -rsv_adjust); 4470 } 4471 } 4472 return 0; 4473 out_err: 4474 if (!vma || vma->vm_flags & VM_MAYSHARE) 4475 /* Don't call region_abort if region_chg failed */ 4476 if (chg >= 0) 4477 region_abort(resv_map, from, to); 4478 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4479 kref_put(&resv_map->refs, resv_map_release); 4480 return ret; 4481 } 4482 4483 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4484 long freed) 4485 { 4486 struct hstate *h = hstate_inode(inode); 4487 struct resv_map *resv_map = inode_resv_map(inode); 4488 long chg = 0; 4489 struct hugepage_subpool *spool = subpool_inode(inode); 4490 long gbl_reserve; 4491 4492 if (resv_map) { 4493 chg = region_del(resv_map, start, end); 4494 /* 4495 * region_del() can fail in the rare case where a region 4496 * must be split and another region descriptor can not be 4497 * allocated. If end == LONG_MAX, it will not fail. 4498 */ 4499 if (chg < 0) 4500 return chg; 4501 } 4502 4503 spin_lock(&inode->i_lock); 4504 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4505 spin_unlock(&inode->i_lock); 4506 4507 /* 4508 * If the subpool has a minimum size, the number of global 4509 * reservations to be released may be adjusted. 4510 */ 4511 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4512 hugetlb_acct_memory(h, -gbl_reserve); 4513 4514 return 0; 4515 } 4516 4517 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4518 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4519 struct vm_area_struct *vma, 4520 unsigned long addr, pgoff_t idx) 4521 { 4522 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4523 svma->vm_start; 4524 unsigned long sbase = saddr & PUD_MASK; 4525 unsigned long s_end = sbase + PUD_SIZE; 4526 4527 /* Allow segments to share if only one is marked locked */ 4528 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4529 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4530 4531 /* 4532 * match the virtual addresses, permission and the alignment of the 4533 * page table page. 4534 */ 4535 if (pmd_index(addr) != pmd_index(saddr) || 4536 vm_flags != svm_flags || 4537 sbase < svma->vm_start || svma->vm_end < s_end) 4538 return 0; 4539 4540 return saddr; 4541 } 4542 4543 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4544 { 4545 unsigned long base = addr & PUD_MASK; 4546 unsigned long end = base + PUD_SIZE; 4547 4548 /* 4549 * check on proper vm_flags and page table alignment 4550 */ 4551 if (vma->vm_flags & VM_MAYSHARE && 4552 vma->vm_start <= base && end <= vma->vm_end) 4553 return true; 4554 return false; 4555 } 4556 4557 /* 4558 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4559 * and returns the corresponding pte. While this is not necessary for the 4560 * !shared pmd case because we can allocate the pmd later as well, it makes the 4561 * code much cleaner. pmd allocation is essential for the shared case because 4562 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4563 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4564 * bad pmd for sharing. 4565 */ 4566 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4567 { 4568 struct vm_area_struct *vma = find_vma(mm, addr); 4569 struct address_space *mapping = vma->vm_file->f_mapping; 4570 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4571 vma->vm_pgoff; 4572 struct vm_area_struct *svma; 4573 unsigned long saddr; 4574 pte_t *spte = NULL; 4575 pte_t *pte; 4576 spinlock_t *ptl; 4577 4578 if (!vma_shareable(vma, addr)) 4579 return (pte_t *)pmd_alloc(mm, pud, addr); 4580 4581 i_mmap_lock_write(mapping); 4582 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4583 if (svma == vma) 4584 continue; 4585 4586 saddr = page_table_shareable(svma, vma, addr, idx); 4587 if (saddr) { 4588 spte = huge_pte_offset(svma->vm_mm, saddr, 4589 vma_mmu_pagesize(svma)); 4590 if (spte) { 4591 get_page(virt_to_page(spte)); 4592 break; 4593 } 4594 } 4595 } 4596 4597 if (!spte) 4598 goto out; 4599 4600 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 4601 if (pud_none(*pud)) { 4602 pud_populate(mm, pud, 4603 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4604 mm_inc_nr_pmds(mm); 4605 } else { 4606 put_page(virt_to_page(spte)); 4607 } 4608 spin_unlock(ptl); 4609 out: 4610 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4611 i_mmap_unlock_write(mapping); 4612 return pte; 4613 } 4614 4615 /* 4616 * unmap huge page backed by shared pte. 4617 * 4618 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4619 * indicated by page_count > 1, unmap is achieved by clearing pud and 4620 * decrementing the ref count. If count == 1, the pte page is not shared. 4621 * 4622 * called with page table lock held. 4623 * 4624 * returns: 1 successfully unmapped a shared pte page 4625 * 0 the underlying pte page is not shared, or it is the last user 4626 */ 4627 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4628 { 4629 pgd_t *pgd = pgd_offset(mm, *addr); 4630 p4d_t *p4d = p4d_offset(pgd, *addr); 4631 pud_t *pud = pud_offset(p4d, *addr); 4632 4633 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4634 if (page_count(virt_to_page(ptep)) == 1) 4635 return 0; 4636 4637 pud_clear(pud); 4638 put_page(virt_to_page(ptep)); 4639 mm_dec_nr_pmds(mm); 4640 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4641 return 1; 4642 } 4643 #define want_pmd_share() (1) 4644 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4645 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4646 { 4647 return NULL; 4648 } 4649 4650 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4651 { 4652 return 0; 4653 } 4654 #define want_pmd_share() (0) 4655 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4656 4657 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4658 pte_t *huge_pte_alloc(struct mm_struct *mm, 4659 unsigned long addr, unsigned long sz) 4660 { 4661 pgd_t *pgd; 4662 p4d_t *p4d; 4663 pud_t *pud; 4664 pte_t *pte = NULL; 4665 4666 pgd = pgd_offset(mm, addr); 4667 p4d = p4d_alloc(mm, pgd, addr); 4668 if (!p4d) 4669 return NULL; 4670 pud = pud_alloc(mm, p4d, addr); 4671 if (pud) { 4672 if (sz == PUD_SIZE) { 4673 pte = (pte_t *)pud; 4674 } else { 4675 BUG_ON(sz != PMD_SIZE); 4676 if (want_pmd_share() && pud_none(*pud)) 4677 pte = huge_pmd_share(mm, addr, pud); 4678 else 4679 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4680 } 4681 } 4682 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 4683 4684 return pte; 4685 } 4686 4687 /* 4688 * huge_pte_offset() - Walk the page table to resolve the hugepage 4689 * entry at address @addr 4690 * 4691 * Return: Pointer to page table or swap entry (PUD or PMD) for 4692 * address @addr, or NULL if a p*d_none() entry is encountered and the 4693 * size @sz doesn't match the hugepage size at this level of the page 4694 * table. 4695 */ 4696 pte_t *huge_pte_offset(struct mm_struct *mm, 4697 unsigned long addr, unsigned long sz) 4698 { 4699 pgd_t *pgd; 4700 p4d_t *p4d; 4701 pud_t *pud; 4702 pmd_t *pmd; 4703 4704 pgd = pgd_offset(mm, addr); 4705 if (!pgd_present(*pgd)) 4706 return NULL; 4707 p4d = p4d_offset(pgd, addr); 4708 if (!p4d_present(*p4d)) 4709 return NULL; 4710 4711 pud = pud_offset(p4d, addr); 4712 if (sz != PUD_SIZE && pud_none(*pud)) 4713 return NULL; 4714 /* hugepage or swap? */ 4715 if (pud_huge(*pud) || !pud_present(*pud)) 4716 return (pte_t *)pud; 4717 4718 pmd = pmd_offset(pud, addr); 4719 if (sz != PMD_SIZE && pmd_none(*pmd)) 4720 return NULL; 4721 /* hugepage or swap? */ 4722 if (pmd_huge(*pmd) || !pmd_present(*pmd)) 4723 return (pte_t *)pmd; 4724 4725 return NULL; 4726 } 4727 4728 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4729 4730 /* 4731 * These functions are overwritable if your architecture needs its own 4732 * behavior. 4733 */ 4734 struct page * __weak 4735 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4736 int write) 4737 { 4738 return ERR_PTR(-EINVAL); 4739 } 4740 4741 struct page * __weak 4742 follow_huge_pd(struct vm_area_struct *vma, 4743 unsigned long address, hugepd_t hpd, int flags, int pdshift) 4744 { 4745 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 4746 return NULL; 4747 } 4748 4749 struct page * __weak 4750 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4751 pmd_t *pmd, int flags) 4752 { 4753 struct page *page = NULL; 4754 spinlock_t *ptl; 4755 pte_t pte; 4756 retry: 4757 ptl = pmd_lockptr(mm, pmd); 4758 spin_lock(ptl); 4759 /* 4760 * make sure that the address range covered by this pmd is not 4761 * unmapped from other threads. 4762 */ 4763 if (!pmd_huge(*pmd)) 4764 goto out; 4765 pte = huge_ptep_get((pte_t *)pmd); 4766 if (pte_present(pte)) { 4767 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4768 if (flags & FOLL_GET) 4769 get_page(page); 4770 } else { 4771 if (is_hugetlb_entry_migration(pte)) { 4772 spin_unlock(ptl); 4773 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4774 goto retry; 4775 } 4776 /* 4777 * hwpoisoned entry is treated as no_page_table in 4778 * follow_page_mask(). 4779 */ 4780 } 4781 out: 4782 spin_unlock(ptl); 4783 return page; 4784 } 4785 4786 struct page * __weak 4787 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4788 pud_t *pud, int flags) 4789 { 4790 if (flags & FOLL_GET) 4791 return NULL; 4792 4793 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4794 } 4795 4796 struct page * __weak 4797 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 4798 { 4799 if (flags & FOLL_GET) 4800 return NULL; 4801 4802 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 4803 } 4804 4805 bool isolate_huge_page(struct page *page, struct list_head *list) 4806 { 4807 bool ret = true; 4808 4809 VM_BUG_ON_PAGE(!PageHead(page), page); 4810 spin_lock(&hugetlb_lock); 4811 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4812 ret = false; 4813 goto unlock; 4814 } 4815 clear_page_huge_active(page); 4816 list_move_tail(&page->lru, list); 4817 unlock: 4818 spin_unlock(&hugetlb_lock); 4819 return ret; 4820 } 4821 4822 void putback_active_hugepage(struct page *page) 4823 { 4824 VM_BUG_ON_PAGE(!PageHead(page), page); 4825 spin_lock(&hugetlb_lock); 4826 set_page_huge_active(page); 4827 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4828 spin_unlock(&hugetlb_lock); 4829 put_page(page); 4830 } 4831 4832 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 4833 { 4834 struct hstate *h = page_hstate(oldpage); 4835 4836 hugetlb_cgroup_migrate(oldpage, newpage); 4837 set_page_owner_migrate_reason(newpage, reason); 4838 4839 /* 4840 * transfer temporary state of the new huge page. This is 4841 * reverse to other transitions because the newpage is going to 4842 * be final while the old one will be freed so it takes over 4843 * the temporary status. 4844 * 4845 * Also note that we have to transfer the per-node surplus state 4846 * here as well otherwise the global surplus count will not match 4847 * the per-node's. 4848 */ 4849 if (PageHugeTemporary(newpage)) { 4850 int old_nid = page_to_nid(oldpage); 4851 int new_nid = page_to_nid(newpage); 4852 4853 SetPageHugeTemporary(oldpage); 4854 ClearPageHugeTemporary(newpage); 4855 4856 spin_lock(&hugetlb_lock); 4857 if (h->surplus_huge_pages_node[old_nid]) { 4858 h->surplus_huge_pages_node[old_nid]--; 4859 h->surplus_huge_pages_node[new_nid]++; 4860 } 4861 spin_unlock(&hugetlb_lock); 4862 } 4863 } 4864