xref: /openbmc/linux/mm/hugetlb.c (revision cd5d5810)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29 
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35 
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
38 
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 
43 __initdata LIST_HEAD(huge_boot_pages);
44 
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49 
50 /*
51  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52  * free_huge_pages, and surplus_huge_pages.
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55 
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
59 
60 	spin_unlock(&spool->lock);
61 
62 	/* If no pages are used, and no other handles to the subpool
63 	 * remain, free the subpool the subpool remain */
64 	if (free)
65 		kfree(spool);
66 }
67 
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70 	struct hugepage_subpool *spool;
71 
72 	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 	if (!spool)
74 		return NULL;
75 
76 	spin_lock_init(&spool->lock);
77 	spool->count = 1;
78 	spool->max_hpages = nr_blocks;
79 	spool->used_hpages = 0;
80 
81 	return spool;
82 }
83 
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86 	spin_lock(&spool->lock);
87 	BUG_ON(!spool->count);
88 	spool->count--;
89 	unlock_or_release_subpool(spool);
90 }
91 
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 				      long delta)
94 {
95 	int ret = 0;
96 
97 	if (!spool)
98 		return 0;
99 
100 	spin_lock(&spool->lock);
101 	if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 		spool->used_hpages += delta;
103 	} else {
104 		ret = -ENOMEM;
105 	}
106 	spin_unlock(&spool->lock);
107 
108 	return ret;
109 }
110 
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 				       long delta)
113 {
114 	if (!spool)
115 		return;
116 
117 	spin_lock(&spool->lock);
118 	spool->used_hpages -= delta;
119 	/* If hugetlbfs_put_super couldn't free spool due to
120 	* an outstanding quota reference, free it now. */
121 	unlock_or_release_subpool(spool);
122 }
123 
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126 	return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128 
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131 	return subpool_inode(file_inode(vma->vm_file));
132 }
133 
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation_mutex:
142  *
143  *	down_write(&mm->mmap_sem);
144  * or
145  *	down_read(&mm->mmap_sem);
146  *	mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149 	struct list_head link;
150 	long from;
151 	long to;
152 };
153 
154 static long region_add(struct list_head *head, long f, long t)
155 {
156 	struct file_region *rg, *nrg, *trg;
157 
158 	/* Locate the region we are either in or before. */
159 	list_for_each_entry(rg, head, link)
160 		if (f <= rg->to)
161 			break;
162 
163 	/* Round our left edge to the current segment if it encloses us. */
164 	if (f > rg->from)
165 		f = rg->from;
166 
167 	/* Check for and consume any regions we now overlap with. */
168 	nrg = rg;
169 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 		if (&rg->link == head)
171 			break;
172 		if (rg->from > t)
173 			break;
174 
175 		/* If this area reaches higher then extend our area to
176 		 * include it completely.  If this is not the first area
177 		 * which we intend to reuse, free it. */
178 		if (rg->to > t)
179 			t = rg->to;
180 		if (rg != nrg) {
181 			list_del(&rg->link);
182 			kfree(rg);
183 		}
184 	}
185 	nrg->from = f;
186 	nrg->to = t;
187 	return 0;
188 }
189 
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192 	struct file_region *rg, *nrg;
193 	long chg = 0;
194 
195 	/* Locate the region we are before or in. */
196 	list_for_each_entry(rg, head, link)
197 		if (f <= rg->to)
198 			break;
199 
200 	/* If we are below the current region then a new region is required.
201 	 * Subtle, allocate a new region at the position but make it zero
202 	 * size such that we can guarantee to record the reservation. */
203 	if (&rg->link == head || t < rg->from) {
204 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 		if (!nrg)
206 			return -ENOMEM;
207 		nrg->from = f;
208 		nrg->to   = f;
209 		INIT_LIST_HEAD(&nrg->link);
210 		list_add(&nrg->link, rg->link.prev);
211 
212 		return t - f;
213 	}
214 
215 	/* Round our left edge to the current segment if it encloses us. */
216 	if (f > rg->from)
217 		f = rg->from;
218 	chg = t - f;
219 
220 	/* Check for and consume any regions we now overlap with. */
221 	list_for_each_entry(rg, rg->link.prev, link) {
222 		if (&rg->link == head)
223 			break;
224 		if (rg->from > t)
225 			return chg;
226 
227 		/* We overlap with this area, if it extends further than
228 		 * us then we must extend ourselves.  Account for its
229 		 * existing reservation. */
230 		if (rg->to > t) {
231 			chg += rg->to - t;
232 			t = rg->to;
233 		}
234 		chg -= rg->to - rg->from;
235 	}
236 	return chg;
237 }
238 
239 static long region_truncate(struct list_head *head, long end)
240 {
241 	struct file_region *rg, *trg;
242 	long chg = 0;
243 
244 	/* Locate the region we are either in or before. */
245 	list_for_each_entry(rg, head, link)
246 		if (end <= rg->to)
247 			break;
248 	if (&rg->link == head)
249 		return 0;
250 
251 	/* If we are in the middle of a region then adjust it. */
252 	if (end > rg->from) {
253 		chg = rg->to - end;
254 		rg->to = end;
255 		rg = list_entry(rg->link.next, typeof(*rg), link);
256 	}
257 
258 	/* Drop any remaining regions. */
259 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 		if (&rg->link == head)
261 			break;
262 		chg += rg->to - rg->from;
263 		list_del(&rg->link);
264 		kfree(rg);
265 	}
266 	return chg;
267 }
268 
269 static long region_count(struct list_head *head, long f, long t)
270 {
271 	struct file_region *rg;
272 	long chg = 0;
273 
274 	/* Locate each segment we overlap with, and count that overlap. */
275 	list_for_each_entry(rg, head, link) {
276 		long seg_from;
277 		long seg_to;
278 
279 		if (rg->to <= f)
280 			continue;
281 		if (rg->from >= t)
282 			break;
283 
284 		seg_from = max(rg->from, f);
285 		seg_to = min(rg->to, t);
286 
287 		chg += seg_to - seg_from;
288 	}
289 
290 	return chg;
291 }
292 
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 			struct vm_area_struct *vma, unsigned long address)
299 {
300 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 			(vma->vm_pgoff >> huge_page_order(h));
302 }
303 
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 				     unsigned long address)
306 {
307 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309 
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316 	struct hstate *hstate;
317 
318 	if (!is_vm_hugetlb_page(vma))
319 		return PAGE_SIZE;
320 
321 	hstate = hstate_vma(vma);
322 
323 	return 1UL << huge_page_shift(hstate);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326 
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336 	return vma_kernel_pagesize(vma);
337 }
338 #endif
339 
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348 
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370 	return (unsigned long)vma->vm_private_data;
371 }
372 
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 							unsigned long value)
375 {
376 	vma->vm_private_data = (void *)value;
377 }
378 
379 struct resv_map {
380 	struct kref refs;
381 	struct list_head regions;
382 };
383 
384 static struct resv_map *resv_map_alloc(void)
385 {
386 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 	if (!resv_map)
388 		return NULL;
389 
390 	kref_init(&resv_map->refs);
391 	INIT_LIST_HEAD(&resv_map->regions);
392 
393 	return resv_map;
394 }
395 
396 static void resv_map_release(struct kref *ref)
397 {
398 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399 
400 	/* Clear out any active regions before we release the map. */
401 	region_truncate(&resv_map->regions, 0);
402 	kfree(resv_map);
403 }
404 
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 	if (!(vma->vm_flags & VM_MAYSHARE))
409 		return (struct resv_map *)(get_vma_private_data(vma) &
410 							~HPAGE_RESV_MASK);
411 	return NULL;
412 }
413 
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418 
419 	set_vma_private_data(vma, (get_vma_private_data(vma) &
420 				HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422 
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427 
428 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430 
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434 
435 	return (get_vma_private_data(vma) & flag) != 0;
436 }
437 
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440 {
441 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
442 	if (!(vma->vm_flags & VM_MAYSHARE))
443 		vma->vm_private_data = (void *)0;
444 }
445 
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448 {
449 	if (vma->vm_flags & VM_NORESERVE) {
450 		/*
451 		 * This address is already reserved by other process(chg == 0),
452 		 * so, we should decrement reserved count. Without decrementing,
453 		 * reserve count remains after releasing inode, because this
454 		 * allocated page will go into page cache and is regarded as
455 		 * coming from reserved pool in releasing step.  Currently, we
456 		 * don't have any other solution to deal with this situation
457 		 * properly, so add work-around here.
458 		 */
459 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460 			return 1;
461 		else
462 			return 0;
463 	}
464 
465 	/* Shared mappings always use reserves */
466 	if (vma->vm_flags & VM_MAYSHARE)
467 		return 1;
468 
469 	/*
470 	 * Only the process that called mmap() has reserves for
471 	 * private mappings.
472 	 */
473 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474 		return 1;
475 
476 	return 0;
477 }
478 
479 static void copy_gigantic_page(struct page *dst, struct page *src)
480 {
481 	int i;
482 	struct hstate *h = page_hstate(src);
483 	struct page *dst_base = dst;
484 	struct page *src_base = src;
485 
486 	for (i = 0; i < pages_per_huge_page(h); ) {
487 		cond_resched();
488 		copy_highpage(dst, src);
489 
490 		i++;
491 		dst = mem_map_next(dst, dst_base, i);
492 		src = mem_map_next(src, src_base, i);
493 	}
494 }
495 
496 void copy_huge_page(struct page *dst, struct page *src)
497 {
498 	int i;
499 	struct hstate *h = page_hstate(src);
500 
501 	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
502 		copy_gigantic_page(dst, src);
503 		return;
504 	}
505 
506 	might_sleep();
507 	for (i = 0; i < pages_per_huge_page(h); i++) {
508 		cond_resched();
509 		copy_highpage(dst + i, src + i);
510 	}
511 }
512 
513 static void enqueue_huge_page(struct hstate *h, struct page *page)
514 {
515 	int nid = page_to_nid(page);
516 	list_move(&page->lru, &h->hugepage_freelists[nid]);
517 	h->free_huge_pages++;
518 	h->free_huge_pages_node[nid]++;
519 }
520 
521 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
522 {
523 	struct page *page;
524 
525 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
526 		if (!is_migrate_isolate_page(page))
527 			break;
528 	/*
529 	 * if 'non-isolated free hugepage' not found on the list,
530 	 * the allocation fails.
531 	 */
532 	if (&h->hugepage_freelists[nid] == &page->lru)
533 		return NULL;
534 	list_move(&page->lru, &h->hugepage_activelist);
535 	set_page_refcounted(page);
536 	h->free_huge_pages--;
537 	h->free_huge_pages_node[nid]--;
538 	return page;
539 }
540 
541 /* Movability of hugepages depends on migration support. */
542 static inline gfp_t htlb_alloc_mask(struct hstate *h)
543 {
544 	if (hugepages_treat_as_movable || hugepage_migration_support(h))
545 		return GFP_HIGHUSER_MOVABLE;
546 	else
547 		return GFP_HIGHUSER;
548 }
549 
550 static struct page *dequeue_huge_page_vma(struct hstate *h,
551 				struct vm_area_struct *vma,
552 				unsigned long address, int avoid_reserve,
553 				long chg)
554 {
555 	struct page *page = NULL;
556 	struct mempolicy *mpol;
557 	nodemask_t *nodemask;
558 	struct zonelist *zonelist;
559 	struct zone *zone;
560 	struct zoneref *z;
561 	unsigned int cpuset_mems_cookie;
562 
563 	/*
564 	 * A child process with MAP_PRIVATE mappings created by their parent
565 	 * have no page reserves. This check ensures that reservations are
566 	 * not "stolen". The child may still get SIGKILLed
567 	 */
568 	if (!vma_has_reserves(vma, chg) &&
569 			h->free_huge_pages - h->resv_huge_pages == 0)
570 		goto err;
571 
572 	/* If reserves cannot be used, ensure enough pages are in the pool */
573 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
574 		goto err;
575 
576 retry_cpuset:
577 	cpuset_mems_cookie = get_mems_allowed();
578 	zonelist = huge_zonelist(vma, address,
579 					htlb_alloc_mask(h), &mpol, &nodemask);
580 
581 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
582 						MAX_NR_ZONES - 1, nodemask) {
583 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
584 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
585 			if (page) {
586 				if (avoid_reserve)
587 					break;
588 				if (!vma_has_reserves(vma, chg))
589 					break;
590 
591 				SetPagePrivate(page);
592 				h->resv_huge_pages--;
593 				break;
594 			}
595 		}
596 	}
597 
598 	mpol_cond_put(mpol);
599 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
600 		goto retry_cpuset;
601 	return page;
602 
603 err:
604 	return NULL;
605 }
606 
607 static void update_and_free_page(struct hstate *h, struct page *page)
608 {
609 	int i;
610 
611 	VM_BUG_ON(h->order >= MAX_ORDER);
612 
613 	h->nr_huge_pages--;
614 	h->nr_huge_pages_node[page_to_nid(page)]--;
615 	for (i = 0; i < pages_per_huge_page(h); i++) {
616 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
617 				1 << PG_referenced | 1 << PG_dirty |
618 				1 << PG_active | 1 << PG_reserved |
619 				1 << PG_private | 1 << PG_writeback);
620 	}
621 	VM_BUG_ON(hugetlb_cgroup_from_page(page));
622 	set_compound_page_dtor(page, NULL);
623 	set_page_refcounted(page);
624 	arch_release_hugepage(page);
625 	__free_pages(page, huge_page_order(h));
626 }
627 
628 struct hstate *size_to_hstate(unsigned long size)
629 {
630 	struct hstate *h;
631 
632 	for_each_hstate(h) {
633 		if (huge_page_size(h) == size)
634 			return h;
635 	}
636 	return NULL;
637 }
638 
639 static void free_huge_page(struct page *page)
640 {
641 	/*
642 	 * Can't pass hstate in here because it is called from the
643 	 * compound page destructor.
644 	 */
645 	struct hstate *h = page_hstate(page);
646 	int nid = page_to_nid(page);
647 	struct hugepage_subpool *spool =
648 		(struct hugepage_subpool *)page_private(page);
649 	bool restore_reserve;
650 
651 	set_page_private(page, 0);
652 	page->mapping = NULL;
653 	BUG_ON(page_count(page));
654 	BUG_ON(page_mapcount(page));
655 	restore_reserve = PagePrivate(page);
656 	ClearPagePrivate(page);
657 
658 	spin_lock(&hugetlb_lock);
659 	hugetlb_cgroup_uncharge_page(hstate_index(h),
660 				     pages_per_huge_page(h), page);
661 	if (restore_reserve)
662 		h->resv_huge_pages++;
663 
664 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
665 		/* remove the page from active list */
666 		list_del(&page->lru);
667 		update_and_free_page(h, page);
668 		h->surplus_huge_pages--;
669 		h->surplus_huge_pages_node[nid]--;
670 	} else {
671 		arch_clear_hugepage_flags(page);
672 		enqueue_huge_page(h, page);
673 	}
674 	spin_unlock(&hugetlb_lock);
675 	hugepage_subpool_put_pages(spool, 1);
676 }
677 
678 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
679 {
680 	INIT_LIST_HEAD(&page->lru);
681 	set_compound_page_dtor(page, free_huge_page);
682 	spin_lock(&hugetlb_lock);
683 	set_hugetlb_cgroup(page, NULL);
684 	h->nr_huge_pages++;
685 	h->nr_huge_pages_node[nid]++;
686 	spin_unlock(&hugetlb_lock);
687 	put_page(page); /* free it into the hugepage allocator */
688 }
689 
690 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
691 {
692 	int i;
693 	int nr_pages = 1 << order;
694 	struct page *p = page + 1;
695 
696 	/* we rely on prep_new_huge_page to set the destructor */
697 	set_compound_order(page, order);
698 	__SetPageHead(page);
699 	__ClearPageReserved(page);
700 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
701 		__SetPageTail(p);
702 		/*
703 		 * For gigantic hugepages allocated through bootmem at
704 		 * boot, it's safer to be consistent with the not-gigantic
705 		 * hugepages and clear the PG_reserved bit from all tail pages
706 		 * too.  Otherwse drivers using get_user_pages() to access tail
707 		 * pages may get the reference counting wrong if they see
708 		 * PG_reserved set on a tail page (despite the head page not
709 		 * having PG_reserved set).  Enforcing this consistency between
710 		 * head and tail pages allows drivers to optimize away a check
711 		 * on the head page when they need know if put_page() is needed
712 		 * after get_user_pages().
713 		 */
714 		__ClearPageReserved(p);
715 		set_page_count(p, 0);
716 		p->first_page = page;
717 	}
718 }
719 
720 /*
721  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
722  * transparent huge pages.  See the PageTransHuge() documentation for more
723  * details.
724  */
725 int PageHuge(struct page *page)
726 {
727 	compound_page_dtor *dtor;
728 
729 	if (!PageCompound(page))
730 		return 0;
731 
732 	page = compound_head(page);
733 	dtor = get_compound_page_dtor(page);
734 
735 	return dtor == free_huge_page;
736 }
737 EXPORT_SYMBOL_GPL(PageHuge);
738 
739 pgoff_t __basepage_index(struct page *page)
740 {
741 	struct page *page_head = compound_head(page);
742 	pgoff_t index = page_index(page_head);
743 	unsigned long compound_idx;
744 
745 	if (!PageHuge(page_head))
746 		return page_index(page);
747 
748 	if (compound_order(page_head) >= MAX_ORDER)
749 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
750 	else
751 		compound_idx = page - page_head;
752 
753 	return (index << compound_order(page_head)) + compound_idx;
754 }
755 
756 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
757 {
758 	struct page *page;
759 
760 	if (h->order >= MAX_ORDER)
761 		return NULL;
762 
763 	page = alloc_pages_exact_node(nid,
764 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
765 						__GFP_REPEAT|__GFP_NOWARN,
766 		huge_page_order(h));
767 	if (page) {
768 		if (arch_prepare_hugepage(page)) {
769 			__free_pages(page, huge_page_order(h));
770 			return NULL;
771 		}
772 		prep_new_huge_page(h, page, nid);
773 	}
774 
775 	return page;
776 }
777 
778 /*
779  * common helper functions for hstate_next_node_to_{alloc|free}.
780  * We may have allocated or freed a huge page based on a different
781  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
782  * be outside of *nodes_allowed.  Ensure that we use an allowed
783  * node for alloc or free.
784  */
785 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
786 {
787 	nid = next_node(nid, *nodes_allowed);
788 	if (nid == MAX_NUMNODES)
789 		nid = first_node(*nodes_allowed);
790 	VM_BUG_ON(nid >= MAX_NUMNODES);
791 
792 	return nid;
793 }
794 
795 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
796 {
797 	if (!node_isset(nid, *nodes_allowed))
798 		nid = next_node_allowed(nid, nodes_allowed);
799 	return nid;
800 }
801 
802 /*
803  * returns the previously saved node ["this node"] from which to
804  * allocate a persistent huge page for the pool and advance the
805  * next node from which to allocate, handling wrap at end of node
806  * mask.
807  */
808 static int hstate_next_node_to_alloc(struct hstate *h,
809 					nodemask_t *nodes_allowed)
810 {
811 	int nid;
812 
813 	VM_BUG_ON(!nodes_allowed);
814 
815 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
816 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
817 
818 	return nid;
819 }
820 
821 /*
822  * helper for free_pool_huge_page() - return the previously saved
823  * node ["this node"] from which to free a huge page.  Advance the
824  * next node id whether or not we find a free huge page to free so
825  * that the next attempt to free addresses the next node.
826  */
827 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
828 {
829 	int nid;
830 
831 	VM_BUG_ON(!nodes_allowed);
832 
833 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
834 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
835 
836 	return nid;
837 }
838 
839 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
840 	for (nr_nodes = nodes_weight(*mask);				\
841 		nr_nodes > 0 &&						\
842 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
843 		nr_nodes--)
844 
845 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
846 	for (nr_nodes = nodes_weight(*mask);				\
847 		nr_nodes > 0 &&						\
848 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
849 		nr_nodes--)
850 
851 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
852 {
853 	struct page *page;
854 	int nr_nodes, node;
855 	int ret = 0;
856 
857 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
858 		page = alloc_fresh_huge_page_node(h, node);
859 		if (page) {
860 			ret = 1;
861 			break;
862 		}
863 	}
864 
865 	if (ret)
866 		count_vm_event(HTLB_BUDDY_PGALLOC);
867 	else
868 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
869 
870 	return ret;
871 }
872 
873 /*
874  * Free huge page from pool from next node to free.
875  * Attempt to keep persistent huge pages more or less
876  * balanced over allowed nodes.
877  * Called with hugetlb_lock locked.
878  */
879 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
880 							 bool acct_surplus)
881 {
882 	int nr_nodes, node;
883 	int ret = 0;
884 
885 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
886 		/*
887 		 * If we're returning unused surplus pages, only examine
888 		 * nodes with surplus pages.
889 		 */
890 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
891 		    !list_empty(&h->hugepage_freelists[node])) {
892 			struct page *page =
893 				list_entry(h->hugepage_freelists[node].next,
894 					  struct page, lru);
895 			list_del(&page->lru);
896 			h->free_huge_pages--;
897 			h->free_huge_pages_node[node]--;
898 			if (acct_surplus) {
899 				h->surplus_huge_pages--;
900 				h->surplus_huge_pages_node[node]--;
901 			}
902 			update_and_free_page(h, page);
903 			ret = 1;
904 			break;
905 		}
906 	}
907 
908 	return ret;
909 }
910 
911 /*
912  * Dissolve a given free hugepage into free buddy pages. This function does
913  * nothing for in-use (including surplus) hugepages.
914  */
915 static void dissolve_free_huge_page(struct page *page)
916 {
917 	spin_lock(&hugetlb_lock);
918 	if (PageHuge(page) && !page_count(page)) {
919 		struct hstate *h = page_hstate(page);
920 		int nid = page_to_nid(page);
921 		list_del(&page->lru);
922 		h->free_huge_pages--;
923 		h->free_huge_pages_node[nid]--;
924 		update_and_free_page(h, page);
925 	}
926 	spin_unlock(&hugetlb_lock);
927 }
928 
929 /*
930  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
931  * make specified memory blocks removable from the system.
932  * Note that start_pfn should aligned with (minimum) hugepage size.
933  */
934 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
935 {
936 	unsigned int order = 8 * sizeof(void *);
937 	unsigned long pfn;
938 	struct hstate *h;
939 
940 	/* Set scan step to minimum hugepage size */
941 	for_each_hstate(h)
942 		if (order > huge_page_order(h))
943 			order = huge_page_order(h);
944 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
945 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
946 		dissolve_free_huge_page(pfn_to_page(pfn));
947 }
948 
949 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
950 {
951 	struct page *page;
952 	unsigned int r_nid;
953 
954 	if (h->order >= MAX_ORDER)
955 		return NULL;
956 
957 	/*
958 	 * Assume we will successfully allocate the surplus page to
959 	 * prevent racing processes from causing the surplus to exceed
960 	 * overcommit
961 	 *
962 	 * This however introduces a different race, where a process B
963 	 * tries to grow the static hugepage pool while alloc_pages() is
964 	 * called by process A. B will only examine the per-node
965 	 * counters in determining if surplus huge pages can be
966 	 * converted to normal huge pages in adjust_pool_surplus(). A
967 	 * won't be able to increment the per-node counter, until the
968 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
969 	 * no more huge pages can be converted from surplus to normal
970 	 * state (and doesn't try to convert again). Thus, we have a
971 	 * case where a surplus huge page exists, the pool is grown, and
972 	 * the surplus huge page still exists after, even though it
973 	 * should just have been converted to a normal huge page. This
974 	 * does not leak memory, though, as the hugepage will be freed
975 	 * once it is out of use. It also does not allow the counters to
976 	 * go out of whack in adjust_pool_surplus() as we don't modify
977 	 * the node values until we've gotten the hugepage and only the
978 	 * per-node value is checked there.
979 	 */
980 	spin_lock(&hugetlb_lock);
981 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
982 		spin_unlock(&hugetlb_lock);
983 		return NULL;
984 	} else {
985 		h->nr_huge_pages++;
986 		h->surplus_huge_pages++;
987 	}
988 	spin_unlock(&hugetlb_lock);
989 
990 	if (nid == NUMA_NO_NODE)
991 		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
992 				   __GFP_REPEAT|__GFP_NOWARN,
993 				   huge_page_order(h));
994 	else
995 		page = alloc_pages_exact_node(nid,
996 			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
997 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
998 
999 	if (page && arch_prepare_hugepage(page)) {
1000 		__free_pages(page, huge_page_order(h));
1001 		page = NULL;
1002 	}
1003 
1004 	spin_lock(&hugetlb_lock);
1005 	if (page) {
1006 		INIT_LIST_HEAD(&page->lru);
1007 		r_nid = page_to_nid(page);
1008 		set_compound_page_dtor(page, free_huge_page);
1009 		set_hugetlb_cgroup(page, NULL);
1010 		/*
1011 		 * We incremented the global counters already
1012 		 */
1013 		h->nr_huge_pages_node[r_nid]++;
1014 		h->surplus_huge_pages_node[r_nid]++;
1015 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1016 	} else {
1017 		h->nr_huge_pages--;
1018 		h->surplus_huge_pages--;
1019 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1020 	}
1021 	spin_unlock(&hugetlb_lock);
1022 
1023 	return page;
1024 }
1025 
1026 /*
1027  * This allocation function is useful in the context where vma is irrelevant.
1028  * E.g. soft-offlining uses this function because it only cares physical
1029  * address of error page.
1030  */
1031 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1032 {
1033 	struct page *page = NULL;
1034 
1035 	spin_lock(&hugetlb_lock);
1036 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1037 		page = dequeue_huge_page_node(h, nid);
1038 	spin_unlock(&hugetlb_lock);
1039 
1040 	if (!page)
1041 		page = alloc_buddy_huge_page(h, nid);
1042 
1043 	return page;
1044 }
1045 
1046 /*
1047  * Increase the hugetlb pool such that it can accommodate a reservation
1048  * of size 'delta'.
1049  */
1050 static int gather_surplus_pages(struct hstate *h, int delta)
1051 {
1052 	struct list_head surplus_list;
1053 	struct page *page, *tmp;
1054 	int ret, i;
1055 	int needed, allocated;
1056 	bool alloc_ok = true;
1057 
1058 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1059 	if (needed <= 0) {
1060 		h->resv_huge_pages += delta;
1061 		return 0;
1062 	}
1063 
1064 	allocated = 0;
1065 	INIT_LIST_HEAD(&surplus_list);
1066 
1067 	ret = -ENOMEM;
1068 retry:
1069 	spin_unlock(&hugetlb_lock);
1070 	for (i = 0; i < needed; i++) {
1071 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1072 		if (!page) {
1073 			alloc_ok = false;
1074 			break;
1075 		}
1076 		list_add(&page->lru, &surplus_list);
1077 	}
1078 	allocated += i;
1079 
1080 	/*
1081 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1082 	 * because either resv_huge_pages or free_huge_pages may have changed.
1083 	 */
1084 	spin_lock(&hugetlb_lock);
1085 	needed = (h->resv_huge_pages + delta) -
1086 			(h->free_huge_pages + allocated);
1087 	if (needed > 0) {
1088 		if (alloc_ok)
1089 			goto retry;
1090 		/*
1091 		 * We were not able to allocate enough pages to
1092 		 * satisfy the entire reservation so we free what
1093 		 * we've allocated so far.
1094 		 */
1095 		goto free;
1096 	}
1097 	/*
1098 	 * The surplus_list now contains _at_least_ the number of extra pages
1099 	 * needed to accommodate the reservation.  Add the appropriate number
1100 	 * of pages to the hugetlb pool and free the extras back to the buddy
1101 	 * allocator.  Commit the entire reservation here to prevent another
1102 	 * process from stealing the pages as they are added to the pool but
1103 	 * before they are reserved.
1104 	 */
1105 	needed += allocated;
1106 	h->resv_huge_pages += delta;
1107 	ret = 0;
1108 
1109 	/* Free the needed pages to the hugetlb pool */
1110 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1111 		if ((--needed) < 0)
1112 			break;
1113 		/*
1114 		 * This page is now managed by the hugetlb allocator and has
1115 		 * no users -- drop the buddy allocator's reference.
1116 		 */
1117 		put_page_testzero(page);
1118 		VM_BUG_ON(page_count(page));
1119 		enqueue_huge_page(h, page);
1120 	}
1121 free:
1122 	spin_unlock(&hugetlb_lock);
1123 
1124 	/* Free unnecessary surplus pages to the buddy allocator */
1125 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1126 		put_page(page);
1127 	spin_lock(&hugetlb_lock);
1128 
1129 	return ret;
1130 }
1131 
1132 /*
1133  * When releasing a hugetlb pool reservation, any surplus pages that were
1134  * allocated to satisfy the reservation must be explicitly freed if they were
1135  * never used.
1136  * Called with hugetlb_lock held.
1137  */
1138 static void return_unused_surplus_pages(struct hstate *h,
1139 					unsigned long unused_resv_pages)
1140 {
1141 	unsigned long nr_pages;
1142 
1143 	/* Uncommit the reservation */
1144 	h->resv_huge_pages -= unused_resv_pages;
1145 
1146 	/* Cannot return gigantic pages currently */
1147 	if (h->order >= MAX_ORDER)
1148 		return;
1149 
1150 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1151 
1152 	/*
1153 	 * We want to release as many surplus pages as possible, spread
1154 	 * evenly across all nodes with memory. Iterate across these nodes
1155 	 * until we can no longer free unreserved surplus pages. This occurs
1156 	 * when the nodes with surplus pages have no free pages.
1157 	 * free_pool_huge_page() will balance the the freed pages across the
1158 	 * on-line nodes with memory and will handle the hstate accounting.
1159 	 */
1160 	while (nr_pages--) {
1161 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1162 			break;
1163 	}
1164 }
1165 
1166 /*
1167  * Determine if the huge page at addr within the vma has an associated
1168  * reservation.  Where it does not we will need to logically increase
1169  * reservation and actually increase subpool usage before an allocation
1170  * can occur.  Where any new reservation would be required the
1171  * reservation change is prepared, but not committed.  Once the page
1172  * has been allocated from the subpool and instantiated the change should
1173  * be committed via vma_commit_reservation.  No action is required on
1174  * failure.
1175  */
1176 static long vma_needs_reservation(struct hstate *h,
1177 			struct vm_area_struct *vma, unsigned long addr)
1178 {
1179 	struct address_space *mapping = vma->vm_file->f_mapping;
1180 	struct inode *inode = mapping->host;
1181 
1182 	if (vma->vm_flags & VM_MAYSHARE) {
1183 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1184 		return region_chg(&inode->i_mapping->private_list,
1185 							idx, idx + 1);
1186 
1187 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1188 		return 1;
1189 
1190 	} else  {
1191 		long err;
1192 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1193 		struct resv_map *resv = vma_resv_map(vma);
1194 
1195 		err = region_chg(&resv->regions, idx, idx + 1);
1196 		if (err < 0)
1197 			return err;
1198 		return 0;
1199 	}
1200 }
1201 static void vma_commit_reservation(struct hstate *h,
1202 			struct vm_area_struct *vma, unsigned long addr)
1203 {
1204 	struct address_space *mapping = vma->vm_file->f_mapping;
1205 	struct inode *inode = mapping->host;
1206 
1207 	if (vma->vm_flags & VM_MAYSHARE) {
1208 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1209 		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1210 
1211 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1212 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1213 		struct resv_map *resv = vma_resv_map(vma);
1214 
1215 		/* Mark this page used in the map. */
1216 		region_add(&resv->regions, idx, idx + 1);
1217 	}
1218 }
1219 
1220 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1221 				    unsigned long addr, int avoid_reserve)
1222 {
1223 	struct hugepage_subpool *spool = subpool_vma(vma);
1224 	struct hstate *h = hstate_vma(vma);
1225 	struct page *page;
1226 	long chg;
1227 	int ret, idx;
1228 	struct hugetlb_cgroup *h_cg;
1229 
1230 	idx = hstate_index(h);
1231 	/*
1232 	 * Processes that did not create the mapping will have no
1233 	 * reserves and will not have accounted against subpool
1234 	 * limit. Check that the subpool limit can be made before
1235 	 * satisfying the allocation MAP_NORESERVE mappings may also
1236 	 * need pages and subpool limit allocated allocated if no reserve
1237 	 * mapping overlaps.
1238 	 */
1239 	chg = vma_needs_reservation(h, vma, addr);
1240 	if (chg < 0)
1241 		return ERR_PTR(-ENOMEM);
1242 	if (chg || avoid_reserve)
1243 		if (hugepage_subpool_get_pages(spool, 1))
1244 			return ERR_PTR(-ENOSPC);
1245 
1246 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1247 	if (ret) {
1248 		if (chg || avoid_reserve)
1249 			hugepage_subpool_put_pages(spool, 1);
1250 		return ERR_PTR(-ENOSPC);
1251 	}
1252 	spin_lock(&hugetlb_lock);
1253 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1254 	if (!page) {
1255 		spin_unlock(&hugetlb_lock);
1256 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1257 		if (!page) {
1258 			hugetlb_cgroup_uncharge_cgroup(idx,
1259 						       pages_per_huge_page(h),
1260 						       h_cg);
1261 			if (chg || avoid_reserve)
1262 				hugepage_subpool_put_pages(spool, 1);
1263 			return ERR_PTR(-ENOSPC);
1264 		}
1265 		spin_lock(&hugetlb_lock);
1266 		list_move(&page->lru, &h->hugepage_activelist);
1267 		/* Fall through */
1268 	}
1269 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1270 	spin_unlock(&hugetlb_lock);
1271 
1272 	set_page_private(page, (unsigned long)spool);
1273 
1274 	vma_commit_reservation(h, vma, addr);
1275 	return page;
1276 }
1277 
1278 /*
1279  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1280  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1281  * where no ERR_VALUE is expected to be returned.
1282  */
1283 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1284 				unsigned long addr, int avoid_reserve)
1285 {
1286 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1287 	if (IS_ERR(page))
1288 		page = NULL;
1289 	return page;
1290 }
1291 
1292 int __weak alloc_bootmem_huge_page(struct hstate *h)
1293 {
1294 	struct huge_bootmem_page *m;
1295 	int nr_nodes, node;
1296 
1297 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1298 		void *addr;
1299 
1300 		addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1301 				huge_page_size(h), huge_page_size(h), 0);
1302 
1303 		if (addr) {
1304 			/*
1305 			 * Use the beginning of the huge page to store the
1306 			 * huge_bootmem_page struct (until gather_bootmem
1307 			 * puts them into the mem_map).
1308 			 */
1309 			m = addr;
1310 			goto found;
1311 		}
1312 	}
1313 	return 0;
1314 
1315 found:
1316 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1317 	/* Put them into a private list first because mem_map is not up yet */
1318 	list_add(&m->list, &huge_boot_pages);
1319 	m->hstate = h;
1320 	return 1;
1321 }
1322 
1323 static void prep_compound_huge_page(struct page *page, int order)
1324 {
1325 	if (unlikely(order > (MAX_ORDER - 1)))
1326 		prep_compound_gigantic_page(page, order);
1327 	else
1328 		prep_compound_page(page, order);
1329 }
1330 
1331 /* Put bootmem huge pages into the standard lists after mem_map is up */
1332 static void __init gather_bootmem_prealloc(void)
1333 {
1334 	struct huge_bootmem_page *m;
1335 
1336 	list_for_each_entry(m, &huge_boot_pages, list) {
1337 		struct hstate *h = m->hstate;
1338 		struct page *page;
1339 
1340 #ifdef CONFIG_HIGHMEM
1341 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1342 		free_bootmem_late((unsigned long)m,
1343 				  sizeof(struct huge_bootmem_page));
1344 #else
1345 		page = virt_to_page(m);
1346 #endif
1347 		WARN_ON(page_count(page) != 1);
1348 		prep_compound_huge_page(page, h->order);
1349 		WARN_ON(PageReserved(page));
1350 		prep_new_huge_page(h, page, page_to_nid(page));
1351 		/*
1352 		 * If we had gigantic hugepages allocated at boot time, we need
1353 		 * to restore the 'stolen' pages to totalram_pages in order to
1354 		 * fix confusing memory reports from free(1) and another
1355 		 * side-effects, like CommitLimit going negative.
1356 		 */
1357 		if (h->order > (MAX_ORDER - 1))
1358 			adjust_managed_page_count(page, 1 << h->order);
1359 	}
1360 }
1361 
1362 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1363 {
1364 	unsigned long i;
1365 
1366 	for (i = 0; i < h->max_huge_pages; ++i) {
1367 		if (h->order >= MAX_ORDER) {
1368 			if (!alloc_bootmem_huge_page(h))
1369 				break;
1370 		} else if (!alloc_fresh_huge_page(h,
1371 					 &node_states[N_MEMORY]))
1372 			break;
1373 	}
1374 	h->max_huge_pages = i;
1375 }
1376 
1377 static void __init hugetlb_init_hstates(void)
1378 {
1379 	struct hstate *h;
1380 
1381 	for_each_hstate(h) {
1382 		/* oversize hugepages were init'ed in early boot */
1383 		if (h->order < MAX_ORDER)
1384 			hugetlb_hstate_alloc_pages(h);
1385 	}
1386 }
1387 
1388 static char * __init memfmt(char *buf, unsigned long n)
1389 {
1390 	if (n >= (1UL << 30))
1391 		sprintf(buf, "%lu GB", n >> 30);
1392 	else if (n >= (1UL << 20))
1393 		sprintf(buf, "%lu MB", n >> 20);
1394 	else
1395 		sprintf(buf, "%lu KB", n >> 10);
1396 	return buf;
1397 }
1398 
1399 static void __init report_hugepages(void)
1400 {
1401 	struct hstate *h;
1402 
1403 	for_each_hstate(h) {
1404 		char buf[32];
1405 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1406 			memfmt(buf, huge_page_size(h)),
1407 			h->free_huge_pages);
1408 	}
1409 }
1410 
1411 #ifdef CONFIG_HIGHMEM
1412 static void try_to_free_low(struct hstate *h, unsigned long count,
1413 						nodemask_t *nodes_allowed)
1414 {
1415 	int i;
1416 
1417 	if (h->order >= MAX_ORDER)
1418 		return;
1419 
1420 	for_each_node_mask(i, *nodes_allowed) {
1421 		struct page *page, *next;
1422 		struct list_head *freel = &h->hugepage_freelists[i];
1423 		list_for_each_entry_safe(page, next, freel, lru) {
1424 			if (count >= h->nr_huge_pages)
1425 				return;
1426 			if (PageHighMem(page))
1427 				continue;
1428 			list_del(&page->lru);
1429 			update_and_free_page(h, page);
1430 			h->free_huge_pages--;
1431 			h->free_huge_pages_node[page_to_nid(page)]--;
1432 		}
1433 	}
1434 }
1435 #else
1436 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1437 						nodemask_t *nodes_allowed)
1438 {
1439 }
1440 #endif
1441 
1442 /*
1443  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1444  * balanced by operating on them in a round-robin fashion.
1445  * Returns 1 if an adjustment was made.
1446  */
1447 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1448 				int delta)
1449 {
1450 	int nr_nodes, node;
1451 
1452 	VM_BUG_ON(delta != -1 && delta != 1);
1453 
1454 	if (delta < 0) {
1455 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1456 			if (h->surplus_huge_pages_node[node])
1457 				goto found;
1458 		}
1459 	} else {
1460 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1461 			if (h->surplus_huge_pages_node[node] <
1462 					h->nr_huge_pages_node[node])
1463 				goto found;
1464 		}
1465 	}
1466 	return 0;
1467 
1468 found:
1469 	h->surplus_huge_pages += delta;
1470 	h->surplus_huge_pages_node[node] += delta;
1471 	return 1;
1472 }
1473 
1474 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1475 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1476 						nodemask_t *nodes_allowed)
1477 {
1478 	unsigned long min_count, ret;
1479 
1480 	if (h->order >= MAX_ORDER)
1481 		return h->max_huge_pages;
1482 
1483 	/*
1484 	 * Increase the pool size
1485 	 * First take pages out of surplus state.  Then make up the
1486 	 * remaining difference by allocating fresh huge pages.
1487 	 *
1488 	 * We might race with alloc_buddy_huge_page() here and be unable
1489 	 * to convert a surplus huge page to a normal huge page. That is
1490 	 * not critical, though, it just means the overall size of the
1491 	 * pool might be one hugepage larger than it needs to be, but
1492 	 * within all the constraints specified by the sysctls.
1493 	 */
1494 	spin_lock(&hugetlb_lock);
1495 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1496 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1497 			break;
1498 	}
1499 
1500 	while (count > persistent_huge_pages(h)) {
1501 		/*
1502 		 * If this allocation races such that we no longer need the
1503 		 * page, free_huge_page will handle it by freeing the page
1504 		 * and reducing the surplus.
1505 		 */
1506 		spin_unlock(&hugetlb_lock);
1507 		ret = alloc_fresh_huge_page(h, nodes_allowed);
1508 		spin_lock(&hugetlb_lock);
1509 		if (!ret)
1510 			goto out;
1511 
1512 		/* Bail for signals. Probably ctrl-c from user */
1513 		if (signal_pending(current))
1514 			goto out;
1515 	}
1516 
1517 	/*
1518 	 * Decrease the pool size
1519 	 * First return free pages to the buddy allocator (being careful
1520 	 * to keep enough around to satisfy reservations).  Then place
1521 	 * pages into surplus state as needed so the pool will shrink
1522 	 * to the desired size as pages become free.
1523 	 *
1524 	 * By placing pages into the surplus state independent of the
1525 	 * overcommit value, we are allowing the surplus pool size to
1526 	 * exceed overcommit. There are few sane options here. Since
1527 	 * alloc_buddy_huge_page() is checking the global counter,
1528 	 * though, we'll note that we're not allowed to exceed surplus
1529 	 * and won't grow the pool anywhere else. Not until one of the
1530 	 * sysctls are changed, or the surplus pages go out of use.
1531 	 */
1532 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1533 	min_count = max(count, min_count);
1534 	try_to_free_low(h, min_count, nodes_allowed);
1535 	while (min_count < persistent_huge_pages(h)) {
1536 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1537 			break;
1538 	}
1539 	while (count < persistent_huge_pages(h)) {
1540 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1541 			break;
1542 	}
1543 out:
1544 	ret = persistent_huge_pages(h);
1545 	spin_unlock(&hugetlb_lock);
1546 	return ret;
1547 }
1548 
1549 #define HSTATE_ATTR_RO(_name) \
1550 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1551 
1552 #define HSTATE_ATTR(_name) \
1553 	static struct kobj_attribute _name##_attr = \
1554 		__ATTR(_name, 0644, _name##_show, _name##_store)
1555 
1556 static struct kobject *hugepages_kobj;
1557 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1558 
1559 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1560 
1561 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1562 {
1563 	int i;
1564 
1565 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1566 		if (hstate_kobjs[i] == kobj) {
1567 			if (nidp)
1568 				*nidp = NUMA_NO_NODE;
1569 			return &hstates[i];
1570 		}
1571 
1572 	return kobj_to_node_hstate(kobj, nidp);
1573 }
1574 
1575 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1576 					struct kobj_attribute *attr, char *buf)
1577 {
1578 	struct hstate *h;
1579 	unsigned long nr_huge_pages;
1580 	int nid;
1581 
1582 	h = kobj_to_hstate(kobj, &nid);
1583 	if (nid == NUMA_NO_NODE)
1584 		nr_huge_pages = h->nr_huge_pages;
1585 	else
1586 		nr_huge_pages = h->nr_huge_pages_node[nid];
1587 
1588 	return sprintf(buf, "%lu\n", nr_huge_pages);
1589 }
1590 
1591 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1592 			struct kobject *kobj, struct kobj_attribute *attr,
1593 			const char *buf, size_t len)
1594 {
1595 	int err;
1596 	int nid;
1597 	unsigned long count;
1598 	struct hstate *h;
1599 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1600 
1601 	err = kstrtoul(buf, 10, &count);
1602 	if (err)
1603 		goto out;
1604 
1605 	h = kobj_to_hstate(kobj, &nid);
1606 	if (h->order >= MAX_ORDER) {
1607 		err = -EINVAL;
1608 		goto out;
1609 	}
1610 
1611 	if (nid == NUMA_NO_NODE) {
1612 		/*
1613 		 * global hstate attribute
1614 		 */
1615 		if (!(obey_mempolicy &&
1616 				init_nodemask_of_mempolicy(nodes_allowed))) {
1617 			NODEMASK_FREE(nodes_allowed);
1618 			nodes_allowed = &node_states[N_MEMORY];
1619 		}
1620 	} else if (nodes_allowed) {
1621 		/*
1622 		 * per node hstate attribute: adjust count to global,
1623 		 * but restrict alloc/free to the specified node.
1624 		 */
1625 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1626 		init_nodemask_of_node(nodes_allowed, nid);
1627 	} else
1628 		nodes_allowed = &node_states[N_MEMORY];
1629 
1630 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1631 
1632 	if (nodes_allowed != &node_states[N_MEMORY])
1633 		NODEMASK_FREE(nodes_allowed);
1634 
1635 	return len;
1636 out:
1637 	NODEMASK_FREE(nodes_allowed);
1638 	return err;
1639 }
1640 
1641 static ssize_t nr_hugepages_show(struct kobject *kobj,
1642 				       struct kobj_attribute *attr, char *buf)
1643 {
1644 	return nr_hugepages_show_common(kobj, attr, buf);
1645 }
1646 
1647 static ssize_t nr_hugepages_store(struct kobject *kobj,
1648 	       struct kobj_attribute *attr, const char *buf, size_t len)
1649 {
1650 	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1651 }
1652 HSTATE_ATTR(nr_hugepages);
1653 
1654 #ifdef CONFIG_NUMA
1655 
1656 /*
1657  * hstate attribute for optionally mempolicy-based constraint on persistent
1658  * huge page alloc/free.
1659  */
1660 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1661 				       struct kobj_attribute *attr, char *buf)
1662 {
1663 	return nr_hugepages_show_common(kobj, attr, buf);
1664 }
1665 
1666 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1667 	       struct kobj_attribute *attr, const char *buf, size_t len)
1668 {
1669 	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1670 }
1671 HSTATE_ATTR(nr_hugepages_mempolicy);
1672 #endif
1673 
1674 
1675 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1676 					struct kobj_attribute *attr, char *buf)
1677 {
1678 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1679 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1680 }
1681 
1682 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1683 		struct kobj_attribute *attr, const char *buf, size_t count)
1684 {
1685 	int err;
1686 	unsigned long input;
1687 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1688 
1689 	if (h->order >= MAX_ORDER)
1690 		return -EINVAL;
1691 
1692 	err = kstrtoul(buf, 10, &input);
1693 	if (err)
1694 		return err;
1695 
1696 	spin_lock(&hugetlb_lock);
1697 	h->nr_overcommit_huge_pages = input;
1698 	spin_unlock(&hugetlb_lock);
1699 
1700 	return count;
1701 }
1702 HSTATE_ATTR(nr_overcommit_hugepages);
1703 
1704 static ssize_t free_hugepages_show(struct kobject *kobj,
1705 					struct kobj_attribute *attr, char *buf)
1706 {
1707 	struct hstate *h;
1708 	unsigned long free_huge_pages;
1709 	int nid;
1710 
1711 	h = kobj_to_hstate(kobj, &nid);
1712 	if (nid == NUMA_NO_NODE)
1713 		free_huge_pages = h->free_huge_pages;
1714 	else
1715 		free_huge_pages = h->free_huge_pages_node[nid];
1716 
1717 	return sprintf(buf, "%lu\n", free_huge_pages);
1718 }
1719 HSTATE_ATTR_RO(free_hugepages);
1720 
1721 static ssize_t resv_hugepages_show(struct kobject *kobj,
1722 					struct kobj_attribute *attr, char *buf)
1723 {
1724 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1725 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1726 }
1727 HSTATE_ATTR_RO(resv_hugepages);
1728 
1729 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1730 					struct kobj_attribute *attr, char *buf)
1731 {
1732 	struct hstate *h;
1733 	unsigned long surplus_huge_pages;
1734 	int nid;
1735 
1736 	h = kobj_to_hstate(kobj, &nid);
1737 	if (nid == NUMA_NO_NODE)
1738 		surplus_huge_pages = h->surplus_huge_pages;
1739 	else
1740 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1741 
1742 	return sprintf(buf, "%lu\n", surplus_huge_pages);
1743 }
1744 HSTATE_ATTR_RO(surplus_hugepages);
1745 
1746 static struct attribute *hstate_attrs[] = {
1747 	&nr_hugepages_attr.attr,
1748 	&nr_overcommit_hugepages_attr.attr,
1749 	&free_hugepages_attr.attr,
1750 	&resv_hugepages_attr.attr,
1751 	&surplus_hugepages_attr.attr,
1752 #ifdef CONFIG_NUMA
1753 	&nr_hugepages_mempolicy_attr.attr,
1754 #endif
1755 	NULL,
1756 };
1757 
1758 static struct attribute_group hstate_attr_group = {
1759 	.attrs = hstate_attrs,
1760 };
1761 
1762 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1763 				    struct kobject **hstate_kobjs,
1764 				    struct attribute_group *hstate_attr_group)
1765 {
1766 	int retval;
1767 	int hi = hstate_index(h);
1768 
1769 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1770 	if (!hstate_kobjs[hi])
1771 		return -ENOMEM;
1772 
1773 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1774 	if (retval)
1775 		kobject_put(hstate_kobjs[hi]);
1776 
1777 	return retval;
1778 }
1779 
1780 static void __init hugetlb_sysfs_init(void)
1781 {
1782 	struct hstate *h;
1783 	int err;
1784 
1785 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1786 	if (!hugepages_kobj)
1787 		return;
1788 
1789 	for_each_hstate(h) {
1790 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1791 					 hstate_kobjs, &hstate_attr_group);
1792 		if (err)
1793 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1794 	}
1795 }
1796 
1797 #ifdef CONFIG_NUMA
1798 
1799 /*
1800  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1801  * with node devices in node_devices[] using a parallel array.  The array
1802  * index of a node device or _hstate == node id.
1803  * This is here to avoid any static dependency of the node device driver, in
1804  * the base kernel, on the hugetlb module.
1805  */
1806 struct node_hstate {
1807 	struct kobject		*hugepages_kobj;
1808 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1809 };
1810 struct node_hstate node_hstates[MAX_NUMNODES];
1811 
1812 /*
1813  * A subset of global hstate attributes for node devices
1814  */
1815 static struct attribute *per_node_hstate_attrs[] = {
1816 	&nr_hugepages_attr.attr,
1817 	&free_hugepages_attr.attr,
1818 	&surplus_hugepages_attr.attr,
1819 	NULL,
1820 };
1821 
1822 static struct attribute_group per_node_hstate_attr_group = {
1823 	.attrs = per_node_hstate_attrs,
1824 };
1825 
1826 /*
1827  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1828  * Returns node id via non-NULL nidp.
1829  */
1830 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1831 {
1832 	int nid;
1833 
1834 	for (nid = 0; nid < nr_node_ids; nid++) {
1835 		struct node_hstate *nhs = &node_hstates[nid];
1836 		int i;
1837 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1838 			if (nhs->hstate_kobjs[i] == kobj) {
1839 				if (nidp)
1840 					*nidp = nid;
1841 				return &hstates[i];
1842 			}
1843 	}
1844 
1845 	BUG();
1846 	return NULL;
1847 }
1848 
1849 /*
1850  * Unregister hstate attributes from a single node device.
1851  * No-op if no hstate attributes attached.
1852  */
1853 static void hugetlb_unregister_node(struct node *node)
1854 {
1855 	struct hstate *h;
1856 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1857 
1858 	if (!nhs->hugepages_kobj)
1859 		return;		/* no hstate attributes */
1860 
1861 	for_each_hstate(h) {
1862 		int idx = hstate_index(h);
1863 		if (nhs->hstate_kobjs[idx]) {
1864 			kobject_put(nhs->hstate_kobjs[idx]);
1865 			nhs->hstate_kobjs[idx] = NULL;
1866 		}
1867 	}
1868 
1869 	kobject_put(nhs->hugepages_kobj);
1870 	nhs->hugepages_kobj = NULL;
1871 }
1872 
1873 /*
1874  * hugetlb module exit:  unregister hstate attributes from node devices
1875  * that have them.
1876  */
1877 static void hugetlb_unregister_all_nodes(void)
1878 {
1879 	int nid;
1880 
1881 	/*
1882 	 * disable node device registrations.
1883 	 */
1884 	register_hugetlbfs_with_node(NULL, NULL);
1885 
1886 	/*
1887 	 * remove hstate attributes from any nodes that have them.
1888 	 */
1889 	for (nid = 0; nid < nr_node_ids; nid++)
1890 		hugetlb_unregister_node(node_devices[nid]);
1891 }
1892 
1893 /*
1894  * Register hstate attributes for a single node device.
1895  * No-op if attributes already registered.
1896  */
1897 static void hugetlb_register_node(struct node *node)
1898 {
1899 	struct hstate *h;
1900 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1901 	int err;
1902 
1903 	if (nhs->hugepages_kobj)
1904 		return;		/* already allocated */
1905 
1906 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1907 							&node->dev.kobj);
1908 	if (!nhs->hugepages_kobj)
1909 		return;
1910 
1911 	for_each_hstate(h) {
1912 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1913 						nhs->hstate_kobjs,
1914 						&per_node_hstate_attr_group);
1915 		if (err) {
1916 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1917 				h->name, node->dev.id);
1918 			hugetlb_unregister_node(node);
1919 			break;
1920 		}
1921 	}
1922 }
1923 
1924 /*
1925  * hugetlb init time:  register hstate attributes for all registered node
1926  * devices of nodes that have memory.  All on-line nodes should have
1927  * registered their associated device by this time.
1928  */
1929 static void hugetlb_register_all_nodes(void)
1930 {
1931 	int nid;
1932 
1933 	for_each_node_state(nid, N_MEMORY) {
1934 		struct node *node = node_devices[nid];
1935 		if (node->dev.id == nid)
1936 			hugetlb_register_node(node);
1937 	}
1938 
1939 	/*
1940 	 * Let the node device driver know we're here so it can
1941 	 * [un]register hstate attributes on node hotplug.
1942 	 */
1943 	register_hugetlbfs_with_node(hugetlb_register_node,
1944 				     hugetlb_unregister_node);
1945 }
1946 #else	/* !CONFIG_NUMA */
1947 
1948 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1949 {
1950 	BUG();
1951 	if (nidp)
1952 		*nidp = -1;
1953 	return NULL;
1954 }
1955 
1956 static void hugetlb_unregister_all_nodes(void) { }
1957 
1958 static void hugetlb_register_all_nodes(void) { }
1959 
1960 #endif
1961 
1962 static void __exit hugetlb_exit(void)
1963 {
1964 	struct hstate *h;
1965 
1966 	hugetlb_unregister_all_nodes();
1967 
1968 	for_each_hstate(h) {
1969 		kobject_put(hstate_kobjs[hstate_index(h)]);
1970 	}
1971 
1972 	kobject_put(hugepages_kobj);
1973 }
1974 module_exit(hugetlb_exit);
1975 
1976 static int __init hugetlb_init(void)
1977 {
1978 	/* Some platform decide whether they support huge pages at boot
1979 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1980 	 * there is no such support
1981 	 */
1982 	if (HPAGE_SHIFT == 0)
1983 		return 0;
1984 
1985 	if (!size_to_hstate(default_hstate_size)) {
1986 		default_hstate_size = HPAGE_SIZE;
1987 		if (!size_to_hstate(default_hstate_size))
1988 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1989 	}
1990 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1991 	if (default_hstate_max_huge_pages)
1992 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1993 
1994 	hugetlb_init_hstates();
1995 	gather_bootmem_prealloc();
1996 	report_hugepages();
1997 
1998 	hugetlb_sysfs_init();
1999 	hugetlb_register_all_nodes();
2000 	hugetlb_cgroup_file_init();
2001 
2002 	return 0;
2003 }
2004 module_init(hugetlb_init);
2005 
2006 /* Should be called on processing a hugepagesz=... option */
2007 void __init hugetlb_add_hstate(unsigned order)
2008 {
2009 	struct hstate *h;
2010 	unsigned long i;
2011 
2012 	if (size_to_hstate(PAGE_SIZE << order)) {
2013 		pr_warning("hugepagesz= specified twice, ignoring\n");
2014 		return;
2015 	}
2016 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2017 	BUG_ON(order == 0);
2018 	h = &hstates[hugetlb_max_hstate++];
2019 	h->order = order;
2020 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2021 	h->nr_huge_pages = 0;
2022 	h->free_huge_pages = 0;
2023 	for (i = 0; i < MAX_NUMNODES; ++i)
2024 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2025 	INIT_LIST_HEAD(&h->hugepage_activelist);
2026 	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2027 	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2028 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2029 					huge_page_size(h)/1024);
2030 
2031 	parsed_hstate = h;
2032 }
2033 
2034 static int __init hugetlb_nrpages_setup(char *s)
2035 {
2036 	unsigned long *mhp;
2037 	static unsigned long *last_mhp;
2038 
2039 	/*
2040 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2041 	 * so this hugepages= parameter goes to the "default hstate".
2042 	 */
2043 	if (!hugetlb_max_hstate)
2044 		mhp = &default_hstate_max_huge_pages;
2045 	else
2046 		mhp = &parsed_hstate->max_huge_pages;
2047 
2048 	if (mhp == last_mhp) {
2049 		pr_warning("hugepages= specified twice without "
2050 			   "interleaving hugepagesz=, ignoring\n");
2051 		return 1;
2052 	}
2053 
2054 	if (sscanf(s, "%lu", mhp) <= 0)
2055 		*mhp = 0;
2056 
2057 	/*
2058 	 * Global state is always initialized later in hugetlb_init.
2059 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2060 	 * use the bootmem allocator.
2061 	 */
2062 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2063 		hugetlb_hstate_alloc_pages(parsed_hstate);
2064 
2065 	last_mhp = mhp;
2066 
2067 	return 1;
2068 }
2069 __setup("hugepages=", hugetlb_nrpages_setup);
2070 
2071 static int __init hugetlb_default_setup(char *s)
2072 {
2073 	default_hstate_size = memparse(s, &s);
2074 	return 1;
2075 }
2076 __setup("default_hugepagesz=", hugetlb_default_setup);
2077 
2078 static unsigned int cpuset_mems_nr(unsigned int *array)
2079 {
2080 	int node;
2081 	unsigned int nr = 0;
2082 
2083 	for_each_node_mask(node, cpuset_current_mems_allowed)
2084 		nr += array[node];
2085 
2086 	return nr;
2087 }
2088 
2089 #ifdef CONFIG_SYSCTL
2090 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2091 			 struct ctl_table *table, int write,
2092 			 void __user *buffer, size_t *length, loff_t *ppos)
2093 {
2094 	struct hstate *h = &default_hstate;
2095 	unsigned long tmp;
2096 	int ret;
2097 
2098 	tmp = h->max_huge_pages;
2099 
2100 	if (write && h->order >= MAX_ORDER)
2101 		return -EINVAL;
2102 
2103 	table->data = &tmp;
2104 	table->maxlen = sizeof(unsigned long);
2105 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2106 	if (ret)
2107 		goto out;
2108 
2109 	if (write) {
2110 		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2111 						GFP_KERNEL | __GFP_NORETRY);
2112 		if (!(obey_mempolicy &&
2113 			       init_nodemask_of_mempolicy(nodes_allowed))) {
2114 			NODEMASK_FREE(nodes_allowed);
2115 			nodes_allowed = &node_states[N_MEMORY];
2116 		}
2117 		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2118 
2119 		if (nodes_allowed != &node_states[N_MEMORY])
2120 			NODEMASK_FREE(nodes_allowed);
2121 	}
2122 out:
2123 	return ret;
2124 }
2125 
2126 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2127 			  void __user *buffer, size_t *length, loff_t *ppos)
2128 {
2129 
2130 	return hugetlb_sysctl_handler_common(false, table, write,
2131 							buffer, length, ppos);
2132 }
2133 
2134 #ifdef CONFIG_NUMA
2135 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2136 			  void __user *buffer, size_t *length, loff_t *ppos)
2137 {
2138 	return hugetlb_sysctl_handler_common(true, table, write,
2139 							buffer, length, ppos);
2140 }
2141 #endif /* CONFIG_NUMA */
2142 
2143 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2144 			void __user *buffer,
2145 			size_t *length, loff_t *ppos)
2146 {
2147 	struct hstate *h = &default_hstate;
2148 	unsigned long tmp;
2149 	int ret;
2150 
2151 	tmp = h->nr_overcommit_huge_pages;
2152 
2153 	if (write && h->order >= MAX_ORDER)
2154 		return -EINVAL;
2155 
2156 	table->data = &tmp;
2157 	table->maxlen = sizeof(unsigned long);
2158 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2159 	if (ret)
2160 		goto out;
2161 
2162 	if (write) {
2163 		spin_lock(&hugetlb_lock);
2164 		h->nr_overcommit_huge_pages = tmp;
2165 		spin_unlock(&hugetlb_lock);
2166 	}
2167 out:
2168 	return ret;
2169 }
2170 
2171 #endif /* CONFIG_SYSCTL */
2172 
2173 void hugetlb_report_meminfo(struct seq_file *m)
2174 {
2175 	struct hstate *h = &default_hstate;
2176 	seq_printf(m,
2177 			"HugePages_Total:   %5lu\n"
2178 			"HugePages_Free:    %5lu\n"
2179 			"HugePages_Rsvd:    %5lu\n"
2180 			"HugePages_Surp:    %5lu\n"
2181 			"Hugepagesize:   %8lu kB\n",
2182 			h->nr_huge_pages,
2183 			h->free_huge_pages,
2184 			h->resv_huge_pages,
2185 			h->surplus_huge_pages,
2186 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2187 }
2188 
2189 int hugetlb_report_node_meminfo(int nid, char *buf)
2190 {
2191 	struct hstate *h = &default_hstate;
2192 	return sprintf(buf,
2193 		"Node %d HugePages_Total: %5u\n"
2194 		"Node %d HugePages_Free:  %5u\n"
2195 		"Node %d HugePages_Surp:  %5u\n",
2196 		nid, h->nr_huge_pages_node[nid],
2197 		nid, h->free_huge_pages_node[nid],
2198 		nid, h->surplus_huge_pages_node[nid]);
2199 }
2200 
2201 void hugetlb_show_meminfo(void)
2202 {
2203 	struct hstate *h;
2204 	int nid;
2205 
2206 	for_each_node_state(nid, N_MEMORY)
2207 		for_each_hstate(h)
2208 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2209 				nid,
2210 				h->nr_huge_pages_node[nid],
2211 				h->free_huge_pages_node[nid],
2212 				h->surplus_huge_pages_node[nid],
2213 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2214 }
2215 
2216 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2217 unsigned long hugetlb_total_pages(void)
2218 {
2219 	struct hstate *h;
2220 	unsigned long nr_total_pages = 0;
2221 
2222 	for_each_hstate(h)
2223 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2224 	return nr_total_pages;
2225 }
2226 
2227 static int hugetlb_acct_memory(struct hstate *h, long delta)
2228 {
2229 	int ret = -ENOMEM;
2230 
2231 	spin_lock(&hugetlb_lock);
2232 	/*
2233 	 * When cpuset is configured, it breaks the strict hugetlb page
2234 	 * reservation as the accounting is done on a global variable. Such
2235 	 * reservation is completely rubbish in the presence of cpuset because
2236 	 * the reservation is not checked against page availability for the
2237 	 * current cpuset. Application can still potentially OOM'ed by kernel
2238 	 * with lack of free htlb page in cpuset that the task is in.
2239 	 * Attempt to enforce strict accounting with cpuset is almost
2240 	 * impossible (or too ugly) because cpuset is too fluid that
2241 	 * task or memory node can be dynamically moved between cpusets.
2242 	 *
2243 	 * The change of semantics for shared hugetlb mapping with cpuset is
2244 	 * undesirable. However, in order to preserve some of the semantics,
2245 	 * we fall back to check against current free page availability as
2246 	 * a best attempt and hopefully to minimize the impact of changing
2247 	 * semantics that cpuset has.
2248 	 */
2249 	if (delta > 0) {
2250 		if (gather_surplus_pages(h, delta) < 0)
2251 			goto out;
2252 
2253 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2254 			return_unused_surplus_pages(h, delta);
2255 			goto out;
2256 		}
2257 	}
2258 
2259 	ret = 0;
2260 	if (delta < 0)
2261 		return_unused_surplus_pages(h, (unsigned long) -delta);
2262 
2263 out:
2264 	spin_unlock(&hugetlb_lock);
2265 	return ret;
2266 }
2267 
2268 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2269 {
2270 	struct resv_map *resv = vma_resv_map(vma);
2271 
2272 	/*
2273 	 * This new VMA should share its siblings reservation map if present.
2274 	 * The VMA will only ever have a valid reservation map pointer where
2275 	 * it is being copied for another still existing VMA.  As that VMA
2276 	 * has a reference to the reservation map it cannot disappear until
2277 	 * after this open call completes.  It is therefore safe to take a
2278 	 * new reference here without additional locking.
2279 	 */
2280 	if (resv)
2281 		kref_get(&resv->refs);
2282 }
2283 
2284 static void resv_map_put(struct vm_area_struct *vma)
2285 {
2286 	struct resv_map *resv = vma_resv_map(vma);
2287 
2288 	if (!resv)
2289 		return;
2290 	kref_put(&resv->refs, resv_map_release);
2291 }
2292 
2293 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2294 {
2295 	struct hstate *h = hstate_vma(vma);
2296 	struct resv_map *resv = vma_resv_map(vma);
2297 	struct hugepage_subpool *spool = subpool_vma(vma);
2298 	unsigned long reserve;
2299 	unsigned long start;
2300 	unsigned long end;
2301 
2302 	if (resv) {
2303 		start = vma_hugecache_offset(h, vma, vma->vm_start);
2304 		end = vma_hugecache_offset(h, vma, vma->vm_end);
2305 
2306 		reserve = (end - start) -
2307 			region_count(&resv->regions, start, end);
2308 
2309 		resv_map_put(vma);
2310 
2311 		if (reserve) {
2312 			hugetlb_acct_memory(h, -reserve);
2313 			hugepage_subpool_put_pages(spool, reserve);
2314 		}
2315 	}
2316 }
2317 
2318 /*
2319  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2320  * handle_mm_fault() to try to instantiate regular-sized pages in the
2321  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2322  * this far.
2323  */
2324 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2325 {
2326 	BUG();
2327 	return 0;
2328 }
2329 
2330 const struct vm_operations_struct hugetlb_vm_ops = {
2331 	.fault = hugetlb_vm_op_fault,
2332 	.open = hugetlb_vm_op_open,
2333 	.close = hugetlb_vm_op_close,
2334 };
2335 
2336 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2337 				int writable)
2338 {
2339 	pte_t entry;
2340 
2341 	if (writable) {
2342 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2343 					 vma->vm_page_prot)));
2344 	} else {
2345 		entry = huge_pte_wrprotect(mk_huge_pte(page,
2346 					   vma->vm_page_prot));
2347 	}
2348 	entry = pte_mkyoung(entry);
2349 	entry = pte_mkhuge(entry);
2350 	entry = arch_make_huge_pte(entry, vma, page, writable);
2351 
2352 	return entry;
2353 }
2354 
2355 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2356 				   unsigned long address, pte_t *ptep)
2357 {
2358 	pte_t entry;
2359 
2360 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2361 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2362 		update_mmu_cache(vma, address, ptep);
2363 }
2364 
2365 
2366 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2367 			    struct vm_area_struct *vma)
2368 {
2369 	pte_t *src_pte, *dst_pte, entry;
2370 	struct page *ptepage;
2371 	unsigned long addr;
2372 	int cow;
2373 	struct hstate *h = hstate_vma(vma);
2374 	unsigned long sz = huge_page_size(h);
2375 
2376 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2377 
2378 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2379 		src_pte = huge_pte_offset(src, addr);
2380 		if (!src_pte)
2381 			continue;
2382 		dst_pte = huge_pte_alloc(dst, addr, sz);
2383 		if (!dst_pte)
2384 			goto nomem;
2385 
2386 		/* If the pagetables are shared don't copy or take references */
2387 		if (dst_pte == src_pte)
2388 			continue;
2389 
2390 		spin_lock(&dst->page_table_lock);
2391 		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2392 		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2393 			if (cow)
2394 				huge_ptep_set_wrprotect(src, addr, src_pte);
2395 			entry = huge_ptep_get(src_pte);
2396 			ptepage = pte_page(entry);
2397 			get_page(ptepage);
2398 			page_dup_rmap(ptepage);
2399 			set_huge_pte_at(dst, addr, dst_pte, entry);
2400 		}
2401 		spin_unlock(&src->page_table_lock);
2402 		spin_unlock(&dst->page_table_lock);
2403 	}
2404 	return 0;
2405 
2406 nomem:
2407 	return -ENOMEM;
2408 }
2409 
2410 static int is_hugetlb_entry_migration(pte_t pte)
2411 {
2412 	swp_entry_t swp;
2413 
2414 	if (huge_pte_none(pte) || pte_present(pte))
2415 		return 0;
2416 	swp = pte_to_swp_entry(pte);
2417 	if (non_swap_entry(swp) && is_migration_entry(swp))
2418 		return 1;
2419 	else
2420 		return 0;
2421 }
2422 
2423 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2424 {
2425 	swp_entry_t swp;
2426 
2427 	if (huge_pte_none(pte) || pte_present(pte))
2428 		return 0;
2429 	swp = pte_to_swp_entry(pte);
2430 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2431 		return 1;
2432 	else
2433 		return 0;
2434 }
2435 
2436 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2437 			    unsigned long start, unsigned long end,
2438 			    struct page *ref_page)
2439 {
2440 	int force_flush = 0;
2441 	struct mm_struct *mm = vma->vm_mm;
2442 	unsigned long address;
2443 	pte_t *ptep;
2444 	pte_t pte;
2445 	struct page *page;
2446 	struct hstate *h = hstate_vma(vma);
2447 	unsigned long sz = huge_page_size(h);
2448 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2449 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2450 
2451 	WARN_ON(!is_vm_hugetlb_page(vma));
2452 	BUG_ON(start & ~huge_page_mask(h));
2453 	BUG_ON(end & ~huge_page_mask(h));
2454 
2455 	tlb_start_vma(tlb, vma);
2456 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2457 again:
2458 	spin_lock(&mm->page_table_lock);
2459 	for (address = start; address < end; address += sz) {
2460 		ptep = huge_pte_offset(mm, address);
2461 		if (!ptep)
2462 			continue;
2463 
2464 		if (huge_pmd_unshare(mm, &address, ptep))
2465 			continue;
2466 
2467 		pte = huge_ptep_get(ptep);
2468 		if (huge_pte_none(pte))
2469 			continue;
2470 
2471 		/*
2472 		 * HWPoisoned hugepage is already unmapped and dropped reference
2473 		 */
2474 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2475 			huge_pte_clear(mm, address, ptep);
2476 			continue;
2477 		}
2478 
2479 		page = pte_page(pte);
2480 		/*
2481 		 * If a reference page is supplied, it is because a specific
2482 		 * page is being unmapped, not a range. Ensure the page we
2483 		 * are about to unmap is the actual page of interest.
2484 		 */
2485 		if (ref_page) {
2486 			if (page != ref_page)
2487 				continue;
2488 
2489 			/*
2490 			 * Mark the VMA as having unmapped its page so that
2491 			 * future faults in this VMA will fail rather than
2492 			 * looking like data was lost
2493 			 */
2494 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2495 		}
2496 
2497 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2498 		tlb_remove_tlb_entry(tlb, ptep, address);
2499 		if (huge_pte_dirty(pte))
2500 			set_page_dirty(page);
2501 
2502 		page_remove_rmap(page);
2503 		force_flush = !__tlb_remove_page(tlb, page);
2504 		if (force_flush)
2505 			break;
2506 		/* Bail out after unmapping reference page if supplied */
2507 		if (ref_page)
2508 			break;
2509 	}
2510 	spin_unlock(&mm->page_table_lock);
2511 	/*
2512 	 * mmu_gather ran out of room to batch pages, we break out of
2513 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2514 	 * and page-free while holding it.
2515 	 */
2516 	if (force_flush) {
2517 		force_flush = 0;
2518 		tlb_flush_mmu(tlb);
2519 		if (address < end && !ref_page)
2520 			goto again;
2521 	}
2522 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2523 	tlb_end_vma(tlb, vma);
2524 }
2525 
2526 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2527 			  struct vm_area_struct *vma, unsigned long start,
2528 			  unsigned long end, struct page *ref_page)
2529 {
2530 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2531 
2532 	/*
2533 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2534 	 * test will fail on a vma being torn down, and not grab a page table
2535 	 * on its way out.  We're lucky that the flag has such an appropriate
2536 	 * name, and can in fact be safely cleared here. We could clear it
2537 	 * before the __unmap_hugepage_range above, but all that's necessary
2538 	 * is to clear it before releasing the i_mmap_mutex. This works
2539 	 * because in the context this is called, the VMA is about to be
2540 	 * destroyed and the i_mmap_mutex is held.
2541 	 */
2542 	vma->vm_flags &= ~VM_MAYSHARE;
2543 }
2544 
2545 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2546 			  unsigned long end, struct page *ref_page)
2547 {
2548 	struct mm_struct *mm;
2549 	struct mmu_gather tlb;
2550 
2551 	mm = vma->vm_mm;
2552 
2553 	tlb_gather_mmu(&tlb, mm, start, end);
2554 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2555 	tlb_finish_mmu(&tlb, start, end);
2556 }
2557 
2558 /*
2559  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2560  * mappping it owns the reserve page for. The intention is to unmap the page
2561  * from other VMAs and let the children be SIGKILLed if they are faulting the
2562  * same region.
2563  */
2564 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2565 				struct page *page, unsigned long address)
2566 {
2567 	struct hstate *h = hstate_vma(vma);
2568 	struct vm_area_struct *iter_vma;
2569 	struct address_space *mapping;
2570 	pgoff_t pgoff;
2571 
2572 	/*
2573 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2574 	 * from page cache lookup which is in HPAGE_SIZE units.
2575 	 */
2576 	address = address & huge_page_mask(h);
2577 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2578 			vma->vm_pgoff;
2579 	mapping = file_inode(vma->vm_file)->i_mapping;
2580 
2581 	/*
2582 	 * Take the mapping lock for the duration of the table walk. As
2583 	 * this mapping should be shared between all the VMAs,
2584 	 * __unmap_hugepage_range() is called as the lock is already held
2585 	 */
2586 	mutex_lock(&mapping->i_mmap_mutex);
2587 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2588 		/* Do not unmap the current VMA */
2589 		if (iter_vma == vma)
2590 			continue;
2591 
2592 		/*
2593 		 * Unmap the page from other VMAs without their own reserves.
2594 		 * They get marked to be SIGKILLed if they fault in these
2595 		 * areas. This is because a future no-page fault on this VMA
2596 		 * could insert a zeroed page instead of the data existing
2597 		 * from the time of fork. This would look like data corruption
2598 		 */
2599 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2600 			unmap_hugepage_range(iter_vma, address,
2601 					     address + huge_page_size(h), page);
2602 	}
2603 	mutex_unlock(&mapping->i_mmap_mutex);
2604 
2605 	return 1;
2606 }
2607 
2608 /*
2609  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2610  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2611  * cannot race with other handlers or page migration.
2612  * Keep the pte_same checks anyway to make transition from the mutex easier.
2613  */
2614 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2615 			unsigned long address, pte_t *ptep, pte_t pte,
2616 			struct page *pagecache_page)
2617 {
2618 	struct hstate *h = hstate_vma(vma);
2619 	struct page *old_page, *new_page;
2620 	int outside_reserve = 0;
2621 	unsigned long mmun_start;	/* For mmu_notifiers */
2622 	unsigned long mmun_end;		/* For mmu_notifiers */
2623 
2624 	old_page = pte_page(pte);
2625 
2626 retry_avoidcopy:
2627 	/* If no-one else is actually using this page, avoid the copy
2628 	 * and just make the page writable */
2629 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2630 		page_move_anon_rmap(old_page, vma, address);
2631 		set_huge_ptep_writable(vma, address, ptep);
2632 		return 0;
2633 	}
2634 
2635 	/*
2636 	 * If the process that created a MAP_PRIVATE mapping is about to
2637 	 * perform a COW due to a shared page count, attempt to satisfy
2638 	 * the allocation without using the existing reserves. The pagecache
2639 	 * page is used to determine if the reserve at this address was
2640 	 * consumed or not. If reserves were used, a partial faulted mapping
2641 	 * at the time of fork() could consume its reserves on COW instead
2642 	 * of the full address range.
2643 	 */
2644 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2645 			old_page != pagecache_page)
2646 		outside_reserve = 1;
2647 
2648 	page_cache_get(old_page);
2649 
2650 	/* Drop page_table_lock as buddy allocator may be called */
2651 	spin_unlock(&mm->page_table_lock);
2652 	new_page = alloc_huge_page(vma, address, outside_reserve);
2653 
2654 	if (IS_ERR(new_page)) {
2655 		long err = PTR_ERR(new_page);
2656 		page_cache_release(old_page);
2657 
2658 		/*
2659 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2660 		 * it is due to references held by a child and an insufficient
2661 		 * huge page pool. To guarantee the original mappers
2662 		 * reliability, unmap the page from child processes. The child
2663 		 * may get SIGKILLed if it later faults.
2664 		 */
2665 		if (outside_reserve) {
2666 			BUG_ON(huge_pte_none(pte));
2667 			if (unmap_ref_private(mm, vma, old_page, address)) {
2668 				BUG_ON(huge_pte_none(pte));
2669 				spin_lock(&mm->page_table_lock);
2670 				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2671 				if (likely(pte_same(huge_ptep_get(ptep), pte)))
2672 					goto retry_avoidcopy;
2673 				/*
2674 				 * race occurs while re-acquiring page_table_lock, and
2675 				 * our job is done.
2676 				 */
2677 				return 0;
2678 			}
2679 			WARN_ON_ONCE(1);
2680 		}
2681 
2682 		/* Caller expects lock to be held */
2683 		spin_lock(&mm->page_table_lock);
2684 		if (err == -ENOMEM)
2685 			return VM_FAULT_OOM;
2686 		else
2687 			return VM_FAULT_SIGBUS;
2688 	}
2689 
2690 	/*
2691 	 * When the original hugepage is shared one, it does not have
2692 	 * anon_vma prepared.
2693 	 */
2694 	if (unlikely(anon_vma_prepare(vma))) {
2695 		page_cache_release(new_page);
2696 		page_cache_release(old_page);
2697 		/* Caller expects lock to be held */
2698 		spin_lock(&mm->page_table_lock);
2699 		return VM_FAULT_OOM;
2700 	}
2701 
2702 	copy_user_huge_page(new_page, old_page, address, vma,
2703 			    pages_per_huge_page(h));
2704 	__SetPageUptodate(new_page);
2705 
2706 	mmun_start = address & huge_page_mask(h);
2707 	mmun_end = mmun_start + huge_page_size(h);
2708 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2709 	/*
2710 	 * Retake the page_table_lock to check for racing updates
2711 	 * before the page tables are altered
2712 	 */
2713 	spin_lock(&mm->page_table_lock);
2714 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2715 	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2716 		ClearPagePrivate(new_page);
2717 
2718 		/* Break COW */
2719 		huge_ptep_clear_flush(vma, address, ptep);
2720 		set_huge_pte_at(mm, address, ptep,
2721 				make_huge_pte(vma, new_page, 1));
2722 		page_remove_rmap(old_page);
2723 		hugepage_add_new_anon_rmap(new_page, vma, address);
2724 		/* Make the old page be freed below */
2725 		new_page = old_page;
2726 	}
2727 	spin_unlock(&mm->page_table_lock);
2728 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2729 	page_cache_release(new_page);
2730 	page_cache_release(old_page);
2731 
2732 	/* Caller expects lock to be held */
2733 	spin_lock(&mm->page_table_lock);
2734 	return 0;
2735 }
2736 
2737 /* Return the pagecache page at a given address within a VMA */
2738 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2739 			struct vm_area_struct *vma, unsigned long address)
2740 {
2741 	struct address_space *mapping;
2742 	pgoff_t idx;
2743 
2744 	mapping = vma->vm_file->f_mapping;
2745 	idx = vma_hugecache_offset(h, vma, address);
2746 
2747 	return find_lock_page(mapping, idx);
2748 }
2749 
2750 /*
2751  * Return whether there is a pagecache page to back given address within VMA.
2752  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2753  */
2754 static bool hugetlbfs_pagecache_present(struct hstate *h,
2755 			struct vm_area_struct *vma, unsigned long address)
2756 {
2757 	struct address_space *mapping;
2758 	pgoff_t idx;
2759 	struct page *page;
2760 
2761 	mapping = vma->vm_file->f_mapping;
2762 	idx = vma_hugecache_offset(h, vma, address);
2763 
2764 	page = find_get_page(mapping, idx);
2765 	if (page)
2766 		put_page(page);
2767 	return page != NULL;
2768 }
2769 
2770 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2771 			unsigned long address, pte_t *ptep, unsigned int flags)
2772 {
2773 	struct hstate *h = hstate_vma(vma);
2774 	int ret = VM_FAULT_SIGBUS;
2775 	int anon_rmap = 0;
2776 	pgoff_t idx;
2777 	unsigned long size;
2778 	struct page *page;
2779 	struct address_space *mapping;
2780 	pte_t new_pte;
2781 
2782 	/*
2783 	 * Currently, we are forced to kill the process in the event the
2784 	 * original mapper has unmapped pages from the child due to a failed
2785 	 * COW. Warn that such a situation has occurred as it may not be obvious
2786 	 */
2787 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2788 		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2789 			   current->pid);
2790 		return ret;
2791 	}
2792 
2793 	mapping = vma->vm_file->f_mapping;
2794 	idx = vma_hugecache_offset(h, vma, address);
2795 
2796 	/*
2797 	 * Use page lock to guard against racing truncation
2798 	 * before we get page_table_lock.
2799 	 */
2800 retry:
2801 	page = find_lock_page(mapping, idx);
2802 	if (!page) {
2803 		size = i_size_read(mapping->host) >> huge_page_shift(h);
2804 		if (idx >= size)
2805 			goto out;
2806 		page = alloc_huge_page(vma, address, 0);
2807 		if (IS_ERR(page)) {
2808 			ret = PTR_ERR(page);
2809 			if (ret == -ENOMEM)
2810 				ret = VM_FAULT_OOM;
2811 			else
2812 				ret = VM_FAULT_SIGBUS;
2813 			goto out;
2814 		}
2815 		clear_huge_page(page, address, pages_per_huge_page(h));
2816 		__SetPageUptodate(page);
2817 
2818 		if (vma->vm_flags & VM_MAYSHARE) {
2819 			int err;
2820 			struct inode *inode = mapping->host;
2821 
2822 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2823 			if (err) {
2824 				put_page(page);
2825 				if (err == -EEXIST)
2826 					goto retry;
2827 				goto out;
2828 			}
2829 			ClearPagePrivate(page);
2830 
2831 			spin_lock(&inode->i_lock);
2832 			inode->i_blocks += blocks_per_huge_page(h);
2833 			spin_unlock(&inode->i_lock);
2834 		} else {
2835 			lock_page(page);
2836 			if (unlikely(anon_vma_prepare(vma))) {
2837 				ret = VM_FAULT_OOM;
2838 				goto backout_unlocked;
2839 			}
2840 			anon_rmap = 1;
2841 		}
2842 	} else {
2843 		/*
2844 		 * If memory error occurs between mmap() and fault, some process
2845 		 * don't have hwpoisoned swap entry for errored virtual address.
2846 		 * So we need to block hugepage fault by PG_hwpoison bit check.
2847 		 */
2848 		if (unlikely(PageHWPoison(page))) {
2849 			ret = VM_FAULT_HWPOISON |
2850 				VM_FAULT_SET_HINDEX(hstate_index(h));
2851 			goto backout_unlocked;
2852 		}
2853 	}
2854 
2855 	/*
2856 	 * If we are going to COW a private mapping later, we examine the
2857 	 * pending reservations for this page now. This will ensure that
2858 	 * any allocations necessary to record that reservation occur outside
2859 	 * the spinlock.
2860 	 */
2861 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2862 		if (vma_needs_reservation(h, vma, address) < 0) {
2863 			ret = VM_FAULT_OOM;
2864 			goto backout_unlocked;
2865 		}
2866 
2867 	spin_lock(&mm->page_table_lock);
2868 	size = i_size_read(mapping->host) >> huge_page_shift(h);
2869 	if (idx >= size)
2870 		goto backout;
2871 
2872 	ret = 0;
2873 	if (!huge_pte_none(huge_ptep_get(ptep)))
2874 		goto backout;
2875 
2876 	if (anon_rmap) {
2877 		ClearPagePrivate(page);
2878 		hugepage_add_new_anon_rmap(page, vma, address);
2879 	}
2880 	else
2881 		page_dup_rmap(page);
2882 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2883 				&& (vma->vm_flags & VM_SHARED)));
2884 	set_huge_pte_at(mm, address, ptep, new_pte);
2885 
2886 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2887 		/* Optimization, do the COW without a second fault */
2888 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2889 	}
2890 
2891 	spin_unlock(&mm->page_table_lock);
2892 	unlock_page(page);
2893 out:
2894 	return ret;
2895 
2896 backout:
2897 	spin_unlock(&mm->page_table_lock);
2898 backout_unlocked:
2899 	unlock_page(page);
2900 	put_page(page);
2901 	goto out;
2902 }
2903 
2904 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2905 			unsigned long address, unsigned int flags)
2906 {
2907 	pte_t *ptep;
2908 	pte_t entry;
2909 	int ret;
2910 	struct page *page = NULL;
2911 	struct page *pagecache_page = NULL;
2912 	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2913 	struct hstate *h = hstate_vma(vma);
2914 
2915 	address &= huge_page_mask(h);
2916 
2917 	ptep = huge_pte_offset(mm, address);
2918 	if (ptep) {
2919 		entry = huge_ptep_get(ptep);
2920 		if (unlikely(is_hugetlb_entry_migration(entry))) {
2921 			migration_entry_wait_huge(mm, ptep);
2922 			return 0;
2923 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2924 			return VM_FAULT_HWPOISON_LARGE |
2925 				VM_FAULT_SET_HINDEX(hstate_index(h));
2926 	}
2927 
2928 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2929 	if (!ptep)
2930 		return VM_FAULT_OOM;
2931 
2932 	/*
2933 	 * Serialize hugepage allocation and instantiation, so that we don't
2934 	 * get spurious allocation failures if two CPUs race to instantiate
2935 	 * the same page in the page cache.
2936 	 */
2937 	mutex_lock(&hugetlb_instantiation_mutex);
2938 	entry = huge_ptep_get(ptep);
2939 	if (huge_pte_none(entry)) {
2940 		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2941 		goto out_mutex;
2942 	}
2943 
2944 	ret = 0;
2945 
2946 	/*
2947 	 * If we are going to COW the mapping later, we examine the pending
2948 	 * reservations for this page now. This will ensure that any
2949 	 * allocations necessary to record that reservation occur outside the
2950 	 * spinlock. For private mappings, we also lookup the pagecache
2951 	 * page now as it is used to determine if a reservation has been
2952 	 * consumed.
2953 	 */
2954 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2955 		if (vma_needs_reservation(h, vma, address) < 0) {
2956 			ret = VM_FAULT_OOM;
2957 			goto out_mutex;
2958 		}
2959 
2960 		if (!(vma->vm_flags & VM_MAYSHARE))
2961 			pagecache_page = hugetlbfs_pagecache_page(h,
2962 								vma, address);
2963 	}
2964 
2965 	/*
2966 	 * hugetlb_cow() requires page locks of pte_page(entry) and
2967 	 * pagecache_page, so here we need take the former one
2968 	 * when page != pagecache_page or !pagecache_page.
2969 	 * Note that locking order is always pagecache_page -> page,
2970 	 * so no worry about deadlock.
2971 	 */
2972 	page = pte_page(entry);
2973 	get_page(page);
2974 	if (page != pagecache_page)
2975 		lock_page(page);
2976 
2977 	spin_lock(&mm->page_table_lock);
2978 	/* Check for a racing update before calling hugetlb_cow */
2979 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2980 		goto out_page_table_lock;
2981 
2982 
2983 	if (flags & FAULT_FLAG_WRITE) {
2984 		if (!huge_pte_write(entry)) {
2985 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2986 							pagecache_page);
2987 			goto out_page_table_lock;
2988 		}
2989 		entry = huge_pte_mkdirty(entry);
2990 	}
2991 	entry = pte_mkyoung(entry);
2992 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2993 						flags & FAULT_FLAG_WRITE))
2994 		update_mmu_cache(vma, address, ptep);
2995 
2996 out_page_table_lock:
2997 	spin_unlock(&mm->page_table_lock);
2998 
2999 	if (pagecache_page) {
3000 		unlock_page(pagecache_page);
3001 		put_page(pagecache_page);
3002 	}
3003 	if (page != pagecache_page)
3004 		unlock_page(page);
3005 	put_page(page);
3006 
3007 out_mutex:
3008 	mutex_unlock(&hugetlb_instantiation_mutex);
3009 
3010 	return ret;
3011 }
3012 
3013 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3014 			 struct page **pages, struct vm_area_struct **vmas,
3015 			 unsigned long *position, unsigned long *nr_pages,
3016 			 long i, unsigned int flags)
3017 {
3018 	unsigned long pfn_offset;
3019 	unsigned long vaddr = *position;
3020 	unsigned long remainder = *nr_pages;
3021 	struct hstate *h = hstate_vma(vma);
3022 
3023 	spin_lock(&mm->page_table_lock);
3024 	while (vaddr < vma->vm_end && remainder) {
3025 		pte_t *pte;
3026 		int absent;
3027 		struct page *page;
3028 
3029 		/*
3030 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3031 		 * each hugepage.  We have to make sure we get the
3032 		 * first, for the page indexing below to work.
3033 		 */
3034 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3035 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3036 
3037 		/*
3038 		 * When coredumping, it suits get_dump_page if we just return
3039 		 * an error where there's an empty slot with no huge pagecache
3040 		 * to back it.  This way, we avoid allocating a hugepage, and
3041 		 * the sparse dumpfile avoids allocating disk blocks, but its
3042 		 * huge holes still show up with zeroes where they need to be.
3043 		 */
3044 		if (absent && (flags & FOLL_DUMP) &&
3045 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3046 			remainder = 0;
3047 			break;
3048 		}
3049 
3050 		/*
3051 		 * We need call hugetlb_fault for both hugepages under migration
3052 		 * (in which case hugetlb_fault waits for the migration,) and
3053 		 * hwpoisoned hugepages (in which case we need to prevent the
3054 		 * caller from accessing to them.) In order to do this, we use
3055 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3056 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3057 		 * both cases, and because we can't follow correct pages
3058 		 * directly from any kind of swap entries.
3059 		 */
3060 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3061 		    ((flags & FOLL_WRITE) &&
3062 		      !huge_pte_write(huge_ptep_get(pte)))) {
3063 			int ret;
3064 
3065 			spin_unlock(&mm->page_table_lock);
3066 			ret = hugetlb_fault(mm, vma, vaddr,
3067 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3068 			spin_lock(&mm->page_table_lock);
3069 			if (!(ret & VM_FAULT_ERROR))
3070 				continue;
3071 
3072 			remainder = 0;
3073 			break;
3074 		}
3075 
3076 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3077 		page = pte_page(huge_ptep_get(pte));
3078 same_page:
3079 		if (pages) {
3080 			pages[i] = mem_map_offset(page, pfn_offset);
3081 			get_page(pages[i]);
3082 		}
3083 
3084 		if (vmas)
3085 			vmas[i] = vma;
3086 
3087 		vaddr += PAGE_SIZE;
3088 		++pfn_offset;
3089 		--remainder;
3090 		++i;
3091 		if (vaddr < vma->vm_end && remainder &&
3092 				pfn_offset < pages_per_huge_page(h)) {
3093 			/*
3094 			 * We use pfn_offset to avoid touching the pageframes
3095 			 * of this compound page.
3096 			 */
3097 			goto same_page;
3098 		}
3099 	}
3100 	spin_unlock(&mm->page_table_lock);
3101 	*nr_pages = remainder;
3102 	*position = vaddr;
3103 
3104 	return i ? i : -EFAULT;
3105 }
3106 
3107 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3108 		unsigned long address, unsigned long end, pgprot_t newprot)
3109 {
3110 	struct mm_struct *mm = vma->vm_mm;
3111 	unsigned long start = address;
3112 	pte_t *ptep;
3113 	pte_t pte;
3114 	struct hstate *h = hstate_vma(vma);
3115 	unsigned long pages = 0;
3116 
3117 	BUG_ON(address >= end);
3118 	flush_cache_range(vma, address, end);
3119 
3120 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3121 	spin_lock(&mm->page_table_lock);
3122 	for (; address < end; address += huge_page_size(h)) {
3123 		ptep = huge_pte_offset(mm, address);
3124 		if (!ptep)
3125 			continue;
3126 		if (huge_pmd_unshare(mm, &address, ptep)) {
3127 			pages++;
3128 			continue;
3129 		}
3130 		if (!huge_pte_none(huge_ptep_get(ptep))) {
3131 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3132 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3133 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3134 			set_huge_pte_at(mm, address, ptep, pte);
3135 			pages++;
3136 		}
3137 	}
3138 	spin_unlock(&mm->page_table_lock);
3139 	/*
3140 	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3141 	 * may have cleared our pud entry and done put_page on the page table:
3142 	 * once we release i_mmap_mutex, another task can do the final put_page
3143 	 * and that page table be reused and filled with junk.
3144 	 */
3145 	flush_tlb_range(vma, start, end);
3146 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3147 
3148 	return pages << h->order;
3149 }
3150 
3151 int hugetlb_reserve_pages(struct inode *inode,
3152 					long from, long to,
3153 					struct vm_area_struct *vma,
3154 					vm_flags_t vm_flags)
3155 {
3156 	long ret, chg;
3157 	struct hstate *h = hstate_inode(inode);
3158 	struct hugepage_subpool *spool = subpool_inode(inode);
3159 
3160 	/*
3161 	 * Only apply hugepage reservation if asked. At fault time, an
3162 	 * attempt will be made for VM_NORESERVE to allocate a page
3163 	 * without using reserves
3164 	 */
3165 	if (vm_flags & VM_NORESERVE)
3166 		return 0;
3167 
3168 	/*
3169 	 * Shared mappings base their reservation on the number of pages that
3170 	 * are already allocated on behalf of the file. Private mappings need
3171 	 * to reserve the full area even if read-only as mprotect() may be
3172 	 * called to make the mapping read-write. Assume !vma is a shm mapping
3173 	 */
3174 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3175 		chg = region_chg(&inode->i_mapping->private_list, from, to);
3176 	else {
3177 		struct resv_map *resv_map = resv_map_alloc();
3178 		if (!resv_map)
3179 			return -ENOMEM;
3180 
3181 		chg = to - from;
3182 
3183 		set_vma_resv_map(vma, resv_map);
3184 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3185 	}
3186 
3187 	if (chg < 0) {
3188 		ret = chg;
3189 		goto out_err;
3190 	}
3191 
3192 	/* There must be enough pages in the subpool for the mapping */
3193 	if (hugepage_subpool_get_pages(spool, chg)) {
3194 		ret = -ENOSPC;
3195 		goto out_err;
3196 	}
3197 
3198 	/*
3199 	 * Check enough hugepages are available for the reservation.
3200 	 * Hand the pages back to the subpool if there are not
3201 	 */
3202 	ret = hugetlb_acct_memory(h, chg);
3203 	if (ret < 0) {
3204 		hugepage_subpool_put_pages(spool, chg);
3205 		goto out_err;
3206 	}
3207 
3208 	/*
3209 	 * Account for the reservations made. Shared mappings record regions
3210 	 * that have reservations as they are shared by multiple VMAs.
3211 	 * When the last VMA disappears, the region map says how much
3212 	 * the reservation was and the page cache tells how much of
3213 	 * the reservation was consumed. Private mappings are per-VMA and
3214 	 * only the consumed reservations are tracked. When the VMA
3215 	 * disappears, the original reservation is the VMA size and the
3216 	 * consumed reservations are stored in the map. Hence, nothing
3217 	 * else has to be done for private mappings here
3218 	 */
3219 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3220 		region_add(&inode->i_mapping->private_list, from, to);
3221 	return 0;
3222 out_err:
3223 	if (vma)
3224 		resv_map_put(vma);
3225 	return ret;
3226 }
3227 
3228 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3229 {
3230 	struct hstate *h = hstate_inode(inode);
3231 	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3232 	struct hugepage_subpool *spool = subpool_inode(inode);
3233 
3234 	spin_lock(&inode->i_lock);
3235 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3236 	spin_unlock(&inode->i_lock);
3237 
3238 	hugepage_subpool_put_pages(spool, (chg - freed));
3239 	hugetlb_acct_memory(h, -(chg - freed));
3240 }
3241 
3242 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3243 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3244 				struct vm_area_struct *vma,
3245 				unsigned long addr, pgoff_t idx)
3246 {
3247 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3248 				svma->vm_start;
3249 	unsigned long sbase = saddr & PUD_MASK;
3250 	unsigned long s_end = sbase + PUD_SIZE;
3251 
3252 	/* Allow segments to share if only one is marked locked */
3253 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3254 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3255 
3256 	/*
3257 	 * match the virtual addresses, permission and the alignment of the
3258 	 * page table page.
3259 	 */
3260 	if (pmd_index(addr) != pmd_index(saddr) ||
3261 	    vm_flags != svm_flags ||
3262 	    sbase < svma->vm_start || svma->vm_end < s_end)
3263 		return 0;
3264 
3265 	return saddr;
3266 }
3267 
3268 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3269 {
3270 	unsigned long base = addr & PUD_MASK;
3271 	unsigned long end = base + PUD_SIZE;
3272 
3273 	/*
3274 	 * check on proper vm_flags and page table alignment
3275 	 */
3276 	if (vma->vm_flags & VM_MAYSHARE &&
3277 	    vma->vm_start <= base && end <= vma->vm_end)
3278 		return 1;
3279 	return 0;
3280 }
3281 
3282 /*
3283  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3284  * and returns the corresponding pte. While this is not necessary for the
3285  * !shared pmd case because we can allocate the pmd later as well, it makes the
3286  * code much cleaner. pmd allocation is essential for the shared case because
3287  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3288  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3289  * bad pmd for sharing.
3290  */
3291 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3292 {
3293 	struct vm_area_struct *vma = find_vma(mm, addr);
3294 	struct address_space *mapping = vma->vm_file->f_mapping;
3295 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3296 			vma->vm_pgoff;
3297 	struct vm_area_struct *svma;
3298 	unsigned long saddr;
3299 	pte_t *spte = NULL;
3300 	pte_t *pte;
3301 
3302 	if (!vma_shareable(vma, addr))
3303 		return (pte_t *)pmd_alloc(mm, pud, addr);
3304 
3305 	mutex_lock(&mapping->i_mmap_mutex);
3306 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3307 		if (svma == vma)
3308 			continue;
3309 
3310 		saddr = page_table_shareable(svma, vma, addr, idx);
3311 		if (saddr) {
3312 			spte = huge_pte_offset(svma->vm_mm, saddr);
3313 			if (spte) {
3314 				get_page(virt_to_page(spte));
3315 				break;
3316 			}
3317 		}
3318 	}
3319 
3320 	if (!spte)
3321 		goto out;
3322 
3323 	spin_lock(&mm->page_table_lock);
3324 	if (pud_none(*pud))
3325 		pud_populate(mm, pud,
3326 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3327 	else
3328 		put_page(virt_to_page(spte));
3329 	spin_unlock(&mm->page_table_lock);
3330 out:
3331 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3332 	mutex_unlock(&mapping->i_mmap_mutex);
3333 	return pte;
3334 }
3335 
3336 /*
3337  * unmap huge page backed by shared pte.
3338  *
3339  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3340  * indicated by page_count > 1, unmap is achieved by clearing pud and
3341  * decrementing the ref count. If count == 1, the pte page is not shared.
3342  *
3343  * called with vma->vm_mm->page_table_lock held.
3344  *
3345  * returns: 1 successfully unmapped a shared pte page
3346  *	    0 the underlying pte page is not shared, or it is the last user
3347  */
3348 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3349 {
3350 	pgd_t *pgd = pgd_offset(mm, *addr);
3351 	pud_t *pud = pud_offset(pgd, *addr);
3352 
3353 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3354 	if (page_count(virt_to_page(ptep)) == 1)
3355 		return 0;
3356 
3357 	pud_clear(pud);
3358 	put_page(virt_to_page(ptep));
3359 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3360 	return 1;
3361 }
3362 #define want_pmd_share()	(1)
3363 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3364 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3365 {
3366 	return NULL;
3367 }
3368 #define want_pmd_share()	(0)
3369 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3370 
3371 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3372 pte_t *huge_pte_alloc(struct mm_struct *mm,
3373 			unsigned long addr, unsigned long sz)
3374 {
3375 	pgd_t *pgd;
3376 	pud_t *pud;
3377 	pte_t *pte = NULL;
3378 
3379 	pgd = pgd_offset(mm, addr);
3380 	pud = pud_alloc(mm, pgd, addr);
3381 	if (pud) {
3382 		if (sz == PUD_SIZE) {
3383 			pte = (pte_t *)pud;
3384 		} else {
3385 			BUG_ON(sz != PMD_SIZE);
3386 			if (want_pmd_share() && pud_none(*pud))
3387 				pte = huge_pmd_share(mm, addr, pud);
3388 			else
3389 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3390 		}
3391 	}
3392 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3393 
3394 	return pte;
3395 }
3396 
3397 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3398 {
3399 	pgd_t *pgd;
3400 	pud_t *pud;
3401 	pmd_t *pmd = NULL;
3402 
3403 	pgd = pgd_offset(mm, addr);
3404 	if (pgd_present(*pgd)) {
3405 		pud = pud_offset(pgd, addr);
3406 		if (pud_present(*pud)) {
3407 			if (pud_huge(*pud))
3408 				return (pte_t *)pud;
3409 			pmd = pmd_offset(pud, addr);
3410 		}
3411 	}
3412 	return (pte_t *) pmd;
3413 }
3414 
3415 struct page *
3416 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3417 		pmd_t *pmd, int write)
3418 {
3419 	struct page *page;
3420 
3421 	page = pte_page(*(pte_t *)pmd);
3422 	if (page)
3423 		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3424 	return page;
3425 }
3426 
3427 struct page *
3428 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3429 		pud_t *pud, int write)
3430 {
3431 	struct page *page;
3432 
3433 	page = pte_page(*(pte_t *)pud);
3434 	if (page)
3435 		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3436 	return page;
3437 }
3438 
3439 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3440 
3441 /* Can be overriden by architectures */
3442 __attribute__((weak)) struct page *
3443 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3444 	       pud_t *pud, int write)
3445 {
3446 	BUG();
3447 	return NULL;
3448 }
3449 
3450 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3451 
3452 #ifdef CONFIG_MEMORY_FAILURE
3453 
3454 /* Should be called in hugetlb_lock */
3455 static int is_hugepage_on_freelist(struct page *hpage)
3456 {
3457 	struct page *page;
3458 	struct page *tmp;
3459 	struct hstate *h = page_hstate(hpage);
3460 	int nid = page_to_nid(hpage);
3461 
3462 	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3463 		if (page == hpage)
3464 			return 1;
3465 	return 0;
3466 }
3467 
3468 /*
3469  * This function is called from memory failure code.
3470  * Assume the caller holds page lock of the head page.
3471  */
3472 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3473 {
3474 	struct hstate *h = page_hstate(hpage);
3475 	int nid = page_to_nid(hpage);
3476 	int ret = -EBUSY;
3477 
3478 	spin_lock(&hugetlb_lock);
3479 	if (is_hugepage_on_freelist(hpage)) {
3480 		/*
3481 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3482 		 * but dangling hpage->lru can trigger list-debug warnings
3483 		 * (this happens when we call unpoison_memory() on it),
3484 		 * so let it point to itself with list_del_init().
3485 		 */
3486 		list_del_init(&hpage->lru);
3487 		set_page_refcounted(hpage);
3488 		h->free_huge_pages--;
3489 		h->free_huge_pages_node[nid]--;
3490 		ret = 0;
3491 	}
3492 	spin_unlock(&hugetlb_lock);
3493 	return ret;
3494 }
3495 #endif
3496 
3497 bool isolate_huge_page(struct page *page, struct list_head *list)
3498 {
3499 	VM_BUG_ON(!PageHead(page));
3500 	if (!get_page_unless_zero(page))
3501 		return false;
3502 	spin_lock(&hugetlb_lock);
3503 	list_move_tail(&page->lru, list);
3504 	spin_unlock(&hugetlb_lock);
3505 	return true;
3506 }
3507 
3508 void putback_active_hugepage(struct page *page)
3509 {
3510 	VM_BUG_ON(!PageHead(page));
3511 	spin_lock(&hugetlb_lock);
3512 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3513 	spin_unlock(&hugetlb_lock);
3514 	put_page(page);
3515 }
3516 
3517 bool is_hugepage_active(struct page *page)
3518 {
3519 	VM_BUG_ON(!PageHuge(page));
3520 	/*
3521 	 * This function can be called for a tail page because the caller,
3522 	 * scan_movable_pages, scans through a given pfn-range which typically
3523 	 * covers one memory block. In systems using gigantic hugepage (1GB
3524 	 * for x86_64,) a hugepage is larger than a memory block, and we don't
3525 	 * support migrating such large hugepages for now, so return false
3526 	 * when called for tail pages.
3527 	 */
3528 	if (PageTail(page))
3529 		return false;
3530 	/*
3531 	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3532 	 * so we should return false for them.
3533 	 */
3534 	if (unlikely(PageHWPoison(page)))
3535 		return false;
3536 	return page_count(page) > 0;
3537 }
3538